
Playbooks Guide
FortiSOAR 7.2.1



FORTINET DOCUMENT LIBRARY
https://docs.fortinet.com

FORTINET VIDEO GUIDE
https://video.fortinet.com

FORTINET BLOG
https://blog.fortinet.com

CUSTOMER SERVICE & SUPPORT
https://support.fortinet.com

FORTINET TRAINING & CERTIFICATION PROGRAM
https://www.fortinet.com/training-certification

NSE INSTITUTE
https://training.fortinet.com

FORTIGUARD CENTER
https://www.fortiguard.com

END USER LICENSE AGREEMENT
https://www.fortinet.com/doc/legal/EULA.pdf

FEEDBACK
Email: techdoc@fortinet.com

June, 2022
FortiSOAR 7.2.1 Playbooks Guide
00-400-000000-20201230

https://docs.fortinet.com/
https://video.fortinet.com/
https://blog.fortinet.com/
https://support.fortinet.com/
https://www.fortinet.com/training-certification
https://training.fortinet.com/
https://www.fortiguard.com/
https://www.fortinet.com/doc/legal/EULA.pdf
mailto:techdoc@fortinet.com


TABLE OF CONTENTS

Change Log 6
Introduction to Playbooks 7
Overview of Playbook Collections 7
Overview of Playbooks 7

Permissions required to work with playbooks 8
Setting the logging levels for playbooks 8
Assigning ownership of playbooks 9

Creating Playbooks 10
Importing the BPMN Shareable Workflows as FortiSOAR Playbooks 13

Translation of BPMN workflow steps into FortiSOAR steps in playbooks 15
Working with Playbooks 16

Tips for working in the playbook designer 19
Adding blocks and notes in the playbook designer 20
Playbook Debugging - Triggering and testing playbooks from the Designer 22
Changing the prioritization of playbook execution 24
Live User implementation in Playbook Designer 25
Saving versions of your playbook 25
Exporting versions of your playbook 27
Playbook recovery 29

System Playbooks 29
Triggers & Steps 32
Triggers 32
Trigger Types 32

On Create Triggers 32
On Update Triggers 33
On Delete 35
Condition-based triggers 35
Custom API Endpoint 37
Referenced 37
Manual Trigger 37

Triggers 53
Trigger Data 53
Database Triggers (On Create, On Update, and On Delete) 54
Manual Triggers 55
Custom API Endpoint Triggers 56
Referenced Trigger 56

Data Inheritance 56
Playbook Steps 56

Playbook actions used for extending playbook steps 59
Core 69
Evaluate 84
Execute 110
References 120
Email 122

FortiSOAR 7.2.1 Playbooks Guide 3
Fortinet Inc.



Authentication 125
List of reserved keywords 126
Deprecated Playbook steps and triggers 127

Deprecated Playbook Triggers 127
Deprecated Playbook Steps 127

Dynamic Values 130
Overview 130
Jinja Editor 130
Dynamic Values Usage 131

Input 133
Step Results 134
Variables 136
Global Variables 136
IRI Lookup 138

Expressions Usage 139
Adding your own expressions 142

Dynamic Variables 146
Overview 146
Syntax 146
Implementation 147
Scope 147
Functionality 148

Dictionary-like Objects 148
Built-in Functions & Filters 148

FAQS 149
How are dynamic variables used in condition steps? 149

Jinja Filters and Functions 150
Overview 150
Filters 150

Filters for formatting data 151
Filters that operate on list variables 151
Filters that return a unique set from sets or lists 151
Random Number filter 152
Shuffle filter 152
Filters for math operations 153
IP Address filters 153
Hashing filters 154
Filters for combining hashes and dictionaries 154
Filters for extracting values from containers 155
Comment filter 155
URL Split filter 156
Regular Expression filters 157
Other useful filters 157
Combination filters 158
Debugging filters 159
json_query filter 164

Comprehensive list of filters 165

FortiSOAR 7.2.1 Playbooks Guide 4
Fortinet Inc.



Jinja Expressions in FortiSOAR 172
For Loop 172
If Condition 172
For Loop along with the If condition 172
If Else condition 173
Time Operations 173
String Operations 174
Code in block 175
Set variable based on condition 175

YAQL Filters 175
Usage 175

Jinja Extensions 178
Custom Functions and Filters 179

Debugging and Optimizing Playbooks 181
Debugging Playbooks 181

Playbook Execution History 183
Setting up auto-cleanup of workflow execution history 197
Disabling Playbook Priority 198

Optimizing Playbooks 198
Optimized Workflow Runtime for Memory and CPU consumption 200

Troubleshooting Playbooks 201
After upgrading to release 7.2.0 playbooks fail with the 'Access Denied' error for files
downloaded while running playbooks 201
Jinja cannot handle integers that have more than 16 characters 201
Playbooks failing with the Picklist item:<name of picklist filter> error 202
Filters in running playbooks do not work after you upgrade your system in case of
pre-upgrade log records 202
Playbooks are failing, or you are getting a No Permission error 202
Playbook fails after the ingestion is triggered 202
Incorrect Hostname being displayed in links contained in emails sent by System
Playbooks 203
Purging executed playbook logs issues 203
Playbooks fails with the "Too many connections to database" error when using the
"parallel" option for a loop step in Playbooks 203
Playbooks fails with the "Picklist item not found" error 204
Correcting the server address for the manual input endpoints sent in emails 204

Frequently Asked Questions 204

FortiSOAR 7.2.1 Playbooks Guide 5
Fortinet Inc.



Change Log

Date Change Description

2022-06-30 Initial release of 7.2.1

FortiSOAR 7.2.1 Playbooks Guide 6
Fortinet Inc.



Introduction to Playbooks

Introduction to Playbooks

Playbooks in FortiSOAR allow you to automate your security processes across external systems while respecting the
business process required for your organization to function. Playbook templates can be customized to follow an
organization's current procedures while leveraging the automation capabilities of FortiSOAR.

Playbooks are the key to empowering your organization with the full benefits of orchestration
for both the human and machine side.

Playbooks can leverage a number of different FortiSOAR capabilities, such as inserting new data records, sending email
notifications, and even referencing specified conditions to determine what path(s) to continue executing. Playbooks are
highly configurable and provide consistent and thorough execution of IR response plans, enabling swift triage and
containment of any potential cybersecurity threats.

The Playbook Engine runs asynchronously, meaning as an independent service, within the FortiSOAR application. This
allows for better scalability and also frees the Application Engine to focus on request execution for better responsiveness
to human users.

Overview of Playbook Collections

Use Playbook Collections to organize your playbooks. A playbook collection is similar to a folder structure in which you
create and store playbooks that can be used for a particular strategy in your environment.

We recommend the following organizational scheme for storing your playbooks in Collections.

l Each integration target should have its own Collection, e.g., Splunk
l Actions should have their own Collections, such as Forensics, Enrichment, and Remediation, and further, the
actions can leverage the integration playbooks

l Response Plans should have their own Collection and should leverage the Actions in a sequence based on the
standard categories of incidents

Overview of Playbooks

Playbooks are individual sequences of steps designed to accomplish a specific purpose. Playbooks are akin to a
functional programming language, with capabilities to handle internal processes and external integrations.

FortiSOAR supports RBAC for playbooks and therefore administrators require to assign roles
with appropriate permissions to users who require to work with playbooks. For example, for
users who require to run playbooks must be assigned the Execute permission on the
Playbooksmodule.

FortiSOAR 7.2.1 Playbooks Guide 7
Fortinet Inc.



Introduction to Playbooks

The Playbook Designer supports Pan and Zoom tools. In case of large playbooks, you can use the Pan tool to scroll
through your playbook, and you can use the Zoom tools to view the details of the playbook.

Playbooks are executed by default in the context of Playbook Appliance (PBA).

Ensure that when you are creating a playbook that you give the PBA all the necessary
privileges on all the modules that will be consumed while executing the playbook. For
example, if you want to extract indicators from an incident record using a playbook, then the
playbook must have a minimum of Read permission on the Incidentmodule and the Create
permission on the Indicatormodule..

Permissions required to work with playbooks

l To create Playbooks; you must be assigned a role with a minimum of Create, Read, and Update permission on
the Playbooksmodule.

l To modify steps and to view steps in-depth, you must be assigned a role with a minimum of Read and Update
permission on the Playbooksmodule.

l To view the Playbook Designer (you cannot view the steps in detail), you must be assigned a role with a minimum of
Read permission on the Playbooksmodule.

l To create and delete Playbooks, you must be assigned a role with a minimum of Create, Read, Update, and
Delete permission on the Playbooksmodule.

Setting the logging levels for playbooks

From version 7.0.2 onwards, you can choose to set the logging levels for individual playbooks to either INFO (default) or
DEBUG. Your administrator sets the global playbook logging levels; however, an administrator can also enable a setting
that allows users to change the logging level for individual playbooks, which in turn overrides the global playbook logging
levels. Set the playbook level logging to INFO for production instances and in scenarios where you want to use storage
space efficiently; whereas use the DEBUG option only while designing or debugging playbooks since this option can
quickly fill up the storage space.

To set the logging levels of a playbook, open the playbook in the playbook designer, and then click INFO or DEBUG
(depending on the logging level set), which is present at the top of the Playbook Designer, as shown in the following
image:

FortiSOAR 7.2.1 Playbooks Guide 8
Fortinet Inc.



Introduction to Playbooks

Clicking INFO or DEBUG displays the Playbook Execution Log Level dialog:

From the Select Execution Log Level field, select the logging level that you want to set for this playbook and click
Apply. For example, if you select DEBUG, you will see that text at the top of the Playbook Designer changes to Running
in DEBUG mode. Click Save Playbook to apply this change to the playbook.

For more information on playbook execution logs, see the Debugging and Optimizing Playbooks chapter.

Assigning ownership of playbooks

You can assign ownership to playbooks, i.e., if you want certain playbooks to be executed only by certain teams, then
you can create a Private playbook and assign the playbook to only those teams.

By default, when you are creating a playbook, the playbook is created as a Public playbook, i.e., the playbook can be
executed by all (if they have other appropriate rights). However, you can change this to Private by clicking the Private
button that is present at the top of the Playbook Designer, as shown in the following image:

To assign the playbook to a particular team, click the Teams icon ( ). This opens the Assign Owners dialog. In the
Assign Owners dialog, from theOwners drop-down list select the team that will own this playbook and click Assign.

You can make multiple teams, owners of this playbook in a similar manner. If you want to remove ownership from a
particular team, click the red cross that appears besides the team name.

FortiSOAR 7.2.1 Playbooks Guide 9
Fortinet Inc.



Introduction to Playbooks

It is important to note that execute actions such as Escalate, Resolve, or any actions, which are displayed in the
Execute drop-down list in records of modules such as Alerts, are shown based on ownership. For example, if you have
created a Private playbook with a Manual Trigger or a Custom API Endpoint trigger on the Alertsmodule, and if you
go to the alerts module and select the record, then Execute drop-down list will contain only those playbooks that belong
to your team(s). In case of On Create or On Update triggers, RBAC is honored by matching the team defined in the
playbook with the teams associated with the record.

When you export a playbook collection then all the playbooks within that collection become
"Public" playbooks, even if some were marked as "Private playbooks, and the owners of the
private playbooks become blank. Therefore, when you import these playbooks back into
FortiSOAR, and you want the playbooks to be private, then open the playbook and click
"Private" and reassign the owners. Exporting a single private playbook also marks it as public
and its owners also become blank, and therefore, after importing this playbook into
FortiSOAR, you will have to follow the same steps to make it "Private", if you want this
playbook to be a "Private" playbook.

Creating Playbooks

1. Click Automation > Playbooks in the left navigation bar.
2. On the Playbook Collections page, click New Collection to define a new playbook collection in which to save

the playbook you want to create, or, click an existing playbook collection and add the new playbook in that
collection.
Note: You cannot add a playbook directly on the Playbook Collections page, you require to add playbooks to
a playbook collection.

3. In the Add New Playbook Collection dialog, add the name of the collection in the Name field and optionally in
the Description field, add the description for the playbook collection.
You can optionally change the icon that represents the playbook collection, by clicking Change Image and
dragging and dropping your icon to the Upload an Image dialog, or browsing to the icon on your system, selecting
the icon and then clicking Save Image.
You can optionally also add keywords in the Tags field that you can use to reference the playbook collection and
making it easier to search and filter playbook collections and playbooks. You can add special characters and
spaces in tags; however, the following special characters are not supported in tags: ', , , ", #, ?, and /.
Click Create to create the new playbook collection.

FortiSOAR 7.2.1 Playbooks Guide 10
Fortinet Inc.



Introduction to Playbooks

4. To add a playbook, click the collection in which you want to create the new playbook, and then click Add Playbook,
which displays the Add New Playbook dialog:

5. In the Add New Playbook dialog, add the name of the playbook in the Name field and optionally in the Tags field,
add keywords that you can use to reference the playbook, making it easier to search and filter playbooks. You can
optionally in the Description field, add the description for the playbook.
Important: Playbook names must be unique within a collection.
The Active checkbox sets the state of the playbook as Active, or Inactive. By default, the Active checkbox is
selected, i.e., new playbooks are created in the Active state.
Click Create to add the new playbook.
Note: The logging level of new playbooks are set as INFO, if you want detailed logging for the playbook, then you
can open the playbook and set its mode to DEBUG.

6. FortiSOAR displays the Playbook Designer for the newly added Playbook, with a placeholder trigger step and
the name you have specified being displayed in the Name field at the top of the Designer. Now, you must select a
playbook trigger from the Triggers section and enter the necessary variables for the selected trigger, and then
click Save.

For information on the various triggers, see the Triggers & Steps chapter .
Note: Specific conditions that the playbook should meet before continuing can be called out by creating a
Decision Step immediately after the trigger. While the playbook will still execute, the decision step (s)
determines if the playbook continues through the following steps or is considered finished.

7. Add playbook steps.
Once you've selected a trigger, FortiSOAR displays the trigger step in the Playbook Designer with highlighted
connector points as shown in the following image:

Drag-and-drop a connector point to connect to another playbook step. FortiSOAR adds a placeholder step on the

FortiSOAR 7.2.1 Playbooks Guide 11
Fortinet Inc.



Introduction to Playbooks

playbook designer page and opens the Steps tab which displays all the available playbook steps, select the
playbook step that you need next, add the Step Name and the required variables and click Save.

Similarly, you can add further steps and create the desired flow for the playbook. A playbook ends when there are
no additional steps to run. For more information on steps, see the Triggers & Steps chapter.

8. Connect playbook steps or remove a connection between steps.
It is straightforward to connect playbook steps as well as to remove the connection between playbook steps.
To connect a playbook step, use the connection points that appear when you hover on a Playbook step. Select a
connection point and drag and drop the arrow connector on the step you want to connect.

To remove a connection between playbook steps, hover on the arrow connector between the steps, which then
displays a cross (X) red color. Clicking X displays a Confirm dialog, clickOK to remove the link between the
playbook steps.

9. (Optional) To edit or remove an existing playbook step double-click on the step to reopen it and then you can edit
the step or delete the step entirely by clicking Delete Step.
Playbook steps include icons for the Info, Edit, Clone, and Delete actions enabling you to perform these actions in
the step itself using the respective icons.

FortiSOAR 7.2.1 Playbooks Guide 12
Fortinet Inc.



Introduction to Playbooks

Clicking the Info icon displays additional information, if available, about the step.
Clicking the Clone icon creates a copy of the current step and opens the step with the name as Copy of %Step
Name%. All the properties of the current step are copied to the cloned step. You can edit the properties of the cloned
step as required and then save the step.
Clicking the Edit icon reopens the step, and you can edit the properties of the step and then save the step.
Clicking the Delete icon deletes the step entirely.

Importing the BPMN Shareable Workflows as FortiSOAR Playbooks

FortiSOAR provides you with the ability to convert a BPMN Shareable Workflows to FortiSOAR playbooks. Business
Process Model and Notation (BPMN) is a tool using which you can create flowcharts, and these flowcharts tend to be
specific towards cybersecurity workflows. Therefore, this feature provides you with the advantage of importing your
BPMN workflows and directly converting them into FortiSOAR playbooks, without the need to again create the same
workflow in FortiSOAR.

The feature is introduced as a "BETA" feature with more enhancements being planned to be added in the subsequent
releases to make the BPMN import more robust.

Import the BPMN Shareable Workflows into FortiSOAR as follows:

1. Export your BPMN Shareable Workflows from your tool, such as Flowable, Camunda, or Signavio.
BPMN workflows are exported in the XML format.

2. To import the BPMN workflows into FortiSOAR:
Note: FortiSOAR supports importing only a single BPMN workflow, i.e., you cannot import a collection of BPMN
workflows.
a. Log into FortiSOAR and click Automation > Playbooks in the left navigation bar.
b. Click Import BPMN, which opens the Import BPMN dialog.

Note: We are providing a "BETA" Version of this feature so that users can get a preview of this feature.
c. In the Import BPMN dialog, do the following:

i. From the BPMN Tool drop-down list, select the tool in which you have created your BPMN workflows.
Note: FortiSOAR supports Flowable, Camunda, or Signavio.

ii. From the BPMN Output Format drop-down list, select the output format in which you want to convert your
BPMN workflow.
Note: FortiSOAR supports only XML as an output format.

iii. Drag and drop the BPMN XML file, or click the Import icon and browse to the XML file to import the BPMN
XML file into FortiSOAR.
If the XML of the BPMN workflow does contain errors, then a warning will be displayed in the Import
BPMN dialog, which will contain the reason why the XML cannot be imported into FortiSOAR.
If the XML of the BPMN workflow does not contain any mismatched elements or any other errors, then you

FortiSOAR 7.2.1 Playbooks Guide 13
Fortinet Inc.



Introduction to Playbooks

will be able to import the workflow as a playbook in FortiSOAR.

iv. To import the BPMN workflow file, click Import.
This imports the workflow as a playbook in FortiSOAR with the same name as the workflow.
Note: The name of the playbook must be unique, i.e., if you have two workflows with the same name that
you want to import, you must either change the name of the playbook or click the Replace existing
playbook checkbox to replace the existing playbook.

FortiSOAR displays the imported workflow in the Playbook Designer as shown in the following image:

Now you can edit the playbook as required in the playbook in FortiSOAR and easily create the automated
workflow.

FortiSOAR 7.2.1 Playbooks Guide 14
Fortinet Inc.



Introduction to Playbooks

Translation of BPMN workflow steps into FortiSOAR steps in playbooks

The following table specifies which BPMN (Flowable in this case) workflow steps maps to which of the FortiSOAR steps
in the playbooks:

Flowable
(BPMN) step

FortiSOAR
steps

Notes

SequenceFlows Routes Any SequenceFlows defined in your BPMN workflow get converted to a
Decision step in FortiSOAR playbooks.

StartEvents Trigger steps Your BPMN workflow must mandatory have a “Start” event which is the starting
point of the BPMN workflow. The Start event in the BPMN workflow get
converted to a Manual Trigger in FortiSOAR playbooks.

Gateways Decision Step Your BPMN workflow must mandatorily have a “Flow Condition” input which
must be referenced to the Gateway ID.

UserTasks Manual Tasks
step

Note: If the <userTask> is not created according to FortiSOARManual Task
step requirements, then a generic manual task step is created in the
FortiSOAR playbook instead of failing the playbook. After you import the
workflow you can update the manual task step.

ServiceTasks Create Record
step Or
Update
Record step

A <serviceTask> in your BPMN workflow must have the following:
- A “Class” attribute to validate the model.
- The “Class” attribute must be specified as a module
- Addition of a “Class field” which contains either Create or Update.

ScriptTasks Connector
step or as a
Code Snippet
step

A <scriptTask> in your BPMN workflow must have the following:
- Name = {{ConnectorName}}
- scriptFormat = {{FortiSOAR Connector Action}}
- <script> => CDATA[ {{property mapping}} ]
Note: If the connector that you have defined in the <scriptTask> step is not
installed in your FortiSOAR instance, then a generic connector step is created
in the FortiSOAR playbook instead of failing the playbook. After you import the
workflow you can update the connector step.

MailTasks SMTP step The mailTask is type of a <serviceTask> and it must be defined in your
BPMN workflow as following:
<serviceTask>
Flowable:type = mail

HttpTasks FortiSOAR
Utility Step
(REST API
call)

The httpTask is type of a <serviceTask> and it must be defined in your
BPMN workflow as following:
<serviceTask>
Flowable:type = http

FortiSOAR 7.2.1 Playbooks Guide 15
Fortinet Inc.



Introduction to Playbooks

Working with Playbooks

1. Click Automation > Playbooks in the left navigation bar.
2. On the Playbook Collections page, you can search, import, export, or delete a playbook collection.

From release 7.2.0 onwards, you can view all system playbook collections by clicking the Include System
Collections check box. Only users with a minimum of Update permissions on the Securitymodule can view this
checkbox. Clicking the Include System Collections checkbox displays the hidden playbook collections, both
system fixtures as well as collections that contain data ingestion playbooks created by the data ingestion wizard,
allowing you to view all the hidden playbook collections at once. For example, the Schedule Management
playbooks in the following image is a system playbook collection:

If you are a user without Security Update permissions, the Include System Collections checkbox will not be
visible:

Use the Search Collection field to search for playbook collections.
You can import a playbook collection into FortiSOAR if it is in the appropriate JSON. To import a playbook collection
into FortiSOAR, on the Playbook Collections page, click Import.
On the Import Collections dialog, drag and drop the JSON file, or click the Import icon and browse to the
JSON file to import the playbook collection into FortiSOAR and then click Import.
Note: The name of the playbook collection being imported must be unique, else you will get a conflict while
importing the playbook collection. However, if you want to replace an existing playbook collection, then click the
Replace existing playbook collection checkbox.
FortiSOAR also displays the list of global variables that would be imported along the playbook collections or

FortiSOAR 7.2.1 Playbooks Guide 16
Fortinet Inc.



Introduction to Playbooks

playbooks on the Import Playbook dialog. These are the global variables that were part of the playbook that you
had exported. You can review the imported global variables, and choose to modify them as per your requirements.
If the JSON format is incorrect, FortiSOAR displays an error message and does not import the file.
If the JSON format is correct, FortiSOAR imports the playbook collection and displays a success message.
Note: Any tags associated with the playbook collection are upserted into the system when you import a playbook
collection.
To export a playbook collection, select the playbook collection and click Export. Any tags associated with a
playbook collection are exported when you export a playbook collection.
FortiSOAR exports the playbook collection in the JSON format.
To delete a playbook collection, select the playbook collection and click Delete. Users with Delete permissions on
the Playbooksmodule can delete playbook collections. From release 7.2.0 onwards, you can choose to
permanently delete the playbook collection or move the playbook collection to the Recycle Bin (soft deletion). Once
you click Delete, FortiSOAR displays the following confirmation dialog:

On the confirmation dialog, select your deletion preference based on which the playbook collection is either
permanently deleted or moved to the recycle bin. ClickingMove to Recycle Binmoves all the playbooks of that
collection to the recycle bin. Similarly, when you restore any playbook from a playbook collection, the collection
containing those playbooks is restored. For example, if you have a 'Demo' collection containing 3 playbooks, A, B,
and C that you move to the recycle bin, and then restore B from the recycle bin, the Demo collection containing the
B playbook gets restored. For more information on the Recycle Bin, see the "Administration Guide."
You can click theMore Options icon ( ) to export records from the playbooks listing view in the csv or pdf format.

You can also reset the playbook record fields to the default fields specified for the playbook module, click the Reset
Columns To Default option. You can include the Created By, Created On,Modified On, andModified By fields
in a playbook records for tracking purposes.
To import a playbook on the <Playbooks Listing> page, click Import Playbook. The playbook must be in an
appropriate JSON format. Any tags associated with the playbook are upserted into the system when you import a
playbook.

3. To perform operations on playbooks, click the playbook collection and open the <Playbooks Listing> page and
then select playbooks. On the <Playbooks Listing> page, you can perform the following operations: Activate,

FortiSOAR 7.2.1 Playbooks Guide 17
Fortinet Inc.



Introduction to Playbooks

Deactivate, Clone,Move, Export, Change Logging Level, and Delete.

On the <Playbooks Listing> page, you might see a message such as The count that you see on the
playbook collection and the playbooks that you see..... as shown in the above image. This
message is shown since RBAC is enforced on playbooks, and this means that you can only see a listing of those
playbooks for which you (your team) are the owner. As shown in the above image, The Demo collection shows that
3 playbooks are part of the collection. However, the <Playbooks Listing> page only displays a single playbook,
which means that the other playbook is a Private playbook with is owned by a team to which you are not assigned.
You can also search for a playbook by typing keywords in the Search textbox.
Follow the same process as specified for the Playbook Collection import and the same restrictions as applies to the
Playbook Collection import applies to the Playbook import.
To activate playbooks, select playbooks on the <Playbooks Listing> page and click Activate. To deactivate
playbooks, select playbooks on the <Playbooks Listing> page and click Deactivate.
To clone playbooks, select playbooks on the <Playbooks Listing> page and click Clone. You might clone
playbooks if you want to reuse the playbook as a starting point for a new playbook. Cloning the playbook clones
every step within the playbook. You can select more than one playbook to clone at a single time. FortiSOAR clones
the playbook and places the cloned playbook with the name as Copy of %Playbook Name% (%New UUID%).
Once you clone a playbook, you can edit it as per your requirements.
To move playbooks to another existing collection, select playbooks on the <Playbooks Listing> page and click
Move. FortiSOAR displays the Move Playbook dialog that contains the Move to collection section. Clicking
Select in the Move to collection section displays the Collection dialog. From the Collection dialog,
select the collection to which you want to move the playbooks and click Submit.
To export playbooks, select playbooks on the <Playbooks Listing> page and click Export. FortiSOAR exports
playbooks in the JSON format. Any tags associated with playbooks are exported when you export a playbook.
To change the logging level for playbooks, select playbooks on the <Playbooks Listing> page and click
Change Logging Levels, which displays the Playbook Execution Log Level dialog. From the Select
Execution Log Level field, select DEBUG or INFO as the logging levels for the playbooks and click Apply. For more
information on playbook logging levels, see the Setting the logging levels for playbooks topic.
To delete playbooks, select playbooks and click Delete. Users with Delete permissions on the Playbooks
module can delete playbooks. From release 7.2.0 onwards, you can choose to permanently delete the playbook or
move the playbook to the Recycle Bin (soft deletion). Once you click Delete, FortiSOAR displays a confirmation
dialog, on which you can choose from the following options Permanently Delete orMove to Recycle Bin.

4. To edit a playbook, on the <Playbooks Listing> page, click the playbook that you want to edit.
In the Playbook Designer, you can configure the following for the playbook:
Change the state of the playbook by clicking the Is Active box, for example, change the state of the playbook from
Active to Inactive.
Change the Name of the playbook, by clicking the name box and updating the name. You can also add or update
the Description of the playbook, or add or remove Tags from the playbook.
Modify the trigger for the playbook, change or add steps or actions to the playbook.
Use the Toolsmenu to enhance your playbook:

FortiSOAR 7.2.1 Playbooks Guide 18
Fortinet Inc.



Introduction to Playbooks

To add parameters, use the Edit Parameters option.
To add global variables, use theGlobal Variables option.
To view the execution history of the playbook, use the Execution History option. For more information see the
Debugging and Optimizing Playbooks chapter.
To change the execution priority for a playbook, use the Execution Priority option. For more details, see the
Changing the prioritization of playbook execution section.
To apply a jinja template to a JSON input and then render the output, use the Jinja Editor option. You can thereby
check the validity of the jinja and the output before you add the jinja to the playbook. For more information, see the
Dynamic Values chapter.

5. (Optional) Other actions that you can perform in the playbook designer are:
Use the Export button to export the playbook in the JSON format. Use the Delete button to delete the playbook.
Use the Trigger Playbook With Sample Data button to trigger the playbook from the playbook designer. For more
details, see the Playbook Debugging - Triggering and testing playbooks from the Designer section.
Use the Auto-Align - Vertical and Auto-Align - Horizontal buttons to align the playbook vertically or horizontally.
The Undo and Redo buttons are very useful while building a playbook when there is a lot of trial and back and forth
to be done. Use the Undo button or use Ctrl+z(Windows)/Cmd+z (Mac) to reverse changes made in a playbook
and use the Redo button or use Ctrl+y(Windows)/Cmd+shift+z(Mac) to reverse the steps that you have
undone; therefore, you can use the Redo operation only after you have performed the Undo operation in a
playbook. The playbook designer displays messages about the effect of the Undo/Redo operation in the bottom-
right corner. When you perform bulk operations such as moving, cloning, or deleting a number of steps in one go,
clicking Undo reverts the step modification. Similarly, if you have modified a step and saved it, clicking Undo,
reverts the step modifications. Note that when editing inputs in the step argument form, the browser’s default
change tracking is in effect; therefore, the Undo/Redo operations are applicable only after you save the step. Also,
note that if you have made multiple changes in a small time period (around a second), then all these small changes
are considered as a single operation.
To add a block to a playbook click the Add Block button and to add a note for the playbook, click the Add Note
button. For more information, see the Adding blocks and notes in the playbook designer section.

6. Once you have completed updating the playbook, click Save Playbook.

Tips for working in the playbook designer

Following are some tips that you can use to make it easier for you to work with playbooks and playbook steps in the
playbook designer:

l You can select a step by the CTRL+Mouse click operation. To select all the steps, press CTRL+A.
l You can drag and drop multiple selected steps.
l You can copy multiple selected steps by pressing CTRL+C or copy all the steps by pressing CTRL+A and then
pressing CTRL+C. Ensure that you have clicked on your playbook canvas to bring it in focus before you copy the

FortiSOAR 7.2.1 Playbooks Guide 19
Fortinet Inc.



Introduction to Playbooks

step(s).
Note: The trigger step will not be copied.

l You can paste the copied step(s) into a different playbook by using CTRL+V. Ensure that you have clicked on your
playbook canvas to bring it in focus before you paste the step(s).
Note: You can also select Paste from the Editmenu in your browser to paste the copied steps.

l You can delete a step or multiple steps by selecting steps and pressing the backspace or the delete button.
l You can use the Auto-Align - Vertical and Auto-Align - Horizontal buttons to align the playbook vertically or
horizontally. You can use these buttons to make your playbook look neat and organized, which is especially useful
for very large playbooks where playbook readability might be an issue.

Adding blocks and notes in the playbook designer

You can add blocks containing multiple playbook steps that achieve a logical group context in a logical workflow
diagram. For example, the start and configuration steps can form the 'Configure' group of the playbook, similarly getting
the reputation from a threat intelligence tool can form the 'Investigate' group of the playbook, and then blocking the asset
or updating the asset records based on the reputation retrieved can form the 'Remediate' group of the playbook.

To add a block, open a playbook in the playbook designer, and click the Add Block button, then draw the preferred size
box in the designer that will create the block of that size and release the selection. Playbook steps placed by dragging
and dropping the steps within the drawn box are added, by default to the block. You can also drag and drop the block
over the playbook steps that should be part of the block and then release the selection. Once you release the release the
selection the Add Block dialog. In the Add Block dialog, enter the title of the block and optionally a description of the
block and click Add.

You can move playbook step(s) into a block or remove step(s) from a block to dissociate the step from the block. To
remove a playbook step from a block, drag and drop the playbook step completely out of the block.

A block can be re-sized as per your requirement; however, when you are resizing the block, it
is possible that you might add additional playbook steps to the block or remove steps from the
block. Therefore, you must appropriately resize the block to ensure that playbook steps
(appear with dotted lines) that are part of the block are completely within the block.

Steps that are part of a block appear with a dotted-line border, whereas steps that are not part of any block appear with a
solid-line border:

FortiSOAR 7.2.1 Playbooks Guide 20
Fortinet Inc.



Introduction to Playbooks

You cannot have nested blocks, i.e., you cannot place one block within another block and also
a note cannot be part of a block. Playbook steps can be part of only a single block and not
multiple blocks.

You can select the complete block and copy paste the complete block or you can select individual steps within the block
and copy paste them to your required destination playbook.

A block contains the following options:

l Info: Displays additional information about the block, i.e., the description that you have added for the block.
l Minimize/Maximize: Minimizes or maximizes the block.
l Edit: Opens the Edit Block dialog in which you can edit the name and/or the description for the block.
l Delete: Deletes the block. Deleting the block just deletes the block and not the playbook steps that were part of that
block.

The following image is example of Executed Playbook Logs containing blocks:

In the Executed Playbook Logs, you can minimize/maximize the blocks and also hover on the information icon to get
information about the block. If you have added description in the Add Block dialog, then that description is visible when
you hover on the information icon.

You can also add a note in the playbook designer to provide more information about the playbook or to explain the
playbook steps in greater detail. To add a note, click the Add Note button. In the Add Note dialog, enter the title for the
note in the Name field and add note information in the Description field. If you want to hide notes that are added to the
playbooks in the Executed Playbooks Log, select the Hide Note in Executed Playbook Log option and click Add.
If you want to display the notes that are added to the playbooks in the Executed Playbook Logs, clear the Hide Note in

FortiSOAR 7.2.1 Playbooks Guide 21
Fortinet Inc.



Introduction to Playbooks

Executed Playbook Log option. The following image is example of Executed Playbook Logs containing a note:

Playbook Debugging - Triggering and testing playbooks from the Designer

You can trigger playbooks directly from the playbook designer making it easier for playbook developers to test and
debug playbooks while building them. Now, playbook developers do not require to go now to the module, select the
record, and then choose playbook and then trigger the playbook and then come back again to the playbook designer to
make the changes; all this can now be directly done from the playbook designer.

Triggering a playbook from the designer starts the execution of the playbook, which can cause
changes to your data leading to unwanted changes or loss of data. Therefore, it is important to
review the playbook before it is triggered.

To trigger a playbook from the playbook designer, click the Trigger Playbook with Sample Data button. You can
choose whether you want to use the Last Run Data as the sample data to trigger the playbook or you want to use
Record Input/Custom.

FortiSOAR 7.2.1 Playbooks Guide 22
Fortinet Inc.



Introduction to Playbooks

If you have run the playbook earlier, you can choose the Last Run Data option, and then from the Choose a recent
playbook execution drop-down list, select the playbook execution with whose environment you want to trigger the
playbook and click Trigger Playbook. Once you trigger the playbook with sample data, the Executed Playbook
Logs dialog opens and you can view the logs and results of your executed playbook and continue to test and build your
playbook.

You can also choose the Record Input/Custom option, and if you have a playbook that has a Manual trigger, then from
the Select Record drop-down list choose the record(s) using whose data, i.e., fields and values, you want to use to
trigger the playbook. Note that the 30 recently-created records will be fetched.

To trigger a playbook, you provide input based on the type of trigger you have defined for the playbook. For example, the
Select Record drop-down list will not be present in case of a "Manual Trigger" step that has the Does not require a

FortiSOAR 7.2.1 Playbooks Guide 23
Fortinet Inc.



Introduction to Playbooks

record input to run option selected since in this case the playbook does not require the data of a record to trigger a
playbook. Also, in the case of a "Manual Trigger" step that has the Run separately for each selected records option
selected, and in which you have selected multiple records and triggered a playbook from the designer, you will observe
that only a single playbook will be triggered on a single record to simulate the output. Similarly, in case of a Referenced
trigger, you can provide parameter values and trigger the playbook using those parameters.

The playbook can also use the "Mock Output" defined in the steps while running the playbook if you choose to Enable
mock output.

Changing the prioritization of playbook execution

You can change the prioritization of playbook execution based on the importance of that playbook, thereby enabling the
higher priority playbooks to be executed first even if there are some normal priority playbooks already queued for
execution. Earlier, the playbook execution queue was based on first in first out method, with round robin assignment of
workers (processes), which meant that important playbooks might get queued after lower-priority playbooks.

For example, if you have set up data ingestion to run every minute, then possibly you would have many data ingestion
playbooks queued up, and then if you also require to run an important playbook with a manual action, it would earlier be
run only once the data ingestion task that was scheduled before it was completed. Now, you can change the prioritization
of the manual input playbook to "High" enabling it to get executed on priority.

You can set the priority for playbook execution as High, Medium, or Low. The default priority is set as "Medium".
Playbook execution prioritization works as follows:

l If any worker is available for the task execution, it gets assigned a task from the "High" queue first and so on.
l If all workers are occupied with lower priority tasks and any higher priority task comes up, the high priority task gets
executed only when any worker is again available.

l Low priority tasks do not get executed if there are high priority tasks.

To set a priority for playbook prioritization, open that playbook in the playbook designer. Click Tools > Execution
Priority. In the Execution Priority dialog, you can set the playbook execution prioritization to High,Medium, or
Low:

To list the number of messages (workflow count) in the 'celery' queue, use the following command:
rabbitmqctl list_queues -p fsr-cluster --no-table-headers --silent | grep -E
"^\s*celery\s+" | awk '{print $2}'
When there is no queue, it will display 0 (default), and when the queue builds up, it will display the queue count number
such as 10, 25, etc.

Notes:

FortiSOAR 7.2.1 Playbooks Guide 24
Fortinet Inc.



Introduction to Playbooks

l All 'sync' reference playbooks automatically inherit the priority of their parent playbooks, thereby ignoring any preset
priority.

l If you update the execution priority of a scheduled playbook, then you require to edit and resave the schedules
associated with that playbook.

l If you want to schedule a data ingestion playbook, then you must set the priority of the data ingestion playbook
before scheduling the same.

FortiSOAR also integrates with a GUI-based celery monitoring tool called Flower, using which you can monitor and
administer celery cluster and playbook execution queues. You can start a Flower web server using the following
process:

cd /opt/cyops-workflow/sealab

../.env/bin/flower -A sealab --port=5555

Note: Ensure that port that you are specifying in the URL, 5555 in the above sample, is opened in your firewall and can
be accessed.

Live User implementation in Playbook Designer

The playbook designer implements Live Users, which means that the playbook designer displays users who are also
currently working on the same playbook. Therefore, when you open a playbook and if there are other users who are
working on the same playbook apart from you, then the playbook designer will display the users working on the
playbook, as well as the number of sessions that are active for each user. Live Users also notifies users that are working
on the same playbook, if any other user or session has saved modifications to the playbook, so that the user can refresh
the playbook before working on the same, thereby ensuring that users work on the latest version of the playbook. Users
can also save versions of their current modified state of the playbook, thereby providing users with the ability to merge
their changes.

Live Users has the following benefits:

l Users are notified of other users or sessions that are active on the same playbook.
l Users work on the latest version of the playbook, and they do not lose their updates made to the playbook.

Saving versions of your playbook

You can save versions of a playbook that you are creating or updating. Using versioning, you can save multiple versions
of the same playbook. You can also revert your current playbook to a particular version, making working in playbooks
more effective.

The maximum number of versions that can be taken, across all users working on a playbook is 20. If you or other users
try to take more than 20 snapshots, a confirm dialog is displayed that prompts you to delete a version so that you can
free space and save a new version, as shown in the following image:

FortiSOAR 7.2.1 Playbooks Guide 25
Fortinet Inc.



Introduction to Playbooks

When you click Confirm, the Versions - <Name of Playbook> dialog is displayed. You can now choose the
version(s) that you want to delete, click the Delete icon, and then click Confirm on the confirmation dialog and close the
Versions - <Name of Playbook> dialog. This frees up space and you can now save a new version.

Using the Versions - <Name of Playbook> dialog, you can search for versions based on the notes you have
added, and also filter versions by the Created By (user who has created the version), Saved On (time the version was
saved) and action performed.

To take a snapshot and revert the playbook to a particular snapshot do the following:

1. In the playbook in which you are working in the playbook designer, click Save Version.
2. In the Save Version dialog, add a note that you want to associate with the version and click Save Version.

It is recommended that you add meaningful notes for versions as these names will help you in identifying the
snapshots when you want to revert to a particular version.

3. To revert a version, click Save Version and then either click Revert to Last Saved or click View Saved Versions.
Clicking Revert to Last Saved reverts the playbook to the last saved version of the playbook
Clicking View Saved Versions displays the Versions - <Name of Playbook> dialog that allows you to
choose the version of the playbook to which you want revert:

FortiSOAR 7.2.1 Playbooks Guide 26
Fortinet Inc.



Introduction to Playbooks

In the Versions - <Name of Playbook> dialog, in the version row to which you want to revert, click Load.
Once you click Load, that snapshot is loaded in the playbook designer, with a message: "You are working on a
previously taken playbook snapshot...." as shown in the following image:

4. You can choose to view the playbook that is currently saved, by clicking the View Current Saved Playbook link, or
you can clickMark as Current Saved Playbook to make this version the current saved version of the playbook
and continue to work on the playbook.

Exporting versions of your playbook

You can choose to export playbook collections or playbooks with saved versions of the playbooks. This is extremely
useful while developing playbooks, especially if you erroneously delete a step in the playbook or you want to go back to
the previous state of the playbook. Retaining the versions of playbooks while exporting playbooks enables you to load a
snapshot of a previously saved version of the playbook into an imported playbook

You can choose to export playbook collections or playbooks with saved versions of the playbooks as shown in the
following image:

FortiSOAR 7.2.1 Playbooks Guide 27
Fortinet Inc.



Introduction to Playbooks

Clicking Yes, include versions on the above dialog will export playbooks or playbook collections with the saved
versions of the playbook.

You can then import the playbook and then open that playbook in the playbook designer, you can see the previously
saved versions of the playbook by clicking Save Version > View Saved Versions. This opens the Versions dialog as
shown in the following image:

You can load a snapshot of a previously saved version of playbook in the Versions dialog by selecting the snapshot
that you want to load in the playbook designer and clicking Load. This will display a message such as "You are
working.....playbook snapshot...." as shown in the following image:

You can save this version of the playbook and continue to work on it or you can click View Current Saved Playbook to
revert back to the state of the playbook when it was last saved.

FortiSOAR 7.2.1 Playbooks Guide 28
Fortinet Inc.



Introduction to Playbooks

Playbook recovery

FortiSOAR autosaves playbooks so that you can recover playbook drafts in cases where you accidentally close your
browser or face any issues while working on a playbook. These unsaved (autosaved) drafts do not replace the current
saved version of the playbook and only ensure that you do not lose any of your work done in the playbook, by providing
you the ability to recover the drafts.

Playbook recovery in FortiSOAR is user-based, which ensures that users see their own unsaved drafts of the playbook.
Since it is browser-based, it comes into effect as long as the same browser instance is used by the user. Also, playbook
drafts might not be saved if you are working in the "Incognito" mode.

By default, FortiSOAR saves playbook drafts 15 seconds after the last change. However, you can ask your administrator
to change this time across all playbooks by modifying the time, in seconds, on the Application Configuration tab in the
System Configuration page. The minimum time that your administrator can set for saving playbook drafts is 5
seconds after the last change. You can also choose to disable (and later enable) playbooks recovery for all playbooks.
For more information, see the System Configuration chapter in the "Administration Guide."

If the browser data is cleared, then the autosaved drafts will get deleted.

To recover an unsaved draft of the playbook, reopen that playbook in the playbook designer you will be prompted to
confirm whether you want to recover the draft of the playbook as shown in the following image:

Once you click Confirm on the Confirm dialog, the autosaved version of the playbook is loaded in the playbook
designer, and you can then choose to save this playbook using Save Playbook and make it the current working copy.

System Playbooks

FortiSOAR includes some system playbook collections that are used to automate tasks, such as the Schedule
Management Playbooks collection can be used to schedule various tasks such as cleaning up playbook execution
history, purging integration logs, etc. Or, you can use the Report Management Playbooks collection to manage
generation of reports. For example, the Generate Report By Scheduler playbook generates reports based on
schedules that you have specified. You can also reference system playbook from other playbooks.

The FortiSOAR UI includes links on the System Configuration page to the various playbook collections and
templates, which are included by default when you install your FortiSOAR instance. Administrators can click the

Settings ( ) icon to open the System Configuration page and click the System Fixtures tab to access the
system playbooks or fixtures. The System Fixtures page contains links to the system playbook collections and
templates. Administrators can click these links to easily access all the system fixtures to understand their workings and

FortiSOAR 7.2.1 Playbooks Guide 29
Fortinet Inc.



Introduction to Playbooks

make changes in them if required. For example, to access Schedule Management Playbooks, click the Schedule
Management Playbooks link.

You can modify system playbooks as per your requirements. However, incorrectly modifying
any system playbook can affect FortiSOAR functionality.

For example, if you want to modify the default email signature, which is currently Regards, FortiSOAR Admin, for a
system playbook, open the playbook and double-click on its Send Email step. In the Send Email step, in the Content
field, modify the signature as per your requirements and click Save.

In the system playbook (or any playbook) that is sending an email, ensure that you have used
the Server_fqhn global variable in the Send Email step.

When you are using a system playbook that sends an email, for example, when an alert is escalated to an incident, and
an Incident Lead is assigned, then the system playbook sends an email to the Incident Lead specified. The email that is
sent to the Incident Lead contains the link to the incident using the default hostname, which is the hostname that you had
specified or that was present when you installed FortiSOAR. To ensure that the correct hostname is displayed in the
email, you must update the appropriate hostname as per your FortiSOAR instance, in the playbook, using the Playbook
Designer as follows:

1. Open the Playbook Designer.
2. Click Tools >Global Variables to display a list of global variables.
3. In theGlobal Variables pane, search for the Server_fqhn global variable, then click the Edit icon in the

Server_fqhn global variable, and in the Field Value field add the appropriate hostname value.

FortiSOAR 7.2.1 Playbooks Guide 30
Fortinet Inc.



Introduction to Playbooks

You can optionally specify a default hostname value in the Default Value field.
4. Click Submit.

This adds the updated hostname for your incident and then when a system playbook sends an email the link
contains the correct hostname.

Playbooks that contain a reference to the approvalHost global variable fail with the
'approvalHost variable undefined' error, since the approvalHost global variable is
removed from release 7.2.0 onwards. To resolve this error, replace the approvalHost global
variable in the playbook with the Server_fqhn global variable.

For information about all the system playbook collections and templates, which are included by default when you install
your FortiSOAR instance, see the System Configuration topic in the "Administration Guide."

FortiSOAR 7.2.1 Playbooks Guide 31
Fortinet Inc.



Triggers & Steps

Triggers & Steps

Triggers

Triggers define when a Playbook is to be executed. Triggers are always the first step in a playbook. Once a playbook has
been triggered, it flows through the remaining defined steps as defined by the routes on the canvas using the trigger as
the starting point.

Trigger Types

There are six different trigger types defined in the Playbook Engine. Most triggers are based upon actions that you can
perform on models in the FortiSOAR database. The parameters of each are defined below.

Once you add a playbook, the playbook gets created with a placeholder Trigger step as shown in the following image.
Then specify the required parameters for the trigger and then click Save to add the first step to the playbook. The
procedure for creating playbooks is mentioned in the Playbooks Overview section.

You can add Step Utilities, i.e., Variables and Messages for all triggers. Add variables for all trigger by clicking the
Variables link that appears in the playbook step footer to add input variables. Input variables are the inputs that are
required to be provided by the user at the time of playbook execution. Required variables are made available in the
environment based on the given name. Required variables can be of any standard field format within the UI, including
text, picklist values, lookup, and checkboxes. See Variables for more information. You can also add a custommessage
for each playbook step to describe its behavior. See Message for more information.

On Create Triggers

On Create triggers are intended for asynchronous execution, meaning they are non-blocking on the triggering data
operation. For example, you can define a playbook that gets triggered when an Incident is created.

This trigger starts the execution of a playbook immediately after a record of the selected model type is created or
ingested. ClickOn Create Trigger in the Playbook Designer, type the name of the step in the Step Name field and
then select the module on whose creation you want to trigger the playbook, from the Resource drop-down list, for
example, Incidents, and click Save.

FortiSOAR 7.2.1 Playbooks Guide 32
Fortinet Inc.



Triggers & Steps

You can also add conditions based on which you can trigger this playbook. For more information, see Condition-based
triggers.

Nested filters are also supported on the "On Create" and "On Update" triggers. Support has also been added for Less
Than (Before in case of Date/Time fields), Lesser Than or Equal To (On or Before in case of Date/Time fields), Greater
Than (After in case of Date/Time fields), Greater Than or Equal To (On or after in case of Date/Time fields), and Matches
Pattern operators in filters. For more information about nested filters and operators, see the Dashboards, Templates,
and Widgets chapter in the "User Guide."

Playbooks with the 'On Create' trigger will not work in the case records are ingested using the
'Ingest Bulk Feed' playbook step.

On Update Triggers

This trigger starts the execution of a playbook immediately after a record of the selected model type is updated. You can
create an On Update trigger on almost all models, and can add an On Update trigger in the same way you add an On
Create trigger. An update could be made to any field within the model, including linking or changing one or more
new relationships.

When you add theOn Update trigger to run on a Is Changed condition when relation fields are changed, such as
indicators for alerts, then theOn Update trigger will trigger the playbook only when the related record is linked from the
same side. For example, while linking an indicator to an alert, the relation can be formed both ways – by updating the
indicator record and linking the alert; or by updating the alert record and linking the indicator.

FortiSOAR 7.2.1 Playbooks Guide 33
Fortinet Inc.



Triggers & Steps

However, an On Update trigger on an alert when indicator 'Is Changed' will only be triggered if the indicator was linked by
updating the alert record. It will not be triggered when the relation is established while creating or updating an indicator
record.

The single update action defines the trigger, so linking multiple records or updating multiple fields simultaneously does
not trigger the playbook multiple times. However, multiple inline edits trigger the playbook multiple times. A bulk edit
action triggers the Playbook only once.

You can also add conditions based on which you can trigger this playbook. For more information, see Condition-based
triggers.

Playbooks with the 'On Update' trigger will not work in the case records are ingested using the
'Ingest Bulk Feed' playbook step.

FortiSOAR 7.2.1 Playbooks Guide 34
Fortinet Inc.



Triggers & Steps

On Delete

This trigger starts the execution of a playbook immediately after a record of the selected model type is deleted. You can
create an On Delete trigger on almost all models, and can add an On Delete trigger in the same way you add an On
Create trigger.

You can also add conditions based on which you can trigger this playbook. For more information, see Condition-based
triggers.

Condition-based triggers

You can define a condition or nested conditions to trigger a playbook only if the specified filter criteria are met. This
streamlines playbook calls and prevents the excessive calling of playbooks.

You cannot apply filters on encrypted fields.

Open the playbook designer and click on On Create, On Update, or On Delete trigger. For example, clickOn Update
trigger and then select the module, which when updated will trigger the playbook, from the Resource drop-down list, for
example, Alerts. Once you select the resource, a Trigger Condition drop-down list appears. To define the condition
based on which the decision to trigger the playbook will be taken, perform the following steps:

1. From the Trigger Condition drop-down list, select the logical condition, All of the below are True (AND), or Any
of the below is True (OR) to trigger the playbook.
In case of the AND condition the playbook gets triggered only if all the conditions specified are met. In case of the
OR condition the playbook gets triggered if any of the conditions specified are met. The AND orOR conditions are
mutually exclusive, i.e., you can only choose one of them to apply to conditions.

2. Click the Add Condition link and then build your condition.
Note: There is an additional operator Is Changed added for the trigger condition. If you select the Is Changed
operator for a field, then the playbook will be triggered whenever the specified field is changed.
For example, if you want to assign Critical alerts that are in theOpen state to a specific user, say csadmin, then
you can select the Severity field and choose the operator as Equals and specify Critical.
Click Add Condition to define other conditions such as selecting the Status field and choosing the operator as
Equals and specifyingOpen, and then also adding tags, as shown in the following image:

FortiSOAR 7.2.1 Playbooks Guide 35
Fortinet Inc.



Triggers & Steps

Once you complete adding the conditions, click Save to save the playbook.
In this case, once the condition is met, the On Update playbook will be triggered, and based on the steps that you
have defined, for example, the Update Record step, the alert will be updated and assigned to csadmin.
Important: You can also use Tags as a condition to trigger the On Create, On Update, or On Delete playbooks. You
can add special characters and spaces in tags; however, the following special characters are not supported in tags:
', , , ", #, ?, and /. The operators that you can use with Tags in theOn Create andOn Delete triggers are
Contains. The operators that you can use with theOn Update trigger are Contains All, Added, or Is
Changed.

If you want to add a group of conditions, then click the Add Conditions Group link. For example, if you wanted to create
a condition where the alerts have been created in the last calendar month and whose severity is critical and whose status
is open or investigating, in such a case you could create a condition group for the status condition. For more information
about nested filters and operators that can be used in conditions, see the Dashboards, Templates, and Widgets chapter
in the "User Guide."

FortiSOAR 7.2.1 Playbooks Guide 36
Fortinet Inc.



Triggers & Steps

Custom API Endpoint

Custom API Endpoint Triggers allow you to specify an arbitrary endpoint that can be used to externally start a playbook
using a REST API POST action from another system. All playbooks are triggered using an API on a technical level with
the microservices architecture used by the application, but conceptually, this trigger allows for the creation of an
endpoint explicitly for use in API-based operations.

The chief aim of the Custom API Endpoint Trigger option is to allow for easy ingestion of data. A RESTful POST method
explicitly defined by the authentication method is allowed to trigger a playbook to the defined endpoint. The endpoints of
the Custom API Endpoint trigger are not discoverable, unlike the standard API routes within the JSON-LD / Hydra
definition. You must know the endpoint name explicitly, and it currently only allows the POST method.

The endpoint name can be any valid name using alphanumeric characters. You should not use special characters in
naming the endpoint, or the endpoint might not function correctly.

The following three types of authentication are currently supported:

1. Token-Based (default) - the default API method for signing any API request.
Note: For token-based (HMAC) authentication the timestamp must be in UTC format.

2. Basic Authentication - a Base64 encoded version of the username:password present in the header. This requires
the username and password of a user without 2-Factor Authentication turned on to properly function. Note that this
method also uses a separate endpoint.

3. No Authentication (Not recommended) - no authentication method is applied to the endpoint, and any RESTful
POST method will trigger the playbook. This is chiefly aimed at applications where the only option for exporting data
is by using a webhook, but this method is not recommended for routine usage due to the lack of security.

You can manually create your own security method with this trigger by defining a specific criterion to be used in a
Decision Step verifying information in the full Request blob.

To add an Custom API Endpoint trigger, click Custom API Endpoint trigger in the Playbook Designer, type the
name of the step and the API route in the Step Name and Route fields respectively, and then select the
Authentication Method from the ones specified earlier and click Save.

Referenced

The Referenced trigger is intended for playbooks that are exclusively called from a Reference a Workflow step,
which is discussed in a later section. Bear in mind that any dynamic data requirements must be made available from the
Parent (s) playbooks to be used during the execution of a Child playbook.

To add Referenced step, click Referenced in the Playbook Designer, type the name of the step in the Step Name
field and click Save.

Manual Trigger

The Manual Trigger allows you to call a specific playbook from within any module in the system, i.e., these are for click-
to-start playbooks. You can then execute any desired operations within that playbook on demand.

To add a Manual trigger, clickManual Trigger in the Playbook Designer, type the name of the step in the Step
Name field. In the Trigger Label Button field, type the name that will be displayed in the selected module (s) to trigger
this playbook. The name that you specified in this field is what the user will see in the Execute drop-down list on the
module list.

FortiSOAR 7.2.1 Playbooks Guide 37
Fortinet Inc.



Triggers & Steps

The Manual Trigger step provides you with options to specify whether the execution behavior of the playbook, i.e., you
can decide whether the playbook requires a record to be executed or if it does not require a record to be executed. If the
playbook requires a record to be executed, then select the Requires record input to run option and then select the run
mode, i.e., if the action must be executed once, then select the Run once for all selected records option or if the action
must be executed separately for each selected record then select the Run separately for each selected Record. By
default, the Run once for all selected records option is selected. This makes it more effective to handle multiple
selections since you do not require to write two playbooks and map the second playbook in the first playbook.

In the case of a "Manual Trigger" step that has the Run separately for each selected
records option selected, and in which you have selected multiple records and triggered a
playbook from the designer for debugging purposes, you will observe that only a single
playbook will be triggered on a single record to simulate the output. For information on
triggering playbooks from the playbook designer for debugging, see the Playbook Debugging -
Triggering and testing playbooks from the Designer topic in the Introduction to Playbooks
chapter.

If you want the playbook to run without having to select a record, then select the Does not require input record to run
option. This acts as a module-based trigger, i.e., you can trigger a playbook based on a selected module without having
to select a record in the specified module. An example of this could be a manual trigger to check for new alerts from a
SIEM tool could be run globally on the Alertsmodule.

In either of the cases, from the Choose record modules on which the playbook would be available on select one or
more modules on which you want to register this trigger and execute the playbook. For example, you can choose
Alerts and Incidents. When you select this Manual Trigger from the Execute drop-down list, the playbook gets
executed, and at the time of execution, the record (s) of the registered module (s) are passed into the playbook
environment with the trigger.

FortiSOAR 7.2.1 Playbooks Guide 38
Fortinet Inc.



Triggers & Steps

The playbook that you create with the Does not require input record to run option will appear in the Execute drop-
down list in the module, or you can also create a specific button for this action, by updating the module template. In case
of our example, when you open the Alertsmodule, you will see the Check New Alerts From SIEM option in the
Execute drop-down list in the module (when you do not select any record), as shown in the following image:

FortiSOAR 7.2.1 Playbooks Guide 39
Fortinet Inc.



Triggers & Steps

However, if you select a record in the Alerts module, then you will observe that the Check New Alerts From SIEM
option will not present in the Execute drop-down list.

When you choose Run once for all selected records in the Execution Behaviour section, then a single playbook
is run with the input set as vars.input.params.records, which is an array containing a list of all selected records
that acts as an input to the playbook. When you choose Run separately for each selected record in the Execution
Behaviour section, then one instance of the playbook is run per selected record with the input to the playbook set as
vars.input.params.records.

Once you have completed providing all the above parameters, click Save to save the Manual Trigger.

When you want to execute a playbook action, click the module (s) on which you have registered the Manual Trigger. This
would be a module you have specified in the Choose record modules on which the playbook would be available
on field. In the grid view of this module, click one or more records to display the Execute drop-down list (if you have
selected the Requires record input to run option). Pressing the down arrow provides a list of available actions. The
name of the action displayed is based on the name that you have specified in the Trigger Label Button field, for
example, if you have entered Investigate Phishing eMails in the Trigger Label Button field, then Investigate
Phishing eMail is an option in the Execute drop-down list as shown in the following image:

An example of a Manual Trigger that is included by default in the Alertsmodule in the form of an 'Action' button is the
Escalate action. Select a record in the Alerts module and click Escalate to automatically create a new incident based on
the inputs you provide in the Escalate dialog and also link the alert(s) to this newly created incident.

FortiSOAR 7.2.1 Playbooks Guide 40
Fortinet Inc.



Triggers & Steps

When you initiate an action with an associated required input variable, such as the Escalate action, you will be prompted
to enter that information in an input dialog as shown in the following image:

Enter the required information and click Execute to execute the Escalate playbook.

In release 7.2.0 there is a change for polling playbook execution results for a playbook triggered using an SVT (Actions)
button, for example Escalate. By default, FortiSOAR does not wait for any playbook execution results, and displays a
"Triggered Successfully" toaster message, once you click the Action button. If you want the playbook to wait it completes
its execution and then display the toaster message, then you must add the SystemWaitForExecution tag:

You can also define visibility conditions for those playbooks that require record input to run. You can define conditions on
records, such as the specific record type or severity or status; thereby enabling users to see only those actions
(playbooks) that apply to records that match the defined condition. For example, a Submit Malware Sample
playbook should be visible for a "Malicious Code" incident, but it should not be visible for an “Unauthorized Access”
incident.

In the Execution Behaviour section, if you have selected the Requires record input to run option, click the
Configure Visibility Conditions link to add the visibility conditions as shown in the following image:

FortiSOAR 7.2.1 Playbooks Guide 41
Fortinet Inc.



Triggers & Steps

You can define distinct conditions for each selected module in the playbook, as separate sections for each selected
module is displayed; thereby allowing you to apply different display conditions (filters) for each selected module as
shown in the following image:

FortiSOAR 7.2.1 Playbooks Guide 42
Fortinet Inc.



Triggers & Steps

In the above image Alerts and Incidentsmodules are selected in the Choose record modules on which the
playbook would be available on list, and therefore the Display Conditions section contains trigger conditions for
both the Alerts and Incidents modules. If you do not specify any display conditions, then all playbooks that you have
defined for the modules can be viewed when you select or open a record in the Execute list. An example of a condition
based on which a playbook is displayed when a user selects a record would be a playbook that is defined to be run only
on "alerts or incidents of type phishing." In this case, in the manual trigger step, in the Trigger Button Label field you
could type Investigate Phishing eMail, and in the Display Conditions section, you would define a Trigger
ConditionType Equals Phishing for both the Alerts and the Incidents modules as shown in the above image.

If you add a filter in a Trigger Condition, with an Equals or Not Equals logical
operator to a richtext content field, such as Description, then you must enclose the content
you want to filter in <p>...</p> tags.

Once you define this condition, then users will see this playbook only when the alert record is of type phishing. For
example, you have alert records: Alert 10 whose type is set to Phishing, and Alert 11 whose type is set to Policy
Violation. When you click the Alert 10 alert record to view its details, in the Execute list you can see the Investigate
Phishing eMail playbook listed, as showing in the following image:

FortiSOAR 7.2.1 Playbooks Guide 43
Fortinet Inc.



Triggers & Steps

However, when you click the Alert 11 alert record to view its details, in the Execute list you will not be able to see the
Investigate Phishing eMail playbook as seen in the following image:

Building a User Prompt

You can build a customized user prompt form by adding multiple types of input fields of standard field format within the UI
such as Text, Picklist, Lookup, File, Phone, Integer, Decimal, Date/Time, Dynamic list, Checkbox, and Email. If you
select the field format as Text, you can also define its Sub-type such as Text Field, Domain, Rich Text, etc. Click Add
Field in the User Prompt section, to add an input field to build your user prompt. The User Prompt enables you to
create a customized user prompt.

You can now configure the following in the User Prompt:

FortiSOAR 7.2.1 Playbooks Guide 44
Fortinet Inc.



Triggers & Steps

l Specify field titles and variable names, instead of having the field title being built automatically.
l Add tooltips for fields.
l Change the action button name to a name of your choice; the default is Execute.
l Display a pre-populated form field in the input form for review or modification, before executing any action. One
benefit of this feature is the ability to review certain fields that will be used in the playbook, such as a source IP
address or closure notes.

You can build the user prompt using custom fields and fields from input record, if you have
selected a single module, (e.g., Alerts) and not when you have selected multiple modules. If
you select multiple modules, then you can build the user prompt using only custom fields.

The User Prompt section also contains an additional field where you can specify default values. The values entered in
this field would be displayed when the User Prompt is shown to a user. You can either specify any custom value (if
your input type is selected as Custom) or any default record field (if your input type is selected as Record Field). The
listing of record fields will be based on the module that you have selected in the Choose record modules on which the
playbook would be available on field. Once you select the record field, then the data of this field will be loaded from
the specified input record and displayed to the user in the User Prompt.

The default values will not update the record; they are only used to display content in the User
Prompt

An example of building a user prompt in FortiSOAR will be if you want to reassign a number of alert records to another
user after specifying a note. This example will also demonstrate how you can use custom field titles and variables and
customizing the Execute button name. This example assumes that you have selected Alerts from the Choose record
modules on which the playbook would be available on field.

Steps to create this example user prompt is as follows:

1. In the User Prompt section, click the down arrow, and then click Add Field.
2. To reassign the alert record to another user by using an input record (Assigned To) do the following:

a. From the Input Type drop-down list, select Record Field.
Note: If you have selected multiple modules in the Choose record modules on which the playbook would
be available on field, you cannot select Record Field from the Field Type drop-down list and you can create
the User Prompt using custom fields only.

b. From the Choose Record Field drop-down list, select the field that will be set by default.
The field listing in the Choose Record Field drop-down list is dependent on the module you have selected in
the Choose record modules on which the playbook would be available on field. For our example, we
have chosen Alerts.
For our example, select Assigned To.

c. You can choose to select whether this field will be mandatory or not in the user prompt, by selecting or clearing
theMark as Required Field In Prompt checkbox.

d. In the Field Label field, type the label of the field that will be displayed in the User Prompt.
For example, User Assignment.
The Variable Name field type gets auto-populated with the variable name, for example, userAssignment.
You can edit the variable name if you want.
Important: If you are using Dynamic Values in the next step of the playbook note that Dynamic Values will
display custom parameters in the Input > Parameters option, and Input Record Fields, such as AssignedTo
in the Input > Records option.

FortiSOAR 7.2.1 Playbooks Guide 45
Fortinet Inc.



Triggers & Steps

e. (Optional) If you want to provide more information about the field, then click the Add Tooltip link and enter the
description in the Tooltip field.

3. To create a custom field for providing a reason or notes for the reassignment, do the following:
a. Click the Add Field link.
b. From the Input Type drop-down list, select Custom.
c. From the Field Type drop-down list, select Text.

Note: If you select the field type as "Text", you can also choose its Sub-type, such as Rich Text, Text Area, IP,
etc. Also, if you select the field type as "Picklist" then you must select the corresponding picklist, and if you
select "Lookup", then you can specify the related module.

d. You can choose to select whether this field will be mandatory or not in the user prompt, by selecting or clearing
theMark as Required Field In Prompt checkbox.
For our example, we will click theMark as Required Field In Prompt checkbox, to ensure that the record
cannot be reassigned to another user without adding a note.

e. In Field Label field, type the label of the field that will be displayed in the User Prompt.
For example, Notes for Reassignment.
The Variable Name field type gets auto populated with the variable name, for example,
notesForReassignment. You can edit the variable name if you want.

f. (Optional) In the Default Value field, you can enter the default value for the custom field.
Note: You can specify either a "Static" date/time or a "Custom" date/time as a default value, if your custom field
is of type "Date/Time". If you select Static, click the Select Date icon to display the Calendar and select the

FortiSOAR 7.2.1 Playbooks Guide 46
Fortinet Inc.



Triggers & Steps

required date/time. If you select Custom, then you can specify a date/time relative to the current date/time
such as 1 hour from now, or 3 hours ago.

g. (Optional) If you want to provide more information about the field, then click the Add Tooltip link and enter the
description in the Tooltip field.

4. To change the name of the action button, which by default appears as Execute, update the Submit Button Text
field, and type, for example, Reassign.

FortiSOAR 7.2.1 Playbooks Guide 47
Fortinet Inc.



Triggers & Steps

The Input Prompt section with all these changes will appear as shown in the following image:

Now, when you execute this playbook after selecting alert records and clicking Execute > Reassign with Notes, then
the Reassign with Notes dialog is displayed. The Reassign with Notes dialog will contain the Assigned To

FortiSOAR 7.2.1 Playbooks Guide 48
Fortinet Inc.



Triggers & Steps

drop-down list, with a list of users to whom this record can be reassigned, a rich text area where the user must add the
reassignment notes, and the Reassign button which will execute this playbook, as shown in the following image:

User Input Prompt - Visibility Conditions

From version 7.0.0 onwards, you can add visibility conditions to the fields displayed in the user input form, i.e., fields in
the user form would be visible based on the conditions you specify. You can define visibility conditions in user prompts
both when you trigger the playbook using theManual Trigger option and also during the execution of the playbook using
theManual Input step (Input-based user prompt).

For example, when you trigger a playbook on an alert record, you could ask users to specify the type of alert, and you
could define additional fields that would be visible if a particular type of alert is selected. For example, if the user selects
the 'Phishing' as the alert type, then another field named 'Phishing Type' would be displayed, if the user selects
'Ransomware' as the alert type, then a field named 'Ransomware Type' would be displayed and so on. Based on the
user selection, you can further define the playbook execution.
To add visibility conditions as the one described in the example, i.e., display an additional field based on the type of alert,
in a User Prompt, do the following:

1. In the User Prompt section, click the down arrow, and then click Add Field.
2. To prompt the user to set the 'Type' for the alert, select the Input Type as Record Field . From the Choose Record

Field drop-down list select Type, click theMark as Required Field In Prompt checkbox, and in the Field Label
field, enter Type.

3. Click Add Field to create additional fields based on the Type of alert the user selects. For example, to create a
'Phishing Type' field, from the Input Type drop-down list, select Custom, from the Field Type drop-down list, select
Text, and from the Sub Type select Text Field. If you have created a picklist with the different Phishing Types, you
can specify Picklist and choose the appropriate picklist. Next, click theMark as Required Field In Prompt
checkbox, and in the Field Label field, enter Phishing Type.
Note: If you add a field as required, for which a visibility condition is defined, then that field is required only when its
visibility condition is met, i.e., when the field is visible. For example, in the above step, the Phishing Type field is a
required field, however, this field will be required only if the Type of alert is 'Phishing'.
You can similarly add fields for various types of alerts, such as Ransomware, or Brute Force Attack, etc.

4. Add the visibility condition for the Phishing Type field by clicking Add Visibility Conditions and specifying the
Visibility Condition as "Type Equals Phishing":

FortiSOAR 7.2.1 Playbooks Guide 49
Fortinet Inc.



Triggers & Steps

Similarly, you can other visibility conditions for various steps. To define a visibility condition there must be at least
two steps in the user prompt.

5. Click Save to save your changes to the step, and then click Save Playbook.

When you run the playbook on a record, you will observe that if you select 'Phishing' as the type, the 'Phishing Type' field
is displayed. If you select any other type, you will observe that no additional field is displayed.

User Input Prompt - Dynamic Lists

From version 7.0.2 onwards, Dynamic List is supported as a 'Custom' input type in both the Manual Trigger step and
the Manual Input step. A 'Dynamic list' is a list with dynamic values that is set using a playbook, i.e., the options of the list
are defined using JSON or comma-separated values, set using Jinja and gets displayed as a list in a user input prompt.
You could use dynamic lists in cases such as:

l Independent Playbooks: You might need to create a list for the manual trigger or manual input that can be
automatically included as part with the exported playbook, i.e., the playbook step holds the logic of the items and
therefore does not require a custom picklist to be exported.

l Unauthenticated Picklists: Picklists cannot be loaded in case of unauthenticated inputs. In such cases, pre-
defined JSON lists can be used to present multiple options to users for their selection.

l Constantly Changing Picklists: There could be picklists such as picklists based on MITRE threat hunting
categories, which are ever changing. In such cases you can prompt users to categorize the threat based on the

FortiSOAR 7.2.1 Playbooks Guide 50
Fortinet Inc.



Triggers & Steps

loaded list of categories. Then, based on the selected threat, you can automatically show the sub list for selecting
techniques.

l Filtered Record List: You can present a filtered lists of records in a manual input to users for selection. The filter
would vary depending on logic in the playbook.

For example, if you want to a MITRE techniques dynamic list, in which you can define the various MITRE tactics and
then based on the users' selection, display the various techniques associated with the tactic. To add such a dynamic list
to a User Prompt of a manual trigger or manual input, do the following:

1. In the User Prompt section, click the down arrow, and then click Add Field.
2. Select the Input Type as Custom and from the Field Type drop-down list, select Dynamic List.
3. If you want users to select an options from a list of options, then using the Listmode, you can add various options to

the dynamic list using comma-separated values, i.e., add the various options in theOptions box in List Options
section. However, if you want to present the users with multi-level options, as per our example, then you need to use
the JSON mode. To display multi-level options, use an object with a string "value" and list "options" for sub-

FortiSOAR 7.2.1 Playbooks Guide 51
Fortinet Inc.



Triggers & Steps

options as shown in the following image:

4. In the Field Label field, add an appropriate title for the user prompt, such as Choose the Mitre Technique,
then click Save to save your changes to the step, and then click Save Playbook.

When you run the playbook on a record, you will see that the Dynamic list will appear in the User prompt as shown in the
following image:

FortiSOAR 7.2.1 Playbooks Guide 52
Fortinet Inc.



Triggers & Steps

User Input Prompt - Custom date/time field usage notes

When you add a custom Date/Time field as an input parameter in an Input Prompt, then that Date/Time appears
correctly in the Input Prompt, however any create record or update record that uses this custom date/time field will
display the created/updated record as 01/01/1970.

For example, in a Manual Trigger set on the Alertsmodule, when you add a custom Due Date field of type
Date/Time Field, whose due date is set as Current Date +1 Day, and the step following the Manual Trigger step is a
Create/Update Record step to create/update an alert record that uses the custom due date, then the alert record get
created/updated with the Due Date set as 01/01/1970. This happens since the create/update record step requires the
date/time in the epoch time, which is not the format in which currently the create record step is receiving the date/time.
To fix this, in the create record step, in the Due Date field, add the following: {{arrow.get
(vars.input.params.dueDate.int_timestamp}}. The {{arrow.get(jinja varibale).int_
timestamp}} converts the value of the date/time field into the epoch date/time.

Triggers

Trigger Data

Within the context of dynamic variables, the trigger step allows access to all data within the inbound transaction using the
Dynamic Value prefix within the Jinja2 template formatting, for example, {{vars}}.

See the Dynamic Variables and Dynamic Values chapters for more information on using Dynamic
Variables within a Playbook environment.

Standard information that is packaged includes, but is not limited to, the following:

Key Information Type Applies To

auth_info This displays the type of authentication invoked by the user
who triggered the playbook. It can be no authentication, basic
authentication, or CS HMAC authentication.

All

currentUser The IRI of the current user who triggered the playbook. All

last_run_at The last date of execution for a playbook that is run on a
periodic basis.

Scheduled

request.base_uri The root of the host URI on which the playbook is executing,
for example, https://fortisoar.sampleurl.com

All

FortiSOAR 7.2.1 Playbooks Guide 53
Fortinet Inc.



Triggers & Steps

request.uri The full URI route of the API endpoint used to invoke the
playbook.

All

input.records An array of records under the operation.
For post-create, post-update, and manual triggers that have a
single records, the array contains only one record that can be
accessed using input.records[0].

Manual trigger,
Post-Create, and
Post-Update
triggers

input.params[‘api_
body’]

The payload of the request in case of the custom API endpoint
trigger.

API trigger only

input.params.<param_
name>

Inputs that are specified using the Input Parameters option
in a playbook.

All

request.headers All the headers sent with the request that invoked the
playbook.

All

request.headers[‘X-
RUNBYUSER’]

The IRI of the current user who triggered the playbook. All

previous Specific to the Update trigger. It shows the original version of
the record data before being changed.

Update trigger
only

resource The module targeted by the playbook. Database triggers

request The full request object that initiated the playbook. All

request.data The cleaned data, if in JSON format, associated with the
request.body.

All

request.method The RESTful method by which the playbook was triggered,
only POST or PUT.

All

Database Triggers (On Create, On Update, and On Delete)

In the case of a database trigger, such as On Create, the record which triggered the playbook is included within the API
request and is accessible. The format of the record data will be identical to the format accessible within the standard
Module endpoint for that record type.

Sample Data

Standard keys for data available within the vars.input.records[0] includes the following when it comes from an
internal trigger, such as a On Create. The % indicates a placeholder for data that would be present in a real request in the
general format.

{
"auth_info": {

"auth_method": "CS HMAC"
},

"currentUser": "%CURRENT_USER%",
"last_run_at": null,

{
"input": {
"records": []

FortiSOAR 7.2.1 Playbooks Guide 54
Fortinet Inc.



Triggers & Steps

},
"request": {
"method": "PUT",
"body": "%RAW DATA INCLUDED IN THE BODY OF THE REQUEST",
"query": [],
"data": {

"%CLEANED DATA OBJECT FOR RECORD IF IN JSON%"
},

"baseUri": "https://fortisoar.sampleurl.com",
"uri": "https://fortisoar.sampleurl.com/api/3/%MODULE%/%UUID%",
"headers": {

"connection": "keep-alive",
"x-php-ob-level": 1,
"origin": "https://forisoar.sampleurl.com",
"authorization": "Bearer %token%",
"user-agent": "%AGENT%",
"cookie": "%COOKIE%",
"accept": "application/json, text/plain, */*",
"content-length": "%%",
"referer": "https://fortisoar.sampleurl.com/modules/%MODULE%/%UUID%",
"content-type": "application/json;charset=UTF-8",
"accept-encoding": "gzip, deflate, sdch, br",
"host": "fortisoar.sampleurl.com",
"accept-language": "en-US,en;q=0.8"
}

},
"previous": {

"data": {
"%DATA OBJECT FOR PRIOR RECORD%"
}

},
"resource": "%MODULE%",

}

As part of consolidating inputs for various types of triggers, all request parameters for all the
different types of triggers have been consolidated under vars.input. For On Create, On
Update, or Manual triggers, the record details are available under {{ 
vars.input.records }}. For API triggers, the request data is available under {{ 
vars.input.params[‘api_body’] }}. To avoid data duplication,
vars.request.data is being deprecated in FortiSOAR 6.0.0 and it is recommended to use
the above equivalents under {{ vars.input }}.

Manual Triggers

The Manual trigger payloads have a similar structure to the database triggers, and the payloads of both manual and
database triggers are accessible using vars.input.records. The records array is an array of JSON objects, one
object for each record that was passed in as a part of the request.

For instance, if you click the Execute button on the grid by selecting five record checkboxes, the data from all five
records will be included in the records array in their raw format.

FortiSOAR 7.2.1 Playbooks Guide 55
Fortinet Inc.



Triggers & Steps

The Manual Trigger step also provides you with options to specify whether the action must be ExecutedOnce or For
Each Record. This enhancement makes it more effective to handle multiple selections since now you do not require to
write two playbooks and map the second playbook in the first playbook. For more information, see Manual Trigger.

Custom API Endpoint Triggers

Internal triggers will always have a JSON format, but Custom API Endpoint triggers are initiated from external systems
and might not always come in JSON format. Currently, custom Custom API Endpoint triggers can accept any format of
the inbound body data, but this data might not be accessible within the environment in a structured way.

As an example, an XML request is not available in the environment until it has been parsed by a separate step. This can
be done any time after the trigger step but must be done before referencing any variables that would be expected out of
the XML structure.

XML can have a more sophisticated data structure than JSON and therefore, might require
custom parsing for correct handling of XML data. A custom parsing step to convert XML to a
dictionary format is present in the Utilities connector, "Convert XML to Dictionary".

Referenced Trigger

The Referenced Trigger step will always be called from another playbook. Therefore, it can get the environment using
input.params.<param_name>.

Bear in mind that chaining multiple playbooks can overwrite the variables in your environment, such as the request
object. Use the Set Variable step to give unique names to prevent this from happening. You can use the Set
Variable step, to create an input parameter with a unique name that will be available in the parent (calling) playbook.
To add an input parameter, in the playbook designer, click the Toolsmenu and select Edit Parameters.

Data Inheritance

See the References section to understand how data inheritance works in FortiSOAR.

Playbook Steps

At the core of Playbooks are Steps. Steps represent discrete elements of data processing during the course of the
Playbook.

People, System Assigned Queues, and Approvalmodules are removed from playbook
steps since these are systemmodules and used for administration purposes.

Steps can be linked together in sequences to determine the flow of the Playbook, starting from the Trigger.

FortiSOAR 7.2.1 Playbooks Guide 56
Fortinet Inc.



Triggers & Steps

The Playbook Designer displays Playbook Steps only after you have added a Playbook Trigger.

Use dynamic values or variables in playbooks to access values of objects or perform lookups. Dynamic values can be
passed to playbook steps as arguments directly, or they may be embedded in a larger string, where they will act more as
global variables, getting replaced by a string representation of themselves. For more information, see the Dynamic
Variables chapter. You can also use Dynamic Values to generate jinja templates, which can dynamically define various
conditions within steps in a playbook. For more information, see the Dynamic Values chapter.

In case of any playbook step, if the input value for any field is in the JSON format, then you
must enter the data in single quotes for example, '{"company":"fortinet"}'.

To update a picklist using a playbook, you can directly add the jinja for the picklist in the {{"picklist
name"|picklist("itemvalue of picklist")}} format, for example, {{"AlertStatus"|picklist
("Open")}}. The IRI Lookup option in the Dynamic Values dialog also allows you to select a picklist. For more
information, see the Dynamic Values chapter.

Click the Dynamic Values ( ) button to toggle fields such as, Date/Time, Rich Text, File Selector, Picklist, Lookup,
and Checkbox fields and add custom (jinja) expressions to these fields. Ability to add jinja expressions to these fields
enables you to write advanced playbooks. Once you click the Dynamic Values button, you can also use the Dynamic
Values dialog to add expressions to these fields. For more information on the Dynamic Values dialog, see the Dynamic
Values chapter.

FortiSOAR 7.2.1 Playbooks Guide 57
Fortinet Inc.



Triggers & Steps

Once you have saved the step, a graphic representing the step displays on the designed canvas in the upper left corner.
You can create a link between the trigger and the step, for more information, see the Introduction to Playbooks chapter.

Double-clicking on the step reopens it and allows the user to edit the step or delete the step entirely by clicking Delete
Step.

You can add variables, loops, conditions, and custommessages directly in the playbook step itself, and they get added
in the Step Utilities section. You can also add a sample output (mock output) for cases where you do not want to
execute a step but mock the output so that the playbook can move forward. You can also click the Yes/No button beside
the Ignore Error checkbox to allow the playbook to continue executing even if the playbook step fails. These actions that
you can use to extend a playbook step are present in the footer of the playbook step as shown in the following image:

FortiSOAR 7.2.1 Playbooks Guide 58
Fortinet Inc.



Triggers & Steps

Playbook actions used for extending playbook steps

Condition

To add a condition to a step, click the Condition link that is present in the footer of the playbook step. Clicking the
Condition link adds theWhen textbox, in which you add the expression (condition) based on which the decision to
execute the playbook step is taken. If the condition is met, then the playbook step is executed. If the condition is not met,
then the playbook step is skipped.

If you use when without the for each loop, then it applies to the step level and determines whether the playbook step
will be executed or not and it is the first thing that is evaluated for the step. If you use when with the for each loop, then
it applies inside the for loop for each item.

FortiSOAR 7.2.1 Playbooks Guide 59
Fortinet Inc.



Triggers & Steps

Variables

To add a variable to a step, click the Variables link that is present in the footer of the playbook step or add the variable in
the Variables section of the step. Using Variables you can store the output of the step directly in the step itself.
Therefore, instead of having to use the Set Variable step frequently within a playbook to collect specific response data
and provide a contextual name to the output, you can use Variables in the step itself. You can also store custom
expressions in variables, which can be accessed within the playbook.

Do not use reserved words, which are listed in the List of reserved keywords section as the
variable name.

FortiSOAR 7.2.1 Playbooks Guide 60
Fortinet Inc.



Triggers & Steps

Click theOpen Code Editor in Fullscreen button to open a code text editor making the experience of adding and
editing the code more user-friendly. Clicking theOpen Code Editor in Fullscreen button opens the code editor in the
full-screen mode. To exit the full screen, press ESC or click Exit Fullscreen.
Use Dynamic Values to add or store the output of the current step directly in the step itself as shown in the following
image:

FortiSOAR 7.2.1 Playbooks Guide 61
Fortinet Inc.



Triggers & Steps

For more information on Dynamic Values, see the Dynamic Values chapter.

Loop

To iterate the playbook step, click the Loop link that is present in the footer of the playbook step. There are two types of
loops that you can add to a playbook step: the for each loop and the do until loop.

The for each loop can be added only once in a playbook step. The input for the for each loop is an array of objects
and the for each loop iterates for the length of the array. To access the object of an array use the reserved keyword
item. An example of an array of alerts objects is [{"name":"Alert Name1"},{"name":"Alert Nam2"},
{"name":"Alert Name3"}] and to access an object of an array, use vars.item.name. You can optionally add a
condition to the for each loop, based on which the loop will be executed.

The Loop option has three modes: Bulk, Sequential, or Parallel.

FortiSOAR 7.2.1 Playbooks Guide 62
Fortinet Inc.



Triggers & Steps

The Bulk mode creates all records in a single API request and is the most optimal and recommended method of creating
or upserting records in bulk. This is also the default mode when you add a new "Create Record" or "Update Record" step
in a loop. If you are inserting larger number of records that causes the API call to time out, then you can insert records in
batches. For more information, see the Batching large datasets when using the 'Bulk' option section.

The Sequential modes sends the API records separately for individual records, and one after another. So, the playbook
step can abort at the first failure, without proceeding to create further records. The Parallel modes sends separate API
requests for each record creation but using multiple threads to do so.

You can choose whether you want to execute the playbook step in parallel or in a sequence for the given items.
Sequential execution of the loop works on one item at a time in a serial manner, whereas parallel execution utilizes
multiple parallel threads to work on the items, resulting in better performance. You can choose your option using the
Execution toggle as shown in the following image:

FortiSOAR 7.2.1 Playbooks Guide 63
Fortinet Inc.



Triggers & Steps

The workflow engine can execute multiple independent paths in parallel threads. Parallel branch execution means that
two or more paths execute the independent paths in parallel. This enhancement is transparent to the end-user, but in
some cases, this could lead to a change in the behavior of certain playbooks compared to the old sequential behavior as
the step execution order might change. If any of your existing playbooks fail due to a previous step result not found, or
similar reasons, you can run a test to find out the cause of the failure by turning off the parallel execution feature.

You can enable or disable parallel execution by changing the value (true/false) of the PARALLEL_PATH variable in the
[Application] section in the /opt/cyops-workflow/sealab/sealab/config.ini file. By default, the
PARALLEL_PATH variable set as true.

You can also tune the thread pool size and other settings for parallel execution. For more information about settings that
you can set for optimizing your playbooks, see the Debugging and Optimizing Playbooks chapter.

You can also execute the referenced playbook asynchronously from the parent playbook by clicking the Run
Asynchronously checkbox. In this case, the reference playbook can be triggered asynchronously and parent playbook
continues to execute the remaining workflow, without waiting for the referenced playbook to finish.

FortiSOAR 7.2.1 Playbooks Guide 64
Fortinet Inc.



Triggers & Steps

If you select a child playbook to be executed as asynchronously, then you will be unable to use
the output of the child playbook in the parent playbook. Therefore, you must be cautious while
using asynchronous mode, and should only use this mode when you want to execute child
playbooks independently. For example, in the case where you want to ingest the records and
not perform any action on the output.

The do until loop will execute the step at least one time and will continue to run until the condition specified is met, or the
number of retries is reached. You can configure the number of retries the playbook step will execute to meet the
condition and also the delay in seconds before the step gets re-executed in a loop. By default, the number of retries is set
to 3 and delay is set to 5 seconds.
In a do until loop, you can access the result of the current step with the vars.result notation. For example, to keep
trying to run a connector action until it is successful, you can set the condition to vars.result.message ==
'Success'. You would also need to check the Ignore Errors box to ensure the playbook does not stop if that step fails.

Do not use do until with when or for_each.

FortiSOAR 7.2.1 Playbooks Guide 65
Fortinet Inc.



Triggers & Steps

Message

You can add a custommessage for each playbook step to describe its behavior. You can also use Dynamic Values to
add jinja values to the messages. Dynamic Values also displays the output of the current step in theMessage step. For
more information on Dynamic Values, see the Dynamic Values chapter.

These messages appear in playbook logs and are also displayed as part of the collaboration panel. The Message
content can be rendered in HTML or Markdown, depending on the whether you have set the Contents field in the
"Comments" module to Rich Text (Markdown), which is the default or as Rich Text (HTML). The following image displays
the Message content in the default Markdown editor:

FortiSOAR 7.2.1 Playbooks Guide 66
Fortinet Inc.



Triggers & Steps

You can also add the custommessage to another record(s), by clicking the Add above message to specified record
(s) check box. If the Add above message to specified record(s) check box is selected and you have provided the IRI
of the record(s) to whose collaboration panel the message requires to be added, then the message is added to
collaboration panel of those record(s). If the Add above message to specified record(s) check box is selected and
you have not provided the IRI of the record(s) to whose collaboration panel the message requires to be added, or you
have not selected this check box, then the message is added to collaboration panel of record that triggered the playbook.

In case of multi-tenant configurations, if a playbook that contains steps with "Messages" is added to the record that
triggers the playbook on the master node, you can choose to replicate the comments that are linked to the record on the
tenant node, so that a user on the tenant node can follow the investigation that is being conducted on the record. To
replicate comments on the tenant node, click the Also send this message to specified tenant checkbox, and from the
Select Tenant drop-down list, select the tenant node on which you want to replicate the comments or click {} to specify
tenant IRIs in this field.

Mock Output

You can mock a step output in cases where you do not want to execute the playbook step but ensure that the playbook
can move forward using the mock output. This can be useful when you want to debug playbooks. You can also use
Dynamic Values in the Mock Output step.

FortiSOAR 7.2.1 Playbooks Guide 67
Fortinet Inc.



Triggers & Steps

If you want to usemock output for your playbook steps, then you must add a variable named
'useMockOutput' and set its value to 'true,' using the Variables option in the trigger step. If you
do not declare this variable or set the value of this variable to 'false,' then the playbook will use
the actual step outputs for execution. Also, ensure that you write useMockOutput precisely
as is since this variable name is case-sensitive. For more information on variable, see
Variables.

Ignore Error

You can click the Yes/No button besides Ignore Error to allow the playbook to continue executing even if the playbook
step fails.

However, in the playbook log, the status of this step will be Finished with Error. Open the playbook log by clicking

the Executed Playbook Logs icon ( ) that appears on the top-right corner of the FortiSOAR screen. Click the step

FortiSOAR 7.2.1 Playbooks Guide 68
Fortinet Inc.



Triggers & Steps

whose log you want to view, and in the Step View section, the status of the playbook is displayed in the status item,
and the error is described in the result item.

The following sections explain the various steps used in playbooks.

Core

Create Record

Use the Create Record step to create almost any record type in the system. All required fields must be entered to match
the model metadata for that specific record type. To create a record, select the module in which you want to create the
record from theModel drop-down menu, which displays the Create Record form (Form Editor). Note that the fields
displayed are specific to the entity type selected, and any conditional data requirements will be activated the same way
as if the record was being added using the entity's model itself.

In the Create Record, Update Record and Ingest Bulk Feed steps, fields are divided into 2 tabs - The Primary tab, which
lists all the primary fields and the Correlations tab, which lists all the correlated fields. Each tab has their own search
box to search for fields. Search will be work on all the fields in the module and not on just fields displayed in the step.

FortiSOAR 7.2.1 Playbooks Guide 69
Fortinet Inc.



Triggers & Steps

To enhance the performance of these steps, only the first 30 fields are loaded in both the Primary and Correlations
tabs, after which you will see a Load More Fields button. Clicking the Load More Fields button loads the next 30 fields,
and this continues till all the primary fields in the modules are listed.

Note: If there are required fields in the module, then all the required fields are listed. If required fields are more than 30
then the initial field limit of 30 will be ignored, and all the required fields are listed; post-that if there are more fields left
then the Load More Fields button is displayed. Also, once you reopen the Create Record, Update Record, or Ingest
Bulk Feed steps, the fields that contain values after the required fields are displayed, followed by the Load More Fields
button (if there are more than 30 fields).

If the data entity needs to reflect data specific to the entity that triggered the playbook, then use dynamic values in the
fields.

To set the name of the incident name of the triggering entity, put the following in the Name
field: {{vars.input.records[0].name}}.

Module editor supports the "JSON" field type. You can also convert data of a field of type text to JSON, using the
toJSON Jinja filter. For example, {{ vars.result.data | toJSON }}.

FortiSOAR 7.2.1 Playbooks Guide 70
Fortinet Inc.



Triggers & Steps

If the fields of the record being entered will always have the same data, enter the text in the corresponding fields and
click Save.

If in the Create Record step, you are specifying any Date/Time field in the jinja format, then that date/time field must be
in the epoch format. To convert the input date/time field to the epoch time, you can either add the following Jinja value:
{{arrow.get(jinja variable).timestamp}} or use the DateTime Expression library to enter the data directly in

the JSON format by clicking the Dynamic Values ( ) button button. Clicking Dynamic Values ( ) button displays
Dynamic Values, which displays the fields that you can directly edit either in the format of an attribute map (Tree view)
or code (Code View).
Important: In version 7.0.0, FortiSOAR has updated the arrow library due to which the timestamp attribute has been
changed into int_timestamp for DateTime jinja expressions. New playbooks must use the int_timestamp for any
DateTime jinja expressions. For more information see the Dynamic Variables chapter.

You can also specify the date by clicking the Select Date link, which displays the Calendar from which you can choose
the date/time.

From version 7.0.0 onwards, in case of the 'Create Record' and 'Update Record' steps, if your administrator has enabled
any 'Lookup' or 'Picklist' type of field to accept the values generated from the recommendation engine, then you will see
an Auto populate checkbox appearing beside this field.

To auto populate values in related (many-to-many) fields, in the 'Create Record' and 'Update
Record' steps, ensure that the input provided in the playbook is the 'array' (list) format, and not
'comma-separated values'. For example, if you want the Indicatorsmulti select picklist to be
auto populated with common indicators in alerts records, then you must ensure that the
indicators list that you provide in the playbook that contains the 'Create Record' or 'Update
Record' step is in the 'array' (list) format.

A example of a field that has been enabled for recommendation is the 'Type' field in the following image:

FortiSOAR 7.2.1 Playbooks Guide 71
Fortinet Inc.



Triggers & Steps

If you select the Auto populate checkbox, and users have not specified any values for such fields, then the value of
such fields get auto-populated with the values from the recommendation engine that is based on learning from past
similar records.

It is possible to relate records with any valid relationships in the system. You can link the record that you are creating to a
record in a related module. The Create Record step now displays a list of modules, in the Correlations field to which
you can link the record that you are creating. For example, if you want to create an alert and therefore you have selected
Alerts from theModel drop-down menu, the Create Record form will display related linking module fields, such as
Incidents, Indicators, Assets, and Attachments. The Create Record step (for the upsert cases) and the Update
Record step, the Correlations field, displays the records that are already linked to the created record. You can
choose to overwrite the older relationships that are added to the created record, by clicking theOverwrite option in the
Correlations field or append the new relationships to the relationships that are already added to the created record,
by clicking the Append option in the Corrleations field.

FortiSOAR 7.2.1 Playbooks Guide 72
Fortinet Inc.



Triggers & Steps

To link the newly created record, in the linking module field, add the IRI of the record to which you want to link the newly
created record or add the respective jinja values. You can link multiple records using multiple comma-separated IRIs.
For example, to link an alert that you are creating to an incident record, select Alerts from theModel drop-down menu
and in the Incidents linking module field, add the IRI of the incident record, such as
/api/3/incidents/9a1142d2-adbf-4faf-a477-d8ff54419808 or add the jinja value or the incident record,
such as: {{vars.input.records[0]['@id']}}. You can also use the array format to specify the IRI,
["/api/3/incidents/9a1142d2-adbf-4faf-a477-d8ff54419808"], or also add the jinja value in the array
format, ["{{vars.input.data.records[0]['@id']}}"]. To get the IRI for a record by navigating to the related
module (Incidents in our example), for example, Incident Response > Incidents and select the record that you want
to link. In the address bar, you will see the complete URL for that record. For example, https://{{Your_FortiSOAR_
IP}}/modules/view-panel/incidents{{UUID}}
https://{{Your_FortiSOAR_IP}}/modules/view-panel/incidents/9a1142d2-adbf-4faf-a477-d8ff54419808.

It is recommended that you do not link more than 99 records in a single call. If you need to link
more than 99 records, then run the update step in a loop with batches of 99 records.

The behavior of linking records relationships has changed in version 7.0.0 because if there is a record that is linked to
thousands of other records, an update to such records causes constant high CPU usage. An example of such a record
would be indicators like org name that get extracted as part of every alert and get linked to thousands of alerts.
Therefore, it is recommended that you link a maximum of 99 records in a single call. This is because, if there are
less than 99 records linked then the framework checks if the record being linked is already present in existing relations
and if the same record is linked again and again, post-update triggers on relation "isChanged" is not triggered, also the
linking is not audited again every time. However, from the 100th linked record, the framework only looks at the __link,
__unlink keys, and hence, if the same record is linked again and again, post-update triggers on relation "isChanged"
will get triggered, and also the linking gets audited again every time.

When you are creating a record using a playbook you can also enforce record uniqueness by defining unique constraints
on the records of a module. For information on how to define record uniqueness using the Module Editor, see the
Application Editor chapter in the "Administration Guide."

FortiSOAR 7.2.1 Playbooks Guide 73
Fortinet Inc.



Triggers & Steps

For modules that have unique constraints defined, the option that you choose in the Unique conflict settings
section determines the behavior of the playbook:

l Stop the create process: This is the default behavior. The playbook fails if a duplicate record is found.
l Do not create a new record (keep the existing intact): The playbook does not make any changes to the existing
record and the existing record is returned as is as a result of execution of this step. The subsequent steps of the
playbook work on the existing record if they refer to this step result.

l Update existing record (all fields): The playbook updates the existing record with the new values that you have
specified in this step.

l Selectively update some fields of the existing record: The playbook updates selective fields and/or correlations
of the existing record with their updated values. Select this option if you don't want to replace all the fields of an
existing record. For example, if an indicator does not exist, then you would want to create an indicator record with its
reputation set to 'TBD'; however, if the indicator record exists, then you would want to only increase its sightings,
i.e., update its reputation.

FortiSOAR 7.2.1 Playbooks Guide 74
Fortinet Inc.



Triggers & Steps

You can specify the fields that you want to update in the Select Field box:

For example, if Source ID is specified as a unique constraint on an "Alert" module, then you cannot create a record
having the same source ID. However, if you have selected the Update existing record (all fields) or the Selectively
update some fields of the existing record option, then either the complete existing record is replaced with the
updated values or selective fields of the existing record are replaced with their updated values.

You can also update the correlations if you select the Selectively update some fields of the existing record option,
For example, if you have created an alert and then extracted an indicator, for example, gumblar.cn with its status and
reputation set as 'TBD'. Then enrichment playbooks are run which update the reputation to 'malicious', and investigation
playbooks are run which update the status to 'blocked'. Now, another alert with the same indicator gumblar.cn get
extracted with its status and reputation set as 'TBD'. Now, you have the option to update only selective fields in the
correlation like reputation or last seen for the indicator.

Note: If you have imported playbooks into your FortiSOAR system or have upgraded your FortiSOAR system, and you
have playbooks that contain the 'Create Record step with the Upsert' option, i.e., you have selected the Update existing
record (all fields) option, then such playbooks will update only those fields that are selected by users for upgrade, the
remaining fields are ignored.

FortiSOAR 7.2.1 Playbooks Guide 75
Fortinet Inc.



Triggers & Steps

Upsert behavior for uniqueness will not work for fields that are marked as encrypted.

You can add tags in the Create Record and Update Record steps. You can add tags to the record that you are creating
using the Tags field. Special characters and spaces are also supported in tags; however, the following special
characters are not supported in tags: ', , , ", #, ?, and /. Tags are useful in searching and filtering records. When you
are updating a record, the Tags field, displays the tags that are already added to the created record. In the Create
Record step (for the upsert cases) and the Update Record step, you can choose to overwrite the older tags that are
added to the created record, by clicking theOverwrite option in the Tags field or append the new tags to the tags that
are already added to the created record, by clicking the Append option in the Tags field.

Once you create the Create Record step, the playbook is automatically prompted to create a data record as specified in
the step with either specific static text or record-relevant data using dynamic values.

When a record is created from a playbook, then that record's ownership includes the teams that are part of the "Playbook
Appliance" including the admin team (SOC team). So, the record will be visible to all members of the teams that are part
of the "Playbook Appliance", and their siblings and parents in the team hierarchy. If you want to change the ownership of
the record, in the playbook, after the step to insert the record, add the immediate next step that will assign the desired
team or user as the owner of the record.

Create or Upsert Records in Bulk

You can also create or upsert records in bulk by using the Bulk option in the for each loop for "Create Records" and
"Update Records." To create multiple records in a single request, for example, while ingesting from a data source, select
the Loop option in the "Create Record" step. The Loop option has three modes: Bulk, Sequential, or Parallel. Provide the
list of JSON inputs containing the sourcedata as the input to the loop and refer to each element as {{ vars.item }}
in the step. For example, if you can provide the following JSON as input to the Loop option in the Create Record step to
create alerts in FortiSOAR: [{"name": "Name 1", "source": "FortiSIEM"}, {"name": "Name 2",
"source": "FortiSIEM"}]
You can ensure that the two alerts created in FortiSOAR have the corresponding names by using {{ 
vars.item.name }} against the Name field in the step.

FortiSOAR 7.2.1 Playbooks Guide 76
Fortinet Inc.



Triggers & Steps

The Bulkmode creates all records in a single API request and is the most optimal and recommended method of creating
or upserting records in bulk. This is also the default mode when you add a new Create Record step in a loop. The
Sequentialmodes sends the API records separately for individual records, and one after another. So, the playbook step
can abort at the first failure, without proceeding to create further records. The Parallelmodes sends separate API
requests for each record creation but using multiple threads to do so.

Batching large datasets when using the 'Bulk' option

A single batch can handle 100 to 200 records depending on the record size. If you are inserting larger number of records
that causes the API call to time out, then you can insert records in batches.

From version 7.0.0 onwards, the 'Bulk' option has been enhanced to support batching of large number of records, by
default, in the Create/Update record steps. To support this, the 'Batch Size' option for the Bulk execution type has been
added making it easy to bulk insert, upsert, or update large number of records. By default, the batch size is set to 100
records. You can increase or decrease this batch size depending on the record size. The following image shows a
sample 'Create Record' step that is inserting a batch of 100 records:

FortiSOAR 7.2.1 Playbooks Guide 77
Fortinet Inc.



Triggers & Steps

Update Record

Use the Update Record step to update a record in a module within FortiSOAR.

In the Playbook Designer, click the Update Record step and add the step name in the Step Name field, add the field to
be updated in the resource field, add the module name and UUID of the record to be updated in the collection field
(for example, you want to update the Alertsmodule, you will enter api/3/alerts/{{uuid}}), and then click Save.

The UI of the Update Record step displays an Update Record form that contains fields depending on the module you
select in theModel drop-down menu, like the Create Record Step.

You must add the UUID or IRI of the Record you want to update in the Record ID field. In the Record ID field add either
the IRI of the record that you want to update or add the jinja value of the record.

You can add details and field values to the "Update Record" step similar to the "Create Record" step.

FortiSOAR 7.2.1 Playbooks Guide 78
Fortinet Inc.



Triggers & Steps

If in the Update Record step, you are specifying any Date/Time field in the jinja format, then that date/time field must in
the epoch format similar to the "Create Record" step. You can use the methods described in the "Create Record" step to
convert the input date/time field to the epoch time. However, there is a difference between the "Create Record" step and
the "Update Record" step, if you choose to enter the data directly in the JSON format by clicking the Dynamic Values
button, which displays Dynamic Values. Dynamic Values appears empty in the case of Update Record (unlike the
Create Record step, which displays fields according to the module you have selected) since you require to add only
those fields in the JSON format that you want to update and do not require to see all the fields.

Once you add the record ID, you can update any of the fields of that record in the Update Record form directly and
click Save. Once you click save, the data in the record that you specify by the record ID gets updated based on the
changes you have made.

Find Records

Use the Find Records step to find a record in a module within FortiSOAR, using a query or search criteria.

In the Playbook Designer, click the Find Records step, and add the step name in the Step Name field, and then select
the module in which you want to search for the record in theModule field.

The Find Records step by default fetches only 30 records, if you want to change the number of records to be fetched,
then enter the number of records to be fetched in the Record Limit field. For example, in the following image above we
have entered 100 in the Record Limit field, which means that up to 100 records will be fetched.

From version 7.0.0 onward, the number of records that can be fetched using the 'Find Record'
step has been limited to 5000. To override this default number, which is Not Recommended,
you need to follow the steps mentioned in the Increasing the number of records that can be
fetched using the 'Find Record' step topic.

To include records that are correlated with the records that are being fetched using the Find Records step. If you want to
include correlated record, then select True from the Include Correlated Records field. By default, the Include
Correlated Records is set to False for performance efficiencies.

You can select the Limit Output checkbox, to limit and refine your search results to only those fields that you require
allowing for better usability and performance. For example, if you want to limit the output to display only the "name of the
record" and "related indicators", then you should select the Limit Output checkbox and in the selection box that follows
the Limit Output checkbox, select name, and indicators.
Note: If Include Correlated Records is set to False, then you can select only fields of the selected module. Therefore,
to include related indicators, you must ensure that you set Include Correlated Records to True, which would then
display all the correlated records.

From theModule drop-down list, select a module in which you want to search for records. Once you select the module,
the Nested filters component appears in the Build Search Query section using which you can build the search
query to find records and the click Save.

FortiSOAR 7.2.1 Playbooks Guide 79
Fortinet Inc.



Triggers & Steps

You can use Nested filters to filter records using a complex set of conditions. Nested filters group conditions at varying
levels and use AND andOR logical operators so that you can filter down to the exact records you require.

If you assign a "Custom" filter to a datetime field, such as Assigned Date, then the date
considered will be in the "UTC" time and not your system time.

For more information on nested filters, see the Nested Filters topic in Dashboards, Templates, and Widgets in the "User
Guide."

You cannot search or filter encrypted fields.

You can also write Jinja to build your search query in the Nested filters component in the Build Search Query
section. You can either write you own Jinja or use the Dynamic Values dialog to add jinja to the field. See the Dynamic

FortiSOAR 7.2.1 Playbooks Guide 80
Fortinet Inc.



Triggers & Steps

Values chapter for more information. You can also toggle between the Jinja and the original field type, for example in the

image above; the Severity field displays the field as a drop-down list (which is the original field type). Click the icon to
enter Jinja for this field. Similarly, the Status field displays the Jinja that has been entered in the field. Click the icon to
toggle back to the original field type, which is a drop-down list.

You can also search records using a UUID. To search using UUID, in the Nested filters component in the Build
Search Query section, select UUID from the Select a field drop-down list, select the operator such as Equals from the
Select Operator drop-down list, then click the filter field to display the Dynamic Values dialog. Click the Expressions
tab and then click the IRI to UUID expression:

In the Utility Operations: IRI to UUID popup, enter a valid FortiSOAR IRI and click Add:

FortiSOAR 7.2.1 Playbooks Guide 81
Fortinet Inc.



Triggers & Steps

You can either add the IRI value directly or again use Dynamic Values to enter a jinja expression for the IRI. For more
information, see the Dynamic Values chapter. The Utility Operations: IRI to UUID converts a valid IRI to a
UUID using which you can search for records.

You can also sort the fetched records easily by clicking the Add Sorting Parameter link and choose the field based on
which you want to sort the records in the Sort Records by section. You can also specify whether you want to sort the
records in the Ascending or Descending order. For more information on sorting records, see the Default Sort topic in
Dashboards, Templates, and Widgets in the "User Guide."

Increasing the number of records that can be fetched using the 'Find Record' step

From version 7.0.0 onward, the number of records that can be fetched using the 'Find Record' step has been limited to
5000. It is not recommended to change the value to a higher number and instead, you should use pagination by making
an API call and navigate to the next page in a loop. However, if you yet want to override this default and increase the
number of records to be fetched, do the following:

1. Edit the /opt/cyops-api/config/parameters_prod.yaml file to add the following code:
api_platform:
   collection:
     pagination:
       maximum_items_per_page: 5000
Change the value of the maximum_items_per_page parameter from '5000' to the desired number.
Important: The above code must be added at the same level as 'parameters' in the parameters_prod.yaml
file.

2. Restart php-fpm and run cache clear:
# systemctl restart php-fpm
sudo -u nginx php /opt/cyops-api/bin/console cache:clear

FortiSOAR 7.2.1 Playbooks Guide 82
Fortinet Inc.



Triggers & Steps

Ingest Bulk Feed

Use the specialized Ingest Bulk Feed step to insert and update large volumes of records, primarily used while ingesting
from Threat Intel Feeds, or others such as Vulnerabilities and Assets.

The step is significantly faster than the "Create Record" step. Currently, however, only primary fields, tags, lookups, and
picklists are supported in the Ingest Bulk Feed step. You cannot add many-to-many relationships while adding records
through this step.

Some specifics about this step:

l A single audit entry is created for a batch of records inserted and not a per record audit.
l Records created using this step are not peer replicable (master or tenant nodes in a multi-tenancy environment).

Playbooks with the 'On Create' or 'On Update' trigger will not work in the case records are
ingested using the 'Ingest Bulk Feed' playbook step.

Set Variable

Use the Set Variable step to record a specific variable or variables for future use. Enter the variable name in
alphanumeric characters and then define the value. The value may be a dynamic value itself. The scope of the variable
created using Set Variable is local.

To create a variable, in the Playbook Designer, click the Set Variable step and add the Name and Value for the variable
and then click Save. You can define multiple set variables in a playbook. To add dynamic values (Jinja) or variables, or
access values of objects, or perform lookups, click the Dynamic Values button to display the 'Dynamic Values' popup.
For more information, see the Dynamic Values chapter.

You can also click theOpen Code Editor in Fullscreen button to open a code text editor making the experience of
adding and editing the code more user-friendly. Clicking theOpen Code Editor in Fullscreen button opens the code
editor in the full-screen mode. To exit the full screen, press ESC or click Exit Fullscreen.

Do not use reserved words, which are listed in the List of reserved keywords section as the
variable name.

FortiSOAR 7.2.1 Playbooks Guide 83
Fortinet Inc.



Triggers & Steps

Once defined, the variable can be referenced in any remaining steps or in any child playbook, regardless of how many
levels deep, the child playbooks are called.

The format for calling a variable is {{vars.%name%}}.

You can declare variables directly in the step, using the Variables option. See Variables for
more information.

Evaluate

Decision

The Decision step serves as conditional validation within the playbook. You can specify "if this, then that" criteria that
directs the playbook to execute specific steps based on the results of a specific condition. Many organizational
processes differ depending on particular criteria, and to accomplish this; you can use the Decision step.

Use the Decision step to allow the playbook to specify, "If criteria = x, then do this next step." However, you can configure
the Decision step with a variety of operators (equals, does not equal, <, >, etc.) and you can even chain logical conditions
with AND/OR logic, allowing the organization's playbooks to define granular specifications for executing a specific
sequence of steps.

To add a decision step to a playbook, click the Decision step. Initially, the Playbook Designer displays only the Step
Name field, with no conditions. Type the step name and click Save. You can either create a Decision step with just the
Step Name specified for now or create the possible conditions first then create the Decision step and then identify the
condition once the Decision step and the potential outcome steps are connected. You can also define the entire step
setting, or workflow, for the decision step, even if the connecting step is unavailable, allowing you to write the complete
logic of the decision and then plug in the steps later.

The decision step functions in such a way that it evaluates multiple (alternative) conditions until any of them is fulfilled.
This means that when the Decision step finds one condition that is fulfilled, then it skips the other conditions. If none of
the conditions are fulfilled, then the default condition or route is defined.

You can define a default route that the playbook should take if none of the defined conditions are fulfilled. You can also
add a description to describe the various routes that can be taken by the playbook.

Example

A playbook execution route is based on the severity of the alert that gets created in the system at the hands of a third-
party integration. If the alert that is created is not assigned any severity or a severity that does not match the severity that
is defined in any of the conditions, i.e., Low or Minimal in our example, then it follows a default assignment, which is that
the alert record assignment is updated to a Tier1 Analyst. This would be Step A Alert Assigned to Tier1 Analyst. If the
alert is created with Critical severity, then that alert gets assigned to an Administrator (CS Admin). This would be Step B
Alert Assigned to CS Admin. If the alert is created with High orMedium severity, then that alert gets assigned to a
Tier2 Analyst. This would be Step C Alert Assigned to Tier2 Analyst.

The steps to create a playbook based on the above example are as follows:

1. Create a playbook, for example, Alert Assignment Playbook.
FortiSOAR displays the Playbook Designer. The procedure for creating playbooks is mentioned in the Playbooks
Overview section.

FortiSOAR 7.2.1 Playbooks Guide 84
Fortinet Inc.



Triggers & Steps

2. Add a On Create trigger, by clickingOn Create Trigger in the Playbook Designer, type the name of the step in
the Step Name field, for example, Alert Creation and then from the Resource drop-down list select the
module on whose creation you want to trigger the playbook, for our example select Alerts and then click Save.

3. Drag-and-drop a connector point to connect to another playbook step. FortiSOAR adds a placeholder step on the
playbook designer page and opens the Steps tab which displays all the available playbook steps. Click the
Decision step and type the step name as Assignment Based on Severity and click Save.

4. Drag-and-drop connector points from the Assignment Based on Severity decision step and create the routes
that the user can follow, i.e., create Step A, B, and C

5. Create Step A, where the alert is created with no severity, as follows:
a. Click Update Record.
b. Type the name of the step in the Step Name field, for example, Step A Alert Assigned to Tier1

Analyst.
c. From theModel drop-down list, select Alerts.
d. In the Record IRI field, use the Dynamic Values dialog and select the current record, Input > Records >

module > alerts > @id.
e. From the Assigned To drop-down list, select Tier1 Analyst, and click Save.

Note: The DateTime field in a playbook step, for example, in a condition step, does not have the "Is Null" option
in the Select Operator drop-down list.

6. Create Step B, where the alert is created with Severity Equal to Critical, as follows:
a. Click Update Record.
b. Type the name of the step in the Step Name field, for example, Step B Alert Assigned to CS Admin.
c. From theModel drop-down list, select Alerts.
d. In the Record IRI field, use the Dynamic Values dialog and select the current record, Input > Records >

module > alerts > @id.
e. From the Assigned To drop-down list, select CS Admin, and click Save.

7. Create Step C, where the alert is created with Severity Equal to High, as follows:
a. Click Update Record.
b. Type the name of the step in the Step Name field, for example, Step C Alert Assigned to Tier2

Analyst.
c. From theModel drop-down list, select Alerts.
d. In the Record IRI field, use the Dynamic Values dialog and select the current record, Input > Records >

module > alerts > @id.
e. From the Assigned To drop-down list, select Tier2 Analyst, and click Save.

8. Add conditions to the Decision step as follows:
a. For the Default Step:

i. Click Add Default Condition.
If you want to use jinja to add advanced expressions and create complex conditions, you can click the
Show Advanced link and add jinja in the condition text box. By switching to the 'Advanced' mode, you
have complete flexibility to write Jinja-based conditionals, such as:
l Checking if a key exists in the json:
"x" in vars.variable

l Comparisons:
vars.variable == 5
vars.variable >= 5
vars.variable != 5
vars.variable != []

ii. From the Select A Step to Execute, select Step A Alert Assigned to Tier1 Analyst.
You can optionally also add a tooltip, that describes the route this step or condition will take.

FortiSOAR 7.2.1 Playbooks Guide 85
Fortinet Inc.



Triggers & Steps

b. For the alternative steps:
i. Click Add Condition.
ii. In the Condition 2 section, use the Condition Builder to build the Severity Equals Critical condition as

follows: From the Select a field drop-down list, select Severity, from theOperator drop-down list, select
Equals, and from the Select drop-down list, select Critical.
Click the Show Advanced link and add jinja in the condition text box to add jinja-based conditionals.

iii. From the Select A Step to Execute, select Step B Alert Assigned to CS Admin.
You can optionally also add a tooltip, that describes the route this step or condition will take.

iv. Click Add Condition.
v. In the Condition 3 section, use the Condition Builder to build the Severity Equals High or Medium

condition as follows: From the Select a field drop-down list, select Severity, from theOperator drop-
down list, select Equals, and from the Select drop-down list, select High, and from the Select Logical
drop-down list selectOr, and then select Severity, from theOperator drop-down list, select Equals, and
from the Select drop-down list, selectMedium.

vi. From the Select A Step to Execute, select Step C Alert Assigned to Tier2 Analyst.
You can optionally also add a tooltip, that describes the route this step or condition will take.

In case of the No Trigger step for the Condition Builder you must add advanced jinja
expressions in the Condition field. In the case of theManual Trigger, if you have selected
multiple modules, then for the Condition Builder you must add advanced jinja expressions in
the Condition field.

Wait

Use theWait step to specify the time, or the condition to be met, before a playbook resumes executing its steps. It helps
define the specific time that the playbook has to wait, or conditions to be met, for an action to occur in an external system
or to allow for SLAs to elapse before continuing with the course of the playbook. For example, investigation playbooks
have to wait for indicator enrichment to complete before beginning the subsequent investigation.

To configure theWait step, click theWait step. In the Step Name field, type the name of the step, and optionally add a
description of the step in the Description field.

In the Configuration section, choose For Specified (Default) or Until a Condition is Met as the wait type.

FortiSOAR 7.2.1 Playbooks Guide 86
Fortinet Inc.



Triggers & Steps

If you choose For Specified, enter the values in theWeeks, Days, and H:M:S (Hours, Minutes, and Seconds) fields in
the Playbook will resume after section. This option specifies the time the playbook waits before executing the
remaining steps:

You can also add custom Jinja expressions in the fields by clicking the Dynamic Values ( ) icon. Click Save to save the
Wait step.

If you choose Until a Condition is Met, specify the condition that needs to be met before the playbook executes its
remaining steps in the Playbook will resume after condition meets section. For example, in the case of a
playbook that requires to wait till indicators associated with alerts are extracted, you can add the condition as follows:

FortiSOAR 7.2.1 Playbooks Guide 87
Fortinet Inc.



Triggers & Steps

Additionally, you can also configure a time-based escalation for cases where the wait condition is not satisfied. Click
Save to save the Wait step.

Once you have saved the step and theWait step appears on the Playbook Designer canvas, place theWait step
between steps that require to wait for a specific time or the fulfillment of a specific condition.

If a child playbook contains a "Wait" step, then it runs synchronously with the parent playbook,
i.e., the parent playbook will wait for the child step to complete and only then resume its
workflow. Earlier, if a child playbook contained a wait step, it would run asynchronously from
the parent playbook, i.e., the parent playbook would continue its workflow independent of the
child playbook and without waiting for the child playbook to complete its workflow.

Approval

Use the Approval step to halt the execution of Playbook steps until the approval is received from the person or team that
you have specified as an approver. Only once the approval is received will the Playbook move ahead with the workflow
as per the specified sequence. Until the approval is not received, the Execution Playbook Logs will display the
Playbook status as awaiting. Once you complete adding an approval step, which includes adding the approver, the
approver gets a notification for approval and the approver either accepts or rejects the approval request. Once an

FortiSOAR 7.2.1 Playbooks Guide 88
Fortinet Inc.



Triggers & Steps

approval request is complete, the original playbook that contains the approval step resumes the execution of the
remaining playbook steps. You can select only a single team or user as an approver.

The approval step includes Email as a mode of approval, apart from the default, which is system notification.

Permissions Required

l To view Approval notifications and provide approvals, you must be assigned a role that has a minimum of Read and
Update permissions on the Approvalsmodule and Create and Read permissions on the Playbooksmodule.

l To create a playbook and add an approval step or any other step, you must be assigned a role that has a minimum
of Create, Read and Update permissions on the Playbooksmodule, and a minimum of Read permissions on the
People and Securitymodules.

l To add an approval step or any other step to an already existing playbook, you must be assigned a role that has a
minimum of Read and Update permissions on the Playbooksmodule, and a minimum of Read permissions on
the People and Securitymodules.

Examples of usage of an approval step:

l A case for when you can use an approval step could be when you have sent a URL to a third-party URL
authenticator to identify whether the URL is malicious or not. If you get a report from the third-party URL
authenticator that the URL is malicious, then you want to block that URL. However, before you block that URL, you
require approval from the manager of your SOC, and therefore here you would use an approval step.

l Another example would be when you want an Incident to be deleted from the system. However, before the deletion,
you require approval from an Incident Lead, and therefore here you would use an approval step.

Adding an approval step for System notification

1. Open FortiSOAR and click Automation > Playbooks in the left navigation bar.
2. On the Playbook Collections page, click on an existing playbook collection.

This opens the Playbook page, click on the playbook in which you want to add an approval step.
This opens the playbook in the Playbook Designer.

3. Click the Approval step in the Evaluate section.
4. For the Approval step, in the Step Name field, add the name of the step.
5. From the Choose Approver drop-down list, choose Team or User, which displays a Select link. Clicking the

Select link displays a Team or User pop-up based on the approver type you have chosen.
The Team or User pop-up lists all the existing teams or users. Select the team or user who can provide approval. If

FortiSOAR 7.2.1 Playbooks Guide 89
Fortinet Inc.



Triggers & Steps

you select Team, then any member of that team can provide the approval.

6. In the Approval Description field, add the description of the approval request, can include the reason for the
approval request.
The approvers can view this description in the approval notification.

7. (Optional) To add system or email as a mode of approval from the Choose Additional Approval Method drop-
down list, choose System or Email.
If you do not choose anything from this drop-down list, then the approval notification appears only in the Pending
Tasks panel. If you choose System, then the approval notification appears in both the Notifications and Pending
Task panels. If you choose Email, you will receive a notification email for the approval and the approval notification

FortiSOAR 7.2.1 Playbooks Guide 90
Fortinet Inc.



Triggers & Steps

will appears in the Pending Tasks panel.

8. Click Save to save the approval step.

Playbook status for Approvals

Click the Executed Playbook Logs icon in the upper-right corner of FortiSOAR to view the logs and results of your
executed playbook. Clicking the Executed Playbook Logs icon displays the Executed Playbook Logs dialog as shown

FortiSOAR 7.2.1 Playbooks Guide 91
Fortinet Inc.



Triggers & Steps

in the following image:

l Until the approval is not received, the Execution Playbook Logs will display the Playbook status as awaiting.
l If the approval is rejected or granted, the Execution Playbook Logs the playbook continues to execute remaining
steps, as defined for approval rejection or acceptance, and if the playbook completes executing all the steps, the
Execution Playbook Logs will display the Playbook status as finished.

For information on Execution History, see the Debugging and Optimizing Playbooks chapter.

Approval notification using the System mode

Once you complete adding an approval step which includes adding the approvers, the approvers get a notification for
approval. Users who have the appropriate permissions for approval receive the notification. You can view the
notifications for approvals both in the Notifications panel and in the Pending Tasks panel. The Notifications and
Pending Tasks icon are present on the top-right corner in FortiSOAR, and whenever a user gets a notification and/or
approval request the number present on these icons increases by '1'. Clicking the Notifications icon displays the
'Notification' panel, which displays basic content for the approval and manual input. To perform actions required for
approval and to see detailed information on the same, click the Pending Tasks icon to open the 'Pending Tasks' panel.
Click the Approvals tab, to open the list of pending approvals. The approvals contain a link to the playbook and the
description for the approval request. Clicking the approval displays the Approval Request dialog:

The approver can click Approve or Reject to approve or reject the request. The approver can also optionally add
comments in the Comments field that explain the reason for the approval or rejection of the request.

FortiSOAR 7.2.1 Playbooks Guide 92
Fortinet Inc.



Triggers & Steps

When a user logs into FortiSOAR and uses the systemmethod to approve a request,
FortiSOAR displays 'Unauthorized access', though the original playbook resumes the
execution of the remaining playbook steps and moves to the 'finished' state (if there are no
further errors in the playbook). This is because the 'Approval' module inserts an approval
record using a playbook the ownership of that record always remains with the SOC team
(admin team) irrespective of the team or user who triggered the playbook. To solve this issue,
you must add the team(s) who will provide approval to be part of 'Playbook Appliance.' For
more information about Appliances, see the Security Management chapter in the
"Administration" Guide.

Once an approver completes an approval request, the notification dialog displays the approval request as approved
using a green check symbol, and the notification is removed from the notification window.

Approval notification using the Email mode

If you have chosen Email in addition to the system as a mode of approval, an email will be sent to the email ID that has
been configured for the users in their profile. See Security Management in the "Administration" guide for more
information on configuring user profiles.

If you have selected a team to provide approval in the approval step, then the email notification is sent to all the team
members, who have appropriate permissions, and any of the teammembers can provide approval.

The approval email notification contains a link to an Approval Request dialog, which contains the name of the playbook
from which the request has been sent and also the description of the approval required. Once an approver clicks on the
link in the email the Approval Request dialog is displayed, and the approver can click Approve or Reject to approve
or reject the approval request. The approver can add comments in the Comments field that explain the reason for the
approval or rejection of the request.

Users can choose to approve the request using the systemmode as well since apart from the
email notification; a system notification is also sent for the request. If a user uses the system
method to approve a request, then FortiSOAR displays 'Unauthorized access', though the
original playbook resumes the execution of the remaining playbook steps and moves to the
'finished' state. This is because when the approval record is inserted using a playbook, then
the ownership of that record always remains with the SOC team (admin team) irrespective of
the team or user who triggered the playbook. To solve this issue, you must add the team(s)
who will provide approval to be part of 'Appliance.' For more information about Appliances, see
the 'Security' chapter in the "Administration" Guide.

Once an approver completes an approval request, using any mode of approval, the notification dialog displays the
approval request as approved using a green check symbol, and the notification is removed from the notification window.

Viewing details of an approval record

Once you trigger a playbook a record for the same is created in the Approvals module, and you can view and edit the
details of the approval in this record as shown in the following image:

FortiSOAR 7.2.1 Playbooks Guide 93
Fortinet Inc.



Triggers & Steps

The Approvalsmodule is not included as part of the default modules. Therefore, you must add the Approval module
using the Navigation Editor if you want the Approvals module to appear in the FortiSOAR left navigation. For
information on how to add modules to the FortiSOAR left navigation, see the Navigation Editor topic in the
"Administration Guide."

You can edit details of approval add or edit the description of the approval or update the approval or rejection message.
You can also reassign the task of approval to another user in cases such as the user to whom the approval was originally
assigned is unavailable.

When you reassign the approval to another user that user will not get the notification of that
assignment unless you have chosen Email as the additional method of approval while
configuring the Approval step. If you have only configured the Systemmethod of approval,
then the reassigned user will not get an approval request notification.

Viewing details of the approval playbooks

You can view the details of the approval by clicking the Execution History tab to view the logs and results of your
executed playbook. For more information on Playbook Execution History, see the Debugging and Optimizing Playbooks
chapter.

Using the output of the Approval step in other playbook steps

To use the output of the approval step in other playbook steps or to display the result of the approval step in the Step
Results option in Dynamic Values, you must add the following jinja to the step that requires to use the output of the
Approval step:

l To get result of the approval, i.e. true or False: {{vars.steps.<nameOfTheApprovalStep>.approved}}
l To get the comment or message associated with the approval:
{{vars.steps.<nameOfTheApprovalStep>.message}}

l To get the user who is the approver: {{vars.steps.<nameOfTheApprovalStep>.user}}

FortiSOAR 7.2.1 Playbooks Guide 94
Fortinet Inc.



Triggers & Steps

Manual Task

Use theManual Task step to pause the execution of the playbook till you complete a manual task such as a manual
shutdown of a server, or starting or stopping a firewall, that is part of an automated workflow.

Once you click theManual Task step, a form containing the fields from the Taskmodule is displayed. Enter content for
the fields in the Taskmodule, such as the name of the task, person to whom the task is assigned, the status of the task,
and the date by when the task is to be completed. Once you click Save, this record is added in the Taskmodule, and a
FortiSOAR system-playbook begins to run in the background, which keeps checking the status of this task.

Once a user changes the Status of the added manual task in the Taskmodule, to either Skipped or Completed, then
the system-playbook gets notified about the status change and in turn the system playbook resumes the execution of the
original playbook that had requested the manual task.

Note: You can change the condition for when the manual task should resume, for example, you can specify that the
manual task should resume only when the user changes the Status of the manual task to Completed. You must update
the System playbooks if you want to configure the manual task conditions. You can view system playbooks by clicking
the Settings icon, then clicking the System Configuration option, and then clicking the System Fixtures tab. On the
System Fixtures page, in the Playbooks section, click Approval/Manual Task Playbooks.

Using the output of the Manual Task step in other playbook steps

To use the output of the manual task step in other playbook steps or to display the result of the manual task step in the
Step Results option in Dynamic Values, you must add the following jinja to the step that requires to use the output of the
Manual Task step:

l To get the ID of the manual task: {{vars.steps.<nameOfManualTaskStep>['task_data']['@id']}}
l To get status of the manual task: {{vars.steps.<nameOfManualTaskStep>.status}}

Manual Input

Use the Manual Input step to display a customized pop-up either for user prompt or decision anywhere in the flow of the
playbook. Based on the input or decision that the user takes, the playbook will choose one of the paths, from the paths
that you have defined in the playbook and continue to execute the playbook as per the specified automated workflow.
The manual input step can be used with all types of playbook triggers, including Custom API Endpoint trigger and
Referenced trigger.

FortiSOAR 7.2.1 Playbooks Guide 95
Fortinet Inc.



Triggers & Steps

In case of a Custom API Endpoint trigger, a Referenced trigger, and a Manual trigger that has been created with the Run
Without Selecting Any Record option selected, you must specify the module on which the action has to be taken. The
module specified will also be used to populate the "People" lookup and assign ownership to specific users or teams as
well as the record fields that require the inputs.

The Manual Input step provides you with the ability to configure two types of input prompts: Decision-based prompts and
Input-based prompts.

An example of an input-based prompt would be the enrichment of indicators associated with an alert record in
FortiSOAR that has been generated from a SIEM. Enrichment of indicators would be done using threat intelligence tools,
for example, VirusTotal. The results from VirusTotal state that there are 3 indicators, 2 of which are marked as
suspicious based on their score received from VirusTotal and 1 marked as malicious based on their score received from
VirusTotal. The Manual Input step would list these 3 indicators and prompt SOC analysts for an evaluation of indicators
and select the ones that they think should be marked as malicious. Based on the analyst's evaluation further action will
be taken on the alert record and the associated indicators. From version 7.0.0 onwards, you can add visibility conditions
to the fields displayed in the user input form, i.e., fields in the user form would be visible based on the specified
conditions. For an example of using the visibility conditions in a user prompt, see the User Input Prompt - Visibility
Conditions section.

From version 7.0.2 onwards, Dynamic list is supported as a 'Custom' input type in both the Manual Trigger step and the
Manual Input step. A 'Dynamic list' is a list with dynamic values that are set using a playbook, i.e., the options of the list
are defined using JSON or comma-separated values, set using Jinja, and gets displayed as a list. For an example of how
to use dynamic lists in user prompt, see the User Input Prompt - Dynamic Lists section.

An example of a decision-based prompt would be similar to the above except that there would generally be a question in
the prompt based on which the SOC analyst would require to make a decision. For example, Is the following Indicator
Malicious? The analyst then just has to choose either Yes - Block the Indicator or No - Do not block the indicator. Based
on the SOC analyst decision further action will be taken on the alert record and the associated indicators. You can also
retrieve the reputation of the indicator from various threat intelligence tools such as VirusTotal using the Connector step
and display this information to the analysts to enable them to take a more informed decision.

Building a decision-based input prompt

Perform the following steps to create a playbook with a Manual Input playbook based on prompting SOC analysts for an
evaluation of indicators that are associated with an alert generated in FortiSOAR and confirm whether they are malicious
or not. Based on the analysts' evaluation further action is taken on the alert record.

1. Open FortiSOAR and click Automation > Playbooks in the left navigation bar.
2. On the Playbook Collections page, click on an existing playbook collection.

This opens the Playbook page, click on the playbook in which you want to add theManual Input step, or add a
new playbook, which opens the playbook in the Playbook Designer. For our example, create a new playbook
named Test - Manual Input and ensure that the Active checkbox is clicked, then click Create.
This opens the Test - Manual Input playbook in the Playbook Designer.

3. In the Trigger step, selectManual Trigger and define the following parameters:
a. In the Step Name field, enter the name of the playbook. For example, Test Manual Input.
b. In the Trigger Button Label field, type the playbook name as Indicator Evaluation.
c. Ensure that the Run once for all selected records option is selected.
d. In the Choose record modules on which the playbook would be available on field select the Alerts

module.
e. Click Save.

FortiSOAR 7.2.1 Playbooks Guide 96
Fortinet Inc.



Triggers & Steps

4. To get the indicators associated with the record, you can add a Find Records step with the Indicatormodule
selected, and in the Build Search Query section, select Alerts in the Related module and then using Dynamic
Values add the condition as ID Equals {{vars.input.records[0].id}} and click Save to save the step.

5. Add the steps that you want to add as the response actions to evaluate the inputs provided by the analysts. For our
example, configure the Block Indicator and Send Email Notification steps as per your requirements.

6. From the Evaluate section, chooseManual Input and define the following parameters:
a. In the Step Name field, enter the name of the playbook. For example, Manual Input Test.
b. From release 7.2.0 onwards, you can choose the type of manual input you want to create. Choose the Record

Independent option to create a Global Manual Input (Introduced in release 7.2.0), i.e., this type of manual input
that does not depend on any record. Choose the Record linked option if you need the task to be completed in
the context of a specific record. For our example, we will retain the selection of Record linked with its default
options for module and triggered record IRI:

From release 7.2.0 onwards, you can choose to display the manual input in a record that is different from the
record that triggered the manual input playbook. For example, if a manual input playbook is triggered on a
related task module in an alert record, you can still choose to display the manual alert on the alert record. To do
this select the module on which you want to run the manual input playbook from the Select Module drop-down
list and update the triggered record IRI value in the Record IRI field of the record on which the manual input will

FortiSOAR 7.2.1 Playbooks Guide 97
Fortinet Inc.



Triggers & Steps

be prompted, as shown in the following image:

c. In the Input Prompt Configuration section, select Decision-Based.
From version 7.0.0 onwards, you can choose to request decisions or other inputs from non-FortiSOAR users.
To allow non-FortiSOAR users to provide decisions and inputs, click the Create a link for users outside
FortiSOAR checkbox.
You can define the following parameters for the decision-based prompt:
i. In the Title field, enter the title for the prompt. For example, Indicator_Malicious or not.
ii. In the Description field, enter the description for the input prompt. For example, Should the

indicator be blocked? and add then add the jinja to retrieve the indicators associated with the alert
in the format: {{vars.steps.<nameOfFindRecodsStep[0].value}}. For example,
{{vars.steps.Find_Associated_Indicators[0].value}}
Use Dynamic Values to add jinja in playbooks. For more information, see the Dynamic Values chapter.

FortiSOAR 7.2.1 Playbooks Guide 98
Fortinet Inc.



Triggers & Steps

iii. Click Save to save the step.

d. In the Response Mapping section, you add the custom response options that the user can choose from when
presented with the decision. You should map each custom response option to a corresponding playbook step.
You can add the custom response for the decision first so that you can define the complete workflow and then
create the corresponding playbook steps.
For our example, in the Response to Step Mapping section, click the Add More link and in the Response
field, type Yes - Block the Indicator and corresponding to this response, in the Choose Step field,
select the Block Indicator step to block the indicator. Then click Add More and type No - Do not Block
the Indicator and corresponding to this response, in the Choose Step field, select the Send Email
Notification step to send a notification to the SOC team (admin team) so that they can be informed that this
indicator is not blocked and they can take further steps if required.
You can also select the response that you want to consider as a primary response by selecting the Primary
checkbox. Selecting a response as primary will add a distinct visual style to that option button, making it more
prominent when compared to the other buttons. In our example we have marked the No - Do not Block the
Indicator option as the primary response.

e. If you have not selected the Create a link for users outside FortiSOAR checkbox, then you will see the
Ownership section, else you see the Email Recipients section.
l In the Ownership section, you can specify who is responsible to respond to the user prompt and provide
the input or decision. The options within the Ownership section have been updated in release 7.2.0, and
you must select one of the following options:

FortiSOAR 7.2.1 Playbooks Guide 99
Fortinet Inc.



Triggers & Steps

l Analyst working on the record: The manual input is visible and actionable by the analyst who is
working on the record. In this case, select the field that is used to assign the user corresponding to the
specific module, i.e., the People lookup for that module. For our example, since we are working with
the Alertsmodule, select Assigned To. You can also choose the Created By orModified By
options.
The record assignee is defined as the user mapped to the assignment field in the record, at the time of
playbook execution. The manual input stays assigned to this user, even if the record assignee is
changed at a later time.

l Specific Users: The manual input is visible and actionable by users, other than the user who is
assigned to the record, who require to provide the input. When you select this option, then the People
multi-select list appears from which you can select users who require to take the decision. You can
also add a custom expression in this field.

l Specific Team: The manual input is visible and actionable by team(s) who requires to provide the
input. This means that any user who is part of the selected team(s) will be able to provide the input.
When you select this option, then the Teammulti-select list appears from which you can select
specific teams(s) that can provide their input. You can also add a custom expression in this field.

l All record owners: The manual input is visible and actionable by all the owners of the record, i.e.,
users who have permissions on the record, at the time of execution of the playbook.

l No specific assignee: The manual input is visible and actionable to everyone in the FortiSOAR
instance.

Note: The

FortiSOAR 7.2.1 Playbooks Guide 100
Fortinet Inc.



Triggers & Steps

teams or users who are specified as owners, i.e., to whom this task is assigned must have access to
the record and appropriate permissions to perform the steps required to complete the task.

l If you have selected the Create a link for users outside FortiSOAR checkbox and you require non-
FortiSOAR users to provide decisions or inputs, then in the Email Recipients section, add a list of
email addresses of non-FortiSOAR users, who should provide the required inputs or decisions using
emails.

Note: If the server address for the manual input endpoints sent in the email is incorrect, then see the
Correcting the server address for the manual input endpoints sent in emails
topic in the Debugging and Optimizing Playbooks chapter.

f. In the Escalation section, you can choose to define actions that should be taken in case a decision is not
taken within the specified time frame.
If you select No, then there is no time-based escalation.
If you select Yes, then you must specify the following:
l The time within which the action (input or decision) must be taken, in the If the decision is not provided
within field. You can specify the time in Days, Hours, or Minutes (from version 7.0.1). The minutes option
has been added for cases where responses from analysts are quickly required, such as 15-20 minutes.

l The Escalation step must be selected from the Choose a step to continue to field. For example, if you
want to send an email notification to the managers, then you can define that step as Escalation Email
and connect it to the Manual Input step and choose that option from the Choose a step to continue to
field:

If you are requesting decisions or inputs from non-FortiSOAR users via email, then you can use the
escalation settings to define when the links provided in the email will expire. For example, if you select
Yes, and specify 4 hours in the If the decision is not provided within field, this would mean that the
links in the email that has been sent for the decision or input would expire in 4 hours.
Note: FortiSOAR runs a system schedule to resume the workflows that have timed out, such as running
the escalation step when the decision is not taken in the specified time. This schedule by default it is set to
run every minute. The cron expression for this system schedule is present in the /opt/cyops-
workflow/sealab/sealab/config.ini file, and is as follows:
MANUAL_INPUT_ESCALATION_SCHEDULE: {'minute': '*', 'hour': '*', 'day_of_week':
'*', 'day_of_month': '*', 'month_of_year': '*'}
You can update this cron expression if you want to change the default schedule timing window of 1 minute,

FortiSOAR 7.2.1 Playbooks Guide 101
Fortinet Inc.



Triggers & Steps

and then run the following command:
$ sudo -u nginx /opt/cyops-workflow/.env/bin/python /opt/cyops-
workflow/sealab/manage.py default_schedules
Also, note that if the celerybeatd service is down then the system schedule to resume the manual input
in case of an escalation step will not run. You can check the status of the celerybeatd services using the
csadm services --status command, or by viewing the System Health Dashboard.

g. (Optional) If you want to add the Manual Input dialog link in the Pending Tasks Panel, then click theMessage
link that is present in the footer of the playbook step which displays the Message text box. In the Message text
box, add the following inline code:
Inline Code Snippet: <p><a data-comment-collaboration-pendingdecision='true' data-
pendingdecision-id='{{vars.result.wfinput_id}}'>Manual Input Link</a></p>
Important: The format of the inline code that you require to add for adding the link of the Manual Input dialog in
the Pending Tasks Panel is changed in version 6.4.0. Therefore, if you have upgraded to a 6.4.0 or later
version from a version earlier than 6.4.0, you will require to change the format of the older code snippet to
match that of the new code snippet.
You can type the text that you want to display as the link text in the Collaboration Panel, which by default is set
to Manual Input Link within <a data..></a>.
For example:
Inline Code Snippet: <p><a data-comment-collaboration-pendingdecision='true' data-
pendingdecision-id='{{vars.result.wfinput_id}}'>Are the Indicators
Malicious?</a></p>

FortiSOAR 7.2.1 Playbooks Guide 102
Fortinet Inc.



Triggers & Steps

ClickOk to save your changes.

h. Click Save to save the step and click Save Playbook to save the playbook:

FortiSOAR 7.2.1 Playbooks Guide 103
Fortinet Inc.



Triggers & Steps

You can also build an input-based prompt like a decision-based prompt and you can build a prompt in the Build
Prompt - Add & define section of the manual input step similar to the steps described in the Manual Trigger
section - Building a User Prompt.

User Actions corresponding to Manual Input

The Manual input playbook gets triggered based on the type of trigger and trigger conditions defined in the playbook. For
our example, we have created the 'Indicator Evaluation' playbook to be triggered on the Alertsmodule. Navigate to the
Alertsmodule, then click the record for which you want to run the Indicator Evaluation playbook, and then from the
Execute drop-down list select the Indicator Evaluation action to trigger the Indicator Evaluation playbook as shown in
the following image:

Once you trigger the Indicator Evaluation playbook, FortiSOAR does the following:

l Displays a message such as Triggered action "Indicator Evaluation" on 1 record and halts the
further execution of the Test - Manual Input Playbook. You can open the Executed Playbook Logs by clicking the
Executed Playbook Logs icon in the upper right corner of the FortiSOAR. You will see that the status of the Test
- Manual Input Playbook is set to Awaiting as shown in the following image:

l If the decision or inputs are required to be provided by a FortiSOAR user, then users have to do the following:
l Users can click the Notifications icon or Pending Tasks icon that appears on the top-right corner in
FortiSOAR when an action is pending. The Notifications icon contains a number in red color that mentions the
number of unread notifications, including informative information, such as failure of workflows, etc., and actions
that are pending for some user action. Clicking the Notifications icon displays the 'Notifications Panel',
containing a list of notifications:

FortiSOAR 7.2.1 Playbooks Guide 104
Fortinet Inc.



Triggers & Steps

In the Notifications List, click the item in which you want to provide input. This will open the record that is
associated with the manual input as well as the Pending Tasks popup that the users can use to provide their
input, which would then resume the playbook workflow. You can also click on the Pending Decision icon in the
detailed view of the record to open the Pending Tasks popup that the users can use to provide their input,
which would then resume the playbook workflow, which has been described later in this section.
Similarly, the Pending Tasks icon contains a number in red color that mentions the number of pending tasks,
both approvals and manual inputs. Clicking the Pending Tasks icon displays the 'Pending Tasks' panel:

The manual input prompt of the Pending Tasks panel contains a Pending Tasks list which displays details such
as created date, the person or team the decision is assigned to, the title of the manual input step, type of record
on which the action is pending, for example, the Alert record, as shown in the above image, and due date till
when the decision should be taken are displayed. Users can also sort the pending tasks by Recent, i.e., based
on its created date or on the Due By, which is the date by which a decision requires to be given. You can filter
the list of pending tasks by All, which displays all the pending items,Me, which displays the pending tasks that
have been assigned to the current user, orMy Teams, which displays the pending tasks that have been
assigned to the team(s) of the current user.
In the Pending Tasks List, click the item in which you want to provide input. This opens the Pending Tasks
popup that users can use to provide their input, which would then resume the playbook workflow, which has
been described later in this section.
For example, click the Pending Tasks icon and in the Pending Tasks List, click the item to provide the input,
which opens the record that is associated with the manual input as well as the Pending Tasks popup (as
shown in the following image) in which users can add their input:

FortiSOAR 7.2.1 Playbooks Guide 105
Fortinet Inc.



Triggers & Steps

If you click the View Detailed Playbook Execution Flow link, a new window opens that displays the execution
of the playbook based on the input or decision received. Also, as displayed in the above image since in the
playbook selected No - Do not Block the Indicator has been specified as the Primary action, that option gets
highlighted in the popup.
Users can use the Delete This Manual Input link to discard the manual input and remove this input from
playbook workflows or queues. This is required to discard manual inputs without references. For example, in a
playbook that contains manual input, manual task, or approval step, and a step after the manual input, manual
task, or approval step fails, then the complete playbook is marked as failed; however, the manual inputs are still
open for user action even after the awaiting steps are terminated. Therefore, you can use Delete This Manual
Input to completely discard the manual input. Other examples would be in cases where an executed log entry
is removed without addressing the open manual input requests or deletion of a record that requires manual
input.
Note: Users must use theMessage action to add a message to their playbook to add a link to the 'Manual
Input' dialog as described in the Building a decision-based input prompt procedure.
For more information on the user tasks associated with the Notifications panel and Pending Tasks panel, see
the Viewing Notifications and Pending Tasks topic in the "User Guide."

l You can also see the Pending Decisions icon in the detail view of the alert on which the playbook is triggered
and depending on the ownership you have defined in the playbook. For example, if you have provided the
ownership of Analyst working on the record, and if you are not assigned to that record, then you will not see
the Pending Decisions button. The details of the Pending Decisions list is the same as the details displayed in
the Pending Tasks list at the global level) :

Clicking the item in the Pending Decisions list displays the Pending Tasks decision box as explained
earlier.

l If, for example, the user selects the No - Do not Block the Indicator option in the Pending Tasks decision
box, then FortiSOAR displays a message such as Awaiting playbook resumed successfully, and
then based on the user's decision, FortiSOAR continues the execution of the playbook. For our example, the
'Block Indicators' step will be run that will block the indicator. Users can open the Executed Playbook Logs by
clicking the Executed Playbook Logs icon in the upper right corner of the FortiSOAR, and there they will see
that the status of the "Test - Manual Input Playbook" is set to Finished, the Send Email step is executed, and
the Escalation Email and Block Indicator steps are skipped, as shown in the following image:

FortiSOAR 7.2.1 Playbooks Guide 106
Fortinet Inc.



Triggers & Steps

An analyst or user on whom the action is awaiting can also provide the input from the Executed Playbook
Logs. Click the Executed Playbook Logs icon in the upper right corner of the FortiSOAR to open the
Executed Playbook Logs and click the playbook whose status is Awaiting. Clicking the awaiting playbook
opens the Test - Manual Input playbook > Pending Inputs tab on the right side of the Executed Playbook
Logs dialog in which you can add and submit your inputs as shown in the following image:

l If the decision or inputs are required to be provided by a non-FortiSOAR user via email, then users have to do the
following:
l Once the playbook is triggered and the playbook is set to Awaiting, an email gets sent to the email addresses
mentioned in the playbook. The email body contains text such as, "A FortiSOAR Playbook is
requesting your input..." and a link such as "Open input form".
You can customize the text of the email body by editing the delivery rules on the Notifications page. In this case
you have to edit the "Notify on Pending External Manual Input Notification" rule. For more information see the
'Notifications' topic in the System Configuration chapter of the "Administration Guide." Also, if you have
upgraded your system to release 7.2.0 or later, and you have used customized email templates for external
manual inputs, then you must update the "Notify on Pending External Manual Input Notification" rule. For more
information see the 'Notifications' topic in the System Configuration chapter of the "Administration Guide."
By default, email notifications are sent using SMTP. However, you can choose to send email notifications using
a different email servers such as Exchange. To do this, you can either update the 'Email Notification' channel or
create a new custom channel and use this channel in the "Notify on Pending External Manual Input Notification"
rule. For more information see the System Configuration chapter in the "Administration Guide."

l Clicking the link opens the browser and displays a page in which users require to provide their input or decision.
The contents of this page depend on the title and description that you have added in the playbook, along with
the two buttons for acceptance or rejection of the decision, if it is a decision-based prompt. In the case of our
example, the user will see the "Should the indicator be blocked" followed by the indicator value and then two
buttons "Yes - Block the indicator", or "No - Do not block the indicator".
If the prompt is input-based, then users will see an 'Input Form' containing fields that have been defined in the

FortiSOAR 7.2.1 Playbooks Guide 107
Fortinet Inc.



Triggers & Steps

playbook. Users should provide the necessary inputs and then submit the form. Once the form is submitted, it
cannot be re-opened and its contents cannot be changed.

Once the user provides the required inputs and submits their action, the playbook continues its execution as per the
defined workflow.

Global Manual Input

From release 7.2.0 onwards, you can create a manual input that is independent of records, and which could be acted on
by users anywhere in FortiSOAR. Global Manual inputs are suitable if the tasks to be performed are generic, and which
do not require the context of a record for its completion.

An example, of a global manual input, could be a requirement of sending an email to an administrator in case of a
"Critical Alert of type 'Phishing'". For this example, you can create a manual trigger playbook named "Send Email to
Administrator", and then in which you can add visibility conditions as follows:

FortiSOAR 7.2.1 Playbooks Guide 108
Fortinet Inc.



Triggers & Steps

Next, add the Manual Input step to create a Global Manual input, in which you should select the Record Independent
option in the Choose type of manual input you want to create section:

You can then configure the manual input as per your requirements. For more information on setting up manual inputs,
see the Manual Input topic.

Once you have created and saved the playbook, navigate to the Alerts page, and select a Critical alert whose type is
Phishing. Click Execute and select the Send Email to Administrator playbook, FortiSOAR will display the Global Manual
popup on the UI from the module on which it is triggered. In our example, this manual input was triggered from the Alerts
module, and therefore it is displayed on the Alerts page as follows:

If users are not on the Alerts module when this manual input is triggered, then users have to use the Notifications panel
or the Pending Tasks panel to view the Global manual inputs. For more information on the Notification and Pending
Tasks panel, see the User Actions corresponding to Manual Input topic.
Users can add additional notes in the popup dialog and then click the Yes or No to resume the designed playbook
workflow.

FortiSOAR 7.2.1 Playbooks Guide 109
Fortinet Inc.



Triggers & Steps

Execute

Connector

Use the Connector step to add connectors, including FortiSOAR Built-in connectors, to your playbook. Third-Party
Connectors, such as connectors for Elastic, VirusTotal, or Splunk, can retrieve data from custom sources and perform
automated operations. FortiSOAR Built-in connectors, such as the Database connector, the IMAP connector, and the
SMTP, are all pre-installed connectors or built-ins that you can use within FortiSOAR playbook and perform automated
operations. For more information on FortiSOAR Built-in connectors, see the "FortiSOAR Built-in connectors" article.

Use the By Connector Name tab to first choose a specific connector and then choose the operation that you want that
connector to perform or use the By Actions tab to first choose the action (annotation) that you want to perform and then
choose the connector that you want to use to perform the selected action.

Once you click the Connectors step, the Connectors step page is displayed that contains the connectors (By
Connector Names tab) that are configured in your system and the automated actions that you can perform (By Actions
tab).

By Connector Names tab

After selecting the Connector step in the playbook designer, the By Connector Names tab is displayed. The By
Connector Names tab displays all the connectors that are configured in your system. Use this tab if you want to use a
particular connector to perform a particular action.

FortiSOAR 7.2.1 Playbooks Guide 110
Fortinet Inc.

https://docs.fortinet.com/document/fortisoar/0.0.0/fortisoar-built-in-connectors/1/fortisoar-built-in-connectors


Triggers & Steps

Use the Search Connectors section to search for connectors by name.

Click the connector that you want to include in your playbook, for example, VirusTotal v1.0.1 and then type the Step
Name. You can also specify whether you want to run the action on the current FortiSOAR node or remotely on the agent
node by clicking the Self or Agent buttons besides Target. By default, Self is selected, which means that the action will
run on the current FortiSOAR node, then you must select the configuration by clicking the Configurations drop-down list
using which you want to run the action since the FortiSOAR node can have multiple configurations. Configurations are
based on the configuration names that you specify when you are configuring the connector (see notes below). If you click
Agent, then you can select the agent on which you want to run the action and you must also select the configuration
using which you want to run the action since agents can have multiple configurations. For more information on agents
and how to run remote actions using agents, see the Segmented Network support in FortiSOAR chapter in the
"Administration Guide." You can also specify the connector configuration by clicking the {} icon and either typing the
connector configuration name or specifying a Jinja variable that contains the connector configuration name. If you have
only one configuration for the connector or have specified a default configuration, then that configuration automatically
gets selected.

Users can see only those connector configurations to which they have access. For example, if
a VirusTotal connector is configured with configuration name as 'Demo1' and with visibility set
to 'Private' with assignment given to 'Team 1' (for more information on playbook ownership,
see Introduction to Playbooks chapter), then the 'Demo 1' configuration is not visible to users
belonging to teams other than 'Team 1', though they can execute playbooks created by 'Team
1' users.

Next, from the Action drop-down list, select the action that you want the connector to perform and then in the Inputs
section, specify the inputs required. Click Save to add the connector as a playbook step.

FortiSOAR 7.2.1 Playbooks Guide 111
Fortinet Inc.



Triggers & Steps

Notes:

l You can install different versions of a connector, and while adding a connector operation, you can specify a specific
version of a connector within a playbook. For example, you can have VirusTotal connector versions 1.0.0 and 1.0.1.
The version of the connector must be in the x.y.z format, for example, 1.0.0. Version must consist of valid integers,
for example, "1.15.125" is a valid version.
In case you have installed multiple connectors, and if the version of the connector specified in the playbook is not
found, then the playbook by default uses the latest version. FortiSOAR checks for the latest version of the of the
connector in the format "major version.minor version.patch version". For example, version 2.0.1 is a later version
than 1.0.1.

l Upgraded versions of your connector are displayed on the Connectors page and you can upgrade the version of
your connector. The upgrade process replaces your existing connector version with the upgraded version. For more
information, see the Introduction to connectors chapter in the "Connectors Guide."

l You can install different versions of a connector, enabling you to reference a specific version of a connector from a
playbook. If you want to replace all previous versions of the connector, ensure that you click the Delete all existing
versions checkbox while importing the new version of the connector. If you do not click the Delete all existing
versions checkbox, then a new version of the connector is added. You must ensure that your playbooks reference
a correct and existing version of the connector.

l You can add multiple configurations for your connector if you have more than one instance of your third-party server
in your environment. You must, therefore, add a unique Name for each configuration.
If you have previous versions of a connector and you are configuring a newer version of that connector with the
same configuration parameters, then FortiSOAR fetches the configuration and input parameters of the latest
available version of that connector. For example, if you have 1.0.0 and 1.0.1 versions of the VirusTotal connector
and you are configuring the 1.0.1 version of the VirusTotal connector, then while configuring the 1.0.1 version,
FortiSOAR will fetch the configuration and input parameters from the 1.0.0 version of the VirusTotal connector. You
can review the configuration and input parameters, and then decide to change them or leave them unchanged.

l You can check theMark As Default Configuration option to make the selected configuration, the default
configuration of this connector, on the particular FortiSOAR instance. This connector will point to this configuration
by default.

l The password type fields include encryption and decryption. All configuration fields of type password are
encrypted before they are saved in the database.

By Actions tab

After selecting the Connector step in the playbook designer, if you want to see the available connectors configured in
your system for a particular action, then click the By Actions tab. Click the down arrow to view which connector is
providing that action and the description of the action. The By Action tab displays the connectors grouped by actions.

FortiSOAR 7.2.1 Playbooks Guide 112
Fortinet Inc.



Triggers & Steps

Use the Filter By Category section to filter the actions on the basis of the type of operation they will perform. The
types of operations are currently categorized into Investigation, Remediation, Containment, Utilities, and
Miscellaneous categories.

To search for a specific action that you want to perform, type the search keyword in the Search Annotations search
box.

FortiSOAR 7.2.1 Playbooks Guide 113
Fortinet Inc.



Triggers & Steps

Click the name of the action that you want to perform. For example, if you want to submit a sample for analysis to a
website or a sandbox click the Submit Sample action. Once you select the action, then a list of configured connectors
that can perform that operation is displayed as shown in the following image:

FortiSOAR 7.2.1 Playbooks Guide 114
Fortinet Inc.



Triggers & Steps

An annotation can have multiple connectors configured to perform that action, and if more than one connector can
perform the same action, then a list of connectors will be displayed when you click the name of the action. As in our
example, we want to submit a sample for analysis click theGet Sample action, and you will see that multiple connectors,
such as VirusTotal and Anomali ThreatStream are tagged with this annotation.

Select the connector and the exact operation that you want to perform and then type the Step Name. Next, in the
Inputs section specify the necessary input parameters to run the operation. Click Save to add the connector as a
playbook step.

For example, to submit a sample for analysis click the Submit Sample action and you will see the connectors
associated with this action. Select the connector, for example, the Anomali Threatstream connector, and you will
see multiple functions, such as Submit Observables and Submit URLs or Files to Sandbox, associated with the
desired action as shown in the above image. Click the exact operation that you want to perform, for example, if you want
to submit files or URLs to a specific ThreatStream-hosted sandbox, then click Submit URLs or Files to Sandbox. Next,
type the Step Name, and in the Inputs section, enter the input parameters, such as the sandbox name and sample
type that you want to submit for analysis to Threatstream, and then click Save to add the connector as a playbook step.

FortiSOAR 7.2.1 Playbooks Guide 115
Fortinet Inc.



Triggers & Steps

In case of connector actions that have the Datetime field whose sub type is set as Date, you can use the Date picker to
choose the date (such fields do not have the time picker. For Datetime field whose sub type is set as Date/Time, you
can use the Date and Time picker to choose the date and time as shown in the following image:

FortiSOAR 7.2.1 Playbooks Guide 116
Fortinet Inc.



Triggers & Steps

You can also add custom expressions in the jinja format in the Datetime field. Click the icon to enter Jinja for this
field. Click the icon to toggle back to the original Datetime field.

Utilities

Use the Utilities step to run various utility functions and scripts that come built-in with FortiSOAR.

Utility functions include functions such as, the Utils: Make REST API Call option to make a RESTful API call to any valid
URL endpoint, the FSR: Create Record option to insert a new record in FortiSOAR, and the File: Zip option to zip and
password protect a file.

Example of using the FSR: Upsert Record option in the Utilities step

The FSR: Upsert Record step either updates an existing record, if any record matches the unique list of fields you have
specified, in the database, or inserts a new record in the database based on the parameters you have specified.

FortiSOAR 7.2.1 Playbooks Guide 117
Fortinet Inc.



Triggers & Steps

Upsert behavior for uniqueness will not work for fields that are marked as encrypted.

In the Playbook Designer, click the Utilities step and add the step name in the Step Name field. From the Action drop-
down list, select FSR: Upsert Record. In the IRI field add the name of the module in which you want to upsert data in
the format api/3/alerts. In the Body field, add the fields that you want to add or update in the database in the
dynamic values (Jinja variables) format. For example, { "name" : "alert1", "description" : "Test for
Upsert", "status" : "{{"AlertStatus" | picklist("Open", "@id")}}"}. In the Fields field, add the
list of fields to check for uniqueness. For example, if you want to check for records in the database based on the Name of
the record in the database, add ['name'] in the Fields field. If you want to search the database based on multiple
items, you can add more than one item in the Fields field, for example, ['name', 'status']. The Ignore
Missing Fields field is used to determine whether or not to raise an exception if you specify a field in the Fields
field that is not in the record. The Ignore Missing Fields defaults to False, which means that an exception will be
raised if you specify a field in the Fields field that is not in the record. Click Save to save the step.

FortiSOAR 7.2.1 Playbooks Guide 118
Fortinet Inc.



Triggers & Steps

Once the step is run, the database record will either be updated with the parameter you have specified, if any record
matches the list of fields you have specified in the Fields field, or a new record will be inserted in the database based
on the parameters you have specified.

Code Snippet

Use the Code Snippet step to add and run custom python scripts within a playbook.

Select the Code Snippet step and in the Execute Python Code action, enter the python function that you want to run
as part of the playbook, and click Save to save the step.

The Python Function field's interface that is part of the Execute Python Code action is enhanced to a code text editor
making the experience of adding and editing the code more user-friendly:

You can also perform the following operations on the code editor interface:

l To lint your code automatically and make the code more human-readable and error-free (programming and
programming errors), select the entire code in the editor and click the Format button.

FortiSOAR 7.2.1 Playbooks Guide 119
Fortinet Inc.



Triggers & Steps

l To get a better working view and make the editor go full-screen, click the Fullscreen button. To exit the full screen,
press ESC.

l To add dynamic values (Jinja) or variables, or access values of objects, or perform lookups, click the Dynamic
Values button to display the 'Dynamic Values' popup. For more information, see the Dynamic Values chapter.

The Python Function field used to be a text box, which is still available if you select the Execute Python Code
(Deprecated) action. It is not recommended to use this action.

This step uses the Code Snippet connector as its base, for more information on FortiSOAR Built-in connectors, including
the Code Snippet connector, see the "FortiSOAR Built-in connectors" article.

References

Reference a Playbook

Use the Reference a Playbook step to call any playbook within the system, whether Active or Inactive, by name. A child
playbook can reference all environment data from its parent playbook, meaning if a child playbook requires a particular
dynamic value, the child playbook can reference that variable and used it just as it is being used in the parent playbook.
Also, if you want the record inputs as available under vars.input.records of the parent playbook to be available to
the referenced playbook, then select the Pass Parent Input Record checkbox. To prevent the record inputs to be
passed to the referenced playbook, for example, in cases where the referenced step loops on lot of items creating
unnecessary data in memory while is running, and also in the database if the playbook is run in the debug mode, you can

FortiSOAR 7.2.1 Playbooks Guide 120
Fortinet Inc.

https://docs.fortinet.com/document/fortisoar/0.0.0/fortisoar-built-in-connectors/1/fortisoar-built-in-connectors


Triggers & Steps

leave the Pass Parent Input Record checkbox unchecked (default).

To add a reference to a playbook, click the Reference a Playbook step and in the Step Name field, type the name of
the step, then in the Playbook Reference field, click Select, which displays the playbookReference list. The
playbookReference list displays a list of all the available playbooks across the playbook collections from which you
can select the playbook that you want to reference. You can also click the Dynamic Values ( ) button beside Select to
specify jinja variable that contains the IRI value of the reference playbook.

You can use the Loop option to iterate a playbook step as per your requirements.

If you have migrated a Map Playbook to a Reference a Playbook (using Loop), you observe a
change in behavior. In the case of Map Playbook, any changes done to the environment variables
by the Map Playbook were reflected in the Main Playbook directly. However, in the case of
Reference a Playbook, you must explicitly set the returned values from the referenced (child)
playbooks in its last step. This ensures that the child playbook does not change the behavior of
the main playbook in an unexpected manner.

FortiSOAR 7.2.1 Playbooks Guide 121
Fortinet Inc.



Triggers & Steps

The output of the reference playbook steps varies depending on the called playbook parameters. You can define
parameters using Tools > Edit Parameters in the playbook designer

If you update any of the parameters in a child playbook, then you must review and make the
necessary updates in the Reference a Playbook step in the parent playbook. For example, if
you have deleted a parameter from a child playbook, the parameter will yet pass from the
parent playbook to the child playbook since the input values are saved in the reference
playbook step. These inputs are cleared only when you open and save the Reference a
Playbook step in the parent playbook.

If you want to use a variable from a playbook that you are referencing (A) in the calling playbook (B), then defined that
parameter in the referenced playbook (A) using Tools > Edit Parameters. This is the recommended method of passing
environment variables from the referencing (parent) playbook to the referenced (child) playbook. It is not recommended
to directly use the environment variable (since the parent environment is available in the child workflow as well) without
explicitly defining child playbook input. You can turn this feature (passing of parent environment variables) on or off by
updating the following entry in the celeryd section of the /opt/cyops-workflow/sealab/sealab/config.ini
file:
COPY_ENV_FOR_REFERENCE_WORKFLOW : false

Restart the FortiSOAR services once you have updated the entry in the config.ini file.

By default, the COPY_ENV_FOR_REFERENCE_WORKFLOW is set to false.

Email

Send Email

Use the Send Email step to create a step that will prompt the executed playbook to automatically send an email to the
user(s) identified in the step with either specific static criteria or record-relevant data using dynamic values.

If the email needs to reflect data specific to the entity that triggered the playbook, then use dynamic values in the fields.

Following are some examples of how you can send an email with jinja content In case of On Create or On Update
triggers:

FortiSOAR 7.2.1 Playbooks Guide 122
Fortinet Inc.



Triggers & Steps

l To send an email to the user who is assigned to a Task, enter the following in the TO field:
{{vars.input.records[0].assignedTo.email}}.

l To set the email subject line as the name of the Task/Incident, enter the following in the Subject field:
{{vars.input.records[0].name}}

If the email will always have the same recipient/content/etc., then enter the text in the corresponding fields and click
Save.

If you have stored a comma-separated list of multiple email addresses in any 'Set Variable'
step and you use that jinja variable in the 'TO' field in the 'Send Email' playbook step then the
email is not sent to all the email addresses. If you require to send the email to multiple email
addresses, you must use the FortiSOAR provided SMTP built-in connector to add multiple
email addresses in the 'TO' field. The SMTP connector has a Send Email function that
supports multiple addresses both in the jinja variable and string formats.

The Send Email step uses the SMTP Built-in connector and you can send emails to existing FortiSOAR teams or users
by selecting teams or users from pre-populated multi-select fields. For more information on FortiSOAR Built-in
connectors, including the SMTP connector, see the "FortiSOAR Built-in connectors" article.

The Send Email step has renamed to Send Email (Advanced). Use the Send Email (Advanced) step to send a rich
text email with jinja and email template support. Use the Send Email step to send a rich text email with Dynamic Values
support but no support for email templates:

FortiSOAR 7.2.1 Playbooks Guide 123
Fortinet Inc.

https://docs.fortinet.com/document/fortisoar/0.0.0/fortisoar-built-in-connectors/1/fortisoar-built-in-connectors


Triggers & Steps

The Send Email(Advanced) step provides user with the ability to pass an existing email template as an input for the
email subject and body (content), thereby, enabling users to leverage an existing template and build upon it, and
therefore, avoid re-work and ensuring consistency. The Send Email (Advanced) step contains a Body Type drop-
down list from which you can choose whether you want to send a plain text email (Plain Text), rich text email (Rich
Text), or an email based on a template (Email Template):

FortiSOAR 7.2.1 Playbooks Guide 124
Fortinet Inc.



Triggers & Steps

If you select Rich Text from the Body Type drop-down list, then in the Content field, you can add formatted content,
images, and even custom jinja expressions using Dynamic Values.

If you select Email Template from the Body Type drop-down list, the Email Template drop-down list gets displayed,
using which you can select the template that you want to use to send the email:

Authentication

Set API Keys

You can change the context of the user, i.e., override the default appliance keys using the Set API Keys step. For a
particular playbook if you wish to run the API steps with less or more privileges than that of the default Playbook

FortiSOAR 7.2.1 Playbooks Guide 125
Fortinet Inc.



Triggers & Steps

appliance, you can do so by adding the Set API Key step before the concerned steps in the playbook. In this case the
privileges of the specified API key will be used; and this will apply to all steps in the playbook after the Set API Key
step.

You can also use the Set API Keys step to create a playbook using the no authentication webhook (No Authentication
trigger) in case of the Custom API Endpoint Trigger. In such a case, to successfully perform any operation, such as
creating a record in FortiSOAR, you will require to use the Set API Keys step and provide the appliance keys for
authentication.

To use the Set API Keys step, open the playbook and click the Set API Keys step and in the Step Name field, type
the name of the step. Next, enter the Public Key and Private Key values and click Save. For details on generating a
public and private key, or retrieving the details of a public key, see the Appliances topic in the "Security Management"
chapter in the "Administration Guide."

The owner of the records created or updated by this playbook are the teams who own the
appliance whose keys are specified in the playbook.

List of reserved keywords

Following is the list of reserved words that must not be used as variable names:

l 'items'
l 'result'
l 'input'
l 'request
l 'values'
l 'keys'
l 'files'
l 'env'
l 'message'
l 'resources'
l 'step_variables'
l 'do_until'
l 'ignore_errors'
l 'when'
l 'for_each'
l 'cyops_playbook_iri'
l 'cyops_playbook_name'
l 'collaborationNote'
l 'inputVariables'
l 'displayConditions'.

FortiSOAR 7.2.1 Playbooks Guide 126
Fortinet Inc.



Triggers & Steps

Deprecated Playbook steps and triggers

If you are using a deprecated step or trigger in a playbook, in cases where you have upgraded from an older version of
FortiSOAR, then that playbook will continue to work, and you can edit the deprecated step. In case of deprecated steps,
FortiSOAR displays a message such as "This step is deprecated....."

If you are using deprecated steps or triggers in your playbook, it is highly recommended that
you replace those steps and triggers because over time these steps and triggers will become
obsolete, and FortiSOAR will not be able to support or respond to them. You can replace the
deprecated steps with the Utilities step or by using the FortiSOAR Built-in connectors. For
more information on FortiSOAR Built-in connectors, see the "FortiSOAR Built-in connectors"
article.

Deprecated Playbook Triggers

Pre-Data Operation Triggers

Pre-data operations have been deprecated and they are intended for synchronous operations, where the data
operations might potentially block or affect the final data updates to the database. Therefore, pre-data operation triggers
perform some action before the data operation is completed in the database.

Example of a pre-data operation trigger: Suppose your organization has an allowlist database and you want to
ensure that before an alert is created its IP address is checked against the database. If the IP address is part of the
allowlist database, you do not want an alert to be created.

The following table lists the types of Pre-Data Operations triggers that have been deprecated:

Deprecated
Playbook

Trigger Name

Brief description of the trigger

Pre-Create This trigger starts the execution of a playbook immediately before inserting the selected model type
to the database. You can create a Pre-Create trigger on almost all models, which includes Modules.

Pre-Update This trigger starts the execution of a playbook immediately before updating the selected model type
to the database. You can create a Pre-Update trigger on almost all models, which includes
Modules. You add a Pre-Update trigger in the same way you added a Pre-Create trigger.

Pre-Delete This trigger starts the execution of a playbook immediately before deleting the selected model type
to the database. You can create a Pre-Delete trigger on almost all models, which includes Modules.
You add a Pre-Delete trigger in the same way you added a Pre-Create trigger.

Deprecated Playbook Steps

The following playbook steps have been deprecated from version 4.11 and later since most of them have been added to
the Utilities step and as part of FortiSOAR Built-in connectors.

FortiSOAR 7.2.1 Playbooks Guide 127
Fortinet Inc.

https://docs.fortinet.com/document/fortisoar/0.0.0/fortisoar-built-in-connectors/1/fortisoar-built-in-connectors


Triggers & Steps

If you are using deprecated steps in your playbook, it is highly recommended that you replace
those steps with the Utilities step or by using the FortiSOAR Built-in connectors since over
time these steps will become obsolete and FortiSOAR will not support them.

The following table lists the steps that have been depreciated and the step or connector that you can use instead of the
deprecated step:

Deprecated
Step Name

Step or con-
nector that
replaces the

deprecated step

Brief description of the step

Add Database
Connector

Database
Connector

To connect to a particular database.

Run Script Utilities Connector To run various scripts.

Database
Query

Database
Connector

To query a database to which you have established a connection.

Remote
Command

SSH Connector To connect to a remote machine and execute the required commands.

SFTP Utilities Connector:
uploadfile url
operation

To connect to a particular SFTP URL.

Make API Call Utilities Connector To make a RESTful API call to any valid URL endpoint.

Fetch Email IMAP Connector To retrieve an email from a specified host.

Create File
from String

Utilities Connector:
create file
from string
operation

To create a file from a string input.

Download File
from URL

Utilities Connector:
download file
from URL
operation

To download a file from a particular URL.

Create
Attachment
from File

Utilities Connector:
create
attachment
from file
operation

To add a file to the Attachments module within FortiSOAR.

Map Playbook Reference a
Playbook step

To call any playbook within the system using the IRI of the playbook

Run Utility
Functions

Utilities Connector To run various utility functions.

Pause Wait To pause the execution of a playbook step.
Note: The support for the Pause step has been completely removed. You

FortiSOAR 7.2.1 Playbooks Guide 128
Fortinet Inc.



Triggers & Steps

must use the Wait step.

Manual
Decision

Manual Input To pause the execution of the playbook until the user or analyst who is
assigned to make the decision provides the choice. to pause the execution of
the playbook until the user or analyst who is assigned to make the decision
provides the choice.

FortiSOAR 7.2.1 Playbooks Guide 129
Fortinet Inc.



Dynamic Values

Dynamic Values

Overview

Use Dynamic Values to generate Jinja dynamically within the Playbook Designer. To make your playbook dynamic use
Jinja templates to define various conditions within steps in a playbook. However, you must have some knowledge of
Jinja (see Jinja Documentation) and must understand the workflow of the playbook steps in the JSON format to create
Jinja templates.

Using the Jinja editor, you can apply a Jinja template to a JSON input and then render the output, thereby checking the
validity of the Jinja and the output before you add the Jinja to the Playbook.

Using Dynamic Values, you can dynamically add Jinja to steps within a Playbook. Click a step, within the playbook that
takes Jinja as an input and Dynamic Values is displayed. Choose from the options presented to add Jinja to the step.

FortiSOAR simplifies the process of building playbooks without requiring to have Jinja or Python knowledge. Use the
"Expressions" tab on Dynamic Values to build playbooks with medium-level complexity without any programming
knowledge, with the option to use Jinja or Code Snippets to build playbooks that are very complex. For more information,
see Expressions Usage.

Jinja Editor

Use the Jinja editor to apply a Jinja template to a JSON input and then render the output. You can thereby check the
validity of the Jinja and the output before you add the Jinja to the Playbook.

To open the Jinja Editor, in the Playbook Designer, click Tools > Jinja Editor.

The Jinja Editor has three areas: Template, Json, and Output.

l Jinja Template: Use the Jinja Template area to specify the Jinja in curly brackets.
l JSON: Use the JSON area to specify the JSON input. JSON is always in the format of "Key":"Value" pair. If there
are syntax errors in the JSON you have written, the Jinja editor displays a Bad String prompt. You can also
specify nested key-value pairs.
Once you have entered the Jinja and JSON, click Render to display the output.

l Output: The Output area displays the output that would be generated by the combination of the entered the Jinja
and the JSON.

FortiSOAR 7.2.1 Playbooks Guide 130
Fortinet Inc.

http://jinja.pocoo.org/docs/2.10/


Dynamic Values

When an object is returned as the result, then the Jinja Editor will display the output as an object instead of text area.

Dynamic Values Usage

Dynamic Values is used within the Playbook Designer. Use the Dynamic Values directly within steps of your playbook to
dynamically add Jinja to those steps. Click a step within the playbook that takes Jinja as an input and Dynamic Values is
displayed. Choose from the options presented to add Jinja to the step.

Dynamic Values is visible for input fields such as text fields, rich text, date/time fields, picklists, checkboxes, etc. You can
use the Dynamic Values button to toggle fields, such as drop-down lists and checkboxes, and add custom jinja
expressions for fields such as picklists, Lookups, File selectors, rich text, text fields, etc. Clicking the Dynamic Values
button also displays the Dynamic Values dialog, using which also you can add expressions to these fields. The ability
to add Jinja expressions to these fields enables you to customize your playbooks further.

In version 7.0.0, FortiSOAR has updated the arrow library due to which the timestamp
attribute has been changed into int_timestamp for DateTime jinja expressions. Therefore,
new playbooks must use the int_timestamp for any DateTime jinja expressions. For more
information, see the Dynamic Variables chapter.

FortiSOAR 7.2.1 Playbooks Guide 131
Fortinet Inc.



Dynamic Values

You can also use Dynamic Values within a Text field type that has a subtype of either Rich Text (Markdown),
which is the default, or Rich Text (HTML). Earlier, the Dynamic Values dialog would not be displayed for a Rich
Text type field. To display Dynamic Values within a Rich Text type field, click the Dynamic Values ( ) icon in the
formatting toolbar as shown in the following image:

Dynamic Values provides you with the following Jinja options within a step:

l Input
l Step Results
l Variables

FortiSOAR 7.2.1 Playbooks Guide 132
Fortinet Inc.



Dynamic Values

l Global Variables
l IRI Lookup

Before you delete or modify any global variable or variable(s) ensure that you have removed or
updated the variable in the Playbook to ensure that the change does not affect the functionality
of the playbook.

Use the “Expressions” tab on Dynamic Values to build playbooks based on your requirements and without programming
knowledge. For more information, see Expressions Usage.

Input

Use the Input option to add various types of data, variables, and parameters that you can use in your current step.

The Input option provides you various type of parameters that you can use in your current step:

FortiSOAR 7.2.1 Playbooks Guide 133
Fortinet Inc.



Dynamic Values

l Parameters that you have defined using Tools > Edit Parameters in the playbook designer appears when you click
Input > Parameters.

l Trigger step data has been added as part of the Inputs so that you can use the variables and data from the module
on which trigger has been added. Data of the trigger step appears when you click Input > Records.

l Data of the trigger step, in case of Custom API Endpoint Trigger, appears when you click Input >
Parameters > api_body.

l Variables that you have defined in the Manual Trigger step appears when you click Input > Variables.

While importing playbooks that were created using an older version of FortiSOAR, before you
use the "Input" option in any step, ensure that you open and save the trigger step and then
save the playbook.

Step Results

The Step Results option enables you to use the output of the steps that have been executed, in the current step.
Dynamic Values also displays the output of the current step in Variables andMessage options in playbook steps, so
that you can add or store the output of the current step directly in the step itself. For more information about playbook
steps, see the Triggers & Steps chapter.

Dynamic Values displays the output of Step Results for the current step in the format vars.result.keyname.
Dynamic Values displays the output of Step Results for the previous or already executed steps in the format
vars.steps.stepname.keyname.

To use the output of the steps that have been executed, click the step in which you want to the use the executed steps'
output, which then displays Dynamic Values. Select the Step Results option. Dynamic Values displays the output
schema, with all its attributes, of the output of all the steps that have been executed. You can then use the output
schema and attributes of any of the executed steps as an input to the current step based on the logic or functionality of
the current step.

FortiSOAR 7.2.1 Playbooks Guide 134
Fortinet Inc.



Dynamic Values

You can also use an array element in an executed steps' output:

If you select an array element for the executed steps' output, then you must specify the position of the element (index
[i]) in the Jinja that is generated. The index value of an array starts from zero [0]. For example, if you want to fetch the
name property from the Find_all_Open_Alerts [] array from the executed steps' output, then the Jinja that is
generated is as follows: {{vars.steps.Find_all_Open_Alerts[0].name}}.

Therefore, before you run the playbook and require to fetch any element other than the first element in the array, you
must provide the position of the element. For example, if you want to fetch the name property of the 4th element of the
Find_all_Open_Alerts [] array then your Jinja must be written as {{vars.steps.Find_all_Open_Alerts
[3].name}}.

If there is no step output available or if you are at the first step in the Playbook or if the step is not connected to another
step, then the Jinja generator displays the following message: Either there is no previous step or the
previous step output is not known. If there is no previous step then connect another
step to the current step to view the previous step output.

FortiSOAR 7.2.1 Playbooks Guide 135
Fortinet Inc.



Dynamic Values

Variables

Variables are variables that can be used only in the playbook in which it is defined. Therefore, the scope of a variable is
local. To create a Variable, in the Playbook Designer, click the Set Variable step and add the Name and Value for the
Variable and then click Save.

You can define multiple set variables in a playbook and then in this case you will see multiple Variables in the steps.

You use the Variable like you would use a Global Variables, except that variables can be used only in the remaining
steps of the playbook in which they have been defined or in any child playbook, regardless of how many levels deep the
child playbooks are called.

If there are no variables defined, the Jinja generator displays the following message: There are no Variables
declared in this playbook or the current step is not connected to any step. You can
create Variables by adding 'Set Variable' step.

Global Variables

Global variables (called macros in earlier version), are variables that can be used across playbooks. You can declare a
global variable once and then use it across all playbooks, instead of having to redefine the variable every time in each
playbook. You can create global variables only in the Playbook Designer. FortiSOAR includes some pre-defined global
variables.

To create a global variable, in the Playbook Designer, click Tools >Global Variable. Click New Global Variable and
enter appropriate content in the Variable Name and Field Value fields for the variable and click Submit to create a
global variable. You can optionally also add the default value for the variable in the Default Value field.

Variable Names must always begin with a character when you are creating global variables
and the name can contain only alphabets and numerals. Special characters and spaces are
not allowed.

FortiSOAR 7.2.1 Playbooks Guide 136
Fortinet Inc.



Dynamic Values

To ensure that the correct hostname is displayed in links contained in emails sent by System Playbooks, you must
update the Server_fqhn global variable inGlobal Variables. Click the Edit icon in the Server_fqhn global variable,
and in the Field Value field add the appropriate hostname value, and then click Submit. If you have not specified the
hostname in global variables, then the hostname that you had specified or that was present when you installed
FortiSOAR will be the default hostname and this will be added in the email. In this case, ensure that you have used the
Server_fqhn global variable in the Send Email step in the playbook that is sending the email.

Example of using a global variable: In the Set Variable step, you need to set a name and value. When you click
the Value field, Dynamic Values is displayed. ClickGlobal Variables in Dynamic Values, and you will see a list of
global variables that have been created. Click the global variable that you require, for example current date. This adds
the Jinja value of the global variable in the Value field:

FortiSOAR 7.2.1 Playbooks Guide 137
Fortinet Inc.



Dynamic Values

IRI Lookup

All foreign key references use International Resource Identifiers (IRIs) to reference records within the system. IRIs are
generated automatically when FortiSOAR inserts records. FortiSOAR uses IRI values in multiple places for referencing
picklists, playbooks, attachments, etc. Use the IRI Lookup option to efficiently use the IRI values of picklists,
attachments, or playbooks configured in your system.

To use the IRI lookup, click the step in which you want to insert an IRI value, which then displays Dynamic Values. Select
the IRI Lookup option and from the Choose Entity Type drop-down menu, choose the entity, either a Picklist,
Attachment, or Playbook. For example, if you choose Picklist, then from the Provide Entity To Lookup IRI for drop-
down menu, select the Picklist whose IRI value you want to add to the step. In our example, we want to add the IRI
value for the picklist that retrieves the types of alerts. Therefore, from the Provide Entity To Lookup IRI for drop-down
menu, select AlertType, and then in the Click to Add IRI Value section, select the alert type that you want to
add, for example, Phishing, as shown in the following image:

FortiSOAR 7.2.1 Playbooks Guide 138
Fortinet Inc.



Dynamic Values

Once you click Phishing, the IRI value (jinja) of 'Phishing' alert type is added to the playbook in the Jinja format, which is
{{("picklistName"|picklist("itemvalue of picklist"))["@id"]}}.

Expressions Usage

Use the "Expressions" tab in Dynamic Values to build playbooks based on your requirements and without programming
knowledge, and add various operations and expressions to playbooks. The Expressions tab contains easy-to-
understand operations that cover most aspects of playbook development. The operations are grouped logically as per
their functionality, for example, if you want to convert datetime into a specific format or to a different time zone then these
operations will be listed in the Date Time Operations list. Similarly, if you want to replace text in a string with a regex, then
these operations will be listed in the Regex Operations list. You can search for operations using the search textbox in the
Expressions tab. Each operation has an information icon that you can hover over to view more information about that
particular operation.

FortiSOAR 7.2.1 Playbooks Guide 139
Fortinet Inc.



Dynamic Values

An example of using an expression would be requiring to extract artifacts from the source data of an alert that has been
created in FortiSOAR from a SIEM and update that record with the extracted artifacts. You can use Utility Operation >
Extract artifacts from a string operation to extract artifacts from the source data.

To use the Extract artifacts from a string operation, in the "Update Record" step, click the Indicators field, which displays
Dynamic Values. Click the Expressions tab and then click the Utility Operations list:

FortiSOAR 7.2.1 Playbooks Guide 140
Fortinet Inc.



Dynamic Values

Click the Extract artifacts from a string operation, which in turn displays a Inputs text box. From the Choose Field
list, you can select Source Data of the alert by clicking Input > Records > modules > Alerts and clicking the Source
Data field:

This adds the corresponding Jinja value in the Input string field:

FortiSOAR 7.2.1 Playbooks Guide 141
Fortinet Inc.



Dynamic Values

Click Save to add the corresponding Jinja expressions in the Indicators field:

Click Save to save the Update Record step and then save the playbook. Now, when you run this playbook for an alert
that contains source data, this step will extract artifacts from the source data and update the indicators associated with
the alert record with the extracted artifacts.

Whenever FortiSOAR is upgraded, the files located in the /opt/cyops-
workflow/sealab/expression_builder/expressions folder will be overridden
based on enhancements or additions made to the expressions. Therefore, you should make
changes to the expressions in the so it is advised to the user that they should make the
changes to expression in the files located in the /opt/cyops-
workflow/sealab/expression_builder/custom folder.

Adding your own expressions

You can also create your own expressions and add it to the "Expressions" tab in Dynamic Values. You can either use
existing Jinja2 filters (https://docs.ansible.com/ansible/latest/user_guide/playbooks_filters.html) or create your own new
function and add it to the "Expressions" tab in Dynamic Values.

Adding existing Jinja2 filters to the "Expressions" tab

You can add existing Jinja2 filters that are currently not part of "Expressions" tab. An example of this can be the {{ 
path | win_splitdrive }} filter, which separates the Windows drive letter from the rest of a file path. To add this
filter to the "Expressions" tab, do the following:

1. SSH to your FortiSOAR VM and login as a root user.
2. Navigate to the /opt/cyops-workflow/sealab/expression_builder/custom folder.

FortiSOAR 7.2.1 Playbooks Guide 142
Fortinet Inc.

https://docs.ansible.com/ansible/latest/user_guide/playbooks_filters.html


Dynamic Values

3. Edit the my_expressions.json file and add the {{ path | win_splitdrive }} filter as follows:

{
"name": "my_expressions",
"title": "My Expressions",
"description": "",
"operations": [

{
"name": "Seperate Windows Drive Letter",
"jexp": "{{params.path}} | win_splitdrive",
"description": "",
"params": [

{
"name": "path",
"title": "File Path",
"type": "text",
"value": "",
"editable": true,
"required": true

}
]

}
]

}

4. Save the my_expressions.json file.
Note: The jexp parameter displays the final expression that will be added to the field in the playbook.

5. Restart the uwsgi and celeryd services using the following commands:
# systemctl restart uwsgi
# systemctl restart celeryd

Once you have restarted the uwsgi and celeryd services, logon to FortiSOAR and open a playbook to view the
"Expressions" tab in Dynamic Values. You will see "My Expressions" added at the end of the "Expressions" list:

FortiSOAR 7.2.1 Playbooks Guide 143
Fortinet Inc.



Dynamic Values

Click Separate Windows Drive Letter to display the inputs to be gathered from the user and enter the file path from
which you want to separate the windows drive letter:

Click Save to display the final expression that will be added to the field in the playbook:

FortiSOAR 7.2.1 Playbooks Guide 144
Fortinet Inc.



Dynamic Values

Creating a new function and then adding it to the "Expressions" tab

You can also create a new function and either use it as a filter or add it to the "Expressions" tab in Dynamic Values.

To add a new function that displays a sum of two numbers, do the following:

1. SSH to your FortiSOAR VM and login as a root user.
2. Navigate to the /opt/cyops-workflow/sealab/expression_builder/custom folder.
3. Edit the custom_functions.py file as follows:

vi custom_functions.py

def sum(a,b):
return (a+b)

func_map = {
'sum': sum

}

4. Save the custom_functions.py file.
5. Restart the uwsgi and celeryd services using the following commands:

# systemctl restart uwsgi
# systemctl restart celeryd

6. Now, you can use the sum filter as required or you can add it to the "Expressions" tab in Dynamic Values, using the
method described in the earlier section.

FortiSOAR 7.2.1 Playbooks Guide 145
Fortinet Inc.



Dynamic Variables

Dynamic Variables

Overview

Dynamic variables are objects that can be set and accessed within a playbook. Any valid Python object can be a
dynamic variable. This includes ints, strings, dictionaries, etc. Variables themselves have no type information associated
with them; however, playbook steps do. Steps may attempt to coerce dynamic variables into the expected data type;
however, it is mostly on the caller to pass the correct types.

Dynamic variables can be passed to playbook steps as arguments directly, or they may be embedded in a larger string,
where they will act more as global variables (or macros), getting replaced by a string representation of themselves.

Syntax

Double curly braces ({{ }}) demarcate dynamic variables from the surrounding text. Anything that goes between the
braces is a dynamic variable. The most basic use of the dynamic variable is as a simple dictionary lookup.

The general data structure you are using matters within the usage of the dynamic variable.
JSON is the easiest data format to consume and use. XML may be converted into JSON
directly so that it may also be used. The following examples assume that you are able to use a
JSON format.

Let's look at some examples. Say you have an object (array) named users which has the following structure:

{
'Alvian': 42,
'Kreb': 413,
'Mandu': 1

}

Example 1

You can then use dynamic variables to access the values of that object.

{{ vars.users.Alvian }}

This statement will evaluate to 42.

Example 2

There are {{ vars.users.Kreb }} Krebs in FortiSOAR.

This statement will evaluate to the string "There are 413 Krebs in FortiSOAR."

FortiSOAR 7.2.1 Playbooks Guide 146
Fortinet Inc.



Dynamic Variables

Example 3

{{ vars.users.does_not_exist }}

This statement would evaluate to an error and would be displayed as:

no such element: users['does_not_exist']

Example 4

Say you modified the object (array) named users to have the following structure:

{
'Alvian': 42,
'Kreb': { 

'original': 413,
'pi': 3.14

},
'Mandu': 1

}

To access the secondary array is as easy as adding an additional key for the key-value pair you desire to access.

{{ vars.users.Krebs.pi }}

This statement would evaluate to 3.14. An alternative format for accessing the variable, which may be used in case of
special characters present, is:

{{ vars.users['Krebs']['pi'] }}

This statement would evaluate identically to the previous, 3.14.

Implementation

The major driving force behind dynamic variables is Jinja2 templates. A general overview of how Jinja2 works can be
found here.

Specifically, to render a template, Jinja takes two arguments: a context and a template string. The template string is the
dynamic variable itself, which is provided by users in the playbook. The context object, on the other hand, will be created
automatically before each and every playbook step. It contains various helper functions as well as the internal
representation of the dynamic variable data.

Scope

Scope for dynamic variables is defined by the COPY_ENV_FOR_REFERENCE_WORKFLOW setting. Use this setting to pass
variables to a reference playbook.

By default, the COPY_ENV_FOR_REFERENCE_WORKFLOW is set to false.

FortiSOAR 7.2.1 Playbooks Guide 147
Fortinet Inc.

http://jinja.pocoo.org/docs/dev/


Dynamic Variables

Functionality

There are several top-level objects that can be accessed within a dynamic variable.

Dictionary-like Objects

Most ordinary variables are stored under the vars namespace. Whenever a variable is declared using:
class:workflow.tasks.set_variable, it will go under vars. Additionally, the playbook engine will automatically set
the following variables:

l vars.result: This contains the return value of the previous playbook step.
l vars.input.records: This contains information about what triggered a playbook, i.e., the body of the inbound
request.

l vars.request.headers: This contains the metadata of all the headers that are part of the playbooks
environment, and which can be used in the playbooks, such as X-RUNBYUSER which is a jinja template to retrieve
the name of the user who triggered the playbook. Some other parameters are, trigger type, authorization, accept,
host, content-type, etc.

l vars.input.params.api_body: This contains the data passed from a Custom API Endpoint trigger.

Built-in Functions & Filters

Functions

l arrow: Datetime functions:

{{ arrow.utcnow().int_timestamp }}

In version 7.0.0, FortiSOAR has updated the arrow library, due to which the timestamp attribute has been changed into
int_timestamp for DateTime jinja expressions, . For more information see,
https://arrow.readthedocs.io/en/latest/releases.html#id4

New playbooks must use the int_timestamp for any DateTime jinja expressions.

More documentation can be found here

l uuid: returns a uuid using python's uuid.uuid4() function

{{ uuid() }}

Filters

See the Jinja Filters and Functions chapter for information.

FortiSOAR 7.2.1 Playbooks Guide 148
Fortinet Inc.

https://arrow.readthedocs.io/en/latest/releases.html#id4
http://crsmithdev.com/


Dynamic Variables

FAQS

How are dynamic variables used in condition steps?

Decision steps use dynamic variables with logical equalities of the form:

{{ 8 == 8 }}

This statement will return either the string 'True,' or 'False' which will automatically be converted into a real boolean
value.

Decision steps advanced interface does not require the use of curly braces like {{ }}.

FortiSOAR 7.2.1 Playbooks Guide 149
Fortinet Inc.



Jinja Filters and Functions

Jinja Filters and Functions

Overview

Use jinja2 filters to design and manipulate playbook step outputs. Jinja operations are supported in the Playbook Engine
and you can also use the Custom Functions and Filters that are documented in this chapter.

All filters are case-sensitive.

These examples present in this chapter provide a reference to common and very useful string operations that may be
leveraged within the Playbook engine.

You can also use Jinja extensions to enrich expressions, for more information, see the Jinja Extensions topic.

Filters

FortiSOAR supports the following filters:

l fromIRI: Will resolve an IRI and return the object(s) that live(s) there. This is similar to loading the object by id
(IRI).
{{ '/api/3/events/8' | fromIRI }}{{ vars.event.alert_iri | fromIRI }}
You can use dot access for values returned by fromIRI.
For example: To get a person record and return their 'name' field you can use the following:
{{ (vars.person_iri | fromIRI).name }}
You can also use fromIRI recursively, for example:
{{ ((vars.event.alert |fromIRI).owner| fromIRI).name }}
You can also retrieve relationship data for a record on which a playbook is running, for example:
{{('/api/3/alerts/<alert_IRI>?$relationships=true' | fromIRI).indicators}}

l toDict: attempt to coerce a string into a dictionary for access.
{{ (request.data.incident_string | toDict).id }}

l xml_to_dict: Converts an XML string into a dictionary for access:
{{ '<?xml version="1.0" ?><person><name>john</name><age>20</age></person>' | xml_
to_dict }}

l extract_artifacts: Parses and extracts a list of IOCs from a given string:
{{'abc.com 192.168.42.23' | extract_artifacts}}

l parse_cef: Parses a given CEF string and converts the CEF string into a dictionary:
{{ 'some string containing cef' | parse_cef }}

l readfile: Fetches the contents of a file that is downloaded in FortiSOAR:
{{ vars.result | readfile}}
where vars.result is the name of the file.

l ip_range: Checks if the IP address is in the specified range:
{{vars.ip | ip_range(‘198.162.0.0/24’)}}

FortiSOAR 7.2.1 Playbooks Guide 150
Fortinet Inc.



Jinja Filters and Functions

l counter: Gets the count of each item's occurrence in an array of items:
{{data| counter}}
For example:
data: [‘apple’,‘red’,‘apple’,‘red’,‘red’,‘pear’]
{{data| counter}}
Result: {‘red’: 3, ‘apple’: 2, ‘pear’: 1}

FortiSOAR also supports following filters, more information for which is present at
http://docs.ansible.com/ansible/latest/playbooks_filters.html.

Filters for formatting data

The following filters take a data structure in a template and render it in a slightly different format. These are occasionally
useful for debugging:

{{ some_variable | to_json }}
{{ some_variable | to_yaml }}

For human readable output, you can use:

{{ some_variable | to_nice_json }}
{{ some_variable | to_nice_yaml }}

It is also possible to change the indentation the variables:

{{ some_variable | to_nice_json(indent=2) }}
{{ some_variable | to_nice_yaml(indent=8) }}

Alternatively, you may be reading in some already formatted data:

{{ some_variable | from_json }}
{{ some_variable | from_yaml }}

Filters that operate on list variables

To get the minimum value from a list of numbers:

{{ list1 | min }}

To get the maximum value from a list of numbers:

{{ [3, 4, 2] | max }}

Filters that return a unique set from sets or lists

To get a unique set from a list:

{{ list1 | unique }}

To get a union of two lists:

{{ list1 | union(list2) }}

To get the intersection of 2 lists (unique list of all items in both):

{{ list1 | intersect(list2) }}

FortiSOAR 7.2.1 Playbooks Guide 151
Fortinet Inc.

http://docs.ansible.com/ansible/latest/playbooks_filters.html


Jinja Filters and Functions

To get the difference of 2 lists (items in 1 that don’t exist in 2):

{{ list1 | difference(list2) }}

To get the symmetric difference of 2 lists (items exclusive to each list):

{{ list1 | symmetric_difference(list2) }}

Random Number filter

The following filters can be used similar to the default jinja2 random filter (returning a random item from a sequence of
items), but they can also be used to generate a random number based on a range.

To get a random item from a list:

{{ ['a','b','c']|random }}
# => c

To get a random number from 0 to supplied end:

{{ 59 |random}}
# => 21

Get a random number from 0 to 100 but in steps of 10:

{{ 100 |random(step=10) }}
# => 70

Get a random number from 1 to 100 but in steps of 10:

{{ 100 |random(1, 10) }}
# => 31
{{ 100 |random(start=1, step=10) }}
# => 51

To initialize the random number generator from a seed. This way, you can create random-but-idempotent numbers:

{{ 59 |random(seed=inventory_hostname) }}

Shuffle filter

The following filters randomize an existing list, giving a different order every invocation.

To get a random list from an existing list:

{{ ['a','b','c']|shuffle }}
# => ['c','a','b']

{{ ['a','b','c']|shuffle }}
# => ['b','c','a']

To shuffle a list idempotent. For this you will require a seed:

{{ ['a','b','c']|shuffle(seed=inventory_hostname) }}
# => ['b','a','c']

FortiSOAR 7.2.1 Playbooks Guide 152
Fortinet Inc.



Jinja Filters and Functions

When this filter is used with a non ‘listable’ item it is a noop. Otherwise, it always returns a list.

Filters for math operations

To get the logarithm (default is e):

{{ myvar | log }}

To get the base 10 logarithm:

{{ myvar | log(10) }}

To get the power of 2! (or 5):

{{ myvar | pow(2) }}
{{ myvar | pow(5) }}

To get the square root, or the 5th:

{{ myvar | root }}
{{ myvar | root(5) }}

IP Address filters

To test if a string is a valid IP address:

{{ myvar | ipaddr }}

To get the IP address in a specific IP protocol version:

{{ myvar | ipv4 }}
{{ myvar | ipv6 }}

To extract specific information from an IP address. For example, to get the IP address itself from a CIDR, you can use:

{{ '192.0.2.1/24' | ipaddr('address') }}

To filter a list of IP addresses:

test_list = ['192.24.2.1', 'host.fqdn', '::1', '192.168.32.0/24', 'fe80::100/10', True,
'', '42540766412265424405338506004571095040/64']

# {{ test_list | ipaddr }}
['192.24.2.1', '::1', '192.168.32.0/24', 'fe80::100/10', '2001:db8:32c:faad::/64']

# {{ test_list | ipv4 }}
['192.24.2.1', '192.168.32.0/24']

# {{ test_list | ipv6 }}
['::1', 'fe80::100/10', '2001:db8:32c:faad::/64']

To get a host IP address from a list of IP addresses:

# {{ test_list | ipaddr('host') }}
['192.24.2.1/32', '::1/128', 'fe80::100/10']

FortiSOAR 7.2.1 Playbooks Guide 153
Fortinet Inc.



Jinja Filters and Functions

To get a public IP address from a list of IP addresses:

# {{ test_list | ipaddr('public') }}
['192.24.2.1', '2001:db8:32c:faad::/64']

To get a private IP address from a list of IP addresses:

# {{ test_list | ipaddr('private') }}
['192.168.32.0/24', 'fe80::100/10']

Network range as a query:

# {{ test_list | ipaddr('192.0.0.0/8') }}
['192.24.2.1', '192.168.32.0/24']

Hashing filters

To get the sha1 hash of a string:

{{ 'test1'|hash('sha1') }}

To get the md5 hash of a string:

{{ 'test1'|hash('md5') }}

To get a string checksum:

{{ 'test2'|checksum }}

Other hashes (platform dependent):

{{ 'test2'|hash('blowfish') }}

To get a sha512 password hash (random salt):

{{ 'passwordsaresecret'|password_hash('sha512') }}

To get a sha256 password hash with a specific salt:

{{ 'secretpassword'|password_hash('sha256', 'mysecretsalt') }}

FortiSOAR uses the haslib library for hash and passlib library for password_hash.

Filters for combining hashes and dictionaries

The combine filter allows hashes to be merged. For example, the following would override keys in one hash:

{{ {'a':1, 'b':2}|combine({'b':3}) }}

The resulting hash would be:

{'a':1, 'b':3}

FortiSOAR 7.2.1 Playbooks Guide 154
Fortinet Inc.



Jinja Filters and Functions

The filter also accepts an optional recursive=True parameter to not only override keys in the first hash, but also
recursively into nested hashes and merge their keys too:

{{ {'a':{'foo':1, 'bar':2}, 'b':2}|combine({'a':{'bar':3, 'baz':4}}, recursive=True) }}

The resulting hash would be:

{'a':{'foo':1, 'bar':3, 'baz':4}, 'b':2}

The filter can also take multiple arguments to merge:

{{ a|combine(b, c, d) }}

In this case, keys in d would override those in c, which would override those in b, and so on.

Filters for extracting values from containers

The extract filter is used to map from a list of indices to a list of values from a container (hash or array):

{{ [0,2] |map('extract', ['x','y','z'])|list }}
{{ ['x','y'] |map('extract', {'x': 42, 'y': 31})|list }}

The results of the above expressions would be:

['x', 'z']
[42, 31]

The filter can take another argument:

{{ groups['x'] |map('extract', hostvars, 'ec2_ip_address')|list }}

This takes the list of hosts in group ‘x,’ looks them up in hostvars, and then looks up the ec2_ip_address of the result.
The final result is a list of IP addresses for the hosts in group ‘x.’

The third argument to the filter can also be a list, for a recursive lookup inside the container:

{{ ['a'] |map('extract', b, ['x','y'])|list }}

This would return a list containing the value of b[‘a’][‘x’][‘y’].

Comment filter

The comment filter allows you to decorate the text with a chosen comment style. For example, the following

{{ "Plain style (default)" | comment }}

will produce the following output:

#
# Plain style (default)
#

Similarly you can apply style to the comments for C (//...), C block (/*...*/), Erlang (%...) and XML
(<!--...-->):

{{ "C style" | comment('c') }}
{{ "C block style" | comment('cblock') }}
{{ "Erlang style" | comment('erlang') }}
{{ "XML style" | comment('xml') }}

FortiSOAR 7.2.1 Playbooks Guide 155
Fortinet Inc.



Jinja Filters and Functions

It is also possible to fully customize the comment style:

{{ "Custom style" | comment('plain', prefix='#######\n#', postfix='#\n#######\n ###\n
#') }}

which creates the following output:

#######
#
# Custom style
#
#######

###
#

URL Split filter

The urlsplit filter extracts the fragment, hostname, netloc, password, path, port, query, scheme, and username from
an URL. If you do not provide any arguments to this filter then it returns a dictionary of all the fields:

{{ "http://user:password@www.acme.com:9000/dir/index.html?query=term#frament" |
urlsplit('hostname') }}
# => 'www.acme.com'

{{ "http://user:password@www.acme.com:9000/dir/index.html?query=term#frament" |
urlsplit('netloc') }}
# => 'user:password@www.acme.com:9000'

{{ "http://user:password@www.acme.com:9000/dir/index.html?query=term#frament" |
urlsplit('username') }}
# => 'user'

{{ "http://user:password@www.acme.com:9000/dir/index.html?query=term#frament" |
urlsplit('path') }}
# => '/dir/index.html'

{{ "http://user:password@www.acme.com:9000/dir/index.html?query=term#frament" |
urlsplit('port') }}
# => '9000'

{{ "http://user:password@www.acme.com:9000/dir/index.html?query=term#frament" |
urlsplit('scheme') }}
# => 'http'

{{ "http://user:password@www.acme.com:9000/dir/index.html?query=term#frament" |
urlsplit('query') }}
# => 'query=term'

{{ "http://user:password@www.acme.com:9000/dir/index.html?query=term#frament" |
urlsplit }}
# =>
# {
# "fragment": "fragment",
# "hostname": "www.acme.com",
# "netloc": "user:password@www.acme.com:9000",
# "password": "password",

FortiSOAR 7.2.1 Playbooks Guide 156
Fortinet Inc.



Jinja Filters and Functions

# "path": "/dir/index.html",
# "port": 9000,
# "query": "query=term",
# "scheme": "http",
# "username": "user"
# }

Regular Expression filters

To search a string with a regex, use the regex_search filter:

# search for "foo" in "foobar"
{{ 'foobar' | regex_search('(foo)') }}

# will return empty if it cannot find a match
{{ 'ansible' | regex_search('(foobar)') }}

To search for all occurrences of regex matches, use the regex_findall filter:

# Return a list of all IPv4 addresses in the string
{{ 'Some DNS servers are 8.8.8.8 and 8.8.4.4' | regex_findall('\b(?:[0-9]{1,3}\.){3}[0-
9]{1,3}\b') }}

To replace text in a string with regex, use the regex_replace filter:

# convert "ansible" to "able"
{{ 'ansible' | regex_replace('^a.*i(.*)$', 'a\\1') }}

# convert "foobar" to "bar"
{{ 'foobar' | regex_replace('^f.*o(.*)$', '\\1') }}

# convert "localhost:80" to "localhost, 80" using named groups
{{ 'localhost:80' | regex_replace('^(?P<host>.+):(?P<port>\\d+)$', '\\g<host>,
\\g<port>') }}

# convert "localhost:80" to "localhost"
{{ 'localhost:80' | regex_replace(':80') }}

To escape special characters within a regex, use the regex_escape filter:

# convert '^f.*o(.*)$' to '\^f\.\*o\(\.\*\)\$'
{{ '^f.*o(.*)$' | regex_escape() }}

Other useful filters

To add quotes for shell usage:

{{ string_value | quote }}

To use one value on true and another on false:

{{ (name == "John") | ternary('Mr','Ms') }}

To concatenate a list into a string:

{{ list | join(" ") }}

FortiSOAR 7.2.1 Playbooks Guide 157
Fortinet Inc.



Jinja Filters and Functions

To get the last name of a file path, like foo.txt out of /etc/asdf/foo.txt:

{{ path | basename }}

To get the last name of a windows style file path:

{{ path | win_basename }}

To separate the windows drive letter from the rest of a file path:

{{ path | win_splitdrive }}

To get only the windows drive letter:

{{ path |win_splitdrive| first }}

To get the rest of the path without the drive letter:

{{ path |win_splitdrive| last }}

To get the directory from a path:

{{ path | dirname }}

To get the directory from a windows path:

{{ path | win_dirname }}

To expand a path containing a tilde (~) character:

{{ path | expanduser }}

To get the real path of a link:

{{ path | realpath }}

To get the relative path of a link, from a start point:

{{ path | relpath('/etc') }}

To get the root and extension of a path or filename:

# with path == 'nginx.conf' the return would be ('nginx', '.conf')
{{ path | splitext }}

To work with Base64 encoded strings:

{{ encoded | b64decode }}
{{ decoded | b64encode }}

To create a UUID from a string:

{{ hostname | to_uuid }}

To get date object from string use the to_datetime filter:

# get amount of seconds between two dates, default date format is %Y-%m-%d %H:%M:%S
but you can pass your own one
{{ (("2016-08-14 20:00:12" |to_datetime) - ("2015-12-25"|to_datetime('%Y-%m-%d'))).seconds
}}

Combination filters

This set of filters returns a list of combined lists.

FortiSOAR 7.2.1 Playbooks Guide 158
Fortinet Inc.



Jinja Filters and Functions

To get permutations of a list:

To get the largest permutations (order matters):

{{ [1,2,3,4,5] |permutations|list }}

To get the permutations of sets of three:

{{ [1,2,3,4,5] |permutations(3)|list }}

Combinations always require a set size:

To get the combinations for sets of two:

{{ [1,2,3,4,5] |combinations(2)|list }}

To get a list combining the elements of other lists use zip:

To get a combination of two lists:

{{ [1,2,3,4,5] |zip(['a','b','c','d','e','f'])|list }}

To get the shortest combination of two lists:

{{ [1,2,3] |zip(['a','b','c','d','e','f'])|list }}

To always exhaust all lists use zip_longest:

To get the longest combination of all three lists, fill with X:

{{ [1,2,3] |zip_longest(['a','b','c','d','e','f'], [21, 22, 23], fillvalue='X')|list }}

To format a date using a string (like with the shell date command), use the strftime filter:

# Display year-month-day
{{ '%Y-%m-%d' | strftime }}

# Display hour:min:sec
{{ '%H:%M:%S' | strftime }}

# Use ansible_date_time.epoch fact
{{ '%Y-%m-%d %H:%M:%S' | strftime(ansible_date_time.epoch) }}

# Use arbitrary epoch value
{{ '%Y-%m-%d' | strftime(0) }} # => 1970-01-01
{{ '%Y-%m-%d' | strftime(1441357287) }} # => 2015-09-04

Debugging filters

Use the 'type_debug' filter to display the underlying Python type of a variable. This can be useful in debugging in cases
where you might need to know the exact type of a variable:

{{ myvar | type_debug }}

FortiSOAR also supports following built-in filters from Jinja, more information for which is present at Template Designer
Documentation— Jinja Documentation (2.11.x).

l abs (number): Returns the absolute value of the argument.
l attr (obj, name): Gets an attribute of an object. foo|attr("bar") works like foo.bar just that always an
attribute is returned and items are not looked up.
See Notes on subscriptions for more details.

FortiSOAR 7.2.1 Playbooks Guide 159
Fortinet Inc.

https://jinja.palletsprojects.com/en/2.11.x/templates/#builtin-filters
https://jinja.palletsprojects.com/en/2.11.x/templates/#builtin-filters
https://jinja.palletsprojects.com/en/2.11.x/templates/#notes-on-subscriptions


Jinja Filters and Functions

l batch (value, linecount, fill_with=None): Batches items. It works pretty much like slice just the other way around. It
returns a list of lists with the given number of items. If you provide a second parameter, this is used to fill up missing
items. For example:

{% for row in items|batch(3, 'FillerString') %}
{% for column in row %}

{{ column }}
{% endfor %}

{% endfor %}

l capitalize(s): Capitalizes a value. The first character will be uppercase, all others lowercase.
l center(value, width=80): Centers the value in a field of a given width.
l default(value, default_value=u'', boolean=False): If the value is undefined it will return the passed default value,
otherwise the value of the variable:

{{ my_variable|default('my_variable is not defined') }}

This would output the value of my_variable if the variable was defined. Otherwise, my_variable is not
defined. If you want to use default with variables that evaluate to false, you have to set the second parameter to
true:

{{ ''|default('the string was empty', true) }}

l dictsort(value, case_sensitive=False, by='key'): Sorts a dict and yields (key, value) pairs. Because python dicts
are unsorted you might want to use this function to order them by either key or value:

{% for item in mydict|dictsort %}
sort the dict by key, case insensitive

{% for item in mydict|dictsort(true) %}
sort the dict by key, case sensitive

{% for item in mydict|dictsort(false, 'value') %}
sort the dict by value, case insensitive

l escape(s): Converts the characters &, <, >, ‘, and ” in strings to HTML-safe sequences. Use this if you need to
display text that might contain such characters in HTML. Marks return value as markup string.

l filesizeformat(value, binary=False): Formats the value like a human-readable file size (i.e. 13 kB, 4.1 MB, 102
Bytes, etc). Per default decimal prefixes are used (Mega, Giga, etc.) if the second parameter is set to True the
binary prefixes are used (Mebi, Gibi).-

l first(seq): Returns the first item of a sequence.
l float(value, default=0.0): Converts the value into a floating point number. If the conversion doesn’t work, it will
return 0.0. You can override this default using the first parameter.

l forceescape(value): Enforces HTML escaping. This will probably double escape variables.
l format(value, args,**kwargs): Applies python string formatting on an object:

{{ %s"|format("Hello?", "Foo!") }}
-> Hello? - Foo!

l groupby(value, attribute): Groups a sequence of objects by a common attribute. If you, for example, have a list of
dicts or objects that represent persons with gender, first_name, and last_name attributes and you want to group all
users by genders you can do something like the following snippet:

{% for group in persons|groupby('gender') %}
{{ group.grouper }}

{% for person in group.list %}
{{ person.first_name }} {{ person.last_name }}

FortiSOAR 7.2.1 Playbooks Guide 160
Fortinet Inc.



Jinja Filters and Functions

{% endfor %}
{% endfor %}

Additionally, it is possible to use tuple unpacking for the grouper and list:

{% for grouper, list in persons|groupby('gender') %}
...

{% endfor %}

As you can see the item, we are grouping by are stored in the grouper attribute, and the list contains all the objects
that have this grouper in common. You can also use dotted notation to group by the child attribute of another
attribute.

l indent(s, width=4, indentfirst=False): Returns a copy of the passed string, each line indented by four spaces. The
first line is not indented. If you want to change the number of spaces or indent the first line too you can pass
additional parameters to the filter:

{{ mytext|indent(2, true) }}
indent by two spaces and indent the first line too.

l int(value, default=0, base=10): Converts the value into an integer. If the conversion does not work, it will return 0.
You can override this default using the first parameter. You can also override the default base (10) in the second
parameter, which handles input with prefixes such as 0b, 0o and 0x for bases 2, 8 and 16 respectively. The base is
ignored for decimal numbers and non-string values.

l join(value, d=u'', attribute=None): Returns a string which is the concatenation of the strings in the sequence. The
separator between elements is an empty string per default; you can define it with the optional parameter:

{{ [1, 2, 3] |join('|') }}
-> 1 |2|3

{{ [1, 2, 3]|join }}
-> 123

It is also possible to join certain attributes of an object:

{{ users|join(', ', attribute='username') }}

l last(seq): Returns the last item of a sequence.
l length(object): Returns the number of items of a sequence or mapping.
Aliases: count

l list(value): Converts the value into a list. If it were a string, the returned list would be a list of characters.
l lower(s): Converts a value to lowercase.
l map(): Applies a filter on a sequence of objects or looks up an attribute. This is useful when dealing with lists of
objects, but you are only interested in a certain value of it.
The basic usage is mapping on an attribute. Imagine you have a list of users, but you are only interested in a list of
usernames:

Users on this page: {{ users |map(attribute='username')|join(', ') }}

Alternatively, you can let it invoke a filter by passing the name of the filter and the arguments afterward. A good
example would be applying a text conversion filter on a sequence:

Users on this page: {{ titles |map('lower')|join(', ') }}

l pprint(value, verbose=False): Pretty print a variable. Useful for debugging. With Jinja 1.2 onwards you can pass it
a parameter. If this parameter is truthy, the output will be more verbose (this requires pretty).

l random(seq): Returns a random item from the sequence.
l reject(): Filters a sequence of objects by applying a test to each object, and rejecting the objects whose tests
succeed.
If no test is specified, each object will be evaluated as a boolean. For example:

FortiSOAR 7.2.1 Playbooks Guide 161
Fortinet Inc.



Jinja Filters and Functions

{{ numbers|reject("odd") }}

l rejectattr(): Filters a sequence of objects by applying a test to the specified attribute of each object, and
rejecting the objects whose tests succeed.
If no test is specified, the attribute’s value will be evaluated as a boolean.

{{ users|rejectattr("is_active") }}
{{ users|rejectattr("email", "none") }}

l replace(s, old, new, count=None): Returns a copy of the value with all occurrences of a substring replaced with a
new one. The first argument is the substring that should be replaced; the second is the replacement string. If the
optional third argument count is given, only the firstcount occurrences are replaced:

{{ "Hello World"|replace("Hello", "Goodbye") }}
-> Goodbye World

{{ "aaaaargh"|replace("a", "d'oh, ", 2) }}
-> d'oh, d'oh, aaargh

l reverse(value): Reverses the object or returns an iterator that iterates over it the other way round.
l round(value, precision=0, method='common'): Round the number to a given precision. The first parameter
specifies the precision (default is 0), the second the rounding method:
l 'common' rounds either up or down: Default method.
l 'ceil' always rounds up
l 'floor' always rounds down

{{ 42.55|round }}
-> 43.0

{{ 42.55|round(1, 'floor') }}
-> 42.5

Note that even if rounded to 0 precision, a float is returned. If you need a real integer, pipe it through int:

{{ 42.55 |round|int }}
-> 43

l safe(value): Marks the value as safe which means that in an environment with automatic escaping enabled this
variable will not be escaped.

l select(): Filters a sequence of objects by applying a test to each object, and only selecting the objects whose tests
succeed.
If no test is specified, each object will be evaluated as a boolean. For example,

{{ numbers|select("odd") }}
{{ numbers|select("odd") }}

l selectattr(): Filters a sequence of objects by applying a test to the specified attribute of each object, and only
selecting the objects whose tests succeed.
If no test is specified, the attribute’s value will be evaluated as a boolean. For example,

{{ users|selectattr("is_active") }}
{{ users|selectattr("email", "none") }}

l slice(value, slices, fill_with=None): Slices an iterator and returns a list of lists containing those items. Useful if you
want to create a div containing three ul tags that represent columns:

<div class="columwrapper">
{% for column in items|slice(3) %}

<ul class="column-{{ loop.index }}">
{% for item in column %}

FortiSOAR 7.2.1 Playbooks Guide 162
Fortinet Inc.



Jinja Filters and Functions

<li>{{ item }}</li>
{% endfor %}
</ul>

{% endfor %}
</div>

If you pass it a second argument, it is used to fill missing values on the last iteration.
l sort(value, reverse=False, case_sensitive=False, attribute=None): Sorts an iterable. Per default it sorts
ascending, if you pass it true as the first argument, it will reverse the sorting.
If the iterable is made of strings, the third parameter can be used to control the case sensitiveness of the
comparison which is disabled by default.

{% for item in iterable|sort %}
...

{% endfor %}

It is also possible to sort by an attribute (for example to sort by the date of an object) by specifying the attribute
parameter:

{% for item in iterable|sort(attribute='date') %}
...

{% endfor %}

l string(object): Makes a string unicode if it isn’t already. That way a markup string is not converted back to
unicode.

l striptags(value): Strips SGML/XML tags and replace adjacent whitespace by one space.
l sum(iterable, attribute=None, start=0): Returns the sum of a sequence of numbers plus the value of parameter
‘start’ (which defaults to 0). When the sequence is empty, it returns to start.
It is also possible, to sum up only certain attributes:

Total: {{ items|sum(attribute='price') }}

The attribute parameter was added to allow summing up over attributes. Also, the start parameter was moved on to
the right.

l title(s): Returns a titlecased version of the value, i.e., words will start with uppercase letters, all remaining
characters are lowercase.

l tojson or toJSON (value, indent=None): Dumps a structure to JSON so that it’s safe to use in <script> tags. It
accepts the same arguments and returns a JSON string. Note that this is available in templates through the
|tojson filter which will also mark the result as safe. Due to how this function escapes certain characters this is
safe even if used outside of <script> tags.
The following characters are escaped in strings: <>&'
This makes it safe to embed such strings in any place in HTML with the notable exception of double quoted
attributes. In that case single quote your attributes or HTML escape also.
The indent parameter can be used to enable pretty printing. Set it to the number of spaces that the structures should
be indented with.
Note that this filter is for use in HTML contexts only.

l trim(value): Strips the leading and trailing whitespace.
l truncate(s, length=255, killwords=False, end='...', leeway=None): Returns a truncated copy of the string. The
length is specified with the first parameter which defaults to 255. If the second parameter is true, the filter will cut
the text at length. Otherwise, it will discard the last word. If the text was in fact truncated, it would append an ellipsis
sign ("..."). If you want a different ellipsis sign than "..." you can specify it using the third parameter. Strings
that only exceed the length by the tolerance margin given in the fourth parameter will not be truncated.

{{ "foo bar baz qux"|truncate(9) }}
-> "foo..."

FortiSOAR 7.2.1 Playbooks Guide 163
Fortinet Inc.



Jinja Filters and Functions

{{ "foo bar baz qux"|truncate(9, True) }}
-> "foo ba..."

{{ "foo bar baz qux"|truncate(11) }}
-> "foo bar baz qux"

{{ "foo bar baz qux"|truncate(11, False, '...', 0) }}
-> "foo bar...

The default leeway on newer Jinja2 versions is 5 and was 0 before but can be reconfigured globally.
l upper(s): Converts a value to uppercase.
l urlencode(value): Escape strings for use in URLs (uses UTF-8 encoding). It accepts both dictionaries and regular
strings as well as pairwise iterables.

l urlize(value, trim_url_limit=None, nofollow=False, target=None, rel=None): Converts URLs in plain text into
clickable links.
If you pass the filter an additional integer, it will shorten the URLs to that number. Also, a third argument exists that
makes the URLs “nofollow”:

{{ mytext|urlize(40, true) }}
links are shortened to 40 chars and defined with rel="nofollow"

If the target is specified, the target attribute will be added to the <a> tag:

{{ mytext|urlize(40, target='_blank') }}

l wordcount(s): Counts the words in that string.
l wordwrap(s, width=79, break_long_words=True, wrapstring=None): Returns a copy of the string passed to the
filter wrapped after 79 characters. You can override this default using the first parameter. If you set the second
parameter to false Jinja will not split words apart if they are longer than the width. By default, the newlines will be the
default newlines for the environment, but this can be changed using the wrapstring keyword argument.

l xmlattr(d, autospace=True): Creates an SGML/XML attribute string based on the items in a dict. All values that
are neither none nor undefined are automatically escaped:

<ul{{ {'class': 'my_list', 'missing': none,
'id': 'list-%d' |format(variable)}|xmlattr }}>

...
</ul>

Results in something like this:

<ul class="my_list" id="list-42">
...
</ul>

As you can see it automatically prepends a space in front of the item if the filter returned something unless the
second parameter is false.

json_query filter

Use the json_query filter when you have a complex data structure in the JSON format from which you require to extract
only a small set of data. The json_query filter enables you to query and iterate a complex JSON structure. The filter is
built using jmespath, and you can use the same syntax in the json_query filter. For details on jmespath, see
JMESPath Examples.

Example

The result of your playbook step is as follows:

FortiSOAR 7.2.1 Playbooks Guide 164
Fortinet Inc.

http://jmespath.org/tutorial.html


Jinja Filters and Functions

[
{"name": "a", "state": "running"},
{"name": "b", "state": "stopped"},
{"name": "b", "state": "running"}
]

From this result, you want to query only the names of those objects who are in the running state. For this query the
valid jinja expression would be: {{ vars.result | json_query(" [?state=='running'].name") }} ,
which would have the following result:

[
"a",
"b"

]

To create a valid JSON query, you can refer to JMESPath Tutorial.

Comprehensive list of filters

The following table contains a comprehensive list of filters that you can use:

Filter Description Source

abs Absolute value of a number jinja2_docs

attr(x) Gets attribute 'x' of an object. Does not return *items*,
which are dictionary keys

jinja2_docs

b64decode Decodes a base64 value ansible

b64encode Encodes a value as base64 ansible

basename Last name in a filepath ansible

batch(n) Separates a list into various lists with size 'n' jinja2_docs

bool Casts a string as a boolean value (i.e. "True" or "False"
to a boolean value)

ansible

capitalize Capitalizes the first letter of a value jinja2_docs

center(n) Centers the value in a field of 'n' characters by adding
spaces on either side

jinja2_docs

checksum Get a string checksum ansible

cidr_merge Merges a list of subnets or IP addresses to their minimal
representation

ansible_ipaddr

combinations(n) Returns an iterator of n-size combinations of items from
an input list

ansible

combine(dict_x,
recursive=False)

Merges dect_x into input dictionary, overwriting any
values that overlap. Setting recursive=True also allows
for nested keys to be merged.

ansible

FortiSOAR 7.2.1 Playbooks Guide 165
Fortinet Inc.

http://jmespath.org/tutorial.html


Jinja Filters and Functions

comment Converts a string into a python-style comment ansible

comp_type5 ansible.netcommon comp_type5 filter plugin ansible.netcommon

count Alias of length jinja2_docs

count_occurrence Retrieves the number of times each element appears in
the list.

FortiSOAR

counter Gets the count of each item's occurrence in an array of
items.

FortiSOAR

d(x) Alias of "default" jinja2_docs

default(x) Outputs default value 'x' if the passed input is not
defined.

jinja2_docs

dict2items Turn a dictionary into a list of items suitable for looping ansible

dictsort(false,reverse=false) Sorts a dict and yields key, value pairs. Set the first
argument to true for case sensitive sort. Provide 'value'
as second argument to sort by value instead of key.

jinja2_docs

difference(list_x) Gets items from an input list that are not present in 'list_
x'.

ansible

dirname Gets the directory from a path ansible

e Alias of escape jinja2_docs

escape Escapes characters &, M, >, ', and " with HTML-safe
sequences

jinja2_docs

expanduser Expands a path containing a telde(~) character ansible

expandvars Expands a path containing environment variables ansible

extract() Maps a list of indices to a list of values from a container
(hash or array)

FortiSOAR

extract_artifacts Parses and extracts a list of IOCs from a given string FortiSOAR

extract_cef/parse_cef Parses a given CEF string and converts the CEF string
into a dictionary

FortiSOAR

fileglob Provides an output list of matching files from the given
input path (can include wildcards, for example
'/tmp/*.txt').

ansible

filesizeformat Formats a number into "human readable" file size, for
example, 13 KB

jinja2_docs

first Returns the first item of a sequence jinja2_docs

flatten Flattens a list ansible

float Converts a value into floating point number jinja2_docs

forceescape Enforces HTML escaping. Can lead to double-escaping jinja2_docs

FortiSOAR 7.2.1 Playbooks Guide 166
Fortinet Inc.

https://github.com/ansible-collections/ansible.netcommon/blob/main/README.md


Jinja Filters and Functions

format(string_x) Formats 'string_x' based on the passed format string jinja2_docs

fromIRI Resolve an IRI and return the object(s) that live(s)
there. This is similar to loading the object by id (IRI)

FortiSOAR

from_json Converts a json-formatted string to dict. ansible

from_yaml Converts a yaml-formatted string to dict ansible

from_yaml_all Parses a multi-document yaml string to an iterator of
parsed yaml documents

ansible

groupby(value) Groups a sequence of objects by their attribute value jinja2_docs

hash(hashtype) Gets the hash of a string, using hashtype, for example,
'md5', or 'sha1'

ansible

html2texthash Converts an HTML string to a text string FortiSOAR

human_readable Asserts whether the given string is human readable or
not

ansible

human_to_bytes Returns the given string in bytes format ansible

hwaddr Checks if a string is a MAC address ansible_ipaddr

indent Returns the input string with each line indented by four
spaces

jinja2_docs

int Converts the value to an integer jinja2_docs

intersect(list_x) Gets a list of unique items that is present in both the
'input list' and 'list_x'

ansible

ip4_hex Converts IPv4 to an Hexadecimal notation ansible_ipaddr

ip_range(ip_range) Checks if the IP address is in the specified CIDR range FortiSOAR

ipaddr Checks if a string is a valid IP address FortiSOAR

ipmath(n) Gets the next 'n' addresses based on the passed
parameter in specified IP address

ansible_ipaddr

ipsubnet Converts an ip address to a subnet ansible_ipaddr

ipv4 Checks if the given IP address is an IPv4 address ansible_ipaddr

ipv6 Checks if the given IP address is an IPv6 address ansible_ipaddr

ipwrap Wraps any IPv6 addresses in brackets in the provide a
list of strings, leaving other items intact

ansible_ipaddr

items2dict(key=k, value=v) Reverse of dict2items, i.e., maps key and value into a
dictionary

ansible

join(delim_x) Returns a string that is the concatenation of the strings
in the passed sequence. If 'delim_x' is provided, it is
used to separate the items in the string

jinja2_docs

FortiSOAR 7.2.1 Playbooks Guide 167
Fortinet Inc.



Jinja Filters and Functions

json2html Converts JSON data into HTML FortiSOAR

json_query Allows the use of jmespath expressions (see
jmespath.org) to manipulate input data

ansible

last Returns the last item of a sequence jinja2_docs

length Returns the number of items in a sequence jinja2_docs

list Converts the value into a list jinja2_docs

loadRelationships Fetches details of a related (correlation) record FortiSOAR

log(base=e) Gets the log (default base e) of the passed values ansible

lower Converts a value to lowercase jinja2_docs

mandatory Raises an error if the passed variable is undefined ansible

map Applies a filter on a sequence of objects or looks up an
attribute

jinja2_docs

max Returns the largest item from the sequence jinja2_docs

md5 Gets the md5 hash of a string ansible

min Returns the smallest item from the sequence jinja2_docs

network_in_network Returns whether 'address_x' is in the passed network ansible_ipaddr

network_in_usable Returns whether an address passed as an argument is
usable in a network

ansible_ipaddr

next_nth_usable(n) Returns the next 'n' usable IP addresses in relation to
the passed IP addresses/ranges

ansible_ipaddr

nthhost(n) Returns the nth IP address in the passed CIDR range ansible_ipaddr

parse_cli Converts the output of a network device CLI command
into a structured JSON output

ansible

parse_cli_textfsm Parses output of a network device CLI command using
the TextFSM library

ansible

parse_xml(path_to_
specfile)

Converts XML output of a network device command
into a structured JSON output

ansible

password_hash(algorithm,
salt)

Gets a password hash with a specified hashing
algorithm, and optionally a provided salt value

ansible

permutations Gets an iterator of all permutations of values in a list ansible

picklist Loads the specified picklist item object FortiSOAR

pow(x) Returns passed values to the power of 'x' ansible

pprint Pretty prints the passed variable jinja2_docs

previous_nth_usable Returns the previous 'n' usable IP addresses in relation
to the passed IP addresses/ranges

ansible_ipaddr

FortiSOAR 7.2.1 Playbooks Guide 168
Fortinet Inc.

https://jmespath.org/


Jinja Filters and Functions

product(iterable_x) Returns the cartesian product of the passed iterable
with 'iterable_x'

ansible

quote Wrap the passed string in quotes ansible

random Returns a random item from the passed sequence jinja2_docs

random_mac Generates a randomMAC address from the passed
string prefix

ansible

readfile Fetches the contents of a file that is downloaded in
FortiSOAR.

FortiSOAR

realpath Gets the real path of a link ansible

reduce_on_network(ip_
range)

Checks whether multiple addresses belongs to a
network

ansible_ipaddr

regex_escape Escapes special characters within the passed standard
pythton regex

ansible

regex_findall(regex_
pattern)

Searches for all occurrences of regex matches in the
passed string

ansible

regex_replace(regex_to_
replace, replacement_
regex)

Replaces text in the passed string using regex ansible

regex_search(regex_to_
find)

Finds the first occurrence of regex_to_find in the
passed string

ansible

reject(test) Filters the passed list, removing elements where 'test_x'
succeeds

jinja2_docs

rejectattr(attribute_x) Filters the passed list removing elements where
'attribute_x' evaluates as true

jinja2_docs

relpath(start_point) Gets the relative path of the passed link from the 'start_
point'

ansible

replace(substr_to_replace) Returns a copy of the passed values with all
occurrences of 'substr_to_replace' replaced with the
'new_substring'

jinja2_docs

reverse Reverses the passed object or returns an iterator that
iterates over the passed object in the reverse order

jinja2_docs

root(x) Returns the 'x' root of the passed value ansible

round(precision) Rounds the passed number to the given precision
(default 0)

jinja2_docs

safe Marks the provided value as safe

select(test) Filters the passed sequence, keeping only the objects
for which the test succeeds

jinja2_docs

FortiSOAR 7.2.1 Playbooks Guide 169
Fortinet Inc.



Jinja Filters and Functions

selectattr(attribute_x) Filters the passed sequence, keeping only the objects
for which 'attribute_x' evaluates as true

jinja2_docs

sha1 Gets the sha1 hash of the passed string ansible

shuffle Randomizes the passed list ansible

slaac Generates an IPv6 address for a given network and
MAC address in stateless configuration

ansible_ipaddr

slice Slices an iterator and return a list containing those items jinja2_docs

sort Sorts an iterable using Python's sorted() function jinja2_docs

splitext Gets the root and extension of the passed path or
filename

ansible

strftime Formats a date using the passed date format string ansible

string Converts an object to a string if it is not already a string jinja2_docs

striptags Strips XML/SGML tags and replaces adjacent
whitespaces with one space

jinja2_docs

subelements Produces a product of the passed list and a subelement
of the objects in that list

ansible

sum Returns the sum of the passed sequence of numbers jinja2

symmetric_difference(list_
x)

Returns the items exclusive to 'list_x' and the passed list ansible

ternary(output_1, output_2) Returns 'output_2' if the passed value is false, and
'output_1' if it is true

ansible

title Return a titlecased version of the passed value jinja2_docs

toDict Converts a string into a dictionary FortiSOAR

toJSON Dumps a structure to a JSON string FortiSOAR

to_datetime Gets a date object from a string ansible

to_json Converts a data structure to a JSON format ansible

to_nice_json Converts a data structure to a human-readable JSON
format

ansible

to_nice_yaml Converts a data structure to human-readableYAML
format

ansible

to_uuid Creates a UUID from a string ansible

to_yaml Converts a data structure to a YAML format ansible

tojson Alias of toJSON FortiSOAR

trim Strips leading and trailing characters, by default
whitespace

jinja2_docs

FortiSOAR 7.2.1 Playbooks Guide 170
Fortinet Inc.



Jinja Filters and Functions

truncate(n) Returns a truncated copy of the passed string;
truncated to length 'n'

jinja2_docs

type_debug Displays the underlying Python type of the passed
variable

FortiSOAR

union(list_x) Get the union of 'list_x' with the passed list ansible

unique The list of unique items in the passed list jinja2_docs

upper Converts the passed string to uppercase jinja2_docs

urldecode Decodes the passed URL FortiSOAR

urlencode Escapes the strings for use in URLs FortiSOAR

urlize Converts URLs into clickable links jinja2_docs

urlsplit Extracts the fragment, hostname, netloc, password,
patht, port, query, scheme, and username from a URL

ansible

vlan_parser Transforms the passed unsorted list of VLAN integers
into a sorted string list of integers according to IOS-like
VLAN list rules

ansible

win_basename Gets the last name of a windows-style file path ansible

win_dirname Gets the directory from a windows path ansible

win_splitdrive Separate the windows drive letter from the rest of a file
path

ansible

wordcount Counts the words in the passed string jinja2_docs

wordwrap(n) Wraps the given string to width 'n' jinja2_docs

xml_to_dict Converts an XML string into a dictionary FortiSOAR

xmlattr Creates an XML attribute string based on the items in
the passed dict

jinja2_docs

yaql YAQL (Yet Another Query Language) is an
embeddable and extensible query language, which
allows users to perform complex queries against
arbitrary objects. For more information, see YAQL
Filters.

zip(list_x) Get a list by combining the items from the passed list
with those from 'list_x'

ansible

zip_longest Like 'zip' but always exhausts all input lists ansible

Notes:
l If an iterator is returned, pass the output into the "list" filter to get a list.

Sources
l jinja2 - https://tedboy.github.io/jinja2/templ14.html
l ansible- https://docs.ansible.com/ansible/latest/user_guide/playbooks_filters.html

FortiSOAR 7.2.1 Playbooks Guide 171
Fortinet Inc.

https://github.com/ansible-collections/ansible.netcommon/blob/main/README.md
https://docs.ansible.com/ansible/latest/user_guide/playbooks_filters.html


Jinja Filters and Functions

l ansible_ipaddr - https://docs.ansible.com/ansible/latest/collections/ansible/utils/docsite/filters_ipaddr.html
l jinja2_docs - https://jinja.palletsprojects.com/en/3.1.x/templates/#builtin-filters

Jinja Expressions in FortiSOAR

Following are some examples of jinja expressions used in FortiSOAR:

For Loop

At times, it is useful to use a combination of conditional logic and looping to check particular conditions across a list of
values. In this case, the for and the if loop is useful in the Dynamic Variable language.

In the following example, an evaluation of assignment is run across a specific dictionary representing all associated
teams within a particular record. These teams have already been assigned to a particular variable from the parent entity:

{% for item in vars.teamName %}
{% if item == '/api/3/teams/97fd5a3f-4eaf-4cc1-a132-1c9274bd8428' %}
Yes {% endif %}

{% endfor %}

If Condition

{% if 1485561600000 > 1484092800000 %}
{{vars.input.records[0]}}

{% elif 5==6 %}
{{vars.input.records[0]}}

{% endif %}

An if condition can cause a playbook to fail if the jinja that you have added returns an empty string, which is not
compatible with the field datatype defined in the database. For example, if you have added the following jinja to a {% if
vars.currentValue == "Aftermath" %}{{@Current_Date}}{% endif %} field, then the playbook will fail if
the jinja returns an empty string.

To ensure that your playbook does not fail due to the issue of jinja returning an empty string, add the following jinja in the
field: {% if vars.currentValue == “Aftermath” %}{{Current_Date}}{% else %} None {% endif
%}.

For Loop along with the If condition

At times, it can be useful to use a combination of conditional logic and looping during a check of particular conditions
across a list of values. In this case, the for and the if loop is useful in the Dynamic Variable language.

{% for i in vars.var_list %}
{ % if i not in vars.var_response % }

{{vars.var_response.append(i)}}

FortiSOAR 7.2.1 Playbooks Guide 172
Fortinet Inc.

https://docs.ansible.com/ansible/latest/collections/ansible/utils/docsite/filters_ipaddr.html
https://jinja.palletsprojects.com/en/3.1.x/templates/#builtin-filters


Jinja Filters and Functions

{% endif %}
{% endfor %}

The following example uses the for and the if loop to check if a particular team is tagged to a record. In the following
example, an evaluation of assignment is run across a specific dictionary representing all of the associated teams within a
particular record. These teams have already been assigned to a particular variable from the parent entity.

{% for item in vars.teamName %}
{% if item == '/api/3/teams/97fd5a3f-4eaf-4cc1-a132-1c9274bd8428' %}
Yes {% endif %}

{% endfor %}

If Else condition

If conditions within the Dynamic Variable templating engine can be very useful to avoid unnecessary decision steps.
These conditions allow you to specify values defined within specific conditions such that copying, or value branches are
not needed.

The following example uses the if else condition to create mapping between Alert Severity and Incident Category.

Here is an example of a particular case in which the value of an IRI is defined based upon the specific conditions
evaluated during the execution. Bear in mind these IRI values must be known in this case.

{% if vars.alertSeverity == "/api/3/picklists/ad5eacc1-7c05-3c4e-bba7-eb356c8547c9" %}

/api/3/picklists/58d0753f-f7e4-403b-953c-b0f521eab759

{% elif vars.alertSeverity == "/api/3/picklists/ddbc7842-dde0-392a-ae94-a1e7a3c7c2f7" %}

/api/3/picklists/40187287-89fc-4e9c-b717-e9443d57eedb

{% elif vars.alertSeverity == "/api/3/picklists/6c7a8653-a2d5-3611-bc86-8ca307a02e88" %}

/api/3/picklists/7efa2220-39bb-44e4-961f-ac368776e3b0

{% endif %}

Time Operations

To get timestamp:

{{ arrow.get('2013-05-30 12:30:45', 'YYYY-MM-DD HH:mm:ss') }}

To convert current time into epoch and multiply by 10000:

{{arrow.utcnow().timestamp*1000 |int| abs}}

To convert date to epoch time:

{{ arrow.Arrow(2017, 3, 30).timestamp}}

Convert timezone from UTC to any with formatting

Use the Arrow library to convert dates and times from one-time zone/format to another.

FortiSOAR 7.2.1 Playbooks Guide 173
Fortinet Inc.



Jinja Filters and Functions

The general format is as follows.

{{ arrow.get( % VARIABLE % ).to('% TIME ZONE ACRONYM %').format('% FORMAT STRING%') }}

The following is an example that is converting the Date of Compromise field into a readable Eastern Standard Time
format.

{{arrow.get(vars.input.records[0].dateOfCompromise).to('EST').format('YYYY-MM-DD HH:mm:ss
ZZ')}}

Convert timezone from any to UTC and move it up

Using the Arrow library, the general format is as follows.

{{ arrow.get( % VARIABLE %).replace( % TIME VALUE % = % OPERATOR + VALUE %) }}

An example where the Alert Time value is replaced with a four-hour increase.

{{ arrow.get(vars.alertTime).shift(hours=+4) }}

Convert to epoch time to insert into a Record

In this example, a particular UTC time is converted into epoch time in order to format it for API insertion. The API will
accept times in epoch as the default.

{{ arrow.get(vars.utcTime).timestamp }}

String Operations

To find the length of list or string:

{{vars.emails | length }}

To replace a string:

{{ vars.var_keys.replace("dict_keys(","" ) | replace( ")", "" )}}

Strip the first X characters of a string

Starting with a string variable, you can pull a portion of the string based on counting the characters.

The general format for this Jinja expressions is as follows where # is the number of characters.

{{ % VARIABLE %[:#] }}

An example here pulls the first 17 characters of the string timeRange.

timeRange = 2016-09-02 13:45:00 EDT - 2016-09-02 14:00:00 ET
alertTime = {{vars.timeRange[:17]}}

print(alertTime)

2016-09-02 13:45:00

FortiSOAR 7.2.1 Playbooks Guide 174
Fortinet Inc.



Jinja Filters and Functions

Remove Strip tags

A particularly useful filter within Dynamic Variables is the striptags() function. This allows you to remove the HTML
tags on a particular value, which may be present in rich text or other HTML formats.

The function preserves the data contained within the tags and removes any tagged information contained around the
actual values.

{{ vars.input.records[0].name.striptags() }}

Code in block

{% block body %}
{% for key, value in vars.loop_resource.items() %}

{{ key }}: {{ value }}
{% endfor %}

{% endblock %}

Set variable based on condition

{% for i in vars.result['hydra:member'] %}
{% set id = i['@id'] %}
{{ vars.inc_fdata.append(id) }}

{%endfor%}

Second example:

{% for i in vars.result['hydra:member'] %}
{% set id = i['@id'] %}
{% set createDate = i.createDate | string %}
{% set list_item = [id,createDate] %}

{{ vars.inc_fdata.append(list_item) }}
{%endfor%}

YAQL Filters

FortiSOAR release 7.2.0 adds support for YAQL as an additional filter language (in addition to JINJA). YAQL (Yet
Another Query Language) is an embeddable and extensible query language, which allows users to perform complex
queries against arbitrary objects. YAQL contains a comprehensive standard library of frequently used querying functions
and can be extended even further with user-specified functions. YAQL is written in python and is distributed via PyPI. For
more information on YAQL, see the Getting started with YAQL document.

Usage

In a YAQL query, the $ symbol is used to refer to "this" object. Therefore, $.lastname in a YAQL query pulls the last
name of each object in the list passed to the filter.

FortiSOAR 7.2.1 Playbooks Guide 175
Fortinet Inc.

https://yaql.readthedocs.io/en/latest/getting_started.html


Jinja Filters and Functions

The $ symbol can also have different meanings within the same query. For example, in $.pets.flatten().where
($.type='cat'), the first instance of $ refers to each of the 'User' objects, while the second instance of $ refers to
each of the 'Pets' objects. In this example, where() and flatten() are examples of functions available in YAQL. For a
list of available YAQL functions see the Standard YAQL Library document.

Usage Examples

l {{ {"var1":1,"var2":"a"} | yaql('$.var1') }}
returns# 1

l {{ "test" | yaql('$.toUpper()') }}
returns# TEST

l Example to filter down to non-false data:
Sample data:

{
"data":{

"av_cate":"Riskware/NetCat",
"wf_cate":"",
"ioc_cate":"",
"ioc_tags":[

],
"confidence":"High",
"spam_cates":[

],
"reference_

url":"https://ioc.fortiguard.com/search?query=E8FBEC25DB4F9D95B5E8F41CCA51A4B32BE8674A4D
EA7A45B6F7AEB22DBC38DB&filter=indicator"

},
"success":true

}
{{ data | yaql('dict($.items().where(bool($[1])))') }}
returns#
{

"av_cate": "Riskware/NetCat",
"confidence": "High",
"reference_url":

"https://ioc.fortiguard.com/search?query=E8FBEC25DB4F9D95B5E8F41CCA51A4B32BE8674A4DEA7A4
5B6F7AEB22DBC38DB&filter=indicator"
}

l If you have the following example dataset:

[{

"firstname": "Billy",

"lastname": "gu",

"email": "billsgu@example.com",

"pets": []

}, {

FortiSOAR 7.2.1 Playbooks Guide 176
Fortinet Inc.

https://yaql.readthedocs.io/en/latest/standard_library.html


Jinja Filters and Functions

"firstname": "Trevor",

"lastname": "Palmer",

"email": "palmer928@example.com",

"pets": [{

"name": "Butter",

"type": "dog"

}]

}, {

"firstname": "Jimmy",

"lastname": "Bauer",

"email": "jbles45@example2.com",

"pets": [{

"name": "Biscuit",

"type": "cat"

}, {

"name": "Pepper",

"type": "cat"

}]

}]

You can filter this dataset using YAQL as follows:
Get Users where firstname starts with B: vars.users | yaql("$.where($.first-
name.startsWith('B'))")
Get Users where email contains@example.com: vars.users | yaql("$.where
('@example.com' in $.email)")
Get Users who have pets with type cat: vars.users | yaql("$.where($.pets.where
($.type='cat').any())")

FortiSOAR 7.2.1 Playbooks Guide 177
Fortinet Inc.



Jinja Filters and Functions

Jinja Extensions

There are some official Jinja Extensions that can be used in playbooks and help in enriching expressions:

Note: Support to 'break' and 'continue' ansible loops has been added.

Some examples of using expression statements follow:

Appending a list in a loop example:

{% for i in range(100000)%}
{{vars.printThis}}
{% do vars.res.append(vars.printThis) %}
{%if i==vars.input.params.breakAfterNumberOfLoops %}
{%break%}
{%endif%}
{%endfor%}

Continue Statement example:

FortiSOAR 7.2.1 Playbooks Guide 178
Fortinet Inc.



Jinja Filters and Functions

{% for i in range(8)%}
{% if i == vars.input.params.skipForThisValue%}
{%continue%}

{%endif%}
{{i}}
{%endfor%}

Break Statement example:

{% for i in range(100000)%}
{{vars.printThis}}

{%if i==vars.input.params.breakAfterNumberOfLoops %}

{%break%}

{%endif%}

Custom Functions and Filters

FortiSOAR supports following custom functions/filters:

l Get_current_date: Returns the current date for the file.
l Get_current_datetime: Returns the current date and time for the file.
l currentdateminus: Returns a timestamp value of the current date minus the specified days from the current
date.
For example, {{ currentDateMinus(10) }} returns a timestamp after deducting 10 days from the current
date.

l uuid: Returns the UUID of the file {{ uuid() }}.
l arrow: Returns a python arrow library.
l toJSON: Converts a JSON to a string. Useful for storing a JSON in a FortiSOAR textarea field, for example, Source
Data, so that JSON renders correctly and the content can be presented nicely in the UI.

l html2text: Converts an HTML string to a text string.
{{ html_string | html2text}}
For example, {{'<br>this is html text </br>' | html2text}} .
Output will be - this is html text.

l json2html: Converts JSON data into HTML. The FortiSOAR template is used for HTML and styling of the output.
{{ jsondata | json2html(row_fields)}}
row_fields= ['pid', 'sid']. You can optionally specify the row_fields attribute. If you do not specify the
row_fields, by default, this filter takes all keys as row fields.
An example without row fields specified: {{ [{"pid": 123, "sid": "123", "path": "abc.txt"}] |
json2html}}.
An example with row fields specified: {{ [{"pid": 123, "sid": "123", "path": "abc.txt"}] |
json2htmll([‘pid’, ‘sid’])}}.
The HTML output of the above example will be:
<table class="cs-data-table"> <tr> <th>pid</th> <th>sid</th> </tr> <tr>
<td>123</td> <td>123</td> </tr> </table><button style="display:none" class="cs-
datatable-btn btn-link cs-datatable-showmore-btn" type="button"
onClick="event.target.previousElementSibling.className += ' cs-data-table-show-
more'; event.target.nextElementSibling.style.display = 'block';
event.target.style.display = 'none';">Show more</button><button class="cs-

FortiSOAR 7.2.1 Playbooks Guide 179
Fortinet Inc.



Jinja Filters and Functions

datatable-btn btn-link cs-datatable-showless-btn" type="button"
onClick="event.target.previousElementSibling.previousElementSibling.className =
'cs-data-table'; event.target.previousElementSibling.style.display = 'block';
event.target.style.display = 'none';">Show less</button>

l resolveIRI : Resolves the given IRI.
For example, {{ “/api/3/alerts/<alert-id>” | resolveIRI}}

l count_occurrence: Retrieves the number of times each element appears in the list.
For example, {{ [‘apple','red','apple','red','red','pear’] | count_occurrence }}
The output of this example is: {'red': 3, 'apple': 2, 'pear': 1}

l urlencode: Encodes the given URL.
For example, {{"/api/3/alerts/?name=test" | urlencode}}
The output of this example is: %2Fapi%2F3%2Falerts%2F%3Fname%3Dtest

l urldecode: Decodes the given (encoded) URL.
For example, {{"%2Fapi%2F3%2Falerts%2F%3Fname%3Dtest" | urldecode}}
The output of this example is: /api/3/alerts/?name=test

l loadRelationships(moduleName, selectFields = []): Used to fetch details of a related (correlation)
record. For example, {{ vars.incidentIRI | loadRelationships('indicators') }}
To fetch complete details of the correlation record, use {{ #recordIRI# | loadRelationships
('#CorrelationModuleFieldName#') }}
To fetch specific fields of the correlation record, use {{ #recordIRI# | loadRelationships
('#CorrelationModuleFieldName#',['#field1#','#field2#']) }}

l picklist: Loads the specified picklist item object. For example, {{"PicklistName" | picklist
("ItemValue") }}
The output of this example is an object including the @id, color, itemValue, listName, and orderIndex of the
picklist item. You can extract just a particular key from the object by specifying a second argument to the filter:
{{"PicklistName" | picklist("ItemValue", "@id") }}. This will generate
/api/3/picklists/<uuid>

FortiSOAR 7.2.1 Playbooks Guide 180
Fortinet Inc.



Debugging and Optimizing Playbooks

Debugging and Optimizing Playbooks

This chapter explains how you can easily debug playbooks in FortiSOAR using execution history and executed
playbooks logs. It also provides you information on how to tune various keys and troubleshoot playbook errors.

The Integrations API call has been changed in version 7.0.0 to support only POST calls; earlier
GET calls were also supported. Therefore, if you have any existing playbooks that uses the
GET calls, then that playbook will fail. To resolve this issue, you have to manually change the
method from GET to POST in your playbooks.

From version 7.0.2 onwards, you can define the logging levels (INFO or DEBUG) for your playbook execution logs, both
globally as well as at the individual playbook level. For more information on playbook logging levels, and how to set those
levels on individual playbooks, see the Introduction to Playbooks chapter. Note that the 'Debugging Playbooks' content
assumes that you are running the playbooks in the DEBUGmode.

Debugging Playbooks

As you develop more sophisticated Playbooks, the ability to easily debug playbooks becomes exceeding important.
FortiSOAR has designed the Execution History to make it easier for you to see the results of your executed playbooks
and for you to debug playbooks.

Use the Executed Playbook Logs icon ( ) that appears on the top-right corner of the FortiSOAR screen to view the
logs and results of your executed playbooks as soon as you log on to FortiSOAR. You can also use the executed
playbook logs to debug your playbooks.

FortiSOAR implements Playbook RBAC, which means that you can view logs of only those
playbooks of which you (your team) are the owner. For more information, see the Introduction
to Playbooks chapter.

The Execution History provides the following details:

l Playbooks have been organized by the parent-child relationship.
l Playbooks have a console using which you can see debug messages with more significant details.
l Playbook designer includes the playbook execution history option.
l Playbooks can be filtered by Playbook Name or Record IRI, user, date range, or status.
l Playbook Execution History contains details of the playbook result, including information about the environment and
the playbook steps, including which steps were completed, which steps are awaiting some action, which steps were
failed, and which steps were skipped.

From version 7.0.2 onwards, users will not be able to view the execution history of 'legacy'
playbooks, i.e. the execution history of playbooks that were run before release 6.0 will not be
visible.

FortiSOAR 7.2.1 Playbooks Guide 181
Fortinet Inc.



Debugging and Optimizing Playbooks

The Executed Playbook Logs do not display the Trace information from the error message so that the readability of the
Executed Playbook Logs is enhanced since the clutter in the error details screen is reduced and you can directly view the
exact error. The Trace information is yet present in the playbook logs.

FortiSOAR also contains enhanced the error messages that are precise and detailed making it easier for you to debug
playbook issues. For information about the common playbook error messages and how to debug them, see the
Debugging common playbook and connector errors article present in the Fortinet Knowledge Base.

You can access the playbook execution history as follows:

l Clicking the Executed Playbook Logs icon ( ) in the upper right corner of the FortiSOAR screen.
You have an option of purging executed playbook logs from the Executed Playbooks Log dialog. For more
information see Purging Executed Playbook Logs.

l Clicking Tools > Execution History in the playbook designer to view the execution history associated with that
particular playbook.

l Clicking the Executed Playbook Logs icon in the detail view of a record such as an alert record to view the
playbooks that have been executed on that particular record in a flowchart format. This makes it easier for users to
view the flow of playbooks, especially useful for viewing the parallel execution paths in playbooks.

FortiSOAR 7.2.1 Playbooks Guide 182
Fortinet Inc.

https://kb.fortinet.com/kb/microsites/microsite.do?cmd=displayKC&docType=kc&externalId=FD48192


Debugging and Optimizing Playbooks

You can toggle between the Record view, which displays only the logs of the playbooks that are executed on that
particular record and theGlobal view displays logs for all the playbooks that are executed on the FortiSOAR
system. You can also purge executed playbook logs for a particular record by clicking the Settings icon on the top-
right of the Executed Playbook Logs dialog in the 'Detail' view of that record, and then selecting the Purge
Logs option. For more information see Purging Executed Playbook Logs.

Playbook Execution History

Click the Executed Playbook Logs icon in the upper-right corner of FortiSOAR to view the logs and results of your
executed playbook. Clicking the Executed Playbook Logs icon displays the Executed Playbook Logs dialog as shown
in the following image:

The Executed Playbook Logs displays the executed playbooks in the flowchart format, as is displayed in the playbook
designer. This makes it easier for users to view the flow of playbooks, especially useful for viewing the parallel execution
paths in playbooks.

Playbooks are sorted by chronological datetime, with the playbook that was executed last being displayed first. All
playbooks are displayed with 10 playbooks being displayed per page. Click a playbook in the list to display it in the
flowchart format and also see the details of the playbook result, the environment and the playbook steps, including which
steps are completed, failed, awaiting or skipped.

FortiSOAR 7.2.1 Playbooks Guide 183
Fortinet Inc.



Debugging and Optimizing Playbooks

The Execution Playbook Log dialog also displays a count of the total playbooks executed, the date time of when the
playbook was executed, and the time taken for executing the playbook.

When you click on playbook steps, you can toggle the ENV button to toggle between the environment of the step and the
output of the step. You can also copy the environment, error, and step details to the clipboard by clicking the Copy 'Env'
to Clipboard or Copy 'OUTPUT' to Clipboard button.

You can also open the playbook directly in the playbook designer from the Executed Playbook Logs dialog by clicking
the Edit Playbook button that appears in the right section of the dialog.

You can collapse and expand the Executed Playbook Logs dialog by clicking the << or >> arrows as shown in the
following image:

You can refresh the playbook logs and filter logs associated with playbooks using the Filter icon:

Clicking the Filter icon allows you to filter playbook logs using the following options:

l Playbook Name: In the Search by Playbook Name or Record IRI field, filter the log associated with a particular
playbook, based on the playbook name or the record IRI associated with the playbook.
Example of filtering logs using the Record IRI: /alerts/bd4bf0a6-b023-4bd7-a182-f6938fa37ada.

l From Date: You can filter the log based on the date from which the playbooks were executed.
l To Date: You can filter the log based on the date till when the playbooks were executed. Using the From Date and
To Date fields, you can create a data range for retrieving the logs of playbook executed during that time period.

l Run By: From the Run By drop-down list, filter the log associated with a particular playbook, based on the user who
has run the playbook.

l Status: From the Status drop-down list, filter the log associated with a particular playbook, based on the status of
the playbook execution. You can choose from the following options: Incipient, Active, Awaiting, Paused, Failed,
Finished, or Finished with error.

FortiSOAR 7.2.1 Playbooks Guide 184
Fortinet Inc.



Debugging and Optimizing Playbooks

You will also see the timestamp when the playbook was executed and the time it took for the playbook to complete its
execution.

To purge Executed Playbook Logs, click the Settings icon on the top-right of the Executed Playbook Logs dialog
and select the Purge Logs option. For more information, see Purging Executed Playbook Logs.

To terminate a playbook that are in the Active, Incipient, or Awaiting state, click the Terminate button. To terminate all
running instances of a particular type, click the Settings icon and select the Terminate Running Instances option. For
more information, see Terminating playbooks.

Environment

Click Env to view the complete environmental context in which the playbook was executed, including the input-output
and computed variables across all steps in the playbook, if your playbook is executed in the 'Debug' mode. If the
playbook is executed in the 'Info' mode it displays the status. In release 7.2.1, the complete JSON tree has a reference of
the "vars" root node (earlier ENV was written) at the top of JSON), making the writing of jinja in playbooks easier.

Running huge ingestions and other workflows that load several records into memory can cause the memory usage to be
high. In case of connector actions, the 'env' was passed on to each action and it also used to get the 'env' triggered from
the workflow (worker 'env'). This unnecessarily increases the memory requirement and limits workflow scaling. Also,
connectors only need a minimal information such as requests headers, public-private key, and auth info
from the 'env' that can be selectively passed. Therefore, to solve the memory consumption issue, connectors are passed
only the required 'env' fields and not the complete environment information. However, if you observe any issues in a
connector or you specifically require the complete environment to be passed to the connector, then you need to add the
CONNECTOR_KEEP_COMPLETE_ENV variable at the end of the /opt/cyops-
workflow/sealab/sealab/settings.py file, and save the file. Then, you must restart the celeryd service using
the following command:
# systemctl restart celeryd

FortiSOAR 7.2.1 Playbooks Guide 185
Fortinet Inc.



Debugging and Optimizing Playbooks

Playbook Steps

Clicking playbook steps display the input, output, and configuration for that step. You can toggle the ENV button to toggle
between the environment in which the playbook was executed and the steps of the playbook. You can also copy the
environment, error, and step details to the clipboard by clicking the Copy 'ENV' to Clipboard or Copy 'OUTPUT' to
Clipboard button.

Clicking playbook Steps section lists all the steps that were part of the playbook and displays the status of each step
using icons. The icons indicate whether the step was completed (green tick), skipped (grey skipped symbol), awaiting
some action (orange hour glass symbol) or failed (red failed symbol).

For example, if a playbook is awaiting some action, such as waiting for approvals from a person or team who are
specified as approvers, then the state of such playbooks is displayed as Awaiting.

The status of the playbook will display as "Awaiting" till the action for which the playbook execution halted is completed,
after which the playbook will move ahead with the workflow as per the specified sequence.

FortiSOAR 7.2.1 Playbooks Guide 186
Fortinet Inc.



Debugging and Optimizing Playbooks

You can click on a playbook step for which you want to view the details, and you will see tabs associated with the
playbook step: Input, Pending Inputs (if the playbook is in the awaiting state),Output (if the playbook finishes) or Error
(if the playbook fails), and Config.

Input Tab

The input tab displays data, in the case of the first step of the playbook such as the Start step, input arguments and
evaluated arguments. The data displays the trigger information for the playbook. The input_args displays the input in
the jinja format that the user has entered for this step. The evaluated_args displays what the user input was
evaluated by the playbook once the step gets executed.

Pending Inputs Tab

If a playbook is in an "Awaiting" state, i.e., it requires some input or decision from users to continue with its workflow, then
the Pending Inputs tab is displayed:

Once the user provides the required inputs and submits their action, the playbook continues its execution as per the
defined workflow.

Output or Error Tab

If the playbook step finishes, then theOutput tab displays the result/output of the playbook step.

FortiSOAR 7.2.1 Playbooks Guide 187
Fortinet Inc.



Debugging and Optimizing Playbooks

From release 7.2.0 onwards, the contents of the output tab have been enhanced in case of manual input playbooks to
include the name of the user (username) who has taken the decision on manual input leading to the resumption of the
playbook:

If the playbook step fails, then the Error tab displays the Error message for that step. Click the step that has the error
(step with a red cross icon) to view the error message, so that it becomes easier for you to know the cause of the error
and debug the cause of the playbook failure.

FortiSOAR 7.2.1 Playbooks Guide 188
Fortinet Inc.



Debugging and Optimizing Playbooks

FortiSOAR has enhanced error messages by making themmore precise and thereby making it easier for you to debug
the issues. Also, the Trace information has been removed from the executed playbook log to reduce the clutter in the
error details screen and directly display the exact error. The Trace information will be present in the product logs located
at:

l For Playbook runtime issues: /var/log/cyops/cyops-workflow/celeryd.log
l For connector issues in cases where playbooks have connectors: /var/log/cyops/cyops-
integrations/connectors.log

For information about the common playbook error messages and how to debug them, see the Debugging common
playbook and connector errors article present in the Fortinet Knowledge Base.

FortiSOAR also provides you with the option to resume the same running instance of a failed playbook from the step at
which the playbook step failed, by clicking the Rerun From Last Failed Step button. This is useful in cases where the
connector is not configured or you have network issues that causes the playbook to fail, since you can resume the same
running instance of the playbook once you have configured the connector or resolved the network issues. However, if
you change something in the playbook steps, then that would be a rerun of the playbook and not a resume or retry of that
playbook.

Users who have Execute and Read permissions on the Playbooksmodule can rerun playbooks in their own instance.
Administrative users who have Read permissions on the Securitymodule and Execute and Read permissions on the
Playbooksmodule can rerun their own playbooks and also playbooks belonging to users of the same team.

Notes:

l If you have upgraded your FortiSOAR system, then you can resume only those playbooks that were run after the
upgrade.

l If you have a playbook that had failed before you upgrade your FortiSOAR system, and post-upgrade you try to
resume the execution of that playbook, then that playbook fails to resume its execution.

To resume the running instance of a failed playbook, do the following:

1. Open the Executed Playbook Logs dialog.
2. Click the failed playbook that you want to resume, and then click the Rerun From Last Failed Step button.

FortiSOAR displays the Playbook retriggered from last failed stepmessage and the failed playbook
resumes from the failed step:

FortiSOAR 7.2.1 Playbooks Guide 189
Fortinet Inc.

https://kb.fortinet.com/kb/microsites/microsite.do?cmd=displayKC&docType=kc&externalId=FD48192
https://kb.fortinet.com/kb/microsites/microsite.do?cmd=displayKC&docType=kc&externalId=FD48192


Debugging and Optimizing Playbooks

A playbook that has been rerun will display the Retriggered text.

Config Tab

The Config tab displays the step variables detailed entered by the user for the particular step and also includes
information about whether other variables, such as ignore_errors, MockOutputUsed, or the when condition have
been used (true/false) in the playbook step.

Instances Tab

The Instances tab is displayed in case of playbooks containing reference playbook steps. The "Instances" tab allows
users to see details such as, name and status of all child instances in a single view.

For example, as displayed in the following image, the "Testing Reference Playbook" references "child 1", which in turn
references 10 other child playbooks because of the loop applied on the reference playbook step. When you click the
"child 1" step, you can see the "Instances" tab, containing the status of the step "Finished", names of all its child
playbooks, and the name of the step that referenced the playbook, which is "Reference to Child 2":

Link to Child Playbooks

Playbooks have been organized by the parent-child relationship. The Parent playbook displays a link that lists the
number of child playbook(s) associated with the parent playbook. Clicking the link displays the execution history for the

FortiSOAR 7.2.1 Playbooks Guide 190
Fortinet Inc.



Debugging and Optimizing Playbooks

child playbook(s).

The UI of the execution playbook log displays playbooks that contain various levels of child playbooks in the same visual
execution log window. You can click the parent playbook and view its child playbooks, and similarly you can view the
children of the child playbook by clicking the child playbook all without losing context of the playbook. You can also see
the breadcrumb navigation from parent playbook to the child playbook at the top of the playbook log.

The Executed Playbook Logs displays the execution history of the child playbooks, i.e., you can search for the child
playbook in Executed Playbooks Logs and the search results will display the child playbook and its execution history and
you can also use the Load Env JSON feature in the Jinja Editor making debugging of the child playbooks easier.

Child playbooks inherit the logging level setting from their parent playbook, irrespective of their
own setting. For example, if the child playbook's logging level is set as INFO and its parent's is
set at DEBUG; the child playbook's logging level will automatically be set at the DEBUG level.
For more information on playbook logging levels, and how to set those levels, see the
Introduction to Playbooks chapter.

If the parent playbook has a number of child playbooks, you can also search for child playbooks, by clicking the search
icon that is present beside the child playbook link and then entering the name of the playbook in the Search by
Playbook Name field. You can also filter the child playbooks on its running status, such as Incipient, Active, Awaiting,
etc. by selecting the status from the All Status drop-down list.

For example, in the following image, the Testing Reference Playbook playbook has 1 child playbook: child 1. You can
click child 1 to view its execution history:

As displayed in the above image, you can also see the breadcrumb navigation from parent playbook to the child
playbook at the top of the playbook log. You can also view the name of the step at which the child playbook is referenced
in the navigator panel. If the playbook contains a reference playbook step then you can click through the child playbooks
within the same visual execution log window, allowing you to navigate through the playbook, without losing the context of
the playbook. You can also easily navigate back to the parent playbooks using the breadcrumbs present on top of the
log.

FortiSOAR 7.2.1 Playbooks Guide 191
Fortinet Inc.



Debugging and Optimizing Playbooks

For example, as displayed in the following image, the "Testing Reference Playbook" contains a child playbook "child 1"
at step "call child 1", which in turn contains 10 other child playbooks because of a loop applied on the reference playbook
step, such as "child 2 test for long text in playbook", which in turn calls "child 3":

Purging Executed Playbook Logs

You can purge Executed Playbook Logs by clicking the Settings icon on the top-right of the Executed Playbook
Logs dialog, and then selecting the Purge Logs option. Purging executed playbook logs allows you to permanently
delete old playbook history logs that you do not require and frees up space on your FortiSOAR instance. You can also
schedule purging, on a global level, for both audit logs and executed playbook logs. For information on scheduling Audit
Logs and Executed Playbook Logs, see the Purging of audit logs and executed playbook logs topic in
the System Configuration chapter of the "Administration Guide."

To purge Executed Playbook Logs, you must be assigned a role that has a minimum of Read permission on the
Securitymodule and Delete permissions on the Playbooksmodule.

To purge Executed Playbook Logs, click the Settings icon and select the Purge Logs option, which displays the Purge
Playbook Execution Logs dialog:

FortiSOAR 7.2.1 Playbooks Guide 192
Fortinet Inc.



Debugging and Optimizing Playbooks

In the Purge All logs before, field, select the time frame (using the calendar widget) before which you want to clear all
the executed playbook logs. For example, if you want to clear all executed playbook logs before December 01st,
2019, 9:00 AM, then select this date and time using the calendar widget.

Click the Exclude Awaiting Playbooks checkbox (default) to exclude the playbooks that are in the "Awaiting" state from
the purging process.

To purge the logs, click the Purge Logs button, which displays a warning as shown in the following image:

Click the I Have Read the warning - Purge Logs to continue the purging process.

Filtering playbook logs by tags

You can filter playbook execution logs by tags or keywords that you have added in your playbooks.

A user who has a role with a minimum of Update permission on the Securitymodule can save tags, which will be
applied as a default filter for playbook execution logs to all other user. A user who does not have such a role can add a
tag to filter playbook execution logs and view the filtered playbook execution logs but cannot save that filter.

FortiSOAR 7.2.1 Playbooks Guide 193
Fortinet Inc.



Debugging and Optimizing Playbooks

Click the Settings icon on the top-right of the Executed Playbook Logs dialog to view tags that have been added by
default to filter the playbook execution logs. You can see a message 1 Tags Excluded, which means that playbook
logs with one specific tag is being excluded by default.

You can either click the 1 Tags Excluded link or the Filter Logs By Tags option to open the Filter Logs by Tags
popup as shown in the following image:

To filter playbook logs based on tags, add a comma-separated list of tags in the Tags field.

In the Mode section, choose Exclude to exclude playbook logs with the specified tags. You will observe that the
#system tag is already added as a tag in the Exclude mode, which means the any playbook with the system tag will be
excluded from the playbook logs. To include only those playbook logs with the specified tags, clickOnly Include. For
example, if you only want to view the logs of phishing playbooks, i.e., logs of playbooks that have phishing tag, click
Only Include and type phishing in the Tags field. You must also remove the system tag from theOnly Include
mode, since otherwise playbook logs with both the phishing and system tags will be included.

You can specify a comma-separated list to Include all tags or Exclude all tags. You cannot
have a mix of Include and Exclude tags.

Filters will apply from the time you have set the filter, i.e., if you have added a phishing tag in the Exclude list at
16/05/2019 17:00 hours, then the filter will apply only from this time. The historical logs, logs before 16/05/2019 17:00
hours will continue to display in the Executed Playbooks Logs.

From version 7.0.1 onwards, the settings of the playbook execution history logs that are filtered using tags have been
updated as follows:

l The 'global' filter will be applicable on only on the global execution log list.
l Record level playbook execution history log will show all playbook logs by default; users can apply temporary filters
to filter the result. The Set as default filter for all users option has been removed from the record level playbook
execution log filter settings.

l Playbook-level playbook execution log will show all logs. When you open a playbook in the playbook designer and
view its execution history, you will see all the logs. There is no UI option in playbook execution history to filter the
logs. For example, the default exclude filter that is applied for 'system' playbooks will not be applicable when you

FortiSOAR 7.2.1 Playbooks Guide 194
Fortinet Inc.



Debugging and Optimizing Playbooks

open the playbook execution log for a specific playbook by clicking Tools > Execution History in the playbook
designer.

An example of excluding playbook logs by tag follows:
If you have added tags such as dataIngestion in your playbooks, then you can filter out the data ingestion logs by
clicking Exclude and typing dataIngestion in the Tags field. If an administrator with Update rights on the Security
module wants this filter to be visible to all users, then the administrator can save this filter as a default for all users, by
clicking the Set as default filter for all users checkbox and then clicking the Save & Apply Filter button.

From version 7.0.1, the Set as default filter for all users checkbox has been removed from
the record level playbook execution log filter settings.

If you do not have appropriate rights, you can apply the filter for only yourself by clicking the Apply Filter button and view
the filtered playbook executed logs.

This applies the filter and displays text such as 2 Tags Excluded on the top-right corner of the Executed Playbook Logs
dialog. Now, the Executed Playbook Logs will not display logs for any system playbook or for any data ingestion
playbook.

Users (without administrative rights) can remove filters by clicking Settings > Filter Logs by Tags or clicking the
<number of Tags included> link to display the Filter Logs By Tags dialog and click Clear All Tags to
remove the tags added and add their own tags. However, these changes will only be applicable till that instance of the
log window is open. If the page refreshes or the window reloads, then the tags specified by the administrator will again be
applied.

Terminating playbooks

You can terminate playbooks that are in the Active, Incipient, or Awaiting state. Users who have Read and Execute
permissions on the Playbooksmodule can terminate a running instance of their own playbook instance. Administrators
who have Read permissions on the Securitymodule and Execute permissions on the Playbooksmodule can
terminate running instances of any playbook.

FortiSOAR 7.2.1 Playbooks Guide 195
Fortinet Inc.



Debugging and Optimizing Playbooks

To terminate a running playbook instance, open the Executed Playbook Logs and click the instance that you want to
terminate and click Terminate as shown in the following image:

Once you click Terminate, the Terminate Execution dialog is displayed in which you can choose to either terminate
only the particular running instance, by clicking Terminate Current Instance Only or terminate all running instances, by
clicking Terminate All Running Instances.

If you click Terminate Running Instance Only, then the state of that playbook changes to Terminated:

You can also choose to terminate the running instances of all playbooks that are in the Active, Incipient, or Awaiting
state.

To terminate the running instances of all playbooks based on the status of the playbooks, do the following:

1. Click the Settings icon on the top-right of the Executed Playbook Logs dialog.
2. Select the Terminate Running Instances option, which displays the Terminate Running Instances dialog.
3. In the Terminate Running Instances dialog, select the status (Active, Incipient, or Awaiting) whose running

instances of Playbooks you want to terminate, and click Terminate.

FortiSOAR 7.2.1 Playbooks Guide 196
Fortinet Inc.



Debugging and Optimizing Playbooks

You can rerun the playbook from the step it was terminated by clicking the Rerun Pending Steps button on the
terminated playbook.

Setting up auto-cleanup of workflow execution history

Workflow Execution history is extensively persisted in the database for debugging and validating the input and output of
playbooks at each step. A very large execution history, however, causes overhead regarding consumption of extra disk
space, increase in the time required for upgrading FortiSOAR, etc. Therefore, it highly recommended to set up an auto-
cleanup of the workflow execution history using a weekly cron schedule.

To delete the workflow run history keeping the last 'X' entries, ssh to your FortiSOAR appliance as root and run the
following command:

# /opt/cyops-workflow/.env/bin/python /opt/cyops-workflow/sealab/manage.py cleandb --
keep X
For example, to delete all workflow run history, apart from the last 1000 entries, use the following command:
# /opt/cyops-workflow/.env/bin/python /opt/cyops-workflow/sealab/manage.py cleandb --
keep 1000

To set up a weekly schedule delete workflow history, to the above command, add a cron expression entry in the
/etc/crontab file that would schedule a workflow execution history cleanup as per your requirements. Command to
edit a cron job is crontab -e.

For example, the command to add an entry in the /etc/crontab file that would schedule a workflow execution history
cleanup to every Saturday night and delete all workflow run history, apart from the last 1000 entries, would be as follows:
# 0 0 * * SAT /opt/cyops-workflow/.env/bin/python /opt/cyops-workflow/sealab/manage.py
cleandb --keep 1000

Note that running the above command deletes the workflow entries but does not release the disk space back to the OS,
i.e., it keeps it reserved for the Postgres process. This is the desired behavior, and no further action is required if the
execution history cleanup is scheduled because the Postgres process would need the freed-up disk space to store
further workflows. If, however, you also wish to reclaim disk space for backup or restore or other activities, you would
additionally need to run a "full vacuum" on the database after you ssh to your FortiSOAR appliance as root and run the
following commands:

psql -U cyberpgsql sealab
psql (10.3)
Type "help" for help.

sealab=# vacuum full;
VACUUM
sealab=# \q

Known Issue: If you do not schedule the workflow execution cleanup, and you are deleting a very large set of entries in
one go, then the db cleanup command might fail due to the failure in loading the large set of entries into memory. In
this case, you will have to run the command in batches.
For example:
# /opt/cyops-workflow/.env/bin/python /opt/cyops-workflow/sealab/manage.py cleandb --

FortiSOAR 7.2.1 Playbooks Guide 197
Fortinet Inc.



Debugging and Optimizing Playbooks

keep 100000
# /opt/cyops-workflow/.env/bin/python /opt/cyops-workflow/sealab/manage.py cleandb --
keep 90000

Disabling Playbook Priority

You can disable playbook priority, in case playbook priority queuing is hampering your system's performance. Version
7.0.0 onwards, FortiSOAR uses rabbitmq as the message broker, and because of this priorities of an already declared
queue in rabbitmq cannot be changed dynamically; for more information, see
https://www.rabbitmq.com/priority.html#using-policies.

Therefore, from version 7.0.0 onwards, use the ENABLE_PRIORITY setting in the workflow engine to enable/disable
playbook priority. However, before changing the ENABLE_PRIORITY setting, first delete the celery queue, after you
have ensured that no data is present in the celery queue.

To enable/disable the ENABLE_PRIORITY setting in /opt/cyops-workflow/sealab/config.ini, do the
following:

1. List queues and check the celery queue and its count of messages, use the following command:
rabbitmqctl list_queues -p intra-cyops
If the celery queue has zero messages in it, then the output would be:
celery 0
This ensures that no data is present in the celery queue.

2. Delete the celery queue , using the following command:
rabbitmqctl delete_queue celery -p intra-cyops

3. Change the ENABLE_PRIORITY flag to false to disable playbook priority, or true to enable playbook priority.
4. Restart celeryd using the # systemctl restart celeryd command.

Optimizing Playbooks

Playbook steps that were looped (using the Loop option in the playbook step) can be run either in a sequentially or in
parallel. For more information, see the Loop topic in the Triggers & Step chapter.

You can tune the thread pool size and other settings for parallel execution using the settings that are mentioned in the
following table:

Key name and location Description Default value

FortiSOAR 7.2.1 Playbooks Guide 198
Fortinet Inc.

https://www.rabbitmq.com/priority.html#using-policies


Debugging and Optimizing Playbooks

THREAD_POOL_WORKER
/opt/cyops-
workflow/sealab/sealab/config.ini

The thread pool size is used for parallel
execution. The THREAD_POOL_WORKER
variable is used to optimize the parallel
execution and enhance performance.
You can reduce the default value of the thread
pool size from the default value if:
1. The number of cores on your FortiSOAR
instance are lesser than the default
recommended.
2. The task to be executed in the loop step is
synchronous in nature and thread context
switching would be an overhead.

8

SYNC_DELAY_LIMIT
/opt/cyops-
workflow/sealab/sealab/config.ini

If the delay specified in the playbook step is
higher than this threshold, then the loop step will
be decoupled from the main playbook and run
asynchronously.
For example if you set the SYNC_DELAY_LIMIT
to 60, it means that a 60 seconds check is
added, and after 60 seconds the playbooks
should run in parallel. This works in parallel with
your playbook soft limit time, CELERYD_TASK_
SOFT_TIME_LIMIT parameter. The time set in
the CELERYD_TASK_SOFT_TIME_LIMIT
parameter must be greater than the time set in
the SYNC_DELAY_LIMIT parameter.

60

CELERYD_TASK_SOFT_TIME_LIMIT
/opt/cyops-
workflow/sealab/sealab/config.ini

To change the soft time limit for playbooks. The
soft time limit value is set in seconds.

1800

CELERYD_TASK_TIME_LIMIT
/opt/cyops-
workflow/sealab/sealab/config.ini

To change the time limit for playbooks. The time
limit value is set in seconds.
Note: This value should always be higher than
the SOFT_TIME_LIMIT. For more details, see
the Celery 4.3.0 documentation >> User guide:
task_soft_limit section.

2400

CELERYD_OPTS
/etc/celery/celeryd.conf

To optimize the parallel running of threads in
celery so that your overall playbook execution
time is reduced.
By default, the workflow engine spawns a
separate process running a workflow. If the
tasks in the workflow are asynchronous and
short lived, the thread-based workers can be
enabled.
For more details, see the Celery 4.3.0
documentation > User guide > Concurrency >>
Concurrency with Event section.

CELERYD_
OPTS=“-
P=eventlet
-c=30"

These optimizations also help in scaling your playbooks by resolving bottleneck that slow down playbook execution and
resolving internal timeout issues.

FortiSOAR 7.2.1 Playbooks Guide 199
Fortinet Inc.

http://docs.celeryproject.org/en/latest/userguide/configuration.html#std:setting-task_soft_time_limit
http://docs.celeryproject.org/en/latest/userguide/concurrency/eventlet.html


Debugging and Optimizing Playbooks

FortiSOAR supports parallel branch execution of playbooks. Parallel branch execution optimizes playbook execution by
having the ability to execute two or more independent paths parallelly.

You can enable or disable parallel execution by changing the value (true/false) of the PARALLEL_PATH variable in the
[Application] section in the /opt/cyops-workflow/sealab/sealab/config.ini file. By default, a fresh
install of version 5.1.0 will have the PARALLEL_PATH variable set as true.

Optimized Workflow Runtime for Memory and CPU consumption

In release 7.2.0, FortiSOAR has optimized and greatly improved the playbook execution process. Tremendous
improvements are observed for playbook execution times as well as OS resource consumption during playbook
execution. Some notable improvements are:

l Reduction of Virtual Memory consumption during playbook execution by 50%.
l Reduction of CPU usage during playbook execution by 50%.
l Optimized execution of Jinja expressions.
l Database space utilization is optimized by reducing storing duplicate values used by the playbook framework.

Some test cases were run to compare playbook execution times across 7.0.2 and 7.2.0:

Comparison of Playbook Execution Times between 7.0.2 and 7.2.0

Workflow Type (creates 1240 records) Time taken for
execution in

FortiSOAR 7.0.2

Time taken for
execution in

FortiSOAR 7.2.0

Improvement*

Playbook with create record using the 'For Loop' 1 minute 51 seconds
751 milliseconds

57 seconds 190
milliseconds

1.9x Faster

Playbook with a Create Record step using the 'For
Loop with the Batch option'

1 minute 44 seconds
715 milliseconds

56 seconds 710
milliseconds

1.8x Faster

Playbook with a Create Record step using the 'For
Loop with the Batch option and the Parallel
options'

1 minute 21 seconds
132 millisecond

24 seconds 967
milliseconds

3.2x Faster

Playbook with a Create Record step using the 'For
Loop with the Batch option and the Sequential
options'

3 minutes 31
seconds 70
milliseconds

1 minute 47 seconds
143 milliseconds

1.9x Faster

Playbook with a Reference step using the 'For
Loop with the Parallel option'

7 minutes 40
seconds 386
milliseconds

3 minutes 16
seconds 756
milliseconds

2.3x Faster

Playbook with a Reference step using the 'For
Loop with the Parallel option that runs
asynchronously'
Note: In the case of parallel execution, even if the
playbook is completed, record creation continues
in the background.

1 minute 6 seconds
567 milliseconds

8 seconds 460
milliseconds

7x Faster

Playbook with a Reference step using the 'For
Loop with the Sequential option'

10 minutes 43
seconds 133

6 minutes 1 second
350 milliseconds

1.7x Faster

FortiSOAR 7.2.1 Playbooks Guide 200
Fortinet Inc.



Debugging and Optimizing Playbooks

milliseconds

Playbook with a Reference step using the 'For
Loop with the Sequential option that runs
asynchronously'

2 minutes 28
seconds 10
milliseconds

15 seconds 477
millisecond

9.24x Faster

Playbook using the json2html filter in the Update
Record step

5 minutes 7 seconds
664 milliseconds

1 minute 44 seconds
236 milliseconds

2.9x Faster

* - Calculated using the formula: Previous execution time / Current execution time

Similarly, the data ingestion process was also tested to compare its execution times across 7.0.2 and 7.2.0. The
following steps were performed in the tests:

1. Ingest 17000 records by reading a CSV file.
2. Create corresponding tickets in a ticketing platform using an integration (connector).
3. Playbook loops over a Reference step with each iteration consisting of 5000 records.

Comparison of Playbook Execution Times between 7.0.2 and 7.2.0

Time taken for execution in FortiSOAR
7.0.2

Time taken for execution in FortiSOAR
7.2.0

Improvement*

36 min 45 seconds 134 milliseconds 14 minutes 40 seconds 812 milliseconds 2.5x Faster

* - Calculated using the formula: Previous execution time / Current execution

Troubleshooting Playbooks

After upgrading to release 7.2.0 playbooks fail with the 'Access Denied' error for
files downloaded while running playbooks

After you have upgraded your system to release 7.2.0 or later from a release prior to 7.2.0, and you execute playbooks
that download files, you will observe that such playbooks might fail with the 'Access Denied' error. This is because in
7.2.0 fsr-integrations is used as the workflow service user to create files during playbook execution. As the
releases prior to 7.2.0 used nginx as the user, files created by ngnix will not be deleted by new user (fsr-
integrations).

Resolution

If there is are playbooks that create files using the Code Snippet step or any such step, where the playbook is not directly
creating files, then you have to ensure that those files are deleted as part of playbook flow. If this is not done, then old
files that were created before the upgrade are not deleted and such playbooks fail to delete the older files because of the
difference in user permissions.

Jinja cannot handle integers that have more than 16 characters

This issue is caused due to the JavaScript max integer safe size, i.e., 253 - 1, i.e., 9007199254740991.

Resolution

FortiSOAR 7.2.1 Playbooks Guide 201
Fortinet Inc.



Debugging and Optimizing Playbooks

You do not need to do anything since the difference is seen only while rendering the data in the browser, but not in the
Database persistence.

Playbooks failing with the Picklist item:<name of picklist filter> error

If the picklist filter in the playbook has a value that does not exactly match with the existing actual value (case sensitive),
then such playbooks will fail.

Resolution

Ensure that you have specified the value of the playbook filters exactly as its existing value. From release 7.2.0 onwards,
an exact case match is required for playbook filters to work.
For example, if you have specified {"Severity" | "MEDIUM", "@id")}} in a playbook, then this playbook will fail
if the actual value of Severity is Medium.

Filters in running playbooks do not work after you upgrade your system in case of
pre-upgrade log records

You can apply filters on running playbooks using the Executed Playbook Logs. These filters will apply to log records
that are created post-upgrade and will not apply to log records that were created pre-upgrade.

For log records that were created before the upgrade, use the playbook detail API:
GET: https://<FortiSOAR_HOSTNAME/IP>/api/wf/api/workflows/<playbook id>/?format=json

To get the playbook id, use the playbook list API:
GET: https://<FortiSOAR_HOSTNAME/IP>/api/wf/api/workflows/?depth=2&limit=30&ordering=-
modified

Playbooks are failing, or you are getting a No Permission error

Resolution

When the Playbook does not have appropriate permissions, then playbooks fail. Playbook is the default appliance in
FortiSOAR that gets included in a new team.

If you cannot access records, such as alerts, then you must ensure that you are part of the team or part of a sibling or a
child team that can access the records, and you must have appropriate permissions on that module whose records you
require to access or update. Only users with CRUD access to the Appliancesmodule can update the Playbook
assignment. For more information on teams and roles, see the Security Management chapter in the "Administration
Guide."

Playbook fails after the ingestion is triggered

There are many reasons for a playbook failure, for example, if a required field is null in the target module record, or
there are problems with the Playbook Appliance keys.

Resolution

Investigate the reason for failure using the Playbook Execution History tab (earlier known as Running Playbooks) in
the Playbook Administration page. Review the step in which the failure is being generated and the result of the

FortiSOAR 7.2.1 Playbooks Guide 202
Fortinet Inc.



Debugging and Optimizing Playbooks

step, which should contain an appropriate error message with details. Once you have identified the error, and if you
cannot troubleshoot the error, contact the FortiSOAR support team for further assistance using the Fortinet Customer
Service & Support web portal at https://support.fortinet.com/.

Incorrect Hostname being displayed in links contained in emails sent by System
Playbooks

When you are using a system playbook that sends an email, for example, when an alert is escalated to an incident, and
an Incident Lead is assigned, then the system playbook sends an email to the Incident Lead specified. The email that is
sent to the Incident Lead contains the link to the incident using the default hostname.

Resolution

To ensure that the correct hostname is displayed in the email, you must update the appropriate hostname as per your
FortiSOAR instance, in the Playbook Designer as follows:

1. Open the Playbook Designer.
2. Click Tools >Global Variables to display a list of global variables.
3. Click the Edit icon in the Server_fqhn global variables, and in the Field Value field add the appropriate

hostname value.
4. Click Submit.

The system playbook will now send emails containing the updated hostname link.

In the system playbook (or any playbook) that is sending an email, ensure that you have used
the Server_fqhn global variable in the Send Email step.

Purging executed playbook logs issues

If you are facing issues while purging of executed playbook logs such as, the purge activity is taking a long time or the
purging activity seems to be halted, then you could check if the Soft time limit (600s) exceeded for
workflow.task.clean_workflow_task[<taskid>] error is present in the /var/log/cyops/cyops-
workflow/celeryd.log file. The Soft time limit error might occur if the amount of playbook logs to be purged
is very large.

Resolution

Increase the value set for the LOG_PURGE_CHUNK_SIZE parameter, which is present in the [application] section,
of the /opt/cyops-workflow/sealab/sealab/config.ini file.

By default, the LOG_PURGE_CHUNK_SIZE parameter is set to 1000.

Playbooks fails with the "Too many connections to database" error when using the
"parallel" option for a loop step in Playbooks

Playbooks can fail with the Too many connections to database error when you have selected Parallel in a loop
step to execute playbook steps in parallel.

Resolution

FortiSOAR 7.2.1 Playbooks Guide 203
Fortinet Inc.

https://support.fortinet.com/


Debugging and Optimizing Playbooks

To resolve this issue, reduce the number of parallel threads. To reduce the number of parallel threads, you have to
change the value of the THREAD_POOL_WORKER variable. The THREAD_POOL_WORKER variable is present in the
/opt/cyops-workflow/sealab/sealab/config.ini file, and by default the value of this variable is set to 8.

Playbooks fails with the "Picklist item not found" error

Your playbooks fails with an error such as:
Picklist Item: /api/3/picklists/a1bac09b-1441-45aa-ad1b-c88744e48e72 not found URL:
https://localhost/api/3/alerts

Resolution

This issue is caused when you have specified an incorrect value for a picklist item. To resolve this issue, check and
correct the values of the picklist item in the current step or the previous step of the playbook.

Correcting the server address for the manual input endpoints sent in emails

FortiSOAR uses the dynamic variable 'Server_fqhn' to construct the server url for all links in emails. The default value
of this variable is the hostname of the machine set at the time the VM Configuration wizard is run. If your deployment is in
a NATed or cloud environment, the public address of the instance will not match the hostname, and the manual input
email might contain a wrong server address.

Resolution

To rectify this issue, you must update the 'Server_fqhn' dynamic variable and provide the DNS resolvable FQHN of
your FortiSOAR instance.

Frequently Asked Questions

Q: Is there a way to force variables set in a reference playbook to carry over into the parent playbook? I rather not put a
group of steps I need in the parent if I can avoid it, as I am using the child playbook as an action itself, so would it
duplicate the functions?

A: In general, variables set in child playbooks do not carry over to the parent playbook. The one exception is that the
Reference a Playbook step will return (in vars.result) the return value of the last executed step in the child
playbook. For instance, if the last step in the child playbook is Find Record, then the Reference a Playbook step will
populate vars.result with the records that have been found using the Find Record step.

If u want to define the playbooks result as a combination of results of previous steps or sub-steps, you can use the Set
Variable step at the end of the playbook and define variables that would contain data that you require to be returned.

Q: How do I convert Epoch time returned by a SIEM to a datetime format?

A: If you have a playbook, which has a connector step that connects to a SIEM, such as ArcSight or QRadar, and the
SIEM returns the result in Epoch time (milliseconds), then you can convert Epoch time to the datetime format using the
following command:
# arrow.get(1531937147932/1000).to(‘Required Timezone’).strftime(“%Y-%m-%d %H:%M:%S
%Z%z”)
or
# arrow.get(1531937147932/1000).to(‘Required’).format(‘YYYY-MM-DD HH:mm:ss ZZ’)

FortiSOAR 7.2.1 Playbooks Guide 204
Fortinet Inc.



Debugging and Optimizing Playbooks

For example,
# arrow.get(1531937147932/1000).to(‘EST’).format(‘YYYY-MM-DD HH:mm:ss ZZ’)
Will return the following output:
2018-07-18 14:05:47 EDT-0400
For more examples on dates and times used in Python, see http://arrow.readthedocs.io/en/latest/.

Q: How do I change the timeout limit for playbooks?

A: To change the time limit or soft time limit for playbooks you must edit the CELERYD_TASK_TIME_LIMIT and
CELERYD_TASK_SOFT_TIME_LIMIT parameters in the /opt/cyops-workflow/sealab/sealab/config.ini
file. By default, these parameters are set in seconds, as follows:
CELERYD_TASK_TIME_LIMIT = 2400
CELERYD_TASK_SOFT_TIME_LIMIT = 1800
Once you have made the change you must restart all the FortiSOAR services by using csadm and running the following
command as a root user: :
# csadm services --restart

FortiSOAR 7.2.1 Playbooks Guide 205
Fortinet Inc.

http://arrow.readthedocs.io/en/latest/


www.fortinet.com

Copyright© 2022 Fortinet, Inc. All rights reserved. Fortinet®, FortiGate®, FortiCare® and FortiGuard®, and certain other marks are registered trademarks of Fortinet, Inc., and other Fortinet names herein
may also be registered and/or common law trademarks of Fortinet. All other product or company names may be trademarks of their respective owners. Performance and other metrics contained herein were
attained in internal lab tests under ideal conditions, and actual performance and other results may vary. Network variables, different network environments and other conditions may affect performance
results. Nothing herein represents any binding commitment by Fortinet, and Fortinet disclaims all warranties, whether express or implied, except to the extent Fortinet enters a binding written contract,
signed by Fortinet’s General Counsel, with a purchaser that expressly warrants that the identified product will perform according to certain expressly-identified performance metrics and, in such event, only
the specific performance metrics expressly identified in such binding written contract shall be binding on Fortinet. For absolute clarity, any such warranty will be limited to performance in the same ideal
conditions as in Fortinet’s internal lab tests. Fortinet disclaims in full any covenants, representations, and guarantees pursuant hereto, whether express or implied. Fortinet reserves the right to change,
modify, transfer, or otherwise revise this publication without notice, and the most current version of the publication shall be applicable.

https://www.fortinet.com/

	Change Log
	Introduction to Playbooks
	Overview of Playbook Collections
	Overview of Playbooks
	Permissions required to work with playbooks
	Setting the logging levels for playbooks
	Assigning ownership of playbooks

	Creating Playbooks
	Importing the BPMN Shareable Workflows as FortiSOAR Playbooks
	Translation of BPMN workflow steps into FortiSOAR steps in playbooks

	Working with Playbooks
	Tips for working in the playbook designer
	Adding blocks and notes in the playbook designer
	Playbook Debugging - Triggering and testing playbooks from the Designer
	Changing the prioritization of playbook execution
	Live User implementation in Playbook Designer
	Saving versions of your playbook
	Exporting versions of your playbook
	Playbook recovery

	System Playbooks

	Triggers & Steps
	Triggers
	Trigger Types
	On Create Triggers
	On Update Triggers
	On Delete
	Condition-based triggers
	Custom API Endpoint
	Referenced
	Manual Trigger

	Triggers
	Trigger Data
	Database Triggers (On Create, On Update, and On Delete)
	Manual Triggers
	Custom API Endpoint Triggers
	Referenced Trigger

	Data Inheritance
	Playbook Steps
	Playbook actions used for extending playbook steps
	Core
	Evaluate
	Execute
	References
	Email
	Authentication

	List of reserved keywords
	Deprecated Playbook steps and triggers
	Deprecated Playbook Triggers
	Deprecated Playbook Steps


	Dynamic Values
	Overview
	Jinja Editor
	Dynamic Values Usage
	Input
	Step Results
	Variables
	Global Variables
	IRI Lookup

	Expressions Usage
	Adding your own expressions


	Dynamic Variables
	Overview
	Syntax
	Implementation
	Scope
	Functionality
	Dictionary-like Objects
	Built-in Functions & Filters

	FAQS
	How are dynamic variables used in condition steps?


	Jinja Filters and Functions
	Overview
	Filters
	Filters for formatting data
	Filters that operate on list variables
	Filters that return a unique set from sets or lists
	Random Number filter
	Shuffle filter
	Filters for math operations
	IP Address filters
	Hashing filters
	Filters for combining hashes and dictionaries
	Filters for extracting values from containers
	Comment filter
	URL Split filter
	Regular Expression filters
	Other useful filters
	Combination filters
	Debugging filters
	json_query filter

	Comprehensive list of filters
	Jinja Expressions in FortiSOAR
	For Loop
	If Condition
	For Loop along with the If condition
	If Else condition
	Time Operations
	String Operations
	Code in block
	Set variable based on condition

	YAQL Filters
	Usage

	Jinja Extensions
	Custom Functions and Filters

	Debugging and Optimizing Playbooks
	Debugging Playbooks
	Playbook Execution History
	Setting up auto-cleanup of workflow execution history
	Disabling Playbook Priority

	Optimizing Playbooks
	Optimized Workflow Runtime for Memory and CPU consumption

	Troubleshooting Playbooks
	After upgrading to release 7.2.0 playbooks fail with the 'Access Denied' erro...
	Jinja cannot handle integers that have more than 16 characters
	Playbooks failing with the Picklist item:<name of picklist filter> error
	Filters in running playbooks do not work after you upgrade your system in cas...
	Playbooks are failing, or you are getting a No Permission error
	Playbook fails after the ingestion is triggered
	Incorrect Hostname being displayed in links contained in emails sent by Syste...
	Purging executed playbook logs issues
	Playbooks fails with the Too many connections to database error when using th...
	Playbooks fails with the Picklist item not found error
	Correcting the server address for the manual input endpoints sent in emails

	Frequently Asked Questions


