Administration Guide
FortiOS 7.2.0
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change Log</td>
<td>20</td>
</tr>
<tr>
<td>Getting started</td>
<td></td>
</tr>
<tr>
<td>Differences between models</td>
<td>22</td>
</tr>
<tr>
<td>Low encryption models</td>
<td>22</td>
</tr>
<tr>
<td>Using the GUI</td>
<td>22</td>
</tr>
<tr>
<td>Connecting using a web browser</td>
<td>23</td>
</tr>
<tr>
<td>Menus</td>
<td>23</td>
</tr>
<tr>
<td>Tables</td>
<td>24</td>
</tr>
<tr>
<td>Entering values</td>
<td>26</td>
</tr>
<tr>
<td>GUI-based global search</td>
<td>28</td>
</tr>
<tr>
<td>Loading artifacts from a CDN</td>
<td>29</td>
</tr>
<tr>
<td>Using the CLI</td>
<td>29</td>
</tr>
<tr>
<td>Connecting to the CLI</td>
<td>29</td>
</tr>
<tr>
<td>CLI basics</td>
<td>32</td>
</tr>
<tr>
<td>Command syntax</td>
<td>38</td>
</tr>
<tr>
<td>Subcommands</td>
<td>41</td>
</tr>
<tr>
<td>Permissions</td>
<td>43</td>
</tr>
<tr>
<td>FortiExplorer management</td>
<td></td>
</tr>
<tr>
<td>Getting started with FortiExplorer</td>
<td>43</td>
</tr>
<tr>
<td>Connecting FortiExplorer to a FortiGate with WiFi</td>
<td>44</td>
</tr>
<tr>
<td>Configure FortiGate with FortiExplorer using BLE</td>
<td>47</td>
</tr>
<tr>
<td>Running a security rating</td>
<td>48</td>
</tr>
<tr>
<td>Upgrading to FortiExplorer Pro</td>
<td>51</td>
</tr>
<tr>
<td>Basic administration</td>
<td>52</td>
</tr>
<tr>
<td>Basic configuration</td>
<td>53</td>
</tr>
<tr>
<td>Registration</td>
<td>55</td>
</tr>
<tr>
<td>FortiCare and FortiGate Cloud login</td>
<td>60</td>
</tr>
<tr>
<td>Transfer a device to another FortiCloud account</td>
<td>62</td>
</tr>
<tr>
<td>Configuration backups</td>
<td>65</td>
</tr>
<tr>
<td>LEDs</td>
<td>69</td>
</tr>
<tr>
<td>Alarm levels</td>
<td>73</td>
</tr>
<tr>
<td>Troubleshooting your installation</td>
<td>74</td>
</tr>
<tr>
<td>Dashboards and Monitors</td>
<td>76</td>
</tr>
<tr>
<td>Using dashboards</td>
<td>76</td>
</tr>
<tr>
<td>Using widgets</td>
<td>77</td>
</tr>
<tr>
<td>Widgets</td>
<td>79</td>
</tr>
<tr>
<td>Viewing device dashboards in the Security Fabric</td>
<td>81</td>
</tr>
<tr>
<td>Creating a fabric system and license dashboard</td>
<td>82</td>
</tr>
<tr>
<td>Example</td>
<td>82</td>
</tr>
<tr>
<td>Dashboards</td>
<td>83</td>
</tr>
<tr>
<td>Resetting the default dashboard template</td>
<td>84</td>
</tr>
<tr>
<td>Status dashboard</td>
<td>84</td>
</tr>
<tr>
<td>Security dashboard</td>
<td>86</td>
</tr>
<tr>
<td>Network dashboard</td>
<td>88</td>
</tr>
</tbody>
</table>

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
WAN optimization SSL proxy chaining ... 267
Agentless NTLM authentication for web proxy ... 275
Multiple LDAP servers in Kerberos keytabs and agentless NTLM domain controllers 278
Learn client IP addresses .. 279
Explicit proxy authentication over HTTPS .. 280
mTLS client certificate authentication ... 282
DHCP server .. 287
Configure a DHCP server on an interface ... 288
Configure a DHCP relay on an interface .. 288
Configure a DHCP server and relay on an interface 289
DHCP options ... 290
IP address assignment with relay agent information option 291
DHCP client options .. 293
Static routing ... 294
Routing concepts .. 295
Policy routes .. 307
Equal cost multi-path ... 309
Dual internet connections ... 313
Dynamic routing .. 318
RIP ... 320
OSPF .. 339
BGP ... 356
BFD .. 389
Multicast ... 398
Multicast routing and PIM support .. 398
Configuring multicast forwarding ... 399
FortiExtender .. 402
WAN extension mode .. 402
LAN extension mode .. 402
Adding a FortiExtender .. 403
Direct IP support for LTE/4G ... 405
Sample LTE interface .. 406
Limitations ... 407
LLDP reception ... 408
Virtual routing and forwarding ... 410
Implementing VRF .. 411
VRF routing support .. 412
Route leaking between VRFs with BGP .. 416
Route leaking between multiple VRFs .. 418
VRF with IPv6 .. 429
IBGP and EBGP support in VRF ... 433
NetFlow .. 435
Verification and troubleshooting ... 436
NetFlow templates .. 436
NetFlow on FortiExtender and tunnel interfaces 449
sFlow .. 453
Configuring sFlow .. 453
Link monitor .. 456
Link monitor with route updates
Enable or disable updating policy routes when link health monitor fails
Add weight setting on each link health monitor server
SLA link monitoring for dynamic IPsec and SSL VPN tunnels

IPv6
IPv6 tunneling
IPv6 tunnel inherits MTU based on physical interface
Configuring IPv4 over IPv6 DS-Lite service

Diagnostics
Using the packet capture tool
Using the debug flow tool

SD-WAN
SD-WAN overview
SD-WAN components
SD-WAN designs and architectures
SD-WAN designs principles
SD-WAN quick start
Configuring the SD-WAN interface
Adding a static route
Selecting the implicit SD-WAN algorithm
Configuring firewall policies for SD-WAN
Link monitoring and failover
Results
Configuring SD-WAN in the CLI

SD-WAN zones
Specify an SD-WAN zone in static routes and SD-WAN rules

Performance SLA
Link health monitor
Factory default health checks
Health check options
Link monitoring example
SLA targets example
Passive WAN health measurement
Passive health-check measurement by internet service and application
Health check packet DSCP marker support
Manual interface speedtest
Scheduled interface speedtest
Monitor performance SLA
SLA monitoring using the REST API
Mean opinion score calculation and logging in performance SLA health checks

SD-WAN rules
Overview
Implicit rule
Automatic strategy
Manual strategy
Best quality strategy
Lowest cost (SLA) strategy
Maximize bandwidth (SLA) strategy
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use MAC addresses in SD-WAN rules and policy routes</td>
<td>564</td>
</tr>
<tr>
<td>SD-WAN traffic shaping and QoS</td>
<td>565</td>
</tr>
<tr>
<td>SDN dynamic connector addresses in SD-WAN rules</td>
<td>570</td>
</tr>
<tr>
<td>Application steering using SD-WAN rules</td>
<td>572</td>
</tr>
<tr>
<td>DSCP tag-based traffic steering in SD-WAN</td>
<td>585</td>
</tr>
<tr>
<td>ECMP support for the longest match in SD-WAN rule matching</td>
<td>595</td>
</tr>
<tr>
<td>Override quality comparisons in SD-WAN longest match rule matching</td>
<td>597</td>
</tr>
<tr>
<td>Use an application category as an SD-WAN rule destination</td>
<td>600</td>
</tr>
<tr>
<td>Advanced routing</td>
<td>603</td>
</tr>
<tr>
<td>Local out traffic</td>
<td>603</td>
</tr>
<tr>
<td>Using BGP tags with SD-WAN rules</td>
<td>609</td>
</tr>
<tr>
<td>BGP multiple path support</td>
<td>612</td>
</tr>
<tr>
<td>Controlling traffic with BGP route mapping and service rules</td>
<td>614</td>
</tr>
<tr>
<td>Applying BGP route-map to multiple BGP neighbors</td>
<td>621</td>
</tr>
<tr>
<td>Using multiple members per SD-WAN neighbor configuration</td>
<td>627</td>
</tr>
<tr>
<td>VPN overlay</td>
<td>633</td>
</tr>
<tr>
<td>ADVVPN and shortcut paths</td>
<td>633</td>
</tr>
<tr>
<td>SD-WAN monitor on ADVVPN shortcuts</td>
<td>646</td>
</tr>
<tr>
<td>Hold down time to support SD-WAN service strategies</td>
<td>647</td>
</tr>
<tr>
<td>SD-WAN integration with OCVPN</td>
<td>649</td>
</tr>
<tr>
<td>Adaptive Forward Error Correction</td>
<td>656</td>
</tr>
<tr>
<td>Dual VPN tunnel wizard</td>
<td>660</td>
</tr>
<tr>
<td>Duplicate packets on other zone members</td>
<td>661</td>
</tr>
<tr>
<td>Duplicate packets based on SD-WAN rules</td>
<td>664</td>
</tr>
<tr>
<td>Speed tests run from the hub to the spokes in dial-up IPsec tunnels</td>
<td>665</td>
</tr>
<tr>
<td>Interface based QoS on individual child tunnels based on speed test results</td>
<td>672</td>
</tr>
<tr>
<td>Use SSL VPN interfaces in zones</td>
<td>675</td>
</tr>
<tr>
<td>SD-WAN in large scale deployments</td>
<td>679</td>
</tr>
<tr>
<td>Advanced configuration</td>
<td>690</td>
</tr>
<tr>
<td>SD-WAN with FGCP HA</td>
<td>690</td>
</tr>
<tr>
<td>Configuring SD-WAN in an HA cluster using internal hardware switches</td>
<td>697</td>
</tr>
<tr>
<td>SD-WAN configuration portability</td>
<td>701</td>
</tr>
<tr>
<td>SD-WAN segmentation over a single overlay</td>
<td>707</td>
</tr>
<tr>
<td>SD-WAN cloud on-ramp</td>
<td>722</td>
</tr>
<tr>
<td>Configuring the VPN overlay between the HQ FortiGate and cloud FortiGate-VM</td>
<td>723</td>
</tr>
<tr>
<td>Configuring the SD-WAN to steer traffic between the overlays</td>
<td>734</td>
</tr>
<tr>
<td>Verifying the traffic</td>
<td>738</td>
</tr>
<tr>
<td>Troubleshooting SD-WAN</td>
<td>744</td>
</tr>
<tr>
<td>Tracking SD-WAN sessions</td>
<td>745</td>
</tr>
<tr>
<td>Understanding SD-WAN related logs</td>
<td>745</td>
</tr>
<tr>
<td>SD-WAN related diagnose commands</td>
<td>748</td>
</tr>
<tr>
<td>SD-WAN bandwidth monitoring service</td>
<td>752</td>
</tr>
<tr>
<td>Using SNMP to monitor health check</td>
<td>755</td>
</tr>
<tr>
<td>Policy and Objects</td>
<td>759</td>
</tr>
<tr>
<td>Policies</td>
<td>759</td>
</tr>
</tbody>
</table>
Migrating from SSL VPN to ZTNA ... 1070
ZTNA scalability support for up to 50 thousand concurrent endpoints 1077
ZTNA troubleshooting and debugging ... 1079

Security Profiles .. 1085
Inspection modes .. 1085
Flow mode inspection (default mode) .. 1086
Proxy mode inspection .. 1086
Inspection mode feature comparison ... 1088

Antivirus .. 1090
Protocol comparison between antivirus inspection modes 1091
Other antivirus differences between inspection modes 1091
AI-based malware detection .. 1091
Proxy mode stream-based scanning .. 1092
Databases .. 1095
Content disarm and reconstruction ... 1096
FortiGuard outbreak prevention .. 1098
External malware block list ... 1100
Malware threat feed from EMS .. 1103
Checking flow antivirus statistics ... 1106
CIFS support ... 1108
Using FortiSandbox post-transfer scanning with antivirus 1113
Using FortiSandbox inline scanning with antivirus 1115
Using FortiNDR inline scanning with antivirus 1121

Web filter .. 1124
URL filter .. 1125
FortiGuard filter .. 1130
Credential phishing prevention .. 1136
Additional antiphishing settings .. 1139
Usage quota ... 1142
Web content filter .. 1144
Advanced filters 1 .. 1147
Advanced filters 2 .. 1150
Web filter statistics .. 1154
URL certificate blocklist .. 1155
Websense Integrated Services Protocol .. 1156
Inspecting HTTP3 traffic ... 1157

Video filter .. 1158
Filtering based on FortiGuard categories ... 1159
Filtering based on YouTube channel ... 1163

DNS filter .. 1166
DNS filter behavior in proxy mode ... 1167
FortiGuard DNS rating service ... 1167
Configuring a DNS filter profile ... 1168
FortiGuard category-based DNS domain filtering 1170
Botnet C&C domain blocking ... 1173
DNS safe search ... 1177
Local domain filter ... 1179
DNS translation ... 1182
Applying DNS filter to FortiGate DNS server ... 1185
DNS inspection with DoT and DoH .. 1186
Troubleshooting for DNS filter ... 1190
Application control ... 1192
Basic category filters and overrides .. 1193
Excluding signatures in application control profiles .. 1196
Port enforcement check ... 1198
Protocol enforcement ... 1199
SSL-based application detection over decrypted traffic in a sandwich topology 1201
Matching multiple parameters on application control signatures 1202
Application signature dissector for DNP3 .. 1204
Intrusion prevention .. 1205
Signature-based defense ... 1206
IPS configuration options .. 1210
IPS signature filter options .. 1214
IPS with botnet C&C IP blocking .. 1218
IPS signatures for the industrial security service .. 1222
IPS sensor for IEC 61850 MMS protocol .. 1223
SCTP filtering capabilities .. 1225
File filter .. 1227
Logs .. 1230
Supported file types ... 1232
Email filter .. 1234
Protocol comparison between email filter inspection modes 1234
Local-based filters .. 1235
FortiGuard-based filters ... 1242
Third-party-based filters ... 1244
Filtering order .. 1244
Protocols and actions .. 1246
Configuring webmail filtering ... 1247
Data leak prevention .. 1248
Protocol comparison between DLP inspection modes .. 1249
Logging and blocking files by file name ... 1249
Basic DLP settings .. 1249
DLP fingerprinting .. 1256
VoIP solutions .. 1261
General use cases .. 1261
NAT46 and NAT64 for SIP ALG .. 1265
SIP message inspection and filtering .. 1273
SIP pinholes .. 1275
SIP over TLS .. 1277
Voice VLAN auto-assignment ... 1278
Scanning MSRP traffic .. 1280
ICAP ... 1284
ICAP configuration example ... 1285
ICAP response filtering ... 1287
Secure ICAP clients ... 1289
ICAP scanning with SCP and FTP .. 1290
Integrate user information from EMS and Exchange connectors in the user store .. 1789
User definition and groups .. 1792
 Users .. 1792
 User groups ... 1794
Retail environment guest access ... 1801
User and user group timeouts .. 1804
LDAP servers .. 1805
 Configuring an LDAP server .. 1805
 Enabling Active Directory recursive search .. 1807
 Configuring LDAP dial-in using a member attribute ... 1808
 Configuring wildcard admin accounts .. 1809
 Configuring least privileges for LDAP admin account authentication in Active Directory 1810
 Tracking users in each Active Directory LDAP group .. 1811
 Tracking rolling historical records of LDAP user logins .. 1814
 Configuring client certificate authentication on the LDAP server ... 1817
RADIUS servers .. 1820
 Configuring a RADIUS server .. 1821
 Using multiple RADIUS servers .. 1822
 RADIUS AVPs and VSAs ... 1825
 Restricting RADIUS user groups to match selective users on the RADIUS server 1827
 Configuring RADIUS SSO authentication .. 1828
 RSA ACE (SecurID) servers ... 1834
 Support for Okta RADIUS attributes filter-IId and class ... 1838
 Sending multiple RADIUS attribute values in a single RADIUS Access-Request .. 1840
 Traffic shaping based on dynamic RADIUS VSAs ... 1841
 RADIUS Termination-Action AVP in wired and wireless scenarios ... 1848
TACACS+ servers .. 1852
SAML .. 1854
 Outbound firewall authentication for a SAML user .. 1854
 SAML SP for VPN authentication .. 1855
 Using a browser as an external user-agent for SAML authentication in an SSL VPN connection 1857
 SAML authentication in a proxy policy .. 1861
 Configuring SAML SSO in the GUI .. 1865
 Outbound firewall authentication with Azure AD as a SAML IdP .. 1871
Authentication settings .. 1882
FortiTokens .. 1884
 FortiToken Mobile quick start .. 1885
 FortiToken Cloud .. 1893
 Registering hard tokens ... 1893
 Managing FortiTokens .. 1895
 FortiToken Mobile Push ... 1897
 Troubleshooting and diagnosis .. 1899
Configuring the maximum log in attempts and lockout period ... 1902
PKI ... 1902
 Configuring a PKI user ... 1903
 Configuring firewall authentication .. 1906
Creating a locally authenticated user account .. 1907
Creating a RADIUS-authenticated user account ... 1907
Creating an FSSO user group .. 1908
Creating a firewall user group .. 1910
Defining policy addresses ... 1911
Creating security policies .. 1911
FSSO .. 1913
 FSSO polling connector agent installation ... 1915
 FSSO using Syslog as source ... 1918
 Configuring the FSSO timeout when the collector agent connection fails 1921
Authentication policy extensions .. 1923
Configuring the FortiGate to act as an 802.1X supplicant .. 1924
 Example ... 1924
Include usernames in logs .. 1926
 Install and configure FSSO Agent .. 1926
 Configure the FortiGate ... 1928
 Log, monitor, and report examples .. 1930
Wireless configuration .. 1934
Switch Controller .. 1935
System ... 1936
 Basic system settings .. 1936
 Advanced system settings ... 1936
 Operating modes ... 1937
 Administrators .. 1939
 Local authentication ... 1939
 Remote authentication for administrators .. 1940
 Administrator account options .. 1943
 REST API administrator .. 1945
 SSO administrators ... 1947
 FortiCloud SSO .. 1947
 Password policy ... 1948
 Public key SSH access .. 1950
 Administrator profiles ... 1951
 super_admin profile ... 1952
 Creating customized profiles ... 1952
 Edit profiles .. 1953
 Delete profiles ... 1953
 Fabric Management .. 1953
 About firmware installations ... 1954
 Firmware maturity levels ... 1955
 Upgrading individual device firmware .. 1957
 Upgrading individual device firmware by following the upgrade path (federated update) .. 1959
 Upgrading all device firmware ... 1960
 Upgrading all device firmware by following the upgrade path (federated update) .. 1962
 Authorizing devices ... 1965
 Firmware upgrade notifications .. 1967
Downloading a firmware image ... 1968
Testing a firmware version .. 1970
Installing firmware from system reboot 1971
Restoring from a USB drive ... 1973
Using controlled upgrades ... 1973
Downgrading individual device firmware 1974

Settings .. 1975
Default administrator password ... 1976
Changing the host name ... 1977
Setting the system time .. 1978
Configuring ports .. 1981
Setting the idle timeout time .. 1982
Setting the password policy .. 1983
Changing the view settings ... 1983
Setting the administrator password retries and lockout time 1984
TLS configuration .. 1984
Controlling return path with auxiliary session 1985
Email alerts ... 1989
Using configuration save mode ... 1993
Trusted platform module support 1994

Virtual Domains .. 1996
VDOM overview .. 1997
General configurations ... 2002
Inter-VDOM routing configuration example: Internet access ... 2009
Inter-VDOM routing configuration example: Partial-mesh VDOMs 2019

High Availability .. 2032
FortiGate Clustering Protocol (FGCP) 2032
FortiGate Session Life Support Protocol (FGSP) 2032
VRRP .. 2033
FGCP .. 2033
FGSP .. 2088
Standalone configuration synchronization 2109
VRRP .. 2114

SNMP .. 2126
Interface access ... 2127
MIB files ... 2127
SNMP agent ... 2128
SNMP v1/v2c communities .. 2128
SNMP v3 users ... 2130
Access control for SNMP ... 2131
Important SNMP traps .. 2133
SNMP traps and query for monitoring DHCP pool 2135

Replacement messages ... 2136
Modifying replacement messages 2136
Replacement message images ... 2138

Replacement message groups .. 2139
FortiGuard ... 2143
Configuring FortiGuard updates 2143

FortiOS 7.2.0 Administration Guide 14
Fortinet Inc.
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring a proxy server for FortiGuard updates</td>
<td>2144</td>
</tr>
<tr>
<td>Manual updates</td>
<td>2145</td>
</tr>
<tr>
<td>Automatic updates</td>
<td>2147</td>
</tr>
<tr>
<td>Scheduled updates</td>
<td>2148</td>
</tr>
<tr>
<td>Sending malware statistics to FortiGuard</td>
<td>2149</td>
</tr>
<tr>
<td>Update server location</td>
<td>2149</td>
</tr>
<tr>
<td>Filtering</td>
<td>2150</td>
</tr>
<tr>
<td>Online security tools</td>
<td>2152</td>
</tr>
<tr>
<td>FortiGuard anycast and third-party SSL validation</td>
<td>2152</td>
</tr>
<tr>
<td>Using FortiManager as a local FortiGuard server</td>
<td>2155</td>
</tr>
<tr>
<td>Cloud service communication statistics</td>
<td>2156</td>
</tr>
<tr>
<td>IoT detection service</td>
<td>2158</td>
</tr>
<tr>
<td>FortiAP query to FortiGuard IoT service to determine device details</td>
<td>2160</td>
</tr>
<tr>
<td>FortiGate Cloud / FDN communication through an explicit proxy</td>
<td>2161</td>
</tr>
<tr>
<td>FDS-only ISDB package in firmware images</td>
<td>2162</td>
</tr>
<tr>
<td>Licensing in air-gap environments</td>
<td>2163</td>
</tr>
<tr>
<td>Feature visibility</td>
<td>2165</td>
</tr>
<tr>
<td>Certificates</td>
<td>2166</td>
</tr>
<tr>
<td>Uploading a certificate using the GUI</td>
<td>2166</td>
</tr>
<tr>
<td>Uploading a certificate using the CLI</td>
<td>2169</td>
</tr>
<tr>
<td>Uploading a certificate using an API</td>
<td>2170</td>
</tr>
<tr>
<td>Procuring and importing a signed SSL certificate</td>
<td>2175</td>
</tr>
<tr>
<td>Microsoft CA deep packet inspection</td>
<td>2178</td>
</tr>
<tr>
<td>ACME certificate support</td>
<td>2183</td>
</tr>
<tr>
<td>Administrative access using certificates</td>
<td>2187</td>
</tr>
<tr>
<td>Creating certificates with XCA</td>
<td>2188</td>
</tr>
<tr>
<td>Configuration scripts</td>
<td>2195</td>
</tr>
<tr>
<td>Workspace mode</td>
<td>2195</td>
</tr>
<tr>
<td>Custom languages</td>
<td>2197</td>
</tr>
<tr>
<td>RAID</td>
<td>2198</td>
</tr>
<tr>
<td>FortiGate encryption algorithm cipher suites</td>
<td>2201</td>
</tr>
<tr>
<td>HTTPS access</td>
<td>2202</td>
</tr>
<tr>
<td>SSH access</td>
<td>2202</td>
</tr>
<tr>
<td>SSL VPN</td>
<td>2203</td>
</tr>
<tr>
<td>Fortinet Security Fabric</td>
<td>2206</td>
</tr>
<tr>
<td>Security Fabric settings and usage</td>
<td>2206</td>
</tr>
<tr>
<td>Components</td>
<td>2207</td>
</tr>
<tr>
<td>Configuring the root FortiGate and downstream FortiGates</td>
<td>2210</td>
</tr>
<tr>
<td>Configuring FortiAnalyzer</td>
<td>2217</td>
</tr>
<tr>
<td>Configuring FortiGate Cloud</td>
<td>2219</td>
</tr>
<tr>
<td>Configuring FortiAnalyzer Cloud service</td>
<td>2223</td>
</tr>
<tr>
<td>Configuring FortiManager</td>
<td>2227</td>
</tr>
<tr>
<td>Configuring FortiManager Cloud service</td>
<td>2229</td>
</tr>
<tr>
<td>Configuring Sandboxing</td>
<td>2230</td>
</tr>
<tr>
<td>Configuring FortiClient EMS</td>
<td>2236</td>
</tr>
<tr>
<td>Synchronizing FortiClient ZTNA tags</td>
<td>2249</td>
</tr>
<tr>
<td>Configuring FortiNAC</td>
<td>2252</td>
</tr>
<tr>
<td>Configuring FortiAP and FortiSwitch</td>
<td>2254</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Configuring FortiMail</td>
<td>2255</td>
</tr>
<tr>
<td>Configuring FortiNDR</td>
<td>2257</td>
</tr>
<tr>
<td>Configuring FortiDeceptor</td>
<td>2261</td>
</tr>
<tr>
<td>Configuring FortiWeb</td>
<td>2264</td>
</tr>
<tr>
<td>Configuring FortiTester</td>
<td>2266</td>
</tr>
<tr>
<td>Configuring FortiMonitor</td>
<td>2269</td>
</tr>
<tr>
<td>Configuring FortiVoice</td>
<td>2271</td>
</tr>
<tr>
<td>Using the Security Fabric</td>
<td>2275</td>
</tr>
<tr>
<td>Deploying the Security Fabric</td>
<td>2290</td>
</tr>
<tr>
<td>Deploying the Security Fabric in a multi-VDOM environment</td>
<td>2298</td>
</tr>
<tr>
<td>Synchronizing objects across the Security Fabric</td>
<td>2303</td>
</tr>
<tr>
<td>Security Fabric over IPsec VPN</td>
<td>2310</td>
</tr>
<tr>
<td>Leveraging LLDP to simplify Security Fabric negotiation</td>
<td>2316</td>
</tr>
<tr>
<td>Configuring the Security Fabric with SAML</td>
<td>2319</td>
</tr>
<tr>
<td>Configuring single-sign-on in the Security Fabric</td>
<td>2320</td>
</tr>
<tr>
<td>CLI commands for SAML SSO</td>
<td>2326</td>
</tr>
<tr>
<td>SAML SSO with pre-authorized FortiGates</td>
<td>2327</td>
</tr>
<tr>
<td>Navigating between Security Fabric members with SSO</td>
<td>2328</td>
</tr>
<tr>
<td>Integrating FortiAnalyzer management using SAML SSO</td>
<td>2330</td>
</tr>
<tr>
<td>Integrating FortiManager management using SAML SSO</td>
<td>2334</td>
</tr>
<tr>
<td>Advanced option - FortiGate SP changes</td>
<td>2336</td>
</tr>
<tr>
<td>Security rating</td>
<td>2337</td>
</tr>
<tr>
<td>Security Fabric score</td>
<td>2343</td>
</tr>
<tr>
<td>Automation stitches</td>
<td>2344</td>
</tr>
<tr>
<td>Creating automation stitches</td>
<td>2345</td>
</tr>
<tr>
<td>Triggers</td>
<td>2359</td>
</tr>
<tr>
<td>Actions</td>
<td>2375</td>
</tr>
<tr>
<td>Public and private SDN connectors</td>
<td>2428</td>
</tr>
<tr>
<td>Getting started with public and private SDN connectors</td>
<td>2429</td>
</tr>
<tr>
<td>AliCloud SDN connector using access key</td>
<td>2433</td>
</tr>
<tr>
<td>AWS SDN connector using certificates</td>
<td>2435</td>
</tr>
<tr>
<td>Azure SDN connector using service principal</td>
<td>2441</td>
</tr>
<tr>
<td>Cisco ACI SDN connector using a standalone connector</td>
<td>2442</td>
</tr>
<tr>
<td>ClearPass endpoint connector via FortiManager</td>
<td>2444</td>
</tr>
<tr>
<td>GCP SDN connector using service account</td>
<td>2447</td>
</tr>
<tr>
<td>IBM Cloud SDN connector using API keys</td>
<td>2449</td>
</tr>
<tr>
<td>Kubernetes (K8s) SDN connectors</td>
<td>2453</td>
</tr>
<tr>
<td>Nuage SDN connector using server credentials</td>
<td>2469</td>
</tr>
<tr>
<td>Nutanix SDN connector using server credentials</td>
<td>2471</td>
</tr>
<tr>
<td>OCI SDN connector using certificates</td>
<td>2473</td>
</tr>
<tr>
<td>OpenStack SDN connector using node credentials</td>
<td>2475</td>
</tr>
<tr>
<td>VMware ESXi SDN connector using server credentials</td>
<td>2479</td>
</tr>
<tr>
<td>VMware NSX-T Manager SDN connector using NSX-T Manager credentials</td>
<td>2481</td>
</tr>
<tr>
<td>Multiple concurrent SDN connectors</td>
<td>2484</td>
</tr>
<tr>
<td>Filter lookup in SDN connectors</td>
<td>2488</td>
</tr>
<tr>
<td>Support for wildcard SDN connectors in filter configurations</td>
<td>2490</td>
</tr>
<tr>
<td>Endpoint/Identity connectors</td>
<td>2492</td>
</tr>
<tr>
<td>Fortinet single sign-on agent</td>
<td>2492</td>
</tr>
<tr>
<td>Poll Active Directory server</td>
<td>2493</td>
</tr>
</tbody>
</table>
Symantec endpoint connector .. 2494
RADIUS single sign-on agent .. 2500
Exchange Server connector ... 2503
Threat feeds ... 2506
 External resources file format .. 2507
 Create a threat feed .. 2508
 Update history ... 2509
 EMS threat feed .. 2509
 External blocklist policy ... 2510
 External blocklist authentication ... 2511
 External blocklist file hashes ... 2512
 External resources for DNS filter ... 2513
 Threat feed connectors per VDOM 2517
 STIX format for external threat feeds 2521
Monitoring the Security Fabric using FortiExplorer for Apple TV 2523
 NOC and SOC example ... 2524
Troubleshooting .. 2534
 Viewing a summary of all connected FortiGates in a Security Fabric 2535
 Diagnosing automation stitches .. 2537

Log and Report ... 2541
Viewing event logs .. 2541
System Events log page ... 2543
Security Events log page ... 2546
Log settings and targets ... 2549
 Configuring logs in the CLI .. 2552
 Email alerts ... 2553
Threat weight .. 2554
Logging to FortiAnalyzer ... 2555
 FortiAnalyzer Reports page in the GUI 2555
 FortiAnalyzer log caching ... 2557
 Sending traffic logs to FortiAnalyzer Cloud 2560
 Configuring multiple FortiAnalyzers (or syslog servers) per VDOM 2562
 Configuring multiple FortiAnalyzers on a FortiGate in multi-VDOM mode 2564
Advanced and specialized logging .. 2566
 Logs for the execution of CLI commands 2567
 Log buffer on FortiGates with an SSD disk 2568
 Source and destination UUID logging 2571
 Configuring and debugging the free-style filter 2572
 Logging the signal-to-noise ratio and signal strength per client 2574
 RSSO information for authenticated destination users in logs 2576
 Destination user information in UTM logs 2579
Sample logs by log type ... 2583
Troubleshooting ... 2604
 Log-related diagnose commands 2605
 Backing up log files or dumping log messages 2610
 SNMP OID for logs that failed to send 2612
Troubleshooting

Troubleshooting methodologies
- Verify user permissions
- Establish a baseline
- Create a troubleshooting plan

Troubleshooting scenarios
- Checking the system date and time
- Checking the hardware connections
- Checking FortiOS network settings
- Troubleshooting CPU and network resources
- Troubleshooting high CPU usage
- Checking the modem status
- Running ping and traceroute
- Checking the logs
- Verifying routing table contents in NAT mode
- Verifying the correct route is being used
- Verifying the correct firewall policy is being used
- Checking the bridging information in transparent mode
- Checking wireless information
- Performing a sniffer trace or packet capture
- Debugging the packet flow
- Testing a proxy operation
- Displaying detail Hardware NIC information
- Performing a traffic trace
- Using a session table
- Finding object dependencies
- Diagnosing NPU-based interfaces
- Identifying the XAUI link used for a specific traffic stream
- Date and time settings

Verifying routing table contents in NAT mode

Verifying the correct route is being used

Verifying the correct firewall policy is being used

Checking the bridging information in transparent mode

Checking wireless information

Performing a sniffer trace or packet capture

Debugging the packet flow

Testing a proxy operation

Displaying detail Hardware NIC information

Performing a traffic trace

Using a session table

Finding object dependencies

Diagnosing NPU-based interfaces

Identifying the XAUI link used for a specific traffic stream

Date and time settings
Running the TAC report ... 2674
Using the process monitor .. 2675
Other commands .. 2677
ARP table .. 2677
IP address .. 2679
FortiGuard troubleshooting .. 2680
Verifying connectivity to FortiGuard .. 2680
Troubleshooting process for FortiGuard updates 2681
FortiGuard server settings ... 2681
View open and in use ports .. 2683
Additional resources ... 2684
Technical documentation ... 2684
Fortinet video library .. 2684
Release notes .. 2684
Fortinet Community .. 2684
Fortinet training services online campus 2684
Fortinet Support ... 2685
Change Log

<table>
<thead>
<tr>
<th>Date</th>
<th>Change Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022-03-31</td>
<td>Initial release.</td>
</tr>
<tr>
<td>2022-04-08</td>
<td>Added NAT46 and NAT64 policy and routing configurations on page 839.</td>
</tr>
<tr>
<td>2022-04-13</td>
<td>Added Configuring OS and host check on page 1747.</td>
</tr>
<tr>
<td>2022-04-14</td>
<td>Added Protocol options on page 916.</td>
</tr>
<tr>
<td>2022-04-21</td>
<td>Added Configuring FortiVoice on page 2271.</td>
</tr>
<tr>
<td>2022-04-25</td>
<td>Updated Using FortiSandbox inline scanning with antivirus on page 1115, Retail environment guest access on page 1801, Outbound firewall authentication with Azure AD as a SAML IdP on page 1871, and the DNS filter on page 1166 section.</td>
</tr>
<tr>
<td>2022-04-27</td>
<td>Added Configuring a proxy server for FortiGuard updates on page 2144. Updated Phase 1 configuration on page 1331.</td>
</tr>
<tr>
<td>2022-04-29</td>
<td>Updated SD-WAN rules on page 539.</td>
</tr>
<tr>
<td>2022-05-02</td>
<td>Updated Virtual Domains on page 1996 section.</td>
</tr>
<tr>
<td></td>
<td>Moved Inter-VDOM routing configuration example: Internet access on page 2009.</td>
</tr>
<tr>
<td>2022-05-03</td>
<td>Added Advanced and specialized logging on page 2566.</td>
</tr>
<tr>
<td></td>
<td>Updated Configuring FortiWeb on page 2264.</td>
</tr>
<tr>
<td>2022-05-04</td>
<td>Updated Configure FortiGate with FortiExplorer using BLE on page 48.</td>
</tr>
<tr>
<td>2022-05-12</td>
<td>Added Virtual VLAN switch on page 170.</td>
</tr>
<tr>
<td>2022-05-13</td>
<td>Added Basic RIPng example on page 337.</td>
</tr>
<tr>
<td>2022-05-17</td>
<td>Added Migrating from SSL VPN to ZTNA on page 1070.</td>
</tr>
<tr>
<td>2022-05-25</td>
<td>Added ZTNA session-based form authentication on page 1063.</td>
</tr>
<tr>
<td>2022-05-27</td>
<td>Added VIP groups on page 897.</td>
</tr>
<tr>
<td></td>
<td>Updated ZTNA TCP forwarding access proxy example on page 1003.</td>
</tr>
<tr>
<td>2022-05-31</td>
<td>Added SSL VPN with Azure AD SSO integration on page 1738.</td>
</tr>
<tr>
<td>2022-06-02</td>
<td>Added Physical interface on page 162 and Loopback interface on page 183.</td>
</tr>
<tr>
<td>Date</td>
<td>Change Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>2022-06-10</td>
<td>Updated Out-of-band management with reserved management interfaces on page 2049, ZTNA proxy access with SAML authentication example on page 1014, DDNS on page 208, and Proxy mode stream-based scanning on page 1092.</td>
</tr>
<tr>
<td>2022-06-15</td>
<td>Updated Restricted SaaS access on page 251.</td>
</tr>
<tr>
<td>2022-06-17</td>
<td>Updated Health check options on page 513.</td>
</tr>
<tr>
<td>2022-06-20</td>
<td>Updated Phase 1 configuration on page 1331, and IKE Mode Config clients on page 1430.</td>
</tr>
<tr>
<td>2022-06-30</td>
<td>Added Troubleshooting BGP on page 385.</td>
</tr>
<tr>
<td>2022-07-11</td>
<td>Added SSL VPN split DNS on page 1635. Updated HA active-active cluster setup on page 2039.</td>
</tr>
<tr>
<td>2022-07-12</td>
<td>Added Captive portals on page 160.</td>
</tr>
<tr>
<td>2022-07-15</td>
<td>Updated Configure FortiGate with FortiExplorer using BLE on page 48.</td>
</tr>
<tr>
<td>2022-07-20</td>
<td>Added LEDs on page 69.</td>
</tr>
<tr>
<td>2022-07-22</td>
<td>Added SSL VPN with Okta as SAML IdP on page 1732.</td>
</tr>
<tr>
<td>2022-07-27</td>
<td>Added Disabling the FortiGuard IP address rating on page 1309. Updated Administrators on page 1939.</td>
</tr>
<tr>
<td>2022-07-28</td>
<td>Added BFD on page 389 and BFD for multihop path for BGP on page 394.</td>
</tr>
<tr>
<td>2022-08-04</td>
<td>Updated System Events log page on page 2543 and Security Events log page on page 2546.</td>
</tr>
<tr>
<td>2022-09-27</td>
<td>Added ICAP scanning with SCP and FTP on page 1290.</td>
</tr>
<tr>
<td>2022-11-04</td>
<td>Updated Enhanced hashing for LAG member selection on page 181 and Access control lists on page 798.</td>
</tr>
<tr>
<td>2022-12-13</td>
<td>Updated NetFlow templates on page 436.</td>
</tr>
</tbody>
</table>
Getting started

This section explains how to get started with a FortiGate.

Differences between models

Not all FortiGates have the same features, particularly entry-level models (models 30 to 90). A number of features on these models are only available in the CLI.

Consult your model's QuickStart Guide, hardware manual, or the Feature / Platform Matrix for further information about features that vary by model.

FortiGate models differ principally by the names used and the features available:

- Naming conventions may vary between FortiGate models. For example, on some models the hardware switch interface used for the local area network is called *lan*, while on other units it is called *internal*.
- Certain features are not available on all models. Additionally, a particular feature may be available only through the CLI on some models, while that same feature may be viewed in the GUI on other models.

If you believe your FortiGate model supports a feature that does not appear in the GUI, go to *System > Feature Visibility* and confirm that the feature is enabled. For more information, see Feature visibility on page 2165.

Low encryption models

Some FortiGate models support a low encryption (LENC) license. With an LENC license, FortiGate devices are considered low encryption models and are identified by *LENC*, for example FG-100E-LENC.

LENC models cannot use or inspect high encryption protocols, such as 3DES and AES. LENC models only use 56-bit DES encryption to work with SSL VPN and IPsec VPN, and they are unable to perform SSL inspection.

For a list of FortiGate models that support an LENC license, see FortiGate LENC Models.

Using the GUI

This section presents an introduction to the graphical user interface (GUI) on your FortiGate.

The following topics are included in this section:

- Connecting using a web browser
- Menus
- Tables
Connecting using a web browser

In order to connect to the GUI using a web browser, an interface must be configured to allow administrative access over HTTPS or over both HTTPS and HTTP. By default, an interface has already been set up that allows HTTPS access with the IP address 192.168.1.99.

Browse to https://192.168.1.99 and enter your username and password. If you have not changed the admin account’s password, use the default user name, admin, and leave the password field blank.

The GUI will now display in your browser, and you will be required to provide a password for the administrator account.

To use a different interface to access the GUI:

1. Go to Network > Interfaces and edit the interface you wish to use for access. Take note of its assigned IP address.
2. In Administrative Access, select HTTPS, and any other protocol you require. You can also select HTTP, although this is not recommended as the connection will be less secure.
3. Click OK.
4. Browse to the IP address using your chosen protocol.
 The GUI will now be displayed in your browser.

Menus

If you believe your FortiGate model supports a menu that does not appear in the GUI, go to System > Feature Visibility and ensure the feature is enabled. For more information, see Feature visibility on page 2165.

The GUI contains the following main menus, which provide access to configuration options for most FortiOS features:

<table>
<thead>
<tr>
<th>Menu</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dashboard</td>
<td>The dashboard displays various widgets that display important system information and allow you to configure some system options. For more information, see Dashboards and Monitors on page 76.</td>
</tr>
<tr>
<td>Network</td>
<td>Options for networking, including configuring system interfaces and routing options. For more information, see Network on page 135.</td>
</tr>
<tr>
<td>Policy & Objects</td>
<td>Configure firewall policies, protocol options, and supporting content for policies, including schedules, firewall addresses, and traffic shapers. For more information, see Policy and Objects on page 759.</td>
</tr>
<tr>
<td>Security Profiles</td>
<td>Configure your FortiGate’s security features, including Antivirus, Web Filter, and Application Control.</td>
</tr>
</tbody>
</table>
For more information, see Security Profiles on page 1085.

VPN Configure options for IPsec and SSL virtual private networks (VPNs).
For more information, see IPsec VPNs on page 1330 and SSL VPN on page 1619.

User & Authentication Configure user accounts, groups, and authentication methods, including external authentication and single sign-on (SSO).

WiFi & Switch Controller Configure the unit to act as a wireless network controller, managing the wireless Access Point (AP) functionality of FortiWiFi and FortiAP units. On certain FortiGate models, this menu has additional features allowing for FortiSwitch units to be managed by the FortiGate.
For more information, see Wireless configuration on page 1934 and Switch Controller on page 1935.

System Configure system settings, such as administrators, HA, FortiGuard, and certificates.
For more information, see System on page 1936.

Security Fabric Access the physical topology, logical topology, automation, and settings of the Fortinet Security Fabric.
For more information, see Fortinet Security Fabric on page 2206.

Log & Report Configure logging and alert email as well as reports.
For more information, see Log and Report on page 2541.

Tables

Many GUI pages contain tables of information that can be filtered and customized to display specific information in a specific way. Some tables allow content to be edited directly on that table, or rows to be copied and pasted.

Navigation

Some tables contain information and lists that span multiple pages. Navigation controls will be available at the bottom of the page.

Filters

Filters are used to locate a specific set of information or content in a table. They can be particularly useful for locating specific log entries. The filtering options vary, depending on the type of information in the log.

Depending on the table content, filters can be applied using the filter bar, using a column filter, or based on a cell's content. Some tables allow filtering based on regular expressions.

Administrators with read and write access can define filters. Multiple filters can be applied at one time.
To manually create a filter:

1. Click Add Filter at the top of the table. A list of the fields available for filtering is shown.
2. Select the field to filter by.
3. Enter the value to filter by, adding modifiers as needed.
4. Press Enter to apply the filter.

To create a column filter:

1. Click the filter icon on the right side of the column header
2. Choose a filter type from the available options.
3. Enter the filter text, or select from the available values.
4. Click Apply.

To create a filter based on a cell's content:

1. Right click on a cell in the table.
2. Select a filtering option from the menu.

Column settings

Columns can be rearranged, resized, and added or removed from tables.

To add or remove columns:

1. Right a column header, or click the gear icon on the left side of the header row that appears when hovering the cursor over the headers.
2. Select columns to add or remove.
3. Click Apply.

To rearrange the columns in a table:

1. Click and drag the column header.

To resize a column:

1. Click and drag the right border of the column header.

To resize a column to fit its contents:

1. Click the dots or filter icon on the right side of the column header and select Resize to Contents.

To resize all of the columns in a table to fit their content:

1. Right a column header, or click the gear icon on the left side of the header row that appears when hovering the cursor over the headers.
2. Click Best Fit All Columns.
Getting started

To reset a table to its default view:

1. Right a column header, or click the gear icon on the left side of the header row that appears when hovering the cursor over the headers.
2. Click Reset Table.
 Resetting a table does not remove filters.

Editing objects

In some tables, parts of a configuration can be edited directly in the table. For example, security profiles can be added to an existing firewall policy by clicking the edit icon in a cell in the Security Profiles column.

Copying rows

In some tables, rows can be copied and pasted using the right-click menu. For example, a policy can be duplicated by copying and pasting it.

Entering values

Numerous fields in the GUI and CLI require text strings or numbers to be entered when configuring the FortiGate. When entering values in the GUI, you will be prevented from entering invalid characters, and a warning message will be shown explaining what values are not allowed. If invalid values are entered in a CLI command, the setting will be rejected when you apply it.

- Text strings on page 26
- Numbers on page 27

Text strings

Text strings are used to name entities in the FortiGate configuration. For example, the name of a firewall address, administrator, or interface are all text strings.

The following characters cannot be used in text strings, as they present cross-site scripting (XSS) vulnerabilities:

- " - double quotes
- ' - single quote
- > - greater than
- < - less than

Most GUI text fields prevent XSS vulnerable characters from being added.

VDOM names and hostnames can only use numbers (0-9), letters (a-z and A-Z), dashes, and underscores.

The tree CLI command can be used to view the number of characters allowed in a name field. For example, entering the following commands show that a firewall address name can contain up to 80 characters, while its FQDN can contain 256 characters:
Getting started

```
tree firewall address
-- [address] --*name  (80)
|  |uuid
|  |subnet
|  |type
|  |sub-type
|  |clearpass-spt
|  |[macaddr] --*macaddr  (128)
|  |start-ip
|  |end-ip
|  |fqdn  (256)
|  |country  (3)
|  |wildcard-fqdn  (256)
|  |cache-ttl  (0,86400)
|  |wildcard
|  |sdn  (36)
|  |[fsso-group] --*name  (512)
|  |interface  (36)
|  |tenant  (36)
|  |organization  (36)
|  |egp-name  (256)
|  |subnet-name  (256)
|  |sdn-tag  (16)
|  |policy-group  (16)
|  |obj-tag  (256)
|  |obj-type
|  |tag-detection-level  (16)
|  |tag-type  (64)
|  |dirty
|  |comment
|  |associated-interface  (36)
|  |color  (0,32)
|  |filter
|  |sdn-addr-type
|  |node-ip-only
|  |obj-id
|  |[list] --*ip  (36)
|  |  |obj-id  (128)
|  |  |+-- net-id  (128)
|  |  |[tagging] --*name  (64)
|  |  |  |category  (64)
|  |  |  |+-- [tags] --*name  (80)
|  |  |allow-routing
|  |  |+-- fabric-object
```

Numbers

Numbers are used to set sizes, rated, addresses, port numbers, priorities, and other such numeric values. They can be entered as a series of digits (without commas or spaces), in a dotted decimal format (such as IP addresses), or separated by colons (such as MAC addresses). Most numeric values use base 10 numbers, while some use hexadecimal values.

Most GUI and CLI fields prevent invalid numbers from being entered. The CLI help text includes information about the range of values allowed for applicable settings.
GUI-based global search

The global search option in the GUI allows users to search for keywords appearing in objects and navigation menus to quickly access the object and configuration page. Click the magnifying glass icon in the top-left corner of the banner to access the global search.

The global search includes the following features:

- Keep a history of frequent and recent searches
- Sort results alphabetically by increasing or decreasing order, and relevance by search weight
- Search by category
- Search in Security Fabric members (accessed by the Security Fabric members dropdown menu in the banner)

Examples

In this example, searching for the word ZTNA yields the following results:

- Firewall policy object 9, which contains ZTNA in the property value, *Name*. The name of the policy is ZTNA-TCP.
- ZTNA server object ZTNA-webserver, which contains ZTNA in the property value, *Name*.
- ZTNA navigation menu item under *Policy & Objects > ZTNA*.

Since CMDB objects have a higher search weight (50) than navigation objects (20), the navigation menu result appears at the bottom.

In this example, searching for the address 10.88.0.1 yields the following results:

- Address object *EMS* that has a subnet of 10.88.0.1/32, which matches the search term.
- Virtual IP object *Telemetry-VIP* that has a mapped IP range of 10.88.0.1, which matches the search term.
- Address objects *all, FIREWALL_AUTH_PORTAL_ADDRESS*, and *FABRICDEVICE* that have IP subnets of 0.0.0.0/0, which the searched term falls into.
- Address group object *All_Grp* that contains members addresses that have IP subnets of 0.0.0.0/0, which the searched term falls into.

Sorting by *Relevance* will display address objects that are more closely matched at the top (10.88.0.1), and more loosely matched at the bottom (0.0.0.0).
Loading artifacts from a CDN

To improve GUI performance, loading static GUI artifacts cached in CDN (content delivery network) servers closer to the user instead of the FortiGate can be enabled. This allows the GUI to load more quickly with less latency for administrators who are accessing the FortiGate remotely. Upon failure, the files fall back to loading from the FortiGate. The CDN is only used after successful administrator logins.

To configure loading static GUI files from a CDN:

```
config system global
  set gui-cdn-usage {enable | disable}
end
```

Using the CLI

The Command Line Interface (CLI) can be used in lieu of the GUI to configure the FortiGate. Some settings are not available in the GUI, and can only be accessed using the CLI.

This section briefly explains basic CLI usage. For more information about the CLI, see the FortiOS CLI Reference.

- Connecting to the CLI on page 29
- CLI basics on page 32
- Command syntax on page 38
- Subcommands on page 41
- Permissions on page 43

Connecting to the CLI

You can connect to the CLI using a direct console connection, SSH, the FortiExplorer app on your iOS device, or the CLI console in the GUI.

You can access the CLI outside of the GUI in three ways:
- **Console connection**: Connect your computer directly to the console port of your FortiGate.
- **SSH access**: Connect your computer through any network interface attached to one of the network ports on your FortiGate.
- **FortiExplorer**: Connect your device to the FortiExplorer app on your iOS device to configure, manage, and monitor your FortiGate. See FortiExplorer management on page 43 for details.

To open a CLI console, click the > icon in the top right corner of the GUI. The console opens on top of the GUI. It can be minimized and multiple consoles can be opened.

To edit policies and objects directly in the CLI, right-click on the element and select *Edit in CLI*.

Console connection

A direct console connection to the CLI is created by directly connecting your management computer or console to the FortiGate using its DB-9 or RJ-45 console port.

Direct console access to the FortiGate may be required if:

- You are installing the FortiGate for the first time and it is not configured to connect to your network.
- You are restoring the firmware using a boot interrupt. Network access to the CLI will not be available until after the boot process has completed, making direct console access the only option.

To connect to the FortiGate console, you need:

- A console cable to connect the console port on the FortiGate to a communications port on the computer. Depending on your device, this is one of:
 - null modem cable (DB-9 to DB-9)
 - DB-9 to RJ-45 cable (a DB-9-to-USB adapter can be used)
 - USB to RJ-45 cable
- A computer with an available communications port
- Terminal emulation software

To connect to the CLI using a direct console connection:

1. Using the console cable, connect the FortiGate unit’s console port to the serial communications (COM) port on your management computer.
2. Start a terminal emulation program on the management computer, select the COM port, and use the following settings:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits per second</td>
<td>9600</td>
</tr>
<tr>
<td>Data bits</td>
<td>8</td>
</tr>
<tr>
<td>Parity</td>
<td>None</td>
</tr>
<tr>
<td>Stop bits</td>
<td>1</td>
</tr>
<tr>
<td>Flow control</td>
<td>None</td>
</tr>
</tbody>
</table>

3. Press *Enter* on the keyboard to connect to the CLI.
4. Log in to the CLI using your username and password (default: *admin* and no password). You can now enter CLI commands, including configuring access to the CLI through SSH.
SSH access

SSH access to the CLI is accomplished by connecting your computer to the FortiGate using one of its network ports. You can either connect directly, using a peer connection between the two, or through any intermediary network.

If you do not want to use an SSH client and you have access to the GUI, you can access the CLI through the network using the CLI console in the GUI.

SSH must be enabled on the network interface that is associated with the physical network port that is used.

If your computer is not connected either directly or through a switch to the FortiGate, you must also configure the FortiGate with a static route to a router that can forward packets from the FortiGate to the computer. This can be done using a local console connection, or in the GUI.

To connect to the FortiGate CLI using SSH, you need:

- A computer with an available serial communications (COM) port and RJ-45 port
- An appropriate console cable
- Terminal emulation software
- A network cable
- Prior configuration of the operating mode, network interface, and static route.

To enable SSH access to the CLI using a local console connection:

1. Using the network cable, connect the FortiGate unit’s port either directly to your computer’s network port, or to a network through which your computer can reach the FortiGate.
2. Note the number of the physical network port.
3. Using direct console connection, connect and log into the CLI.
4. Enter the following command:

```bash
config system interface
   edit <interface_str>
      append allowaccess ssh
   next
end
```

Where `<interface_str>` is the name of the network interface associated with the physical network port, such as `port1`.

5. Confirm the configuration using the following command to show the interface’s settings:

```bash
show system interface <interface_str>
```

For example:

```bash
show system interface port1
   config system interface
      edit "port1"
      set vdom "root"
      set ip 192.168.1.99 255.255.255.0
      set allowaccess ping https ssh
      set type hard-switch
      set stp enable
      set role lan
```
Connecting using SSH

Once the FortiGate is configured to accept SSH connections, use an SSH client on your management computer to connect to the CLI.

The following instructions use PuTTY. The steps may vary in other terminal emulators.

To connect to the CLI using SSH:

1. On your management computer, start PuTTY.
2. In the Host Name (or IP address) field, enter the IP address of the network interface that you are connected to and that has SSH access enabled.
3. Set the port number to 22, if it is not set automatically.
4. Select SSH for the Connection type.
5. Click Open. The SSH client connect to the FortiGate.
 The SSH client may display a warning if this is the first time that you are connecting to the FortiGate and its SSH key is not yet recognized by the SSH client, or if you previously connected to the FortiGate using a different IP address or SSH key. This is normal if the management computer is connected directly to the FortiGate with no network hosts in between.
6. Click Yes to accept the FortiGate's SSH key.
 The CLI displays the log in prompt.
7. Enter a valid administrator account name, such as admin, then press Enter.
8. Enter the administrator account password, then press Enter.
 The CLI console shows the command prompt (FortiGate hostname followed by a #). You can now enter CLI commands.

If three incorrect log in or password attempts occur in a row, you will be disconnected. If this occurs, wait for one minute, then reconnect and attempt to log in again.

CLI basics

Basic features and characteristics of the CLI environment provide support and ease of use for many CLI tasks.

Help

Press the question mark (?) key to display command help and complete commands.

- Press the question mark (?) key at the command prompt to display a list of the commands available and a description of each command.
- Enter a command followed by a space and press the question mark (?) key to display a list of the options available for that command and a description of each option.
- Enter a command followed by an option and press the question mark (?) key to display a list of additional options available for that command option combination and a description of each option.
• Enter a question mark after entering a portion of a command to see a list of valid complete commands and their descriptions. If there is only one valid command, it will be automatically filled in.

Shortcuts and key commands

<table>
<thead>
<tr>
<th>Shortcut key</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>List valid complete or subsequent commands.</td>
</tr>
<tr>
<td></td>
<td>If multiple commands can complete the command, they are listed with their descriptions.</td>
</tr>
<tr>
<td>Tab</td>
<td>Complete the word with the next available match.</td>
</tr>
<tr>
<td></td>
<td>Press multiple times to cycle through available matches.</td>
</tr>
<tr>
<td>Up arrow or Ctrl + P</td>
<td>Recall the previous command.</td>
</tr>
<tr>
<td></td>
<td>Command memory is limited to the current session.</td>
</tr>
<tr>
<td>Down arrow, or Ctrl + N</td>
<td>Recall the next command.</td>
</tr>
<tr>
<td>Left or Right arrow</td>
<td>Move the cursor left or right within the command line.</td>
</tr>
<tr>
<td>Ctrl + A</td>
<td>Move the cursor to the beginning of the command line.</td>
</tr>
<tr>
<td>Ctrl + E</td>
<td>Move the cursor to the end of the command line.</td>
</tr>
<tr>
<td>Ctrl + B</td>
<td>Move the cursor backwards one word.</td>
</tr>
<tr>
<td>Ctrl + F</td>
<td>Move the cursor forwards one word.</td>
</tr>
<tr>
<td>Ctrl + D</td>
<td>Delete the current character.</td>
</tr>
<tr>
<td>Ctrl + C</td>
<td>Abort current interactive commands, such as when entering multiple lines.</td>
</tr>
<tr>
<td></td>
<td>If you are not currently within an interactive command such as <code>config</code> or <code>edit</code>, this closes the CLI connection.</td>
</tr>
<tr>
<td>\ then Enter</td>
<td>Continue typing a command on the next line for a multiline command.</td>
</tr>
<tr>
<td></td>
<td>For each line that you want to continue, terminate it with a backslash (). To complete the command, enter a space instead of a backslash, and then press <code>Enter</code>.</td>
</tr>
</tbody>
</table>

Command tree

Enter `tree` to display the CLI command tree. To capture the full output, connect to your device using a terminal emulation program and capture the output to a log file. For some commands, use the `tree` command to view all available variables and subcommands.

Command abbreviation

You can abbreviate words in the command line to their smallest number of non-ambiguous characters.

For example, the command `get system status` could be abbreviated to `g sy stat.`
Adding and removing options from lists

When configuring a list, the `set` command will remove the previous configuration.

For example, if a user group currently includes members A, B, and C, the command `set member D` will remove members A, B, and C. To avoid removing the existing members from the group, the command `set members A B C D` must be used.

To avoid this issue, the following commands are available:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>append</code></td>
<td>Add an option to an existing list.</td>
</tr>
<tr>
<td></td>
<td>For example, <code>append member D</code> adds user D to the user group without removing any of the existing members.</td>
</tr>
<tr>
<td><code>select</code></td>
<td>Clear all of the options except for those specified.</td>
</tr>
<tr>
<td></td>
<td>For example, <code>select member B</code> removes all member from the group except for member B.</td>
</tr>
<tr>
<td><code>unselect</code></td>
<td>Remove an option from an existing list.</td>
</tr>
<tr>
<td></td>
<td>For example, <code>unselect member C</code> removes only member C from the group, without affecting the other members.</td>
</tr>
</tbody>
</table>

Environment variables

The following environment variables are support by the CLI. Variable names are case-sensitive.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>$USERFROM</code></td>
<td>The management access type (<code>ssh</code>, <code>jsconsole</code>, and so on) and the IPv4 address of the administrator that configured the item.</td>
</tr>
<tr>
<td><code>$USERNAME</code></td>
<td>The account name of the administrator that configured the item.</td>
</tr>
<tr>
<td><code>$SerialNum</code></td>
<td>The serial number of the FortiGate.</td>
</tr>
</tbody>
</table>

For example, to set a FortiGate device's host name to its serial number, use the following CLI command:

```plaintext
config system global
  set hostname $SerialNum
end
```

Special characters

The following characters cannot be used in most CLI commands: `<`, `>`, `,`, `#`, `\`, and "

If one of those characters, or a space, needs to be entered as part of a string, it can be entered by using a special command, enclosing the entire string in quotes, or preceding it with an escape character (backslash, `\`).

To enter a question mark (?) or a tab, `Ctrl + V` or `Ctrl + Shift + +` must be entered first.

Question marks and tabs cannot be copied into the CLI Console or some SSH clients. They must be typed in.
Character Keys

- **?**
 Ctrl + V or Ctrl + Shift + then ?

- **Tab**
 Ctrl + V then Tab

- **Space**
 Enclose the string in single or double quotation marks: "Security Administrator" or 'Security Administrator'.
 Precede the space with a backslash: Security\ Administrator.

- **'**
 (as part of a string value, not to begin or end the string)

- **"**
 (as part of a string value, not to begin or end the string)

- ****
 (as part of a string value, not to end the string)

- ****
 (as part of a string value, not to begin or end the string)

Using `grep` to filter command output

The `get`, `show`, and `diagnose` commands can produce large amounts of output. The `grep` command can be used to filter the output so that it only shows the required information.

The `grep` command is based on the standard UNIX `grep`, used for searching text output based on regular expressions.

For example, the following command displays the MAC address of the internal interface:

```bash
get hardware nic internal | grep Current_HWaddr
Current_HWaddr 00:09:0f:cb:c2:75
```

The following command will display all TCP sessions that are in the session list, including the session list line number in the output:

```bash
get system session list | grep -n tcp
```

The following command will display all of the lines in the HTTP replacement message that contain `URL` or `url`:

```bash
show system replacemsg http | grep -i url
```

The following options can also be used:

- `-A <num>` After
- `-B <num>` Before
- `-C <num>` Context

The `-f` option is available to support contextual output, in order to show the complete configuration. The following example shows the difference in the output when `-f` is used versus when it is not used:

Without `-f`:

- `show` | `grep ldap-group1`
- `edit "ldap-group1"`
- `set groups "ldap-group1"

With `-f`:

- `show` | `grep -f ldap-group1`
- `config user group`
- `edit "ldap-group1"`
set member "pc40-LDAP"
next
end
config firewall policy
edit 2
set srcintf "port31"
set dstintf "port32"
set srcaddr "all"
set action accept
set identity-based enable
set nat enable
config identity-based-policy
edit 1
set schedule "always"
set groups "ldap-group1"
set dstaddr "all"
set service "ALL"
next
end
next
end

Language support and regular expressions

Characters such as ñ and é, symbols, and ideographs are sometimes acceptable input. Support varies depending on the type of item that is being configured. CLI commands, objects, field names, and options must use their exact ASCII characters, but some items with arbitrary names or values can be input using your language of choice. To use other languages in those cases, the correct encoding must be used.

Input is stored using Unicode UTF-8 encoding, but is not normalized from other encodings into UTF-8 before it is stored. If your input method encodes some characters differently than in UTF-8, configured items may not display or operate as expected.

Regular expressions are especially impacted. Matching uses the UTF-8 character values. If you enter a regular expression using a different encoding, or if an HTTP client sends a request in a different encoding, matches may not be what is expected.

For example, with Shift-JIS, backslashes could be inadvertently interpreted as the symbol for the Japanese yen (¥), and vice versa. A regular expression intended to match HTTP requests containing monetary values with a yen symbol may not work if the symbol is entered using the wrong encoding.

For best results:
- use UTF-8 encoding, or
- use only characters whose numerically encoded values are the same in UTF-8, such as the US-ASCII characters that are encoded using the same values in ISO 8859-1, Windows code page 1252, Shift-JIS, and other encoding methods, or
- for regular expressions that must match HTTP requests, use the same encoding as your HTTP clients.
HTTP clients may send requests in encodings other than UTF-8. Encodings usually vary based on the client’s operating system or input language. If the client's encoding method cannot be predicted, you might only be able to match the parts of the request that are in English, as the values for English characters tend to be encoded identically, regardless of the encoding method.

If the FortiGate is configured to use an encoding method other than UTF-8, the management computer's language may need to be changed, including the web browse and terminal emulator. If the FortiGate is configured using non-ASCII characters, all the systems that interact with the FortiGate must also support the same encoding method. If possible, the same encoding method should be used throughout the configuration to avoid needing to change the language settings on the management computer.

The GUI and CLI client normally interpret output as encoded using UTF-8. If they do not, configured items may not display correctly. Exceptions include items such as regular expression that may be configured using other encodings to match the encoding of HTTP requests that the FortiGate receives.

To enter non-ASCII characters in a terminal emulator:

1. On the management computer, start the terminal client.
2. Configure the client to send and receive characters using UTF-8 encoding.
 Support for sending and receiving international characters varies by terminal client.
3. Log in to the FortiGate.
4. At the command prompt, type your command and press Enter.
 Words that use encoded characters may need to be enclosed in single quotes (’).
 Depending on your terminal client’s language support, you may need to interpret the characters into character codes before pressing Enter. For example, you might need to enter: `edit \743\601\613\743\601\652`
5. The CLI displays the command and its output.

Screen paging

By default, the CLI will pause after displaying each page worth of text when a command has multiple pages of output. this can be useful when viewing lengthy outputs that might exceed the buffer of terminal emulator.

When the display pauses and shows --More--, you can:

- Press Enter to show the next line,
- Press Q to stop showing results and return to the command prompt,
- Press an arrow key, Insert, Home, Delete, End, Page Up, or Page Down to show the next few pages,
- Press any other key to show the next page, or
- Wait for about 30 seconds for the console to truncate the output and return to the command prompt.

When pausing the screen is disabled, press Ctrl + C to stop the output and log out of the FortiGate.

To disable pausing the CLI output:

```
config system console
  set output standard
end
```
Getting started

To enable pausing the CLI output:

```bash
cfg system console
  set output more
end
```

Changing the baud rate

The baud rate of the local console connection can be changed from its default value of 9600.

To change the baud rate:

```bash
cfg system console
  set baudrate {9600 | 19200 | 38400 | 57600 | 115200}
end
```

Editing the configuration file

The FortiGate configuration file can be edited on an external host by backing up the configuration, editing the configuration file, and then restoring the configuration to the FortiGate.

Editing the configuration file can save time is many changes need to be made, particularly if the plain text editor that you are using provides features such as batch changes.

To edit the configuration file:

1. Backup the configuration. See Configuration backups on page 65 for details.
2. Open the configuration file in a plain text editor that supports UNIX-style line endings.
3. Edit the file as needed.

 Do not edit the first line of the configuration file. This line contains information about the firmware version and FortiGate model. If you change the model number, the FortiGate will reject the configuration when you attempt to restore it.

4. Restore the modified configuration to the FortiGate. See Configuration backups on page 65 for details.
 The FortiGate downloads the configuration file and checks that the model information is correct. If it is correct, the configuration file is loaded and each line is checked for errors. If a command is invalid, that command is ignored. If the configuration file is valid, the FortiGate restarts and loads the downloaded configuration.

Command syntax

When entering a command, the CLI console requires that you use valid syntax and conform to expected input constraints. It rejects invalid commands. Indentation is used to indicate the levels of nested commands.

Each command line consists of a command word, usually followed by configuration data or a specific item that the command uses or affects.
Notation

Brackets, vertical bars, and spaces are used to denote valid syntax. Constraint notations, such as `<address_ipv4>`, indicate which data types or string patterns are acceptable value input.

All syntax uses the following conventions:

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle brackets <code>< ></code></td>
<td>Indicate a variable of the specified data type.</td>
</tr>
<tr>
<td>Curly brackets {}</td>
<td>Indicate that a variable or variables are mandatory.</td>
</tr>
<tr>
<td>Square brackets []</td>
<td>Indicate that the variable or variables are optional.</td>
</tr>
<tr>
<td></td>
<td>For example:</td>
</tr>
<tr>
<td></td>
<td><code>show system interface [<name_str>]</code></td>
</tr>
<tr>
<td></td>
<td>To show the settings for all interfaces, you can enter <code>show system interface</code></td>
</tr>
<tr>
<td></td>
<td>To show the settings for the Port1 interface, you can enter <code>show system interface port1</code></td>
</tr>
<tr>
<td>**Vertical bar</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>For example:</td>
</tr>
<tr>
<td></td>
<td>`set protocol {ftp</td>
</tr>
<tr>
<td></td>
<td>You can enter either <code>set protocol ftp</code> or <code>set protocol sftp</code>.</td>
</tr>
<tr>
<td>Space</td>
<td>A space separates non-mutually exclusive options.</td>
</tr>
<tr>
<td></td>
<td>For example:</td>
</tr>
<tr>
<td></td>
<td><code>set allowaccess {ping https ssh snmp http fgfm radius-acct probe-response capwap ftm}</code></td>
</tr>
<tr>
<td></td>
<td>You can enter any of the following:</td>
</tr>
<tr>
<td></td>
<td><code>set allowaccess ping</code></td>
</tr>
<tr>
<td></td>
<td><code>set allowaccess https ping ssh</code></td>
</tr>
<tr>
<td></td>
<td><code>set allowaccess http https snmp ssh ping</code></td>
</tr>
<tr>
<td></td>
<td>In most cases, to make changes to lists that contain options separated by spaces, you need to retype the entire list, including all the options that you want to apply and excluding all the options that you want to remove.</td>
</tr>
</tbody>
</table>

Optional values and ranges

Any field that is optional will use square-brackets. The overall config command will still be valid whether or not the option is configured.

Square-brackets can be used is to show that multiple options can be set, even intermixed with ranges. The following example shows a field that can be set to either a specific value or range, or multiple instances:

```plaintext
config firewall service custom
    set iprange <range1> [<range2> <range3> ...]
end
```

next

The `next` command is used to maintain a hierarchy and flow to CLI commands. It is at the same indentation level as the preceding `edit` command, to mark where a table entry finishes.
The following example shows the next command used in the subcommand entries:

```
config dlp filepattern
   edit <1>
     set name <name>
     set comment [comment]
     config entries
       edit <2>
       | set filter-type {pattern | type}
       next
     <--
```

After configuring table entry <2> then entering next, the <2> table entry is saved and the console returns to the entries prompt:

```
FGT60E1Q23456789 (entries) #
```

You can now create more table entries as needed, or enter end to save the table and return to the filepattern table element prompt.

```
end
```

The end command is used to maintain a hierarchy and flow to CLI commands.

The following example shows the same command and subcommand as the next command example, except end has been entered instead of next after the subcommand:

```
config dlp filepattern
   edit <1>
     set name <name>
     set comment [comment]
     config entries
       edit <2>
       | set filter-type {pattern | type}
       end
     <--
```

Entering end will save the <2> table entry and the table, and exit the entries subcommand entirely. The console returns to the filepattern table element prompt:

```
FGT60E1Q23456789 (1) #
```
Subcommands

Subcommands are available from within the scope of some commands. When you enter a subcommand level, the command prompt changes to indicate the name of the current command scope. For example, after entering:

```
config system admin
```

the command prompt becomes:

```
(admin)#
```

Applicable subcommands are available until you exit the command, or descend an additional level into another subcommand. Subcommand scope is indicated by indentation.

For example, the `edit` subcommand is only available in commands that affects tables, and the `next` subcommand is available only in the `edit` subcommand:

```
config system interface
  edit port1
  set status up
next
end
```

The available subcommands vary by command. From a command prompt under the `config` command, subcommands that affect tables and fields could be available.

Table subcommands

| `edit <table_row>` | Create or edit a table value. In objects such as security policies, `<table_row>` is a sequence number. To create a new table entry without accidentally editing an existing entry, enter `edit 0`. The CLI will confirm that creation of entry 0, but will assign the next unused number when the entry is saved after entering `end` or `next`. For example, to create a new firewall policy, enter the following commands:

```
config firewall policy
  edit 0
  ....
next
end
```

To edit an existing policy, enter the following commands:

```
config firewall policy
  edit 27
  ....
next
end
```
The `edit` subcommand changes the command prompt to the name of the table value that is being edited.

| `delete <table_row>` | Delete a table value. For example, to delete firewall policy 30, enter the following commands:

```
config firewall policy
  delete 30
end
```
Getting started

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>purge</code></td>
<td>Clear all table values. The <code>purge</code> command cannot be undone. To restore purged table values, the configuration must be restored from a backup.</td>
</tr>
<tr>
<td><code>move</code></td>
<td>Move an ordered table value. In the firewall policy table, this equivalent to dragging a policy into a new position. It does not change the policy's ID number. For example, to move policy 27 to policy 30, enter the following commands: <code>config firewall policy move 27 to 30</code> end The <code>move</code> subcommand is only available in tables where the order of the table entries matters.</td>
</tr>
<tr>
<td><code>clone <table_row> to <table_row></code></td>
<td>Make a clone of a table entry. For example, to create firewall policy 30 as a clone of policy 27, enter the following commands: <code>config firewall policy clone 27 to 30</code> end The <code>clone</code> subcommand may not be available for all tables.</td>
</tr>
<tr>
<td><code>rename <table_row> to <table_row></code></td>
<td>Rename a table entry. For example to rename an administrator from Flank to Frank, enter the following commands: <code>config system admin rename Flank to Frank</code> end The <code>rename</code> subcommand is only available in tables where the entries can be renamed.</td>
</tr>
<tr>
<td><code>get</code></td>
<td>List the current table entries. For example, to view the existing firewall policy table entries, enter the following commands: <code>config firewall policy get</code></td>
</tr>
<tr>
<td><code>show</code></td>
<td>Show the configuration. Only table entries that are not set to default values are shown.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Save the configuration and exit the current <code>config</code> command.</td>
</tr>
</tbody>
</table>

Purging the `system`, `interface` or `system admin` tables does not reset default table values. This can result in being unable to connect to or log in to the FortiGate, requiring the FortiGate to be formatted and restored.

Field subcommands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>set <field> <value></code></td>
<td>Modify the value of a field.</td>
</tr>
</tbody>
</table>
For example, the command `set fsso enable` sets the `fsso` field to the value `enable`.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>unset</td>
<td>Set the field to its default value.</td>
</tr>
<tr>
<td>select</td>
<td>Clear all of the options except for those specified. For example, if a group contains members A, B, C, and D, to remove all members except for B, use the command <code>select member B</code>.</td>
</tr>
<tr>
<td>unselect</td>
<td>Remove an option from an existing list. For example, if a group contains members A, B, C, and D, to remove only member B, use the command <code>unselect member B</code>.</td>
</tr>
<tr>
<td>append</td>
<td>Add an option to an existing multi-option table value.</td>
</tr>
<tr>
<td>clear</td>
<td>Clear all the options from a multi-option table value.</td>
</tr>
<tr>
<td>get</td>
<td>List the configuration of the current table entry, including default and customized values.</td>
</tr>
<tr>
<td>show</td>
<td>Show the configuration. Only values that are not set to default values are shown.</td>
</tr>
<tr>
<td>next</td>
<td>Save changes to the table entry and exit the <code>edit</code> command so that you can configure the next table entry.</td>
</tr>
<tr>
<td>abort</td>
<td>Exit the command without saving.</td>
</tr>
<tr>
<td>end</td>
<td>Save the configuration and exit the current <code>config</code> command.</td>
</tr>
</tbody>
</table>

Permissions

Administrator (or access) profiles control what CLI commands an administrator can access by assigning read, write, or no access to each area of FortiOS. For information, see Administrator profiles on page 1951.

Read access is required to view configurations. Write access is required to make configuration changes. Depending on your account's profile, you may not have access to all CLI commands. To have access to all CLI commands, an administrator account with the `super_admin` profile must be used, such as the `admin` account.

Accounts assigned the `super_admin` profile are similar to the root administrator account. They have full permission to view and change all FortiGate configuration options, including viewing and changing other administrator accounts.

To increase account security, set strong passwords for all administrator accounts, and change the passwords regularly.

FortiExplorer management

FortiExplorer for iOS is a user-friendly application that helps you to rapidly provision, deploy, and monitor Security Fabric components from your iOS device.
FortiExplorer for iOS requires iOS 10.0 or later and is compatible with iPhone, iPad, and Apple TV. It is supported by FortiOS 5.6 and later, and is available on the App Store for iOS devices.

FortiExplorer is also available for support on Android on the Google Play Store. Steps for configuring FortiExplorer for Android may differ from what is included in the guide.

Advanced features are available with the purchase of FortiExplorer Pro. Paid features include the ability to add more than two devices, and firmware upgrades for devices with active licenses.

Up to six members can use this app with 'Family Sharing' enabled in the App Store.

Firmware upload requires a valid firmware license. Users can download firmware for models with a valid support contract.

Getting started with FortiExplorer

If your FortiGate is accessible on a wireless network, you can connect to it using FortiExplorer provided that your iOS device is on the same network. See Connecting FortiExplorer to a FortiGate with WIFI. If your 200F series or 80F series FortiGate is in close proximity, you can connect to it using FortiExplorer using Bluetooth Low Energy (BLE). See Configure FortiGate with FortiExplorer using BLE on page 48. Otherwise, you will need to physically connect your iOS device to the FortiGate using a USB cable.

To connect and configure a FortiGate with FortiExplorer using a USB connection:

1. Connect your iOS device to your FortiGate USB A port. If prompted on your iOS device, Trust this computer.
2. Open FortiExplorer and select your FortiGate from the FortiGate Devices list. A blue USB icon will indicate that you are connected over a USB connection.
3. On the Login screen, select USB.
4. Enter the default Username (admin) and leave the Password field blank.
5. Optionally, select Remember Password.
6. Tap Done when you are ready.

FortiExplorer opens the FortiGate management interface to the Device Status page:

7. Go to Network > Interfaces and configure the WAN interface or interfaces.
8. The wan1 interface Address mode is set to DHCP by default. Set it to Manual and enter its Address, Netmask, and Default Gateway, and then Apply your changes.

9. Optionally, configure Administrative Access to allow HTTPS access. This will allow administrators to access the FortiGate GUI using a web browser.
10. Go to Network > Interfaces and configure the local network (internal) interface.
11. Set the Address mode as before and configure Administrative Access if required.
12. Configure a DHCP Server for the internal network subnet.
13. Return to the internal interface using the < button at the top of the screen.
14. Go to Network > Static Routes and configure the static route to the gateway.
15. Go to Policy & Objects > Firewall Policy and edit the Internet access policy. Enter a Name for the policy, enable the required Security Profiles, configure Logging Options, then tap OK.
Getting started

Connecting FortiExplorer to a FortiGate with WiFi

You can wirelessly connect to the FortiGate if your iOS device and the FortiGate are both connected to the same wireless network.
To connect and configure a FortiGate with FortiExplorer wirelessly:

1. Open the FortiExplorer app and tap Add on the Devices page.
2. On the Add Device By page, tap HTTPS.
3. Enter the Host information, Username, and Password.
4. If required, change the default Port number, and optionally enable Remember Password.
5. Tap Done.
6. If the FortiGate device identity cannot be verified, tap Connect at the prompt.
 FortiExplorer opens the FortiGate management interface to the Device Status page.

Configure FortiGate with FortiExplorer using BLE

FortiGate 200F series and 80F series devices can be initially configured in FortiExplorer using Bluetooth Low Energy (BLE).
The state of the status LED on the device shows if BLE is enabled. See the device QuickStart guides for more information about LED states: FortiGate 200F Series QuickStart Guide and FortiGate 80F Series QuickStart Guide.

When the status LED is flashing green, pressing and holding the reset button for five seconds or longer will reset the device to factory default settings.

BLE is enabled or disabled in the following scenarios after the FortiGate boots up:

- **In factory default settings:**
 - After the FortiGate has finished booting up (when the console login prompt is shown), the status LED will be flashing amber or red to indicate that BLE is enabled.
 - If the FortiGate is configured without using BLE, BLE will immediately be disabled and the status LED will turn solid green.
 - If the FortiGate is configured using BLE, the LED will continue flashing until the configuring device disconnects from BLE, after which BLE is disabled and the status LED turns solid green.

- **Not in factory default configuration:**
 - One minute after the FortiGate has finished booting up (when the console login prompt is shown), the status LED will turn solid green. Press and hold the reset button for one second. The status LED will start flashing to indicate that BLE is enabled.
 - If no BLE connection is made with the FortiGate, BLE will be disabled after one minute and the status LED will turn solid green.
 - If the FortiGate is configured without using BLE, BLE will immediately be disabled and the status LED will turn solid green.
 - If the FortiGate is configured using BLE, the LED will continue flashing until the configuring device disconnects from BLE, after which BLE is disabled and the status LED turns sold green.

To enable BLE for one minute when the FortiGate is running and not in factory default configuration:

```
# diagnose bluetooth enable 1
```

To connect to and configure a FortiGate with FortiExplorer using BLE:

1. Ensure that BLE is enabled on the FortiGate device.
2. Enable Bluetooth on your iOS device and open the FortiExplorer app.
 - If the app has detected the FortiGate device, the device's serial number will be shown.
3. Log into the FortiGate in the app using the default credentials: admin and no password.
4. If this is the first time logging into the device, set a password.
5. Optionally, register with FortiCare.
6. Configure the FortiGate, including the WAN and internal interfaces, static routes, and other required settings.
After configuring the FortiGate and disconnecting, BLE is disabled.

To check the status of BLE on the FortiGate:

diagnose hardware test ble

diagnose bluetooth status

diagnose bluetooth get_bt_version

diagnose bluetooth clean_bt_mode

Running a security rating

After configuring your network, run a security rating check to identify vulnerabilities and highlight best practices that could improve your network's security and performance.

Go to Security Fabric > Security Rating and follow the steps to determine the score. See Security rating on page 2337 for more information.
Upgrading to FortiExplorer Pro

FortiExplorer Pro allows you to add unlimited devices, and download firmware images for devices with active licenses.

To upgrade to FortiExplorer Pro:

1. In FortiExplorer, go to Settings.
2. Tap Manage Subscription.
3. Follow the on-screen prompts.

Basic administration

This section contains information about basic FortiGate administration that you can do after you installing the unit in your network.

- Basic configuration on page 53
- Registration on page 55
- FortiCare and FortiGate Cloud login on page 60
- Transfer a device to another FortiCloud account on page 62
- Configuration backups on page 65
Basic configuration

This topic will help you configure a few basic settings on the FortiGate as described in the Using the GUI on page 22 and Using the CLI on page 29 sections, including:

- Configuring an interface on page 53
- Configuring the hostname on page 53
- Configuring the default route on page 54
- Ensuring internet and FortiGuard connectivity on page 54

Configuring an interface

It is unlikely the default interface configuration will be appropriate for your environment and typically requires some effort of the administrator to use these settings, such as being physically near the FortiGate to establish a serial connection. Therefore, the first step is to configure an interface that can be used to complete the FortiGate configuration.

To configure an interface in the GUI:

1. Go to Network > Interfaces. Select an interface and click Edit.
2. Enter an Alias.
3. In the Address section, enter the IP/Netmask.
4. In Administrative Access section, select the access options as needed (such as PING, HTTPS, and SSH).
5. Optionally, enable DHCP Server and configure as needed.
6. Click OK.

To configure an interface in the CLI:

```plaintext
config system interface
  edit "port2"
    set ip 203.0.113.99 255.255.255.0
    set allowaccess ping https ssh
    set alias "Management"
  next
end
```

Configuring the hostname

Setting the FortiGate’s hostname assists with identifying the device, and it is especially useful when managing multiple FortiGates. Choose a meaningful hostname as it is used in the CLI console, SNMP system name, device name for FortiGate Cloud, and to identify a member of an HA cluster.

To configure the hostname in the GUI:

1. Go to System > Settings.
2. Enter a name in the Host name field.
3. Click Apply.
To configure the hostname in the CLI:

```
config system global
    set hostname 200F_YVR
end
```

Configuring the default route

Setting the default route enables basic routing to allow the FortiGate to return traffic to sources that are not directly connected. The gateway address should be your existing router or L3 switch that the FortiGate is connected to. If you are directly connecting to the FortiGate, you may choose your endpoint’s IP address as the gateway address. Set the interface to be the interface the gateway is connected to.

To configure the default route in the GUI:

1. Go to *Network > Static Routes* and click *Create New*.
2. Leave the destination subnet as *0.0.0.0/0.0.0.0*. This is known as a default route, since it would match any IPv4 address.
3. Enter the *Gateway Address*.
4. Select an *Interface*.
5. Click *OK*.

To configure the default route in the CLI:

```
config router static
    edit 0
        set gateway 192.168.1.254
        set device port1
    next
end
```

Ensuring internet and FortiGuard connectivity

This step is not necessary for the configuration; however, it is necessary in order to keep your FortiGate up to date against the latest threats. Updates are provided to FortiGates that are registered and make a request to the FortiGuard network to verify if there are any more recent definitions.

Use `execute ping <domain.tld>` to ensure the DNS resolution is able to resolve the following FortiGuard servers:

- `fds1.fortinet.com`
- `service.fortiguard.net`
- `update.fortiguard.net`

You also need to ensure the necessary ports are permitted outbound in the event your FortiGate is behind a filtering device. Refer to the *Ports and Protocols* document for more information.
Registration

The FortiGate, and then its service contract, must be registered to have full access to Fortinet Customer Service and Support, and FortiGuard services. The FortiGate can be registered in either the FortiGate GUI or the FortiCloud support portal. The service contract can be registered from the FortiCloud support portal.

The service contract number is needed to complete registrations on the FortiCloud support portal. You can find this 12-digit number in the email that contains your service registration document (sent from do-not-reply-contract@fortinet.com) in the service entitlement summary.

To register your FortiGate in the GUI:

1. Connect to the FortiGate GUI. A dialog box appears, which indicates the steps you should take to complete the setup of your FortiGate. These steps include:
 a. Specify Hostname
 b. Change Your Password
 c. Dashboard Setup
 d. Upgrade Firmware

 If you completed the Basic configuration on page 53, the hostname and password steps are already marked as complete (checkmark). If you chose to deploy the latest firmware, the Upgrade Firmware step is marked as complete.

2. Click Begin to complete the dashboard setup. Two options appear (Optimal and Comprehensive).

3. Select the desired setting and click OK. The Dashboard > Status page opens. Note that the licenses are grayed out because the device or virtual machine is not registered.

4. Go to System > FortiGuard and click Enter Registration Code.

5. Enter the contract registration code from your service registration document.

6. Click OK.

To register the FortiGate on the FortiCloud support portal:

1. Go to support.fortinet.com and log in using your FortiCloud account credentials. If you do not have an account, click Register to create one.

2. In the left-side menu, click Register Product.

3. Enter the product serial number or license certificate number for a VM, select an end user type, then click Next.
4. Enter the Support Contract number and FortiCloud Key (optionally, enter a product description), then click Next.

5. Review the product entitlement information, select the checkbox to accept the terms, then click Confirm.
6. Go to Products > Product List. The FortiGate is now visible in the product list.

FortiCare Register button

The FortiCare Register button is displayed in the GUI on various Fabric and device related pages and widgets available for FortiGates.

There are two methods to access the Register button:

- Right-click on a device in a topology.

 Security Fabric > Physical Topology page:
Getting started

- Hover over a device to display the tooltip.

 Security Fabric > Logical Topology page:

 System > HA page:
Getting started

The Register button is also accessible from tooltips for devices on the Managed FortiAPs and Managed FortiSwitches pages.

Clicking Register opens the Device Registration pane. If a device is already registered, the pane still opens and displays the device information.

Primary and secondary HA members can be registered to FortiCare at the same time from the primary unit by using the Register button. The secondary unit will register through the HA proxy. In this example, a HA member is registered from the Physical Topology page.

To register a HA member to FortiCare:

1. On the primary unit, go to Security Fabric > Physical Topology.
2. Hover over the HA member and click Register. The Device Registration pane opens.
3. Select the device and click Register.
4. Enter the required FortiCloud account information (password, country or region, reseller) and click Submit.
5. Once the registration is complete, click Close.
FortiCare and FortiGate Cloud login

With FortiCloud, FortiOS supports a unified login to FortiCare and FortiGate Cloud. The FortiGate Cloud setup is a subset of the FortiCare setup.

- If the FortiGate is not registered, activating FortiGate Cloud will force you to register with FortiCare.
- If a FortiGate is registered in FortiCare using a FortiCloud account, then only that FortiCloud account can be used to activate FortiGate Cloud.
- If a different FortiCloud account was already used to activate FortiGate Cloud, then a notification asking you to migrate to FortiCloud is shown in the GUI after upgrading FortiOS.

The CLI can be used to activate FortiGate Cloud without registration, or with a different FortiCloud account.

To activate FortiGate Cloud and register with FortiCare at the same time:

1. Go to Dashboard > Status.
2. In the FortiGate Cloud widget, click Not Activated > Activate.
 You must register with FortiCare before activating FortiGate Cloud.
3. Enter your FortiCare Email address and Password.
4. Select your Country/Region and Reseller.
5. Enable Sign in to FortiGate Cloud using the same account.
6. Click OK.

To activate FortiGate Cloud on an already registered FortiGate:

1. Go to Dashboard > Status.
2. In the FortiGate Cloud widget, click Not Activated > Activate.
3. Enter the password for the account that was used to register the FortiGate.

4. Click OK.
 The FortiGate Cloud widget now shows the activated FortiCloud account.

To migrate from the activated FortiGate Cloud account to the registered FortiCloud account:

1. Go to System > FortiGuard.
2. In the FortiCare Support row, click Actions > Transfer FortiGate to Another Account.
3. Enter the Password of the current FortiCloud account.
4. Enter the target FortiCloud Account name and Password, then click Next.
5. Review the information in the From and To fields, then click Transfer.

To activate FortiGate Cloud using an account that is not used for registration:

1. Enter the following with the credentials for the account being used to activate FortiGate Cloud:

   ```bash
   # execute fortiguard-log login <account_id> <password>
   
   # diagnose fdsm contract-controller-update
   
   Result=Success
   ```

 A FortiCloud account that is not used for the support portal account cannot be used to register FortiGate. Attempting to activate FortiGate Cloud with this type of account will fail.

Transfer a device to another FortiCloud account

Master account users can transfer a device from one FortiCloud/FortiCare account to another. Users can transfer a device up to three times within a twelve-month time period. If more transfers are required within the twelve-month time period, contact Technical Support to request the transfer.

Requirements:

To transfer an account, you must:

- Have access to the FortiGate, as well as both the FortiCloud and FortiCare accounts.
- Be a master account user.

To verify if you are the master account user, log in to support.fortinet.com. Click the username, then select My Account.
Getting started

The Account Profile page opens.

To transfer an account in the GUI:

1. Go to Dashboard > Status.
2. In the Licenses widget, click the FortiCare Support link, then click Transfer FortiGate to Another Account.

You can also transfer an account from System > FortiGuard.
3. In the *Current FortiCloud Account* fields, enter the username and password for the current account. In the *Target FortiCloud Account* fields, enter the new username and password.

4. Click *Next*.

5. Review the information, then click *Transfer*.

After the transfer is complete, the new the FortiCloud account is displayed in the *Licenses* widget.
Configuration backups

Once you successfully configure the FortiGate, it is extremely important that you back up the configuration. You can use the GUI or CLI to back up the configuration in FortiOS format, or you can use the CLI to back up the configuration in YAML format. In some cases, you may need to reset the FortiGate to factory defaults or perform a TFTP upload of the firmware, which will erase the existing configuration. In these instances, the configuration on the device will have to be recreated, unless a backup can be used to restore it. You should also back up the local certificates, as the unique SSL inspection CA and server certificates that are generated by your FortiGate by default are not saved in a system backup.

We also recommend that you back up the configuration after any changes are made, to ensure you have the most current configuration available. Also, back up the configuration before any upgrades of the FortiGate’s firmware. Should anything happen to the configuration during the upgrade, you can easily restore the saved configuration.

Always back up the configuration and store it on the management computer or off-site. You have the option to save the configuration file in FortiOS format to various locations including the local PC, USB key, FTP, and TFTP server. FTP and TFTP are only configurable through the CLI. In YAML format, configuration files can be backed up or restored on an FTP or TFTP server through the CLI.

If you have VDOMs, you can back up the configuration of the entire FortiGate or only a specific VDOM. Note that if you are using FortiManager or FortiGate Cloud, full backups are performed and the option to back up individual VDOMs will not appear.

You can also back up and restore your configuration using Secure File Copy (SCP). See How to download/upload a FortiGate configuration file using secure file copy (SCP).

You enable SCP support using the following command:

```
config system global
    set admin-scp enable
end
```

For more information about this command and about SCP support, see `config system global`.

Backing up the configuration

To back up the configuration in FortiOS format using the GUI:

1. Click on the user name in the upper right-hand corner of the screen and select Configuration > Backup.
2. Direct the backup to your Local PC or to a USB Disk.
 - The USB Disk option will not be available if no USB drive is inserted in the USB port. You can also back up to FortiManager using the CLI.
3. If VDOMs are enabled, indicate whether the scope of the backup is the entire FortiGate configuration (Global) or only a specific VDOM configuration (VDOM).
 - If backing up a VDOM configuration, select the VDOM name from the list.
4. Enable Encryption. Encryption must be enabled on the backup file to back up VPN certificates.
5. Enter a password, and enter it again to confirm it. This password will be required to restore the configuration.
6. Click OK.
7. When prompted, select a location on the PC or USB disk to save the configuration file. The configuration file will have a .conf extension.

To back up the configuration in FortiOS format using the CLI:

Use one of the following commands:
Getting started

execute backup config management-station <comment>

or:
execute backup config usb <backup_filename> [<backup_password>]

or for FTP, note that port number, username are optional depending on the FTP site:
execute backup config ftp <backup_filename> <ftp_server>[<ftp_port>] [<user_name>] [<password>] [<backup_password>]

or for TFTP:
execute backup config tftp <backup_filename> <tftp_servers> [<backup_password>]

or for SFTP:
execute backup config sftp <backup_filename> <sftp_server>[<sftp_port>] <user> <password> [<backup_password>]

Use the same commands to backup a VDOM configuration by first entering the commands:
config vdom
 edit <vdom_name>

In FortiOS format, the configuration can be backed up to IPv4 and IPv6 FTP, TFTP, and SFTP servers. The configuration can be restored from IPv4 and IPv6 FTP and TFTP servers.

To back up the configuration in YAML format using the CLI:

execute backup yaml-config {ftp | tftp} <filename> <server> [username] [password]

For example:

execute backup yaml-config tftp 301E.yaml 172.16.200.55
Please wait...
Connect to tftp server 172.16.200.55 ...
Send config file to tftp server OK.

In YAML format, the configuration can be backed up to and restored from an FTP or TFTP server.

Restoring a configuration

To restore the FortiGate configuration in FortiOS format using the GUI:

1. Click on the user name in the upper right-hand corner of the screen and select Configuration > Restore.
2. Identify the source of the configuration file to be restored: your Local PC or a USB Disk. The USB Disk option will not be available if no USB drive is inserted in the USB port. You can restore from the FortiManager using the CLI.
3. Click Upload, locate the configuration file, and click Open.
4. Enter the password if required.
5. Click OK.
To restore the FortiGate configuration in FortiOS format using the CLI:

```
execute restore config management-station normal 0
```

or:

```
execute restore config usb <backup_filename> [backup_password]
```

or for FTP, note that port number, username are optional depending on the FTP site:

```
execute restore config ftp <backup_filename> <ftp_server>[<:port>] [<user_name>] [password] [backup_password]
```

or for TFTP:

```
execute restore config tftp <backup_filename> <tftp_server> [backup_password]
```

The FortiGate will load the configuration file and restart. Once the restart has completed, verify that the configuration has been restored.

To restore configuration files in YAML format:

```
# execute restore yaml-config {ftp | tftp} <filename> <server> [username] [password]
```

For example:

```
# execute restore yaml-config ftp 301E-1.yaml 172.16.200.55 root sys@qa123456
This operation will overwrite the current setting and could possibly reboot the system!
Do you want to continue? (y/n) y
Please wait...
Connect to ftp server 172.16.200.55 ...
Get config file from ftp server OK.
File check OK.
#
The system is going down NOW !!
```

Troubleshooting

When restoring a configuration, errors may occur, but the solutions are usually straightforward.

<table>
<thead>
<tr>
<th>Error message</th>
<th>Reason and Solution</th>
</tr>
</thead>
</table>
| Configuration file error | This error occurs when attempting to upload a configuration file that is incompatible with the device. This may be due to the configuration file being for a different model or being saved from a different version of firmware.
Solution: Upload a configuration file that is for the correct model of FortiGate device and the correct version of the firmware. |
| Invalid password | When the configuration file is saved, it can be protected by a password. The password entered during the upload process is not matching the one associated with the configuration file.
Solution: Use the correct password if the file is password protected. |

Configuration revision

You can manage multiple versions of configuration files on models that have a 512MB flash memory and higher. Revision control requires either a configured central management server or the local hard drive, if your FortiGate has this
feature. Typically, configuration backup to local drive is not available on lower-end models.

The central management server can either be a FortiManager unit or FortiGate Cloud.

If central management is not configured on your FortiGate unit, a message appears instructing you to either

- Enable central management, or
- Obtain a valid license.

When revision control is enabled on your FortiGate unit, and configuration backups have been made, a list of saved revisions of those backed-up configurations appears.

Configuration revisions are viewed by clicking on the user name in the upper right-hand corner of the screen and selecting Configuration > Revisions.

Back up and restore the local certificates

This procedure exports a server (local) certificate and private key together as a password protected PKCS12 file. The export file is created through a customer-supplied TFTP server. Ensure that your TFTP server is running and accessible to the FortiGate before you enter the command.

To back up the local certificates:

Connect to the CLI and use the following command:

```
execute vpn certificate local export tftp <cert_name> <filename> <tftp_ip>
```

where:

- `<cert_name>` is the name of the server certificate.
- `<filename>` is a name for the output file.
- `<tftp_ip>` is the IP address assigned to the TFTP server host interface.

To restore the local certificates using the GUI:

1. Move the output file from the TFTP server location to the management computer.
2. Go to System > Certificates and click Import > Local.
3. Select the certificate type, then click Upload in the Certificate file field.
4. On the management computer, browse to the file location, select it, and click Open.
5. If the Type is Certificate, upload the Key file as well.
6. If required, enter the Password that is required to upload the file or files.
7. Click OK.

To restore the local certificates using the CLI:

Connect to the CLI and use the following command:

```
execute vpn certificate local import tftp <filename> <tftp_ip>
```

Restore factory defaults

There may be a need to reset the FortiGate to its original defaults; for example, to begin with a fresh configuration. There are two options when restoring factory defaults. The first resets the entire device to the original out-of-the-box configuration.
Getting started

You can reset the device with the following CLI command:

```
execute factoryreset
```

When prompted, type `y` to confirm the reset.

Alternatively, in the CLI you can reset the factory defaults but retain the interface and VDOM configuration with the following command:

```
execute factoryreset2
```

LEDs

Check your device's QuickStart guide for specific LED information: FortiGate QuickStart Guides.

The following faceplates show where the LEDs are typically found on FortiGate models:

<table>
<thead>
<tr>
<th>LED</th>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logo</td>
<td>Green</td>
<td>The unit is on</td>
</tr>
<tr>
<td></td>
<td>Blue</td>
<td>The FortiWiFi unit is on</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>The unit is off</td>
</tr>
<tr>
<td>LED</td>
<td>State</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Power (PWR)</td>
<td>Green</td>
<td>The unit is on and/or both power supplies are functioning</td>
</tr>
<tr>
<td></td>
<td>Amber</td>
<td>One power supply is functioning</td>
</tr>
<tr>
<td></td>
<td>Flashing Amber</td>
<td>Power supply failure</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>The unit is on, but only one power supply is functional</td>
</tr>
<tr>
<td></td>
<td>Flashing Red</td>
<td>Power failure</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>The unit is off</td>
</tr>
<tr>
<td>Status (STA)</td>
<td>Green</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>Flashing Green</td>
<td>Booting up</td>
</tr>
<tr>
<td></td>
<td>Amber</td>
<td>Major or minor alarm</td>
</tr>
<tr>
<td></td>
<td>Flashing Amber</td>
<td>BLE is on</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>Major alarm</td>
</tr>
<tr>
<td></td>
<td>Flashing Red</td>
<td>BLE is on</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>The unit is off</td>
</tr>
<tr>
<td>Bypass (BYP)</td>
<td>Amber</td>
<td>Bypass Port Pair is active</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Bypass Port Pair is off</td>
</tr>
<tr>
<td>Alarm</td>
<td>Red</td>
<td>Major alarm</td>
</tr>
<tr>
<td></td>
<td>Amber</td>
<td>Minor alarm</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>No alarms</td>
</tr>
<tr>
<td>HA</td>
<td>Green</td>
<td>Operating in an HA cluster</td>
</tr>
<tr>
<td></td>
<td>Amber or Red</td>
<td>HA failover</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>HA disabled</td>
</tr>
<tr>
<td>Max PoE</td>
<td>Green, Amber, or Red</td>
<td>Maximum PoE power allocated</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>PoE power available or normal</td>
</tr>
<tr>
<td>PoE</td>
<td>Green</td>
<td>Power delivered</td>
</tr>
<tr>
<td></td>
<td>Flashing Green</td>
<td>Error or PoE device requesting power</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>No PoE device connected or no power delivered</td>
</tr>
<tr>
<td>SVC</td>
<td>Green</td>
<td>SVC is on</td>
</tr>
<tr>
<td></td>
<td>Flashing Green</td>
<td>SVC activity</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>SVC is off</td>
</tr>
</tbody>
</table>
LED States and Descriptions

<table>
<thead>
<tr>
<th>LED</th>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3G / 4G</td>
<td>Green</td>
<td>3G / 4G service is on</td>
</tr>
<tr>
<td></td>
<td>Flashing Green</td>
<td>3G / 4G activity</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>3G / 4G service is off</td>
</tr>
<tr>
<td>WiFi</td>
<td>Green</td>
<td>WiFi connected</td>
</tr>
<tr>
<td></td>
<td>Flashing Green</td>
<td>WiFi activity</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>WiFi is off</td>
</tr>
<tr>
<td>Power Supply</td>
<td>Green</td>
<td>Power supply operating normally</td>
</tr>
<tr>
<td></td>
<td>Flashing Green</td>
<td>Power detected, but power supply not providing power or is in standby mode</td>
</tr>
<tr>
<td></td>
<td>Amber</td>
<td>Power output is off, there is a power supply error, or there is no input power but the redundant supply is on</td>
</tr>
<tr>
<td></td>
<td>Flashing Amber</td>
<td>Power supply error or warning events, or the power supply should be replaced</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>Cord unplugged or power lost</td>
</tr>
<tr>
<td></td>
<td>Flashing Red</td>
<td>Power supply warning events</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Power not detected</td>
</tr>
<tr>
<td>Power Supply OK</td>
<td>Green</td>
<td>Standby rail and main output on</td>
</tr>
<tr>
<td></td>
<td>Flashing Green</td>
<td>Standby rail and main output off</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Error or no AC power input</td>
</tr>
<tr>
<td>Power Supply Fail</td>
<td>Amber</td>
<td>Main output or fan error detected</td>
</tr>
<tr>
<td></td>
<td>Flashing Amber</td>
<td>Power supply warning event detected</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>No errors or no power</td>
</tr>
<tr>
<td>Power Supply Input</td>
<td>Green</td>
<td>Input voltage within normal range</td>
</tr>
<tr>
<td></td>
<td>Flashing Green</td>
<td>Over or under voltage warning</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>No input power</td>
</tr>
<tr>
<td>Power Supply Output</td>
<td>Green</td>
<td>Output voltage normal</td>
</tr>
<tr>
<td></td>
<td>Flashing Green</td>
<td>Standby mode</td>
</tr>
<tr>
<td></td>
<td>Amber</td>
<td>Critical error</td>
</tr>
<tr>
<td></td>
<td>Flashing Amber</td>
<td>Warning</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>No output</td>
</tr>
</tbody>
</table>
Getting started

<table>
<thead>
<tr>
<th>LED</th>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan</td>
<td>Green</td>
<td>Fan(s) operating normally</td>
</tr>
<tr>
<td></td>
<td>Flashing Green</td>
<td>Fan switching_INITIALIZATION in progress</td>
</tr>
<tr>
<td></td>
<td>Amber</td>
<td>Fan failure</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>Fan error, RPM too low or too high, or both fan sets have at least one alert</td>
</tr>
<tr>
<td></td>
<td>Flashing Red</td>
<td>One fan set has at least one alert</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Fan error or fan is off</td>
</tr>
</tbody>
</table>

Port LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet</td>
<td>Green</td>
<td>Connected at 1 Gbps</td>
</tr>
<tr>
<td></td>
<td>Flashing Green</td>
<td>Transmitting and receiving data at 1 Gbps</td>
</tr>
<tr>
<td></td>
<td>Amber</td>
<td>Connected at 10/100 Mbps</td>
</tr>
<tr>
<td></td>
<td>Flashing Amber</td>
<td>Transmitting and receiving data at 10/100 Mbps</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>No link established</td>
</tr>
<tr>
<td>Ethernet Link/Activity</td>
<td>Green</td>
<td>Connected</td>
</tr>
<tr>
<td></td>
<td>Flashing Green</td>
<td>Transmitting data</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>No link established</td>
</tr>
<tr>
<td>Ethernet Speed</td>
<td>Green</td>
<td>Connected at 1 Gbps</td>
</tr>
<tr>
<td></td>
<td>Amber</td>
<td>Connected at 100 Mbps</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Not connected or connected at 10 Mbps</td>
</tr>
<tr>
<td>Ethernet 10G Link/Activity</td>
<td>Green</td>
<td>Connected</td>
</tr>
<tr>
<td></td>
<td>Flashing Green</td>
<td>Transmitting data</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>No link established</td>
</tr>
<tr>
<td>Ethernet 10G Speed</td>
<td>Green</td>
<td>Connected at 10 Gbps</td>
</tr>
<tr>
<td></td>
<td>Amber</td>
<td>Connected at 5 Gbps, 2.5 Gbps, or 1 Gbps</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Not connected or connected at 100 Mbps</td>
</tr>
<tr>
<td>LED</td>
<td>State</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>PoE</td>
<td>Green</td>
<td>PoE power on or PoE device receiving power</td>
</tr>
<tr>
<td></td>
<td>Amber</td>
<td>Providing power</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>Connected but not powered</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>PoE power off or no device receiving power</td>
</tr>
<tr>
<td>SFP</td>
<td>Green</td>
<td>Connected at 1 Gbps</td>
</tr>
<tr>
<td></td>
<td>Flashing Green</td>
<td>Data activity</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>No link established</td>
</tr>
<tr>
<td>SFP+</td>
<td>Green</td>
<td>Connected at 10 Gbps or 1 Gbps</td>
</tr>
<tr>
<td></td>
<td>Flashing Green</td>
<td>Data activity</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>No link established</td>
</tr>
<tr>
<td>SFP28</td>
<td>Green</td>
<td>Connected at 25 Gbps, 10 Gbps, or 1 Gbps</td>
</tr>
<tr>
<td></td>
<td>Flashing Green</td>
<td>Data activity</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>No link established</td>
</tr>
<tr>
<td>QSFP28</td>
<td>Green</td>
<td>Connected at 100 Gbps or 40 Gbps</td>
</tr>
<tr>
<td></td>
<td>Flashing Green</td>
<td>Data activity</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>No link established</td>
</tr>
</tbody>
</table>

Alarm levels

Minor alarm

Also called an IPMI non-critical (NC) alarm, it indicates a temperature or power level outside of the normal operating range that is not considered a problem. For a minor temperature alarm, the system could respond by increasing the fan speed. A non-critical threshold can be an upper non-critical (UNC) threshold (for example, a high temperature or a high power level) or a lower non-critical (LNC) threshold (for example, a low power level).

Major alarm

Also called an IPMI critical or critical recoverable (CR) alarm, it indicates that the system is unable to correct the cause of the alarm, and that intervention is required. For example, the cooling system cannot provide enough cooling to reduce the temperature. It can also mean that the conditions are approaching the outside limit of the allowed operating range. A critical threshold can also be an upper critical (UC) threshold (such as a high temperature or high power level) or a lower critical (LC) threshold (such as a low power level).

Critical alarm

Also called an IPMI non-recoverable (NR) alarm, it indicates that the system has detected a temperature or power level that is outside of the allowed operating range and physical damage is possible.
Troubleshooting your installation

If your FortiGate does not function as desired after installation, try the following troubleshooting tips:

1. **Check for equipment issues**
 Verify that all network equipment is powered on and operating as expected. Refer to the QuickStart Guide for information about connecting your FortiGate to the network.

2. **Check the physical network connections**
 Check the cables used for all physical connections to ensure that they are fully connected and do not appear damaged, and make sure that each cable connects to the correct device and the correct Ethernet port on that device.

3. **Verify that you can connect to the internal IP address of the FortiGate**
 Connect to the GUI from the FortiGate's internal interface by browsing to its IP address. From the PC, try to ping the internal interface IP address; for example, `ping 192.168.1.99`. If you cannot connect to the internal interface, verify the IP configuration of the PC. If you can ping the interface but can't connect to the GUI, check the settings for administrative access on that interface. Alternatively, use SSH to connect to the CLI, and then confirm that HTTPS has been enabled for Administrative Access on the interface.

4. **Check the FortiGate interface configurations**
 Check the configuration of the FortiGate interface connected to the internal network (under Network > Interfaces) and check that Addressing mode is set to the correct mode.

5. **Verify the security policy configuration**
 Go to Policy & Objects > Firewall Policy and verify that the internal interface to Internet-facing interface security policy has been added and is located near the top of the policy list. Check the Active Sessions column to ensure that traffic has been processed (if this column does not appear, right-click on the table header and select Active Sessions). If you are using NAT mode, check the configuration of the policy to make sure that NAT is enabled and that Use Outgoing Interface Address is selected.

6. **Verify the static routing configuration**
 Go to Network > Static Routes and verify that the default route is correct. Go to Monitor > Routing Monitor and verify that the default route appears in the list as a static route. Along with the default route, you should see two routes shown as Connected, one for each connected FortiGate interface.

7. **Verify that you can connect to the Internet-facing interface’s IP address**
 Ping the IP address of the Internet-facing interface of your FortiGate. If you cannot connect to the interface, the FortiGate is not allowing sessions from the internal interface to Internet-facing interface. Verify that PING has been enabled for Administrative Access on the interface.

8. **Verify that you can connect to the gateway provided by your ISP**
 Ping the default gateway IP address from a PC on the internal network. If you cannot reach the gateway, contact your ISP to verify that you are using the correct gateway.

9. **Verify that you can communicate from the FortiGate to the Internet**
 Access the FortiGate CLI and use the command `execute ping 8.8.8.8`. You can also use the `execute traceroute 8.8.8.8` command to troubleshoot connectivity to the Internet.

10. **Verify the DNS configurations of the FortiGate and the PCs**
 Check for DNS errors by pinging or using traceroute to connect to a domain name; for example: `ping www.fortinet.com`.
 If the name cannot be resolved, the FortiGate or PC cannot connect to a DNS server and you should confirm that the DNS server IP addresses are present and correct.
11. Confirm that the FortiGate can connect to the FortiGuard network

Once the FortiGate is on your network, you should confirm that it can reach the FortiGuard network. First, check the License Information widget to make sure that the status of all FortiGuard services matches the services that you have purchased. Go to System > FortiGuard, and, in the Filtering section, click Test Connectivity. After a minute, the GUI should indicate a successful connection. Verify that your FortiGate can resolve and reach FortiGuard at service.fortiguard.net by pinging the domain name. If you can reach this service, you can then verify the connection to FortiGuard servers by running the command diagnose debug rating. This displays a list of FortiGuard IP gateways you can connect to, as well as the following information:

- **Weight**: Based on the difference in time zone between the FortiGate and this server
- **RTT**: Return trip time
- **Flags**: D (IP returned from DNS), I (Contract server contacted), T (being timed), F (failed)
- **TZ**: Server time zone
- **Curr Lost**: Current number of consecutive lost packets
- **Total Lost**: Total number of lost packets

12. Consider changing the MAC address of your external interface

Some ISPs do not want the MAC address of the device connecting to their network cable to change. If you have added a FortiGate to your network, you may have to change the MAC address of the Internet-facing interface using the following CLI command:

```plaintext
config system interface
edit <interface>
end
end
```

13. Check the FortiGate bridge table (transparent mode)

When a FortiGate is in transparent mode, the unit acts like a bridge sending all incoming traffic out on the other interfaces. The bridge is between interfaces on the FortiGate unit. Each bridge listed is a link between interfaces. Where traffic is flowing between interfaces, you expect to find bridges listed. If you are having connectivity issues and there are no bridges listed, that is a likely cause. Check for the MAC address of the interface or device in question. To list the existing bridge instances on the FortiGate, use the following CLI command:

```plaintext
diagnose netlink brctl name host root.b
show bridge control interface root.b host.
fdb: size=2048, used=25, num=25, depth=1
Bridge root.b host table
port no device devname mac addr ttl attributes
  3 4 wan1 00:09:0f:cb:c2:77 88
  3 4 wan1 00:26:2d:24:b7:d3 0
  3 4 wan1 00:13:72:38:72:21 98
  4 3 internal 00:1a:a0:2f:bc:c6 6
  1 6 dmz 00:09:0f:dc:90:69 0 Local Static
  3 4 wan1 c4:2c:03:0d:3a:38 81
  3 4 wan1 00:09:0f:15:05:46 89
  3 4 wan1 c4:2c:03:1d:1b:10 0
  2 5 wan2 00:09:0f:dc:90:68 0 Local Static
```

14. Use FortiExplorer if you cannot connect to the FortiGate over Ethernet

If you cannot connect to the FortiGate GUI or CLI, you may be able to connect using FortiExplorer. Refer to the QuickStart Guide or see the section on FortiExplorer for more details.

15. Either reset the FortiGate to factory defaults or contact Fortinet Support for assistance

To reset the FortiGate to factory defaults, use the CLI command `execute factoryreset`. When prompted, type `y` to confirm the reset.

If you require further assistance, visit the Fortinet Support website.
Dashboards and Monitors

FortiOS includes predefined dashboards so administrators can easily monitor device inventory, security threats, traffic, and network health. You can customize the appearance of a default dashboard to display data pertinent to your Security Fabric or combine widgets to create custom dashboards. Many dashboards also allow you to switch views between fabric devices.

Each dashboard contains a set of widgets that allow you to view drilldown data and take actions to prevent threats. Use widgets to perform tasks such as viewing device inventory, creating and deleting DHCP reservations, and disconnecting dial-up users. You can add or remove widgets in a dashboard or save a widget as a standalone monitor.

Monitors display information in both text and visual format. Use monitors to change views, search for items, view drilldown information, or perform actions such as quarantining an IP address. FortiView monitors for the top categories are located below the dashboards. All of the available widgets can be added to the tree menu as a monitor.

Using dashboards

You can combine widgets to create custom dashboards. You can also use the dropdown in the tree menu to switch to another device in the Security Fabric.

To create a new dashboard:

1. Under Dashboard, click the Add Dashboard button. The Add Dashboard window opens.

2. Enter a name in the Name field and click OK. The new dashboard opens.
Dashboards and Monitors

To add a widget to a dashboard:

1. In the tree menu, select a dashboard.
2. In the banner, click Add Widget. The Add Dashboard Widget pane opens.
3. Click the Add button next to the widget. You can use the Search field to search for a widget. Enable Show More to view more widgets in a category.
4. Configure the widget settings, then click Add Widget.
5. Click Close.
6. (Optional) Click and drag the widget to the desired location in the dashboard.

To edit a dashboard:

1. Click the Actions menu next to the dashboard and select Edit Dashboard.
2. Edit the dashboard and click OK.

To delete a dashboard:

1. Click the Actions menu next to the dashboard and select Delete Dashboard.
2. Click Delete Dashboard. The Confirm dialog opens.
3. Click OK.

You cannot delete the Status dashboard.

To switch to another device in the Security Fabric:

1. In the tree menu, click the device name and select a fabric device from dropdown.

Using widgets

You can convert a widget to a standalone monitor, change the view type, configure tables, and filter data.
Dashboards and Monitors

To save a dashboard widget as a monitor:

1. Hover over the widget and click Expand to full screen.

 ![Full screen mode is not supported in all widgets.]

2. In the widget, click Save as Monitor. The Add Monitor window opens.

3. (Optional) Enter a new name for the monitor in the Name field.
4. Click OK.

To view the widget settings:

1. Click the menu dropdown at the right side of the widget and select Settings.

2. Configure the widget settings and click OK.

 ![The settings will vary depending on the widget.]

To configure a table in the widget:

1. Hover over the left side of the table header and click Configure Table.
2. Configure the table options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Fit All Columns</td>
<td>Resizes all of the columns in a table to fit their content.</td>
</tr>
<tr>
<td>Reset Table</td>
<td>Resets the table to the default view.</td>
</tr>
<tr>
<td>Select Columns</td>
<td>Adds or removes columns from the view.</td>
</tr>
</tbody>
</table>

3. Click Apply.

To filter or configure a column in a table:

1. Hover over a column heading, and click Filter/Configure Column.

2. Configure the column options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resize to Contents</td>
<td>Resizes the column to fit the content.</td>
</tr>
<tr>
<td>Group by this Column</td>
<td>Groups the table rows by the contents in the selected column.</td>
</tr>
</tbody>
</table>

3. Click Apply.

4. To filter a column, enter a value in the Filter field, and click Apply.

 Filtering is not supported in all widgets.

Widgets

Dashboards are created per VDOM when VDOM mode is enabled. For information about VDOM mode, see Virtual Domains on page 1996.

Some dashboards and widgets are not available in Multi-VDOM mode.

The following table lists the available widgets in VDOM mode:

<table>
<thead>
<tr>
<th>Category</th>
<th>Widgets</th>
</tr>
</thead>
<tbody>
<tr>
<td>FortiView</td>
<td>• FortiView Application Bandwidth FortiView</td>
</tr>
</tbody>
</table>
Dashboards and Monitors

<table>
<thead>
<tr>
<th>Category</th>
<th>Widgets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications</td>
<td>FortiView Cloud Applications</td>
</tr>
<tr>
<td></td>
<td>FortiView Destination Interfaces</td>
</tr>
<tr>
<td></td>
<td>Destination Owners</td>
</tr>
<tr>
<td></td>
<td>FortiView Policies</td>
</tr>
<tr>
<td></td>
<td>FortiView Source Interfaces</td>
</tr>
<tr>
<td></td>
<td>Sources FortiView VPN</td>
</tr>
<tr>
<td></td>
<td>Categories FortiView Countries/Regions</td>
</tr>
<tr>
<td></td>
<td>FortiView Destination Firewall Objects</td>
</tr>
<tr>
<td></td>
<td>FortiView Interface Pairs</td>
</tr>
<tr>
<td></td>
<td>Phrases FortiView Servers</td>
</tr>
<tr>
<td></td>
<td>Firewall Objects FortiView Sources - WAN</td>
</tr>
<tr>
<td></td>
<td>FortiView Traffic Shaping</td>
</tr>
<tr>
<td>Security Fabric</td>
<td>Fabric Device</td>
</tr>
<tr>
<td></td>
<td>FortiGate Cloud</td>
</tr>
<tr>
<td></td>
<td>Security Fabric Status</td>
</tr>
<tr>
<td>Network</td>
<td>DHCP</td>
</tr>
<tr>
<td></td>
<td>Interface Bandwidth</td>
</tr>
<tr>
<td></td>
<td>IP Pool Utilization</td>
</tr>
<tr>
<td></td>
<td>IPsec</td>
</tr>
<tr>
<td></td>
<td>Routing</td>
</tr>
<tr>
<td></td>
<td>SD-WAN</td>
</tr>
<tr>
<td></td>
<td>SSL-VPN</td>
</tr>
<tr>
<td></td>
<td>Top IP Pools by Assigned IPs</td>
</tr>
</tbody>
</table>

The *Interface Bandwidth* widget can monitor a maximum of 25 interfaces.

<p>| System | Administrators |
| | Botnet Activity |
| | HA Status |
| | License Status |
| | System Information |
| | Top System Events |
| | Virtual Machine |
| Resource Usage | CPU Usage |
| | Disk Usage |
| | Log Rate Memory Usage |
| | Session Rate |
| | Sessions |
| Security | Advanced Threat Protection Statistics |
| | Compromised Hosts |</p>
<table>
<thead>
<tr>
<th>Category</th>
<th>Widgets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dashboards</td>
<td>• FortiClient Detected Vulnerabilities</td>
</tr>
<tr>
<td></td>
<td>• GTP Tunnel Rate</td>
</tr>
<tr>
<td></td>
<td>• GTP Tunnels</td>
</tr>
<tr>
<td></td>
<td>• Host Scan Summary</td>
</tr>
<tr>
<td></td>
<td>• Quarantine</td>
</tr>
<tr>
<td></td>
<td>• Top Endpoint Vulnerabilities</td>
</tr>
<tr>
<td></td>
<td>• Top Failed Authentication</td>
</tr>
<tr>
<td></td>
<td>• Top FortiSandbox Files</td>
</tr>
<tr>
<td></td>
<td>• Top Threats</td>
</tr>
<tr>
<td></td>
<td>• Top Threats - WAN</td>
</tr>
<tr>
<td>User & Authentication</td>
<td>• Device Inventory</td>
</tr>
<tr>
<td></td>
<td>• Firewall Users</td>
</tr>
<tr>
<td></td>
<td>• FortiClient</td>
</tr>
<tr>
<td></td>
<td>• FortiGuard Quota</td>
</tr>
<tr>
<td></td>
<td>• FortiSwitch NAC VLANs</td>
</tr>
<tr>
<td></td>
<td>• Top Admin Logins</td>
</tr>
<tr>
<td></td>
<td>• Top Vulnerable Endpoint Devices</td>
</tr>
<tr>
<td></td>
<td>• Top Cloud Users</td>
</tr>
<tr>
<td>WiFi</td>
<td>• Channel Utilization</td>
</tr>
<tr>
<td></td>
<td>• Clients By FortiAP</td>
</tr>
<tr>
<td></td>
<td>• FortiAP Status</td>
</tr>
<tr>
<td></td>
<td>• Historical Clients</td>
</tr>
<tr>
<td></td>
<td>• Interfering SSIDs</td>
</tr>
<tr>
<td></td>
<td>• Login Failures</td>
</tr>
<tr>
<td></td>
<td>• Rogue APs</td>
</tr>
<tr>
<td></td>
<td>• Signal Strength</td>
</tr>
<tr>
<td></td>
<td>• Top WiFi Clients</td>
</tr>
</tbody>
</table>

Viewing device dashboards in the Security Fabric

Use the device dropdown to view the dashboards in downstream fabric devices. You can also create dedicated device dashboards or log in and configure fabric devices.

To view the dashboards in fabric devices, click the device dropdown at the left side of the page, and select a device from the list.
The device dropdown is available in the Status, Security, Network, Users & Devices, and WiFi dashboards. You can also enable the dropdown when you create a dashboard.

To log in to or configure a fabric device, hover over the device name until the device dialog opens and then select Login or Configure.

Creating a fabric system and license dashboard

Create a dashboard summary page to monitor all the fabric devices in a single view. You can use this dashboard to monitor aspects of the devices such as system information, VPN and routing.

Example

The following image is an example of a Fabric System & License dashboard to monitor the System Information, Licenses, and Memory usage for Branch_Office_01 and Branch_Office_02.
To create a system dashboard:

1. Click the Add Dashboard button. The Add Dashboard window opens.

2. In the Name field, enter a name such as Fabric System & Licenses, and click OK. The new dashboard appears.

3. In the banner, click Add Widget. The Add Dashboard Widget window opens. You can use the Search field to search for a specific widget (for example, License Status, System Information, and Memory Usage).

4. Click the Add button next to widget. The Add Dashboard Widget window opens.

5. In the Fabric member area, select Specify and select a device in the Security Fabric.

6. Click Add Widget. The widget is added to the dashboard. Repeat this step for all the devices you want to view in the dashboard.

7. (Optional) Arrange the widgets in the dashboard by fabric device.

Dashboards

A dashboard is a collection of widgets that show the status of your devices, network, and Security Fabric at a glance. Widgets are condensed monitors that display a summary of the key details about your FortiGate pertaining to routing, VPN, DHCP, devices, users, quarantine, and wireless connections.

The following dashboards are included in the dashboard templates:

<table>
<thead>
<tr>
<th>Dashboard</th>
<th>Default Template</th>
<th>Use these widgets to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>• Comprehensive</td>
<td>• View the device serial number, licenses, and administrators</td>
</tr>
<tr>
<td></td>
<td>• Optimal</td>
<td>• View the status of devices in the security fabric</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Monitor CPU and Memory usage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Monitor IPv4 and IPv6 sessions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• View VMs and Cloud devices</td>
</tr>
<tr>
<td>Security</td>
<td>• Optimal</td>
<td>• View compromised hosts and host scan summary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• View top threats and vulnerabilities</td>
</tr>
<tr>
<td>Network</td>
<td>• Optimal</td>
<td>• Monitor DHCP clients</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Monitor IPsec VPN connections</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Monitor current routing table</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Monitor SD-WAN status</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Monitor SSL-VPN connections</td>
</tr>
</tbody>
</table>
Dashboards and Monitors

<table>
<thead>
<tr>
<th>Dashboard</th>
<th>Default Template</th>
<th>Use these widgets to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Users & Devices</td>
<td>• Optimal</td>
<td>• View users and devices connected to the network</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Identify threats from individual users and devices</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• View FortiGuard and FortiClient data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Monitor traffic bandwidth over time</td>
</tr>
<tr>
<td>WiFi</td>
<td>• Comprehensive</td>
<td>• View FortiAP status, channel utilization, and clients</td>
</tr>
<tr>
<td></td>
<td>• Optimal</td>
<td>• View login failures and signal strength</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• View the number of WiFi clients</td>
</tr>
</tbody>
</table>

Resetting the default dashboard template

You can use the GUI to change the default dashboard template. The *Optimal* template contains a set of popular default dashboards and FortiView monitors. The *Comprehensive* template contains a set of default dashboards as well as all of the FortiView monitors.

Resetting the default template will delete any custom dashboards and monitors, and reset the widget settings.

To reset all dashboards:

1. Click the *Actions* menu next to *Add Dashboard* or *Add Monitor* and click *Reset All Dashboards*. The *Dashboard Setup* window opens.

2. Select *Optimal* or *Comprehensive* and click *OK*.

Status dashboard

The *Status* dashboard provides an overview of your FortiGate device and the devices in your Security Fabric. If your FortiGate is a Virtual Machine, information about the Virtual Machine is also displayed in the dashboard.
Dashboards and Monitors

Updating system information

The System Information widget contains links to the Settings module where you can update the System Time, Uptime, and WAN IP.

A notification will appear in the Firmware field when a new version of FortiOS is released. Click Update firmware in System > Firmware to view the available versions and update FortiOS.

Viewing fabric devices

The Security Fabric widget provides a visual overview of the devices connected to the fabric and their connection status. Hover of a device icon to view more information about the device.

Click a device in the fabric to:

- View the device in the physical or logical topology
- Register, configure, deauthorize, or log in to the device
- Open Diagnostics and Tools
- View the FortiClient Monitor

These options will vary depending on the device.

Click Expand & Pin hidden content to view all the devices in the fabric at once.
Dashboards and Monitors

Viewing administrators

The *Administrators* widget displays the active administrators and their access interface. Click the username to view the *Active Administrator Sessions* monitor. You can use the monitor to end an administrator's session.

Resource widgets

The resource widgets show the current usage statistics for *CPU*, *Memory*, and *Sessions*. Click the *CPU* monitor to show the per core CPU usage.

You can switch between *IPv4*, *IPv6*, or *IPv4+IPv6* in the *Sessions* monitor.

Security dashboard

The widgets in the *Security* dashboard provide a snapshot of the current threats and vulnerabilities targeting your Security Fabric.
The Security dashboard contains the following widgets:

<table>
<thead>
<tr>
<th>Widget</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compromised Hosts by Verdict</td>
<td>Shows the session information for a compromised host. See Viewing session information for a compromised host on page 87.</td>
</tr>
<tr>
<td>Top Threats by Threat Level</td>
<td>Shows the top traffic sessions aggregated by threat. You can expand the widget to view drilldown information about the Threat, Threat Category, Threat Level, Threat Score and Sessions.</td>
</tr>
<tr>
<td>FortiClient Detected Vulnerabilities</td>
<td>Shows a summary of vulnerabilities detected by FortiClient. FortiClient must be enabled.</td>
</tr>
<tr>
<td>Host Scan Summary</td>
<td>Shows a summary of hosts scanned. Hover over a color in the chart to view the number of hosts by category. Click the chart to view the FortiClient Monitor or Device Inventory monitor.</td>
</tr>
<tr>
<td>Top Vulnerable Endpoint Devices by Detected Vulnerabilities</td>
<td>Shows a summary devices aggregated by vulnerabilities. Expand the widget to view drilldown information about the Device, Source and Detected Vulnerabilities.</td>
</tr>
</tbody>
</table>

Viewing session information for a compromised host

You can use the Compromised Hosts by Verdict widget to view the session information for a compromised host.

To view session information for a compromised host in the GUI:

1. Go to Dashboard > Security and expand the Compromised Hosts by Verdict widget.

2. Double-click a compromised host to view the session information. You can also right-click a compromised host, and select View Sessions.
3. Double-click a session, or right-click the session and select View Sessions to view the information.

Network dashboard

The widgets in the Network dashboard show information related to networking for this FortiGate and other devices connected to your Security Fabric. Use this dashboard to monitor the status of Routing, DHCP, SD-WAN, IPsec and SSL VPN tunnels. All of the widgets in the Network dashboard can be expanded to full screen and saved as a monitor.

The Network dashboard contains the following widgets:

<table>
<thead>
<tr>
<th>Widget</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static & Dynamic Routing</td>
<td>Shows the static and dynamic routes currently active in your routing table. The widget also includes policy routes, BGP neighbors and paths, and OSPF neighbors. See Static & Dynamic Routing monitor on page 89.</td>
</tr>
<tr>
<td>DHCP</td>
<td>Shows the addresses leased out by FortiGate's DHCP servers. See DHCP monitor on page 92.</td>
</tr>
<tr>
<td>SD-WAN</td>
<td>Shows a summary of the SD-WAN status, including ADVPN shortcut information.</td>
</tr>
<tr>
<td>IPsec</td>
<td>Shows the connection statuses of your IPsec VPN site to site and dial-up tunnels. See IPsec monitor on page 93.</td>
</tr>
<tr>
<td>SSL-VPN</td>
<td>Shows a summary of remote active users and the connection mode. See SSL-VPN monitor on page 95.</td>
</tr>
</tbody>
</table>
Widget and Description

<table>
<thead>
<tr>
<th>Widget</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Pool Utilization</td>
<td>Shows IP pool utilization.</td>
</tr>
</tbody>
</table>

Static & Dynamic Routing Monitor

The *Static & Dynamic Routing Monitor* displays the routing table on the FortiGate, including all static and dynamic routing protocols in IPv4 and IPv6. You can also use this monitor to view policy routes, BGP neighbors and paths, and OSPF neighbors.

![Routing Monitor Screenshot](image)

To view the routing monitor in the GUI:

1. Go to *Dashboard > Network*.
2. Hover over the *Routing* widget, and click *Expand to Full Screen*. The *Routing* monitor is displayed.
3. To view neighbors and paths, click the monitors dropdown at the top of the page.

BGP Neighbors

![BGP Neighbors Screenshot](image)

BGP Paths

![BGP Paths Screenshot](image)
4. To filter the *Interfaces* and *Type* columns:
 a. Click the *Static & Dynamic* tab.
 b. Hover over the column heading, and click the *Filter/Configure Column* icon.
 c. Click *Group By This Column*, then click *Apply*.
5. (Optional) Click Save as Monitor to save the widget as monitor.

To look up a route in the GUI:

1. Click Route Lookup.
2. Enter an IP address in the Destination field, then click Search. The matching route is highlighted on the Routing monitor.

To view the routing table in the CLI:

```
# get route info routing-table all
```

Sample output:

```
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default

Routing table for VRF=0
S* 0.0.0.0/0 [1/0] via 10.0.10.1, To-HQ-A
[1/0] via 10.0.12.1, To-HQ-MPLS
[1/0] via 10.10.11.1, To-HQ-B
[1/0] via 10.100.67.1, port1
[1/0] via 10.100.67.9, port2
C 10.0.10.0/24 is directly connected, To-HQ-A
C 10.0.10.2/32 is directly connected, To-HQ-A
C 10.0.11.0/24 is directly connected, To-HQ-B
C 10.0.11.2/32 is directly connected, To-HQ-B
C 10.0.12.0/24 is directly connected, To-HQ-MPLS
C 10.0.12.2/32 is directly connected, To-HQ-MPLS
C 10.1.0.0/24 is directly connected, port3
C 10.1.0.2/32 is directly connected, port3
C 10.1.0.3/32 is directly connected, port3
C 10.1.100.0/24 is directly connected, vsw.port6
```

To look up a firewall route in the CLI:

```
# diagnostic firewall proute list
```

Sample output:

```
list route policy info(vf=root):

id=0x7f450002 vwl_service=2(BusinessCriticalCloudApp) vwl_mbr_seq=4 5 3 dscp_tag=0xff 0xff flags=0x0 tos=0x00 tos_mask=0x00 protocol=0 sport=0:65535 iif=0 dport=1-65535 oif=3 (port1) oif=4(port2) oif=18(To-HQ-MPLS)
source(1): 0.0.0.0-255.255.255.255
destination wildcard(1): 0.0.0.0/0.0.0.0
internet service (4): Microsoft.Office.365(4294837472,0,0,0,33182) Microsoft.Office.Online
(4294837475,0,0,0,16177) Salesforce(4294837976,0,0,0,16920) GoToMeeting
(4294836966,0,0,0,16354)
hit_count=0 last_used=2020-03-30 10:50:18
```
Dashboards and Monitors

id=0x7f450003 vwl_service=3(NonBusinessCriticalCloudApp) vwl_mbr_seq=4 5 dscp_tag=0xff 0xff flags=0x0 tos=0x00 tos_mask=0x00 protocol=0 sport=0:65535 iif=0 dport=1-65535 oif=3 (port1) oif=4(port2)
source(1): 0.0.0.0-255.255.255.255
destination wildcard(1): 0.0.0.0/0.0.0.0
internet service(2): Facebook(4294836806,0,0,0, 15832) Twitter(4294838278,0,0,0, 16001)
hit_count=0 last_used=2020-03-30 10:50:18

id=0x7f450004 vwl_service=4(Ping-Policy) vwl_mbr_seq=1 2 dscp_tag=0xff 0xff flags=0x0 tos=0x00 tos_mask=0x00 protocol=1 sport=0:65535 iif=0 dport=1-65535 oif=16(To-HQ-A) oif=17(To-HQ-B)

To view neighbors and paths

DHCP monitor

The DHCP monitor shows all the addresses leased out by FortiGate’s DHCP servers. You can use the monitor to revoke an address for a device, or create, edit, and delete address reservations.

![DHCP Monitor Screenshot]

To view the DHCP monitor:

1. Go to *Dashboard > Network*.
2. Hover over the *DHCP* widget, and click *Expand to Full Screen*.

To filter or configure a column in the table, hover over the column heading and click *Filter/Configure Column*.

To revoke a lease:

1. Select a device in the table.
2. In the toolbar, click *Revoke*, or right-click the device, and click *Revoke Lease(s)*. The Confirm page is displayed.
3. Click *OK*.

A confirmation window opens only if there is an associated address reservation. If there is no address, the lease will be removed immediately upon clicking *Revoke*.

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
To create a DHCP reservation:

1. Select a server in the table.
2. In the toolbar, click Reservation, or right-click the device and click Create DHCP Reservation. The Create New DHCP Reservation page is displayed.
3. Configure the DHCP reservation settings.

![Create New DHCP Reservation](image)

4. Click OK.

To view top sources by bytes:

1. Right-click a device in the table and click Show in FortiView. The FortiView Sources by Bytes widget is displayed.

To view the DHCP lease list in the CLI:

```
# execute dhcp lease-list
```

IPsec monitor

The IPsec monitor displays all connected Site to Site VPN, Dial-up VPNs, and ADVPN shortcut tunnel information. You can use the monitor to bring a phase 2 tunnel up or down or disconnect dial-up users. A notification appears in the monitor when users have not enabled two-factor authentication.

![IPsec Monitor](image)

To view the IPsec monitor in the GUI:

1. Go to Dashboard > Network.
2. Hover over the IPsec widget, and click Expand to Full Screen. A warning appears when an unauthenticated user is detected.

To filter or configure a column in the table, hover over the column heading and click Filter/Configure Column.

3. Hover over a record in the table. A tooltip displays the Phase 1 and Phase 2 interfaces. A warning appears next to a user who has not enabled two-factor authentication.
To reset statistics:

1. Select a tunnel in the table.
2. In the toolbar, click Reset Statistics or right-click the tunnel, and click Reset Statistics. The Confirm dialog is displayed.
3. Click OK.

To bring a tunnel up:

1. Select a tunnel in the table.
2. Click Bring Up, or right-click the tunnel, and click Bring Up. The Confirm dialog is displayed.
3. Click OK.

To bring a tunnel down:

1. Select a tunnel in the table.
2. Click Bring Down, or right-click the tunnel, and click Bring Down. The Confirm dialog is displayed.
3. Click OK.

To locate a tunnel on the VPN Map:

1. Select a tunnel in the table.
2. Click Locate on VPN Map, or right-click the tunnel, and click Locate on VPN Map. The VPN Location Map is displayed.
3. Click OK.

To view the IPsec monitor in the CLI:

```
# diagnose vpn tunnel list
```

Sample output:

```
list all ipsec tunnel in vd 0
------------------------------------------------------------------
name=fct-dialup  ver=1  serial=4  10.100.67.5:0->0.0.0.0:0  tun_id=0.0.0.0  dst_mtu=0
bound_if=3  lgw=static/1  tun=intf/0  mode=dialup/2  encap=none/512  options[0200]=frag-rfc
    accept_traffic=1  overlay_id=0
proxyid_num=0  child_num=0  refcnt=12  ilast=5545  olast=5545  ad=/0
stat: rxp=0  txp=0  rxb=0  txb=0
dpd: mode=on-demand  on=0  idle=20000ms  retry=3  count=0  seqno=0
natt: mode=none  draft=0  interval=0  remote_port=0
run_tally=0
------------------------------------------------------------------
name=To-HQ-MPLS  ver=2  serial=3  192.168.0.14:0->192.168.0.1:0  tun_id=19.168.0.1  dst_mtu=1500
bound_if=7  lgw=static/1  tun=intf/0  mode=auto/1  encap=none/528  options[0210]=create_dev
    frag-rfc  accept_traffic=1  overlay_id=0
proxyid_num=1  child_num=0  refcnt=22  ilast=0  olast=0  ad=/0
stat: rxp=66693  txp=0  rxb=0  txb=0
dpd: mode=on-demand  on=0  idle=20000ms  retry=3  count=0  seqno=0
natt: mode=none  draft=0  interval=0  remote_port=0
proxyid=To-HQ-MPLS  proto=0  sa=1  ref=6  serial=1  adr
src: 0:0:0:0:0/0.0.0.0:0
dst: 0:0:0:0:0/0.0.0.0:0
SA: ref=3  options=32203  type=00  soft=0  mtu=1438  expire=266/0B  replaywin=2048
```
SSL-VPN monitor

The SSL-VPN monitor displays remote user logins and active connections. You can use the monitor to disconnect a specific connection. The monitor will notify you when VPN users have not enabled two-factor authentication.

To view the SSL-VPN monitor in the GUI:

1. Go Dashboard > Network.
2. Hover over the SSL-VPN widget, and click Expand to Full Screen. The Duration and Connection Summary charts are displayed at the top of the monitor.

 To filter or configure a column in the table, hover over the column heading and click Filter/Configure Column.

To disconnect a user:

1. Select a user in the table.
2. In the table, right-click the user, and click End Session. The Confirm window opens.
3. Click OK.
To monitor SSL-VPN users in the CLI:

```
# get vpn ssl monitor
```

Sample output

SSL VPN Login Users:
Index User Group Auth Type Timeout From HTTP in/out HTTPS in/out
0 amitchell TAC 1(1) 296 10.100.64.101 3838502/11077721 0/0
1 mmiles Dev 1(1) 292 10.100.64.101 4302506/11167442 0/0

SSL VPN sessions:
Index User Group Source IP Duration I/O Bytes Tunnel/Dest IP

Users & Devices

The Users & Devices dashboard shows the current status of users and devices connected to your network. All of the widgets can be expanded to view as monitor. In monitor view, you can create firewall addresses, deauthenticate a user, or remove a device from the network.

The User & Devices dashboard contains the following widgets:

<table>
<thead>
<tr>
<th>Widget</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Inventory</td>
<td>Shows a summary of the hardware and software that is connected to the network.</td>
</tr>
<tr>
<td></td>
<td>See Device inventory on page 96.</td>
</tr>
<tr>
<td>FortiClient</td>
<td>Shows a summary of the FortiClient endpoints.</td>
</tr>
<tr>
<td>Firewall Users</td>
<td>Shows a summary of the users logged into the network.</td>
</tr>
<tr>
<td>Quarantine</td>
<td>Shows a summary of quarantined devices.</td>
</tr>
<tr>
<td>FortiSwitch NAC VLANs</td>
<td>Shows a summary of VLANs assigned to devices by FortiSwitch NAC policies.</td>
</tr>
</tbody>
</table>

Device inventory

You can enable device detection to allow FortiOS to monitor your networks and gather information about devices operating on those networks, including:

- MAC address
- IP address
- Operating system
- Hostname
- Username
- Endpoint tags
- When FortiOS detected the device and on which interface

You can enable device detection separately on each interface in Network > Interfaces.

Device detection is intended for devices directly connected to your LAN and DMZ ports. The widget is only available when your Interface Role is LAN, DMZ or Undefined. It is not available when the role is WAN.
You can also manually add devices to Device Inventory to ensure that a device with multiple interfaces displays as a single device.

To view the device inventory monitor:

1. Go to Dashboard > Users & Devices.
 If you are using the Comprehensive dashboard template, go to Dashboard > Device Inventory Monitor.
2. Hover over the Device Inventory widget, and click Expand to Full Screen. The Device Inventory monitor is displayed.

To filter or configure a column in the table, hover over the column heading, and click Filter/Configure Column. See Device inventory and filtering on page 97.

Device inventory and filtering

The Device Inventory widget contains a series of summary charts that provide an overview of the hardware, operating system, status, and interfaces. You can use these clickable charts to simplify filtering among your devices.

To view the device inventory and apply a filter:

1. Go to Dashboard > Users & Devices.
 If you are using the Comprehensive dashboard template, go to Dashboard > Device Inventory Monitor. See .
2. Hover over the Device Inventory widget, and click Expand to Full Screen. The Device Inventory monitor is displayed.
3. To filter the order of the charts by operating system, click the dropdown in the top menu bar and select Software OS.
4. To filter a chart, click an item in the legend or chart area. The table displays the filter results.
5. To combine filters, hover over a column heading and click *Filter/Configure Column*.

6. Click the filter icon in the top-right corner of the chart to remove the filter.

Filter examples

To filter all offline devices:

1. In the *Status* chart, click *Offline* in the legend or on the chart itself.

![Status chart example](image)

To filter all devices discovered on port3:

1. In the *Interfaces* chart, click *port3*.

![Interfaces chart example](image)

Adding MAC-based addresses to devices

Assets detected by device detection appear in the *Device Inventory* widget. You can manage policies around devices by adding a new device object (MAC-based address) to a device. Once you add the MAC-based address, the device can be used in address groups or directly in policies.

To add a MAC-based address to a device:

1. Go to *Dashboard > Users & Devices*.
 If you are using the Comprehensive dashboard template, go to *Dashboard > Device Inventory Monitor*. See .
2. Hover over the Device Inventory widget, and click Expand to Full Screen. The Device Inventory monitor is displayed.

3. Click a device, then click Firewall Device Address. The New Address dialog is displayed.

4. In the Name field, give the device a descriptive name so that it is easy to in the Device column.

5. Configure the MAC Address.

6. Click OK, then refresh the page. The MAC address icon appears in the Address column next to the device name.

Firewall Users monitor

The Firewall Users monitor displays all firewall users currently logged in. You can use the monitor to diagnose user-related logons or to highlight and deauthenticate a user.
To view the firewall monitor:

1. Go to Dashboard > Users & Devices.
 If you are using the Comprehensive dashboard template, go to Dashboard > Firewall User Monitor. See .
2. Hover over the Firewall Users widget, and click Expand to Full Screen.
3. To show FSSO logons, click Show all FSSO Logons at the top right of the page.

To filter or configure a column in the table, hover over the column heading and click Filter/Configure Column.

To deauthenticate a user:

1. Go to Dashboard > Users & Devices.
2. Hover over the Firewall Users widget, and click Expand to Full Screen.
3. (Optional) Use the Search field to search for a specific user.
4. In the toolbar, click Deauthenticate, or right-click the user, and click Deauthenticate. The Confirm dialog is displayed.
5. Click OK.

To view firewall users in the CLI:

```
# diagnose firewall auth list
```

WiFi dashboard

The WiFi dashboard provides an overview of your WiFi network's performance, including FortiAP status, channel utilization, WiFi clients and associated information, login failures, and signal strength.
To access the WiFi dashboard, go to Dashboard > WiFi.

The WiFi dashboard can be customized per your requirements. To learn more about using and modifying dashboards and widgets, see Dashboards and Monitors on page 76.

This section describes the following monitors available for the WiFi Dashboard:

- FortiAP Status monitor on page 101
- Clients by FortiAP monitor on page 103

FortiAP Status monitor

The *FortiAP Status* monitor displays the status and the channel utilization of the radios of FortiAP devices connected to a FortiGate. It also provides access to tools to diagnose and analyze connected APs.

To view the *FortiAP Status* monitor:

1. Go to Dashboard > WiFi.
2. Hover over the *FortiAP Status* widget, and click *Expand to Full Screen*. The *FortiAP Status* monitor opens.
3. (Optional) Click **Save as Monitor** to save the widget as monitor.

To view the Diagnostics and Tools menu:

1. Right-click an **Access Point** in the table, and click **Diagnostics and Tools**. The **Diagnostics and Tools** dialog opens.

![Diagnostics and Tools dialog](image)

2. To monitor and analyze the FortiAP device, click on the tabs in the **Diagnostics and Tools** dialog, such as **Clients**, **Spectrum Analysis**, **VLAN Probe**, and so on.

![Diagnostics and Tools](image)
The *Diagnostics and Tools* dialog is similar to the device dialog from *WiFi & Switch Controller > Managed FortiAPs*. To learn more about the various tabs and their functions, see *Spectrum analysis of FortiAP E models, VLAN probe report, and Standardize wireless health metrics.*

Clients by FortiAP monitor

The *Clients by FortiAP* monitor allows you to view detailed information about the health of individual WiFi connections in the network. It also provides access to tools to diagnose and analyze connected wireless devices.

To view the *Clients by FortiAP* monitor:

1. Go to *Dashboard > WiFi*.
2. Hover over the *Clients by FortiAP* widget, and click *Expand to Full Screen*. The *Clients by FortiAP* monitor opens.
3. (Optional) Click *Save as Monitor* to save the widget as monitor.

To view the summary page for a wireless client:

1. Right-click a client in the table and select *Diagnostics and Tools*. The *Diagnostics and Tools - <device> page* is displayed.
2. (Optional) Click Quarantine to quarantine the client,
3. (Optional) Click Disassociate to disassociate the client.

Health status

The *Status* section displays the overall health for the wireless connection. The overall health of the connection is:

- Good if the value range for all three conditions are *Good*
- Fair or poor if one of the three conditions is *Fair* or *Poor* respectively.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Strength</td>
<td>• Good > -56dBm</td>
</tr>
<tr>
<td></td>
<td>• -56dBm > Fair > -75dBm</td>
</tr>
<tr>
<td></td>
<td>• Poor < -75dBm</td>
</tr>
<tr>
<td>Signal Strength/Noise</td>
<td>• Good > 39dBm</td>
</tr>
<tr>
<td></td>
<td>• 20dBm < Fair < 39dBm</td>
</tr>
<tr>
<td></td>
<td>• Poor < 20dBm</td>
</tr>
<tr>
<td>Band</td>
<td>• Good = 5G band</td>
</tr>
<tr>
<td></td>
<td>• Fair = 2.4G band</td>
</tr>
</tbody>
</table>

The summary page also has the following FortiView tabs:
Dashboards and Monitors

- **Performance**

 - Bandwidth
 - 8 Mbps
 - 6 Mbps
 - 4 Mbps
 - 2 Mbps
 - 0 Mbps
 - 5 minute(s) ago
 - Bandwidth Tx 112 bps
 - Bandwidth Rx 133 bps

 - Signal Strength/Noise
 - 60 dB
 - 40 dB
 - 20 dB
 - 0 dB
 - 5 minute(s) ago

- **Applications**

<table>
<thead>
<tr>
<th>Application</th>
<th>Category</th>
<th>Risk</th>
<th>Bytes</th>
<th>Sessions</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP/443</td>
<td></td>
<td></td>
<td>1.24 KB</td>
<td>33</td>
<td>2.18 Kbps</td>
</tr>
<tr>
<td>HTTPS/BROWSER</td>
<td>Web.Client</td>
<td></td>
<td>497.86 KB</td>
<td>4</td>
<td>0 bps</td>
</tr>
<tr>
<td>TCP/5061</td>
<td></td>
<td></td>
<td>16.46 KB</td>
<td>1</td>
<td>16 bps</td>
</tr>
<tr>
<td>DNS</td>
<td>Network.Service</td>
<td></td>
<td>14.37 KB</td>
<td>74</td>
<td>16 bps</td>
</tr>
<tr>
<td>TCP/443</td>
<td></td>
<td></td>
<td>11.99 KB</td>
<td>1</td>
<td>0 bps</td>
</tr>
<tr>
<td>TCP/5222</td>
<td></td>
<td></td>
<td>1.32 KB</td>
<td>1</td>
<td>16 bps</td>
</tr>
</tbody>
</table>

- **Destinations**

<table>
<thead>
<tr>
<th>Destination</th>
<th>Application</th>
<th>Bytes</th>
<th>Sessions</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>r4...sn-n4v?sn7googlevideo.com (74.125...</td>
<td>HTTPS/BROWSER</td>
<td>480.32 KB</td>
<td>1</td>
<td>0 bps</td>
</tr>
<tr>
<td>securepubads.doubleclick.net (216.58.21...</td>
<td>Google-Gmail</td>
<td>142.74 KB</td>
<td>1</td>
<td>0 bps</td>
</tr>
<tr>
<td>www.google-tagmanager.com (216.58.209.2...</td>
<td>Google-Gmail</td>
<td>127.10 KB</td>
<td>1</td>
<td>0 bps</td>
</tr>
<tr>
<td>connect.facebook.net (69.171.250.13)</td>
<td>Facebook-Web</td>
<td>85.65 KB</td>
<td>1</td>
<td>0 bps</td>
</tr>
<tr>
<td>www.google.com (142.250.179.68)</td>
<td>Google-Web</td>
<td>54.71 KB</td>
<td>4</td>
<td>0 bps</td>
</tr>
<tr>
<td>s.youtube.com (64.233.167.102)</td>
<td>Google-Gmail</td>
<td>50.74 KB</td>
<td>1</td>
<td>0 bps</td>
</tr>
<tr>
<td>www.google-analytics.com (142.250.179.78...</td>
<td>Google-Gmail</td>
<td>24.22 KB</td>
<td>2</td>
<td>0 bps</td>
</tr>
<tr>
<td>update.googleapis.com (216.58.209.227)</td>
<td>Google-Gmail</td>
<td>19.54 KB</td>
<td>2</td>
<td>0 bps</td>
</tr>
<tr>
<td>c.rrogers.rsctelephony.goog (216.239.36.1...</td>
<td>Google-Other</td>
<td>16.46 KB</td>
<td>1</td>
<td>0 bps</td>
</tr>
<tr>
<td>fonts.gstatic.com (216.58.213.163)</td>
<td>Google-Gmail</td>
<td>15.91 KB</td>
<td>2</td>
<td>0 bps</td>
</tr>
<tr>
<td>mtalk.google.com (64.233.167.188)</td>
<td>Google-Gmail</td>
<td>14.94 KB</td>
<td>2</td>
<td>0 bps</td>
</tr>
</tbody>
</table>
Dashboards and Monitors

- **Policies**

<table>
<thead>
<tr>
<th>Policy</th>
<th>Policy Type</th>
<th>Source Interface</th>
<th>Destination Interface</th>
<th>Bytes</th>
<th>Sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGDocs-Wifi-Out (31)</td>
<td>Firewall</td>
<td>FGDocs-Wifi (FGDocs-Wifi)</td>
<td>F.g.wan1 (port1)</td>
<td>1.10 MB</td>
<td>41</td>
</tr>
</tbody>
</table>

- **Logs**

<table>
<thead>
<tr>
<th>Date/Time</th>
<th>Level</th>
<th>Action</th>
<th>Message</th>
<th>SSID</th>
<th>Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 minutes ago</td>
<td>Info</td>
<td>client-ip-detected</td>
<td>Client d2:cc:49:eb:7fd2 had an IP address detected ...</td>
<td>FGDocs-Wifi</td>
<td>36</td>
</tr>
<tr>
<td>25 minutes ago</td>
<td>Info</td>
<td>client-authentication</td>
<td>Client d2:cc:49:eb:7fd2 authenticated.</td>
<td>FGDocs-Wifi</td>
<td>36</td>
</tr>
<tr>
<td>25 minutes ago</td>
<td>Info</td>
<td>client-deauthentication</td>
<td>Client d2:cc:49:eb:7fd2 de-authenticated.</td>
<td>FGDocs-Wifi</td>
<td>36</td>
</tr>
<tr>
<td>25 minutes ago</td>
<td>Info</td>
<td>client-deauthentication</td>
<td>Client d2:cc:49:eb:7fd2 de-authenticated.</td>
<td>FGDocs-Wifi</td>
<td>36</td>
</tr>
</tbody>
</table>

Monitors

FortiGate supports both FortiView and Non-FortiView monitors. FortiView monitors are driven by traffic information captured from logs and real-time data. Non-FortiView monitors capture information from various real-time state tables on the FortiGate.

Non-FortiView monitors

Non-FortiView monitors capture information on various state tables, such as the routes in the routing table, devices in the device inventory, DHCP leases in the DHCP lease table, connected VPNs, clients logged into the wireless network, and much more. These monitors are useful when troubleshooting the current state of the FortiGate, and to identify whether certain objects are in the state table or not. For more information, see Dashboards on page 83.

FortiView monitors

FortiView is the FortiOS log view tool and comprehensive monitoring system for your network. FortiView integrates real-time and historical data into a single view on your FortiGate. It can log and monitor network threats, keep track of administration activities, and more.

Use FortiView monitors to investigate traffic activity such as user uploads and downloads, or videos watched on YouTube. You can view the traffic on the whole network by user group or by individual. FortiView displays the information in both text and visual format, giving you an overall picture of your network traffic activity so that you can quickly decide on actionable items.

FortiView is integrated with many UTM functions. For example, you can quarantine an IP address directly in FortiView or create custom devices and addresses from a FortiView entry.
The logging range and depth will depend on the FortiGate model.

The *Optimal* template contains a set of popular default dashboards and FortiView monitors. The *Comprehensive* template contains a set of default dashboards as well as all of the FortiView monitors. See [Dashboards on page 83](#).

<table>
<thead>
<tr>
<th>Template</th>
<th>Monitors</th>
</tr>
</thead>
</table>
| **Optimal** | • FortiView Sources
 • FortiView Destinations
 • FortiView Applications
 • FortiView Web Sites
 • FortiView Policies
 • FortiView Sessions|
| **Comprehensive** | • FortiView Sources
 • FortiView Destinations
 • FortiView Applications
 • FortiView Web Sites
 • FortiView Threats
 • FortiView Compromised Hosts
 • FortiView Policies
 • FortiView Sessions
 • Device Inventory Monitor
 • Routing Monitor
 • DHCP Monitor
 • SD-WAN Monitor
 • FortiGuard Quota Monitor
 • IPsec Monitor
 • SSL-VPN Monitor
 • Firewall User Monitor
 • Quarantine Monitor
 • FortiClient Monitor
 • FortiAP Clients Monitor
 • Rogue APs Monitor |

FortiView monitors and widgets

FortiView monitors are available in the tree menu under *Dashboards*. The menu contains several default monitors for the top categories. Additional FortiView monitors are available as widgets that can be added to the dashboards. You can also add FortiView monitors directly to the tree menu with the Add (+) button.
Dashboards and Monitors

Core FortiView monitors

The following default monitors are available in the tree menu:

<table>
<thead>
<tr>
<th>Dashboard</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>FortiView Sources</td>
<td>Displays Top Sources by traffic volume and drilldown by Source.</td>
</tr>
<tr>
<td>FortiView Destinations</td>
<td>Displays Top Destinations by traffic volume and drilldown by Destination.</td>
</tr>
<tr>
<td>FortiView Applications</td>
<td>Displays Top Applications by traffic volume and drilldown by Application.</td>
</tr>
<tr>
<td>FortiView Web Sites</td>
<td>Displays Top Websites by session count and drilldown by Domain.</td>
</tr>
<tr>
<td>FortiView Policies</td>
<td>Displays Top Policies by traffic volume and drilldown by Policy number</td>
</tr>
<tr>
<td>FortiView Sessions</td>
<td>Displays Top Sessions by traffic source and can be used to end sessions.</td>
</tr>
</tbody>
</table>

Usage is based on default settings. The pages may be customized further and sorted by other fields.

You can quarantine a host and ban an IP from all of the core FortiView monitors.

Adding FortiView monitors

Non-core FortiView monitors are available in the Add monitor pane. You can add a FortiView widget to a dashboard or the tree menu as a monitor.
To add a monitor to the tree menu:

1. In the tree menu, under the monitors section, click *Add Monitor (+)*. The *Add Monitor* window opens.

2. Click *Add* next to a monitor. You can use the *Search* field to search for a specific monitor.

3. In the *FortiGate* area, select *All FortiGates or Specify* to select a FortiGate device in the security fabric.

4. (Optional) In the *Data Source* area, select *Specify* and select a source device.

5. From the *Time Period* dropdown, select the time period. This option is not available in all monitors.

6. In the *Visualization* area, select *Table View* or *Bubble Chart*.

7. From the *Sort By* dropdown, select the sorting method.

8. Click *Add Monitor*. The monitor is added to the tree menu.

Monitors by category

Usage is based on the default settings. The monitors may be customized further and sorted by other fields.

LANDMARK

<table>
<thead>
<tr>
<th>Widget</th>
<th>Sort by</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications</td>
<td>Bytes/Sessions/Bandwidth/Packets</td>
<td>Displays top applications and drilldown by application.</td>
</tr>
<tr>
<td>Application Bandwidth</td>
<td>Bytes/Bandwidth</td>
<td>Displays bandwidth for top applications and drilldown by application.</td>
</tr>
<tr>
<td>Cloud Applications</td>
<td>Bytes/Sessions/Files(Up/Down)</td>
<td>Displays top cloud applications and drilldown by application.</td>
</tr>
<tr>
<td>Cloud Users</td>
<td>Bytes/Sessions/Files(Up/Down)</td>
<td>Displays top cloud users and drilldown by cloud user.</td>
</tr>
<tr>
<td>Compromised Hosts</td>
<td>Verdict</td>
<td>Displays compromised hosts and drilldown by source.</td>
</tr>
<tr>
<td>Countries/Regions</td>
<td>Bytes/Sessions/Bandwidth/Packets</td>
<td>Displays top countries/regions and drilldown by countries/regions.</td>
</tr>
<tr>
<td>Destination Firewall Objects</td>
<td>Bytes/Sessions/Bandwidth/Packets</td>
<td>Displays top destination firewall objects and drilldown by destination objects.</td>
</tr>
<tr>
<td>Destination Owners</td>
<td>Bytes/Sessions/Bandwidth/Packets</td>
<td>Displays top destination owners and drilldown by destination.</td>
</tr>
<tr>
<td>Destinations</td>
<td>Bytes/Sessions/Bandwidth/Packets</td>
<td>Displays top destinations and drilldown by destination.</td>
</tr>
</tbody>
</table>
Dashboards and Monitors

<table>
<thead>
<tr>
<th>Widget</th>
<th>Sort by</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search Phrases</td>
<td>Count</td>
<td>Displays top search phrases and drilldown by search phrase.</td>
</tr>
<tr>
<td>Source Firewall</td>
<td>Bytes/Sessions/Bandwidth/Packets</td>
<td>Displays top search phrases and drilldown by search object.</td>
</tr>
<tr>
<td>Objects</td>
<td></td>
<td>Displays top sources and drilldown by source.</td>
</tr>
<tr>
<td>Threats</td>
<td>Threat level/Threat Score/Sessions</td>
<td>Displays top threats and drilldown by threat.</td>
</tr>
<tr>
<td>Traffic Shaping</td>
<td>Dropped</td>
<td>Displays top traffic shaping and drilldown by shaper.</td>
</tr>
<tr>
<td>Web Categories</td>
<td>Bytes/Sessions/Bandwidth/Packets</td>
<td>Displays top web categories and drilldown by category.</td>
</tr>
<tr>
<td>Web Sites</td>
<td>Bytes/Sessions/Bandwidth/Packets</td>
<td>Displays top web sites and drilldown by domain.</td>
</tr>
<tr>
<td>WiFi Clients</td>
<td>Bytes/Sessions</td>
<td>Displays top WiFi clients and drilldown by source.</td>
</tr>
</tbody>
</table>

WAN

<table>
<thead>
<tr>
<th>Widget</th>
<th>Sort by</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servers</td>
<td>Bytes/Sessions/Bandwidth/Packets</td>
<td>Displays top servers and drilldown by server address.</td>
</tr>
<tr>
<td>Sources</td>
<td>Bytes/Sessions/Bandwidth/Packets</td>
<td>Displays top sources and drilldown by device.</td>
</tr>
<tr>
<td>Threats</td>
<td>Threat Level/Threat Score/Sessions</td>
<td>Displays top threats and drilldown by threat.</td>
</tr>
</tbody>
</table>

All Segments

<table>
<thead>
<tr>
<th>Widget</th>
<th>Sort by</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin Logins</td>
<td>Configuration Changes/Logins/Failed Logins</td>
<td>Displays top admin logins by username.</td>
</tr>
<tr>
<td>Destination Interfaces</td>
<td>Bytes/Sessions/Bandwidth/Packets</td>
<td>Displays top destination interfaces by destination interface.</td>
</tr>
<tr>
<td>Endpoint Vulnerabilities</td>
<td>Severity</td>
<td>Displays top endpoint vulnerabilities by vulnerability name.</td>
</tr>
<tr>
<td>Failed Authentication</td>
<td>Failed Attempts</td>
<td>Displays top failed authentications by failed authentication source.</td>
</tr>
<tr>
<td>FortiSandbox Files</td>
<td>Submitted</td>
<td>Displays top FortiSandbox files by file name.</td>
</tr>
<tr>
<td>Widget</td>
<td>Sort by</td>
<td>Usage</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Interface Pairs</td>
<td>Bytes/Sessions/Bandwidth/Packets</td>
<td>Displays top interface pairs by source interface.</td>
</tr>
<tr>
<td>Policies</td>
<td>Bytes/Sessions/Bandwidth/Packets</td>
<td>Displays top policies by policy.</td>
</tr>
<tr>
<td>Source Interfaces</td>
<td>Bytes/Sessions/Bandwidth/Packets</td>
<td>Displays top source interfaces by source interface.</td>
</tr>
<tr>
<td>System Events</td>
<td>Level/Events</td>
<td>Displays top system events by event name.</td>
</tr>
<tr>
<td>VPN</td>
<td>Connections/Bytes</td>
<td>Displays top VPN connections by user.</td>
</tr>
<tr>
<td>Vulnerable Endpoint Devices</td>
<td>Detected Vulnerabilities</td>
<td>Displays top vulnerable endpoint devices by device.</td>
</tr>
</tbody>
</table>

A maximum of 25 interfaces can be monitored at one time on a device.

Using the FortiView interface

Use the FortiView interface to customize the view and visualizations within a monitor to find the information you are looking for. The tools in the top menu bar allow you to change the time display, refresh or customize the data source, and filter the results. You can also right-click a table in the monitor to view drilldown information for an item.

Real-time and historical charts

Use the *Time Display* dropdown to select the time period to display on the current monitor. Time display options vary depending on the monitor and can include real-time information (*now*) and historical information (*1 hour*, *24 hours*, and *7 days*).

Disk logging or remote logging must be enabled to view historical information.

You can create a custom time range by selecting an area in table with your cursor.

The icon next to the time period identifies the data source (FortiGate Disk, FortiAnalyzer, or FortiGate Cloud). You can hover over the icon to see a description of the device.
Data source

FortiView gathers information from a variety of data sources. If there are no log disk or remote logging configured, the data will be drawn from the FortiGate's session table, and the Time Period is set to Now.

Other data sources that can be configured are:

- FortiGates (disk)
- FortiAnalyzer
- FortiGate Cloud

When Data Source is set to Best Available Device, FortiAnalyzer is selected when available, then FortiGate Cloud, and then FortiGate Disk.

Drilldown information

Double-click or right-click an entry in a FortiView monitor and select Drill Down to Details to view additional details about the selected traffic activity. Click the Back icon in the toolbar to return to the previous view.

You can group drilldown information into different drilldown views. For example, you can group the drilldown information in the FortiView Destinations monitor by Sources, Applications, Threats, Policies, and Sessions.

Double-click an entry to view the logs in Sessions view. Double-click a session to view the logs.
Dashboards and Monitors

The graph shows the bytes sent/received in the time frame. Real time does not include a chart.

- Users can customize the time frame by selecting a time period within the graph.

Summary of

- Shows information such as the user/avatar, avatar/source IP, bytes, and sessions total for the time period.
- Can quarantine host (access layer quarantine) if they are behind a FortiSwitch or FortiAP.
- Can ban IP addresses, adds the source IP address into the quarantine list.

Tabs

- Drilling down entries in any of these tabs (except sessions tab) will take you to the underlying traffic log in the sessions tab.
- Applications shows a list of the applications attributed to the source IP. This can include scanned applications (using Application Control in a firewall policy or unscanned applications).

  ```
  config log gui-display
  set fortiview-unscanned-apps enable
  end
  ```

- Destinations shows destinations grouped by IP address/FQDN.
- Threats lists the threats caught by UTM profiles. This can be from antivirus, IPS, Web Filter, Application Control, etc.
- Web Sites contains the websites which were detected either with webfilter, or through FQDN in traffic logs.
- Web Categories groups entries into their categories as dictated by the Web Filter Database.
- Policies groups the entries into which polices they passed through or were blocked by.
- Sessions shows the underlying logs (historical) or sessions (real time). Drilldowns from other tabs end up showing the underlying log located in this tab.
- Search Phrases shows entries of search phrases captured by a Web Filter UTM profile, with deep inspection enabled in firewall policy.
- More information can be shown in a tooltip while hovering over these entries.

To view matching logs or download a log, click the Security tab in the Log Details.
Enabling FortiView from devices

You can enable FortiView from SSD disk, FortiAnalyzer and FortiGate Cloud.

FortiView from disk

FortiView from disk is available on all FortiGates with an SSD disk.

Restrictions

<table>
<thead>
<tr>
<th>Model</th>
<th>Supported view</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desktop models (100 series) with SSD</td>
<td>Five minutes and one hour</td>
</tr>
<tr>
<td>Medium models with SSD</td>
<td>Up to 24 hours</td>
</tr>
<tr>
<td>Large models (1500D and above) with SSD</td>
<td>Up to seven days</td>
</tr>
</tbody>
</table>

To enable seven days view:

```bash
config log setting
  set fortiview-weekly-data enable
end
```

Configuration

A firewall policy needs to be in place with traffic logging enabled. For optimal operation with FortiView, internal interface roles should be clearly defined as LAN. DMZ and internet facing or external interface roles should be defined as WAN.

To configure logging to disk:

```bash
config log disk setting
  set status enable
end
```

To include sniffer traffic and local-deny traffic when FortiView from Disk:

```bash
config report setting
  set report-source forward-traffic sniffer-traffic local-deny-traffic
end
```
This feature is only supported through the CLI.

Troubleshooting

Use `execute report flush-cache` and `execute report recreate-db` to clear up any irregularities that may be caused by upgrading or cache issues.

Traffic logs

To view traffic logs from disk:

1. Go to Log & Report, and select either the Forward Traffic, Local Traffic, or Sniffer Traffic views.
2. In the top menu bar, click Log location and select Disk.

FortiView from FortiAnalyzer

Connect FortiGate to a FortiAnalyzer to increase the functionality of FortiView. Adding a FortiAnalyzer is useful when adding monitors such as the Compromised Hosts. FortiAnalyzer also allows you to view historical information for up to seven days.

Requirements

- A FortiGate or FortiOS
- A compatible FortiAnalyzer (see Compatibility with FortiOS)

To configure logging to the FortiAnalyzer, see Configuring FortiAnalyzer on page 2217

To enable FortiView from FortiAnalyzer:

1. Go to Dashboard > FortiView Sources.
2. Select a time range other than Now from the dropdown list to view historical data.
3. In top menu, click the dropdown, and select Settings. The Edit Dashboard Widget dialog is displayed.
 a. In the Data Source area, click Specify.
 b. From the dropdown, select FortiAnalyzer, and click OK.

All the historical information now comes from the FortiAnalyzer.

When *Data Source* is set to *Best Available Device*, FortiAnalyzer is selected when available, then FortiGate Cloud, and then FortiGate Disk.
FortiView from FortiGate Cloud

This function requires a FortiGate that is registered and logged into a compatible FortiGate Cloud. When using FortiGate Cloud, the Time Period can be set to up to 24 hours.

To configure logging to FortiGate Cloud, see Configuring FortiGate Cloud on page 2219.

To enable FortiView with log source as FortiGate Cloud:

1. Go to Dashboard > FortiView Sources.
2. In the top menu, click the dropdown, and select Settings. The Edit Dashboard Widget window opens.
 a. In the Data Source area, click Specify.
 b. From the dropdown, select FortiGate Cloud, then click OK.

You can select FortiGate Cloud as the data source for all available FortiView pages and widgets.

FortiView sources

The FortiView Sources monitor displays top sources sorted by Bytes, Sessions or Threat Score. The information can be displayed in real time or historical views. You can use the monitor to create or edit a firewall device address or IP address definitions, and temporarily or permanently ban IPs.

To add a firewall device address:

1. In the Device column, hover over the device MAC address. An information window opens.
2. Click Firewall Device Address. The New Address dialog opens.
3. Configure the address settings, and click Return.

Use the Name field to assign a descriptive name to a device so it is easier to find it in the Device column. After you finish configuring the device, refresh the page to see the new name in the monitor.
To add a firewall IP address:

1. In the Device column, hover over the device MAC address. An information window opens.
2. Click Firewall IP Address. The New Address window opens.
3. Configure the address settings, and click Return.

Use the Name field to assign a descriptive name to a device so it is easier to find it in the Device column. After you finish configuring the device, refresh the page to see the new name in the monitor.

To ban an IP address:

1. In the Device column, hover over the device MAC address. An information window opens.
2. Click Ban IP. The Ban IP dialog is displayed.
3. Configure the ban IP settings, and click OK.

FortiView Sessions

The FortiView Sessions monitor displays Top Sessions by traffic source and can be used to end sessions.

To view the FortiView Sessions dashboard, go to Dashboard > FortiView Sessions.
The session table displayed on the FortiView Sessions monitor is useful when verifying open connections. For example, if you have a web browser open to browse the Fortinet website, you would expect a session entry from your computer on port 80 to the IP address for the Fortinet website. You can also use a session table to investigate why there are too many sessions for FortiOS to process.

You can filter the sessions displayed in the session table by setting up the available filtering options.

To filter sessions in the session table:

1. Click on the *Add Filter* button at the top of the session table.

2. Select the required filtering option. The session table updates to the filter selection.

3. You may add one or more filters depending upon your requirements. To add more filters, repeat the above steps for a different set of filters.
You can be very specific with how you use filters and target sessions based on different filter combinations. For example, you may want to view all sessions from a device with a particular IP by adding the Source IP filter. Similarly, you may need to target all the sessions having a particular Destination IP and Destination Port, and so on.

You may also view the session data in the CLI.

To view session data using the CLI:

```
# diagnose sys session list
```

The session table output in the CLI is very large. You can use the supported filters in the CLI to show only the data you need.

To view session data with filters using the CLI:

```
# diagnose sys session filter <option>
```

See to learn more about using the supported filters in the CLI.

You may also decide to end a particular session or all sessions for administrative purposes.

To end sessions from the GUI:

1. Select the session you want to end. To select multiple sessions, hold the Ctrl or Shift key on your keyboard while clicking the sessions.

2. Right-click on the selected sessions, click on **End Session(s)** or **End All Sessions**.

3. Click OK in the confirmation dialog.

FortiView Top Source and Top Destination Firewall Objects monitors

The FortiView Source Firewall Objects and FortiView Destination Firewall Objects monitors leverage UUID to resolve firewall object address names for improved usability.

Requirements

To have a historical Firewall Objects-based view, address objects’ UUIDs need to be logged.

To enable address object UUID logging in the CLI:

```
config system global
  set log-uuid-address enable
```
To add a firewall object monitor in the GUI:

2. In the Search field, type Destination Firewall Objects and click the Add button next to the dashboard name.

3. In the FortiGate area, select the FortiGate(s) from the dropdown.

4. In the Data Source area, select Best Available Device or Specify. For information, see Using the FortiView interface on page 111.

5. From the Time Period dropdown, select the time period. Select now for real-time information, or (1 hour, 24 hours, and 7 days) for historical information.

6. In the Visualization area, select Table View or Bubble Chart.

7. From the Sort By dropdown, select Bytes, Sessions, Bandwidth, or Packets.

8. Click Add Monitor. The monitor is added to the tree menu.

To drill down Firewall Objects:

1. Open the FortiView Source Firewall Objects or FortiView Destination Firewall Objects monitor.

2. Right-click on any Source or Destination Object and click Drill Down to Details.

3. Click the tabs to sort the sessions by Application, Destinations, Web Sites, or Policies.

4. To view signatures, click the entry in the Category column.

5. To view sessions, right-click an entry and click View Sessions, or click the Sessions tab.

6. To end a session, right-click an entry in the Sessions tab and select End Sessions or End All Sessions.
Viewing top websites and sources by category

You can use FortiGuard web categories to populate the category fields in various FortiView monitors such as FortiView Web Categories, FortiView Websites or FortiView Sources. To view the categories in a monitor, the web filter profile must be configured to at least monitor for a FortiGuard category based on a web filter and applied to a firewall policy for outbound traffic.

To verify the web filter profile is monitor-only:

2. Double-click a web filter that is applied to an outbound traffic firewall policy. The Edit Web Filter Profile window opens.
3. Ensure FortiGuard category based filter is enabled. In the image below, the General Interest - Business categories are monitor-only.

To create a Web categories monitor:

2. In the Search field, type FortiView Web Categories and click the Add button next to the monitor name.
3. In the FortiGate area, select the FortiGate(s) from the dropdown.
4. In the Data Source area, click Best Available Device or Specify to select a device in the security fabric.
5. From the Time Period dropdown, select a time period greater than Now.
6. From the Sort By dropdown, select Bytes, Sessions, Bandwidth, or Packets.
7. Click Add Monitor. The widget is added to the tree menu.
Dashboards and Monitors

Viewing the web filter category

The web filter category name appears in the Category column of the dashboard.

Click an entry in the table. The category name appears at the top of the Summary of box.

Click the Web Sites tab. The category name appears in the Category column.
Click the Sessions tab. The category name appears in the Category Description column.

The category name also appears in the Category column in the FortiView Websites and FortiView Sources monitors.
Cloud application view

To see different cloud application views, set up the following:

- A FortiGate with a firewall policy that uses the Application Control security profile.
- A FortiGate with log data from the local disk or FortiAnalyzer.
- Optional but highly recommended: SSL Inspection set to deep-inspection in the related firewall policies.

Viewing cloud applications

Cloud applications

All cloud applications require SSL Inspection set to deep-inspection on the firewall policy. For example, Facebook File.Download can monitor Facebook download behavior which requires SSL deep-inspection to parse the deep information in the network packets.

To view cloud applications:

1. Go to Security Profiles > Application Control.
2. Select a relative Application Control profile used by the firewall policy and click Edit.
3. On the Edit Application Sensor page, click View Application Signatures.
4. Hover over a column heading or the Application Signature bar. In the right gutter area, click the filter icon to filter the applications.
Dashboards and Monitors

Cloud applications have a cloud icon beside them.
The lock icon indicates that the application requires SSL deep inspection.

5. Hover over an item to see its details.
This example shows Gmail_Attachment.Download, a cloud application signature based sensor which requires SSL deep inspection. If any local network user behind the firewall logs into Gmail and downloads a Gmail attachment, that activity is logged.

Applications with cloud behavior

Applications with cloud behavior is a superset of cloud applications.
Some applications do not require SSL deep inspection, such as Facebook, Gmail, and YouTube. This means that if any traffic trigger application sensors for these applications, there is a FortiView cloud application view for that traffic.
Other applications require SSL deep inspection, such as Gmail attachment, Facebook_Workplace, and so on.
To view applications with cloud behavior:

1. In the Application Signature page, ensure the Behavior column is displayed. If necessary, add the Behavior column.
 a. Hover over the left side of the table column headings to display the Configure Table icon.
 b. Click Configure Table and select Behavior.
 c. Click Apply.

2. Click the filter icon in the Behavior column and select Cloud to filter by Cloud. Then click Apply.

3. The Application Signature page displays all applications with cloud behavior.
4. Use the Search box to search for applications. For example, you can search for `youtube`.

5. Hover over an item to see its details.
 This example shows an application sensor with no lock icon which means that this application sensor does not require SSL deep inspection. If any local network user behind the firewall tries to navigate to the YouTube website, that activity is logged.

Configuring the Cloud Applications monitor

On the `Edit Application Sensor` page in the `Categories` section, the eye icon next to a category means that category is monitored and logged.
To add the Cloud Applications monitor in the GUI:

1. Click Add Monitor. The Add monitor window opens.

2. In the Search field, enter FortiView Cloud Applications and click the Add button next to the monitor.

3. In the FortiGate area, select the FortiGate(s) from the dropdown.

4. In the Data Source area, click Best Available Device or Specify to select a device in the security fabric.

5. From the Time Period dropdown, select a time period greater than Now.

6. From the Sort By dropdown, select Bytes, Sessions, or Files (Up/Down).

7. Click Add Monitor. The monitor is added to the tree menu.

8. Open the monitor. If SSL deep inspection is enabled in the related firewall policy, then the monitor shows the additional details that are logged, such as Files (Up/Down) and Videos Played.
 - For YouTube, the Videos Played column is triggered by the YouTube_Video_Play cloud application sensor. This shows the number of local network users who logged into YouTube and played YouTube videos.
 - For Dropbox, the Files (Up/Down) column is triggered by Dropbox_File.Download and Dropbox_File.Upload cloud application sensors. This shows the number of local network users who logged into Dropbox and uploaded or downloaded files.
Using the Cloud Applications monitor

To see additional information in the Cloud Applications monitor:

1. In the tree menu, click the *FortiView Cloud Applications* monitor to open it.

2. For details about a specific entry, double-click the entry or right-click the entry and select *Drill Down to Details*.

3. To see all the sessions for an application, click *Sessions*.

 In this example, the *Application Name* column shows all applications related to YouTube.
4. To view log details, double-click a session to display the Log Details pane. Sessions monitored by SSL deep inspection (in this example, Youtube_Video.Play) captured deep information such as Application User, Application Details, and so on. The Log Details pane also shows additional deep information such as application ID, Message, and so on. Sessions not monitored by SSL deep inspection (YouTube) did not capture the deep information.

5. To display a specific time period, select and drag in the timeline graph to display only the data for that time period.

Top application: YouTube example

Monitoring network traffic with SSL deep inspection

This example describes how to monitor network traffic for YouTube using FortiView Applications view with SSL deep inspection.

To monitor network traffic with SSL deep inspection:

1. Create a firewall policy with the following settings:
 - Application Control is enabled.
 - SSL Inspection is set to deep-inspection.
Dashboards and Monitors

- Log Allowed Traffic is set to All Sessions.

2. Go to Security Profiles > Application Control.
3. Select a relative Application Control profile used by the firewall policy and click Edit.
4. Because YouTube cloud applications are categorized into Video/Audio, ensure the Video/Audio category is monitored. Monitored categories are indicated by an eye icon.
5. Click View Application Signatures and hover over YouTube cloud applications to view detailed information about YouTube application sensors.
6. Expand YouTube to view the Application Signatures associated with the application.

<table>
<thead>
<tr>
<th>Application Signature</th>
<th>Description</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>YouTube_Video.Access</td>
<td>An attempt to access a video on YouTube.</td>
<td>16420</td>
</tr>
<tr>
<td>YouTube_Channel.ID</td>
<td>An attempt to access a video on a specific channel on YouTube.</td>
<td>44956</td>
</tr>
<tr>
<td>YouTube_Comment.Posting</td>
<td>An attempt to post comments on YouTube.</td>
<td>31076</td>
</tr>
<tr>
<td>YouTube_HD.Streaming</td>
<td>An attempt to watch HD videos on YouTube.</td>
<td>33104</td>
</tr>
<tr>
<td>YouTube_Messenger</td>
<td>An attempt to access messenger on YouTube.</td>
<td>47858</td>
</tr>
<tr>
<td>YouTube_Video.Play</td>
<td>An attempt to download and play a video from YouTube.</td>
<td>38569</td>
</tr>
<tr>
<td>YouTube_Video.Upload</td>
<td>An attempt to upload a video to YouTube.</td>
<td>22564</td>
</tr>
<tr>
<td>YouTube</td>
<td>An attempt to access YouTube. This application sensor does not depend on SSL deep inspection so it does not have a cloud or lock icon.</td>
<td>31077</td>
</tr>
<tr>
<td>YouTube_Channel.Access</td>
<td>An attempt to access a video on a specific channel on YouTube.</td>
<td>41598</td>
</tr>
</tbody>
</table>

To view the application signature description, click the ID link in the information window.

7. On the test PC, log into YouTube and play some videos.
8. On the FortiGate, go to Log & Report > Security Events and look for log entries for browsing and playing YouTube videos in the Application Control card.
In this example, note the Application User and Application Details. Also note that the Application Control ID is 38569 showing that this entry was triggered by the application sensor YouTube_Video.Play.

<table>
<thead>
<tr>
<th>Date/Time</th>
<th>Source</th>
<th>Session Duration</th>
<th>Application Name</th>
<th>Action</th>
<th>Application User</th>
<th>Application Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019/01/01 01:00:00</td>
<td>127.0.0.1</td>
<td>00:00:00:00:00:00:00:00</td>
<td>YouTube</td>
<td>Open</td>
<td>Anonymous</td>
<td>Video _User: "YouTube _User"</td>
</tr>
<tr>
<td>2019/01/01 01:00:00</td>
<td>127.0.0.1</td>
<td>00:00:00:00:00:00:00:00</td>
<td>YouTube</td>
<td>Open</td>
<td>Anonymous</td>
<td>Video _User: "YouTube _User"</td>
</tr>
</tbody>
</table>

Monitoring network traffic without SSL deep inspection

This example describes how to monitor network traffic for YouTube using FortiView cloud application view without SSL deep inspection.

To monitor network traffic without SSL deep inspection:

1. Create a firewall policy with the following settings.
 - **Application Control** is enabled.
 - **SSL Inspection** is set to certificate-inspection.

9. Go to Dashboard > FortiView Applications.
10. In the FortiView Applications monitor, double-click YouTube to view the drilldown information.
11. Select the Sessions tab to see all the entries for the videos played. Check the sessions for YouTube_Video.Play with the ID 38569.
Dashboards and Monitors

- **Log Allowed Traffic** is set to **All Sessions**.

2. On the test PC, log into YouTube and play some videos.

3. On the FortiGate, go to **Log & Report > Security Events** and look for log entries for browsing and playing YouTube videos in the **Application Control** card.

 In this example, the log shows only applications with the name YouTube. The log cannot show YouTube application sensors which rely on SSL deep inspection.

4. Go to **Dashboard > FortiView Applications**.

 The **FortiView Application** by Bytes monitor shows the YouTube cloud application without the video played information that requires SSL deep inspection.
5. Double-click *YouTube* and click the *Sessions* tab. These sessions were triggered by the application sensor *YouTube* with the ID 31077. This is the application sensor with cloud behavior which does not rely on SSL deep inspection.
Network

The following topics provide information about network settings:

- Interfaces on page 135
- DNS on page 202
- Explicit and transparent proxies on page 220
- SD-WAN on page 484
- DHCP server on page 287
- Static routing on page 294
- Dynamic routing on page 318
- Multicast on page 398
- FortiExtender on page 402
- Direct IP support for LTE/4G on page 405
- LLDP reception on page 408
- Virtual routing and forwarding on page 410
- NetFlow on page 435
- sFlow on page 453
- Link monitor on page 456
- IPv6 on page 466
- Diagnostics on page 475

Interfaces

Physical and virtual interfaces allow traffic to flow between internal networks, and between the internet and internal networks. FortiOS has options for configuring interfaces and groups of sub-networks that can scale as your organization grows. The following table lists commonly used interface types.

<table>
<thead>
<tr>
<th>Interface type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical</td>
<td>A physical interface can be connected to with either Ethernet or optical cables. Depending on the FortiGate model, there is a varying number of Ethernet or optical physical interfaces. Some FortiGates have a grouping of interfaces labeled as lan that have a built-in switch functionality. See Physical interface on page 162 for more information.</td>
</tr>
<tr>
<td>VLAN</td>
<td>A virtual local area network (VLAN) logically divides a local area network (LAN) into distinct broadcast domains using IEEE 802.1Q VLAN tags. A VLAN interface supports VLAN tagging and is associated with a physical interface that can be connected to a device, such as a switch or a router that supports these tags. VLANs can be used on a FortiGate in NAT or transparent mode, and the FortiGate functions differently depending on the operation mode. See VLAN on page 163 for more information.</td>
</tr>
<tr>
<td>Interface type</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Aggregate</td>
<td>An aggregate interface uses a link aggregation method to combine multiple physical interfaces to increase throughput and to provide redundancy. FortiOS supports a link aggregation (LAG) interface using the Link Aggregation Control Protocol (LACP) based on IEEE 802.3ad. See Aggregation and redundancy on page 179 for more information.</td>
</tr>
<tr>
<td>Redundant</td>
<td>A redundant interface combines multiple physical interfaces where traffic only uses one of the interfaces at a time. Its primary purpose is to provide redundancy. This interface is typically used with a fully-meshed HA configuration. See Aggregation and redundancy on page 179 for more information.</td>
</tr>
<tr>
<td>Loopback</td>
<td>A loopback interface is a logical interface that is always up because it has no physical link dependency, and the attached subnet is always present in the routing table. It can be accessed through several physical or VLAN interfaces. See Loopback interface on page 183 for more information.</td>
</tr>
<tr>
<td>Software switch</td>
<td>A software switch is a virtual switch interface implemented in firmware that allows member interfaces to be added to it. Devices connected to member interfaces communicate on the same subnet, and packets are processed by the FortiGate’s CPU. A software switch supports adding a wireless SSID as a member interface. See Software switch on page 183 for more information.</td>
</tr>
<tr>
<td>Hardware switch</td>
<td>A hardware switch is a virtual switch interface implemented at the hardware level that allows member interfaces to be added to it. Devices connected to member interfaces communicate on the same subnet. A hardware switch relies on specific hardware to optimize processing and supports the Spanning Tree Protocol (STP). See Hardware switch on page 185 for more information.</td>
</tr>
<tr>
<td>Zone</td>
<td>A zone is a logical group containing one or more physical or virtual interfaces. Grouping interfaces in zones can simplify firewall policy configurations. See Zone on page 189 for more information.</td>
</tr>
<tr>
<td>Virtual wire pair</td>
<td>A virtual wire pair (VWP) is an interface that acts like a virtual wire consisting of two interfaces, with an interface at each of the wire. No IP addressing is configured on a VWP, and communication is restricted between the two interfaces using firewall policies. See Virtual wire pair on page 191 for more information.</td>
</tr>
<tr>
<td>FortiExtender WAN extension</td>
<td>A FortiExtender WAN extension is a managed interface that allows a connected FortiExtender to provide WAN connectivity to the FortiGate. See FortiExtender on page 402 for more information.</td>
</tr>
<tr>
<td>FortiExtender LAN extension</td>
<td>A FortiExtender LAN extension is a managed interface that allows a connected FortiExtender to provide LAN connectivity to the FortiGate. See FortiExtender on page 402 for more information.</td>
</tr>
</tbody>
</table>
Interface type

<table>
<thead>
<tr>
<th>Interface type</th>
<th>Description</th>
</tr>
</thead>
</table>
| Enhanced MAC VLAN | An enhanced media access control (MAC) VLAN, or EMAC VLAN, interface allows a physical interface to be virtually subdivided into multiple virtual interfaces with different MAC addresses. In FortiOS, the EMAC VLAN functionality acts like a bridge.
See Enhanced MAC VLAN on page 195 for more information. |
| VXLAN | A Virtual Extensible LAN (VXLAN) interface encapsulates layer 2 Ethernet frames within layer 3 IP packets and is used for cloud and data center networks.
See VXLAN on page 198 for more information. |
| Tunnel | A tunnel virtual interface is used for IPsec interface-based or GRE tunnels and are created when configuring IPsec VPN and GRE tunnels, respectively. The tunnel interface can be configured with IP addresses on both sides of the tunnel since this is a requirement when using a tunnel interface with a dynamic routing protocol.
See OSPF with IPsec VPN for network redundancy on page 1461, GRE over IPsec on page 1376, and Cisco GRE-over-IPsec VPN on page 1407 for more information. |
| WiFi SSID | A WiFi SSID interface is used to control wireless network user access to a wireless local radio on a FortiWiFi or to a wireless access point using a FortiAP. The SSID is created using the WiFi & Switch Controller > SSIDs page, and it appears in the Network > Interfaces page once it is created.
See Defining a wireless network interface (SSID) in the FortiWiFi and FortiAP Configuration Guide for more information. |
| VDOM link | A VDOM link allows VDOMs to communicate internally without using additional physical interfaces.
See Inter-VDOM routing for more information. |

Interface settings

Administrators can configure both physical and virtual FortiGate interfaces in Network > Interfaces. There are different options for configuring interfaces when FortiGate is in NAT mode or transparent mode.

The available options will vary depending on feature visibility, licensing, device model, and other factors. The following list is not comprehensive.

To configure an interface in the GUI:

1. Go to Network > Interfaces.
2. Click Create New > Interface.
3. Configure the interface fields:

<p>| Interface Name | Physical interface names cannot be changed. |</p>
<table>
<thead>
<tr>
<th>Alias</th>
<th>Enter an alternate name for a physical interface on the FortiGate unit. This field appears when you edit an existing physical interface. The alias does not appear in logs. The maximum length of the alias is 25 characters.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>The configuration type for the interface, such as VLAN, Software Switch, 802.3ad Aggregate, and others.</td>
</tr>
<tr>
<td>Interface</td>
<td>This field is available when Type is set to VLAN. Select the name of the physical interface that you want to add a VLAN interface to. Once created, the VLAN interface is listed below its physical interface in the Interface list. You cannot change the physical interface of a VLAN interface.</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>This field is available when Type is set to VLAN. Enter the VLAN ID. The VLAN ID can be any number between 1 and 4094 and must match the VLAN ID added by the IEEE 802.1Q-compliant router or switch that is connected to the VLAN subinterface. The VLAN ID can be edited after the interface is added.</td>
</tr>
<tr>
<td>VRF ID</td>
<td>Virtual Routing and Forwarding (VRF) allows multiple routing table instances to coexist on the same router. One or more interface can have a VRF, and packets are only forwarded between interfaces with the same VRF.</td>
</tr>
<tr>
<td>Virtual Domain</td>
<td>Select the virtual domain to add the interface to. Only administrator accounts with the super_admin profile can change the Virtual Domain.</td>
</tr>
</tbody>
</table>
| Interface Members | This section can have different formats depending on the Type. Members can be selected for some interface types:
 - Software Switch or Hardware Switch: Specify the physical and wireless interfaces joined into the switch.
 - 802.3ad Aggregate or Redundant Interface: This field includes the available and selected interface lists. |
| Role | Set the role setting for the interface. Different settings will be shown or hidden when editing an interface depending on the role:
 - LAN: Used to connected to a local network of endpoints. It is default role for new interfaces.
 - WAN: Used to connected to the internet. When WAN is selected, the Estimated bandwidth setting is available, and the following settings are not: DHCP server, Create address object matching subnet, Device detection, Security mode, One-arm sniffer, Dedicate to extension/fortiap modes, and Admission Control. and will show Estimated Bandwidth settings.
 - DMZ: Used to connected to the DMZ. When selected, DHCP server and Security mode are not available.
 - Undefined: The interface has no specific role. When selected, Create address object matching subnet is not available. |
| Estimated bandwidth | The estimated WAN bandwidth. |
The values can be entered manually, or saved from a speed test executed on the interface. The values can be used in SD-WAN rules that use the Maximize Bandwidth or Best Quality strategy.

<table>
<thead>
<tr>
<th>Traffic mode</th>
<th>This option is only available when Type is WiFi SSD.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tunnel: Tunnel to wireless controller</td>
</tr>
<tr>
<td></td>
<td>Bridge: Local bridge with FortiAP's interface</td>
</tr>
<tr>
<td></td>
<td>Mesh: Mesh downlink</td>
</tr>
</tbody>
</table>

Address

<table>
<thead>
<tr>
<th>Addressing mode</th>
<th>Select the addressing mode for the interface.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual</td>
<td>Add an IP address and netmask for the interface. If IPv6 configuration is enabled, you can add both an IPv4 and an IPv6 address.</td>
</tr>
<tr>
<td>DHCP</td>
<td>Get the interface IP address and other network settings from a DHCP server.</td>
</tr>
<tr>
<td>Auto-managed by IPAM</td>
<td>Assign subnets to prevent duplicate IP addresses from overlapping within the same Security Fabric. See Configure IPAM locally on the FortiGate on page 143.</td>
</tr>
<tr>
<td>PPPoE</td>
<td>Get the interface IP address and other network settings from a PPPoE server. This option is only available on the low-end FortiGate models.</td>
</tr>
<tr>
<td>One-Arm Sniffer</td>
<td>Set the interface as a sniffer port so it can be used to detect attacks. See One-arm sniffer on page 151.</td>
</tr>
</tbody>
</table>

| IP/Netmask | If Addressing Mode is set to Manual, enter an IPv4 address and subnet mask for the interface. FortiGate interfaces cannot have multiple IP addresses on the same subnet. |

<table>
<thead>
<tr>
<th>IPv6 addressing mode</th>
<th>Select the addressing mode for the interface:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual</td>
<td>Add an IP address and netmask for the interface.</td>
</tr>
<tr>
<td>DHCP</td>
<td>Get the interface IP address and other network settings from a DHCP server.</td>
</tr>
<tr>
<td>Delegated</td>
<td>Select an IPv6 upstream interface that has DHCPv6 prefix delegation enabled, and enter an IPv6 subnet if needed. The interface will get the IPv6 prefix from the upstream DHCPv6 server that is connected to the IPv6 upstream interface, and form the IPv6 address with the subnet configured on the interface.</td>
</tr>
</tbody>
</table>

| IPv6 Address/Prefix | If Addressing Mode is set to Manual and IPv6 support is enabled, enter an IPv6 address and subnet mask for the interface. A single interface can have an IPv4 address, IPv6 address, or both. |

<table>
<thead>
<tr>
<th>Auto configure IPv6 address</th>
<th>Automatically configure an IPv6 address using Stateless Address Auto-configuration (SLAAC).</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This option is available when IPv6 addressing mode is set to Manual.</td>
</tr>
</tbody>
</table>

| DHCPv6 prefix delegation | Enable/disable DHCPv6 prefix delegation, which can be used to delegate IPv6 prefixes from an upstream DHCPv6 server to another interface or downstream device. |
When enabled, there is an option to enable a **DHCPv6 prefix hint** that helps the DHCPv6 server provide the desired prefix.

Create address object matching subnet
This option is available when **Role** is set to **LAN or DMZ**. Enable this option to automatically create an address object that matches the interface subnet.

Secondary IP Address
Add additional IPv4 addresses to this interface.

Administrative Access
IPv4 Administrative Access
Select the types of administrative access permitted for IPv4 connections to this interface. See [Configure administrative access to interfaces on page 141](#).

IPv6 Administrative Access
Select the types of administrative access permitted for IPv6 connections to this interface. See [Configure administrative access to interfaces on page 141](#).

DHCP Server
Enable a DHCP server for the interface. See [DHCP server on page 287](#).

Stateless Address Auto-configuration (SLAAC)
Enable to provide IPv6 addresses to connected devices using SLAAC.

DHCPv6 Server
Select to enable a DHCPv6 server for the interface. When enabled, you can configure DNS service settings: Delegated (delegate the DNS received from the upstream server), Same as System DNS, or Specify (up to four servers).

You can also enable Stateful server to configure the DHCPv6 server to be stateful. Manually enter the IP range, or use Delegated mode to delegate IP prefixes from an upstream DHCPv6 server connected to the upstream interface.

Device Detection
Enable/disable passively gathering device identity information about the devices on the network that are connected to this interface.

Security Mode
Enable/disable captive portal authentication for this interface. After enabling captive portal authentication, you can configure the authentication portal, user and group access, custom portal messages, exempt sources and destinations/services, and redirect after captive portal.

DSL Settings
Physical mode
Set to **ADSL or VDSL**.

Transfer mode
Set to **PTM or ATM**.

If the **Transfer mode** is set to **ATM**, the **Virtual channel identification**, **Virtual path identification**, **ATM protocol**, and **MUX type** can be configured.

Traffic Shaping
Outbound shaping profile
Enable/disable traffic shaping on the interface. This allows you to enforce bandwidth limits on individual interfaces. See [Interface-based traffic shaping profile on page 954](#) for more information.

Miscellaneous

To configure an interface in the CLI:

```plaintext
cfg system interface
   edit <name>
      set vdom <VDOM_name>
      set mode {static | dhcp | pppoe}
      set ip <IP_address/netmask>
      set security-mode {none | captive-portal | 802.1X}
      set egress-shaping-profile <profile>
      set device-identification {enable | disable}
      set allowaccess (ping https ssh http snmp telnet fgfm radius-acct probe-response fabric ftm)
      set eap-supplicant {enable | disable}
      set eap-method {peap | tls}
      set eap-identity <identity>
      set eap-password <password>
      set eap-ca-cert <CA_cert>
      set eap-user-cert <user_cert>
      set secondary-IP enable
   config secondaryip
      edit 1
         set ip 9.1.1.2 255.255.255.0
         set allowaccess ping https ssh snmp http
      next
   next
end
```

Configure administrative access to interfaces

You can configure the protocols that administrators can use to access interfaces on the FortiGate. This helps secure access to the FortiGate by restricting access to a limited number of protocols. It helps prevent users from accessing interfaces that you don’t want them to access, such as public-facing ports.

As a best practice, you should configure administrative access when you’re setting the IP address for a port.

To configure administrative access to interfaces in the GUI:

1. Go to *Network > Interfaces*.
2. Create or edit an interface.
3. In the *Administrative Access* section, select which protocols to enable for *IPv4* and *IPv6 Administrative Access*.

<table>
<thead>
<tr>
<th>Speed Test</th>
<th>Allow this interface to listen to speed test sender requests.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To allow the FortiGate to be configured as speed test server, configure the following:</td>
</tr>
</tbody>
</table>
FEC implementations on 10G, 25G, 40G, and 100G interfaces

Only supported FEC (forward error correction) implementations are allowed to be configured on 10G, 25G, 40G, and 100G interfaces based on the speed that is selected.

- For 1000M, 10G, or 40G interfaces, FEC is not supported and the option is disabled.
- For 25G and 100G interfaces, FEC is automatically set to cl91-rs-fec by default.

To configure an interface for FEC:

```fortigate
config system interface
    edit <name>
      set speed {10000full | 1000full | 100Gauto | 100Gfull | 25000auto | 25000full | 40000full}
      set mediatype {sr4 | lr4 | cr4}
      set forward-error-correction {disable | cl91-rs-fec | cl74-fc-fec}
    next
end
```
To change the interface speed from 40G to 100G:

```
config system interface
   edit port26
      set speed 100Gfull
   next
end
```

The speed/mediatype/FEC of port26 will be changed from 40000full/sr4/disable to 100Gfull/sr4/cl91-rs-fec.

Do you want to continue? (y/n) y

Since the speed changed to 1000G, the mediastype setting automatically changes to sr4, and the forward-error-correction setting automatically changes to cl91-rs-fec. When the speed was 40G, the forward-error-correction setting was disabled.

Configure IPAM locally on the FortiGate

IPAM (IP address management) is available locally on the FortiGate. A standalone FortiGate, or a Fabric root in the Security Fabric, can act as the IPAM server. Interfaces configured to be auto-managed by IPAM will receive an address from the IPAM server’s address/subnet pool. DHCP Server is automatically enabled in the GUI, and the address range is populated by IPAM. Users can customize the address pool subnet and the size of a subnet that an interface can request.

To configure IPAM settings:

```
config system ipam
   set pool-subnet <class IP and netmask>
   set status {enable | disable}
end
```
Network

<table>
<thead>
<tr>
<th>pool-subnet <class IP and netmask></th>
<th>Set the IPAM pool subnet, class A or class B subnet.</th>
</tr>
</thead>
<tbody>
<tr>
<td>status {enable</td>
<td>disable}</td>
</tr>
</tbody>
</table>

In previous FortiOS versions, the `set fortiiipam-integration` option was configured under `config system global`.

The following options are available for allocating the subnet size:

```
config system interface
  set managed-subnetwork-size {32 | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 | 8192 | 16384 | 32768 | 65536}
end
```

Example

In this example, FGT_AA is the Security Fabric root with IPAM enabled. FGT_BB and FGT_CC are downstream Fabric devices and retrieve IPAM information from FGT_AA. The Fabric interface on all FortiGates is port2. FGT_AA acts as the DHCP server, and FGT_BB acts as the DHCP client.

To configure IPAM locally in the Security Fabric:

1. On the root FortiGate, go to Network > Interfaces and edit port3.
2. For Addressing Mode, select Auto-Managed by IPAM. DHCP Server is automatically enabled.
3. In this example, IPAM is not enabled yet. Click *Enable IPAM*. The *Edit Fabric Connector* pane opens.
4. Enter the **Pool subnet** (only class A and B are allowed) and click **OK**. The root FortiGate is now the IPAM server in the Security Fabric. The following is configured in the backend:

```fortigate
config system interface
  edit "port3"
    set vdom "root"
    set ip 172.31.0.1 255.255.255.0
    set type physical
    set device-identification enable
    set snmp-index 5
    set ip-managed-by-fortiipam enable
  end
next
end
config system ipam
  set status enable
end
```

IPAM is managing a 172.31.0.0/16 network and assigned port3 a /24 network by default. The **IP/Netmask** field in the **Address** section has been automatically assigned a class C IP by IPAM. The **Address range** and **Netmask** fields in the **DHCP Server** section have also been automatically configured by IPAM.
5. Click OK.
6. Log in to FGT-BB and set the Addressing Mode of port4 to Auto-Managed by IPAM. The subnet assigned from the pool on the root is 172.31.1.1/24.
7. Log in to FG_CC and set the Addressing Mode of port34 to Auto-Managed by IPAM. The subnet assigned from the pool on the root is 172.31.2.1/24.

Any interface on a downstream FortiGate can be managed by the IPAM server. The interface does not have to be directly connected to the Fabric root FortiGate.

To edit the IPAM subnet:
1. Go to Security Fabric > Fabric Connectors and double-click the IP Address Management (IPAM) card.
2. Edit the pool subnet if needed.
3. In the right-side pane, click View Allocated IP Addresses to view the subnet allocations (port34, port3, and port3) and DHCP lease information. On FGT_BB, port3 is a DHCP client and the DHCP server interface (FGT_AA port3) is managed by IPAM, so it is displayed in the Manually Configured section.

The same allocated IP address information is available in the IP Address Management (IPAM) widget that can be added to the Dashboard > Status page.

4. Click OK.

On downstream FortiGates, the settings on the IP Address Management (IPAM) card cannot be changed if IPAM is enabled on the root FortiGate.
Diagnostics

Use the following commands to view IPAM related diagnostics.

To view the largest available subnet size:

```bash
# diagnose sys ipam largest-available-subnet
Largest available subnet is a /17.
```

To verify IPAM allocation information:

```bash
# diagnose sys ipam dump-ipams-entries
IPAM Entries: (an, vdom, interface, subnet/mask, flag)
F140EP4Q17000000 root port3 172.31.2.1/24 0
FG5H1E5818900001 root port3 172.31.0.1/24 0
FG5H1E5818900002 root port4 172.31.1.1/24 0
FG5H1E5818900003 root port3 172.31.0.2/24 1
```

To verify the available subnets:

```bash
# diagnose sys ipam dump-ipams-free-subnets
IPAM free subnets: (subnet/mask)
  172.31.3.0/24
  172.31.4.0/22
  172.31.8.0/21
  172.31.16.0/20
  172.31.32.0/19
  172.31.64.0/18
  172.31.128.0/17
```

To remove a device from IPAM in the Security Fabric:

```bash
# diagnose sys ipam delete-device-from-ipams F140EP4Q17000000
Successfully removed device F140EP4Q17000000 from ipam
**Interface MTU packet size**

Changing the maximum transmission unit (MTU) on FortiGate interfaces changes the size of transmitted packets. Most FortiGate device's physical interfaces support jumbo frames that are up to 9216 bytes, but some only support 9000 or 9204 bytes.

To avoid fragmentation, the MTU should be the same as the smallest MTU in all of the networks between the FortiGate and the destination. If the packets sent by the FortiGate are larger than the smallest MTU, then they are fragmented, slowing down the transmission. Packets with the DF flag set in the IPv4 header are dropped and not fragmented.

On many network and endpoint devices, the path MTU is used to determine the smallest MTU and to transmit packets within that size.

- ASIC accelerated FortiGate interfaces, such as NP6, NP7, and SOC4 (np6xlite), support MTU sizes up to 9216 bytes.
- FortiGate VMs can have varying maximum MTU sizes, depending on the underlying interface and driver.
- Virtual interfaces, such as VLAN interfaces, inherit their MTU size from their parent interface.

**To verify the supported MTU size:**

```fortigate
config system interface
 edit <interface>
 set mtu-override enable
 set mtu <integer>
 next
end
```

**To change the MTU size:**

```fortigate
config system interface
 edit <interface>
 set mtu-override enable
 set mtu <max bytes>
 next
end
```

**Maximum MTU size on a path**

To manually test the maximum MTU size on a path, you can use the ping command on a Windows computer.

For example, you can send ICMP packets of a specific size with a DF flag, and iterate through increasing sizes until the ping fails.

- The `-f` option specifies the Do not Fragment (DF) flag.
- The `-l` option specifies the length, in bytes, of the Data field in the echo Request messages. This does not include the 8 bytes for the ICMP header and 20 bytes for the IP header. Therefore, if the maximum MTU is 1500 bytes, then the maximum supported data size is: \(1500 - 8 - 20 = 1472\) bytes.

**To determine the maximum MTU size on a path:**

1. In Windows command prompt, try a likely MTU size:

   ```cmd
 ping 4.2.2.1 -l 1472 -f
 Pinging 4.2.2.1 with 1472 bytes of data:
   ```
Network

Reply from 4.2.2.1: bytes=1472 time=41ms TTL=52
Reply from 4.2.2.1: bytes=1472 time=42ms TTL=52
Reply from 4.2.2.1: bytes=1472 time=103ms TTL=52
Reply from 4.2.2.1: bytes=1472 time=38ms TTL=52

Ping statistics for 4.2.2.1:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 38ms, Maximum = 103ms, Average = 56ms

2. Increase the size and try the ping again:

   > ping 4.2.2.1 -l 1473 -f
   Pinging 4.2.2.1 with 1473 bytes of data:
   Request timed out.

   Ping statistics for 4.2.2.1:
   Packets: Sent = 1, Received = 0, Lost = 1 (100% loss),

   The second test fails, so the maximum MTU size on the path is 1472 bytes + 8-byte ICMP header + 20-byte IP
   header = 1500 bytes

Maximum segment size

The TCP maximum segment size (MSS) is the maximum amount of data that can be sent in a TCP segment. The MSS is
the MTU size of the interface minus the 20 byte IP header and 20 byte TCP header. By reducing the TCP MSS, you can
effectively reduce the MTU size of the packet.

The TCP MSS can be configured in a firewall policy (see Configurations in the CLI on page 766), or directly on an
interface.

To configure the MSS on an interface:

   config system interface
   edit "wan2"
      set vdom "root"
      set mode dhcp
      set allowaccess ping fgfm
      set type physical
      set tcp-mss 1448
      set role wan
   next
   end

One-arm sniffer

You can use a one-arm sniffer to configure a physical interface as a one-arm intrusion detection system (IDS). Traffic
sent to the interface is examined for matches to the configured security profile. The matches are logged, and then all
received traffic is dropped. Sniffing only reports on attacks; it does not deny or influence traffic.

You can also use the one-arm sniffer to configure the FortiGate to operate as an IDS appliance to sniff network traffic for
attacks without actually processing the packets. To configure a one-arm IDS, enable sniffer mode on a physical interface
and connect the interface to the SPAN port of a switch or a dedicated network tab that can replicate the traffic to the
FortiGate.
If the one-arm sniffer option is not available, this means the interface is in use. Ensure that the interface is not selected in any firewall policies, routes, virtual IPs, or other features where a physical interface is specified. The option also does not appear if the role is set to WAN. Ensure the role is set to LAN, DMZ, or undefined.

The following table lists some of the one-arm sniffer settings you can configure:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Security Profiles</strong></td>
<td>The following profiles are configurable in the GUI and CLI:</td>
</tr>
<tr>
<td></td>
<td>• Antivirus</td>
</tr>
<tr>
<td></td>
<td>• Web filter</td>
</tr>
<tr>
<td></td>
<td>• Application control</td>
</tr>
<tr>
<td></td>
<td>• IPS</td>
</tr>
<tr>
<td></td>
<td>• File filter</td>
</tr>
<tr>
<td></td>
<td>The following profiles are only configurable in the CLI:</td>
</tr>
<tr>
<td></td>
<td>• Email filter</td>
</tr>
<tr>
<td></td>
<td>• DLP</td>
</tr>
<tr>
<td></td>
<td>• IPS DoS</td>
</tr>
</tbody>
</table>

**CPU usage and packet loss**

Traffic scanned on the one-arm sniffer interface is processed by the CPU, even if there is an SPU, such as NPU or CP, present. The one-arm sniffer may cause higher CPU usage and perform at a lower level than traditional inline scanning, which uses NTurbo or CP to accelerate traffic when present.

The absence of high CPU usage does not indicate the absence of packet loss. Packet loss may occur due to the capacity of the TAP devices hitting maximum traffic volume during mirroring, or on the FortiGate when the kernel buffer size is exceeded and it is unable to handle bursts of traffic.

**Example configuration**

The following example shows how to configure a file filter profile that blocks PDF and RAR files used in a one-arm sniffer policy.

**To configure a one-arm sniffer policy in the GUI:**

1. Go to *Network > Interfaces* and double-click a physical interface to edit it.
2. For *Role*, select either LAN, DMZ, or Undefined.
3. For *Addressing Mode*, select One-Arm Sniffer.

5. In the Rules table, click Create New.
6. Configure the rule:
   a. For File types, click the + and select pdf and rar.
   b. For Action, select Block.
   c. Click OK to save the rule.
7. Click OK to save the file filter profile.
8. Click OK to save the interface settings.

To configure a one-arm sniffer policy in the CLI:

1. Configure the interface:
   
   ```
 config system interface
 edit "s1"
 set vdom "root"
 set ips-sniffer-mode enable
 set type physical
 set role undefined
 set snmp-index 31
 next
 end
   ```

2. Configure the file filter profile:
   
   ```
 config file-filter profile
 edit "sniffer-profile"
 set comment "File type inspection."
 config rules
 edit "1"
 set protocol http ftp smtp imap pop3 cifs
   ```
set action block
set file-type "pdf" "rar"
next
data
next
end

3. Configure the firewall sniffer policy:

```
config firewall sniffer
edit 1
set interface "sl"
set file-filter-profile-status enable
set file-filter-profile "sniffer-profile"
next
end
```

4. View the log:

```
execute log filter category 19
execute log display
1 logs found.
1 logs returned.

1: date=2020-12-29 time=09:14:46 eventtime=1609262086871379250 tz="-0800"
logid="1900064000" type="utm" subtype="file-filter" eventtype="file-filter"
level="warning" vd="root" policyid=1 sessionid=792 srcip=172.16.200.55 srcport=20
srcintf="sl" srcintfrole="undefined" dstip=10.1.100.11 dstport=56745 dstintf="sl"
dstintfrole="undefined" proto=6 service="FTP" profile="sniffer-profile"
direction="outgoing" action="blocked" filtername="1" filename="hello.pdf" filesize=9539
filetype="pdf" msg="File was blocked by file filter."
```

**Interface migration wizard**

The *Integrate Interface* option on the *Network > Interfaces* page helps migrate a physical port into another interface or interface type such as aggregate, software switch, redundant, zone, or SD-WAN zone. The FortiGate will migrate object references either by replacing the existing instance with the new interface, or deleting the existing instance based on the user's choice. Users can also change the VLAN ID of existing VLAN sub-interface or FortiSwitch VLANs.

---

The interface migration wizard does not support turning an aggregate, software switch, redundant, zone, or SD-WAN zone interface back into a physical interface.

---

**Integrating an interface**

In this example, a DHCP server interface is integrated into a newly created redundant interface, which transfers the DHCP server to a redundant interface.

**To integrate an interface:**

1. Go to *Network > Interfaces* and select an interface in the list.
2. Click *Integrate Interface*. The wizard opens.
Alternatively, select an interface in the list. Then right-click and select `Integrate Interface`.

3. Select `Migrate to Interface` and click `Next`.

4. Select `Create an Interface`. Enter a name `(rd1)` and set the `Type` to `Redundant`.

5. Click `Next`. The `References` sections lists the associated services with options to Replace Instance or Delete Entry.

6. For the DHCP server `Action`, select `Replace Instance` and click `Create`.
7. The migration occurs automatically and the statuses for the object and reference change to *Updated entry*. Click *Close*.

![Network interface configuration](image)

### Changing the VLAN ID

In this example, the VLAN ID of *InternalVLAN* is changed from 11 to 22.

**To change the VLAN ID:**

1. Go to *Network > Interfaces* and edit an existing interface.
2. Beside the *VLAN ID* field, click *Edit*. The *Update VLAN ID* window opens.

![Update VLAN ID window](image)

3. Enter the new ID (22) and click *Next*. 

![Updated VLAN ID](image)
4. Verify the changes, then click **Update** and **OK**.

5. The target object status changes to **Updated entry**. Click **Close**.

In the interface settings, the ID displays as 22.
Captive portals

A captive portal is used to enforce authentication before web resources can be accessed. Until a user authenticates successfully, any HTTP request returns the authentication page. After successfully authenticating, a user can access the requested URL and other web resources, as permitted by policies. The captive portal can also be configured to only allow access to members of specific user groups.

Captive portals can be hosted on the FortiGate or an external authentication server. They can be configured on any network interface, including VLAN and WiFi interfaces. On a WiFi interface, the access point appears open, and the client can connect to access point with no security credentials, but then sees the captive portal authentication page. See Captive Portal Security, in the FortiWiFi and FortiAP Configuration Guide for more information.

All users on the interface are required to authenticate. Exemption lists can be created for devices that are unable to authenticate, such as a printer that requires access to the internet for firmware upgrades.

To configure a captive portal in the GUI:

1. Go to Network > Interfaces and edit the interface that the users connect to. The interface Role must be LAN or Undefined.
2. Enable Security mode.

3. Configure the following settings, then click OK.

<table>
<thead>
<tr>
<th>Authentication Portal</th>
<th>Configure the location of the portal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local: the portal is hosted on the FortiGate unit.</td>
<td></td>
</tr>
</tbody>
</table>
- **External**: enter the FQDN or IP address of external portal.

### User access
Select if the portal applies to all users, or selected user groups:
- **Restricted to Groups**: restrict access to the selected user groups. The Login page is shown when a user tries to log in to the captive portal.
- **Allow all**: all users can log in, but access will be defined by relevant policies. The Disclaimer page is shown when a user tried to log in to the captive portal.

### Customize portal messages
Enable to use custom portal pages, then select a replacement message group. See Custom captive portal pages on page 162.

### Exempt sources
Select sources that are exempt from the captive portal.
Each exemption is added as a rule in an automatically generated exemption list.

### Exempt destinations/services
Select destinations and services that are exempt from the captive portal.
Each exemption is added as a rule in an automatically generated exemption list.

### Redirect after Captive Portal
Configure website redirection after successful captive portal authentication:
- **Original Request**: redirect to the initially browsed to URL.
- **Specific URL**: redirect to the specified URL.

### To configure a captive portal in the CLI:

1. If required, create a security exemption list:

   ```
 config user security-exempt-list
 edit <list>
 config rule
 edit 1
 set srcaddr <source(s)>
 set dstaddr <source(s)>
 set service <service(s)>
 next
 edit 2
 set srcaddr <source(s)>
 set dstaddr <source(s)>
 set service <service(s)>
 next
 end
 next
 end
   ```

2. Configure captive portal authentication on the interface:

   ```
 config system interface
 edit <interface>
 set security-mode {none | captive-portal}
 set security-external-web <string>
 set replacemsg-override-group <group>
 set security-redirect-url <string>
 set security-exempt-list <list>
 set security-groups <group(s)>
   ```
Custom captive portal pages

Portal pages are HTML files that can be customized to meet user requirements.

Most of the text and some of the HTML in the message can be changed. Tags are enclosed by double percent signs (%%); most of them should not be changed because they might carry information that the FortiGate unit needs. For information about customizing replacement messages, see Modifying replacement messages on page 2136.

The images on the pages can be replaced. For example, your organization's logo can replace the Fortinet logo. For information about uploading and using new images in replacement messages, see Replacement message images on page 2138.

The following pages are used by captive portals:

<table>
<thead>
<tr>
<th>Login Page</th>
<th>Requests user credentials.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The %%%QUESTION%%% tag provides the Please enter the required information to continue. text.</td>
</tr>
<tr>
<td></td>
<td>This page is shown to users that are trying to log in when User access is set to Restricted to Groups.</td>
</tr>
<tr>
<td>Login Failed Page</td>
<td>Reports that incorrect credentials were entered, and requests correct credentials.</td>
</tr>
<tr>
<td></td>
<td>The %%%FAILED_MESSAGE%%% tag provides the Firewall authentication failed. Please try again. text.</td>
</tr>
<tr>
<td>Disclaimer Page</td>
<td>A statement of the legal responsibilities of the user and the host organization that the user must agree to before proceeding. This page is shown users that are trying to log in when User access is set to Allow all.</td>
</tr>
<tr>
<td>Declined Disclaimer Page</td>
<td>Shown if the user does not agree to the statement on the Disclaimer page. Access is denied until the user agrees to the disclaimer.</td>
</tr>
</tbody>
</table>

Physical interface

A FortiGate has several physical interfaces that can connect to Ethernet or optical cables. Depending on the FortiGate model, it can have a varying combination of Ethernet, small form-factor pluggable (SFP), and enhanced small form-factor pluggable (SFP+) interfaces.

The port names, as labeled on the FortiGate, appear in the interfaces list on the Network > Interfaces page. Hover the cursor over a port to view information, such as the name and the IP address.

Refer to Configuring an interface for basic GUI and CLI configuration steps.

Displaying transceiver status information for SFP and SFP+ interfaces

Transceiver status information for SFP and SFP+ interfaces installed on the FortiGate can be displayed in the GUI and CLI. For example, the type, vendor name, part number, serial number, and port name. The CLI output includes additional information that can be useful for diagnosing transmission problems, such as the temperature, voltage, and optical transmission power.
To view transceiver status information in the GUI:

1. Go to **Network > Interfaces**. The **Transceiver** column is visible in the table, which displays the transceiver vendor name and part number.
2. Hover the cursor over a transceiver to view more information.

To view transceiver status information in the CLI:

```
get system interface transceiver
```

```
Interface port9 - SFP/SFP+
Vendor Name : FINISAR CORP.
Part No. : FCLF-8521-3
Serial No. : PMS***
```

```
Interface port10 - Transceiver is not detected.
```

```
Interface port11 - SFP/SFP+
Vendor Name : QNC
Part No. : LCP-1250RJ3SRQN
Serial No. : QNDT****
```

```
Interface port12 - SFP/SFP+
Vendor Name : QNC
Part No. : LCP-1250RJ3SRQN
Serial No. : QNDT****
```

```
Interface s1 - SFP/SFP+
Vendor Name : JDSU
Part No. : PLRXPLCS4322N
Serial No. : CB26U****
```

```
Interface s2 - SFP/SFP+
Vendor Name : JDSU
Part No. : PLRXPLCS4321N
Serial No. : CS825U****
```

```
Interface vw1 - Transceiver is not detected.
```

```
Interface vw2 - Transceiver is not detected.
```

```
Interface x1 - SFP/SFP+
Vendor Name : Fortinet
Part No. : LCP-10GRJ3SRFN
Serial No. : 19090910*****
```

```
Interface x2 - Transceiver is not detected.
```

<table>
<thead>
<tr>
<th>SFP/SFP+</th>
<th>Temperature (Celsius)</th>
<th>Voltage (Volts)</th>
<th>Optical Tx Bias (mA)</th>
<th>Optical Tx Power (dBm)</th>
<th>Optical Rx Power (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>port9</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>port11</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>port12</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>s1</td>
<td>38.3</td>
<td>3.35</td>
<td>6.80</td>
<td>-2.3</td>
<td>-3.2</td>
</tr>
<tr>
<td>s2</td>
<td>42.1</td>
<td>3.34</td>
<td>7.21</td>
<td>-2.3</td>
<td>-3.0</td>
</tr>
<tr>
<td>x1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>


**VLAN**

Virtual local area networks (VLANs) multiply the capabilities of your FortiGate and can also provide added network security. VLANs use ID tags to logically separate devices on a network into smaller broadcast domains. These smaller
domains forward packets only to devices that are part of that VLAN domain. This reduces traffic and increases network security.

**VLANs in NAT mode**

In NAT mode, the FortiGate unit functions as a layer-3 device. In this mode, the FortiGate unit controls the flow of packets between VLANs and can also remove VLAN tags from incoming VLAN packets. The FortiGate unit can also forward untagged packets to other networks such as the Internet.

In NAT mode, the FortiGate unit supports VLAN trunk links with IEEE 802.1Q-compliant switches or routers. The trunk link transports VLAN-tagged packets between physical subnets or networks. When you add VLAN subinterfaces to the FortiGate’s physical interfaces, the VLANs have IDs that match the VLAN IDs of packets on the trunk link. The FortiGate unit directs packets with VLAN IDs to subinterfaces with matching IDs.

You can define VLAN subinterfaces on all FortiGate physical interfaces. However, if multiple virtual domains are configured on the FortiGate unit, you only have access to the physical interfaces on your virtual domain. The FortiGate unit can tag packets leaving on a VLAN subinterface. It can also remove VLAN tags from incoming packets and add a different VLAN tag to outgoing packets.

Normally in VLAN configurations, the FortiGate unit’s internal interface is connected to a VLAN trunk, and the external interface connects to an Internet router that is not configured for VLANs. In this configuration, the FortiGate unit can apply different policies for traffic on each VLAN interface connected to the internal interface, which results in less network traffic and better security.

**Sample topology**

In this example, two different internal VLAN networks share one interface on the FortiGate unit and share the connection to the Internet. This example shows that two networks can have separate traffic streams while sharing a single interface. This configuration can apply to two departments in a single company or to different companies.

There are two different internal network VLANs in this example. VLAN_100 is on the 10.1.1.0/255.255.255.0 subnet, and VLAN_200 is on the 10.1.2.0/255.255.255.0 subnet. These VLANs are connected to the VLAN switch.

The FortiGate internal interface connects to the VLAN switch through an 802.1Q trunk. The internal interface has an IP address of 192.168.110.126 and is configured with two VLAN subinterfaces (VLAN_100 and VLAN_200). The external interface has an IP address of 172.16.21.2 and connects to the Internet. The external interface has no VLAN subinterfaces.

When the VLAN switch receives packets from VLAN_100 and VLAN_200, it applies VLAN ID tags and forwards the packets of each VLAN both to local ports and to the FortiGate unit across the trunk link. The FortiGate unit has policies that allow traffic to flow between the VLANs, and from the VLANs to the external network.
Sample configuration

In this example, both the FortiGate unit and the Cisco 2950 switch are installed and connected and basic configuration has been completed. On the switch, you need access to the CLI to enter commands. No VDOMs are enabled in this example.

General configuration steps include:

1. Configure the external interface.
2. Add two VLAN subinterfaces to the internal network interface.
3. Add firewall addresses and address ranges for the internal and external networks.
4. Add security policies to allow:
   - the VLAN networks to access each other.
   - the VLAN networks to access the external network.

To configure the external interface:

```plaintext
config system interface
 edit external
 set mode static
 set ip 172.16.21.2 255.255.255.0
 next
end
```

To add VLAN subinterfaces:

```plaintext
config system interface
 edit VLAN_100
 set vdom root
 set interface internal
 set type vlan
```
Network

```
set vlanid 100
set mode static
set ip 10.1.1.1 255.255.255.0
set allowaccess https ping
next
edit VLAN_200
set vdom root
set interface internal
set type vlan
set vlanid 200
set mode static
set ip 10.1.2.1 255.255.255.0
set allowaccess https ping
next
done
```

To add the firewall addresses:

```
config firewall address
edit VLAN_100_Net
set type ipmask
set subnet 10.1.1.0 255.255.255.0
next
edit VLAN_200_Net
set type ipmask
set subnet 10.1.2.0 255.255.255.0
next
done
```

To add security policies:

Policies 1 and 2 do not need NAT enabled, but policies 3 and 4 do need NAT enabled.

```
config firewall policy
edit 1
set srcintf VLAN_100
set srcaddr VLAN_100_Net
set dstintf VLAN_200
set dstaddr VLAN_200_Net
set schedule always
set service ALL
set action accept
set nat disable
set status enable
next
edit 2
set srcintf VLAN_200
set srcaddr VLAN_200_Net
set dstintf VLAN_100
set dstaddr VLAN_100_Net
set schedule always
set service ALL
set action accept
set nat disable
set status enable
next
```
edit 3
  set srcintf VLAN_100
  set srcaddr VLAN_100.Net
  set dstintf external
  set dstaddr all
  set schedule always
  set service ALL
  set action accept
  set nat enable
  set status enable
next
eedit 4
  set srcintf VLAN_200
  set srcaddr VLAN_200.Net
  set dstintf external
  set dstaddr all
  set schedule always
  set service ALL
  set action accept
  set nat enable
  set status enable
next
eend

VLANs in transparent mode

In transparent mode, the FortiGate unit behaves like a layer-2 bridge but can still provide services such as antivirus scanning, web filtering, spam filtering, and intrusion protection to traffic. Some limitations of transparent mode is that you cannot use SSL VPN, PPTP/L2TP VPN, DHCP server, or easily perform NAT on traffic. The limits in transparent mode apply to IEEE 802.1Q VLAN trunks passing through the unit.

You can insert the FortiGate unit operating in transparent mode into the VLAN trunk without making changes to your network. In a typical configuration, the FortiGate unit internal interface accepts VLAN packets on a VLAN trunk from a VLAN switch or router connected to internal network VLANs. The FortiGate external interface forwards VLAN-tagged packets through another VLAN trunk to an external VLAN switch or router and on to external networks such as the Internet. You can configure the unit to apply different policies for traffic on each VLAN in the trunk.

To pass VLAN traffic through the FortiGate unit, you add two VLAN subinterfaces with the same VLAN ID, one to the internal interface and the other to the external interface. You then create a security policy to permit packets to flow from the internal VLAN interface to the external VLAN interface. If required, create another security policy to permit packets to flow from the external VLAN interface to the internal VLAN interface. Typically in transparent mode, you do not permit packets to move between different VLANs. Network protection features such as spam filtering, web filtering, and anti-virus scanning, are applied through the UTM profiles specified in each security policy, enabling very detailed control over traffic.

When the FortiGate unit receives a VLAN-tagged packet on a physical interface, it directs the packet to the VLAN subinterface with the matching VLAN ID. The VLAN tag is removed from the packet and the FortiGate unit then applies security policies using the same method it uses for non-VLAN packets. If the packet exits the FortiGate unit through a VLAN subinterface, the VLAN ID for that subinterface is added to the packet and the packet is sent to the corresponding physical interface.
Sample topology

In this example, the FortiGate unit is operating in transparent mode and is configured with two VLANs: one with an ID of 100 and the other with ID 200. The internal and external physical interfaces each have two VLAN subinterfaces, one for VLAN_100 and one for VLAN_200.

The IP range for the internal VLAN_100 network is 10.100.0.0/255.255.0.0, and for the internal VLAN_200 network is 10.200.0.0/255.255.0.0.

The internal networks are connected to a Cisco 2950 VLAN switch which combines traffic from the two VLANs onto one in the FortiGate unit's internal interface. The VLAN traffic leaves the FortiGate unit on the external network interface, goes on to the VLAN switch, and on to the Internet. When the FortiGate units receives a tagged packet, it directs it from the incoming VLAN subinterface to the outgoing VLAN subinterface for that VLAN.

In this example, we create a VLAN subinterface on the internal interface and another one on the external interface, both with the same VLAN ID. Then we create security policies that allow packets to travel between the VLAN_100_int interface and the VLAN_100_ext interface. Two policies are required: one for each direction of traffic. The same is required between the VLAN_200_int interface and the VLAN_200_ext interface, for a total of four security policies.

Sample configuration

There are two main steps to configure your FortiGate unit to work with VLANs in transparent mode:

1. Add VLAN subinterfaces.
2. Add security policies.

You can also configure the protection profiles that manage antivirus scanning, web filtering, and spam filtering.

To add VLAN subinterfaces:

```
config system interface
edit VLAN_100_int
 set type vlan
```
set interface internal
set vlanid 100
next
edit VLAN_100_ext
set type vlan
set interface external
set vlanid 100
next
dict VLAN_200_int
set type vlan
set interface internal
set vlanid 200
next
edit VLAN_200_ext
set type vlan
set interface external
set vlanid 200
next
dict

To add security policies:

config firewall policy
edit 1
    set srcintf VLAN_100_int
    set srcaddr all
    set dstintf VLAN_100_ext
    set dstaddr all
    set action accept
    set schedule always
    set service ALL
next
edit 2
    set srcintf VLAN_100_ext
    set srcaddr all
    set dstintf VLAN_100_int
    set dstaddr all
    set action accept
    set schedule always
    set service ALL
next
edit 3
    set srcintf VLAN_200_int
    set srcaddr all
    set dstintf VLAN_200_ext
    set dstaddr all
    set action accept
    set schedule always
    set service ALL
next
edit 4
    set srcintf VLAN_200_ext
    set srcaddr all
    set dstintf VLAN_200_int
    set dstaddr all
    set action accept
Virtual VLAN switch

The hardware switch ports on FortiGate models that support virtual VLAN switches can be used as a layer 2 switch. Virtual VLAN switch mode allows 802.1Q VLANs to be assigned to ports, and the configuration of one interface as a trunk port.

The following FortiGate series are supported in FortiOS 7.2: 60F, 80F, 100E, 100F, 140E, 200F, 300E, 400E, and 1100E.

The virtual-switch-vlan option must be enabled in the CLI to configure VLAN switch mode from the GUI or CLI.

To enable VLAN switches:

```
config system global
 set virtual-switch-vlan enable
end
```

After this setting is enabled, any previously configured hardware switches will appear in the Network > Interfaces page under VLAN Switch.

To enable VLAN switch mode in the GUI:

1. Go to System > Settings.
2. In the View Settings section, enable VLAN switch mode.
3. Click Apply.

Basic configurations

Hardware switch ports can be configured as either a VLAN switch port or a trunk port. The available interfaces and allowable VLAN IDs that can be used depend on the FortiGate model. It is recommended to remove ports from the default VLAN switch before you begin configurations.

To create a new VLAN and assign ports in the GUI:

1. Go to Network > Interfaces and click Create New > Interface.
2. Enter a name and configure the following:
   a. Set the Type to VLAN Switch.
   b. Enter a VLAN ID.
   c. Click the + and add the Interface Members.
   d. Configure the Address and Administrative Access settings as needed.
3. Click OK.
To create a new VLAN and assign ports in the CLI:

1. Configure the VLAN:

```plaintext
config system virtual-switch
 edit "VLAN10"
 set physical-switch "sw0"
 set vlan 10
 config port
 edit "internal1"
 next
 edit "internal2"
 next
 end
 next
end
```

2. Configure the VLAN switch interface addressing:

```plaintext
config system interface
 edit "VLAN10"
 set vdom "root"
 set ip 192.168.10.99 255.255.255.0
 set allowaccess ping https ssh snmp http fgfm
 set type hard-switch
 next
end
```

To designate an interface as a trunk port:

```plaintext
config system interface
 edit internal5
 set trunk enable
 next
end
```

**Example 1: HA using a VLAN switch**

In this example, two FortiGates in an HA cluster are connected to two ISP routers. Instead of connecting to external L2 switches, each FortiGate connects to each ISP router on the same hardware switch port on the same VLAN. A trunk port connects the two FortiGates to deliver the 802.1Q tagged traffic to the other. A full mesh between the FortiGate cluster and the ISP routers is achieved where no single point of failure will cause traffic disruptions.
This example assumes that the HA settings are already configured. The interface and VLAN switch settings are identical between cluster members and synchronized. See HA using a hardware switch to replace a physical switch on page 2061 for a similar example that does not use a VLAN switch.

**To configure the VLAN switches:**

1. Configure the ISP interfaces with the corresponding VLAN IDs:

   ```
 config system virtual-switch
 edit "ISP1"
 set physical-switch "sw0"
 set vlan 2951
 config port
 edit "port1"
 next
 end
 next
 edit "ISP2"
 set physical-switch "sw0"
 set vlan 2952
 config port
 edit "port2"
 next
 end
 end
   ```

2. Configure the VLAN switch interface addressing:

   ```
 config system interface
 edit "ISP1"
 set vdom "root"
 set ip 192.168.10.99 255.255.255.0
 set allowaccess ping
 set type hard-switch
 next
 edit "ISP2"
 set vdom "root"
   ```
set ip 192.168.20.99 255.255.255.0
set allowaccess ping
set type hard-switch
next
end

3. Designate port15 as the trunk port:
   config system interface
   edit port15
   set trunk enable
   next
   end

4. Configure firewall policies to allow outgoing traffic on the ISP1 and ISP2 interfaces:
   config firewall policy
   edit 1
   set srcintf "port11"
   set dstintf "ISP1"
   set srcaddr "all"
   set dstaddr "all"
   set action accept
   set schedule "always"
   set service "ALL"
   set nat enable
   next
   edit 2
   set srcintf "port11"
   set dstintf "ISP2"
   set srcaddr "all"
   set dstaddr "all"
   set action accept
   set schedule "always"
   set service "ALL"
   set nat enable
   next
   end

Example 2: LAN extension

In this example, two hardware switch ports are assigned VLAN10, and two ports are assigned VLAN20 on FortiGate B. The wan2 interface is designated as the trunk port, and is connected to the upstream FortiGate A. The corresponding VLAN subinterfaces VLAN10 and VLAN20 on the upstream FortiGate allow further access to other networks.
To configure FortiGate B:

1. Configure the VLAN interfaces:

   ```
 config system virtual-switch
 edit "VLAN10"
 set physical-switch "sw0"
 set vlan 10
 config port
 edit "internal1"
 next
 edit "internal2"
 next
 end
 next
 edit "VLAN20"
 set physical-switch "sw0"
 set vlan 20
 config port
 edit "internal3"
 next
 edit "internal4"
 next
 end
 end
   ```

2. Configure the VLAN switch interface addressing:

   ```
 config system interface
 edit "VLAN10"
 set vdom "root"
 set ip 192.168.10.99 255.255.255.0
 set allowaccess ping https ssh snmp http fgfm
   ```

The available interfaces and VLAN IDs varies between FortiGate models. The FortiGate B in this example is a 60F model.
set type hard-switch
next
edit "VLAN20"
  set vdom "root"
  set ip 192.168.20.99 255.255.255.0
  set allowaccess ping https ssh snmp http fgfm
  set type hard-switch
next
end

3. Designate wan2 as the trunk port:
   
   config system interface
   edit wan2
     set trunk enable
next
end

To configure FortiGate A:

1. Configure the VLAN subinterfaces:
   
   config system interface
   edit "VLAN10"
     set ip 192.168.10.98 255.255.255.0
     set allowaccess ping https ssh
     set role lan
     set interface "dmz"
     set vlanid 10
next
edit "VLAN20"
  set ip 192.168.20.98 255.255.255.0
  set allowaccess ping https ssh
  set role lan
  set interface "dmz"
  set vlanid 20
next
end

2. Configure the DHCP server on VLAN10:
   
   config system dhcp server
   edit 0
     set dns-service default
     set default-gateway 192.168.10.98
     set netmask 255.255.255.0
     set interface "VLAN10"
   config ip-range
     edit 1
       set start-ip 192.168.10.100
       set end-ip 192.168.10.254
next
end
set timezone-option default
next
end
3. Configure firewall policies that allow traffic from the VLAN10 and VLAN20 interfaces to the internet:

```plaintext
config firewall policy
 edit 0
 set name "VLAN10-out"
 set srcintf "VLAN10"
 set dstintf "wan1"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set nat enable
 next
 edit 0
 set name "VLAN20-out"
 set srcintf "VLAN20"
 set dstintf "wan1"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set nat enable
 next
end
```

**To test the connection:**

1. Connect a PC to internal1 on FortiGate B.
2. Verify that it receives an IP address from FortiGate A’s DHCP server.
3. From the PC, ping FortiGate B on 192.168.10.99.
4. Ping FortiGate A on 192.168.10.98.
5. Connect to the internet. Traffic is allowed by the VLAN10-out policy.

**QinQ 802.1Q in 802.1ad**

QinQ (802.1ad) allows multiple VLAN tags to be inserted into a single frame, and can be configured on supported FortiGate devices.

In this example, the customer connects to a provider that uses 802.1ad double-tagging to separate their customer VLANs. The FortiGate connecting to the provider double-tags its frames with an outer provider-tag (S-Tag) and an inner customer-tag (C-Tag).

<table>
<thead>
<tr>
<th>Preamble &amp; Start 8-byte</th>
<th>Destination MAC 6-byte</th>
<th>Source MAC 6-byte</th>
<th>VLAN S-Tag (EtherType 0x8100) 4-byte</th>
<th>VLAN C-Tag (EtherType 0x88a8) 4-byte</th>
<th>Ether Type 2-byte</th>
<th>Payload 4-byte</th>
<th>CRC 4-byte</th>
</tr>
</thead>
</table>

The customer identifies itself with the provider-tag (S-Tag) 232 and uses the customer-tag (C-Tag) 444 for traffic to its VLAN.
To configure the interfaces:

1. Configure the interface to the provider that uses the outer tag (S-Tag):

   ```
 config system interface
 edit "vlan-8021ad"
 set vdom "root"
 set vlan-protocol 8021ad
 set device-identification enable
 set role lan
 set snmp-index 47
 set interface "PORT"
 set vlanid 232
 next
 end
   ```

2. Configure a dynamic VLAN interface that uses the inner tag (C-Tag):

   ```
 config system interface
 edit "DVLAN"
 set vdom "vdom1"
 set device-identification enable
 set role lan
 set snmp-index 48
 set interface "vlan-8021ad"
 set vlanid 444
 next
 end
   ```

**QinQ 802.1Q in 802.1Q**

QinQ (802.1Q in 802.1Q) is supported for FortiGate VM models, where multiple VLAN tags can be inserted into a single frame.

<table>
<thead>
<tr>
<th>Preamble &amp; SfS</th>
<th>Destination MAC</th>
<th>Source MAC</th>
<th>VLAN Outer Tag (Ether Type 0x88a8)</th>
<th>VLAN Inner Tag (Ether Type 0x88a8)</th>
<th>Ether Type</th>
<th>Payload</th>
<th>CRC 4 byte</th>
</tr>
</thead>
</table>

In this example, the FortiGate VM is connected to a provider vSwitch and then a customer switch. The FortiGate encapsulates the frame with an outer 802.1Q tag of VLAN 100 and an inner 802.1Q tag of VLAN 200; port5 is used as the physical port. The provider vSwitch strips the outer tag and forwards traffic to the appropriate customer. Then the customer switch strips the inner tag and forwards the packet to the appropriate customer VLAN.
To configure the interfaces:

1. Configure the interface to the provider that uses the outer tag:

   config system interface
e   edit "vlan-8021q"
     set vdom "root"
     set device-identification enable
     set role lan
     set interface "port5"
     set vlan-protocol 8021q
     set vlanid 100
   next
end

2. Configure the interface to the provider that uses the inner tag:

   config system interface
e   edit "vlan-qinq8021q"
     set vdom "root"
     set ip 1.1.1.71 255.255.255.0
     set allowaccess ping https ssh snmp http
     set device-identification enable
     set role lan
     set interface "vlan-8021q"
     set vlanid 200
   next
end

To verify the traffic:

1. From the FortiGate, ping 1.1.1.72:

   # execute ping 1.1.1.72
   PING 1.1.1.72 (1.1.1.72): 56 data bytes
   64 bytes from 1.1.1.72: icmp_seq=0 ttl=255 time=0.2 ms
   64 bytes from 1.1.1.72: icmp_seq=1 ttl=255 time=0.1 ms
   64 bytes from 1.1.1.72: icmp_seq=2 ttl=255 time=0.1 ms
   64 bytes from 1.1.1.72: icmp_seq=3 ttl=255 time=0.1 ms
   ^C
   --- 1.1.1.72 ping statistics ---
   4 packets transmitted, 4 packets received, 0% packet loss
   round-trip min/avg/max = 0.1/0.1/0.2 ms

2. Verify the packet capture frame header output captured from the FortiGate's port5:

   Frame 2: 106 bytes on wire (848 bits), 106 bytes captured (848 bits)
   Ethernet II, Src: VMware_93:ae:8f (00:50:56:93:ae:8f), Dst: VMware_93:e3:72
   (00:50:56:93:e3:72)
   Destination: VMware_93:e3:72 (00:50:56:93:e3:72)
   Source: VMware_93:ae:8f (00:50:56:93:ae:8f)
   Type: 802.1Q Virtual LAN (0x8100)
   802.1Q Virtual LAN, PRI: 0, DEI: 0, ID: 100
   0000 0000 0000 0000 = Priority: Best Effort (default) (0)
   0000 0000 0000 0000 = DEI: Ineligible
   0000 0110 0100 = ID: 100
   Type: 802.1Q Virtual LAN (0x8100)
   802.1Q Virtual LAN, PRI: 0, DEI: 0, ID: 200
000. ..... ..... = Priority: Best Effort (default) (0)
...0 ..... ..... = DEI: Ineligible
.... 0000 1100 1000 = ID: 200
Type: IPv4 (0x0800)
Internet Protocol Version 4, Src: 1.1.1.71, Dst: 1.1.1.72
Internet Control Message Protocol

The outer tag (first tag) is an 802.1Q tag with VLAN ID 100. The inner tag (second tag) is also an 802.1Q tag with VLAN ID 200.

Aggregation and redundancy

Link aggregation (IEEE 802.3ad) enables you to bind two or more physical interfaces together to form an aggregated (combined) link. This new link has the bandwidth of all the links combined. If a link in the group fails, traffic is transferred automatically to the remaining interfaces. The only noticeable effect is reduced bandwidth.

This feature is similar to redundant interfaces. The major difference is a redundant interface group only uses one link at a time, where an aggregate link group uses the total bandwidth of the functioning links in the group, up to eight (or more).

An interface is available to be an aggregate interface if:

- It is a physical interface and not a VLAN interface or subinterface.
- It is not already part of an aggregate or redundant interface.
- It is in the same VDOM as the aggregated interface. Aggregate ports cannot span multiple VDOMs.
- It does not have an IP address and is not configured for DHCP or PPPoE.
- It is not referenced in any security policy, VIP, IP Pool, or multicast policy.
- It is not an HA heartbeat interface.
- It is not one of the FortiGate-5000 series backplane interfaces.

When an interface is included in an aggregate interface, it is not listed on the Network > Interfaces page. Interfaces still appear in the CLI although configuration for those interfaces do not take affect. You cannot configure the interface individually and it is not available for inclusion in security policies, VIPs, IP pools, or routing.

Example configuration

This example creates an aggregate interface on a FortiGate-140D POE using ports 3-5 with an internal IP address of 10.1.1.123, as well as the administrative access to HTTPS and SSH.

To create an aggregate interface in the GUI:

1. Go to Network > Interfaces and select Create New > Interface.
2. Set Name to aggregate.
3. Set Type to 802.3ad Aggregate.
4. Set Interface members to port4, port5, and port6.
7. For Administrative Access, select HTTPS and SSH.
8. Click OK.
To create an aggregate interface in the CLI:

```
config system interface
 edit "aggregate"
 set vdom "root"
 set ip 10.1.1.123 255.255.255.0
 set allowaccess https ssh
 set type aggregate
 set member "port4" "port5" "port6"
 set snmp-index 45
next
end
```

Redundancy

In a redundant interface, traffic only goes over one interface at any time. This differs from an aggregated interface where traffic goes over all interfaces for increased bandwidth. This difference means redundant interfaces can have more robust configurations with fewer possible points of failure. This is important in a fully-meshed HA configuration.

An interface is available to be in a redundant interface if:

- It is a physical interface and not a VLAN interface.
- It is not already part of an aggregated or redundant interface.
- It is in the same VDOM as the redundant interface.
- It does not have an IP address and is not configured for DHCP or PPPoE.
- It has no DHCP server or relay configured on it.
- It does not have any VLAN subinterfaces.
- It is not referenced in any security policy, VIP, or multicast policy.
- It is not monitored by HA.
- It is not one of the FortiGate-5000 series backplane interfaces.

When an interface is included in a redundant interface, it is not listed on the Network > Interfaces page. You cannot configure the interface individually and it is not available for inclusion in security policies, VIPs, or routing.

Example configuration

To create a redundant interface in the GUI:

1. Go to Network > Interfaces and select Create New > Interface.
2. Set Name to redundant.
3. Set Type to Redundant Interface.
4. Set Interface members to port4, port5, and port6.
7. For Administrative Access, select HTTPS and SSH.
8. Click OK.

To create a redundant interface in the CLI:

```
config system interface
 edit "redundant"
```
set vdom "root"
set ip 10.13.101.100 255.255.255.0
set allowaccess https http
set type redundant
set member "port4" "port5" "port6"
set snmp-index 9

Enhanced hashing for LAG member selection

FortiGate models that have an internal switch that supports modifying the distribution algorithm can use enhanced hashing to help distribute traffic evenly, or load balance, across links on the Link Aggregation (LAG) interface.

The enhanced hashing algorithm is based on a 5-tuple of the IP protocol, source IP address, destination IP address, source port, and destination port.

Different computation methods allow for more variation in the load balancing distribution, in case one algorithm does not distribute traffic evenly between links across different XAUls. The available methods are:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xor16</td>
<td>Use the XOR operator to make a 16 bit hash.</td>
</tr>
<tr>
<td>xor8</td>
<td>Use the XOR operator to make an 8 bit hash.</td>
</tr>
<tr>
<td>xor4</td>
<td>Use the XOR operator to make a 4 bit hash.</td>
</tr>
<tr>
<td>crc16</td>
<td>Use the CRC-16-CCITT polynomial to make a 16 bit hash.</td>
</tr>
</tbody>
</table>

The following NP6 non-service FortiGate models support this feature: 1500D, 1500DT, 3000D, 3100D, 3200D, 3700D, and 5001D.

To configure the enhanced hashing:

```fortigate
config system npu
 set lag-out-port-select {enable | disable}
 config sw-eh-hash
 set computation {xor4 | xor8 | xor16 | crc16}
 set ip-protocol {include | exclude}
 set source-ip-upper-16 {include | exclude}
 set source-ip-lower-16 {include | exclude}
 set destination-ip-upper-16 {include | exclude}
 set destination-ip-lower-16 {include | exclude}
 set source-port {include | exclude}
 set destination-port {include | exclude}
 set netmask-length {0 - 32}
 end
end
```

For example, to use XOR16 and include all of the fields in the 5-tuple to compute the link in the LAG interface that the packet is distributed to:

```fortigate
config system npu
 set lag-out-port-select enable
```
config sw-eh-hash
    set computation xor16
    set ip-protocol include
    set source-ip-upper-16 include
    set source-ip-lower-16 include
    set destination-ip-upper-16 include
    set destination-ip-lower-16 include
    set source-port include
    set destination-port include
    set netmask-length 32
end
end

Failure detection for aggregate and redundant interfaces

When an aggregate or redundant interface goes down, the corresponding fail-alert interface changes to down. When an aggregate or redundant interface comes up, the corresponding fail-alert interface changes to up.

Fail-detect for aggregate and redundant interfaces can be configured using the CLI.

To configure an aggregate interface so that port3 goes down with it:

    config system interface
    edit "agg1"
      set vdom "root"
      set fail-detect enable
      set fail-alert-method link-down
      set fail-alert-interfaces "port3"
      set type aggregate
      set member "port1" "port2"
    next
    end

To configure a redundant interface so that port4 goes down with it:

    config system interface
    edit "red1"
      set vdom "root"
      set fail-detect enable
      set fail-alert-method link-down
      set fail-alert-interfaces "port4"
      set type redundant
      set member "port1" "port2"
    next
    end
Loopback interface

A loopback interface is a logical interface that is always up. Its IP address does not depend on one specific physical port, and the attached subnet is always present in the routing table. Therefore, it can be accessed through several physical or VLAN interfaces.

Typically, a loopback interface can be used with management access, BGP peering, PIM rendezvous points, and SD-WAN.

Loopback interfaces require appropriate firewall policies to allow traffic to and from the interfaces. Multiple loopback interfaces can be configured in either non-VDOM mode or in each VDOM.

Dynamic routing protocols can be enabled on loopback interfaces. For example, loopback interfaces are a good practice for OSPF. To make it easier to troubleshoot OSPF, set the OSPF router ID to the same value as the loopback IP address to access a specific FortiGate using that IP address and SSH.

A loopback interface is configured using similar steps as a physical interface (see Configuring an interface).

Software switch

A software switch is a virtual switch that is implemented at the software or firmware level and not at the hardware level. A software switch can be used to simplify communication between devices connected to different FortiGate interfaces. For example, using a software switch, you can place the FortiGate interface connected to an internal network on the same subnet as your wireless interfaces. Then devices on the internal network can communicate with devices on the wireless network without any additional configuration on the FortiGate unit, such as additional security policies.

A software switch can also be useful if you require more hardware ports for the switch on a FortiGate unit. For example, if your FortiGate unit has a 4-port switch, WAN1, WAN2, and DMZ interfaces, and you need one more port, you can create a soft switch that can include the four-port switch and the DMZ interface, all on the same subnet. These types of applications also apply to wireless interfaces, virtual wireless interfaces, and physical interfaces such as those in FortiWiFi and FortiAP units.

Similar to a hardware switch, a software switch functions like a single interface. It has one IP address and all the interfaces in the software switch are on the same subnet. Traffic between devices connected to each interface are not regulated by security policies, and traffic passing in and out of the switch are controlled by the same policy.

When setting up a software switch, consider the following:

- Ensure that you have a back up of the configuration.
- Ensure that you have at least one port or connection, such as the console port, to connect to the FortiGate unit. If you accidentally combine too many ports, you need a way to undo errors.
- The ports that you include must not have any link or relation to any other aspect of the FortiGate unit, such as DHCP servers, security policies, and so on.
- For increased security, you can create a captive portal for the switch to allow only specific user groups access to the resources connected to the switch.

Some of the difference between software and hardware switches are:
<table>
<thead>
<tr>
<th>Feature</th>
<th>Software switch</th>
<th>Hardware switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing</td>
<td>Packets are processed in software by the CPU.</td>
<td>Packets are processed in hardware by the hardware switch controller, or SPU where applicable.</td>
</tr>
<tr>
<td>STP</td>
<td>Not Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Wireless SSIDs</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Intra-switch traffic</td>
<td>Allowed by default. Can be explicitly set to require a policy.</td>
<td>Allowed by default.</td>
</tr>
</tbody>
</table>

**To create a software switch in the GUI:**

1. Go to **Network > Interfaces**.
2. Click **Create New > Interface**.
3. Set **Type** to **Software Switch**.
4. Configure the **Name**, **Interface members**, and other fields as required.
   - To add an interface to a software switch, it cannot be referenced by an existing configuration and its IP address must be set to 0.0.0.0/0.0.0.0.
5. Click **OK**.

**To create a software switch in the CLI:**

```
config system switch-interface
 edit <interface>
 set vdom <vdom>
 set member <interface_list>
 set type switch
 next
end
config system interface
 edit <interface>
 set vdom <vdom>
 set type switch
 set ip <ip_address>
 set allowaccess https ssh ping
 next
end
```

To add an interface to a software switch, it cannot be referenced by an existing configuration and its IP address must be set to 0.0.0.0/0.0.0.0.

**Example**

For this example, the wireless interface (WiFi) needs to be on the same subnet as the DMZ1 interface to facilitate wireless synchronizing from an iPhone and a local computer. Because synchronizing between two subnets is problematic, putting both interfaces on the same subnet allows the synchronizing will work. The software switch will accomplish this.
1. Clear the interfaces and back up the configuration:
   a. Ensure the interfaces are not used for other security policy or for other use on the FortiGate unit.
   b. Check the WiFi and DMZ1 ports to ensure that DHCP is not enabled and that there are no other dependencies on these interfaces.
   c. Save the current configuration so that it can be recovered if something goes wrong.

2. Merge the WiFi port and DMZ1 port to create a software switch named synchro with an IP address of 10.10.21.12 and administrative access for HTTPS, SSH and PING:

```plaintext
config system switch-interface
 edit synchro
 set vdom "root"
 set type switch
 set member dmz1 wifi
 next
end
config system interface
 edit synchro
 set ip 10.10.21.12 255.255.255.0
 set allowaccess https ssh ping
 next
end
```

After the switch is set up, you add security policies, DHCP servers, and any other settings that are required.

**Hardware switch**

A hardware switch is a virtual switch interface that groups different ports together so that the FortiGate can use the group as a single interface. Supported FortiGate models have a default hardware switch called either internal or lan. The hardware switch is supported by the chipset at the hardware level.

Ports that are connected to the same hardware switch behave like they are on the same physical switch in the same broadcast domain. Ports can be removed from a hardware switch and assigned to another switch or used as standalone interfaces.

Some of the difference between hardware and software switches are:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Hardware switch</th>
<th>Software switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing</td>
<td>Packets are processed in hardware by the hardware switch controller, or SPU where applicable.</td>
<td>Packets are processed in software by the CPU.</td>
</tr>
<tr>
<td>STP</td>
<td>Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>Wireless SSIDs</td>
<td>Not Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Intra-switch traffic</td>
<td>Allowed by default.</td>
<td>Allowed by default. Can be explicitly set to require a policy.</td>
</tr>
</tbody>
</table>
To change the ports in a hardware switch in the GUI:

1. Go to Network > Interface and edit the hardware switch.
2. Click inside the Interface members field.

![GUI screenshot showing the Interface members field]

3. Select interfaces to add or remove them from the hardware switch, then click Close.
   To add an interface to a hardware switch, it cannot be referenced by an existing configuration and its IP address must be set to 0.0.0.0/0.0.0.0.
4. Click OK.
   Removed interfaces will now be listed as standalone interfaces in the Physical Interface section.

To remove ports from a hardware switch in the CLI:

```
config system virtual-switch
 edit "internal"
 config port
 delete internal2
 delete internal7
 ...
 next
 end
end
```

To add ports to a hardware switch in the CLI:

```
config system virtual-switch
 edit "internal"
 set physical-switch "sw0"
 config port
 edit "internal3"
 next
 edit "internal5"
 next
 edit "internal4"
 next
 edit "internal6"
 next
 end
 next
end
```
To add an interface to a hardware switch, it cannot be referenced by an existing configuration and its IP address must be set to 0.0.0.0/0.0.0.0.

**Using 802.1X on virtual switches for certain NP6 platforms**

802.1X is supported under the hardware switch interface on the following NP6 platforms: FG-30xE, FG-40xE, and FG-110xE.

In this example, port3 and port4 are part of a hardware switch interface. The hardware switch acts as a virtual switch so that devices can connect directly to these ports and perform 802.1X authentication on the port.

![Diagram showing a hardware switch acting as a virtual switch](image)

**Prerequisites:**

1. Configure a RADIUS server (see RADIUS servers on page 1820).
2. Define a user group named test to use the remote RADIUS server and for 802.1X authentication (see User definition and groups on page 1792).
3. Configure a hardware switch (named 18188) with port3 and port4 as the members.
4. Configure a firewall policy that allows traffic from the 18188 hardware switch to go to the internet.
5. Enable 802.1X authentication on the client devices.

**To configure 802.1X authentication on a hardware switch in the GUI:**

1. Go to Network > Interfaces and edit the hardware switch.
2. In the Network section, enable Security mode and select 802.1X.
3. Click the + to add the User group.

4. Click OK.

To configure 802.1X authentication on a hardware switch in the CLI:

1. Configure the virtual hardware switch interfaces:
   
   ```fortios
 config system virtual-switch
 edit "18188"
 set physical-switch "sw0"
 config port
 edit "port3"
 next
 edit "port4"
 next
   ```
2. Configure 802.1X authentication:

```
config system interface
edit "18188"
 set vdom "vdom1"
 set ip 1.1.1.1 255.255.255.0
 set allowaccess ping https ssh snmp fgfm ftm
 set type hard-switch
 set security-mode 802.1X
 set security-groups "test"
 set device-identification enable
 set lldp-transmission enable
 set role lan
 set snmp-index 52
end
```

To verify that the 802.1X authentication was successful:

1. Get a client connected to port3 to authenticate to access the internet.
2. In FortiOS, verify the 802.1X authentication port status:

```
diagnose sys 802-1x status

Virtual switch '18188' (default mode) 802.1x member status:
 port3: Link up, 802.1X state: authorized
 port4: Link up, 802.1X state: unauthorized
```

### Zone

Zones are a group of one or more physical or virtual FortiGate interfaces that you can apply firewall policies to for controlling inbound and outbound traffic. Grouping interfaces and VLAN subinterfaces into zones simplifies creating firewall policies where a number of network segments can use the same policy settings and protection profiles.

When you add a zone, you select the names of the interfaces and VLAN subinterfaces to add to the zone. Each interface still has its own address. Routing is still done between interfaces, that is, routing is not affected by zones. You can use firewall policies to control the flow of intra-zone traffic.

For example, in the sample configuration below, the network includes three separate groups of users representing different entities on the company network. While each group has its own set of ports and VLANs in each area, they can all use the same firewall policy and protection profiles to access the Internet. Rather than the administrator making nine separate firewall policies, he can make administration simpler by adding the required interfaces to a zone and creating three policies.

### Example configuration

You can configure policies for connections to and from a zone but not between interfaces in a zone. For this example, you can create a firewall policy to go between zone 1 and zone 3, but not between WAN2 and WAN1, or WAN1 and DMZ1.
To create a zone in the GUI:

1. Go to Network > Interfaces.

   If VDOMs are enabled, go to the VDOM to create a zone.

2. Click Create New > Zone.
3. Configure the Name and add the Interface Members.
4. Enable or disable Block intra-zone traffic as required.
5. Click OK.

To configure a zone to include the internal interface and a VLAN using the CLI:

```bash
config system zone
 edit zone_1
 set interface internal VLAN_1
 set intrazone {deny | allow}
 next
end
```

Using zone in a firewall policy

To configure a firewall policy to allow any interface to access the Internet using the CLI:

```bash
config firewall policy
 edit 2
 set name "2"
 set srcintf "Zone_1"
 set dstintf "port15"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set nat enable
 next
end
```
Network

Intra-zone traffic

In the zone configuration you can set intrazone deny to prohibit the different interfaces in the same zone to talk to each other.

For example, if you have ten interfaces in your zone and the intrazone setting is deny. You now want to allow traffic between a very small number of networks on different interfaces that are part of the zone but you do not want to disable the intra-zone blocking.

In this example, the zone VLANs are defined as: 192.168.1.0/24, 192.168.2.0/24, ..., 192.168.10.0/24.

This policy allows traffic from 192.168.1.x to 192.168.2.x even though they are in the same zone and intra-zone blocking is enabled. The intra-zone blocking acts as a default deny rule and you have to specifically override it by creating a policy within the zone.

To enable intra-zone traffic, create the following policy:

<table>
<thead>
<tr>
<th>Source Interface</th>
<th>Zone-name, e.g., Vlans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Address</td>
<td>192.168.1.0/24</td>
</tr>
<tr>
<td>Destination</td>
<td>Zone-name (same as Source Interface, i.e., Vlans)</td>
</tr>
<tr>
<td>Destination Address</td>
<td>192.168.2.0/24</td>
</tr>
</tbody>
</table>

Virtual wire pair

A virtual wire pair consists of two interfaces that do not have IP addressing and are treated like a transparent mode VDOM. All traffic received by one interface in the virtual wire pair can only be forwarded to the other interface, provided a virtual wire pair firewall policy allows this traffic. Traffic from other interfaces cannot be routed to the interfaces in a virtual wire pair. Redundant and 802.3ad aggregate (LACP) interfaces can be included in a virtual wire pair.

Virtual wire pairs are useful for a typical topology where MAC addresses do not behave normally. For example, port pairing can be used in a Direct Server Return (DSR) topology where the response MAC address pair may not match the request’s MAC address pair.

Example

In this example, a virtual wire pair (port3 and port4) makes it easier to protect a web server that is behind a FortiGate operating as an Internal Segmentation Firewall (ISFW). Users on the internal network access the web server through the ISFW over the virtual wire pair.

Interfaces used in a virtual wire pair cannot be used to access the ISFW FortiGate. Before creating a virtual wire pair, make sure you have a different port configured to allow admin access using your preferred protocol.
To add a virtual wire pair using the GUI:

1. Go to Network > Interfaces.
2. Click Create New > Virtual Wire Pair.
3. Enter a name for the virtual wire pair.
4. Select the Interface Members to add to the virtual wire pair (port3 and port4).
   These interfaces cannot be part of a switch, such as the default LAN/internal interface.
5. If required, enable Wildcard VLAN and set the VLAN Filter.
6. Click OK.

To add a virtual wire pair using the CLI:

```
config system virtual-wire-pair
edit "VWP-name"
 set member "port3" "port4"
 set wildcard-vlan disable
next
end
```

To create a virtual wire pair policy using the GUI:

1. Go to Policy & Objects > Firewall Virtual Wire Pair Policy.
2. Click Create New.
3. In the Virtual Wire Pair field, click the + to add the virtual wire pair.
4. Select the direction (arrows) that traffic is allowed to flow.
5. Configure the other settings as needed.
6. Click OK.

To create a virtual wire pair policy using the CLI:

```
config firewall policy
edit 1
 set name "VWP-Policy"
 set srcintf "port3" "port4"
 set dstintf "port3" "port4"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set utm-status enable
 set fssc disable
```
Configuring multiple virtual wire pairs in a virtual wire pair policy

You can create a virtual wire pair policy that includes different virtual wire pairs in NGFW profile and policy mode. This reduces overhead to create multiple similar policies for each VWP. In NGFW policy mode, multiple virtual wire pairs can be configured in a Security Virtual Wire Pair Policy and Virtual Wire Pair SSL Inspection & Authentication policy.

The virtual wire pair settings must have wildcard VLAN enabled. When configuring a policy in the CLI, the virtual wire pair members must be entered in srcintf and dstintf as pairs.

To configure multiple virtual wire pairs in a policy in the GUI:

1. Configure the virtual wire pairs:
   a. Go to Network > Interfaces and click Create New > Virtual Wire Pair.
   b. Create a pair with the following settings:
      
Name	test-vwp-1
Interface members	wan1, wan2
Wildcard VLAN	Enable

   c. Click OK.
   d. Click Create New > Virtual Wire Pair and create another pair with the following settings:
      
Name	test-vwp-2
Interface members	port19, port20
Wildcard VLAN	Enable

   e. Click OK.

2. Configure the policy:
   a. Go to Policy & Objects > Firewall Virtual Wire Pair Policy and click Create New.
   b. In the Virtual Wire Pair field, click the + to add test-vwp-1 and test-vwp-2. Select the direction for each of the selected virtual wire pairs.
c. Configure the other settings as needed.
d. Click OK.

To configure multiple virtual wire pairs in a policy in the CLI:

1. Configure the virtual wire pairs:
   ```
 config system virtual-wire-pair
 edit "test-vwp-1"
 set member "wan1" "wan2"
 set wildcard-vlan enable
 next
 edit "test-vwp-2"
 set member "port19" "port20"
 set wildcard-vlan enable
 next
 end
   ```

2. Configure the policy:
   ```
 config firewall policy
 edit 1
 set name "vwp12-policy"
 set srcintf "port19" "wan1"
 set dstintf "port20" "wan2"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set logtraffic all
 next
 end
   ```
PRP handling in NAT mode with virtual wire pair

PRP (Parallel Redundancy Protocol) is supported in NAT mode for a virtual wire pair. This preserves the PRP RCT (redundancy control trailer) while the packet is processed by the FortiGate.

To configure PRP handling on a device in NAT mode:

1. Enable PRP in the VDOM settings:
   ```
 (root) # config system settings
 set prp-trailer-action enable
 end
   ```

2. Enable PRP in the NPU attributes:
   ```
 (global) # config system npu
 set prp-port-in "port15"
 set prp-port-out "port16"
 end
   ```

3. Configure the virtual wire pair:
   ```
 (root) # config system virtual-wire-pair
 edit "test-vwp-1"
 set member "port15" "port16"
 next
 end
   ```

Enhanced MAC VLAN

The Media Access Control (MAC) Virtual Local Area Network (VLAN) feature in Linux allows you to configure multiple virtual interfaces with different MAC addresses (and therefore different IP addresses) on a physical interface.

FortiGate implements an enhanced MAC VLAN consisting of a MAC VLAN with bridge functionality. Because each MAC VLAN has a unique MAC address, virtual IP addresses (VIPs) and IP pools are supported, and you can disable Source Network Address Translation (SNAT) in policies.

MAC VLAN cannot be used in a transparent mode virtual domain (VDOM). In a transparent mode VDOM, a packet leaves an interface with the MAC address of the original source instead of the interface’s MAC address. FortiGate implements an enhanced version of MAC VLAN where it adds a MAC table in the MAC VLAN which learns the MAC addresses when traffic passes through.

If you configure a VLAN ID for an enhanced MAC VLAN, it won’t join the switch of the underlying interface. When a packet is sent to this interface, a VLAN tag is inserted in the packet and the packet is sent to the driver of the underlying interface. When the underlying interface receives a packet, if the VLAN ID doesn’t match, it won’t deliver the packet to this enhanced MAC VLAN interface.

When using a VLAN ID, the ID and the underlying interface must be a unique pair, even if the belong to different VDOMs. This is because the underlying, physical interface uses the VLAN ID as the identifier to dispatch traffic among the VLAN and enhanced MAC VLAN interfaces.

If you use an interface in an enhanced MAC VLAN, do not use it for other purposes such as a management interface, HA heartbeat interface, or in Transparent VDOMs.

If a physical interface is used by an EMAC VLAN interface, you cannot use it in a Virtual Wire Pair.
In high availability (HA) configurations, enhanced MAC VLAN is treated as a physical interface. It’s assigned a unique physical interface ID and the MAC table is synchronized with the secondary devices in the same HA cluster.

**Example 1: Enhanced MAC VLAN configuration for multiple VDOMs that use the same interface or VLAN**

In this example, a FortiGate is connected, through port 1 to a router that’s connected to the Internet. Three VDOMs share the same interface (port 1) which connects to the same router that’s connected to the Internet. Three enhanced MAC VLAN interfaces are configured on port 1 for the three VDOMs. The enhanced MAC VLAN interfaces are in the same IP subnet segment and each have unique MAC addresses.

The underlying interface (port 1) can be a physical interface, an aggregate interface, or a VLAN interface on a physical or aggregate interface.

![Diagram of network configuration](image)

**To configure enhanced MAC VLAN for this example in the CLI:**

```fortran
config system interface
 edit port1.emacvlan1
 set vdom VDOM1
 set type emac-vlan
 set interface port1
 next
 edit port1.emacvlan2
 set vdom VDOM2
 set type emac-vlan
 set interface port1
 next
 edit port1.emacvlan3
 set vdom VDOM3
 set type emac-vlan
 set interface port1
 next
end
```
**Example 2: Enhanced MAC VLAN configuration for shared VDOM links among multiple VDOMs**

In this example, multiple VDOMs can connect to each other using enhanced MAC VLAN on network processing unit (NPU) virtual link (Vlink) interfaces.

FortiGate VDOM links (NPU-Vlink) are designed to be peer-to-peer connections and VLAN interfaces on NPU Vlink ports use the same MAC address. Connecting more than two VDOMs using NPU Vlinks and VLAN interfaces is not recommended.

To configure enhanced MAC VLAN for this example in the CLI:

```plaintext
config system interface
 edit npu0_vlink0.emacvlan1
 set vdom VDOM1
 set type emac-vlan
 set interface npu0_vlink0
 next
 edit npu0_vlink0.emacvlan2
 set vdom VDOM3
 set type emac-vlan
 set interface npu0_vlink0
 next
 edit npu0_vlink1.emacvlan1
 set vdom VDOM2
 set type emac-vlan
 set interface npu0_vlink1
 next
end
```

**Example 3: Enhanced MAC VLAN configuration for unique MAC addresses for each VLAN interface on the same physical port**

Some networks require a unique MAC address for each VLAN interface when the VLAN interfaces share the same physical port. In this case, the enhanced MAC VLAN interface is used the same way as normal VLAN interfaces.
To configure this, use the set vlanid command for the VLAN tag. The VLAN ID and interface must be a unique pair, even if they belong to different VDOMs.

**To configure enhanced MAC VLAN:**

```
config system interface
 edit <interface-name>
 set type emac-vlan
 set vlanid <VLAN-ID>
 set interface <physical-interface>
 next
end
```

**VXLAN**

Virtual Extensible LAN (VXLAN) is a network virtualization technology used in large cloud computing deployments. It encapsulates layer 2 Ethernet frames within layer 3 IP packets using the standard destination port 4789. VXLAN endpoints that terminate VXLAN tunnels can be virtual or physical switch ports, and are known as VXLAN tunnel endpoints (VTEPs). For more information about VXLAN, see RFC 7348.

The following topics provide information about VXLAN:

- VLAN inside VXLAN on page 198
- Virtual wire pair with VXLAN on page 200

**VLAN inside VXLAN**

VLANs can be assigned to VXLAN interfaces. In a data center network where VXLAN is used to create an L2 overlay network and for multitenant environments, a customer VLAN tag can be assigned to VXLAN interface. This allows the VLAN tag from VLAN traffic to be encapsulated within the VXLAN packet.

**To configure VLAN inside VXLAN on HQ1:**

1. Configure VXLAN:

   ```
 config system vxlan
 edit "vxlan1"
 set interface port1
 set vni 1000
 set remote-ip 173.1.1.1
 next
 end
   ```
2. Configure system interface:

```
config system interface
 edit vlan100
 set vdom root
 set vlanid 100
 set interface dmz
 next
 edit vxlan100
 set type vlan
 set vlanid 100
 set vdom root
 set interface vxlan1
 next
end
```

3. Configure software-switch:

```
config system switch-interface
 edit sw1
 set vdom root
 set member vlan100 vxlan100
 set intra-switch-policy implicit
 next
end
```

The default `intra-switch-policy implicit` behavior allows traffic between member interfaces within the switch. Therefore, it is not necessary to create firewall policies to allow this traffic.

Instead of creating a software-switch, it is possible to use a virtual-wire-pair as well. See Virtual wire pair with VXLAN on page 200.

### To configure VLAN inside VXLAN on HQ2:

1. Configure VXLAN:

```
config system vxlan
 edit "vxlan2"
 set interface port25
 set vni 1000
 set remote-ip 173.1.1.2
 next
end
```

2. Configure system interface:

```
config system interface
 edit vlan100
 set vdom root
 set vlanid 100
 set interface port20
 next
 edit vxlan100
 set type vlan
 set vlanid 100
 set vdom root
```
set interface vxlan2
next
end

3. Configure software-switch:
   config system switch-interface
   edit sw1
        set vdom root
        set member vlan100 vxlan100
   next
   end

To verify the configuration:

Ping PC1 from PC2.

The following is captured on HQ2:

This captures the VXLAN traffic between 172.1.1.1 and 172.1.1.2 with the VLAN 100 tag inside.

**Virtual wire pair with VXLAN**

Virtual wire pairs can be used with VXLAN interfaces.

In this example, VXLAN interfaces are added between FortiGate HQ1 and FortiGate HQ2, a virtual wire pair is added in HQ1, and firewall policies are created on both HQ1 and HQ2.

![Diagram of network setup with FortiGate HQ1 and HQ2 connected through a virtual wire pair]

To create VXLAN interface on HQ1:

config system interface
   edit "port11"
        set vdom "root"
        set ip 10.2.2.1 255.255.255.0
set allowaccess ping https ssh snmp telnet
next
end
config system vxlan
edit "vxlan1"
   set interface "port11"
   set vni 1000
   set remote-ip "10.2.2.2"
next
end

To create VXLAN interface on HQ2:

config system interface
edit "port11"
   set vdom "root"
   set ip 10.2.2.2 255.255.255.0
   set allowaccess ping https ssh snmp http
next
end
config system vxlan
edit "vxlan1"
   set interface "port11"
   set vni 1000
   set remote-ip "10.2.2.1"
next
end
config system interface
edit "vxlan1"
   set vdom "root"
   set ip 10.1.100.2 255.255.255.0
   set allowaccess ping https ssh snmp
next
end

To create a virtual wire pair on HQ1:

config system virtual-wire-pair
edit "vwp1"
   set member "port10" "vxlan1"
next
end

To create a firewall policy on HQ1:

config firewall policy
edit 5
   set name "vxlan-policy"
   set srcintf "port10" "vxlan1"
   set dstintf "port10" "vxlan1"
   set srcaddr "all"
   set dstaddr "all"
   set action accept
   set schedule "always"
   set service "ALL"
   set utm-status enable
Network

set ssl-ssh-profile "certificate-inspection"
set av-profile "default"
set webfilter-profile "default"
set dnsfilter-profile "default"
set ips-sensor "default"
set application-list "default"
set fsso disable

next
end

To create a firewall policy on HQ2:

config firewall policy
edit 5
set name "1"
set srcintf "port13"
set dstintf "vxlan1"
set srcaddr "all"
set dstaddr "all"
set action accept
set schedule "always"
set service "ALL"
set fsso disable
set nat enable
next
end

DNS

Domain name system (DNS) is used by devices to locate websites by mapping a domain name to a website’s IP address.

A FortiGate can serve different roles based on user requirements:

- A FortiGate can control what DNS server a network uses.
- A FortiGate can function as a DNS server.

FortiGuard Dynamic DNS (DDNS) allows a remote administrator to access a FortiGate’s Internet-facing interface using a domain name that remains constant even when its IP address changes.

FortiOS supports DNS configuration for both IPv4 and IPv6 addressing. When a user requests a website, the FortiGate looks to the configured DNS servers to provide the IP address of the website in order to know which server to contact to complete the transaction.

The FortiGate queries the DNS servers whenever it needs to resolve a domain name into an IP address, such as for NTP or web servers defined by their domain names.

The following topics provide information about DNS:

- Important DNS CLI commands on page 203
- DNS domain list on page 204
- FortiGate DNS server on page 206
- DDNS on page 208
- DNS latency information on page 212
Important DNS CLI commands

DNS settings can be configured with the following CLI command:

```
config system dns
 set primary <ip_address>
 set secondary <ip_address>
 set protocol {cleartext dot doh}
 set ssl-certificate <string>
 set server-hostname <hostname>
 set domain <domains>
 set ip6-primary <ip6_address>
 set ip6-secondary <ip6_address>
 set timeout <integer>
 set retry <integer>
 set dns-cache-limit <integer>
 set dns-cache-ttl <integer>
 set cache-notfound-responses {enable | disable}
 set interface-select-method {auto | sdwan | specify}
 set interface <interface>
 set source-ip <class_ip>
end
```

For a FortiGate with multiple logical CPUs, you can set the DNS process number from 1 to the number of logical CPUs. The default DNS process number is 1.

```
config system global
 set dnsproxy-worker-count <integer>
end
```

DNS protocols

The following DNS protocols can be enabled:

- **cleartext**: Enable clear text DNS over port 53 (default).
- **dot**: Enable DNS over TLS.
- **doh**: Enable DNS over HTTPS.

For more information, see DNS over TLS and HTTPS on page 214.

**cache-notfound-responses**

When enabled, any DNS requests that are returned with NOT FOUND can be stored in the cache. The DNS server is not asked to resolve the host name for NOT FOUND entries. By default, this option is disabled.
**dns-cache-limit**

Set the number of DNS entries that are stored in the cache (0 to 4294967295, default = 5000). Entries that remain in the cache provide a quicker response to requests than going out to the Internet to get the same information.

**dns-cache-ttl**

The duration that the DNS cache retains information, in seconds (60 to 86400 (1 day), default = 1800).

**VDOM DNS**

When the FortiGate is in multi-vdom mode, DNS is handled by the management VDOM. However in some cases, administrators may want to configure custom DNS settings on a non-management VDOM. For example, in a multi-tenant scenario, each VDOM might be occupied by a different tenant, and each tenant might require its own DNS server.

**To configure a custom VDOM within a non-management VDOM:**

```
config vdom
edit <vdom>
config system vdom-dns
 set vdom-dns enable
 set primary <primary_DNS>
 set secondary <secondary_DNS>
 set protocol {cleartext dot doh}
 set ip6-primary <primary_IPv6_DNS>
 set ip6-secondary <secondary_IPv6_DNS>
 set source-ip <IP_address>
 set interface-select-method {auto | sdwan | specify}
end
```

**DNS domain list**

You can configure up to eight domains in the DNS settings using the GUI or the CLI.

When a client requests a URL that does not include an FQDN, FortiOS resolves the URL by traversing through the DNS domain list and performing a query for each domain until the first match is found.

By default, FortiGate uses FortiGuard's DNS servers:

- Primary: 96.45.45.45
- Secondary: 96.45.46.46

You can also customize the DNS timeout time and the number of retry attempts.

**To configure a DNS domain list in the GUI:**

1. Go to *Network > DNS*.
2. Set *DNS Servers to Specify*.
3. Configure the primary and secondary DNS servers as needed.
4. In the Local Domain Name field, enter the first domain (sample.com in this example).
5. Click the + to add more domains (example.com and domainname.com in this example). You can enter up to eight domains.
6. Configure additional DNS protocol and IPv6 settings as needed.

7. Click Apply.

To configure a DNS domain list in the CLI:

```
config system dns
 set primary 96.45.45.45
 set secondary 96.45.46.46
 set domain "sample.com" "example.com" "domainname.com"
end
```

**Verify the DNS configuration**

In the following example, the local DNS server has the entry for host1 mapped to the FQDN of host1.sample.com, and the entry for host2 is mapped to the FQDN of host2.example.com.

**To verify that the DNS domain list is configured:**

1. Open Command Prompt.
2. Enter `ping host1`.
   The system returns the following response:
   ```
 PING host1.sample.com (1.1.1.1): 56 data bytes
 As the request does not include an FQDN, FortiOS traverses the configured DNS domain list to find a match.
 Because host1 is mapped to the host1.sample.com, FortiOS resolves host1 to sample.com, the first entry in the domain list.
   ```
3. Enter `ping host2`.
   The system returns the following response:
   ```
 PING host2.example.com (2.2.2.2): 56 data bytes
 FortiOS traverses the domain list to find a match. It first queries sample.com, the first entry in the domain list, but does not find a match. It then queries the second entry in the domain list, example.com. Because host2 is mapped
to the FQDN of host2.example.com, FortiOS resolves host2 to example.com.

DNS timeout and retry settings

The DNS timeout and retry settings can be customized using the CLI.

```
config system dns
  set timeout <integer>
  set retry <integer>
end
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timeout</td>
<td>The DNS query timeout interval, in seconds (1 - 10, default = 5).</td>
</tr>
<tr>
<td>retry</td>
<td>The number of times to retry the DNS query (0 - 5, default = 2).</td>
</tr>
</tbody>
</table>

FortiGate DNS server

You can create local DNS servers for your network. Depending on your requirements, you can either manually maintain your entries (primary DNS server), or use it to refer to an outside source (secondary DNS server).

A local, primary DNS server requires that you to manually add all URL and IP address combinations. Using a primary DNS server for local services can minimize inbound and outbound traffic, and access time. Making it authoritative is not recommended, because IP addresses can change, and maintaining the list can become labor intensive.

A secondary DNS server refers to an alternate source to obtain URL and IP address combinations. This is useful when there is a primary DNS server where the entry list is maintained.

FortiGate as a DNS server also supports TLS and HTTPS connections to a DNS client. See DNS over TLS and HTTPS on page 214 for details.

By default, DNS server options are not available in the FortiGate GUI.

To enable DNS server options in the GUI:

1. Go to System > Feature Visibility.
2. Enable DNS Database in the Additional Features section.
3. Click Apply.

Example configuration

This section describes how to create an unauthoritative primary DNS server. The interface mode is recursive so that, if the request cannot be fulfilled, the external DNS servers will be queried.

To configure FortiGate as a primary DNS server in the GUI:

1. Go to Network > DNS Servers.
2. In the DNS Database table, click Create New.
3. Set Type to Primary.
4. Set View to Shadow. The View setting controls the accessibility of the DNS server. If you select Public, external users can access or use the DNS server. If you select Shadow, only internal users can use it.

5. Enter a DNS Zone, for example, WebServer.

6. Enter the Domain Name of the zone, for example, fortinet.com.

7. Enter the Hostname of the DNS server, for example, Corporate.

8. Enter the Contact Email Address for the administrator, for example, admin@example.com.

10. Add DNS entries:
 a. In the DNS Entries table, click Create New.
 b. Select a Type, for example Address (A).
 c. Set the Hostname, for example web.example.com.
 d. Configure the remaining settings as needed. The options vary depending on the selected Type.
 e. Click OK.

11. Add more DNS entries as needed.

12. Click OK.

13. Enable DNS services on an interface:
 a. Go to Network > DNS Servers.
 b. In the DNS Service on Interface table, click Create New.
 c. Select the Interface for the DNS server, such as wan2.
d. Set the Mode to Recursive.

To configure FortiGate as a primary DNS server in the CLI:

```text
config system dns-database
edit WebServer
    set domain example.com
    set type master
    set view shadow
    set ttl 86400
    set primary-name corporate
    set contact admin@example.com
    set authoritative disable
config dns-entry
    edit 1
        set status enable
        set hostname web.example.com
        set type A
        set ip 192.168.21.12
next
next
end
end
config system dns-server
edit wan2
    set mode recursive
next
end
```

DDNS

If your external IP address changes regularly and you want a static domain name, you can configure the external interface to use a dynamic DNS (DDNS) service. This ensures that external users and customers can always connect to your company firewall. You can configure FortiGuard as the DDNS server using the GUI or CLI.

A license or subscription is not required to use the DDNS service, but configuring DDNS in the GUI is not supported if:

- The FortiGate model is a 1000-series or higher.
- The FortiGate is a VM.
- The DNS server is not using FortiGuard as the DNS.

FortiGate does not support DDNS when in transparent mode.
Sample topology

In this example, FortiGuard DDNS is enabled and the DDNS server is set to float-zone.com. Other DDNS server options include fortiddns.com and fortidyndns.com.

To configure FortiGuard DDNS service as a DDNS server in the GUI:

1. Go to **Network > DNS**.
2. Enable **FortiGuard DDNS**.
3. Select the **Interface** with the dynamic connection.
4. Select the **Server** that you have an account with.
5. Enter your **Unique Location**.
6. Click **Apply**.

To configure the FortiGuard DDNS service as an IPv4 DDNS server in the CLI:

```
config system ddns
   edit 1
       set ddns-server FortiGuardDDNS
       set server-type ipv4
       set ddns-domain "branch.float-zone.com"
       set addr-type ipv4
```
Network

 set use-public-ip enable
 set monitor-interface "wan1"
next
end

To configure the FortiGuard DDNS service as an IPv6 DDNS server in the CLI:

config system ddns
 edit 1
 set ddns-server FortiGuardDDNS
 set server-type ipv6
 set ddns-domain "fgtatest001.float-zone.com"
 set addr-type ipv6
 set monitor-interface "wan1"
 next
end

DDNS servers other than FortiGuard

If you do not have a FortiGuard subscription, or want to use a different DDNS server, you can configure a DDNS server for each interface. Only the first configure port appears in the GUI.

The available commands vary depending on the selected DDNS server.

To configure DDNS servers other than FortiGuard in the CLI:

config system ddns
 edit <DDNS_ID>
 set monitor-interface <external_interface>
 set ddns-server <ddns_server_selection>
 set server-type {ipv4 | ipv6}
 set ddns-server-addr <address>
 set addr-type ipv6 {ipv4 | ipv6}
 next
end

To configure an IPv6 DDNS client with generic DDNS on port 3 in the CLI:

config system ddns
 edit 1
 set ddns-server genericDDNS
 set server-type ipv6
 set ddns-server-addr "2004:16:16:16::2" "16.16.16.2" "ddns.genericddns.com"
 set ddns-domain "test.com"
 set addr-type ipv6
 set monitor-interface "port3"
 next
end

Refresh DDNS IP addresses

When using a public IP that is not assigned to the FortiGate, the FortiGate cannot trigger an update when the IP address changes. The FortiGate can be configured to refresh DDNS IP addresses by periodically checking the DDNS server at
an update interval.

To configure FortiGate to refresh DDNS IP addresses in the CLI:

```plaintext
cfg system ddns
  edit 1
    set use-public-ip enable
    set update-interval <seconds>
  next
end
```

When `update-interval` is set to 0:
- For FortiGuard DDNS, the interval is 300 seconds.
- For third part DDNS servers, the interval is assigned by the DDNS server.

Disable cleartext

When `clear-text` is disabled, FortiGate uses the SSL connection to send and receive DDNS updates.

To disable cleartext and set the SSL certificate in the CLI:

```plaintext
cfg system ddns
  edit 2
    set clear-text disable
    set ssl-certificate <cert_name>
  next
end
```

DDNS update override

A DHCP server has an override command option that allows DHCP server communications to go through DDNS to perform updates for the DHCP client. This enforces a DDNS update of the A field every time even if the DHCP client does not request it. This allows support for the `allow`, `ignore`, and `deny client-updates` options.

To enable DDNS update override in the CLI:

```plaintext
cfg system dhcp server
  edit 1
    set ddns-update enable
    set ddns-update-override enable
    set ddns-server-ip <ddns_server_ip>
    set ddns-zone <ddns_zone>
  next
end
```
Troubleshooting

To debug DDNS:

diagnose debug application ddnsd -l
diagnose debug enable

To check if a DDNS server is available:

diagnose test application ddnsd 3

Not available:

FortiDDNS status:
 ddns_ip=0.0.0.0, ddns_ip6=:,, ddns_port=443 svr_num=0 domain_num=0

Available:

FortiDDNS status:
 ddns_ip=208.91.113.230, ddns_ip6=:,, ddns_port=443 svr_num=1 domain_num=3
 svr[0]= 208.91.113.230
domain[0]= fortiddns.com
domain[1]= fortidyndns.com
domain[2]= float-zone.com

DNS latency information

High latency in DNS traffic can result in an overall sluggish experience for end-users. In the DNS Settings pane, you can quickly identify DNS latency issues in your configuration.

Go to Network > DNS to view DNS latency information in the right side bar. If you use FortiGuard DNS, latency information for DNS, DNS filter, web filter, and outbreak prevention servers is also visible. Hover your pointer over a latency value to see when it was last updated.
To view DNS latency information using the CLI:

```
# diagnose test application dnsproxy 2
worker idx: 0
worker: count=1 idx=0
retry_interval=500 query_timeout=1495
DNS latency info:
vfid=0 server=2001::1 latency=1494 updated=73311
vfid=0 server=96.45.46.46 latency=1405 updated=2547
vfid=0 server=8.8.8.8 latency=19 updated=91
SDNS latency info:
vfid=0 server=173.243.140.53 latency=1 updated=707681
DNS_CACHE: alloc=35, hit=26
RATING_CACHE: alloc=1, hit=49
DNS UDP: req=66769 res=63438 fwd=83526 alloc=0 cmp=0 retrans=16655 to=3233
          cur=111 switched=882347 num_switched=294 v6_cur=80 v6_switched=769041 num_v6_
          switched=6
          ftg_res=8 ftg_fwd=8 ftg_retrans=0
DNS TCP: req=0, res=0, fwd=0, retrans=0 alloc=0, to=0
FQDN: alloc=45 nl_write_cnt=9498 nl_send_cnt=21606 nl_cur_cnt=0
Botnet: searched=57 hit=0 filtered=57 false_positive=0
```

To view the latency from web filter and outbreak protection servers using the CLI:

```
# diagnose debug rating
Locale : english
Service : Web-filter
Status : Enable
License : Contract
Service : Antispam
Status : Disable
Service : Virus Outbreak Prevention
Status : Disable
```

```
--- Server List (Tue Jan 22 08:03:14 2019) ---

<table>
<thead>
<tr>
<th>IP</th>
<th>Weight</th>
<th>RTT Flags</th>
<th>TZ</th>
<th>Packets</th>
<th>Curr</th>
<th>Lost</th>
<th>Total Lost</th>
<th>Updated Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>173.243.138.194</td>
<td>10</td>
<td>0</td>
<td>-8</td>
<td>700</td>
<td>0</td>
<td>2</td>
<td></td>
<td>Tue Jan 22 08:02:44</td>
</tr>
<tr>
<td>173.243.138.195</td>
<td>10</td>
<td>0</td>
<td>-8</td>
<td>698</td>
<td>0</td>
<td>4</td>
<td></td>
<td>Tue Jan 22 08:02:44</td>
</tr>
<tr>
<td>173.243.138.198</td>
<td>10</td>
<td>0</td>
<td>-8</td>
<td>698</td>
<td>0</td>
<td>4</td>
<td></td>
<td>Tue Jan 22 08:02:44</td>
</tr>
<tr>
<td>173.243.138.196</td>
<td>10</td>
<td>0</td>
<td>-8</td>
<td>697</td>
<td>0</td>
<td>3</td>
<td></td>
<td>Tue Jan 22 08:02:44</td>
</tr>
<tr>
<td>173.243.138.197</td>
<td>10</td>
<td>1</td>
<td>-8</td>
<td>694</td>
<td>0</td>
<td>0</td>
<td></td>
<td>Tue Jan 22 08:02:44</td>
</tr>
<tr>
<td>96.45.33.64</td>
<td>10</td>
<td>22 D</td>
<td>-8</td>
<td>701</td>
<td>0</td>
<td>6</td>
<td></td>
<td>Tue Jan 22 08:02:44</td>
</tr>
<tr>
<td>64.26.151.36</td>
<td>40</td>
<td>62</td>
<td>-5</td>
<td>704</td>
<td>0</td>
<td>10</td>
<td></td>
<td>Tue Jan 22 08:02:44</td>
</tr>
<tr>
<td>64.26.151.35</td>
<td>40</td>
<td>62</td>
<td>-5</td>
<td>703</td>
<td>0</td>
<td>9</td>
<td></td>
<td>Tue Jan 22 08:02:44</td>
</tr>
</tbody>
</table>
```
DNS over TLS and HTTPS

DNS over TLS (DoT) is a security protocol for encrypting and encapsulating DNS queries and responses over the TLS protocol. DoT increases user privacy and security by preventing eavesdropping and manipulation of DNS data via man-in-the-middle attacks. Similarly, DNS over HTTPS (DoH) provides a method of performing DNS resolution over a secure HTTPS connection. DoT and DoH are supported in explicit mode where the FortiGate acts as an explicit DNS server that listens for DoT and DoH requests. Local-out DNS traffic over TLS and HTTPS is also supported.

Basic configurations for enabling DoT and DoH for local-out DNS queries

Before enabling DoT or DoH, ensure that they are supported by the DNS servers. The legacy FortiGuard DNS servers (208.91.112.53 and 208.91.112.52) do not support DoT or DoH queries, and will drop these packets. At times, the latency status of the DNS servers might also appear high or unreachable.

Disabling DoT and DoH is recommended when they are not supported by the DNS servers.

To enable DoT and DoH DNS in the GUI:

1. Go to Network > DNS.
2. Enter the primary and secondary DNS server addresses.
3. In the *DNS Protocols* section, enable TLS (TCP/853) and HTTPS (TCP/443).

4. Configure the other settings as needed.

5. Click *Apply*.

To enable DoT and DoH DNS in the CLI:

```plaintext
config system dns
    set primary 1.1.1.1
    set secondary 1.0.0.1
    set protocol { cleartext doh }
end
```

To enable DoH on the DNS server in the GUI:

1. Go to *Network > DNS Servers*.
2. In the *DNS Service on Interface* section, edit an existing interface, or create a new one.
3. Select a *Mode*, and *DNS Filter profile*.
4. Enable *DNS over HTTPS*.

5. Click *OK*.

To enable DoH on the DNS server in the CLI:

```plaintext
config system dns-server
    edit "port1"
    set dnsfilter-profile "dnsfilter"
```
```
set doh enable
next
end
```

Examples

The following examples demonstrate how configure DNS settings to support DoT and DoH queries made to the FortiGate.

DoT

The following example uses a DNS filter profile where the education category is blocked.

To enable scanning DoT traffic in explicit mode with a DNS filter:

1. Configure the DNS settings:
   ```
   config system dns
   set primary 1.1.1.1
   set secondary 1.0.0.1
   set protocol dot
   end
   ```

2. Configure the DNS filter profile:
   ```
   config dnsfilter profile
   edit "dnfilter"
   config ftgd-dns
   config filters
   edit 1
   set category 30
   set action block
   next
   end
   next
   end
   ```
3. Configure the DNS server settings:

```plaintext
config system dns-server
   edit "port1"
      set dnsfilter-profile "dnsfilter"
   next
end
```

4. Send a DNS query over TLS (this example uses `kdig` on an Ubuntu client) using the FortiGate as the DNS server. The `www.ubc.ca` domain belongs to the education category:

```plaintext
root@client:/tmp# kdig -d @10.1.100.173 +tls +header +all www.ubc.ca
;; DEBUG: Querying for owner(www.ubc.ca.), class(1), type(1), server(10.1.100.173), port (853), protocol(TCP)
;; DEBUG: TLS, received certificate hierarchy:
;; DEBUG:  #1, C=US,ST=California,L=Sunnyvale,O=Fortinet,OU=FortiGate,CN=FG3H1E5818903681,EMAIL=support@fortinet.com
;; DEBUG:     SHA-256 PIN: Xhkpv9ABEhxDLtWG+1GEndNrBR7B1xjRY1Gn21t1kb8=
;; DEBUG:  #2, C=US,ST=California,L=Sunnyvale,O=Fortinet,OU=Certificate Authority,CN=fortinet-subca2001,EMAIL=support@fortinet.com
;; DEBUG:     SHA-256 PIN: 3T8EqFBjpRsxxQNFagjUNeEUghXOEYp904RO1JM8yo=
;; DEBUG:  #3, C=US,ST=California,L=Sunnyvale,O=Fortinet,OU=Certificate Authority,CN=fortinet-ca2,EMAIL=support@fortinet.com
;; DEBUG:     SHA-256 PIN: /QfV4N3kxoQR55RhtW/rbn/HrHgKpMN0DEaeXY5yPg=
;; DEBUG: TLS, skipping certificate PIN check
;; DEBUG: TLS, skipping certificate verification
;; TLS session (TLS1.2)-(ECDHE-RSA-SECP256R1)-(AES-256-GCM)
;; -->>HEADER<<- opcode: QUERY; status: NOERROR; id: 56719
;; Flags: qr rd; QUERY: 1; ANSWER: 1; AUTHORITY: 0; ADDITIONAL: 0

;; QUESTION SECTION:
;; www.ubc.ca.  IN  A

;; ANSWER SECTION:
www.ubc.ca. 60 IN A 208.91.112.55

;; Received 44 B
;; Time 2021-03-12 23:11:27 PST
;; From 10.1.100.173@853(TCP) in 0.2 ms
root@client:/tmp#

The IP returned by the FortiGate for ubc.ca belongs to the FortiGuard block page, so the query was blocked successfully.

DoH

The following example uses a DNS filter profile where the education category is blocked.

To configure scanning DoH traffic in explicit mode with a DNS filter:

1. Configure the DNS settings:

```plaintext
config system dns
 set primary 1.1.1.1
 set secondary 1.0.0.1
```
2. **Configure the DNS filter profile:**

```
set protocol doh
end
```

```
config dnsfilter profile
dnsfilter
edit "ftgd-dns"
cfg dnsfilter-profile "ftgd-dns"
edit filters
edit 1
category 30
next
end
next
end
```

3. **Configure the DNS server settings:**

```
config system dns-server
edit "port1"
dnsfilter-profile "ftgd-dns"
doh enable
next
end
```

4. In your browser, enable DNS over HTTPS.

5. On your computer, edit the TCP/IP settings to use the FortiGate interface address as the DNS server.

6. In your browser, go to a website in the education category (www.ubc.ca). The website is redirected to the block page.

   ![Web Page Blocked!](https://example.com)

### DNS troubleshooting

The following `diagnose` command can be used to collect DNS debug information. If you do not specify `worker ID`, the default `worker ID` is 0.

```
diagnose test application dnsproxy
worker idx: 0
1. Clear DNS cache
2. Show stats
3. Dump DNS setting
4. Reload FQDN
5. Requery FQDN
6. Dump FQDN
7. Dump DNS cache
8. Dump DNS DB
9. Reload DNS DB
10. Dump secure DNS policy/profile
11. Dump Botnet domain
12. Reload Secure DNS setting
```
13. Show Hostname cache
14. Clear Hostname cache
15. Show SDNS rating cache
16. Clear SDNS rating cache
17. DNS debug bit mask
18. DNS debug obj mem
99. Restart dnsproxy worker

To view useful information about the ongoing DNS connection:

```
diagnose test application dnsproxy 3
worker idx: 0
vdom: root, index=0, is primary, vdom dns is disabled, mip-169.254.0.1 dns_log=1 tls=0 cert=
dns64 is disabled
vdom: vdom1, index=1, is primary, vdom dns is enabled, mip-169.254.0.1 dns_log=1 tls=0 cert=
dns64 is disabled
dns-server:96.45.45.220:45 tz=-480 tls=0 req=0 to=0 res=0 rt=0 rating=1 ready=0 timer=37
probe=9 failure=0 last_failed=0
dns-server:8.8.8.8:53 tz=0 tls=0 req=73 to=73 res=73 rt=5 rating=0 ready=1 timer=0 probe=0
failure=0 last_failed=0
dns-server:65.39.139.63:53 tz=0 tls=0 req=39 to=0 res=39 rt=1 rating=0 ready=1 timer=0
probe=0 failure=0 last_failed=0
dns-server:62.209.40.75:53 tz=60 tls=0 req=0 to=0 res=0 rt=0 rating=1 ready=0 timer=37
probe=9 failure=0 last_failed=0
dns-server:209.222.147.38:53 tz=-300 tls=0 req=0 to=0 res=0 rt=0 rating=1 ready=0 timer=37
probe=9 failure=0 last_failed=0
dns-server:173.243.138.221:53 tz=-480 tls=0 req=0 to=0 res=0 rt=0 rating=1 ready=0 timer=37
probe=9 failure=0 last_failed=0
dns-server:45.75.200.89:53 tz=0 tls=0 req=0 to=0 res=0 rt=0 rating=1 ready=0 timer=37
probe=9 failure=0 last_failed=0
DNS_CACHE: hash-size=2048, ttl=1800, min-ttl=60, max-num=-1
DNS FD: udp_s=12 udp_c=17:18 ha_c=22 unix_s=23, unix_nb_s=24, unix_nc_s=25
 v6_udp_s=11, v6_udp_c=20:21, smnp=26, redir=13, v6_redir=14
DNS FD: tcp_s=29, tcp_s6=27, redir=31 v6_redir=32
FQDN: hash_size=1024, current_query=1024
DNS_DB: response_buf_sz=131072
LICENSE: expiry=2015-04-08, expired=1, type=2
FDG_SERVER:96.45.45.220:45
FDG_CATEGORY_VERSION:8
SERVER_LDB: gid=eb19, tz=-480, error_allow=0
FDG_REDIRECT_V4:208.91.112.55 FDG_REDIRECT_V6:
```

Important fields include:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tls</td>
<td>1 if the connection is TLS, 0 if the connection is not TLS.</td>
</tr>
<tr>
<td>rt</td>
<td>The round trip time of the DNS latency.</td>
</tr>
<tr>
<td>probe</td>
<td>The number of probes sent.</td>
</tr>
</tbody>
</table>

To dump the second DNS worker's cache:

diagnose test application dnsproxy 7 1
To enable debug on the second worker:

diagnose debug application dnsproxy -1 1

To enable debug on all workers by specifying -1 as worker ID:

diagnose debug application dnsproxy -1 -1

Explicit and transparent proxies

This section contains instructions for configuring explicit and transparent proxies.

- Explicit web proxy on page 220
- Transparent proxy on page 224
- FTP proxy on page 223
- Proxy policy addresses on page 227
- Proxy policy security profiles on page 233
- Explicit proxy authentication on page 238
- Transparent web proxy forwarding on page 244
- Upstream proxy authentication in transparent proxy mode on page 247
- Multiple dynamic header count on page 249
- Restricted SaaS access on page 251
- Explicit proxy and FortiGate Cloud Sandbox on page 260
- Proxy chaining on page 262
- WAN optimization SSL proxy chaining on page 267
- Agentless NTLM authentication for web proxy on page 275
- Multiple LDAP servers in Kerberos keytabs and agentless NTLM domain controllers on page 278
- Learn client IP addresses on page 279
- Explicit proxy authentication over HTTPS on page 280
- mTLS client certificate authentication on page 282

Explicit web proxy

Explicit web proxy can be configured on FortiGate for proxying HTTP and HTTPS traffic.

To deploy explicit proxy, individual client browsers can be manually configured to send requests directly to the proxy, or they can be configured to download proxy configuration instructions from a Proxy Auto-Configuration (PAC) file.

When explicit proxy is configured on an interface, the interface IP address can be used by client browsers to forward requests directly to the FortiGate. FortiGate also supports PAC file configuration.

To configure explicit web proxy in the GUI:

1. Enable and configure explicit web proxy:
   a. Go to Network > Explicit Proxy.
   b. Enable Explicit Web Proxy.
c. Select port2 as the **Listen on Interfaces** and set the **HTTP Port** to **8080**.
d. Configure the remaining settings as needed.

![Network Configuration](image)
e. **Click Apply.**

2. Create an explicit web proxy policy:
   a. Go to **Policy & Objects > Proxy Policy**.
   b. **Click Create New.**
   c. **Set Proxy Type** to **Explicit Web** and **Outgoing Interface** to **port1**.
   d. Also set **Source** and **Destination** to all, **Schedule** to **always**, **Service** to **webproxy**, and **Action** to **ACCEPT**.

![Proxy Policy Configuration](image)
e. **Click OK to create the policy.**
This example creates a basic policy. If required, security profiles can be enabled, and deep SSL inspection can be selected to inspect HTTPS traffic.

3. Configure a client to use the FortiGate explicit proxy:
   Set the FortiGate IP address as the proxy IP address in the browser, or use an automatic configuration script for the PAC file.

To configure explicit web proxy in the CLI:

1. Enable and configure explicit web proxy:
   ```
 config web-proxy explicit
 set status enable
 set ftp-over-http enable
 set socks enable
 set http-incoming-port 8080
 set ipv6-status enable
 set unknown-http-version best-effort
 end
 config system interface
 edit "port2"
 set vdom "vdom1"
 set ip 10.1.100.1 255.255.255.0
 set allowaccess ping https snmp http telnet
 set type physical
 set explicit-web-proxy enable
 set snmp-index 12
 end
 next
 end
   ```

2. Create an explicit web proxy policy:
   ```
 config firewall proxy-policy
 edit 1
 set name "proxy-policy-explicit"
 set proxy explicit-web
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "all"
 set service "webproxy"
 set action accept
 set schedule "always"
 set logtraffic all
 next
 end
   ```

This example creates a basic policy. If required, security profiles can be enabled, and deep SSL inspection can be selected to inspect HTTPS traffic.
3. Configure a client to use the FortiGate explicit web proxy:
   Set the FortiGate IP address as the proxy IP address in the browser, or use an automatic configuration script for the PAC file.

**FTP proxy**

FTP proxies can be configured on the FortiGate so that FTP traffic can be proxied. When the FortiGate is configured as an FTP proxy, FTP client applications should be configured to send FTP requests to the FortiGate.

**To configure explicit FTP proxy in the GUI:**

1. Enable and configure explicit FTP proxy:
   a. Go to *Network > Explicit Proxy*.
   b. Enable *Explicit FTP Proxy*.
   c. Select *port2* as the *Listen on Interfaces* and set the *HTTP Port* to *21*.
   d. Configure the *Default Firewall Policy Action* as needed.

   ![Explicit FTP Proxy GUI](attachment:image.png)

   e. Click *Apply*.

2. Create an explicit FTP proxy policy:
   a. Go to *Policy & Objects > Proxy Policy*.
   b. Click *Create New*.
   c. Set *Proxy Type* to *FTP* and *Outgoing Interface* to *port1*.
   d. Also set *Source* and *Destination* to *all*, *Schedule* to *always*, and *Action* to *ACCEPT*.

   ![New Proxy Policy GUI](attachment:image.png)
e. Click OK to create the policy.

This example creates a basic policy. If required, security profiles can be enabled.

3. Configure the FTP client application to use the FortiGate IP address.

To configure explicit FTP proxy in the CLI:

1. Enable and configure explicit FTP proxy:

```plaintext
config ftp-proxy explicit
 set status enable
 set incoming-port 21
end
config system interface
 edit "port2"
 set vdom "vdom1"
 set ip 10.1.100.1 255.255.255.0
 set allowaccess ping https ssh snmp http telnet
 set type physical
 set explicit-ftp-proxy enable
 set snmp-index 12
next
end
```

2. Create an explicit FTP proxy policy:

```plaintext
config firewall proxy-policy
 edit 4
 set name "proxy-policy-ftp"
 set proxy ftp
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
next
end
```

This example creates a basic policy. If required, security profiles can be enabled.

3. Configure the FTP client application to use the FortiGate IP address.

Transparent proxy

In a transparent proxy deployment, the user’s client software, such as a browser, is unaware that it is communicating with a proxy.
Users request internet content as usual, without any special client configuration, and the proxy serves their requests. FortiGate also allows users to configure in transparent proxy mode.

To redirect HTTPS traffic, SSL inspection is required.

**To configure transparent proxy in the GUI:**

1. Configure a regular firewall policy with HTTP redirect:
   a. Go to Policy & Objects > Firewall Policy.
   b. Click Create New.
   c. Name the policy appropriately, set the Incoming Interface to port2, and set the Outgoing Interface to port1.
   d. Also set Source and Destination to all, Schedule to always, Service to ALL, and Action to ACCEPT.
   e. Set Inspection Mode to Proxy-based and SSL Inspection to deep-inspection.

   ![Proxy Policy Configuration](image)

   f. Configure the remaining settings as needed.
   g. Click OK.

2. Configure a transparent proxy policy:
   a. Go to Policy & Objects > Proxy Policy.
   b. Click Create New.
   c. Set Proxy Type to Transparent Web, set the Incoming Interface to port2, and set the Outgoing Interface to port1.
   d. Also set Source and Destination to all, Schedule to always, Service to webproxy, and Action to ACCEPT.
e. Configure the remaining settings as needed.
f. Click OK to create the policy.

3. No special configuration is required on the client to use FortiGate transparent proxy. As the client is using the FortiGate as its default gateway, requests will first hit the regular firewall policy, and then be redirected to the transparent proxy policy.

To configure transparent proxy in the CLI:

1. Configure a regular firewall policy with HTTP redirect:

```
config firewall policy
edit 1
set name "LAN To WAN"
set srcintf "port2"
set dstintf "port1"
set srcaddr "all"
set dstaddr "all"
set action accept
set schedule "always"
set service "ALL"
set inspection-mode proxy
set http-policy-redirect enable
set fsso disable
set ssl-ssh-profile "deep-inspection"
set nat enable
next
end
```

2. Configure a transparent proxy policy:

```
config firewall proxy-policy
edit 5
set name "proxy-policy-transparent"
set proxy transparent-web
set srcintf "port2"
set dstintf "port1"
set srcaddr "all"
set dstaddr "all"
set service "webproxy"
set action accept
set schedule "always"
```
This example creates a basic policy. If required, security profiles can be enabled, and deep SSL inspection can be selected to inspect HTTPS traffic.

3. No special configuration is required on the client to use FortiGate transparent proxy. As the client is using the FortiGate as its default gateway, requests will first hit the regular firewall policy, and then be redirected to the transparent proxy policy.

### Proxy policy addresses

Proxy addresses are designed to be used only by proxy policies. The following address types are available:

- Host regex match on page 227
- URL pattern on page 228
- URL category on page 229
- HTTP method on page 230
- HTTP header on page 230
- User agent on page 231
- Advanced (source) on page 232
- Advanced (destination) on page 233

### Fast policy match

The fast policy match function improves the performance of IPv4 explicit and transparent web proxies on FortiGate devices.

When enabled, after the proxy policies are configured, the FortiGate builds a fast searching table based on the different proxy policy matching criteria. When fast policy matching is disabled, web proxy traffic is compared to the policies one at a time from the beginning of the policy list.

Fast policy matching is enabled by default, and can be configured with the following CLI command:

```bash
config web-proxy global
 set fast-policy-match {enable | disable}
end
```

### Host regex match

In this address type, a user can create a hostname as a regular expression. Once created, the hostname address can be selected as a destination of a proxy policy. This means that a policy will only allow or block requests that match the regular expression.

This example creates a host regex match address with the pattern qa.[a-z]*.com.
To create a host regex match address in the GUI:

1. Go to Policy & Objects > Addresses.
2. Click Create New > Address.
3. Set the following:
   - Category to Proxy Address,
   - Name to Host Regex,
   - Type to Host Regex Match, and
   - Host Regex Pattern to qa.[a-z]*.com.
4. Click OK.

To create a host regex match address in the CLI:

```bash
config firewall proxy-address
edit "Host Regex"
set type host-regex
 set host-regex "qa.[a-z]*.com"
next
end
```

**URL pattern**

In this address type, a user can create a URL path as a regular expression. Once created, the path address can be selected as a destination of a proxy policy. This means that a policy will only allow or block requests that match the regular expression.

This example creates a URL pattern address with the pattern `/filetypes/`.

To create a URL pattern address in the GUI:

1. Go to Policy & Objects > Addresses.
2. Click Create New > Address.
3. Set the following:
   - Category to Proxy Address,
   - Name to URL Regex,
   - Type to URL Pattern,
   - Host to all, and
   - URL Path Regex to `/filetypes/`.
4. Click OK.

To create a URL pattern address in the CLI:

```plaintext
cfg firewall proxy-address
 edit "URL Regex"
 set type url
 set host "all"
 set path "/filetypes/"
 next
end
```

**URL category**

In this address type, a user can create a URL category based on a FortiGuard URL ID. Once created, the address can be selected as a destination of a proxy policy. This means that a policy will only allow or block requests that match the URL category.

The example creates a URL category address for URLs in the *Education* category. For more information about categories, see [https://fortiguard.com/webfilter/categories](https://fortiguard.com/webfilter/categories).

For information about creating and using custom local and remote categories, see Web rating override on page 1320 and Threat feeds on page 2506.

To create a URL category address in the GUI:

1. Go to Policy & Objects > Addresses.
2. Click Create New > Address.
3. Set the following:
   - Category to Proxy Address,
   - Name to url-category,
   - Type to URL Category,
   - Host to all, and
   - URL Category to Education.
4. Click OK.

To create a URL category address in the CLI:

```config
cfg firewall proxy-address
edit "url-category"
 set type category
 set host "all"
 set category 30
next
end
```

To see a list of all the categories and their numbers, when editing the address, enter `set category ?`.

**HTTP method**

In this address type, a user can create an address based on the HTTP request methods that are used. Multiple method options are supported, including: CONNECT, DELETE, GET, HEAD, OPTIONS, POST, PUT, and TRACE. Once created, the address can be selected as a source of a proxy policy. This means that a policy will only allow or block requests that match the selected HTTP method.

The example creates a HTTP method address that uses the GET method.

To create a HTTP method address in the GUI:

1. Go to Policy & Objects > Addresses.
2. Click Create New > Address.
3. Set the following:
   - **Category** to Proxy Address,
   - **Name** to `method_get`,
   - **Type** to HTTP Method,
   - **Host** to `all`, and
   - **Request Method** to GET.
4. Click OK.

To create a HTTP method address in the CLI:

```config
cfg firewall proxy-address
edit "method_get"
 set type method
 set host "all"
 set method get
next
end
```

**HTTP header**

In this address type, a user can create a HTTP header as a regular expression. Once created, the header address can be selected as a source of a proxy policy. This means that a policy will only allow or block requests where the HTTP header matches the regular expression.
This example creates a HTTP header address with the pattern Q[A-B].

To create a HTTP header address in the GUI:

1. Go to Policy & Objects > Addresses.
2. Click Create New > Address.
3. Set the following:
   - Category to Proxy Address,
   - Name to HTTP-header,
   - Type to HTTP Header,
   - Host to all,
   - Header Name to Header_Test, and
   - Header Regex to Q[A-B].
4. Click OK.

To create a HTTP header address in the CLI:

```
config firewall proxy-address
edit "method_get"
 set type header
 set host "all"
 set header-name "Header_Test"
 set header "Q[A-B]"
next
end
```

User agent

In this address type, a user can create an address based on the names of the browsers that are used as user agents. Multiple browsers are supported, such as Chrome, Firefox, Internet Explorer, and others. Once created, the address can be selected as a source of a proxy policy. This means that a policy will only allow or block requests from the specified user agent.

This example creates a user agent address for Google Chrome.

To create a user agent address in the GUI:

1. Go to Policy & Objects > Addresses.
2. Click Create New > Address.
3. Set the following:
   - Category to Proxy Address,
   - Name to UA-Chrome,
   - Type to User Agent,
   - Host to all, and
   - User Agent to Google Chrome.
4. Click OK.
To create a user agent address in the CLI:

```plaintext
config firewall proxy-address
 edit "UA-Chrome"
 set type ua
 set host "all"
 set ua chrome
 next
end
```

**Advanced (source)**

In this address type, a user can create an address based on multiple parameters, including HTTP method, User Agent, and HTTP header. Once created, the address can be selected as a source of a proxy policy. This means that a policy will only allow or block requests that match the selected address.

This example creates an address that uses the get method, a user agent for Google Chrome, and an HTTP header with the pattern \(Q[A-B]\).

**To create an advanced (source) address in the GUI:**

1. Go to Policy & Objects > Addresses.
2. Click Create New > Address.
3. Set the following:
   - **Category** to Proxy Address,
   - **Name** to advanced_src,
   - **Type** to Advanced (Source),
   - **Host** to all,
   - **Request Method** to GET,
   - **User Agent** to Google Chrome, and
   - **HTTP header** to Header_Test : \(Q[A-B]\).
4. Click OK.

**To create an advanced (source) address in the CLI:**

```plaintext
config firewall proxy-address
 edit "advance_src"
 set type src-advanced
 set host "all"
 set method get
 set ua chrome
 config header-group
 edit 1
 set header-name "Header_Test"
 set header "Q[A-B]"
 next
 end
next
end
```
Advanced (destination)

In this address type, a user can create an address based on URL pattern and URL category parameters. Once created, the address can be selected as a destination of a proxy policy. This means that a policy will only allow or block requests that match the selected address.

This example creates an address with the URL pattern /about that are in the Education category. For more information about categories, see https://fortiguard.com/webfilter/categories.

To create an advanced (destination) address in the GUI:

1. Go to Policy & Objects > Addresses.
2. Click Create New > Address.
3. Set the following:
   - Category to Proxy Address,
   - Name to Advanced-dst,
   - Type to Advanced (Destination),
   - Host to all,
   - URL Path Regex to /about, and
   - URL Category to Education.

4. Click OK.

To create an advanced (destination) address in the CLI:

```plaintext
config firewall proxy-address
edit "Advanced-dst"
 set type dst-advanced
 set host "ubc"
 set path "/about"
 set category 30
next
end
```

Proxy policy security profiles

Web proxy policies support most security profile types.

Security profiles must be created before they can be used in a policy, see Security Profiles on page 1085 for information.
Explicit web proxy policy

The security profiles supported by explicit web proxy policies are:

- AntiVirus
- Web Filter
- Video Filter
- Application Control
- IPS
- DLP Profile
- ICAP
- Web Application Firewall
- File Filter
- SSL Inspection

To configure security profiles on an explicit web proxy policy in the GUI:

1. Go to Policy & Objects > Proxy Policy.
2. Click Create New.
3. Set the following:

<table>
<thead>
<tr>
<th>Proxy Type</th>
<th>Explicit Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outgoing Interface</td>
<td>port1</td>
</tr>
<tr>
<td>Source</td>
<td>all</td>
</tr>
<tr>
<td>Destination</td>
<td>all</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>webproxy</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
</tbody>
</table>

4. In the Firewall / Network Options section, set Protocol Options to default.
5. In the Security Profiles section, make the following selections (for this example, these profiles have all already been created):

<table>
<thead>
<tr>
<th>Security Profile</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>AntiVirus</td>
<td>av</td>
</tr>
<tr>
<td>Web Filter</td>
<td>urlfiler</td>
</tr>
<tr>
<td>Application Control</td>
<td>app</td>
</tr>
<tr>
<td>IPS</td>
<td>Sensor-1</td>
</tr>
<tr>
<td>DLP Profile</td>
<td>dlp</td>
</tr>
<tr>
<td>ICAP</td>
<td>default</td>
</tr>
<tr>
<td>Web Application Firewall</td>
<td>default</td>
</tr>
<tr>
<td>SSL Inspection</td>
<td>deep-inspection</td>
</tr>
</tbody>
</table>

6. Click OK to create the policy.
To configure security profiles on an explicit web proxy policy in the CLI:

```plaintext
config firewall proxy-policy
edit 1
 set proxy explicit-web
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "all"
 set service "web"
 set action accept
 set schedule "always"
 set utm-status enable
 set av-profile "av"
 set webfilter-profile "urlfilter"
 set dlp-profile "dlp"
 set ips-sensor "sensor-1"
 set application-list "app"
 set icap-profile "default"
 set waf-profile "default"
 set ssl-ssh-profile "deep-inspection"
next
end
```

**Transparent proxy**

The security profiles supported by transparent proxy policies are:

- AntiVirus
- Web Filter
- Video Filter
- Application Control
- IPS
- DLP Profile
- ICAP
- Web Application Firewall
- File Filter
- SSL Inspection

To configure security profiles on a transparent proxy policy in the GUI:

1. Go to Policy & Objects > Proxy Policy.
2. Click Create New.
3. Set the following:

<table>
<thead>
<tr>
<th>Proxy Type</th>
<th>Transparent Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>port2</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>port1</td>
</tr>
<tr>
<td>Source</td>
<td>all</td>
</tr>
</tbody>
</table>
Network

<table>
<thead>
<tr>
<th>Destination</th>
<th>all</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>webproxy</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
</tbody>
</table>

4. In the *Firewall / Network Options* section, set *Protocol Options* to *default*.

5. In the *Security Profiles* section, make the following selections (for this example, these profiles have all already been created):

<table>
<thead>
<tr>
<th>AntiVirus</th>
<th>av</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Filter</td>
<td>urlfilter</td>
</tr>
<tr>
<td>Application Control</td>
<td>app</td>
</tr>
<tr>
<td>IPS</td>
<td>Sensor-1</td>
</tr>
<tr>
<td>DLP Profile</td>
<td>dlp</td>
</tr>
<tr>
<td>ICAP</td>
<td>default</td>
</tr>
<tr>
<td>Web Application Firewall</td>
<td>default</td>
</tr>
<tr>
<td>SSL Inspection</td>
<td>deep-inspection</td>
</tr>
</tbody>
</table>

6. Click OK to create the policy.

To configure security profiles on a transparent proxy policy in the CLI:

```
cfg firewall proxy-policy
 edit 2
 set proxy transparent-web
 set srcintf "port2"
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "all"
 set service "webproxy"
 set action accept
 set schedule "always"
 set utm-status enable
 set av-profile "av"
 set webfilter-profile "urlfilter"
 set dlp-profile "dlp"
 set ips-sensor "sensor-1"
 set application-list "app"
 set icap-profile "app"
 set waf-profile "default"
 set ssl-ssh-profile "certificate-inspection"
 next
end
```
**FTP proxy**

The security profiles supported by FTP proxy policies are:

- AntiVirus
- Application Control
- IPS
- File Filter
- DLP Profile

To configure security profiles on an FTP proxy policy in the GUI:

1. Go to Policy & Objects > Proxy Policy.
2. Click Create New.
3. Set the following:

<table>
<thead>
<tr>
<th>Proxy Type</th>
<th>FTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outgoing Interface</td>
<td>port1</td>
</tr>
<tr>
<td>Source</td>
<td>all</td>
</tr>
<tr>
<td>Destination</td>
<td>all</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
</tbody>
</table>

4. In the Firewall / Network Options section, set Protocol Options to default.
5. In the Security Profiles section, make the following selections (for this example, these profiles have all already been created):

<table>
<thead>
<tr>
<th>Profile Type</th>
<th>Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>AntiVirus</td>
<td>av</td>
</tr>
<tr>
<td>Application Control</td>
<td>app</td>
</tr>
<tr>
<td>IPS</td>
<td>Sensor-1</td>
</tr>
<tr>
<td>DLP Profile</td>
<td>dlp</td>
</tr>
</tbody>
</table>

6. Click OK to create the policy.

To configure security profiles on an FTP proxy policy in the CLI:

```bash
config firewall proxy-policy
edit 3
 set proxy ftp
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set utm-status enable
 set av-profile "av"
 set dlp-profile "dlp"
```
Explicit proxy authentication

FortiGate supports multiple authentication methods. This topic explains using an external authentication server with Kerberos as the primary and NTLM as the fallback.

To configure Explicit Proxy with authentication:
1. Enable and configure the explicit proxy on page 238.
2. Configure the authentication server and create user groups on page 239.
4. Create an explicit proxy policy and assign a user group to the policy on page 242.
5. Verify the configuration on page 242.

Enable and configure the explicit proxy

To enable and configure explicit web proxy in the GUI:
1. Go to Network > Explicit Proxy.
2. Enable Explicit Web Proxy.
3. Select port2 as the Listen on Interfaces and set the HTTP Port to 8080.
4. Configure the remaining settings as needed.
5. Click Apply.

To enable and configure explicit web proxy in the CLI:

```
config web-proxy explicit
 set status enable
 set ftp-over-http enable
 set socks enable
 set http-incoming-port 8080
 set ipv6-status enable
 set unknown-http-version best-effort
end

config system interface
 edit "port2"
 set vdom "vdom1"
 set ip 10.1.100.1 255.255.255.0
 set allowaccess ping https ssh snmp http telnet
 set type physical
 set explicit-web-proxy enable
 set snmp-index 12
end
next
end
```
Configure the authentication server and create user groups

Since we are using an external authentication server with Kerberos authentication as the primary and NTLM as the fallback, Kerberos authentication is configured first and then FSSO NTLM authentication is configured.

For successful authorization, the FortiGate checks if user belongs to one of the groups that is permitted in the security policy.

To configure an authentication server and create user groups in the GUI:

1. Configure Kerberos authentication:
   a. Go to User & Authentication > LDAP Servers.
   b. Click Create New.
   c. Set the following:
      
Name	ldap-kerberos
Server IP	172.18.62.220
Server Port	389
Common Name Identifier	cn
Distinguished Name	dc=fortinetqa,dc=local
   d. Click OK

2. Define Kerberos as an authentication service. This option is only available in the CLI. For information on generating a keytab, see Generating a keytab on a Windows server on page 243.

3. Configure FSSO NTLM authentication:
   FSSO NTLM authentication is supported in a Windows AD network. FSSO can also provide NTLM authentication service to the FortiGate unit. When a user makes a request that requires authentication, the FortiGate initiates NTLM negotiation with the client browser, but does not process the NTLM packets itself. Instead, it forwards all the NTLM packets to the FSSO service for processing.
   a. Go to Security Fabric > External Connectors.
   b. Click Create New and select FSSO Agent on Windows AD from the Endpoint/Identity category.
   c. Set the Name to FSSO, Primary FSSO Agent to 172.16.200.220, and enter a password.
   d. Click OK.

4. Create a user group for Kerberos authentication:
   a. Go to User & Authentication > User Groups.
   b. Click Create New.
   c. Set the Name to Ldap-Group, and Type to Firewall.
   d. In the Remote Groups table, click Add, and set the Remote Server to the previously created ldap-kerberos server.
   e. Click OK.

5. Create a user group for NTLM authentication:
   a. Go to User & Authentication > User Groups.
   b. Click Create New.
   c. Set the Name to NTLM-FSSO-Group, Type to Fortinet Single Sign-On (FSSO), and add FORTINETQA/FSSO
To configure an authentication server and create user groups in the CLI:

1. Configure Kerberos authentication:

```plaintext
cfg user ldap
 ed "ldap-kerberos"
 se server "172.18.62.220"
 se cnid "cn"
 se dn "dc=fortinetqa,dc=local"
 se type regular
 se username "CN=root,CN=Users,DC=fortinetqa,DC=local"
 se password ********
 ng
end
```

2. Define Kerberos as an authentication service:

```plaintext
cfg user krb-keytab
 ed "http_service"
 se pac-data disable
 se principal "HTTP/FGT.FORTINETQA.LOCAL@FORTINETQA.LOCAL"
 se ldap-server "ldap-kerberos"
 se keytab
"BQIAAABFAIAIEZPUI1JTkVUUUEuTE9DQUwABEHUUFaAFEEZHC5GT1JUSU5FVFBBLkxPQ0FMAAABAAAQAEBAAAABAA
Create an authentication scheme and rules

Explicit proxy authentication is managed by authentication schemes and rules. An authentication scheme must be created first, and then the authentication rule.

To create an authentication scheme and rules in the GUI:

1. Create an authentication scheme:
 a. Go to Policy & Objects > Authentication Rules.
 b. Click Create New > Authentication Schemes.
 c. Set the Name to Auth-scheme-Negotiate and select Negotiate as the Method.
 d. Click OK.

2. Create an authentication rule:
 a. Go to Policy & Objects > Authentication Rules.
 b. Click Create New > Authentication Rules.
 c. Set the Name to Auth-Rule, Source Address to all, and Protocol to HTTP.
 d. Enable Authentication Scheme, and select the just created Auth-scheme-Negotiate scheme.
 e. Click OK.

To create an authentication scheme and rules in the CLI:

1. Create an authentication scheme:

   ```
   config authentication scheme
   edit "Auth-scheme-Negotiate"
   set method negotiate <<< Accepts both Kerberos and NTLM as fallback
   next
   end
   ```

2. Create an authentication rule:

   ```
   config authentication rule
   edit "Auth-Rule"
   set status enable
   set protocol http
   set srcaddr "all"
   set ip-based enable
   set active-auth-method "Auth-scheme-Negotiate"
   set comments "Testing"
   next
   end
   ```
Create an explicit proxy policy and assign a user group to the policy

To create an explicit proxy policy and assign a user group to it in the GUI:

1. Go to Policy & Objects > Proxy Policy.
2. Click Create New.
3. Set Proxy Type to Explicit Web and Outgoing Interface to port1.
4. Set Source to all, and the just created user groups NTLM-FSSO-Group and Ldap-Group.
5. Also set Destination to all, Schedule to always, Service to webproxy, and Action to ACCEPT.
6. Click OK.

To create an explicit proxy policy and assign a user group to it in the CLI:

```plaintext
config firewall proxy-policy
    edit 1
       set proxy explicit-web
       set dstintf "port1"
       set srcaddr "all"
       set dstaddr "all"
       set service "web"
       set action accept
       set schedule "always"
       set logtraffic all
       set groups "NTLM-FSSO-Group" "Ldap-Group"
       set av-profile "av"
       set ssl-ssh-profile "deep-custom"
next
end
```

Verify the configuration

Log in using a domain and system that would be authenticated using the Kerberos server, then enter the `diagnose wad user list` CLI command to verify:

```plaintext
# diagnose wad user list
ID: 8, IP: 10.1.100.71, VDOM: vdom1
user name : test1@FORTINETQA.LOCAL
duration  : 389
auth_type : IP
auth_method : Negotiate
pol_id    : 1
g_id      : 1
user_based : 0
expire    : no
LAN:
    bytes_in=4862 bytes_out=11893
WAN:
    bytes_in=7844 bytes_out=1023
```

Log in using a system that is not part of the domain. The NTLM fallback server should be used:

```plaintext
# diagnose wad user list
ID: 2, IP: 10.1.100.202, VDOM: vdom1
```
Generating a keytab on a Windows server

A keytab is used to allow services that are not running Windows to be configured with service instance accounts in the Active Directory Domain Service (AD DS). This allows Kerberos clients to authenticate to the service through Windows Key Distribution Centers (KDCs).

For an explanation of the process, see https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/ktpass.

To generate a keytab on a Windows server:

1. On the server, create a user for the FortiGate:
 - The service name is the FQDN for the explicit proxy interface, such as the hostname in the client browser proxy configuration. In this example, the service name is FGT.
 - The account only requires domain users membership.
 - The password must be very strong.
 - The password is set to never expire.

2. Add the FortiGate FQDN in to the Windows DNS domain, as well as in-addr.arpa.

3. Generate the Kerberos keytab using the ktpass command on Windows servers and many domain workstations:

   ```bash
   # ktpass -princ HTTP/<domain name of test fgt>@realm -mapuser <user> -pass <password> -crypto all -ptype KRB5_NT_PRINCIPAL -out fgt.keytab
   ```

 For example:

   ```bash
   ktpass -princ HTTP/FGT.FORTINETQA.LOCAL@FORTINETQA.LOCAL -mapuser FGT -pass ********** -crypto all -ptype KRB5_NT_PRINCIPAL -out fgt.keytab
   ```

4. Encode the keytab to base64 in a text file:
 - On Windows: `certutil -encode fgt.keytab tmp.b64 & & findstr /v /c:- tmp.b64 > fgt.txt`
 - On Linux: `base64 fgt.keytab > fgt.txt`
 - On MacOS: `base64 -i fgt.keytab -o fgt.txt`

5. Use the code in fgt.txt as the keytab parameter when configuring the FortiGate.
Transparent web proxy forwarding

In FortiOS, there is an option to enable proxy forwarding for transparent web proxy policies and regular firewall policies for HTTP and HTTPS.

In previous versions of FortiOS, you could forward proxy traffic to another proxy server (proxy chaining) with explicit proxy. Now, you can forward web traffic to the upstream proxy without having to reconfigure your browsers or publish a proxy auto-reconfiguration (PAC) file.

Once configured, the FortiGate forwards traffic generated by a client to the upstream proxy. The upstream proxy then forwards it to the server.

To configure proxy forwarding:

1. Configure the web proxy forwarding server:
   ```
   config web-proxy forward-server
   edit "upStream_proxy_1"
   set ip 172.16.200.20
   set healthcheck enable
   set monitor "http://www.google.ca"
   next
   end
   ```

2. Append the web proxy forwarding server to a firewall policy:
   ```
   config firewall policy
   edit 1
   set name "LAN To WAN"
   set srcintf "port10"
   set dstintf "port9"
   set srcaddr "all"
   set dstaddr "all"
   set action accept
   set schedule "always"
   set service "ALL"
   set utm-status enable
   set logtraffic all
   set webproxy-forward-server "upStream_proxy_1"
   set fsso disable
   set av-profile "av"
   set ssl-ssh-profile "deep-custom"
   set nat enable
   next
   end
   ```

Selectively forward web requests to a transparent web proxy

Web traffic over HTTP/HTTPS can be forwarded selectively by the FortiGate’s transparent web proxy to an upstream web proxy to avoid overwhelming the proxy server. Traffic can be selected by specifying the proxy address, which can be based on a FortiGuard URL category.

The FortiGuard web filter service must be enabled on the downstream FortiGate.
Forwarding behavior

The forward server will be ignored if the proxy policy matching for a particular session needs the FortiGate to see authentication information inside the HTTP (plain text) message. For example, assume that user authentication is required and a forward server is configured in the transparent web proxy, and the authentication method is an active method (such as basic). When the user or client sends the HTTP request over SSL with authentication information to the FortiGate, the request cannot be forwarded to the upstream proxy. Instead, it will be forwarded directly to the original web server (assuming deep inspection and http-policy-redirect are enabled in the firewall policy).

The FortiGate will close the session before the client request can be forwarded if all of the following conditions are met:

- The certificate inspection is configured in the firewall policy that has the http-policy-redirect option enabled.
- A previously authenticated IP-based user record cannot be found by the FortiGate’s memory during the SSL handshake.
- Proxy policy matching needs the FortiGate to see the HTTP request authentication information.

This means that in order to enable user authentication and use webproxy-forward-server in the transparent web proxy policy at the same time, the following best practices should be followed:

- In the firewall policy that has the http-policy-redirect option enabled, set ssl-ssh-profile to use the deep-inspection profile.
- Use IP-based authentication rules; otherwise, the webproxy-forward-server setting in the transparent web proxy policy will be ignored.
- Use a passive authentication method such as FSSO. With FSSO, once the user is authenticated as a domain user by a successful login, the web traffic from the user’s client will always be forwarded to the upstream proxy as long as the authenticated user remains unexpired. If the authentication method is an active authentication method (such as basic, digest, NTLM, negotiate, form, and so on), the first session containing authentication information will bypass the forward server, but the following sessions will be connected through the upstream proxy.
Sample configuration

On the downstream FortiGate proxy, there are two category proxy addresses used in two separate transparent web proxy policies as the destination address:

- In the policy with `upstream_proxy_1` as the forward server, the proxy address `category_infotech` is used to match URLs in the information technology category.
- In the policy with `upstream_proxy_2` as the forward server, the proxy address `category_social` is used to match URLs in the social media category.

To configure forwarding requests to transparent web proxies:

1. Configure the proxy forward servers:

   ```
   config web-proxy forward-server
   edit "upStream_proxy_1"
     set ip 172.16.200.20
   next
   edit "upStream_proxy_2"
     set ip 172.16.200.46
   next
   end
   ```

2. Configure the web proxy addresses:

   ```
   config firewall proxy-address
   edit "category_infotech"
     set type category
     set host "all"
     set category 52
   next
   edit "category_social"
     set type category
     set host "all"
     set category 37
   next
   end
   ```

3. Configure the firewall policy:

   ```
   config firewall policy
   edit 1
     set srcintf "port10"
     set dstintf "port9"
     set srcaddr "all"
     set dstaddr "all"
     set action accept
     set schedule "always"
     set service "ALL"
     set utm-status enable
     set inspection-mode proxy
     set http-policy-redirect enable
     set ssl-ssh-profile "deep-inspection"
     set av-profile "av"
     set nat enable
   next
   end
   ```
4. Configure the proxy policies:

```plaintext
config firewall proxy-policy
edit 1
    set proxy transparent-web
    set srcintf "port10"
    set dstintf "port9"
    set srcaddr "all"
    set dstaddr "category_infotech"
    set service "webproxy"
    set action accept
    set schedule "always"
    set logtraffic all
    set webproxy-forward-server "upStream_proxy_1"
    set utm-status enable
    set ssl-ssh-profile "deep-inspection"
    set av-profile "av"
next
edit 2
    set proxy transparent-web
    set srcintf "port10"
    set dstintf "port9"
    set srcaddr "all"
    set dstaddr "category_social"
    set service "webproxy"
    set action accept
    set schedule "always"
    set logtraffic all
    set webproxy-forward-server "upStream_proxy_2"
    set utm-status enable
    set ssl-ssh-profile "deep-inspection"
    set av-profile "av"
next
end
```

Upstream proxy authentication in transparent proxy mode

A downstream proxy FortiGate that needs to be authenticated by the upstream web proxy can use the basic authentication method to send its username and password, in the base64 format, to the upstream web proxy for authentication. If the authentication succeeds, web traffic that is forwarded from the downstream proxy FortiGate to the upstream proxy can be accepted and forwarded to its destinations.

In this example, a school has a FortiGate acting as a downstream proxy that is configured with firewall policies for each user group (students and staff). In each policy, a forwarding server is configured to forward the web traffic to the upstream web proxy.

The username and password that the upstream web proxy uses to authenticate the downstream proxy are configured on the forwarding server, and are sent to the upstream web proxy with the forwarded HTTP requests.

<table>
<thead>
<tr>
<th>Username</th>
<th>Password</th>
</tr>
</thead>
<tbody>
<tr>
<td>student.proxy.local:8080</td>
<td>students</td>
</tr>
<tr>
<td>staff.proxy.local:8081</td>
<td>staff</td>
</tr>
</tbody>
</table>
On the downstream FortiGate, configure forwarding servers with the usernames and passwords for authentication on the upstream web proxy, then apply those servers to firewall policies for transparent proxy. For explicit web proxy, the forwarding servers can be applied to proxy policies.

When the transparent proxy is configured, clients can access websites without configuring a web proxy in their browser. The downstream proxy sends the username and password to the upstream proxy with forwarded HTTP requests to be authenticated.

To configure the forwarding server on the downstream FortiGate:

```bash
config web-proxy forward-server
  edit "Student_Upstream_WebProxy"
    set addr-type fqdn
    set fqdn "student.proxy.local"
    set port 8080
    set username "student"
    set password ABC123
  next
  edit "Staff_Upstream_WebProxy"
    set addr-type fqdn
    set fqdn "staff.proxy.local"
    set port 8081
    set username "staff"
    set password 123456
  next
end
```

To configure firewall policies for transparent proxy:

```bash
config firewall policy
  edit 1
    set srcintf "Vlan_Student"
    set dstintf "port9"
    set srcaddr "Student_Subnet"
    set dstaddr "all"
    set action accept
    set schedule "always"
    set service "ALL"
    set utm-status enable
    set inspection-mode proxy
    set ssl-ssh-profile "deep-inspection"
    set av-profile "av"
    set webproxy-forward-server "Student_Upstream_WebProxy"
    set nat enable
  next
  edit 2
    set srcintf "Vlan_Staff"
    set dstintf "port9"
    set srcaddr "Staff_Subnet"
    set dstaddr "all"
    set action accept
    set schedule "always"
    set service "ALL"
    set utm-status enable
    set inspection-mode proxy
    set ssl-ssh-profile "deep-inspection"
```
Multiple dynamic header count

Multiple dynamic headers are supported for web proxy profiles, as well as Base64 encoding and the append/new options.

Administrators only have to select the dynamic header in the profile. The FortiGate will automatically display the corresponding static value. For example, if the administrator selects the $client-ip header, the FortiGate will display the actual client IP address.

The supported headers are:

<table>
<thead>
<tr>
<th>Header</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$client-ip</td>
<td>Client IP address</td>
</tr>
<tr>
<td>$user</td>
<td>Authentication user name</td>
</tr>
<tr>
<td>$domain</td>
<td>User domain name</td>
</tr>
<tr>
<td>$local_grp</td>
<td>Firewall group name</td>
</tr>
<tr>
<td>$remote_grp</td>
<td>Group name from authentication server</td>
</tr>
<tr>
<td>$proxy_name</td>
<td>Proxy realm name</td>
</tr>
</tbody>
</table>

To configure dynamic headers using the CLI:

Since authentication is required, FSSO NTLM authentication is configured in this example.

1. Configure LDAP:

```bash
cfg user ldap
edit "ldap-kerberos"
   set server "172.18.62.220"
   set cnid "cn"a
   set dn "dc=fortinetqa,dc=local"
   set type regular
   set username "CN=root,CN=Users,DC=fortinetqa,DC=local"
   set password ********
next
end
```

2. Configure FSSO:

```bash
cfg user fssol
edit "1"
   set server "172.18.62.220"
   set password ********
next
end
```

3. Configure a user group:
config user group
 edit "NTLM-FSSO"
 set group-type fsso-service
 set member "FORTINETQA/FSSO"
 next
end

4. Configure an authentication scheme:

config authentication scheme
 edit "au-sch-ntlm"
 set method ntlm
 next
end

5. Configure an authentication rule:

config authentication rule
 edit "au-rule-fsso"
 set srcaddr "all"
 set active-auth-method "au-sch-ntlm"
 next
end

6. Create a web proxy profile that adds a new dynamic and custom Via header:

config web-proxy profile
 edit "test"
 set log-header-change enable
 config headers
 edit 1
 set name "client-ip"
 set content "$client-ip"
 next
 edit 2
 set name "Proxy-Name"
 set content "$proxy_name"
 next
 edit 3
 set name "user"
 set content "$user"
 next
 edit 4
 set name "domain"
 set content "$domain"
 next
 edit 5
 set name "local_grp"
 set content "$local_grp"
 next
 edit 6
 set name "remote_grp"
 set content "$remote_grp"
 next
 edit 7
 set name "Via"
 set content "Fortigate-Proxy"
 next
 end
 next
end
7. In the proxy policy, append the web proxy profile created in the previous step:

 config firewall proxy-policy
 edit 1
 set proxy explicit-web
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "all"
 set service "web"
 set action accept
 set schedule "always"
 set logtraffic all
 set groups "NTLM-FSSO"
 set webproxy-profile "test"
 set utm-status enable
 set av-profile "av"
 set webfilter-profile "content"
 set ssl-ssh-profile "deep-custom"
 next
 end

8. Once traffic is being generated from the client, look at the web filter logs to verify that it is working.

The corresponding values for all the added header fields are shown in the Web Filter card at Log & Report > Security Events, in the Change headers section at the bottom of the Log Details pane.

```
1: date=2019-02-07 time=13:57:24 logid="0344013632" type="utm" subtype="webfilter"
  eventtype="http_header_change" level="notice" vd="vdom1" eventtime=1549576642 policyid=1
  transid=50331689 sessionid=1712788383 user="TEST21@FORTINETQA" group="NTLM-FSSO"
  profile="test" srcip=10.1.100.116 srcport=53278 dstip=172.16.200.46 dstport=80
  service="HTTP" url="http://172.16.200.46/" agent="curl/7.22.0" chgheaders="Added=client-ip:10.1.100.116|Proxy-Name: 1.1 100D.qa|user: TEST21|domain: FORTINETQA|local_grp: NTLM-FSSO|remote_grp: FORTINETQA/FSSO|Via: Fortigate-Proxy"
```

Restricted SaaS access

Large organizations may want to restrict SaaS access to resources like Microsoft Office 365, Google Workspace, and Dropbox by tenant to block non-company login attempts and secure the users from accessing non-approved cloud resources. Many cloud vendors enable this by applying tenant restrictions for access control. For example, users accessing Microsoft 365 applications with tenant restrictions through the corporate proxy will only be allowed to log in as the company’s tenant and access the organization’s applications.

To implement this, access requests from the clients pass through the company’s web proxy, which inserts headers to notify the SaaS service to apply tenant restrictions with the permitted tenant list. Users are redirected the SaaS service login page, and are only allowed to log in if they belong to the permitted tenant list.

For more information, refer to the vendor-specific documentation:

- **Office 365**: [Restrict access to a tenant](#)
- **Google Workspace**: [Block access to consumer accounts](#)
- **Dropbox**: [Network control](#)
Basic configuration

A web proxy profile can specify access permissions for Microsoft Office 365, Google Workspace, and Dropbox by inserting vendor-defined headers that restrict access to the specific accounts. Custom headers can also be inserted for any destination. The web proxy profile can then be applied to a firewall policy to control the header's insertion.

To implement Office 365 tenant restriction, Google Workspace account access control, and Dropbox network access control:

1. Configure a web proxy profile according to the vendors' specifications:
 a. Set the header name (defined by the service provider).
 b. Set the traffic destination (the service provider).
 c. Set the HTTP header content to be inserted into the traffic (defined by your settings).

   ```
   config web-proxy profile
   edit <name>
      config headers
      edit <id>
         set name <string>
         set dstaddr <address>
         set action add-to-request
         set base64-encoding disable
         set add-option new
         set protocol https http
         set content <string>
      next
   next
   end
   end
   ```

2. Apply the web proxy profile to a policy. SSL deep inspection must be used in the firewall policy:

The following table lists the vendor-specific `config headers` settings that must be configured in the web proxy profile (`config web-proxy profile`):

<table>
<thead>
<tr>
<th>Setting</th>
<th>Microsoft Office 365</th>
<th>Google Workspace</th>
<th>Dropbox</th>
</tr>
</thead>
<tbody>
<tr>
<td>name <string></td>
<td>• Restrict-Access-To-Tenants</td>
<td>• X-GoogApps-Allowed-Domains</td>
<td>• X-Dropbox-allowed-Team-Ids</td>
</tr>
<tr>
<td></td>
<td>• Restrict-Access-Context</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dstaddr <address></td>
<td>• Use the built-in Microsoft Office 365 address.</td>
<td>• Use the built-in G Suite address.</td>
<td>• Use the built-in wildcard.dropbox.com address.</td>
</tr>
<tr>
<td>content <string></td>
<td>• Enter the domain for Restrict-Access-To-</td>
<td>• Enter the domain.</td>
<td>• Enter the Dropbox team ID.</td>
</tr>
</tbody>
</table>
Due to vendors’ changing requirements, these settings may no longer comply with the vendors’ official guidelines. See the vendor documentation for more details.

Microsoft Office 365 example

In this example, a web proxy profile is created to control permissions for Microsoft Office 365 to allow corporate domains and deny personal accounts, such as Hotmail and Outlook that are accessed through login.live.com.

1. When a user attempts to access login.microsoftonline.com, login.microsoft.com, or login.windows.net, the traffic will match a proxy inspection mode firewall policy with the assigned web proxy profile.
2. The web proxy profile adds new headers to the customer tenant, indicating the allowed domain and restricted access for personal accounts. Next, the FortiGate starts a new connection with the Microsoft Office 365 domain controller including the new headers.
3. The Microsoft Office 365 domain controller assesses this data and will allow or deny this access, then sends a reply to the FortiGate.
4. The FortiGate sends a reply to the client.

The FortiGate will only indicate the correct domains to be allowed or denied through the headers to Microsoft. The custom sign-in portal in the browser is generated by Microsoft.

Configuration summary

The following must be configured in FortiOS:

- An FQDN address for login.live.com
- An SSL inspection profile that uses deep inspection with an exemption for login.live.com

Ensure that the firewall certificate is installed on the client machines. A company certificate signed by an internal CA is recommended.

- A web filter profile in proxy mode with static URL filters for the SNI URLs
- A web proxy profile that adds new headers to the customer tenant
A firewall policy using proxy mode inspection that applies the configured SSL inspection, web filter, and web proxy profiles.

The Restrict-Access-To-Tenants and Restrict-Access-Context headers are inserted for incoming requests to: login.microsoftonline.com, login.microsoft.com, and login.windows.net, which are part of the Microsoft Office 365 address group.

To restrict access to personal accounts using the login.live.com domain, the sec-Restrict-Tenant-Access-Policy header is inserted and uses restrict-msa as the header content.

Before configuring the FortiGate, collect the information related to the company domain in the Office 365 contract.

- Restrict-Access-To-Tenants: your <domain.com>
- Restrict-Access-Context: Directory ID

To find the Directory ID related to the domain, locate it in the Azure portal, or use the whatismytenantid.com open tool.

To configure the FortiGate:

1. Add the FQDN address for login.live.com:

```fortigate
config firewall address
edit "login.live.com"
  set type fqdn
  set fqdn "login.live.com"
next
end
```

2. Configure the SSL inspection profile. In this example, the deep-inspection profile is cloned, and the live.com FQDN is removed from the exemption list.
 a. Clone the deep-inspection profile:

   ```fortigate
   config firewall ssl-ssh-profile
   clone "deep-inspection" to "Tenant"
end
   ```
 b. Edit the Tenant profile and remove live.com from the config ssl-exempt list.

3. Configure the URL filter list:

```fortigate
config webfilter urlfilter
edit 1
  set name "Auto-webfilter-urlfilter"
  config entries
  edit 1
    set url "login.microsoftonline.com"
    set action allow
    next
  edit 2
    set url "login.microsoft.com"
    set action allow
    next
  edit 3
    set url "login.windows.net"
    set action allow
```
4. Configure the web filter profile:

```plaintext
config webfilter profile
edit "Tenant"
    set comment "Office 365"
    set feature-set proxy
    config web
        set urlfilter-table 1
    end
next
end
```

5. Configure the web proxy profile (enter the header names exactly as shown):

```plaintext
config web-proxy profile
edit "SaaS-Tenant-Restriction"
    set header-client-ip pass
    set header-via-request pass
    set header-via-response pass
    set header-x-forwarded-for pass
    set header-x-forwarded-client-cert pass
    set header-front-end-https pass
    set header-x-authenticated-user pass
    set header-x-authenticated-groups pass
    set strip-encoding disable
    set log-header-change disable
    config headers
        edit 1
            set name "Restrict-Access-To-Tenants"
            set dstaddr "login.microsoft.com" "login.microsoftonline.com"
            "login.windows.net"
            set action add-to-request
            set base64-encoding disable
            set add-option new
            set protocol https http
            set content <domain>
        next
        edit 2
            set name "Restrict-Access-Context"
            set dstaddr "login.microsoftonline.com" "login.microsoft.com"
            "login.windows.net"
            set action add-to-request
            set base64-encoding disable
            set add-option new
            set protocol https http
            set content <directory_ID>
```

next
edit 3
set name "sec-Restict-Tenant-Access-Policy"
set dstaddr "login.live.com"
set action add-to-request
set base64-encoding disable
set add-option new
set protocol https http
set content "restrict-msa"
next
next
end

6. Configure the firewall policy:

config firewall policy
 edit 10
 set name "Tenant"
 set srcintf "port2"
 set dstintf "port1"
 set action accept
 set srcaddr "users-lan"
 set dstaddr "login.microsoft.com" "login.microsoftonline.com"
 "login.windows.net" "login.live.com"
 set schedule "always"
 set service "HTTP" "HTTPS"
 set utm-status enable
 set inspection-mode proxy
 set webproxy-profile "SaaS-Tenant-Restricion"
 set ssl-ssh-profile "Tenant"
 set webfilter-profile "Tenant"
 set logtraffic all
 set nat enable
next
end
Testing the access

To test the access to corporate domains and personal accounts:

1. Get a client to log in with their corporate email using the login.microsoftonline.com domain.

2. The client is able to enter their credentials and log in successfully.
3. Get a client to log in to their personal Outlook account.

4. After the client enters their credentials, a message appears that they cannot access this resource because it is restricted by the cross-tenant access policy.
Verifying the header insertion

To verify the header insertion for corporate domains and personal accounts:

1. On the FortiGate, start running the WAD debugs:

 # diagnose wad debug enable category http
 # diagnose wad debug enable level info
 # diagnose debug enable

2. After a client attempts to access corporate domains, verify that the header information is sent to the Microsoft Active Directory:

 [I][p:234][s:2481][r:33] wad_dump_fwd_http_req :2567 hreq=0x7fc75f0cd468

 Forward request to server:
 POST /common/GetCredentialType?mkt=en-US HTTP/1.1
 Host: login.microsoftonline.com
 Connection: keep-alive
 Content-Length: 1961
 sec-ch-ua: " Not A;Brand";v="99", "Chromium";v="101", "Google Chrome";v="101"
 hpgrequestid: d7f706a8-1143-4cdd-ad52-1cc69dc7bb00
 sec-ch-ua-mobile: ?0
 User-Agent: Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.4951.54 Safari/537.36
 client-request-id: 5c3d196d-5939-45cc-a45b-232b9ed13f

 Restrict-Access-To-Tenants: fortinet-us.com
 Restrict-Access-Context: *******-****-452f-8535-************

3. After a client attempts to access a personal account, verify that the header information is sent to the Microsoft Active Directory:

 [I][p:234][s:2519][r:34] wad_dump_fwd_http_req :2567 hreq=0x7fc75f0ce6a8

 Forward request to server:
 GET /oauth20_authorize.srf?client_id=4765445b-32c6-49b0-83e6-1d93765276ca&scope=openid+profile+https%3a%2f%2fwww.office.com%2fv2%2fOfficeHome.All&redirect_uri=https%3a%2f%2fwww.office.com%2flandingv2&response_type=code+id_token&state=7tAtndYhcA3132S-UOTyLVEtyIzs8FgndTpeYM9mJ1Eea-X5nfqrSalnnPH41cHxHfGug6N5cbliK676v6xZgszhH_ JARVKrpt2wBvj12cbN24mtYNWdK1FT1bEtu5VBjgtBOX2u6v3F_ 9g7Ul1kCpGThBRghvO2pyTndT3EEyAHv9LsKRxty3xncxe8dqKfkiidJLcc3q-01r4rpm5x2xZSBwG_ Kkn3kCRq9ulFEOziHACpvcnuKmzGWBKnBH4sJJKxMrEfiXwCg4nsOjg&response_mode=form_post&nonce=637877163655610380.MjNjZmM4Nz4otU5M5y000GZ1Ltk0NTItTm9Ndu2YjVloDjNjJ1VlOTqWym Uto0T1m502hY5LtyN2MtN2QyMjgwNjcxY2Uz&x-client-SKU=ID_NETSTANDARD2_0&x-client-Ver=6.12.1.0&uaid=5c3d196d593945cca45b232b9ed13f&msproxy=1&issuer=msosantem=common&u_i_locales=en-US&epct=AQABAAADAD--DLAV0V7Qrdgg37WervfA6SLaDsJUcjb1B90KimF3d_ lfnJxzdA1H5sh1JdUSGejBElqsko-A7JX67PzaGeDlJJo1IGa37VhJzGTBZ-KgARte9FhssNnLiM_ dojr0dAtB3xPdhiqQT2N-UcYdpcP2s3vPainF7Nqes5ecXRoE9Vw9-s7NjfaS0kPFWW03a16buz0niAbV860Y0D9b98vdJWPgkW--euDr6n8_ zI5hAAqjhs=0&username=**********%40outlook.com&login_hint=********%40outlook.com HTTP/1.1

 Host: login.live.com
 Connection: keep-alive
 ...
Explicit proxy and FortiGate Cloud Sandbox

Explicit proxy connections can leverage FortiGate Cloud Sandbox for advanced threat scanning and updates. This allows FortiGates behind isolated networks to connect to FortiCloud services.

To configure FortiGuard services to communicate with an explicit proxy server:

```
config system fortiguard
    set proxy-server-ip 172.16.200.44
    set proxy-server-port 3128
    set proxy-username "test1"
    set proxy-password ********
end
```

To verify the explicit proxy connection to FortiGate Cloud Sandbox:

```
# diagnose debug application forticldd -1
Debug messages will be on for 30 minutes.
# diagnose debug enable
[2942] fds_handle_request: Received cmd 23 from pid-2526, len 0
[40] fds_queue_task: req-23 is added to Cloud-sandbox-controller
[178] fds_svr_default_task_xmit: try to get IPs for Cloud-sandbox-controller
[239] fds_resolv_addr: resolve aptctrl1.fortinet.com
[169] fds_get_addr: name=aptctrl1.fortinet.com, id=32, cb=0x2bc089
[101] dns_parse_resp: DNS aptctrl1.fortinet.com &gt; 172.16.102.21
[227] fds_resolv_cb: IP-1: 172.16.102.21
[579] ssl_new: SSL object is created
[117] https_create: proxy server 172.16.200.44 port:3128
[519] fds_https_connect: https_connect(172.16.102.21) is established.
[261] fds_svr_default_on_established: Cloud-sandbox-controller has connected to ip=172.16.102.21
[268] fds_svr_default_on_established: server-Cloud-sandbox-controller handles cmd-23
[102] fds_pack_objects: number of objects: 1
[75] fds_print_msg: FCPC: len=109
[81] fds_print_msg: Protocol=2.0
[81] fds_print_msg: Command=RegionList
[81] fds_print_msg: Firmware=FG101E-FW-6.02-0917
[81] fds_print_msg: SerialNumber=FG101E4Q17002429
[81] fds_print_msg: TimeZone=-7
[75] fds_print_msg: http req: len=248
[81] fds_print_msg: POST https://172.16.102.21:443/FCPService HTTP/1.1
```
fds_print_msg: User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)
fds_print_msg: Host: 172.16.102.21:443
fds_print_msg: Cache-Control: no-cache
fds_print_msg: Connection: close
fds_print_msg: Content-Type: application/octet-stream
fds_print_msg: Content-Length: 301
fds_https_connect: http request to 172.16.102.21: header=248, ext=301.
fds_https_send: sent 248 bytes: pos=0, len=248
fds_https_send: sent 248 byte header, now send 301-byte body
fds_https_send: sent 301 bytes: pos=0, len=301
fds_https_send: sent the entire request to server: 172.16.102.21:443
fds_https_recv: read 413 bytes: pos=413, buf_len=2048
fds_https_recv: received the header from server: 172.16.102.21:443, [HTTP/1.1 200
fds_https_recv: Content-Type: application/octet-stream
fds_https_recv: Content-Length: 279
fds_https_recv: Date: Thu, 20 Jun 2019 16:41:11 GMT
fds_https_recv: Connection: close]
fds_https_recv: Do memmove buf_len=279, pos=279
fds_https_recv: server-172.16.102.21:443: buf_len=279, pos=279
fds_https_recv: received a packet from server-172.16.102.21:443: sz=279, objs=1
ssl_data_ctx_free: Done
ssl_free: Done
ssl_disconnect: Shutdown
fds_https_recv: obj-0: type=FCPR, len=87
fds_svr_default_on_response: server=Cloud-sandbox-controller handles cmd=23
fds_print_msg: fcpr: len=83
fds_print_msg: Response=202
fds_print_msg: ResponseItem=Region:Europe,Global,Japan,US
fds_print_msg: existing:Japan
aptctrl_region_res: Got rsp: Region:Europe,Global,Japan,US
aptctrl_region_res: Got rsp: Region existing:Japan
fds_send_reply: Sending 28 bytes data.
fds_free_tsk: cmd=23; req.noreply=1
[136] fds_on_sys_fds_change: trace
fds_handle_request: Received cmd 22 from pid-170, len 0
fds_queue_task: req-22 is added to Cloud-sandbox-controller
fds_https_start_server: server: 172.16.102.21:443
ssl_new: SSL object is created
https_create: proxy server 172.16.200.44 port:3128
fds_https_connect: https_connect(172.16.102.21) is established.
fds_svr_default_on_established: Cloud-sandbox-controller has connected to ip=172.16.102.21
fds_svr_default_on_established: server=Cloud-sandbox-controller handles cmd=22
fds_pack_objects: number of objects: 1
fds_print_msg: FCPC: len=146
fds_print_msg: Protocol=2.0
fds_print_msg: Command=UpdateAPT
fds_print_msg: Firmware=FG101E-FW-6.02-0917
fds_print_msg: SerialNumber=FG101E4Q17002429
fds_print_msg: TimeZone=-7
fds_print_msg: TimeZoneInMin=-420
fds_print_msg: DataItem=Region:US
fds_print_msg: http req: len=248
fds_print_msg: POST https://172.16.102.21:443/FCPService HTTP/1.1
fds_print_msg: User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)
Proxy chaining

For the explicit web proxy you can configure web proxy forwarding servers to use proxy chaining to redirect web proxy sessions to other proxy servers. Proxy chaining can be used to forward web proxy sessions from the FortiGate unit to one or more other proxy servers on your network or on a remote network. You can use proxy chaining to integrate the FortiGate explicit web proxy with a web proxy solution that you already have in place.

A FortiGate unit can forward sessions to most web proxy servers including a remote FortiGate unit with the explicit web proxy enabled. No special configuration of the explicit web proxy on the remote FortiGate unit is required.

You can deploy the explicit web proxy with proxy chaining in an enterprise environment consisting of small satellite offices and a main office. If each office has a FortiGate unit, users at each of the satellite offices can use their local FortiGate unit as an explicit web proxy server. The satellite office FortiGate units can forward explicit web proxy sessions to an explicit web proxy server at the central office. From here the sessions can connect to web servers on the Internet.

FortiGate proxy chaining does not support web proxies in the proxy chain authenticating each other.

The following examples assume explicit web proxy has been enabled.
To enable explicit web proxy in the GUI:

1. Go to System > Feature Visibility.
2. In the Security Features column, enable Explicit Proxy.
3. Configure the explicit web proxy settings. See Explicit web proxy on page 220.

To add a web proxy forwarding server in the GUI:

2. In the Web Proxy Forwarding Servers section, click Create New.
3. Configure the server settings:

<table>
<thead>
<tr>
<th>Name</th>
<th>Enter the name of the forwarding server.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proxy Address Type</td>
<td>Select the type of IP address of the forwarding server. A forwarding server can have an FQDN or IP address.</td>
</tr>
<tr>
<td>Proxy Address</td>
<td>Enter the IP address of the forwarding server.</td>
</tr>
<tr>
<td>Port</td>
<td>Enter the port number on which the proxy receives connections. Traffic leaving the FortiGate explicit web proxy for this server has its destination port number changed to this number.</td>
</tr>
<tr>
<td>Server Down Action</td>
<td>Select the action the explicit web proxy will take if the forwarding server is down.</td>
</tr>
<tr>
<td></td>
<td>• Block: Blocks the traffic if the remote server is down.</td>
</tr>
<tr>
<td></td>
<td>• Use Original Server: Forwards the traffic from the FortiGate to its destination as if no forwarding server is configured.</td>
</tr>
<tr>
<td>Health Monitor</td>
<td>Select to enable health check monitoring.</td>
</tr>
<tr>
<td>Health Check Monitor Site</td>
<td>Enter the address of a remote site.</td>
</tr>
</tbody>
</table>

4. Click OK.

Example

The following example adds a web proxy forwarding server named fwd-srv at address proxy.example.com and port 8080.

To add a web proxy forwarding server in the CLI:

```
config  web-proxy forward-server
   edit fwd-srv
      set addr-type fqdn
      set fqdn proxy.example.com
      set port 8080
   next
end
```
Web proxy forwarding server monitoring and health checking

By default, a FortiGate unit monitors a web proxy forwarding server by forwarding a connection to the remote server every 10 seconds. The remote server is assumed to be down if it does not respond to the connection. FortiGate continues checking the server. The server is assumed to be back up when the server sends a response. If you enable health checking, the FortiGate unit attempts to get a response from a web server every 10 seconds by connecting through the remote forwarding server.

You can configure health checking for each remote server and specify a different website to check for each one. If the remote server is found to be down you can configure the FortiGate unit to block sessions until the server comes back up or to allow sessions to connect to their destination, bypassing the remote forwarding server. You cannot configure the FortiGate unit to fail over to another remote forwarding server.

To configure proxy server monitor and health checking in the GUI:

2. In the Web Proxy Forwarding Servers section, edit a server.

<table>
<thead>
<tr>
<th>Server Down Action</th>
<th>Select the action the explicit web proxy will take if the forwarding server is down.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Block: Blocks the traffic if the remote server is down.</td>
<td></td>
</tr>
<tr>
<td>• Use Original Server: Forwards the traffic from the FortiGate to its destination as if no forwarding server configured.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Health Monitor</th>
<th>Select to enable health check monitoring.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Health Check Monitor Site</th>
<th>Enter the address of a remote site.</th>
</tr>
</thead>
</table>

4. Click OK.

Example

The following example enables health checking for a web proxy forwarding server and sets the server down option to bypass the forwarding server if it is down.

To configure proxy server monitor and health checking in the CLI:

```bash
config web-proxy forward-server
  edit fwd-srv
    set healthcheck enable
    set monitor http://example.com
    set server-down-option pass
  next
end
```

Grouping forwarding servers and load balancing traffic to the servers

You can add multiple web proxy forwarding servers to a forwarding server group and then add the server group to an explicit web proxy policy instead of adding a single server. Forwarding server groups are created from the FortiGate CLI but can be added to policies from the web-based manager (or from the CLI).
When you create a forwarding server group you can select a load balancing method to control how sessions are load balanced to the forwarding servers in the server group. Two load balancing methods are available:

- **Weighted** load balancing sends more sessions to the servers with higher weights. You can configure the weight for each server when you add it to the group.
- **Least-session** load balancing sends new sessions to the forwarding server that is processing the fewest sessions.

When you create a forwarding server group you can also enable **affinity**. Enable affinity to have requests from the same client processed by the same server. This can reduce delays caused by using multiple servers for a single multi-step client operation. Affinity takes precedence over load balancing.

You can also configure the behavior of the group if all of the servers in the group are down. You can select to block traffic or you can select to have the traffic pass through the FortiGate explicit proxy directly to its destination instead of being sent to one of the forwarding servers.

Example

The following example adds a forwarding server group that uses weighted load balancing to load balance traffic to three forwarding servers. Server weights are configured to send most traffic to `server2`. The group has **affinity** enabled and blocks traffic if all of the forward servers are down.

To configure load balancing in the CLI:

``` FortiOS
config web-proxy forward-server
  edit server_1
    set ip 172.20.120.12
    set port 8080
  next
  edit server_2
    set ip 172.20.120.13
    set port 8000
  next
  edit server_3
    set ip 172.20.120.14
    set port 8090
  next
end

config web-proxy forward-server-group
  edit New-fwd-group
    set affinity enable
    set ldb-method weighted
    set group-down-option block
  config server-list
    edit server_1
      set weight 10
    next
    edit server_2
      set weight 40
    next
    edit server_3
      set weight 10
    next
  end
next
end
```
Adding proxy chaining to an explicit web proxy policy

You can enable proxy chaining for web proxy sessions by adding a web proxy forwarding server or server group to an explicit web proxy policy. In a policy you can select one web proxy forwarding server or server group. All explicit web proxy traffic accepted by this security policy is forwarded to the specified web proxy forwarding server or server group.

To add an explicit web proxy forwarding server in the GUI:

1. Go to Policy & Objects > Proxy Policy and click Create New.
2. Configure the policy settings:

<table>
<thead>
<tr>
<th>Proxy Type</th>
<th>Explicit Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outgoing Interface</td>
<td>wan1</td>
</tr>
<tr>
<td>Source</td>
<td>Internal_subnet</td>
</tr>
<tr>
<td>Destination</td>
<td>all</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>webproxy</td>
</tr>
<tr>
<td>Action</td>
<td>Accept</td>
</tr>
</tbody>
</table>

3. Enable Web Proxy Forwarding Server and select the forwarding server, (for example, fwd-srv).
4. Click OK.

Example

The following example adds a security policy that allows all users on the 10.31.101.0 subnet to use the explicit web proxy for connections through the wan1 interface to the Internet. The policy forwards web proxy sessions to a remote forwarding server named fwd-srv.

To add an explicit web proxy forwarding server in the CLI:

```
config firewall proxy-policy
edit 0
  set proxy explicit-web
  set dstintf "wan1"
  set srcaddr "Internal_subnet"
  set dstaddr "all"
  set service "webproxy"
  set action accept
  set schedule "always"
  set webproxy-forward-server "fwd-srv"
next
end
```

Using TLS 1.3 with web proxy forward servers

A FortiGate can handle TLS 1.3 traffic in both deep and certificate inspection modes.
Example

The following example demonstrates that the Squid server and the FortiGate can handle TLS 1.3 traffic.

The following output from the Squid server demonstrates that the FortiGate supports TLS 1.3 traffic and forwards the hello retry request back to the client PC. The client PC then sends the client hello again, and the connection is successfully established.

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Length (Bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17:00</td>
<td>10.1.100.66</td>
<td>172.16.200.8</td>
<td>TCP</td>
<td>859</td>
</tr>
<tr>
<td>2</td>
<td>17:00</td>
<td>10.1.100.7</td>
<td>172.16.200.8</td>
<td>TCP</td>
<td>859</td>
</tr>
</tbody>
</table>

WAN optimization SSL proxy chaining

An SSL server does not need to be defined for WAN optimization (WANOpt) SSL traffic offloading (traffic acceleration). The server side FortiGate uses an SSL profile to resign the HTTP server's certificate, both with and without an external proxy, without an SSL server configured. GCM and ChaCha ciphers can also be used in the SSL connection.

Examples

In these examples, HTTPS traffic is accelerated without configuring an SSL server, including with a proxy in between, and when the GCM or ChaCha ciphers are used.

Example 1

In this example, the server certificate is resigned by the server side FortiGate, and HTTPS traffic is accelerated without configuring an SSL server.
HTTPS traffic with the GCM or ChaCha cipher can pass through WANopt tunnel.

To configure FGT_A:

1. Configure the hard disk to perform WANOpt:

   ```
   config system storage
   edit "HDD2"
   set status enable
   set usage wanopt
   set wanopt-mode mix
   next
   end
   ```

2. Configure the WANOpt peer and profile:

   ```
   config wanopt peer
   edit "FGT-D"
   set ip 120.120.120.172
   next
   end
   ```

   ```
   config wanopt profile
   edit "test"
   config http
   set status enable
   set ssl enable
   end
   ```

3. Create an SSL profile with deep inspection on HTTPS port 443:

   ```
   config firewall ssl-ssh-profile
   edit "ssl"
   config https
   set ports 443
   set status deep-inspection
   ```

4. Configure a firewall policy in proxy mode with WANOpt enabled and the WANOpt profile selected:

   ```
   config firewall policy
   edit 1
   set name "WANOPT-A"
   ```
to configure FGT_D:

1. Configure the hard disk to perform WANOpt:

```plaintext
config system storage
edit "HDD2"
  set status enable
  set usage wanopt
  set wanopt-mode mix
next
end
```

2. Configure the WANOpt peer:

```plaintext
config wanopt peer
edit "FGT-A"
  set ip 110.110.110.171
next
end
```

3. Create an SSL profile with deep inspection on HTTPS port 443. The default Fortinet_CA_SSL certificate is used to resign the server certificate:

```plaintext
config firewall ssl-ssh-profile
edit "ssl"
  config https
    set ports 443
    set status deep-inspection
  end
next
end
```

4. Configure a firewall policy in proxy mode with WANOpt enabled and passive WANOpt detection:

```plaintext
config firewall policy
edit 1
  set name "WANOPT-B"
  set srcintf "port27"
  set dstintf "port23"
  set action accept
  set srcaddr "all"
next
end
```
set dstaddr "all"
set schedule "always"
set service "ALL"
set utm-status enable
set inspection-mode proxy
set wanopt enable
set wanopt-detection passive
set nat enable

next
end

5. Configure a proxy policy to apply the SSL profile:

config firewall proxy-policy
edit 100
 set proxy wanopt
 set dstintf "port23"
 set srcaddr "all"
 set dstaddr "all"
 set service "ALL"
 set action accept
 set schedule "always"
 set utm-status enable
 set profile-protocol-options "protocol"
 set ssl-ssh-profile "ssl"
next
end

To confirm that traffic is accelerated:

1. On the client PC, curl a 10MB test sample for the first time:

 root@client:/tmp# curl -k https://172.16.200.144/test_10M.pdf -O
 % Total % Received % Xferd Average Speed Time Time Time Time
 100 9865k 100 9865k 0 0 663k 0:00:14 0:00:15 --:--:-- 1526k

 It takes 15 seconds to finish the download.

2. On FGT_A, check the WAD statistics:

 # diagnose wad stats worker.tunnel
 comp.n_in_raw_bytes 10155840
 comp.n_in_comp_bytes 4548728
 comp.n_out_raw_bytes 29624
 comp.n_out_comp_bytes 31623

 # diagnose wad stats worker.protos.http
 wan.bytes_in 0
 wan.bytes_out 0
 lan.bytes_in 760
 lan.bytes_out 10140606
 tunnel.bytes_in 4548728
 tunnel.bytes_out 31623

3. Curl the same test sample a second time:

 root@client:/tmp# curl -k https://172.16.200.144/test_10M.pdf -O
 % Total % Received % Xferd Average Speed Time Time Time Time

Network

<table>
<thead>
<tr>
<th>Dload</th>
<th>Upload</th>
<th>Total</th>
<th>Spent</th>
<th>Left</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>9865k</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>663k</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0:00:01</td>
<td>0:00:01</td>
<td>--:--:--</td>
</tr>
</tbody>
</table>

It now takes less than one second to finish the download.

4. On FGT_A, check the WAD statistics again:

```
# diagnose wad stats worker.tunnel
comp.n_in_raw_bytes: 10181157
comp.n_in_comp_bytes: 4570331
comp.n_out_raw_bytes: 31627
comp.n_out_comp_bytes: 34702

# diagnose wad stats worker.protos.http
wan.bytes_in: 0
wan.bytes_out: 0
lan.bytes_in: 1607
lan.bytes_out: 20286841
tunnel.bytes_in: 4570331
tunnel.bytes_out: 34702
```

The tunnel bytes are mostly unchanged, but the LAN bytes are doubled. This means that the bytes of the second curl come from the cache, showing that the traffic is accelerated.

To confirm that a curl using the GCM cipher is accepted and accelerated:

1. On the client PC, curl a 10MB test sample with the GCM cipher:

```
root@client:/tmp# curl -v -k --ciphers DHE-RSA-AES128-GCM-SHA256 https://172.16.200.144/test_10M.pdf -O
* Trying 172.16.200.144...
* TCP_NODELAY set
% Total  % Received % Xferd Average Speed Time Time Time Current
  0      0  0 00:00:01  0 00:00:01  0 00:00:01  0
Connected to 172.16.200.144 (172.16.200.144) port 443 (#0)
* ALPN, offering h2
* ALPN, offering http/1.1
* Cipher selection: DHE-RSA-AES128-GCM-SHA256
* successfully set certificate verify locations:
*   CAfile: /etc/ssl/certs/ca-certificates.crt
*   CPath: none
} [5 bytes data]
* TLSv1.3 (OUT), TLS handshake, Client hello (1):
} [512 bytes data]
* TLSv1.3 (IN), TLS handshake, Server hello (2):
} [100 bytes data]
* TLSv1.2 (IN), TLS handshake, Certificate (11):
} [1920 bytes data]
* TLSv1.2 (IN), TLS handshake, Server key exchange (12):
} [783 bytes data]
* TLSv1.2 (IN), TLS handshake, Server finished (14):
} [4 bytes data]
* TLSv1.2 (OUT), TLS handshake, Client key exchange (16):
} [262 bytes data]
* TLSv1.2 (OUT), TLS change cipher, Change cipher spec (1):
} [1 bytes data]
* TLSv1.2 (OUT), TLS handshake, Finished (20):
```
To confirm that a curl using the ChaCha cipher is accepted and accelerated:

1. On the client PC, curl a 10MB test sample with the ChaCha cipher:

 root@client:/tmp# curl -v -k --ciphers ECDHE-RSA-CHACHA20-POLY1305 https://172.16.200.144/test.doc -O

 * Trying 172.16.200.144...
 * TCP_NODELAY set
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
 0 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- --:--:--

 Connected to 172.16.200.144 (172.16.200.144) port 443 (#0)
 * ALPN, offering h2
 * ALPN, offering http/1.1
 * Cipher selection: ECDHE-RSA-CHACHA20-POLY1305
 * successfully set certificate verify locations:
 * CAfile: /etc/ssl/certs/ca-certificates.crt
 * CPath: none
) [5 bytes data]
 * TLSv1.3 (OUT), TLS handshake, Client hello (1):
Example 2

In this example, an external proxy is added to the configuration in Example 1.
To reconfigure FGT_A:

```
config firewall profile-protocol-options
  edit "protocol"
    config http
      set ports 80 8080
      unset options
      unset post-lang
    end
  end
next
end
```

To reconfigure FGT_D:

1. Configure a new firewall policy for traffic passing from port27 to port29:

```
config firewall policy
  edit 1
    set name "WANOPT-B"
    set srcintf "port27"
    set dstintf "port29"
    set action accept
    set srcaddr "all"
    set dstaddr "all"
    set schedule "always"
    set service "ALL"
    set utm-status enable
    set inspection-mode proxy
    set wanopt enable
    set wanopt-detection passive
    set nat enable
next
end
```

2. Configure a proxy policy for traffic on destination interface port29:

```
config firewall proxy-policy
  edit 100
    set proxy wanopt
    set dstintf "port29"
    set srcaddr "all"
    set dstaddr "all"
    set service "ALL"
    set action accept
```
Network

set schedule "always"
set profile-protocol-options "protocol"
set ssl-ssh-profile "ssl"
next
end

To confirm that HTTPS traffic is still being accelerated:

1. On the client PC, curl the same 10MB test sample through the explicit proxy:

   ```bash
   root@client:/tmp# curl -x 100.100.100.174:8080 -v -k https://172.16.200.144/test_10M.pdf
   -O
   % Total  % Received % Xferd  Average Speed   Time    Time  Time     Time  Current
   Dload  Upload Total Spent  Left  Speed
   100  9865k  100  9865k   0      0  663k  0 0:00:01  0:00:01 --:--:-- 1526k
   ``

   It takes less than a second to finish the download.

Agentless NTLM authentication for web proxy

Agentless Windows NT LAN Manager (NTLM) authentication includes support for the following items:

- Multiple servers
- Individual users

You can use multiple domain controller servers for the agentless NTLM. They can be used for load balancing and high service stability.

You can also use user-based matching in groups for Kerberos and agentless NTLM. In these scenarios, FortiOS matches the user's group information from an LDAP server.

To support multiple domain controllers for agentless NTLM using the CLI:

1. Configure an LDAP server:

   ```bash
 config user ldap
 edit "ldap-kerberos"
 set server "172.18.62.177"
 set cnid "cn"
 set dn "dc=fortinetqa,dc=local"
 set type regular
 set username "CN=root,CN=Users,DC=fortinetqa,DC=local"
 set password **********
 next
 end
   ```

2. Configure multiple domain controllers:

   ```bash
 config user domain-controller
 edit "dcl"
 set ip-address 172.18.62.177
 config extra-server
 edit 1
 set ip-address 172.18.62.220
 next
 end
   ```
3. Create an authentication scheme and rule:

```plaintext
config authentication scheme
edit "au-ntlm"
set method ntlm
set domain-controller "dc1"
next
end
config authentication rule
edit "ru-ntlm"
set srcaddr "all"
set ip-based disable
set active-auth-method "au-ntlm"
next
end
```

4. In the proxy policy, append the user group for authorization:

```plaintext
config firewall proxy-policy
edit 1
set proxy explicit-web
set dstintf "port1"
set srcaddr "all"
set dstaddr "all"
set service "web"
set action accept
set schedule "always"
set groups "ldap-group"
set utm-status enable
set av-profile "av"
set ssl-ssh-profile "deep-custom"
next
end
```

This configuration uses a round-robin method. When the first user logs in, the FortiGate sends the authentication request to the first domain controller. Later when another user logs in, the FortiGate sends the authentication request to another domain controller.

5. Verify the behavior after the user successfully logs in:

```plaintext
diagnose wad user list
ID: 1825, IP: 10.1.100.71, VDOM: vdom1
user name : test1
duration : 497
auth_type : Session
auth_method : NTLM
pol_id : 1 g_id : 5
user_based : 0 e
expire : 103
LAN:
 bytes_in=2167 bytes_out=7657
WAN:
 bytes_in=3718 bytes_out=270
```
To support individual users for agentless NTLM using the CLI:

1. Configure an LDAP server:
   ```
 config user ldap
 edit "ldap-kerberos"
 set server "172.18.62.177"
 set cnid "cn"
 set dn "dc=fortinetqa,dc=local"
 set type regular
 set username "CN=root,CN=Users,DC=fortinetqa,DC=local"
 set password *********
 next
 end
   ```

2. Configure the user group and allow user-based matching:
   ```
 config user group
 edit "ldap-group"
 set member "ldap" "ldap-kerberos"
 config match
 edit 1
 set server-name "ldap-kerberos"
 set group-name "test1"
 next
 end
   ```

3. Create an authentication scheme and rule:
   ```
 config authentication scheme
 edit "au-ntlm"
 set method ntlm
 set domain-controller "dcl"
 next
 end
   ```
   ```
 config authentication rule
 edit "ru-ntlm"
 set srcaddr "all"
 set ip-based disable
 set active-auth-method "au-ntlm"
 next
 end
   ```

4. In the proxy policy, append the user group for authorization:
   ```
 config firewall proxy-policy
 edit 1
 set proxy explicit-web
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "all"
 set service "web"
 set action accept
 set schedule "always"
 set groups "ldap-group"
 set utm-status enable
   ```
set av-profile "av"
set ssl-ssh-profile "deep-custom"
next
end

This implementation lets you configure a single user instead of a whole group. The FortiGate will now allow the user named test1.

To verify the configuration using the CLI:

diagnose wad user list
  ID: 1827, IP: 10.1.15.25, VDOM: vdom1
  user name : test1
  duration   : 161
  auth_type  : Session
  auth_method: NTLM
  pol_id     : 1
  g_id       : 5
  user_based : 0
  expire     : 439

LAN:
  bytes_in=1309 bytes_out=4410
WAN:
  bytes_in=2145 bytes_out=544

Multiple LDAP servers in Kerberos keytabs and agentless NTLM domain controllers

Multiple LDAP servers can be configured in Kerberos keytabs and agentless NTLM domain controllers for multi-forest deployments.

To use multiple LDAP servers in Kerberos keytabs and agentless NTLM domain controllers:

1. Add multiple LDAP servers:

   config user ldap
     edit "ldap-kerberos"
       set server "172.16.200.98"
       set cnid "cn"
       set dn "dc=fortinetqa,dc=local"
       set type regular
       set username "CN=root,CN=Users,DC=fortinetqa,DC=local"
       set password xxxxxxxxxxx
     next
     edit "ldap-two"
       set server "172.16.106.128"
       set cnid "cn"
       set dn "OU=Testing,DC=ad864r2,DC=com"
       set type regular
       set username "cn=Testadmin,cn=users,dc=AD864R2,dc=com"
       set password xxxxxxxxxxx
     next
   end

2. Configure a Kerberos keytab entry that uses both LDAP servers:
config user krb-keytab
   edit "http_service"
      set pac-data disable
      set principal "HTTP/FGT.FORTINETQA.LOCAL@FORTINETQA.LOCAL"
      set ldap-server "ldap-kerberos" "ldap-two"
      set keytab xxxxxxxxx
   next
end

3. Configure a domain controller that uses both LDAP servers:

config user domain-controller
   edit "dcl"
      set ip-address 172.16.200.98
      set ldap-server "ldap-two" "ldap-kerberos"
   next
end

Learn client IP addresses

Learning the actual client IP addresses is imperative for authorization. This function identifies the real client IP address when there is a NATing device between the FortiGate and the client.

config web-proxy global
   set learn-client-ip {enable | disable}
   set learn-client-ip-from-header {true-client-ip | x-real-ip | x-forwarded-for}
   set learn-client-ip-srcaddr <address> ... <address>
end

learn-client-ip {enable	disable}	Enable/disable learning the client's IP address from headers.	
learn-client-ip-from-header {true-client-ip	x-real-ip	x-forwarded-for}	Learn client IP addresses from the specified headers.
learn-client-ip-srcaddr <address> ... <address>	The source address names.		

Example

In this example, the real client IP address is used to match a policy for FSSO authentication.

To enable learning the client IP address:

config web-proxy global
   set proxy-fqdn "default.fqdn"
   set webproxy-profile "default"
   set learn-client-ip enable
      set learn-client-ip-from-header x-forwarded-for
      set learn-client-ip-srcaddr "all"
end
To configure the proxy policy:

```bash
config firewall proxy-policy
 edit 1
 set proxy explicit-web
 set dstintf "mgmt1"
 set srcaddr "all"
 set dstaddr "all"
 set service "w"
 set action accept
 set schedule "always"
 set groups "fssol"
 set utm-status enable
 set av-profile "default"
 set dlp-profile "default"
 set profile-protocol-options "default"
 set ssl-ssh-profile "deep-inspection"
 next
end
```

To configure the authentication scheme and rule:

```bash
config authentication scheme
 edit "schemel"
 set method fsso
 next
end

config authentication rule
 edit "rule1"
 set srcaddr "all"
 set sso-auth-method "schemel"
 next
end
```

Explicit proxy authentication over HTTPS

When a HTTP request requires authentication in an explicit proxy, the authentication can be redirected to a secure HTTPS captive portal. Once authentication is complete, the client can be redirected back to the original destination over HTTP.

Example

A user visits a website via HTTP through the explicit web proxy on a FortiGate. The user is required to authenticate by either basic or form IP-based authentication for the explicit web proxy service. The user credentials need to be transmitted over the networks in a secured method over HTTPS rather than in plain text. The user credentials are protected by redirecting the client to a captive portal of the FortiGate over HTTPS for authentication where the user credentials are encrypted and transmitted over HTTPS.
In this example, explicit proxy authentication over HTTPS is configured with form IP-based authentication. Once configured, you can enable authorization for an explicit web proxy by configuring users or groups in the firewall proxy policy.

**To configure explicit proxy authentication over HTTPS:**

1. **Configure the authentication settings:**

   ```
 config authentication setting
 set captive-portal-type fqdn
 set captive-portal "fgt-cp"
 set auth-https enable
 end
   ```

2. **Configure the authentication scheme:**

   ```
 config authentication scheme
 edit "form"
 set method form
 set user-database "local-user-db"
 next
 end
   ```

3. **Configure the authentication rule:**

   ```
 config authentication rule
 edit "form"
 set srcaddr "all"
 set active-auth-method "form"
 next
 end
   ```

   **If a session-based basic authentication method is used, enable web-auth-cookie.**

4. **Configure the firewall address:**

   ```
 config firewall address
 edit "fgt-cp"
 set type fqdn
 set fqdn "fgt.fortinetqa.local"
 next
 end
   ```

5. **Configure the interface:**
Network

config system interface
edit "port10"
    set ip 10.1.100.1 255.255.255.0
    set explicit-web-proxy enable
    set proxy-captive-portal enable
next
end

6. Configure a firewall proxy policy with users or groups (see Explicit web proxy on page 220).

Verification

When a client visits a HTTP website, the client will be redirected to the captive portal for authentication by HTTPS. For example, the client could be redirected to a URL by a HTTP 303 message similar to the following:

HTTP/1.1 303 See Other

Connection: close

Content-Type: text/html

Cache-Control: no-cache

Location: https://fgt.fortinetqa.local:7831/XX/YY/ZZ/cpauth?scheme=http&4Tmthd=0&host=172.16.200.46&port=80&rule=75&uri=Lw==

Content-Length: 0

The captive portal URL used for authentication is https://fgt.fortinetqa.local:7831/... Once the authentication is complete with all user credentials protected by HTTPS, the client is redirected to the original HTTP website they intended to visit.

mTLS client certificate authentication

FortiGate supports client certificate authentication used in mutual Transport Layer Security (mTLS) communication between a client and server. Clients are issued certificates by the CA, and an access proxy configured on the FortiGate uses the new certificate method in the authentication scheme to identify and approve the certificate provided by the client when they try to connect to the access proxy. The FortiGate can also add the HTTP header X-Forwarded-Client-Cert to forward the certificate information to the server.

Examples

In these examples, the access proxy VIP IP address is 10.1.100.200.
Example 1

In this example, clients are issued unique client certificates from your CA. The FortiGate authenticates the clients by their user certificate before allowing them to connect to the access proxy. The access server acts as a reverse proxy for the web server that is behind the FortiGate.

This example assumes that you have already obtained the public CA certificate from your CA, the root CA of the client certificate has been imported (CA_Cert_1), and the client certificate has been distributed to the endpoints.

To configure the FortiGate:

1. Configure user authentication. Both an authentication scheme and rule must be configured, as the authentication is applied on the access proxy:

   ```
 config authentication scheme
 edit "mtls"
 set method cert
 set user-cert enable
 next
 end

 config authentication rule
 edit "mtls"
 set srcintf "port2"
 set srcaddr "all"
 set dstaddr "all"
 set active-auth-method "mtls"
 next
 end
   ```

2. Select the CA or CAs used to verify the client certificate:

   ```
 config authentication setting
 set user-cert-ca "CA_Cert_1"
 end
   ```

3. Configure the users. Users can be matched based on either the common-name on the certificate or the trusted issuer.

   - Verify the user based on the common name on the certificate:

     ```
 config user certificate
 edit "single-certificate"
 set type single-certificate
 set common-name "client.fortinet.com"
 next
 end
     ```

   - Verify the user based on the CA issuer:

     ```
 config user certificate
 edit "trusted-issuer"
 set type trusted-issuer
 set issuer "CA_Cert_1"
 next
 end
     ```

4. Configure the access proxy VIP. The SSL certificate is the server certificate that is presented to the user as they connect:
Network

```plaintext
config firewall vip
 edit "mTLS"
 set type access-proxy
 set extip 10.1.100.200
 set extintf "port2"
 set server-type https
 set extport 443
 set ssl-certificate "Fortinet_CA_SSL"
 next
end

5. Configure the access proxy policy, including the real server to be mapped. To request the client certificate for authentication, client-cert is enabled:

```plaintext
config firewall access-proxy
  edit "mTLS-access-proxy"
    set vip "mTLS"
    set client-cert enable
    set empty-cert-action accept
    config api-gateway
      edit 1
        config realservers
          edit 1
            set ip 172.16.200.44
          next
        end
      next
    end
end

6. Configure the proxy policy to apply authentication and the security profile, selecting the appropriate user object depending on the user type:

```plaintext
config firewall proxy-policy
 edit 3
 set proxy access-proxy
 set access-proxy "mTLS-access-proxy"
 set srcintf "port2"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set users {"single-certificate" | "trusted-issuer"}
 set utm-status enable
 set ssl-ssh-profile "deep-inspection-clone"
 set av-profile "av"
 next
end

To verify the results:

1. In a web browser, access the VIP address. This example uses Chrome.
2. When prompted, select the client certificate, then click OK.
3. Click **Certificate information** to view details about the certificate.

4. On the FortiGate, check the traffic logs.
 - If client certificate authentication passes:

     ```
     1: date=2021-06-03 time=15:48:36 eventtime=1622760516866635697 tz="-0700"
     logid="0000000010" type="traffic" subtype="forward" level="notice" vd="vdom1"
     srcip=10.1.100.11 srcport=45532 srcintf="port2" srcintfrole="undefined"
     dstcountry="Reserved" srccountry="Reserved" dstip=172.16.200.44 dstport=443
     dstintf="vdom1" dstintfrole="undefined" sessionid=154900 service="HTTPS"
     wanoptapptype="web-proxy" proto=6 action="accept" policyid=3 policytype="proxy-
     policy" poluuid="af5e2df2-c321-51eb-7d5d-42fa58868dcb" duration=0 user="single-
     certificate" wanin=2550 rcvdbyte=2550 wanout=627 lanin=4113 sentbyte=4113 lanout=2310
     appcat="unscanned"
     ```

 - If the CA issuer is used to verify the client:

     ```
     1: date=2021-06-03 time=15:43:02 eventtime=1622760420443776037 tz="-0700"
     logid="0000000010" type="traffic" subtype="forward" level="notice" vd="vdom1"
     srcip=10.1.100.11 srcport=45514 srcintf="port2" srcintfrole="undefined"
     dstcountry="Reserved" srccountry="Reserved" dstip=10.1.100.200 dstport=443
     dstintf="vdom1" dstintfrole="undefined" sessionid=153884 service="HTTPS"
     ```
If the client certificate authentication fails, and the traffic is blocked:

```
1: date=2021-06-03 time=15:45:53 eventtime=1622760353789703671 tz="-0700"
logid="0000000013" type="traffic" subtype="forward" level="notice" vd="vdom1"
srcip=10.1.100.11 srcport=45518 srcintf="port2" srcintfrole="undefined"
dstip=172.16.200.44 dstport=443 dstintf="vdom1" dstintfrole="undefined"
srccountry="Reserved" dstcountry="Reserved" sessionid=154431 proto=6 action="deny"
policyid=0 policytype="proxy-policy" user="single-certificate" service="HTTPS"
trandisp="noop" url="https://10.1.100.200/" agent="curl/7.68.0"
duration=0 sentbyte=0 rcvdpkt=0 appcat="unscanned" crscore=30 craction=131072
crlevel="high" msg="Traffic denied because of explicit proxy policy"
```

Example 2

In this example, the same configuration as in Example 1 is used, with a web proxy profile added to enable adding the client certificate to the HTTP header X-Forwarded-Client-Cert. The header is then forwarded to the server.

To configure the FortiGate:

1. Repeat steps 1 to 6 of Example 1, using the common name on the certificate to verify the user.
2. Configure a web proxy profile that adds the HTTP x-forwarded-client-cert header in forwarded requests:
   ```
   config web-proxy profile
   edit "mtls"
   set header-x-forwarded-client-cert add
   next
   end
   
   config firewall proxy-policy
   edit 3
   set uuid af5e2df2-c321-51eb-7d5d-42fa58868dc8
   set proxy access-proxy
   set access-proxy "mTLS-access-proxy"
   set srcintf "port2"
   set srcaddr "all"
   set dstaddr "all"
   set action accept
   set schedule "always"
   set logtraffic all
   set users "single-certificate"
   set webproxy-profile "mtls"
   set utm-status enable
   set ssl-ssh-profile "deep-inspection-clone"
   set av-profile "av"
   next
   end
   ```
To verify the results:

The WAD debug shows that the FortiGate adds the client certificate information to the HTTP header. The added header cannot be checked using the sniffer, because the FortiGate encrypts the HTTP header to forward it to the server.

1. Enable WAD debug on all categories:

   ```
   # diagnose wad debug enable category all
   ```

2. Set the WAD debug level to verbose:

   ```
   # diagnose wad debug enable level verbose
   ```

3. Enable debug output:

   ```
   # diagnose debug enable
   ```

4. Check the debug output.
 - When the FortiGate receives the client HTTP request:

     ```
     [0x7fc8d4bc4910] Received request from client: 10.1.100.11:45544
     ```

     ```
     GET / HTTP/1.1
     Host: 10.1.100.200
     User-Agent: curl/7.68.0
     Accept: */*
     ```

 - When the FortiGate adds the client certificate in to the HTTP header and forwards the client HTTP request:

     ```
     [0x7fc8d4bc4910] Forward request to server:
     GET / HTTP/1.1
     Host: 172.16.200.44
     User-Agent: curl/7.68.0
     Accept: */*
     X-Forwarded-Client-Cert: -----BEGIN CERTIFICATE-----
     MIIFxzCCA0egAwI...aCFDH1R+wb39s=
     -----END CERTIFICATE-----
     -----BEGIN CERTIFICATE-----
     MIIPcTCCA4gAwI...OtDtetkNoFLvb
     -----END CERTIFICATE-----
     ```

DHCP server

A DHCP server leases IP addresses from a defined address range to clients on the network that request dynamically assigned addresses.

A DHCP server can be in server or relay mode. In server mode, you can define one or more address ranges it assigns addresses from, and options such as the default gateway, DNS server, lease time, and other advanced options. In relay mode, the interface forwards DHCP requests from DHCP clients to an external DHCP server and returns the responses to the DHCP clients. The DHCP server must have appropriate routing so that its response packets to the DHCP clients arrive at the unit.

- DHCP options on page 290
- IP address assignment with relay agent information option on page 291
- DHCP client options on page 293
Configure a DHCP server on an interface

To configure a DHCP server in the GUI:

1. Go to Network > Interfaces.
2. Edit an interface.
3. Enable the DHCP Server option and configure the settings.
4. Click OK.

To configure a DHCP server in the CLI:

```bash
config system dhcp server
  edit 1
    set dns-service default
    set default-gateway 192.168.1.2
    set netmask 255.255.255.0
    set interface "port1"
    config ip-range
      edit 1
        set start-ip 192.168.1.1
        set end-ip 192.168.1.1
      next
      edit 2
        set start-ip 192.168.1.3
        set end-ip 192.168.1.254
      next
    end
  set timezone-option default
  set tftp-server "172.16.1.2"
next
end
```

Configure a DHCP relay on an interface

To configure a DHCP relay in the GUI:

1. Go to Network > Interfaces.
2. Edit an interface.
3. Enable the DHCP Server option and set DHCP status to Disabled.
4. Expand the Advanced section and set Mode to Relay.
5. Enter the DHCP Server IP.
6. Click OK.

To configure a DHCP relay in the CLI:

1. Configure the interface:

```bash
config system interface
  edit "port2"
    set vdom "root"
    set dhcp-relay-service enable
```
2. On the DHCP server settings for the interface, set the status to disable:

```bash
config system dhcp server
  edit 17
    set status disable
    set dns-service default
    set default-gateway 10.1.1.5
    set netmask 255.255.255.0
    set interface "port2"
  next
end
```

Configure a DHCP server and relay on an interface

A FortiGate interface can be configured to work in DHCP server mode to lease out addresses, and at the same time relay the DHCP packets to another device, such as a FortiNAC to perform device profiling.

The DHCP message to be forwarded to the relay server under the following conditions:

- `dhcp-relay-request-all-server` is enabled
- Message type is either DHCPDISCOVER or DHCPINFORM
- Client IP address in client message is 0
- Server ID is NULL in the client message
- Server address is a broadcast address (255.255.255.255)
- Server address is 0

To configure a DHCP server and relay in the GUI:

1. Go to **Network > Interfaces**.
2. Edit an interface.
3. Enable the **DHCP Server** option and set **DHCP status** to **Enabled**.
4. Edit the address range as required.
5. Expand the **Advanced** section and set **Mode to Relay**.
6. Enter the **DHCP Server IP**.
7. Click **OK**.
8. In the **CLI**, enable `dhcp-relay-request-all-server`.

To configure a DHCP server and relay in the CLI:

1. Configure the interface:

```bash
config system interface
  edit "port2"
    set vdom "root"
```
set dhcp-relay-service enable
set ip 10.1.1.5 255.255.255.0
set allowaccess ping https ssh fabric
set type physical
set snmp-index 4
set dhcp-relay-ip "192.168.20.10"

set dhcp-relay-request-all-server enable

2. Configure the DHCP server settings:

config system dhcp server
edit 17
set status enable
set dns-service default
set default-gateway 10.1.1.5
set netmask 255.255.255.0
set interface "port2"

DHCP options

When adding a DHCP server, you can include DHCP codes and options. The DHCP options are BOOTP vendor information fields that provide additional vendor-independent configuration parameters to manage the DHCP server. For example, you might need to configure a FortiGate DHCP server that gives out a separate option as well as an IP address, such as an environment that needs to support PXE boot with Windows images.

The option numbers and codes are specific to the application. The documentation for the application indicates the values to use. The option is a value between 1 and 255.

For detailed information about DHCP options, see RFC 2132, DHCP Options and BOOTP Vendor Extensions.

Option 82

The DHCP relay agent information option (option 82 in RFC 3046) helps protect the FortiGate against attacks such as spoofing (forging) of IP addresses and MAC addresses, and DHCP IP address starvation.

This option is disabled by default. However, when dhcp-relay-service is enabled, dhcp-relay-agent-option becomes enabled.

To configure the DHCP relay agent option using the CLI:

config system interface
edit <interface>
set vdom root
set dhcp-relay-service enable
set dhcp-relay-ip <ip>
set dhcp-relay-agent-option enable
set vlanid <id>

See IP address assignment with relay agent information option on page 291 for an example.
Option 42

This option specifies a list of the NTP servers available to the client by IP address.

```
config system dhcp server
eedit 2
   set ntp-service {local | default | specify}
   set ntp-server1 <class_ip>
   set ntp-server2 <class_ip>
   set ntp-server3 <class_ip>
next
```

The NTP service options include:

- **local**: The IP address of the interface that the DHCP server is added to becomes the client's NTP server IP address.
- **default**: Clients are assigned the FortiGate's configured NTP servers.
- **specify**: Specify up to three NTP servers in the DHCP server configuration.

IP address assignment with relay agent information option

Option 82 (DHCP relay information option) helps protect the FortiGate against attacks such as spoofing (or forging) of IP and MAC addresses, and DHCP IP address starvation.

The following CLI variables are included in the `config system dhcp server > config reserved-address` command:

| circuit-id-type {hex | string} | DHCP option type; hex or string (default). |
|---------------------------------|---|
| circuit-id <value> | Option 82 circuit ID of the client that will get the reserved IP address. Format: `vlan-mod-port` |
| | • `vlan`: VLAN ID (2 bytes) |
| | • `mod`: 1 = snoop, 0 = relay (1 byte) |
| | • `port`: port number (1 byte) |
| remote-id-type {hex | string} | DHCP option type; hex or string (default). |
| remote-id <value> | Option 82 remote ID of the client that will get the reserved IP address. Format: the MAC address of the client. |
| type {mac | option82} | The DHCP reserved address type; mac (default) or option82. |
To create an IP address assignment rule using option 82 in the GUI:

1. Go to Network > Interfaces.
2. Edit an existing port, or create a new one.

![The port Role must be LAN or Undefined.]

3. Enable DHCP Server.
4. Configure the address ranges and other settings as needed.
5. Click + to expand the Advanced options.

7. Configure the new rule:
 a. For the Type, select DHCP Relay Agent.
 b. Enter the Circuit ID and Remote ID.
 c. Enter the IP address that will be reserved.
8. Click OK.

To create an IP address assignment rule using option 82 with the CLI:

```bash
config system dhcp server
dedit 1
 set netmask 255.255.255.0
 set interface "port4"
config ip-range
dedit 1
 set start-ip 100.100.100.1
 set end-ip 100.100.100.99
next
dedit 2
 set start-ip 100.100.100.101
 set end-ip 100.100.100.254
next
dend
config reserved-address
dedit 1
 set type option82
 set ip 100.100.100.12
 set circuit-id-type hex
 set circuit-id "00010102"
 set remote-id-type hex
 set remote-id "704ca5e477d6"
next
dend
```

DHCP client options

When an interface is in DHCP addressing mode, DHCP client options can be configured in the CLI. For example, a vendor class identifier (usually DHCP client option 60) can be specified so that a request can be matched by a specific DHCP offer.

Multiple options can be configured, but any options not recognized by the DHCP server are discarded.
To configure client option 60 - vendor class identifier:

```
config system interface
  edit port1
    set vdom vdom1
    set mode dhcp
    config client-options
      edit 1
        set code 60
        set type hex
        set value aabbccdd
      next
    end
  set type physical
  set snmp-index 4
next
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>code <integer></td>
<td>DHCP client option code (0 - 255, default = 0). See Dynamic Host Configuration Protocol (DHCP) and Bootstrap Protocol (BOOTP) Parameters for a list of possible options.</td>
</tr>
<tr>
<td>type {hex</td>
<td>string</td>
</tr>
<tr>
<td>value <string></td>
<td>DHCP client option value.</td>
</tr>
<tr>
<td>ip <ip></td>
<td>DHCP client option IP address. This option is only available when type is ip.</td>
</tr>
</tbody>
</table>

Static routing

Static routing is one of the foundations of firewall configuration. It is a form of routing in which a device uses manually-configured routes. In the most basic setup, a firewall will have a default route to its gateway to provide network access. In a more complex setup with dynamic routing, ADVPN, or SD-WAN involved, you would still likely find static routes being deployed.

This section explores concepts in using static routing and provides examples in common use cases:

- Routing concepts on page 295
- Policy routes on page 307
- Equal cost multi-path on page 309
- Dual internet connections on page 313

The following topics include additional information about static routes:

- Deploying the Security Fabric on page 2290
- Security Fabric over IPsec VPN on page 2310
- Adding a static route on page 490
- IPsec VPN in an HA environment on page 1468
- IPsec VPN to Azure with virtual network gateway on page 1394
- FortiGate as dialup client on page 1414
ADVPN is the address negotiation protocol for IP with BGP (Border Gateway Protocol) as the routing protocol.

ADVPN with BGP as the routing protocol on page 1536
ADVPN with OSPF as the routing protocol on page 1545
ADVPN with RIP as the routing protocol on page 1554
Basic site-to-site VPN with pre-shared key on page 1360
Site-to-site VPN with digital certificate on page 1365
Site-to-site VPN with overlapping subnets on page 1372
Tunneled Internet browsing on page 1442
Multiple concurrent SDN connectors on page 2484
Packet distribution and redundancy for aggregate IPsec tunnels on page 1474
Use MAC addresses in SD-WAN rules and policy routes on page 564
Using BGP tags with SD-WAN rules on page 609

Routing concepts

This section contains the following topics:

- Default route on page 295
- Adding or editing a static route on page 296
- Configuring FQDNs as a destination address in static routes on page 296
- Routing table on page 297
- Viewing the routing database on page 299
- Kernel routing table on page 300
- Route cache on page 301
- Route look-up on page 302
- Blackhole routes on page 303
- Reverse path look-up on page 303
- Asymmetric routing on page 304
- Routing changes on page 306

Default route

The default route has a destination of 0.0.0.0/0.0.0.0, representing the least specific route in the routing table. It is a catch-all route in the routing table when traffic cannot match a more specific route. Typically, this is configured with a static route with an administrative distance of 10. In most instances, you will configure the next hop interface and the gateway address pointing to your next hop. If your FortiGate is sitting at the edge of the network, your next hop will be your ISP gateway. This provides internet access for your network.

Sometimes the default route is configured through DHCP. On some desktop models, the WAN interface is preconfigured in DHCP mode. Once the WAN interface is plugged into the network modem, it will receive an IP address, default gateway, and DNS server. FortiGate will add this default route to the routing table with a distance of 5, by default. This will take precedence over any default static route with a distance of 10. Therefore, take caution when you are configuring an interface in DHCP mode, where Retrieve default gateway from server is enabled. You may disable it and/or change the distance from the Network > Interfaces page when you edit an interface.
Adding or editing a static route

To add a static route using the GUI:

1. Go to Network > Static Routes and click Create New.
2. Enter the following information:

<table>
<thead>
<tr>
<th>Dynamic Gateway</th>
<th>When enabled, a selected DHCP/PPPoE interface will automatically retrieve its dynamic gateway.</th>
</tr>
</thead>
</table>
| Destination | • Subnet
| | Enter the destination IP address and netmask. A value of 0.0.0.0/0.0.0.0 creates a default route.
| | • Named Address
| | Select an address or address group object. Only addresses with static route configuration enabled will appear on the list. This means a geography type address cannot be used.
| | • Internet Service
| | Select an Internet Service. These are known IP addresses of popular services across the Internet. |
| Interface | Select the name of the interface that the static route will connect through. |
| Gateway Address | Enter the gateway IP address. When selecting an IPsec VPN interface or SD-WAN creating a blackhole route, the gateway cannot be specified. |
| Administrative Distance | Enter the distance value, which will affect which routes are selected first by different protocols for route management or load balancing. The default is 10. |
| Advanced Options | Optionally, expand Advanced Options and enter a Priority. When two routes have an equal distance, the route with a lower priority number will take precedence. The default is 1. |

3. Click OK.

Configuring FQDNs as a destination address in static routes

You can configure FQDN firewall addresses as destination addresses in a static route, using either the GUI or the CLI.

In the GUI, to add an FQDN firewall address to a static route in the firewall address configuration, enable the Static Route Configuration option. Then, when you configure the static route, set Destination to Named Address.

To configure an FQDN as a destination address in a static route using the CLI:

```
cfg firewall address
   edit 'Fortinet-Documentation-Website'
      set type fqdn
      set fqdn docs.fortinet.com
      set allow-routing enable
   next
end
```
config router static
edit 0
 set dstaddr Fortinet-Documentation-Website
...
next
end

Routing table

A routing table consists of only the best routes learned from the different routing protocols. The most specific route always takes precedence. If there is a tie, then the route with a lower administrative distance will be injected into the routing table. If administrative distances are also equal, then all the routes are injected into the routing table, and Cost and Priority become the deciding factors on which a route is preferred. If these are also equal, then FortiGate will use Equal cost multi-path on page 309 to distribute traffic between these routes.

Viewing the routing table in the GUI

You can view routing tables in the FortiGate GUI under Dashboard > Network > Static & Dynamic Routing by default. Expand the widget to see the full page. Additionally, if you want to convert the widget into a dashboard, click on the Save as Monitor icon on the top right of the page.

You can also monitor policy routes by toggling from Static & Dynamic to Policy on the top right corner of the page. The active policy routes include policy routes that you created, SD-WAN rules, and Internet Service static routes. It also supports downstream devices in the Security Fabric.

The following figure show an example of the static and dynamic routes in the Routing Monitor:

To view more columns, right-click on the column header to select the columns to be displayed:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Version</td>
<td>Shows whether the route is IPv4 or IPv6.</td>
</tr>
<tr>
<td>Network</td>
<td>The IP addresses and network masks of destination networks that the FortiGate can reach.</td>
</tr>
<tr>
<td>Gateway IP</td>
<td>The IP addresses of gateways to the destination networks.</td>
</tr>
<tr>
<td>Interfaces</td>
<td>The interface through which packets are forwarded to the gateway of the destination network.</td>
</tr>
</tbody>
</table>
Field Description

Distance The administrative distance associated with the route. A lower value means the route is preferable compared to other routes to the same destination.

Type The type values assigned to FortiGate routes (Static, Connected, RIP, OSPF, or BGP):

- **Connected**: All routes associated with direct connections to FortiGate interfaces
- **Static**: The static routes that have been added to the routing table manually
- **RIP**: All routes learned through RIP
- **RIPNG**: All routes learned through RIP version 6 (which enables the sharing of routes through IPv6 networks)
- **BGP**: All routes learned through BGP
- **OSPF**: All routes learned through OSPF
- **OSPF6**: All routes learned through OSPF version 6 (which enables the sharing of routes through IPv6 networks)
- **IS-IS**: All routes learned through IS-IS
- **HA**: RIP, OSPF, and BGP routes synchronized between the primary unit and the subordinate units of a high availability (HA) cluster. HA routes are maintained on subordinate units and are visible only if you're viewing the router monitor from a virtual domain that is configured as a subordinate virtual domain in a virtual cluster.

Metric The metric associated with the route type. The metric of a route influences how the FortiGate dynamically adds it to the routing table. The following are types of metrics and the protocols they are applied to:

- **Hop count**: Routes learned through RIP
- **Relative cost**: Routes learned through OSPF
- **Multi-Exit Discriminator (MED)**: Routes learned through BGP. By default, the MED value associated with a BGP route is zero. However, the MED value can be modified dynamically. If the value was changed from the default, the Metric column displays a non-zero value.

Priority In static routes, priorities are 0 by default. When two routes have an equal distance, the route with the lower priority number will take precedence.

VRF Virtual routing and forwarding (VRF) allows multiple routing table instances to co-exist. VRF can be assigned to an Interface. Packets are only forwarded between interfaces with the same VRF.

Up Since The total accumulated amount of time that a route learned through RIP, OSPF, or BGP has been reachable.

Viewing the routing table in the CLI

Viewing the routing table using the CLI displays the same routes as you would see in the GUI.

If VDOMs are enabled on the FortiGate, all routing-related CLI commands must be run within a VDOM and not in the global context.

To view the routing table using the CLI:

```
# get router info routing-table all
```

Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
Network

O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default

Routing table for VRF=0
S* 0.0.0.0/0 [1/0] via 172.31.0.1, MPLS [1/0] via 192.168.2.1, port1 [1/0] via 192.168.122.1, port2
S 1.2.3.4/32 20 via 172.16.100.81, VLAN100
C 10.10.2.0/24 is directly connected, hub
C 10.10.2.1/32 is directly connected, hub
O 10.10.10.0/24 [110/101] via 192.168.2.1, port1, 01:54:18
C 10.253.240.0/20 is directly connected, wqt.root
S 110.2.2.122/32 [22/0] via 2.2.2.2, port2, [3/3]
C 10.10.1.0/30 is directly connected, MPLS
C 10.10.1.2/32 is directly connected, MPLS
B 192.168.0.0/24 [20/0] via 172.31.0.1, MPLS, 00:31:43
C 192.168.2.0/24 is directly connected, portl
C 192.168.20.0/24 is directly connected, port3
C 192.168.99.0/24 is directly connected, Port1-VLAN99
C 192.168.122.0/24 is directly connected, port2

Routing table for VRF=10
C 172.16.101.0/24 is directly connected, VLAN101

Examining an entry:

B 192.168.0.0/24 [20/0] via 172.31.0.1, MPLS, 00:31:43

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>BGP. The routing protocol used.</td>
</tr>
<tr>
<td>192.168.0.0/24</td>
<td>The destination of this route, including netmask.</td>
</tr>
<tr>
<td>[20/0]</td>
<td>20 indicates administrative distance of 20 out of a range of 0 to 255.0 is an additional metric associated with this route, such as in OSPF.</td>
</tr>
<tr>
<td>172.31.0.1</td>
<td>The gateway or next hop.</td>
</tr>
<tr>
<td>MPLS</td>
<td>The interface that the route uses.</td>
</tr>
<tr>
<td>00:31:43</td>
<td>The age of the route in HH:MM:SS.</td>
</tr>
</tbody>
</table>

Viewing the routing database

The routing database consists of all learned routes from all routing protocols before they are injected into the routing table. This likely lists more routes than the routing table as it consists of routes to the same destinations with different distances. Only the best routes are injected into the routing table. However, it is useful to see all learned routes for troubleshooting purposes.
To view the routing database using the CLI:

```bash
# get router info routing-table database
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
        O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
    E1 - OSPF external type 1, E2 - OSPF external type 2
        i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
        > - selected route, * - FIB route, p - stale info

Routing table for VRF=0
S  * 0.0.0.0/0/0  [1/0] via 172.31.0.1, MPLS
   *> [1/0] via 192.168.2.1, port1
   *> [1/0] via 192.168.122.1, port2
S  * 1.2.3.4/32 [10/0] via 172.16.100.81, VLAN100
C  * 10.10.2.0/24 is directly connected, hub
C  * 10.10.2.1/32 is directly connected, hub
O  * 10.10.10.0/24 [110/101] via 192.168.2.1, port1, 02:10:17
C  * 10.253.240.0/20 is directly connected, wqt.root
S  * 110.2.2.122/32 [22/0] via 2.2.2.2, port2, [3/3]
C  * 172.16.50.0/24 is directly connected, VLAN50
C  * 172.16.60.0/24 is directly connected, VLAN60
C  * 172.16.100.0/24 is directly connected, VLAN100
O  172.31.0.0/30 [110/201] via 192.168.2.1, port1, 00:47:36
C  * 172.31.0.30 is directly connected, MPLS

Selected routes are marked by the > symbol. In the above example, the OSPF route to destination 172.31.0.0/30 is not selected.

Kernel routing table

The kernel routing table makes up the actual Forwarding Information Base (FIB) that used to make forwarding decisions for each packet. The routes here are often referred to as kernel routes. Parts of this table are derived from the routing table that is generated by the routing daemon.

To view the kernel routing table using the CLI:

```bash
get router info kernel
`tab=254` `vf=0` `scope=0` `type=1` `proto=11` `prio=0` `0.0.0.0/0.0.0.0/0->0.0.0.0/0` `pref=0.0.0.0
 gwy=172.31.0.1 flag=04 hops=0 oif=31(MPLS)
 gwy=192.168.2.1 flag=04 hops=0 oif=3(port1)
 gwy=192.168.122.1 flag=04 hops=0 oif=4(port2)

`tab=254` `vf=0` `scope=0` `type=1` `proto=17` `prio=0` `192.168.122.98/255.255.255.255/0->1.1.1.1/32
 pref=0.0.0.0` `gwy=192.168.122.1 dev=4(port2)

`tab=254` `vf=0` `scope=0` `type=1` `proto=17` `prio=0` `127.31.0.2/255.255.255.255/0->1.1.1.1/32
 pref=0.0.0.0` `gwy=172.31.0.1 dev=31(MPLS)

`tab=254` `vf=0` `scope=0` `type=1` `proto=17` `prio=0` `192.168.2.5/255.255.255.255/0->1.1.1.1/32
 pref=0.0.0.0` `gwy=192.168.2.1 dev=3(port1)

`tab=254` `vf=0` `scope=0` `type=1` `proto=11` `prio=0` `0.0.0.0/0.0.0.0/0->1.2.3.4/32` `pref=0.0.0.0
 gwy=172.16.100.81 dev=20(VLAN100)

`tab=254` `vf=0` `scope=0` `type=1` `proto=17` `prio=0` `192.168.122.98/255.255.255.255/0->8.8.8.8/32
 pref=0.0.0.0` `gwy=192.168.122.1 dev=4(port2)

The kernel routing table entries are:
<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tab</td>
<td>Table number: It will either be 254 (unicast) or 255 (multicast).</td>
</tr>
<tr>
<td>vf</td>
<td>Virtual domain of the firewall: It is the VDOM index number. If VDOMs are not enabled, this number is 0.</td>
</tr>
</tbody>
</table>
| type | Type of routing connection. Valid values include:
 - 0 - unspecific
 - 1 - unicast
 - 2 - local
 - 3 - broadcast
 - 4 - anycast
 - 5 - multicast
 - 6 - blackhole
 - 7 - unreachable
 - 8 - prohibited |
| proto | Type of installation that indicates where the route came from. Valid values include:
 - 0 - unspecific
 - 2 - kernel
 - 11 - ZebOS routing module
 - 14 - FortiOS
 - 15 - HA
 - 16 - authentication based
 - 17 - HA1 |
| prio | Priority of the route. Lower priorities are preferred. |
| ->0.0.0.0/0 | The IP address and subnet mask of the destination. |
| (-x.x.x.x/mask) | Preferred next hop along this route. |
| gwy | Gateway: The address of the gateway this route will use. |
| dev | Outgoing interface index: This number is associated with the interface for this route. If VDOMs are enabled, the VDOM is also included here. If an interface alias is set for this interface, it is also displayed here. |

Route cache

The route cache contains recently used routing entries in a table. It is consulted before the routing table to speed up the route look-up process.

To view the route cache using the CLI:

```
# diagnose ip rtcache list  
family=02 tab=254 vrf=0 vf=0 type=01 tos=0 flag=00000200  
0.0.0.0@0-&gt;208.91.113.230@3(port1) gwy=192.168.2.1 prefsr=192.168.2.5
```
The size of the route cache is calculated by the kernel, but can be modified.

To modify the size of the route cache:

```plaintext
config system global
    set max-route-cache-size <number_of_cache_entries>
end
```

Route look-up

Route look-up typically occurs twice in the life of a session. Once when the first packet is sent by the originator and once more when the first reply packet is sent from the responder. When a route look-up occurs, the routing information is written to the session table and the route cache. If routing changes occur during the life of a session, additional routing look-ups may occur.

FortiGate performs a route look-up in the following order:

1. Policy-based routes: If a match occurs and the action is to forward, traffic is forwarded based on the policy route.
2. Route Cache: If there are no matches, FortiGate looks for the route in the route cache.
3. Forwarding Information Base, otherwise known as the kernel routing table.
4. If no match occurs, the packet is dropped.

Searching the routing table

When there are many routes in your routing table, you can perform a quick search by using the search bar to specify your criteria, or apply filters on the column header to display only certain routes. For example, if you want to only display static routes, you may use "static" as the search term, or filter by the **Type** field with value **Static**.

Route look-up on the other hand provides a utility for you to enter criteria such as **Destination**, **Destination Port**, **Source**, **Protocol** and/or **Source Interface**, in order to determine the route that a packet will take. Once you click **Search**, the corresponding route will be highlighted.

You can also use the CLI for a route look-up. The CLI provides a basic route look-up tool.

To look-up a route in the CLI:

```plaintext
# get router info routing-table details 4.4.4.4
Routing table for VRF=0
Routing entry for 0.0.0.0/0
```
Known via "static", distance 1, metric 0, best
* 172.31.0.1, via MPLS distance 0
* 192.168.2.1, via port1 distance 0
* 192.168.122.1, via port2 distance 0

Blackhole routes

Sometimes upon routing table changes, it is not desirable for traffic to be routed to a different gateway. For example, you may have traffic destined for a remote office routed through your IPsec VPN interface. When the VPN is down, traffic will try to re-route to another interface. However, this may not be viable and traffic will instead be routed to your default route through your WAN, which is not desirable. Traffic may also be routed to another VPN, which you do not want. For such scenarios, it is good to define a blackhole route so that traffic is dropped when your desired route is down. Upon reconnection, your desired route is once again added to the routing table and your traffic will resume routing to your desired interface. For this reason, blackhole routes are created when you configure an IPsec VPN using the IPsec wizard.

To create a blackhole route in the GUI:

1. Go to Network > Static Routes.
2. Click Create New. The New Static Route screen appears.
3. Specify a Destination type.
4. Select Blackhole from the Interface field.
5. Type the desired Administrative Distance.
6. Click OK.

Route priority for a Blackhole route can only be configured from the CLI.

Reverse path look-up

Whenever a packet arrives at one of the interfaces on a FortiGate, the FortiGate determines whether the packet was received on a legitimate interface by doing a reverse look-up using the source IP address in the packet header. This protects against IP spoofing attacks. If the FortiGate does not have a route to the source IP address through the interface on which the packet was received, the FortiGate drops the packet as per Reverse Path Forwarding (RPF) check. There are two modes of RPF – feasible path and strict. The default feasible RPF mode checks only for the existence of at least one active route back to the source using the incoming interface. The strict RPF check ensures the best route back to the source is used as the incoming interface.

To configure a strict Reverse Path Forwarding check in the CLI:

```
config system settings
  set strict-src-check enable
end
```
You can remove RPF state checks without needing to enable asymmetric routing by disabling state checks for traffic received on specific interfaces. Disabling state checks makes a FortiGate less secure and should only be done with caution for troubleshooting purposes.

To remove Reverse Path Forwarding checks from the state evaluation process in the CLI:

```
config system interface
    edit <interface_name>
        set src-check disable
    next
end
```

Asymmetric routing

Asymmetric routing occurs when request and response packets follow different paths that do not cross the same firewall.

In the following topology, traffic between PC1 and PC2 takes two different paths.

Traffic from PC1 to PC2 goes through the FortiGate, while traffic from PC2 to PC1 does not.

In TCP, if the packets in the request and response directions follow different paths, the FortiGate will block the packets, since the TCP three-way handshake is not established through the FortiGate.

Scenario 1: PC1 starts a TCP connection with PC2

1. The TCP SYN is allowed by the FortiGate.
2. The TCP SYN/ACK bypasses the FortiGate.
3. The TCP ACK is blocked by the FortiGate.
4. Subsequent TCP packets are blocked by the FortiGate.

Scenario 2: PC2 starts a TCP connection with PC1

1. The TCP SYN bypasses the FortiGate.
2. The TCP SYN/ACK is blocked by the FortiGate.
3. Subsequent TCP packets are blocked by the FortiGate.

In ICMP, consider the following scenarios.

Scenario 1: PC1 pings PC2

1. The ICMP request passes through the FortiGate. A session is created.
2. The ICMP reply bypasses the FortiGate, but reaches PC1. The ping is successful.
3. The ICMP request passes through the FortiGate, and it matches the previous session.
4. The ICMP reply bypasses the FortiGate, but it reaches PC1. The ping is successful.
5. Subsequent ICMP requests are allowed by the FortiGate.

Scenario 2: PC2 pings PC1
1. The ICMP request bypasses the FortiGate, but it reaches PC1.
2. The ICMP reply passes through the FortiGate. No session is matched, and the packet is dropped.
3. Subsequent ICMP replies are blocked by the FortiGate.

If an ICMP request does not pass through the FortiGate, but the response passes through the FortiGate, then by default it blocks the packet as invalid.

Permitting asymmetric routing

If required, the FortiGate can be configured to permit asymmetric routing.

To permit asymmetric routing:

```
cfgSystem set asmrte enable
```

This setting should be used only when the asymmetric routing issue cannot be resolved by ensuring both directions of traffic pass through the FortiGate.

When asymmetric routing is enabled and occurs, the FortiGate cannot inspect all traffic. Potentially malicious traffic may pass through and compromise the security of the network.

Asymmetric routing behaves as follows when it is permitted by the FortiGate:

TCP packets

Scenario 1: PC1 starts a TCP connection with PC2
1. The TCP SYN is allowed by the FortiGate. The FortiGate creates a session, checks the firewall policies, and applies the configuration from the matching policy (UTM inspection, NAT, traffic shaping, and so on).
2. The TCP SYN/ACK bypasses the FortiGate.
3. The TCP ACK is allowed by the FortiGate. The packet matches the previously created session.
4. Subsequent TCP packets are allowed by the FortiGate. The packets in the session can also be offloaded when applicable.

Scenario 2: PC2 starts a TCP connection with PC1
1. The TCP SYN bypasses the FortiGate.
2. The TCP SYN/ACK is allowed by the FortiGate. No session is matched. The packet passes to the CPU and is forwarded based on the routing table.
3. The TCP ACK bypasses the FortiGate.
4. Subsequent TCP packets are allowed by the FortiGate. The FortiGate acts as a router that only makes routing decisions. No security inspection is performed.
ICMP packets

Scenario 1: PC1 pings PC2
1. There is no difference from when asymmetric routing is disabled.

Scenario 2: PC2 pings PC1
1. The ICMP request bypasses the FortiGate, but it reaches PC1.
2. The ICMP reply passes through the FortiGate. No session is matched. The packet passes to the CPU and is forwarded based on the routing table.
3. Subsequent ICMP replies are allowed by the FortiGate. The FortiGate acts as a router that only makes routing decisions. No security inspection is performed.

UDP packets

Asymmetric routing does not affect UDP packets. UDP packets are checked by the session table regardless of asymmetric routing. A policy is required to allow UDP.

Routing changes

When routing changes occur, routing look-up may occur on an existing session depending on certain configurations.

Routing changes without SNAT

When a routing change occurs, FortiGate flushes all routing information from the session table and performs new routing look-up for all new packets on arrival by default. You can modify the default behavior using the following commands:

```plaintext
config system interface
  edit <interface>
    set preserve-session-route enable
  next
end
```

By enabling preserve-session-route, the FortiGate marks existing session routing information as persistent. Therefore, routing look-up only occurs on new sessions.

Routing changes with SNAT

When SNAT is enabled, the default behavior is opposite to that of when SNAT is not enabled. After a routing change occurs, sessions with SNAT keep using the same outbound interface as long as the old route is still active. This may be the case if the priority of the static route was changed. You can modify this default behavior using the following commands:

```plaintext
config system global
  set snat-route-change enable
end
```

By enabling snat-route-change, sessions with SNAT will require new route look-up when a routing change occurs. This will apply a new SNAT to the session.
Policy routing allows you to specify an interface to route traffic. This is useful when you need to route certain types of network traffic differently than you would if you were using the routing table. You can use the incoming traffic's protocol, source or destination address, source interface, or port number to determine where to send the traffic.

When a packet arrives, the FortiGate starts at the top of the policy route list and attempts to match the packet with a policy. For a match to be found, the policy must contain enough information to route the packet. At a minimum, this requires the outgoing interface to forward the traffic, and the gateway to route the traffic to. If one or both of these are not specified in the policy route, then the FortiGate searches the routing table to find the best active route that corresponds to the policy route. If no routes are found in the routing table, then the policy route does not match the packet. The FortiGate continues down the policy route list until it reaches the end. If no matches are found, then the FortiGate does a route lookup using the routing table.

Policy routes are sometimes referred to as Policy-based routes (PBR).

Configuring a policy route

In this example, a policy route is configured to send all FTP traffic received at port1 out through port4 and to a next hop router at 172.20.120.23. To route FTP traffic, the protocol is set to TCP (6) and the destination ports are set to 21 (the FTP port).

To configure a policy route in the GUI:

2. Click Create New > Policy Route.
3. Configure the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming interface</td>
<td>port1</td>
</tr>
<tr>
<td>Source Address</td>
<td>0.0.0.0/0.0.0</td>
</tr>
<tr>
<td>Destination Address</td>
<td>0.0.0.0/0.0.0</td>
</tr>
<tr>
<td>Protocol</td>
<td>TCP</td>
</tr>
<tr>
<td>Destination ports</td>
<td>21 - 21</td>
</tr>
<tr>
<td>Type of service</td>
<td>0x00</td>
</tr>
<tr>
<td>Bit Mask</td>
<td>0x00</td>
</tr>
<tr>
<td>Outgoing interface</td>
<td>Enable and select port4</td>
</tr>
<tr>
<td>Gateway address</td>
<td>172.20.120.23</td>
</tr>
</tbody>
</table>
4. Click OK.

To configure a policy route in the CLI:

```plaintext
cfg router policy
  edit 1
    set input-device "port1"
    set src "0.0.0.0/0.0.0.0"
    set dst "0.0.0.0/0.0.0.0"
    set protocol 6
    set start-port 21
    set end-port 21
    set gateway 172.20.120.23
    set output-device "port4"
    set tos 0x00
    set tos-mask 0x00
next
end
```

Moving a policy route

A routing policy is added to the bottom of the table when it is created. Routing policies can be moved to a different location in the table to change the order of preference. In this example, routing policy 3 will be moved before routing policy 2.
To move a policy route in the GUI:

1. Go to **Network > Policy Routes**.
2. In the table, select the policy route.

3. Drag the selected policy route to the desired position.

To move a policy route in the CLI:

```plaintext
config router policy
    move 3 after 1
end
```

Equal cost multi-path

Equal cost multi-path (ECMP) is a mechanism that allows a FortiGate to load-balance routed traffic over multiple gateways. Just like routes in a routing table, ECMP is considered after policy routing, so any matching policy routes will take precedence over ECMP.

ECMP pre-requisites are as follows:
- Routes must have the same destination and costs. In the case of static routes, costs include distance and priority
- Routes are sourced from the same routing protocol. Supported protocols include static routing, OSPF, and BGP

ECMP and SD-WAN implicit rule

ECMP and SD-WAN implicit rule are essentially similar in the sense that an SD-WAN implicit rule is processed after SD-WAN service rules are processed. See [implicit rule on page 547](#) to learn more.

The following table summarizes the different load-balancing algorithms supported by each:

<table>
<thead>
<tr>
<th>ECMP</th>
<th>SD-WAN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>source-ip-based</td>
<td>Source IP</td>
<td>Traffic is divided equally between the interfaces. Sessions that start at the same source IP address use the same path. This is the default selection.</td>
</tr>
</tbody>
</table>
ECMP

<table>
<thead>
<tr>
<th>Weight-Based</th>
<th>SD-WAN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sessions</td>
<td>weight-based</td>
<td>The workload is distributed based on the number of sessions that are connected through the interface. The weight that you assign to each interface is used to calculate the percentage of the total sessions allowed to connect through an interface, and the sessions are distributed to the interfaces accordingly.</td>
</tr>
</tbody>
</table>

| Usage-Based | Spillover | usage-based | The interface is used until the traffic bandwidth exceeds the ingress and egress thresholds that you set for that interface. Additional traffic is then sent through the next interface member. |

| Source-Destination IP-Based | Traffic is divided equally between the interfaces. Sessions that start at the same source IP address and go to the same destination IP address use the same path. |

| Not Supported | Volume | measured-volume-based | This mode is supported in SD-WAN only. The workload is distributed based on the number of packets that are going through the interface. |

To configure the ECMP algorithm from the CLI:

- At the VDOM level:
  ```
  config system settings
  set v4-ecmp-mode {source-ip-based* | weight-based | usage-based | source-dest-ip-based}
  end
  ```

- If SD-WAN is enabled, the above option is not available and ECMP is configured under the SD-WAN settings:
  ```
  config system sdwan
  set status enable
  set load-balance-mode {source-ip-based* | weight-based | usage-based | source-dest-ip-based | measured-volume-based}
  end
  ```

For ECMP in IPv6, the mode must also be configured under SD-WAN:

```
# diagnose sys vd list
system fib version=63
list virtual firewall info:
name=root/root index=0 enabled fib_ver=40 use=168 rt_num=46 asym_rt=0 sip_helper=0, sip_nat_trace=1, mc_fwd=0, mc_ttl_nc=0, tpmc_sk_pl=0
ecmp=source-ip-based, ecmp6=source-ip-based asym_rt6=0 rt6_num=55 strict_src_check=0 dns_log=1 ses_num=20 ses6_num=0 pkt_num=19154477
```
To change the number of paths allowed by ECMP:

```
config system settings
    set ecmp-max-paths <number of paths>
end
```

Setting `ecmp-max-paths` to the lowest value of 1 is equivalent to disabling ECMP.

ECMP configuration examples

The following examples demonstrate the behavior of ECMP in different scenarios:

- **Example 1:** Default ECMP on page 311
- **Example 2:** Same distance, different priority on page 312
- **Example 3:** Weight-based ECMP on page 312
- **Example 4:** Load-balancing BGP routes on page 313

Example 1: Default ECMP

```
config router static
    edit 1
        set gateway 172.16.151.1
        set device "port1"
    next
    edit 2
        set gateway 192.168.2.1
        set device "port2"
    next
end
```

```
# get router info routing-table all
Routing table for VRF=0
S* 0.0.0.0/0 [10/0] via 172.16.151.1, port1
    [10/0] via 192.168.2.1, port2
C 172.16.151.0/24 is directly connected, port1
C 192.168.2.0/24 is directly connected, port2
```

Result:

Both routes are added to the routing table and load-balanced based on the source IP.
Example 2: Same distance, different priority

```bash
config router static
  edit 1
    set gateway 172.16.151.1
    set priority 5
    set device "port1"
  next
  edit 2
    set gateway 192.168.2.1
    set device "port2"
  next
end
```

```
# get router info routing-table all
Routing table for VRF=0
S* 0.0.0.0/0 [10/0] via 192.168.2.1, port2
    [10/0] via 172.16.151.1, port1, [5/0]
C 172.16.151.0/24 is directly connected, port1
C 192.168.2.0/24 is directly connected, port2
```

Result:

Both routes are added to the routing table, but traffic is routed to port2 which has a lower priority value with a default of 0.

Example 3: Weight-based ECMP

```bash
config router static
  edit 3
    set dst 10.10.30.0 255.255.255.0
    set weight 80
    set device "vpn2HQ1"
  next
  edit 5
    set dst 10.10.30.0 255.255.255.0
    set weight 20
    set device "vpn2HQ2"
  next
end
```

```
# get router info routing-table all
Routing table for VRF=0
```

```
S 10.10.30.0/24 [10/0] is directly connected, vpn2HQ1, [0/80]
    [10/0] is directly connected, vpn2HQ2, [0/20]
C 172.16.151.0/24 is directly connected, port1
C 192.168.0.0/24 is directly connected, port3
C 192.168.2.0/24 is directly connected, port2
```

Result:

Both routes are added to the routing table, but 80% of the sessions to 10.10.30.0/24 are routed to vpn2HQ1, and 20% are routed to vpn2HQ2.
Example 4: Load-balancing BGP routes

```
config router bgp
    set as 64511
    set router-id 192.168.2.86
    set ebgp-multipath enable
    config neighbor
        edit "192.168.2.84"
            set remote-as 64512
            next
        edit "192.168.2.87"
            set remote-as 64512
            next
    end
end
# get router info routing-table all
Routing table for VRF=0
...
C  172.16.151.0/24 is directly connected, port1
C  192.168.0.0/24 is directly connected, port3
C  192.168.2.0/24 is directly connected, port2
B  192.168.80.0/24 [20/0] via 192.168.2.84, port2, 00:00:33
    [20/0] via 192.168.2.87, port2, 00:00:33
```

Result:

The network 192.168.80.0/24 is advertised by two BGP neighbors. Both routes are added to the routing table, and traffic is load-balanced based on Source IP.

For multiple BGP paths to be added to the routing table, you must enable `ebgp-multipath` for eBGP or `ibgp-multipath` for iBGP. These settings are disabled by default.

Dual internet connections

Dual internet connections, also referred to as dual WAN or redundant internet connections, refers to using two FortiGate interfaces to connect to the Internet. This is generally accomplished with SD-WAN, but this legacy solution provides the means to configure dual WAN without using SD-WAN. You can use dual internet connections in several ways:

- Link redundancy: If one interface goes down, the second interface automatically becomes the main connection.
- Load sharing: This ensures better throughput.
- Use a combination of link redundancy and load sharing.
This section describes the following dual internet connection scenarios:

- **Scenario 1: Link redundancy and no load-sharing on page 314**
- **Scenario 2: Load-sharing and no link redundancy on page 316**
- **Scenario 3: Link redundancy and load-sharing on page 317**

Scenario 1: Link redundancy and no load-sharing

Link redundancy ensures that if your Internet access is no longer available through a certain port, the FortiGate uses an alternate port to connect to the Internet.

In this scenario, two interfaces, WAN1 and WAN2, are connected to the Internet using two different ISPs. WAN1 is the primary connection. In the event of a failure of WAN1, WAN2 automatically becomes the connection to the Internet. For this configuration to function correctly, you must configure the following settings:

- **Link health monitor on page 314**: To determine when the primary interface (WAN1) is down and when the connection returns.
- **Routing on page 315**: Configure a default route for each interface.
- **Security policies on page 316**: Configure security policies to allow traffic through each interface to the internal network.

Link health monitor

Adding a link health monitor is required for routing failover traffic. A link health monitor confirms the device interface connectivity by probing a gateway or server at regular intervals to ensure it is online and working. When the server is not accessible, that interface is marked as down.

Set the **interval** (how often to send a ping) and **failtime** (how many lost pings are considered a failure). A smaller interval value and smaller number of lost pings results in faster detection, but creates more traffic on your network.

The link health monitor supports both IPv4 and IPv6, and various other protocols including ping, tcp-echo, udp-echo, http, and twamp.

To add a link health monitor (IPv4) using the CLI:

```
config system link-monitor
  edit <link-monitor-name>
    set addr-mode ipv4
    set srcintf <interface-name>
    set server <server-IP-address>
    set protocol {ping tcp-echo udp-echo http twamp}
    set gateway-ip <gateway-IP-address>
    set interval <seconds>
    set failtime <retry-attempts>
    set recoverytime <number-of-successful-responses>
    set status enable
  next
end
```
Network

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>set update-cascade-interface {enable</td>
<td>disable}</td>
</tr>
<tr>
<td>set update-static-route {enable</td>
<td>disable}</td>
</tr>
</tbody>
</table>

Routing

You must configure a default route for each interface and indicate your preferred route as follows:

- Specify different distances for the two routes. The lower of the two distance values is declared active and placed in the routing table.

 Or

- Specify the same distance for the two routes, but give a higher priority to the route you prefer by defining a lower value. Both routes will be added to the routing table, but the route with a higher priority will be chosen as the best route.

In the following example, we will use the first method to configure different distances for the two routes. You might not be able to connect to the backup WAN interface because the FortiGate does not route traffic out of the backup interface. The FortiGate performs a reverse path look-up to prevent spoofed traffic. If an entry cannot be found in the routing table that sends the return traffic out through the same interface, the incoming traffic is dropped.

To configure the routing of the two interfaces using the GUI:

1. Go to Network > Static Routes, and click Create New.
2. Enter the following information:

 | Destination | For an IPv4 route, enter a subnet of 0.0.0.0/0.0.0.0. For an IPv6 route, enter a subnet of ::/0. |
 | Interface | Select the primary connection. For example, wan1. |
 | Gateway Address | Enter the gateway address. |
 | Administrative Distance | Leave as the default of 10. |

3. Click OK.
4. Repeat the above steps to set Interface to wan2 and Administrative Distance to 20.

To configure the routing of the two interfaces using the CLI:

```plaintext
config router {static | static6}
edit 1
   set dst 0.0.0.0 0.0.0.0
   set device wan1
   set gateway <gateway_address>
   set distance 10
```
Network

```plaintext
next
edit 2
    set dst 0.0.0.0 0.0.0.0
    set device wan2
    set gateway <gateway_address>
    set distance 20
next
eend
```

Security policies

When you create security policies, you need to configure duplicate policies to ensure that after traffic fails over WAN1, regular traffic is allowed to pass through WAN2, as it did with WAN1. This ensures that failover occurs with minimal effect to users.

Scenario 2: Load-sharing and no link redundancy

Load sharing may be accomplished in a few of the following ways of the many possible ways:

- By defining a preferred route with a lower distance, and specifying policy routes to route certain traffic to the secondary interface.
- By defining routes with same distance values but different priorities, and specifying policy routes to route certain traffic to the secondary interface.
- By defining routes with same distance values and priorities, and use equal-cost multi-path (ECMP) routing to equally distribute traffic between the WAN interfaces.

In our example, we will use the first option for our configuration. In this scenario, because link redundancy is not required, you do not have to configure a link monitor.

Traffic behaviour without a link monitor is as follows:

- If the remote gateway is down but the primary WAN interface of a FortiGate is still up, the FortiGate will continue to route traffic to the primary WAN. This results in traffic interruptions.
- If the primary WAN interface of a FortiGate is down due to physical link issues, the FortiGate will remove routes to it and the secondary WAN routes will become active. Traffic will failover to the secondary WAN.

Routing

Configure routing as you did in Scenario 1: Link redundancy and no load-sharing on page 314 above.

Policy routes

By configuring policy routes, you can redirect specific traffic to the secondary WAN interface. This works in this case because policy routes are checked before static routes. Therefore, even though the static route for the secondary WAN is not in the routing table, traffic can still be routed using the policy route.

In this example, we will create a policy route to route traffic from one address group to the secondary WAN interface.
To configure a policy route from the GUI:

2. Enter the following information:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming interface</td>
<td>Define the source of the traffic. For example, internal.</td>
</tr>
<tr>
<td>Source Address</td>
<td>If we prefer to route traffic only from a group of addresses, define an address or address group, and add here.</td>
</tr>
<tr>
<td>Destination Address</td>
<td>Because we want to route all traffic from the address group here, we do not specify a destination address.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Specify any protocol.</td>
</tr>
<tr>
<td>Action</td>
<td>Forward traffic.</td>
</tr>
<tr>
<td>Outgoing interface</td>
<td>Select the secondary WAN as the outbound interface. For example, wan2.</td>
</tr>
<tr>
<td>Gateway address</td>
<td>Input the gateway address for your secondary WAN.</td>
</tr>
<tr>
<td></td>
<td>Because its default route has a higher distance value and is not added to the routing table, the gateway address must be added here.</td>
</tr>
</tbody>
</table>

3. Click OK.

To configure a policy route from the CLI:

```
config router policy
edit 1
    set input-device "internal"
    set srcaddr "Laptops"
    set gateway <gateway_address>
    set output-device "wan2"
next
end
```

Security policies

Your security policies should allow all traffic from internal to WAN1. Because link redundancy is not needed, you do not need to duplicate all WAN1 policies to WAN2. You will only need to define policies used in your policy route.

Scenario 3: Link redundancy and load-sharing

In this scenario, both the links are available to distribute Internet traffic with the primary WAN being preferred more. Should one of the interfaces fail, the FortiGate will continue to send traffic over the other active interface. The configuration is a combination of both the link redundancy and the load-sharing scenarios. The main difference is that the configured routes have equal distance values, with the route with a higher priority being preferred more. This ensures both routes are active in the routing table, but the route with a higher priority will be the best route.

Link health monitor

Link monitor must be configured for both the primary and the secondary WAN interfaces. This ensures that if the primary or the secondary WAN fails, the corresponding route is removed from the routing table and traffic re-routed to the other
WAN interface.

For configuration details, see sample configurations in Scenario 1: Link redundancy and no load-sharing on page 314.

Routing

Both WAN interfaces must have default routes with the same distance. However, preference is given to the primary WAN by giving it a higher priority.

To configure the routing of the two interfaces using the CLI:

```plaintext
cfg config router {static | static6}
edit 1
   set dst 0.0.0.0 0.0.0.0
   set device wan1
   set gateway <gateway_address>
   set distance 10
   set priority 1
next
edit 2
   set dst 0.0.0.0 0.0.0.0
   set device wan2
   set gateway <gateway_address>
   set distance 10
   set priority 10
next
end
```

Policy routes

The policy routes configuration is very similar to that of the policy routes in Scenario 2: Load-sharing and no link redundancy on page 316, except that the gateway address should not be specified. When a policy route is matched and the gateway address is not specified, the FortiGate looks at the routing table to obtain the gateway. In case the secondary WAN fails, traffic may hit the policy route. Because there is no gateway specified and the route to the secondary WAN is removed by the link monitor, the policy route will by bypassed and traffic will continue through the primary WAN. This ensures that the policy route is not active when the link is down.

Security policies

When you create security policies, you need to configure duplicate policies to ensure that after traffic fails over WAN1, regular traffic is allowed to pass through WAN2, as it was with WAN1. This ensures that failover occurs with minimal effect to users.

Dynamic routing

Dynamic routing protocols attempt to build a map of the network topology to identify the best routes to reach different destinations. Instead of manually defining static routes, which is not scalable, dynamic routing typically involves defining neighbors and peer routers that share their network topology and routing updates with each other. Protocols like distance vector, link state, and path vector are used by popular routing protocols. FortiGate supports RIP, OSPF, BGP,
and IS-IS, which are interoperable with other vendors. When different dynamic routing protocols are used, the administrative distance of each protocol helps the FortiGate decide which route to pick.

Go to System > Feature Visibility and enable Advanced Routing to configure dynamic routing options in the GUI. See Feature visibility on page 2165 for more information.

This section includes:

- RIP on page 320
- OSPF on page 339
- BGP on page 356
- BFD on page 389

To view the routing table and perform route look-ups in the GUI, go to Dashboard > Network and expand the Routing widget.

To view the routing table in the CLI:

```
# get router info routing-table all
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
    O - OSPF, IA - OSPF inter area
    N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
    E1 - OSPF external type 1, E2 - OSPF external type 2
    i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
    * - candidate default
Routing table for VRF=0
S*  0.0.0.0/0 [5/0] via 192.168.0.1, wan1
C  10.10.10.0/24 is directly connected, internal
C  169.254.2.1/32 is directly connected, Dialup-test
C  172.31.0.0/30 is directly connected, toKVM-MPLS
C  172.31.0.1/32 is directly connected, toKVM-MPLS
C  192.168.0.0/24 is directly connected, wan1
O  192.168.2.24 [110/101] via 10.10.10.11, internal, 00:00:26
S  192.168.20.0/24 [10/0] via 172.31.0.2, toKVM-MPLS
    [10/0] via 10.10.10.11, internal
```
RIP

Routing Information Protocol (RIP) is a distance-vector routing protocol that is intended for small and relatively homogeneous networks. It works well when there are minimal redundant paths and limited hop counts. FortiGate supports RIP version 1 (RFC 1058), RIP version 2 (RFC 2453), and RIPng (RFC 2080).

Basic configuration

To configure the FortiGate to participate in RIP using the most basic configurations in the GUI:

1. Go to Network > RIP.
2. Set the Version.
3. Add the networks that the FortiGate will advertise in and that will participate in RIP.
4. If the interface settings, such as passive interface, authentication, or enabling send/receive updates, must be edited, add the interfaces to the Interface table.
5. Click Apply.

To configure the FortiGate to participate in RIP using the most basic configurations in the CLI:

```
config router rip
  config network
    edit 1
      set prefix <subnet> <netmask>
    next
  end
  config interface
    edit <interface>
      set receive-version 2
      set send-version 2
    next
  end
end
```

Default route injection

Enabling Inject default route (default-information-originate) advertises a default route into the FortiGate's RIP network.

To enable/disable default route injection in the GUI:

1. Go to Network > RIP.
2. Expand the Advanced Options.
3. Enable/disable Inject Default Route.
4. Click OK.

To enable/disable default route injection in the CLI:

```
config router rip
  set default-information-originate {enable | disable}
```
Default metric

The default metric setting sets the default metric for all redistributed routes. If the default metric is set to five, and static routes are redistributed, then static routes have a metric of five. This value can be overridden by setting a specific metric value for a protocol. For example, the static route metric can be set to two, overriding the default metric.

```
config router rip
    set default-metric 5
    config redistribute "static"
        set status enable
        set metric 2
    end
end
```

The default metric is five, but redistributed static routes have a metric of two. So, the default metric is overridden and the metric for redistributed static routes is two.

Timers

RIP uses the update, timeout, and garbage timers to regulate its performance. The default timer settings are effective in most configurations. When customizing the settings, you must ensure that the new settings are compatible with your local routers and access servers.

Go to Network > RIP and expand the Advanced Options to configure the timers in the GUI, or use the CLI:

```
config router rip
    set timeout-timer <seconds>
    set update-timer <seconds>
    set garbage-timer <seconds>
end
```

Update timer

The update timer sets the interval between routing updates. The default value is 30 seconds. Randomness is added to help prevent network congestion due to multiple routers trying to update their neighbors simultaneously. The update timer must be at least three times shorter than the timeout timer.

If there is significant RIP traffic on the network, you can increase the update timer to send fewer updates. You must apply the same increase to all routers on the network to avoid timeouts that degrade your network speed.

Timeout timer

The timeout timer is the maximum amount of time that a reachable route is kept in the routing table since its last update. The default value is 180 seconds. If an update for the route is received before the timeout period elapses, then the timer is reset. The timeout timer should be at least three times longer than the update timer.

If routers are not responding to updates in time, increasing the timeout timer can help. A longer timeout timer results in longer update periods, and the FortiGate could wait a considerable amount of time for all of the timers to expire on an unresponsive route.
Garbage timer

The garbage timer is the amount of time that the FortiGate advertises a route as unreachable before deleting the route from the routing table. The default value is 120 seconds.

If the timer is short, older routes are removed from the routing table more quickly, resulting in a smaller routing table. This can be useful for large networks, or if the network changes frequently.

Authentication and key chain

RIP version 1 (RIPv1) has no authentication. RIP version 2 (RIPv2) uses text passwords or authentication keys to ensure that the routing information exchanged between routers is reliable. For authentication to work, both the sending and receiving routers must be set to use authentication and must be configured with the same password or keys. An authentication key that uses authentication key chains is more secure than a text password because the intervals when the key is valid can be configured.

A key chain is a list of one or more authentication keys that each have send and receive lifetimes. Keys are used to authenticate routing packets only during the keys specified lifetimes. The FortiGate migrates from one key to the next according to the scheduled lifetimes. The sending and receiving routers should have synchronized system dates and times to ensure that both ends are using the same keys at the same times. You can overlap the key lifetimes to make sure that a key is always available, even if there is some difference in the system times.

To configure a text password in the GUI:

1. Go to Network > RIP.
2. In the Interfaces table, click Create New, or edit an existing interface.
3. Enable Authentication and select Text or MD5.
4. Click Change, and enter the password.
5. Configure the remaining settings as needed.
6. Click OK.
7. Click Apply.

To configure a text password in the CLI:

```bash
config router rip
  config interface
    edit <interface>
      set auth-mode {text | md5}
      set auth-string **********
    next
  end
end
```

To configure a key chain with two sequentially valid keys and use it in a RIP interface:

```bash
config router key-chain
  edit rip_key
    config key
      edit 1
        set accept-lifetime 09:00:00 23 02 2020 09:00:00 17 03 2020
        set send-lifetime 09:00:00 23 02 2020 09:00:00 17 03 2020
```
set key-string **********
next
diff 2
set accept-lifetime 09:01:00 17 03 2020 09:00:00 1 04 2020
set send-lifetime 09:01:00 17 03 2020 09:00:00 1 04 2020
set key-string **********
next
next
end
end
config router rip
config interface
edit port1
set auth-keychain "rip_key"
next
end
end

Passive RIP interfaces

By default, an active RIP interface keeps the FortiGate routing table current by periodically asking neighbors for routes and sending out route updates. This can generate a significant amount of extra traffic in a large network.

A passive RIP interface listens to updates from other routers, but does not send out route updates. This can reduce network traffic when there are redundant routers in the network that would always send out essentially the same updates.

This example shows how to configure a passive RIPv2 interface on port1 using MD5 authentication.

To configure a passive RIP interface in the GUI:

1. Go to Network > RIP.
2. In the Interfaces table, click Create New.
3. Set Interface to the required interface.
5. Enable Authentication and set it to MD5.
6. Click Change and enter a password.
7. Set Receive Version to 2.
8. Click OK.

To configure a passive RIP interface in the CLI:

config router rip
config interface
edit port1
set auth-mode md5
set auth-string **********
set receive-version 2
set send-version 2
next
RIP and IPv6

RIP next generation (RIPng) is an extension of RIPv2 that includes support for IPv6. See Basic RIPng example on page 337 and IPv6 tunneling on page 466 for more information.

Basic RIP example

In this example, a medium-sized network is configured using RIPv2.

- Two core routers, RIP Router2 and RIP Router3, connect to the ISP router for two redundant paths to the internet.
- Two other routers, RIP Router1 and RIP Router4, connect to the two core routers and to different local networks.
- The ISP router is using RIP for its connections to the core routers, and redistributes its default route to the network - that is, default route injection is enabled.
- The ISP router uses NAT and has a static route to the internet. None of the other routers use NAT or static routes.

All of the FortiGate routers are configured as shown, using netmask 255.255.255.0. Firewall policies have been configured to allow the required traffic to flow across the interfaces.
<table>
<thead>
<tr>
<th>Router</th>
<th>Interface</th>
<th>Interface name</th>
<th>IP address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router1</td>
<td>port1</td>
<td>LoSales</td>
<td>10.11.101.101</td>
</tr>
<tr>
<td></td>
<td>port2</td>
<td>vd12link0</td>
<td>10.11.201.101</td>
</tr>
<tr>
<td></td>
<td>port3</td>
<td>vd13link0</td>
<td>10.11.202.101</td>
</tr>
<tr>
<td>Router2</td>
<td>port1</td>
<td>vd23link0</td>
<td>10.12.101.102</td>
</tr>
<tr>
<td></td>
<td>port2</td>
<td>vd12link1</td>
<td>10.11.201.102</td>
</tr>
<tr>
<td></td>
<td>port3</td>
<td>vd42link1</td>
<td>10.14.201.102</td>
</tr>
<tr>
<td></td>
<td>port4</td>
<td>vdr2link1</td>
<td>172.20.120.102</td>
</tr>
<tr>
<td>Router3</td>
<td>port1</td>
<td>vd23link1</td>
<td>10.12.101.103</td>
</tr>
<tr>
<td></td>
<td>port2</td>
<td>vd13link1</td>
<td>10.11.202.103</td>
</tr>
<tr>
<td></td>
<td>port3</td>
<td>vd43link1</td>
<td>10.14.202.103</td>
</tr>
<tr>
<td></td>
<td>port4</td>
<td>vdr3link1</td>
<td>172.20.121.103</td>
</tr>
<tr>
<td>Router4</td>
<td>port1</td>
<td>LoAccounting</td>
<td>10.14.101.104</td>
</tr>
<tr>
<td></td>
<td>port2</td>
<td>vd42link0</td>
<td>10.14.201.104</td>
</tr>
<tr>
<td></td>
<td>port3</td>
<td>vd43link0</td>
<td>10.14.202.104</td>
</tr>
<tr>
<td>ISP Router</td>
<td>port1</td>
<td>port1</td>
<td>To internet</td>
</tr>
<tr>
<td></td>
<td>port2</td>
<td>vdr2link0</td>
<td>172.20.120.5</td>
</tr>
<tr>
<td></td>
<td>port3</td>
<td>vdr3link0</td>
<td>172.20.121.5</td>
</tr>
</tbody>
</table>

After configuring each router, you can check the status of the connections by viewing the RIP database, RIP interfaces, and routing table. See Verifying the configuration on page 330.

After the network is configured, you can test it to ensure that when network events occur, such as a downed link, routing updates are triggered and converge as expected. See Testing the configuration and routing changes on page 334.

ISP router

To configure the ISP Router in the GUI:

1. Go to *Network > RIP*.
2. Set the *Version* to 2.
3. Under *Networks*, add two networks:
 - 172.20.120.0/255.255.255.0
 - 172.20.121.0/255.255.255.0
4. Add the interfaces:
 a. In the *Interfaces* table, click *Create New*.
 b. Set *Interface* to *port2*.
 c. Leave the remaining settings as their default values.
d. Click OK.
e. Repeat these steps for port3.

5. Under Advanced Options, enable Inject Default Route.
 This setting allows the ISP router to share its default 0.0.0.0 routes with other routers in the RIP network.

6. Click Apply.

To configure the ISP Router in the CLI:

```plaintext
config router rip
    set default-information-originate enable
config network
    edit 1
        set prefix 172.20.121.0 255.255.255.0
    next
    edit 2
        set prefix 172.20.120.0 255.255.255.0
    next
end
config interface
    edit "port2"
        set receive-version 2
        set send-version 2
    next
    edit "port3"
        set receive-version 2
        set send-version 2
    next
end
```

Router2 and Router3

Router2 and Router3 RIP configurations have different IP addresses, but are otherwise the same.

To configure Router2 and Router3 in the GUI:

1. Go to Network > RIP.
2. Set the Version to 2.
3. Under Networks, add the IP addresses for each port:

<table>
<thead>
<tr>
<th>Router2</th>
<th>10.12.101.0/255.255.255.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10.11.201.0/255.255.255.0</td>
</tr>
<tr>
<td></td>
<td>10.14.201.0/255.255.255.0</td>
</tr>
<tr>
<td></td>
<td>172.20.120.0/255.255.255.0</td>
</tr>
</tbody>
</table>
Network

<table>
<thead>
<tr>
<th>Router3</th>
<th>10.12.101.0/255.255.255.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10.11.202.0/255.255.255.0</td>
</tr>
<tr>
<td></td>
<td>10.14.202.0/255.255.255.0</td>
</tr>
<tr>
<td></td>
<td>172.20.121.0/255.255.255.0</td>
</tr>
</tbody>
</table>

4. **Add the interfaces:**
 a. In the *Interfaces* table, click *Create New*.
 b. Set *Interface* to *port1*.
 c. Leave the remaining settings as their default values.
 d. Click *OK*.
 e. Repeat these steps for *port2*, *port3*, and *port4*.

5. Click *Apply*.

To configure Router2 in the CLI:

```bash
config router rip
  config network
    edit 1
      set prefix 10.12.101.0 255.255.255.0
    next
    edit 2
      set prefix 10.11.201.0 255.255.255.0
    next
    edit 3
      set prefix 10.14.201.0 255.255.255.0
    next
    edit 4
      set prefix 172.20.120.0 255.255.255.0
    next
  end
config interface
  edit "port1"
    set receive-version 2
    set send-version 2
  next
  edit "port2"
    set receive-version 2
    set send-version 2
  next
  edit "port3"
    set receive-version 2
    set send-version 2
  next
  edit "port4"
    set receive-version 2
    set send-version 2
  next
  end
end
```
To configure Router3 in the CLI:

```
config router rip
config network
   edit 1
      set prefix 10.12.101.0 255.255.255.0
   next
   edit 2
      set prefix 10.11.202.0 255.255.255.0
   next
   edit 3
      set prefix 10.14.202.0 255.255.255.0
   next
   edit 4
      set prefix 172.20.121.0 255.255.255.0
   next
end
config interface
   edit "port1"
      set receive-version 2
      set send-version 2
   next
   edit "port2"
      set receive-version 2
      set send-version 2
   next
   edit "port3"
      set receive-version 2
      set send-version 2
   next
   edit "port4"
      set receive-version 2
      set send-version 2
   next
end
```

Router1 and Router4

Router1 and Router4 RIP configurations have different IP addresses, but are otherwise the same.

To configure Router1 and Router4 in the GUI:

1. Go to Network > RIP.
2. Set the Version to 2.
3. Under Networks, add the IP addresses for each port:

<table>
<thead>
<tr>
<th>Router1</th>
<th>10.11.101.0/255.255.255.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10.11.201.0/255.255.255.0</td>
</tr>
<tr>
<td></td>
<td>10.11.202.0/255.255.255.0</td>
</tr>
</tbody>
</table>
Network

<table>
<thead>
<tr>
<th>Router4</th>
<th>10.14.101.0/255.255.255.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10.14.201.0/255.255.255.0</td>
</tr>
<tr>
<td></td>
<td>10.14.202.0/255.255.255.0</td>
</tr>
</tbody>
</table>

4. Add the interfaces:
 a. In the Interfaces table, click Create New.
 b. Set Interface to port1.
 c. For port1 only, enable Passive.
 d. Leave the remaining settings as their default values.
 e. Click OK.
 f. Repeat these steps for port2 and port3, making sure that Passive is disabled.

5. Click Apply.

To configure Router1 in the CLI:

```bash
config router rip
config network
   edit 1
      set prefix 10.11.101.0 255.255.255.0
   next
   edit 2
      set prefix 10.11.201.0 255.255.255.0
   next
   edit 3
      set prefix 10.11.202.0 255.255.255.0
   next
end
set passive-interface "port1"
config interface
   edit "port1"
      set receive-version 2
      set send-version 2
   next
   edit "port2"
      set receive-version 2
      set send-version 2
   next
   edit "port3"
      set receive-version 2
      set send-version 2
   next
end
end
```

To configure Router4 in the CLI:

```bash
config router rip
config network
   edit 1
      set prefix 10.14.101.0 255.255.255.0
   next
```
edit 2
 set prefix 10.14.201.0 255.255.255.0
next
edit 3
 set prefix 10.14.202.0 255.255.255.0
next
end
set passive-interface "port1"
config interface
 edit "port1"
 set receive-version 2
 set send-version 2
next
 edit "port2"
 set receive-version 2
 set send-version 2
next
 edit "port3"
 set receive-version 2
 set send-version 2
next
end
end

Verifying the configuration

The interface's names are shown in the debugs. The same commands should also be run on the other routers.

To verify the configuration after the ISP router, Router2, and Route3 have been configured:

This verification can be done after the ISP router, Router2, and Router3 have been configured. Only Router2's debugs are shown.

1. Check the RIP interface information:

```
# get router info rip interface
Router2 is up, line protocol is up
  RIP is not enabled on this interface
ssl.Router2 is up, line protocol is up
  RIP is not enabled on this interface
vdr2link1 is up, line protocol is up
  Routing Protocol: RIP
    Receive RIPv2 packets only
    Send RIPv2 packets only
    Passive interface: Disabled
    Split horizon: Enabled with Poisoned Reversed
    IP interface address:
    172.20.120.102/24
vd12link1 is up, line protocol is up
  Routing Protocol: RIP
    Receive RIPv2 packets only
    Send RIPv2 packets only
    Passive interface: Disabled
    Split horizon: Enabled with Poisoned Reversed
    IP interface address:
    10.11.201.102/24
```
vd42link1 is up, line protocol is up
Routing Protocol: RIP
 Receive RIPv2 packets only
 Send RIPv2 packets only
 Passive interface: Disabled
 Split horizon: Enabled with Poisoned Reversed
 IP interface address: 10.14.201.102/24

vd23link0 is up, line protocol is up
Routing Protocol: RIP
 Receive RIPv2 packets only
 Send RIPv2 packets only
 Passive interface: Disabled
 Split horizon: Enabled with Poisoned Reversed
 IP interface address: 10.12.101.102/24

RIP starts exchanging routes as soon as the networks are added to the Router2 and Router3 configurations because the RIP interfaces are active by default, and start sending and receiving RIP updates when a matching interface on the subnet is found. The interface configuration allows the interface settings to be fine tuned, in this case to specify only RIPv2 support.

2. Check the RIP database:

```
# get router info rip database
Codes: R - RIP, Rc - RIP connected, Rs - RIP static, K - Kernel,
       C - Connected, S - Static, O - OSPF, I - IS-IS, B - BGP

Network     Next Hop       Metric From      If       Time
R  0.0.0.0/0   172.20.120.5  2 172.20.120.5  vdr2link1  02:55
Rc 10.11.201.0/24  1    vdr2link1
Rc 10.12.101.0/24  1    vd23link0
Rc 10.14.201.0/24  1    vd42link1
Rc 172.20.120.0/24  1    vdr2link1
R  172.20.121.0/24  10.12.101.103  2 10.12.101.103  vd23link0  02:33
```

3. Check the routing table:

```
# get router info routing-table all
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
       O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default

Routing table for VRF=0
R*  0.0.0.0/0 [120/2] via 172.20.120.5, vdr2link1, 13:37:23
C  10.11.201.0/24 is directly connected, vd12link1
R  10.11.202.0/24 [120/2] via 10.12.101.103, vd23link0, 14:10:01
C  10.12.101.0/24 is directly connected, vd23link0
C  10.14.201.0/24 is directly connected, vd42link1
C  172.20.120.0/24 is directly connected, vdr2link1
R  172.20.121.0/24 [120/2] via 10.12.101.103, vd23link0, 13:20:36
```

Router2 has learned the default gateway from the ISP router, and has learned of other networks from Router3.

4. If firewall policies are correctly configured, the outside network can be reached:
execute ping-options source 10.11.201.102
execute ping 8.8.8.8
PING 8.8.8.8 (8.8.8.8): 56 data bytes
64 bytes from 8.8.8.8: icmp_seq=0 ttl=115 time=4.5 ms
64 bytes from 8.8.8.8: icmp_seq=1 ttl=115 time=4.2 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=115 time=4.2 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=115 time=4.2 ms
64 bytes from 8.8.8.8: icmp_seq=4 ttl=115 time=4.1 ms
--- 8.8.8.8 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 4.1/4.2/4.5 ms

execute traceroute 8.8.8.8
traceroute to 8.8.8.8 (8.8.8.8), 32 hops max, 3 probe packets per hop, 84 byte packets
1 172.20.120.5 0.101 ms 0.030 ms 0.014 ms
2 172.16.151.1 0.169 ms 0.144 ms 0.131 ms
3 * * *

To verify the configuration after Router1 and Router4 have also been configured:

This verification can be done after Router1 and Router4 have been configured. Only Router1’s debugs are shown.

1. Check the RIP interface information:

 # get router info rip interface
 Router1 is up, line protocol is up
 RIP is not enabled on this interface
 ssl.Router1 is up, line protocol is up
 RIP is not enabled on this interface
 vd12link0 is up, line protocol is up
 Routing Protocol: RIP
 Receive RIPv2 packets only
 Send RIPv2 packets only
 Passive interface: Disabled
 Split horizon: Enabled with Poisoned Reversed
 IP interface address:
 10.11.201.101/24
 vd13link0 is up, line protocol is up
 Routing Protocol: RIP
 Receive RIPv2 packets only
 Send RIPv2 packets only
 Passive interface: Disabled
 Split horizon: Enabled with Poisoned Reversed
 IP interface address:
 10.11.202.101/24
 LoSales is up, line protocol is up
 Routing Protocol: RIP
 Receive RIPv2 packets only
 Send RIPv2 packets only
 Passive interface: Enabled
 Split horizon: Enabled with Poisoned Reversed
 IP interface address:
 10.11.101.101/24
 127.0.0.1/8

2. Check the RIP database:
Network

get router info rip database
Codes: R - RIP, Rc - RIP connected, Rs - RIP static, K - Kernel,
C - Connected, S - Static, O - OSPF, I - IS-IS, B - BGP

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric From</th>
<th>If</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0/0</td>
<td>10.11.202.103</td>
<td>3</td>
<td>vd13link0</td>
<td>02:35</td>
</tr>
<tr>
<td>Rc 10.11.101.0/24</td>
<td>1</td>
<td>LoSales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rc 10.11.201.0/24</td>
<td>1</td>
<td>LoSales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R 10.12.101.0/24</td>
<td>10.11.202.103</td>
<td>2</td>
<td>vd13link0</td>
<td>02:35</td>
</tr>
<tr>
<td>R 10.12.102.0/24</td>
<td>10.11.202.103</td>
<td>2</td>
<td>vd13link0</td>
<td>02:35</td>
</tr>
<tr>
<td>R 10.14.101.0/24</td>
<td>10.11.202.103</td>
<td>3</td>
<td>vd13link0</td>
<td>02:35</td>
</tr>
<tr>
<td>R 10.14.201.0/24</td>
<td>10.11.201.102</td>
<td>2</td>
<td>vd13link0</td>
<td>02:30</td>
</tr>
<tr>
<td>R 172.20.120.0/24</td>
<td>10.11.201.102</td>
<td>2</td>
<td>vd13link0</td>
<td>02:30</td>
</tr>
<tr>
<td>R 172.20.121.0/24</td>
<td>10.11.202.103</td>
<td>2</td>
<td>vd13link0</td>
<td>02:35</td>
</tr>
</tbody>
</table>

3. Check the routing table:

get router info routing-table all
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default

Routing table for VRF=0
R* 0.0.0.0/0 [120/3] via 10.11.202.103, vd13link0, 00:09:42
C 10.11.101.0/24 is directly connected, LoSales
C 10.11.201.0/24 is directly connected, vd12link0
C 10.11.202.0/24 is directly connected, vd13link0
R 10.12.101.0/24 [120/2] via 10.11.202.103, vd13link0, 00:09:42
R 10.14.101.0/24 [120/3] via 10.11.202.103, vd13link0, 00:09:42
R 10.14.201.0/24 [120/2] via 10.11.201.102, vd12link0, 00:09:42
R 172.20.120.0/24 [120/2] via 10.11.201.102, vd12link0, 00:09:42
R 172.20.121.0/24 [120/2] via 10.11.202.103, vd13link0, 00:09:42

4. If firewall policies are correctly configured, the accounting network and the internet are reachable from the sales network:

execute ping-options source 10.11.101.101
execute ping 10.14.101.104
64 bytes from 10.14.101.104: icmp_seq=0 ttl=254 time=0.1 ms
64 bytes from 10.14.101.104: icmp_seq=1 ttl=254 time=0.0 ms
64 bytes from 10.14.101.104: icmp_seq=2 ttl=254 time=0.0 ms
64 bytes from 10.14.101.104: icmp_seq=3 ttl=254 time=0.0 ms
64 bytes from 10.14.101.104: icmp_seq=4 ttl=254 time=0.0 ms
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 0.0/0.0/0.1 ms

execute traceroute 10.14.101.104
traceroute to 10.14.101.104 (10.14.101.104), 32 hops max, 3 probe packets per hop, 84 byte packets
 1 10.11.202.103 0.079 ms 0.029 ms 0.013 ms
 2 10.14.101.104 0.043 ms 0.020 ms 0.010 ms
Testing the configuration and routing changes

After the network is configured, test it to ensure that when network events occur, such as a downed link, routing updates are triggered and converge as expected.

In the following examples, we disable certain links to simulate network outages, then verify that routing and connectivity is restored after the updates have converged.

Example 1 - ISP router port3 interface goes down

In this example, a link outage occurs on port3 of the ISP router. Consequently, all routers must use Router2, and not Router3, to reach the internet. Note the RIP database before and after the link failure, and the time taken for the route updates to propagate and return to a functioning state.

Router4's debugs are shown.

Before:

```
# get router info rip database
Codes: R - RIP, Rc - RIP connected, Rs - RIP static, K - Kernel,
       C - Connected, S - Static, O - OSPF, I - IS-IS, B - BGP

Network                Next Hop          Metric From         If    Time
R  0.0.0.0/0            10.14.202.103    3 10.14.202.103    vd43link0 02:31
R  10.11.201.0/24       10.14.201.102    2 10.14.201.102    vd42link0 02:47
Rc 10.14.101.0/24       1  10.12.201.102  LoAccounting
Rc 10.14.201.0/24       1  10.14.201.102  vd42link0
R  172.20.120.0/24     10.14.201.102    2 10.14.201.102    vd42link0 02:47

# get router info routing-table all
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
       O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default

Routing table for VRF=0
R*  0.0.0.0/0/0 [120/3] via 10.14.202.103, vd43link0, 02:45:15
R  10.11.201.0/24 [120/2] via 10.14.201.102, vd42link0, 02:45:15
```
Network

C 10.14.101.0/24 is directly connected, LoAccounting
C 10.14.201.0/24 is directly connected, vd42link0
C 10.14.202.0/24 is directly connected, vd43link0
R 172.20.120.0/24 [120/2] via 10.14.201.102, vd42link0, 02:45:15
R 172.20.121.0/24 [120/2] via 10.14.202.103, vd34link0, 02:45:15

execute traceroute 8.8.8.8
trace route to 8.8.8.8 (8.8.8.8), 32 hops max, 3 probe packets per hop, 84 byte packets
 1 10.14.202.103 0.187 ms 0.054 ms 0.030 ms
 2 172.20.121.0/24 0.062 ms 0.040 ms 0.025 ms
 3 * * *

After:

- You might see different routes, and the routes might change, while convergence is occurring. During convergence, the metric for your default route increases to 16.

 # get router info rip database
 Codes: R - RIP, Rc - RIP connected, Rs - RIP static, K - Kernel, C - Connected, S - Static, O - OSPF, I - IS-IS, B - BGP
 Network Next Hop Metric From If Time
 R 0.0.0.0/0 10.14.202.103 16 10.14.202.103 vd43link0 01:50

- After convergence is complete, the RIP database will look similar to the following:

 # get router info rip database
 Codes: R - RIP, Rc - RIP connected, Rs - RIP static, K - Kernel, C - Connected, S - Static, O - OSPF, I - IS-IS, B - BGP
 Network Next Hop Metric From If Time
 R 0.0.0.0/0 10.14.201.102 3 10.14.201.102 vd42link0 02:53

- The default route should point to Router2, with the same number of hops:

 # get router info routing-table all
 Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
 O - OSPF, IA - OSPF inter area
 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
 E1 - OSPF external type 1, E2 - OSPF external type 2
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
 * - candidate default
 Routing table for VRF=0
 R* 0.0.0.0/0 [120/3] via 10.14.201.102, vd42link0, 00:05:24
 R 10.11.201.0/24 [120/2] via 10.14.201.201, vd42link0, 02:58:39
 C 10.14.101.0/24 is directly connected, LoAccounting
 C 10.14.201.0/24 is directly connected, vd42link0
Example 2- Additional link failures on Router2

In addition to the link failure on the ISP router in example, port1 and port3 on Router2 have also failed. This means that Router4 must go through Router3, Router1, Router2, then the ISP router to reach the internet. Note that, for a period of time, some routes’ metrics increase to 16. If no better routes are found for these networks, then they eventually disappear.

After the convergence completes, the RIP database and routing table on Router4 should resemble the following:

```
# get router info rip database
Codes: R - RIP, Rc - RIP connected, Rs - RIP static, K - Kernel,
       C - Connected, S - Static, O - OSPF, I - IS-IS, B - BGP
Network      Next Hop     Metric  From     If         Time
R  0.0.0.0/0      10.14.202.103  5 10.14.202.103 vd43link0 02:54
Rc 10.14.101.0/24  1          vd43link0
Rc 10.14.202.0/24  1          vd43link0
R 172.20.120.0/24  10.14.202.103  4 10.14.202.103 vd43link0 02:54
```

```
# get router info routing-table all
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
       O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default
Routing table for VRF=0
R*  0.0.0.0/0 [120/5] via 10.14.202.103, vd43link0, 00:03:54
R 10.11.201.0/24 [120/3] via 10.14.202.103, vd43link0, 00:03:54
C 10.14.101.0/24 is directly connected, LoAccounting
C 10.14.202.0/24 is directly connected, vd43link0
R 172.20.120.0/24 [120/4] via 10.14.202.103, vd43link0, 00:03:54
```

Reaching the internet on the default gateway now requires five hops from Router4:

```
# execute traceroute 8.8.8.8
traceroute to 8.8.8.8 (8.8.8.8), 32 hops max, 3 probe packets per hop, 84 byte packets
  1 10.14.202.103  0.087 ms  0.026 ms  0.012 ms
  2 10.11.202.101  0.045 ms  0.024 ms  0.025 ms
  3 10.11.201.102  0.048 ms  0.024 ms  0.015 ms
  4 172.20.120.5  0.050 ms  0.028 ms  0.019 ms
  5 * * *
```
Basic RIPng example

In this example, a small network is configured with RIP next generation (RIPng). Two FortiGates are connected to the internal network and the ISP, providing some redundancy to help ensure that the internal network can always reach the internet.

The FortiGates are running in NAT mode with VDOMs disabled, and firewall policies have already been configured to allow traffic to flow across the interfaces.

All of the internal computers and other network devices support IPv6 addressing and are running RIPng (where applicable), so no static routing is required. Internal network devices only need to know the FortiGate's internal interface network addresses.

<table>
<thead>
<tr>
<th>Router</th>
<th>Interface (alias)</th>
<th>IPv6 address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router1</td>
<td>port1 (internal)</td>
<td>2002:A0B:6565::0</td>
</tr>
<tr>
<td></td>
<td>port2 (ISP)</td>
<td>2002:AC14:7865::0</td>
</tr>
<tr>
<td>Router2</td>
<td>port1 (internal)</td>
<td>2002:A0B:6666::0</td>
</tr>
<tr>
<td></td>
<td>port2 (ISP)</td>
<td>2002:AC14:7866::0</td>
</tr>
</tbody>
</table>

On each FortiGate, the interfaces are configured first, and then RIPng. No redistribution or authentication is configured.

In the RIPng configuration, only the interface names are required. The ISP router and the other FortiGate are configured as neighbors. Declaring the neighbors reduces the discovery traffic when the routers start. There is no specific command to include a subnet in the RIP broadcast, and RIPng can only be configured using the CLI.

To configure Router1:

1. Configure the interfaces:

```
config system interface
edit port1
    set allowaccess ping https ssh
    set type physical
    set description "Internal RnD network"
    set alias "internal"
    config ipv6
        set ip6-address 2002:a0b:6565::/0
    end
end
```
next
edit port2
 set allowaccess ping https ssh
 set type physical
 set description "ISP and Internet"
 set alias "ISP"
 config ipv6
 set ip6-address 2002:ac14:7865::/0
 end
end

2. Configure RIPng:

 config router ripng
 config neighbor
 edit 1
 set ip6 2002:a0b:6566::
 set interface port1
 next
 edit 2
 set ip6 2002:ac14:7805::
 set interface port2
 next
 end
 config interface
 edit port1
 next
 edit port2
 next
 end
end

To configure Router2:

1. Configure the interfaces:

 config system interface
 edit port1
 set allowaccess ping https ssh
 set type physical
 set description "Internal RnD network"
 set alias "internal"
 config ipv6
 set ip6-address 2002:a0b:6566::/0
 end
 next
 edit port2
 set allowaccess ping https ssh
 set type physical
 set description "ISP and Internet"
 set alias "ISP"
 config ipv6
 set ip6-address 2002:ac14:7866::/0
 end
 next
end
2. Configure RIPng:

```plaintext
config router ripng
  config neighbor
    edit 1
      set ip6 2002:a0b:6565::
      set interface port1
    next
    edit 2
      set ip6 2002:ac14:7805::
      set interface port2
    next
  end
  config interface
    edit port1
    next
    edit port2
    next
  end
end
```

Testing the configuration

The following commands can be used to check the RIPng information on the FortiGates, and can help track down issues:

To view the local scope IPv6 addresses used as next-hops by RIPng on the FortiGate:

```plaintext
# diagnose ipv6 address list
```

To view IPv6 addresses that are installed in the routing table:

```plaintext
# diagnose ipv6 route list
```

To view the IPv6 routing table:

```plaintext
# get router info6 routing-table
```

This information is similar to the `diagnose ipv6 route list` command, but it is presented in an easier to read format.

To view the brief output on the RIP information for the interface listed:

```plaintext
# get router info6 rip interface external
```

This includes information such as, if the interface is up or down, what routing protocol is being used, and whether passive interface or split horizon is enabled.

OSPF

Open Shortest Path First (OSPF) is a link state routing protocol that is commonly used in large enterprise networks with L3 switches, routers, and firewalls from multiple vendors. It can quickly detect link failures, and converges network traffic...
Network without networking loops. It also has features to control which routes are propagated, allowing for smaller routing tables, and provides better load balancing on external links when compared to other routing protocols.

To configure OSPF in the GUI, go to Network > OSPF:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router ID</td>
<td>A unique ID to identify your router in the network, typically in the format x.x.x.x.</td>
</tr>
<tr>
<td>Areas</td>
<td>The areas that the router is part of. For each area, define the Area ID, Type, and Authentication method.</td>
</tr>
<tr>
<td>Networks</td>
<td>The networks that OSPF is enabled in, and the area that they belong to.</td>
</tr>
<tr>
<td>Interfaces</td>
<td>OSPF interfaces for transmitting and receiving packets. Configure interface properties, such as Network Type, Cost, Hello interval, and others.</td>
</tr>
<tr>
<td>Advanced Options</td>
<td>Settings for Inject Default Route, Passive Interfaces, and Redistribute. Redistribution can be enabled by protocol and the metric for each protocol can be configured.</td>
</tr>
</tbody>
</table>

This section includes the following topics:

- Basic OSPF example on page 340
- OSPFv3 neighbor authentication on page 351
- OSPF graceful restart upon a topology change on page 353

Basic OSPF example

In this example, three FortiGate devices are configured in an OSPF network.

- Router1 is the Designated Router (DR). It has the highest priority and the lowest IP address, to ensure that it becomes the DR.
- Router2 is the Backup Designated Router (BDR). It has a high priority to ensure that it becomes the BDR.
- Router3 is the Autonomous System Border Router (ASBR). It routes all traffic to the ISP BGP router for internet access. It redistributes routes from BGP and advertises a default route to its neighbors. It can allow different types of routes, learned outside of OSPF, to be used in OSPF. Different metrics can be assigned to these routes to make them more or less preferred than regular OSPF routes. Route maps could be used to further control what prefixes are advertised or received from the ISP.
Firewall policies are already configured to allow unfiltered traffic in both directions between all of the connected interfaces.

The interfaces are already configured, and NAT is only used for connections to public networks. The costs for all of the interfaces is left at 0.

The OSPF network belongs to Area 0, and is not connected to any other OSPF networks. All of the routers are part of the backbone 0.0.0.0 area, so no inter-area communications are needed.

Router3 redistributes BGP routes into the OSPF AS and peers with the ISP BGP Router over eBGP. For information about configuring BGP, see BGP on page 356.

The advertised networks - 10.11.101.0, 10.11.102.0, and 10.11.103.0 - are summarized by 10.11.0.0/16. Additional networks are advertised individually by the /24 subnet.

<table>
<thead>
<tr>
<th>FortiGate</th>
<th>Interface</th>
<th>IP address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router1 (DR)</td>
<td>port1</td>
<td>10.11.101.1</td>
</tr>
<tr>
<td></td>
<td>port2</td>
<td>10.11.102.1</td>
</tr>
<tr>
<td></td>
<td>port3</td>
<td>192.168.102.1</td>
</tr>
<tr>
<td>Router2 (BDR)</td>
<td>port1</td>
<td>10.11.101.2</td>
</tr>
<tr>
<td></td>
<td>port2</td>
<td>10.11.103.2</td>
</tr>
<tr>
<td></td>
<td>port3</td>
<td>192.168.103.2</td>
</tr>
<tr>
<td>Router3 (ASBR)</td>
<td>port1</td>
<td>10.11.102.3</td>
</tr>
<tr>
<td></td>
<td>port2</td>
<td>10.11.103.3</td>
</tr>
<tr>
<td></td>
<td>port3</td>
<td>172.20.120.3</td>
</tr>
</tbody>
</table>
Router1

To configure Router1 in the GUI:

1. Go to *Network > OSPF*.
2. Set *Router ID* to *10.11.101.1*.
3. In the *Areas* table, click *Create New* and set the following:

<table>
<thead>
<tr>
<th>Area ID</th>
<th>0.0.0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Regular</td>
</tr>
<tr>
<td>Authentication</td>
<td>None</td>
</tr>
</tbody>
</table>

4. Click OK.
5. In the *Networks* table, click *Create New* and set the following:

<table>
<thead>
<tr>
<th>Area</th>
<th>0.0.0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP/Netmask</td>
<td>10.11.0.0 255.255.0.0</td>
</tr>
</tbody>
</table>

6. Click OK.
7. In the *Networks* table, click *Create New* again and set the following:

<table>
<thead>
<tr>
<th>Area</th>
<th>0.0.0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP/Netmask</td>
<td>192.168.102.0 255.255.255.0</td>
</tr>
</tbody>
</table>

8. Click OK.
9. In the *Interfaces* table, click *Create New* and set the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>Router1-Internal-DR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>port1</td>
</tr>
<tr>
<td>Cost</td>
<td>0</td>
</tr>
<tr>
<td>Priority</td>
<td>255</td>
</tr>
<tr>
<td>Authentication</td>
<td>None</td>
</tr>
<tr>
<td>Timers</td>
<td>• Hello Interval: 10</td>
</tr>
<tr>
<td></td>
<td>• Dead Interval: 40</td>
</tr>
</tbody>
</table>

10. Click OK.
11. In the *Interfaces* table, click *Create New* again and set the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>Router1-External</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>port2</td>
</tr>
<tr>
<td>Cost</td>
<td>0</td>
</tr>
<tr>
<td>Authentication</td>
<td>None</td>
</tr>
<tr>
<td>Timers</td>
<td>• Hello Interval: 10</td>
</tr>
<tr>
<td></td>
<td>• Dead Interval: 40</td>
</tr>
</tbody>
</table>
To configure Router1 in the CLI:

```bash
config router ospf
    set router-id 10.11.101.1
config area
    edit 0.0.0.0
    next
end
config ospf-interface
    edit "Router1-Internal-DR"
        set interface "port1"
        set priority 255
        set dead-interval 40
        set hello-interval 10
    next
    edit "Router1-External"
        set interface "port2"
        set dead-interval 40
        set hello-interval 10
    next
end
config network
    edit 1
        set prefix 10.11.0.0 255.255.0.0
    next
    edit 2
        set prefix 192.168.102.0 255.255.255.0
    next
end

Router2

To configure Router2 in the GUI:

1. Go to Network > OSPF.
2. Set Router ID to 10.11.101.2.
3. In the Areas table, click Create New and set the following:

<table>
<thead>
<tr>
<th>Area ID</th>
<th>0.0.0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Regular</td>
</tr>
<tr>
<td>Authentication</td>
<td>None</td>
</tr>
</tbody>
</table>

4. Click OK.
5. In the Networks table, click Create New and set the following:

<table>
<thead>
<tr>
<th>Area</th>
<th>0.0.0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP/Netmask</td>
<td>10.11.0.0 255.255.0.0</td>
</tr>
</tbody>
</table>
6. Click OK.
7. In the Networks table, click Create New again and set the following:

<table>
<thead>
<tr>
<th>Area</th>
<th>0.0.0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP/Netmask</td>
<td>192.168.103.0 255.255.255.0</td>
</tr>
</tbody>
</table>

8. Click OK.
9. In the Interfaces table, click Create New and set the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>Router2-Internal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>port1</td>
</tr>
<tr>
<td>Cost</td>
<td>0</td>
</tr>
<tr>
<td>Priority</td>
<td>250</td>
</tr>
<tr>
<td>Authentication</td>
<td>None</td>
</tr>
<tr>
<td>Timers</td>
<td>Hello Interval: 10</td>
</tr>
</tbody>
</table>

10. Click OK.
11. In the Interfaces table, click Create New again and set the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>Router2-External</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>port2</td>
</tr>
<tr>
<td>Cost</td>
<td>0</td>
</tr>
<tr>
<td>Authentication</td>
<td>None</td>
</tr>
<tr>
<td>Timers</td>
<td>Hello Interval: 10</td>
</tr>
</tbody>
</table>

12. Click OK.
13. Click Apply.

**To configure Router2 in the CLI:**

```
config router ospf
 set router-id 10.11.101.1
config area
 edit 0.0.0.0
 next
end
config ospf-interface
 edit "Router2-Internal"
 set interface "port1"
 set priority 250
 set dead-interval 40
 set hello-interval 10
 next
 edit "Router2-External"
 set interface "port2"
```
Router3

To configure Router3 in the GUI:

1. Go to Network > OSPF.
2. Set Router ID to 10.11.103.3.
3. Under Default Settings, set Inject default route to Regular Areas.
   A default route must be present on Router3 to advertise it to other routers.
4. Enable Redistribute BGP and use the default settings.
5. In the Areas table, click Create New and set the following:

<table>
<thead>
<tr>
<th>Area ID</th>
<th>0.0.0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Regular</td>
</tr>
<tr>
<td>Authentication</td>
<td>None</td>
</tr>
</tbody>
</table>

6. Click OK.
7. In the Networks table, click Create New and set the following:

<table>
<thead>
<tr>
<th>Area</th>
<th>0.0.0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP/Netmask</td>
<td>10.11.0.0 255.255.0.0</td>
</tr>
</tbody>
</table>

8. Click OK.
9. In the Interfaces table, click Create New and set the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>Router3-Internal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>port1</td>
</tr>
<tr>
<td>Cost</td>
<td>0</td>
</tr>
<tr>
<td>Authentication</td>
<td>None</td>
</tr>
</tbody>
</table>
| Timers              | • Hello Interval: 10  
|                     | • Dead Interval: 40 |

10. Click OK.
11. In the Interfaces table, click Create New again and set the following:

network
set dead-interval 40
set hello-interval 10
next
dconfig network
edit 1
set prefix 10.11.0.0 255.255.0.0
next
dedit 2
set prefix 192.168.103.0 255.255.255.0
next
dend
dend
### Network

<table>
<thead>
<tr>
<th>Name</th>
<th>Router3-Internal2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>port2</td>
</tr>
<tr>
<td>Cost</td>
<td>0</td>
</tr>
<tr>
<td>Authentication</td>
<td>None</td>
</tr>
</tbody>
</table>
| Timers        | • Hello Interval: 10  
                • Dead Interval: 40 |

12. Click OK.
13. Click Apply.

**To configure Router3 in the CLI:**

```bash
config router ospf
 set default-information-originate enable
 set router-id 10.11.103.3
config area
 edit 0.0.0.0
 next
end
config ospf-interface
 edit "Router3-Internal"
 set interface "port1"
 set dead-interval 40
 set hello-interval 10
 next
 edit "Router3-Internal2"
 set interface "port2"
 set dead-interval 40
 set hello-interval 10
 next
end
config network
 edit 1
 set prefix 10.11.0.0 255.255.0.0
 next
end
config redistribute "bgp"
 set status enable
end
```

**To configure BGP on Router3 in the CLI:**

```bash
config router bgp
 set as 64511
 set router-id 1.1.1.1
config neighbor
 edit "172.20.120.5"
 set remote-as 64512
 next
end
config network
```
For more information on configuring BGP, see BGP on page 356.

Testing the configuration

Both the network connectivity and OSPF routing are tested. When a link goes down, routes should converge as expected.

Working state

- Router3:

```
Router3 # get router info ospf neighbor
OSPF process 0, VRF 0:
Neighbor ID Pri State Dead Time Address Interface
10.11.101.1 1 Full/Backup 00:00:34 10.11.102.1 port1
10.11.101.2 1 Full/Backup 00:00:38 10.11.103.2 port2
```

Router3 # get router info ospf status
Routing Process "ospf 0" with ID 10.11.103.3
Process uptime is 18 hours 52 minutes
Process bound to VRF default
Conforms to RFC2328, and RFC1583Compatibility flag is disabled
Supports only single TOS(TOS0) routes
Supports opaque LSA
Do not support Restarting

**This router is an ASBR** (injecting external routing information)
SPF schedule delay 5 secs, Hold time between two SPFs 10 secs
Refresh timer 10 secs
Number of incoming current DD exchange neighbors 0/5
Number of outgoing current DD exchange neighbors 0/5
Number of external LSA 3. Checksum 0x021B78
Number of opaque AS LSA 0. Checksum 0x000000
Number of non-default external LSA 2
External LSA database is unlimited.
Number of LSA originated 16
Number of LSA received 100
Number of areas attached to this router: 1
  Area 0.0.0.0 (BACKBONE)
    Number of interfaces in this area is 2(2)
    Number of fully adjacent neighbors in this area is 2
    Area has no authentication
    SPF algorithm last executed 00:37:36.90 ago
    SPF algorithm executed 13 times
    Number of LSA 6. Checksum 0x03eafa
```

Router3 # get router info routing-table all
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default

Routing table for VRF=0
B* 0.0.0.0/0 [20/0] via 172.20.120.5, port3, 01:10:12
O 10.11.101.0/24 [110/2] via 10.11.103.2, port2, 00:39:34
 [110/2] via 10.11.102.1, port1, 00:39:34
C 10.11.102.0/24 is directly connected, port1
C 10.11.103.0/24 is directly connected, port2
C 172.20.120.0/24 is directly connected, port3
O 192.168.102.0/24 [110/2] via 10.11.103.2, port2, 00:39:34
C 10.11.102.0/24 is directly connected, port1
C 10.11.103.0/24 is directly connected, port2
C 172.20.120.0/24 is directly connected, port3
B 192.168.102.0/24 [20/0] via 10.11.103.2, port2, 00:39:34

Router2:

Router2 # get router info ospf neighbor
OSPF process 0, VRF 0:
Neighbor ID Pri State Dead Time Address Interface
10.11.101.1 255 Full/DR 00:00:35 10.11.101.1 port1
10.11.103.3 1 Full/DR 00:00:38 10.11.103.3 port3

Router2 # get router info ospf status
Routing Process "ospf 0" with ID 10.11.101.2
Process uptime is 2 hours 53 minutes
Process bound to VRF default
Conforms to RFC2328, and RFC1583Compatibility flag is disabled
Supports only single TOS(TOS0) routes
Supports opaque LSA
Do not support Restarting
SPF schedule delay 5 secs, Hold time between two SPF's 10 secs
Refresh timer 10 secs
Number of incoming current DD exchange neighbors 0/5
Number of outgoing current DD exchange neighbors 0/5
Number of external LSA 3. Checksum 0x021979
Number of opaque AS LSA 0. Checksum 0x000000
Number of non-default external LSA 2
External LSA database is unlimited.
Number of LSA originated 5
Number of LSA received 128
Number of areas attached to this router: 1
 Area 0.0.0.0 (BACKBONE)
 Number of interfaces in this area is 3(3)
 Number of fully adjacent neighbors in this area is 2
 Area has no authentication
 SPF algorithm last executed 00:47:49.990 ago
 SPF algorithm executed 15 times
 Number of LSA 6. Checksum 0x03e8fb

Router2 # get router info routing-table all
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default

Routing table for VRF=0
O*E2 0.0.0.0/0 [110/10] via 10.11.103.3, port2, 01:03:58
C 10.11.101.0/24 is directly connected, port1
O 10.11.102.0/24 [110/2] via 10.11.103.3, port2, 00:49:01
 [110/2] via 10.11.101.1, port1, 00:49:01
C 10.11.103.0/24 is directly connected, port2
O 192.168.102.0/24 [110/2] via 10.11.101.1, port1, 00:49:01
C 192.168.103.0/24 is directly connected, port3
O E2 192.168.160.0/24 [110/10] via 10.11.101.1, port1, 01:39:31
O E2 192.168.170.0/24 [110/10] via 10.11.103.3, port2, 01:19:39

The default route advertised by Router3 using default-information-originate is considered an OSPF E2 route. Other routes redistributed from BGP are also E2 routes.

- **Router1:**

Router1 # get router info ospf neighbor
OSPF process 0, VRF 0:
Neighbor ID Pri State Dead Time Address Interface
10.11.101.2 250 Full/Backup 00:00:36 10.11.101.2 port1
10.11.103.3 1 Full/DR 00:00:37 10.11.102.3 port2

Router1 # get router info ospf status
Routing Process "ospf 0" with ID 10.11.101.1
Process uptime is 3 hours 7 minutes
Process bound to VRF default
Conforms to RFC2328, and RFC1583Compatibility flag is disabled
Supports only single TOS(TOS0) routes
Supports opaque LSA
Do not support Restarting
SPF schedule delay 5 secs, Hold time between two SPFs 10 secs
Refresh timer 10 secs
Number of incoming current DD exchange neighbors 0/5
Number of outgoing current DD exchange neighbors 0/5
Number of external LSA 3. Checksum 0x02157B
Number of opaque AS LSA 0. Checksum 0x000000
Number of non-default external LSA 2
External LSA database is unlimited.
Number of LSA originated 2
Number of LSA received 63
Number of areas attached to this router: 1
 Area 0.0.0.0 (BACKBONE)
 Number of interfaces in this area is 3(3)
 Number of fully adjacent neighbors in this area is 2
 Area has no authentication
 SPF algorithm last executed 00:54:08.160 ago
 SPF algorithm executed 11 times
 Number of LSA 6. Checksum 0x03e6fc

Router1 # get router info routing-table all
Routing table for VRF=0
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default
O*E2 0.0.0.0/0 [110/10] via 10.11.102.3, port2, 01:09:48
C 10.11.101.0/24 is directly connected, port1
C 10.11.102.0/24 is directly connected, port2
Link down state

If port1 is disconnected on Router3:

- Router3:

 Router3 # get router info routing-table all
 Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
 O - OSPF, IA - OSPF inter area
 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
 E1 - OSPF external type 1, E2 - OSPF external type 2
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
 * - candidate default
 Routing table for VRF=0
 B* 0.0.0.0/0 [20/0] via 172.20.120.5, VLAN20, 01:29:25
 O 10.11.101.0/24 [110/2] via 10.11.103.2, port2, 00:00:09
 C 10.11.103.0/24 is directly connected, port2
 C 172.20.120.0/24 is directly connected, port3
 O 192.168.102.0/24 [110/3] via 10.11.103.2, port2, 00:00:09
 O 192.168.103.0/24 [110/2] via 10.11.103.2, port2, 02:33:45
 B 192.168.160.0/24 [20/0] via 172.20.120.5, port3, 19:27:52
 B 192.168.170.0/24 [20/0] via 172.20.120.5, port3, 01:29:25

- Router2:

 Router2 # get router info routing-table all
 Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
 O - OSPF, IA - OSPF inter area
 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
 E1 - OSPF external type 1, E2 - OSPF external type 2
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
 * - candidate default
 Routing table for VRF=0
 O*E2 0.0.0.0/0 [110/10] via 10.11.103.3, port2, 01:16:36
 C 10.11.101.0/24 [110/2] via 10.11.101.1, port1, 00:02:27
 C 10.11.103.0/24 is directly connected, port2
 O 192.168.102.0/24 [110/2] via 10.11.101.1, port1, 01:01:39
 C 192.168.103.0/24 is directly connected, port3
 O E2 192.168.160.0/24 [110/10] via 10.11.103.3, port2, 01:52:09
 O E2 192.168.170.0/24 [110/10] via 10.11.103.3, port2, 01:32:17

- Router1:

 Router1 # get router info routing-table all
 Routing table for VRF=0
 Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
 O - OSPF, IA - OSPF inter area
 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
 E1 - OSPF external type 1, E2 - OSPF external type 2
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
OSPFv3 neighbor authentication

OSPFv3 neighbor authentication is available for enhanced IPv6 security.

To configure an OSPF6 interface:

```plaintext
config router ospf6
  config ospf6-interface
    edit <name>
      set authentication {none | ah | esp | area}
      set key-rollover-interval <integer>
      set ipsec-auth-alg {md5 | sha1 | sha256 | sha384 | sha512}
      set ipsec-enc-alg {null | des | 3des | aes128 | aes192 | aes256}
      config ipsec-keys
        edit <spi>
          set auth-key <string>
          set enc-key <string>
        next
      end
    end
  next
end
```

To configure an OSPF6 virtual link:

```plaintext
config router ospf6
  config area
    edit <id>
      config virtual-link
        edit <name>
          set authentication {none | ah | esp | area}
          set key-rollover-interval <integer>
          set ipsec-auth-alg {md5 | sha1 | sha256 | sha384 | sha512}
          set ipsec-enc-alg {null | des | 3des | aes128 | aes192 | aes256}
          config ipsec-keys
            edit <spi>
              set auth-key <string>
              set enc-key <string>
            next
          end
        next
      end
    end
end
```
To configure an OSPF6 area:

```plaintext
config router ospf6
  config area
    edit <id>
      set authentication {none | ah | esp}
      set key-rollover-interval <integer>
      set ipsec-auth-alg {md5 | sha1 | sha256 | sha384 | sha512}
      set ipsec-enc-alg {null | des | 3des | aes128 | aes192 | aes256}
    config ipsec-keys
      edit <spi>
        set auth-key <string>
        set enc-key <string>
      next
    next
  end
end
```

CLI command descriptions

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><id></td>
<td>Area entry IP address.</td>
</tr>
<tr>
<td>authentication {none</td>
<td>ah</td>
</tr>
<tr>
<td></td>
<td>- none: Disable authentication</td>
</tr>
<tr>
<td></td>
<td>- ah: Authentication Header</td>
</tr>
<tr>
<td></td>
<td>- esp: Encapsulating Security Payload</td>
</tr>
<tr>
<td></td>
<td>- area: Use the routing area authentication configuration</td>
</tr>
<tr>
<td>key-rollover-interval <integer></td>
<td>Enter an integer value (300 - 216000, default = 300).</td>
</tr>
<tr>
<td>ipsec-auth-alg {md5</td>
<td>sha1</td>
</tr>
<tr>
<td>ipsec-enc-alg {null</td>
<td>des</td>
</tr>
<tr>
<td><spi></td>
<td>Security Parameters Index.</td>
</tr>
<tr>
<td>auth-key <string></td>
<td>Authentication key should be hexadecimal numbers.</td>
</tr>
<tr>
<td></td>
<td>Key length for each algorithm:</td>
</tr>
<tr>
<td></td>
<td>- MD5: 16 bytes</td>
</tr>
<tr>
<td></td>
<td>- SHA1: 20 bytes</td>
</tr>
<tr>
<td></td>
<td>- SHA256: 32 bytes</td>
</tr>
<tr>
<td></td>
<td>- SHA384: 48 bytes</td>
</tr>
<tr>
<td></td>
<td>- SHA512: 84 bytes</td>
</tr>
<tr>
<td></td>
<td>If the key is shorter than the required length, it will be padded with zeroes.</td>
</tr>
<tr>
<td>enc-key <string></td>
<td>Encryption key should be hexadecimal numbers.</td>
</tr>
<tr>
<td></td>
<td>Key length for each algorithm:</td>
</tr>
<tr>
<td></td>
<td>- DES: 8 bytes</td>
</tr>
<tr>
<td></td>
<td>- 3DES: 24 bytes</td>
</tr>
</tbody>
</table>
Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- AES128: 16 bytes</td>
</tr>
<tr>
<td></td>
<td>- AES192: 24 bytes</td>
</tr>
<tr>
<td></td>
<td>- AES256: 32 bytes</td>
</tr>
<tr>
<td></td>
<td>If the key is shorter than the required length, it will be padded with zeroes.</td>
</tr>
</tbody>
</table>

OSPF graceful restart upon a topology change

In OSPF graceful restart mode, the `restart-on-topology-change` option can be used to keep restarting the router in graceful restart mode when a topology change is detected during a restart.

```plaintext
config router ospf
  set restart-on-topology-change {enable | disable}
end
```

OSPFv3 graceful restart mode upon a topology change can be used in OSPF6:

```plaintext
config router ospf6
  set restart-on-topology-change {enable | disable}
end
```

Example

In this example, a restarting router (one of the FG-300Es in the HA cluster) informs its neighbors using grace LSAs before restarting its OSPF process. When the helper router (the FG-601E) receives the grace LSAs, it enters helper mode to help with the graceful restart until the graceful period expires. It will act as though there are no changes on the restarting router (FG-300E). A generic router simulates a topology change during the restart event.

If `restart-on-topology-change` is enabled on the restarting router, it will not exit the graceful restart mode even when a topology change is detected.

If `restart-on-topology-change` is disabled on the restarting router, it will exit graceful restart mode when a topology change is detected.
To configure the restarting router:

```bash
config router ospf
    set router-id 31.1.1.1
    set restart-mode graceful-restart
    set restart-period 180
    set restart-on-topology-change enable
config area
    edit 0.0.0.0
    next
end
config network
    edit 1
        set prefix 172.16.200.0 255.255.255.0
    next
    edit 2
        set prefix 31.1.1.1 255.255.255.255
    next
end
```

To configure the restarting helper router:

```bash
config router ospf
    set router-id 3.3.3.3
    set restart-mode graceful-restart
config area
    edit 0.0.0.0
    next
end
config network
    edit 1
        set prefix 172.16.200.0 255.255.255.0
    next
    edit 2
        set prefix 3.3.3.3 255.255.255.255
    next
end
```

Testing the configuration

Topology change with continuing graceful restart enabled:

When `restart-on-topology-change` is enabled and there is a topology change during the HA OSPF graceful restart, the graceful restart will continue. The routes on the helper router (FG-601E) are still there and no traffic will drop.

```
# get router info ospf neighbor
OSPF process 0, VRF 0:
Neighbor ID Pri State        Dead Time Address          Interface
31.1.1.1  1   Full/DR 00:14:47* 172.16.200.31 port1

# get router info routing-table ospf
Routing table for VRF=0
0 21.21.21.21/32 [110/300] via 172.16.200.31, port1, 00:09:55
```
get router info ospf neighbor
OSPF process 0, VRF 0:
Neighbor ID Pri State Dead Time Address Interface
31.1.1.1 1 Full/DR 00:14:47* 172.16.200.31 port1

get router info routing-table ospf
Routing table for VRF=0
O 21.21.21.32 [110/300] via 172.16.200.31, port1, 00:10:17
O 31.1.1.1/32 [110/200] via 172.16.200.31, port1, 00:55:53
O 100.21.1.0/24 [110/200] via 172.16.200.31, port1, 00:13:13

Topology change with continuing graceful restart disabled:

When restart-on-topology-change is disabled and there is a topology change during the HA OSPF graceful restart, the graceful restart will exit. The routes on the helper router (FG-601E) are lost and traffic will drop.

get router info ospf neighbor
OSPF process 0, VRF 0:
Neighbor ID Pri State Dead Time Address Interface
31.1.1.1 1 Full/DR 00:14:42* 172.16.200.31 port1

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
Network

O 31.1.1.1/32 [110/200] via 172.16.200.31, port1, 00:57:07
O 100.21.1.0/24 [110/200] via 172.16.200.31, port1, 00:14:07

get router info ospf neighbor
OSPF process 0, VRF 0:
Neighbor ID Pri State Dead Time Address Interface
31.1.1.1 1 Full/DR 00:14:40* 172.16.200.31 port1

No routes are lost:

get router info routing-table ospf
Routing table for VRF=0
O 31.1.1.1/32 [110/200] via 172.16.200.31, port1, 00:57:09

get router info ospf neighbor
OSPF process 0, VRF 0:
Neighbor ID Pri State Dead Time Address Interface
31.1.1.1 1 Full/DR 00:14:38* 172.16.200.31 port1

No routes are lost:

get router info routing-table ospf
Routing table for VRF=0
O 31.1.1.1/32 [110/200] via 172.16.200.31, port1, 00:57:11

No routes are lost:

get router info routing-table ospf
Routing table for VRF=0
O 21.21.21.21/32 [110/300] via 172.16.200.31, port1, 00:04:42
O 31.1.1.1/32 [110/200] via 172.16.200.31, port1, 01:01:59
O 100.21.1.0/24 [110/200] via 172.16.200.31, port1, 00:04:42

BGP

Border Gateway Protocol (BGP) is a standardized routing protocol that is used to route traffic across the internet. It exchanges routing information between Autonomous Systems (AS) on the internet and makes routing decisions based on path, network policies, and rule sets. BGP contains two distinct subsets: internal BGP (iBGP) and external BGP (eBGP). iBGP is intended for use within your own networks. eBGP is used to connect different networks together and is the main routing protocol for the internet backbone.

To configure BGP in the GUI, go to Network > BGP:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local AS</td>
<td>The AS number for the local router.</td>
</tr>
<tr>
<td>Router ID</td>
<td>A unique ID to identify your router in the network, typically in the format x.x.x.x.</td>
</tr>
<tr>
<td>Neighbors</td>
<td>The neighbors that the FortiGate will be peering with. Configure the remote router's AS number, any other properties used for peering with the neighbor, and IPv4 and IPv6 filtering.</td>
</tr>
<tr>
<td>Neighbor Groups</td>
<td>The neighbor groups that share the same outbound policy configurations.</td>
</tr>
<tr>
<td>Neighbor Ranges</td>
<td>The source address range of BGP neighbors that will be automatically assigned to a neighbor group.</td>
</tr>
</tbody>
</table>
Network

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4 & IPv6 Networks</td>
<td>The networks to be advertised to other BGP routers.</td>
</tr>
<tr>
<td>IPv4 & IPv6 Redistribute</td>
<td>Enable redistribution by protocol. Specify either All routes, or Filter by route map.</td>
</tr>
<tr>
<td>Dampening</td>
<td>Enable route flap dampening to reduce the propagation of flapping routes.</td>
</tr>
<tr>
<td>Graceful Restart</td>
<td>Enable BGP graceful restart, which causes the adjacent routers to keep routes active while the BGP peering is restarted on the FortiGate. This is useful in HA instances when failover occurs.</td>
</tr>
<tr>
<td>Advanced Options</td>
<td>Various advanced settings, such as Local Preference, Distance internal, Keepalive, Holdtime, and others</td>
</tr>
<tr>
<td>Best Path Selection</td>
<td>Configure path selection attributes on this router.</td>
</tr>
</tbody>
</table>

This section includes the following topics:

- Basic BGP example on page 357
- Route filtering with a distribution list on page 366
- Next hop recursive resolution using other BGP routes on page 370
- Next hop recursive resolution using ECMP routes on page 371
- BGP conditional advertisement on page 371
- BGP error handling per RFC 7606 on page 377
- BGP next hop tag-match mode on page 379
- Troubleshooting BGP on page 385

Basic BGP example

In this example, BGP is configured on two FortiGate devices. The FortiGates are geographically separated, and form iBGP peering over a VPN connection. FGT_A also forms eBGP peering with ISP2.

FGT_A learns routes from ISP2 and redistributes them to FGT_B while preventing any iBGP routes from being advertised.

The internal networks behind the FortiGates can communicate with each other, and the internal networks behind FGT_B can traverse FGT_A to reach networks that are advertised by ISP2.
FGT_A and FGT_B have static routes to each other through ISP1. ISP1 does not participate in BGP.

The IPsec VPN tunnel between FGT_A and FGT_B is configured with wildcard 0.0.0.0/0 networks for phase2 local and remote selectors. The VPN interfaces have IP addresses already configured and are used for peering between FGT_A and FGT_B.

FGT_A is configured to peer with ISP2 on 10.10.108.86.

The firewall policies between FGT_A and FGT_B are not NATed. The firewall policies egressing on wan2 are NATed.

Configuring iBGP peering

To configure FGT_A to establish iBGP peering with FGT_B in the GUI:

1. Go to Network > BGP.
2. Set Local AS to 64511
3. Set Router ID to 1.1.1.1.
4. In the Neighbors table, click Create New and set the following:

<table>
<thead>
<tr>
<th>IP</th>
<th>10.100.201.88</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote AS</td>
<td>64511</td>
</tr>
</tbody>
</table>

5. Click OK.
7. Click Apply.
8. In the CLI, set the interface used as the source IP address of the TCP connection (where the BGP session, TCP/179, is connecting from) for the neighbor (update-source) to FGT_B.

To configure FGT_A to establish iBGP peering with FGT_B in the CLI:

```plaintext
config router bgp
  set as 64511
  set router-id 1.1.1.1
config neighbor
  edit "10.100.201.88"
    set remote-as 64511
    set update-source "toFGTB"
next
end
config network
  edit 1
    set prefix 192.168.86.0 255.255.255.0
next
end
```

To configure FGT_B to establish iBGP peering with FGT_A in the GUI:

1. Go to Network > BGP.
2. Set Local AS to 64511
3. Set Router ID to 2.2.2.2.
4. In the Neighbors table, click Create New and set the following:
To configure FGT_B to establish iBGP peering with FGT_A in the CLI:

```
config router bgp
  set as 64511
  config neighbor
    edit "10.100.201.86"
      set remote-as 64511
      set update-source "toFGTA"
    next
  end
end
config network
  edit 1
    set prefix 192.168.88.0 255.255.255.0
  next
end
```

To check the FGT_A and FGT_B peering:

1. Check the BGP neighbors:
   ```
   # get router info bgp neighbors
   ```
2. Check the networks learned from neighbors:
   ```
   # get router info bgp network
   ```
3. Check that the routes are added to the routing table:
   ```
   # get router info routing-table all
   ```

To see the neighborship status, network, and routing table command outputs for the completed example, see Troubleshooting and debugging on page 362.

Configuring eBGP peering

By establishing eBGP peering with ISP2, learned routes will have a distance of 20 and will automatically be propagated to iBGP peers. iBGP peers do not change the next hop when they advertise a route. To make FGT_B receive a route with FGT_A as the next hop, and not ISP 2's network, `Next hop self (next-hop-self)` is enabled for routes advertised to FGT_B.

Additionally, to peer with another router that is multiple hops away, enable `ebg-enforce-multihop` in the neighbor configuration.
In this example, the iBGP routes are automatically advertised to the eBGP neighbor, so a route map is created to deny iBGP routes from being advertised to ISP 2. Prefixes from ISP 2 are advertised to FGT_A and FGT_B, but no prefixes are advertised from FGT_A to ISP 2.

To configure FGT_A to establish eBGP peering with ISP 2 in the GUI:

1. Configure a route map to prevent advertisement of iBGP routes to ISP 2:
 a. Go to Network > Routing Objects and click Create New > Route Map.
 b. Set Name to exclude1.
 c. In the Rules table, click Create New.
 d. Set Action to Deny.
 e. Under Other Rule Variables, enable Match origin and set it to IGP.
 f. Click OK.
 g. Click OK.

2. Update the BGP configuration:
 a. Go to Network > BGP.
 b. In the Neighbors table, click Create New and set the following:

<table>
<thead>
<tr>
<th>IP</th>
<th>10.10.102.87</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote AS</td>
<td>64512</td>
</tr>
<tr>
<td>Route map out</td>
<td>exclude1</td>
</tr>
</tbody>
</table>

c. Click OK.

d. In the Neighbors table, edit the previously created entry, 10.100.201.88.

e. Under IPv4 Filtering, select Next hop self.
 f. Click OK.
 g. Click Apply.

To configure FGT_A to establish eBGP peering with ISP 2 in the CLI:

1. Configure a route map to prevent advertisement of iBGP routes to ISP 2:

   ```
   config router route-map
   edit "exclude1"
   config rule
   edit 1
   set action deny
   set match-origin igp
   next
   next
   end
   end
   ```

2. Update the BGP configuration:

   ```
   config router bgp
   config neighbor
   edit "10.10.102.87"
   set remote-as 64512
   set route-map-out "exclude1"
   ```
To see the neighbor status, network, and routing table command outputs for the completed example, see Troubleshooting and debugging on page 362.

Firewall policies

On FGT_A configure the following policies:

- Allow the internal subnet to the VPN interface. Do not enable NAT. Enable security profiles as required.
- Allow the VPN interface to the internal subnet. Do not enable NAT. Enable security profiles as required.
- Allow the internal subnet to wan2. Enable NAT and security profiles as required.
- Allow VPN traffic from toFGTA to wan2. Enable NAT and security profiles as required.

On FGT_B configure the following policies:

- Allow the internal subnet to the VPN interface. Do not enable NAT. Enable security profiles as required.
- Allow the VPN interface to the internal subnet. Do not enable NAT. Enable security profiles as required.

To verify that pinging from FGT_B to FGT_A is successful:

```
FGT_B # execute ping-options source 192.168.88.88
FGT_B # execute ping 192.168.86.86
PING 192.168.86.86 (192.168.86.86): 56 data bytes
64 bytes from 192.168.86.86: icmp_seq=0 ttl=255 time=0.5 ms
...--- 192.168.86.86 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 0.3/0.3/0.5 ms
```

To verify that pinging from FGT_B to a subnet in ISP 2 is successful:

```
FGT_B # execute ping-options source 192.168.88.88
FGT_B # execute ping 172.16.201.87
PING 172.16.201.87 (172.16.201.87): 56 data bytes
64 bytes from 172.16.201.87: icmp_seq=0 ttl=254 time=0.6 ms
...--- 172.16.201.87 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 0.4/0.4/0.6 ms
```

```
FGT_B # execute traceroute-options source 192.168.88.88
FGT_B # execute traceroute 172.16.201.87
traceroute to 172.16.201.87 (172.16.201.87), 32 hops max, 3 probe packets per hop, 84 byte packets
  1  10.100.201.86  0.315 ms  0.143 ms  0.110 ms
  2  172.16.201.87  0.258 ms  0.144 ms  0.222 ms
```
Troubleshooting and debugging

When troubleshooting issues, logically step through the debugs. For example, if peering cannot be established between FGT_A and FGT_B:

1. Verify the basic connectivity between the FGT_A wan1 interface and the FGT_B port1 interface.
2. Verify that the VPN between FGT_A and FGT_B is established.
3. Verify the connectivity between the VPN interfaces.
4. Check the neighborship status on each peer. Use the BGP state to help determine the possible issue, for example:

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idle</td>
<td>The local FortiGate has not started the BGP process with the neighbor.</td>
</tr>
<tr>
<td></td>
<td>This could be because the eBGP peer is multiple hops away, but multihop is</td>
</tr>
<tr>
<td></td>
<td>not enabled.</td>
</tr>
<tr>
<td>Connect</td>
<td>The local FortiGate has started the BGP process, but has not initiated a</td>
</tr>
<tr>
<td></td>
<td>TCP connection, possibly due to improper routing.</td>
</tr>
<tr>
<td>Active</td>
<td>The local FortiGate has initiated a TCP connection, but there is no response</td>
</tr>
<tr>
<td></td>
<td>This might indicate issues with the delivery or the response from the remote</td>
</tr>
</tbody>
</table>

5. If there are issues establishing the TCP connection, use the command `diagnose sniffer packet any 'tcp and port 179'` to identify the problem at the packet level.

The following outputs show instances where all of the configurations are completed, peering has formed, and routes have been exchanged. The debug output during each configuration step might differ from these outputs. These debug outputs can be used to help identify what might be missing or misconfigured on your device.

To verify the status of the neighbors:

```
FGT_A # get router info bgp neighbors
VRF 0 neighbor table:
BGP neighbor is 10.10.102.87, remote AS 64512, local AS 64511, external link
  BGP version 4, remote router ID 192.168.2.87
  BGP state = Established, up for 01:54:37
  Last read 00:00:29, hold time is 180, keepalive interval is 60 seconds
  Configured hold time is 180, keepalive interval is 60 seconds
  Neighbor capabilities:
    Route refresh: advertised and received (old and new)
    Address family IPv4 Unicast: advertised and received
    Address family IPv6 Unicast: advertised and received
  Received 513 messages, 1 notifications, 0 in queue
  Sent 517 messages, 2 notifications, 0 in queue
  Route refresh request: received 0, sent 0
  Minimum time between advertisement runs is 30 seconds
For address family: IPv4 Unicast
  BGP table version 5, neighbor version 0
  Index 3, Offset 0, Mask 0x8
  Community attribute sent to this neighbor (both)
  Outbound path policy configured
  Route map for outgoing advertisements is *excludelroot
  4 accepted prefixes, 4 prefixes in rib
  0 announced prefixes
For address family: IPv6 Unicast
  BGP table version 1, neighbor version 0
  Index 3, Offset 0, Mask 0x8
  Community attribute sent to this neighbor (both)
```
0 accepted prefixes, 0 prefixes in rib
0 announced prefixes
Connections established 4; dropped 3
Local host: 10.10.102.86, Local port: 20364
Foreign host: 10.10.102.87, Foreign port: 179
Nexthop: 10.10.102.86
Nexthop interface: wan2
Nexthop global: ::
Nexthop local: ::
BGP connection: non shared network
Last Reset: 01:54:42, due to BGP Notification sent
Notification Error Message: (CeaseUnspecified Error Subcode)
BGP neighbor is 10.100.201.88, remote AS 64511, local AS 64511, internal link
 BGP version 4, remote router ID 2.2.2.2
 BGP state = Established, up for 01:54:07
 Last read 00:00:11, hold time is 180, keepalive interval is 60 seconds
 Configured hold time is 180, keepalive interval is 60 seconds
Neighbor capabilities:
 Route refresh: advertised and received (old and new)
 Address family IPv4 Unicast: advertised and received
 Address family IPv6 Unicast: advertised and received
Received 527 messages, 3 notifications, 0 in queue
Sent 543 messages, 8 notifications, 0 in queue
Route refresh request: received 0, sent 0
Minimum time between advertisement runs is 30 seconds
Update source is toFGTB
For address family: IPv4 Unicast
 BGP table version 5, neighbor version 4
 Index 1, Offset 0, Mask 0x2
 NEXT_HOP is always this router
 Community attribute sent to this neighbor (both)
 1 accepted prefixes, 1 prefixes in rib
 5 announced prefixes
For address family: IPv6 Unicast
 BGP table version 1, neighbor version 1
 Index 1, Offset 0, Mask 0x2
 Community attribute sent to this neighbor (both)
 0 accepted prefixes, 0 prefixes in rib
 0 announced prefixes
Connections established 7; dropped 6
Local host: 10.100.201.86, Local port: 179
Foreign host: 10.100.201.88, Foreign port: 6245
Nexthop: 10.100.201.86
Nexthop interface: toFGTB
Nexthop global: ::
Nexthop local: ::
BGP connection: non shared network
Last Reset: 01:54:12, due to BGP Notification received
Notification Error Message: (CeaseUnspecified Error Subcode)

FGT_B # get router info bgp neighbors
VRF 0 neighbor table:
BGP neighbor is 10.100.201.86, remote AS 64511, local AS 64511, internal link
 BGP version 4, remote router ID 1.1.1.1
 BGP state = Established, up for 01:56:04
 Last read 00:00:48, hold time is 180, keepalive interval is 60 seconds
 Configured hold time is 180, keepalive interval is 60 seconds
Neighbor capabilities:
 Route refresh: advertised and received (old and new)
 Address family IPv4 Unicast: advertised and received
 Address family IPv6 Unicast: advertised and received
Received 532 messages, 3 notifications, 0 in queue
Sent 526 messages, 3 notifications, 0 in queue
Route refresh request: received 0, sent 0
Minimum time between advertisement runs is 30 seconds
Update source is toFGTA
For address family: IPv4 Unicast
BGP table version 4, neighbor version 3
Index 1, Offset 0, Mask 0x2
Community attribute sent to this neighbor (both)
5 accepted prefixes, 5 prefixes in rib
1 announced prefixes
For address family: IPv6 Unicast
BGP table version 1, neighbor version 1
Index 1, Offset 0, Mask 0x2
Community attribute sent to this neighbor (both)
0 accepted prefixes, 0 prefixes in rib
0 announced prefixes
Connections established 7; dropped 6
Local host: 10.100.201.88, Local port: 6245
Foreign host: 10.100.201.86, Foreign port: 179
Nexthop: 10.100.201.88
Nexthop interface: toFGTA
Nexthop global: ::
Nexthop local: ::
BGP connection: non shared network
Last Reset: 01:56:09, due to BGP Notification sent
Notification Error Message: (CeaseUnspecified Error Subcode)

get router info bgp neighbors <neighbor's IP> can also be used to verify the status of a specific neighbor.

To verify the networks learned from neighbors or a specific network:

FGT_A # get router info bgp network
VRF 0 BGP table version is 5, local router ID is 1.1.1.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal, S Stale
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>RouteTag</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>*> 172.16.201.0/24 10.10.102.87</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>64512 i <-/1></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*> 172.16.202.0/24 10.10.102.87</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>64512 i <-/1></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*> 172.16.203.0/24 10.10.102.87</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>64512 i <-/1></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*> 172.16.204.0/24 10.10.102.87</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>64512 i <-/1></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*> 192.168.86.0 0.0.0.0</td>
<td>100</td>
<td>32768</td>
<td>0</td>
<td>i <-/1></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*>192.168.88.0 10.100.201.88</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0 i <-/1></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total number of prefixes 6

FGT_A # get router info bgp network 172.16.201.0
VRF 0 BGP routing table entry for 172.16.201.0/24
Paths: (1 available, best #1, table Default-IP-Routing-Table)
 Advertised to non peer-group peers:
 10.100.201.88
 Original VRF 0
Network

64512
 10.10.102.87 from 10.10.102.87 (192.168.2.87)
 Origin IGP metric 0, localpref 100, valid, external, best
 Last update: Tue Dec 15 22:52:08 2020

FGT_A # get router info bgp network 192.168.88.0
VRF 0 BGP routing table entry for 192.168.88.0/24
Paths: (1 available, best #1, table Default-IP-Routing-Table)
 Not advertised to any peer
 Original VRF 0
 Local
 10.100.201.88 from 10.100.201.88 (2.2.2.2)
 Origin IGP metric 0, localpref 100, valid, internal, best
 Last update: Tue Dec 15 22:52:39 2020

FGT_B # get router info bgp network
VRF 0 BGP table version is 4, local router ID is 2.2.2.2
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal, S Stale
Origin codes: i - IGP, e - EGP, ? - incomplete

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>RouteTag</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>*>i172.16.201.0/24</td>
<td>10.100.201.86</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>64512</td>
<td>i <-/1</td>
</tr>
<tr>
<td>*>i172.16.202.0/24</td>
<td>10.100.201.86</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>64512</td>
<td>i <-/1</td>
</tr>
<tr>
<td>*>i172.16.203.0/24</td>
<td>10.100.201.86</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>64512</td>
<td>i <-/1</td>
</tr>
<tr>
<td>*>i172.16.204.0/24</td>
<td>10.100.201.86</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>64512</td>
<td>i <-/1</td>
</tr>
<tr>
<td>*>i192.168.86.0</td>
<td>10.100.201.86</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>32768</td>
<td>i</td>
</tr>
<tr>
<td>* 192.168.88.0</td>
<td>0.0.0.0</td>
<td>100</td>
<td>32768</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total number of prefixes 6

To verify the routing tables on FGT_A and FGT_B:

FGT_A # get router info routing-table all
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
 O - OSPF, IA - OSPF inter area
 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
 E1 - OSPF external type 1, E2 - OSPF external type 2
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
 * - candidate default

Routing table for VRF=0
S* 0.0.0.0/0 [10/0] via 172.16.151.1, port1, [5/0]
 [10/0] via 192.168.2.1, port2, [10/0]
C 10.10.101.0/24 is directly connected, wan1
C 10.10.102.0/24 is directly connected, wan2
S 10.10.103.0/24 [10/0] via 10.10.101.84, wan1
C 10.100.201.0/24 is directly connected, toFGTB
C 10.100.201.86/32 is directly connected, toFGTB
C 172.16.151.0/24 is directly connected, port1
B 172.16.201.0/24 [20/0] via 10.10.102.87, wan2, 02:09:50
B 172.16.202.0/24 [20/0] via 10.10.102.87, wan2, 02:09:50
B 172.16.203.0/24 [20/0] via 10.10.102.87, wan2, 02:09:50
B 172.16.204.0/24 [20/0] via 10.10.102.87, wan2, 02:09:50
C 192.168.2.0/24 is directly connected, port2
C 192.168.86.0/24 is directly connected, vlan86
B 192.168.88.0/24 [200/0] via 10.100.201.88, toFGTB, 02:09:19

FGT_B # get router info routing-table all
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
Route filtering with a distribution list

During BGP operations, routes can be propagated between BGP peers and redistributed from other routing protocols. In some situations, advertising routes from one peer to another might need to be prevented.

The Basic BGP example on page 357 explains using a route map to filter routes that are learned from iBGP to prevent them from propagating to an eBGP peer. In this example, a distribution list is used to prevent certain routes from one peer from being advertised to another peer.

- A company has its own web and email servers in an OSPF area, and needs to advertise routes to these resources to external peers. Users, routers, and other server all reside in the OSPF area.
- The FortiGate acts as the BGP border router, redistributing routes from the company's network to its BGP peers. It is connected to the OSPF area using its DMZ interface.
- Two ISP managed BGP peers in an AS (Peer 1 and Peer 2) are used to access the internet, and routes must not to be advertised from Peer 1 to Peer 2. The manufacturers of these routers, and information about other devices on the external BGP AS, are not known.
- Routes to the BGP peers are redistributed so that external locations can access the web and email servers in the OSPF area. The FortiGate device's external interfaces and the BGP peers are in different ASs, and form eBGP peers.
- Other networking devices must be configured for BGP. The peer routers must be updated with the FortiGate device's BGP information, including IP addresses, AS number, and any specific capabilities that are used, such as
IPv6, graceful restart, BFD, and so on.

- It is assumed that security policies have been configured to allow traffic between the networks and NAT is not used. To tighten security, only the required services should be allowed inbound to the various servers.
- In a real life scenario, public IP addresses would be used in place of private IP addresses.

Configuring BGP

In this example, Peer 1 routes are blocked from being advertised to Peer 2 using an access list. All incoming routes from Peer 1 are blocked when updates are sent to Peer 2.

Routes learned from OSPF are redistributed into BGP. EBGP multi path is enabled to load-balance traffic between the peers using ECMP. See Equal cost multi-path on page 309 for more information.

To configure BGP in the GUI:

1. Configure an access list to block Peer 1 routes:
 - a. Go to Network > Routing Objects and click Create New > Access List.
 - b. Set Name to block_peer1.
 - c. In the Rules table, click Create New.
 - d. Set Action to Deny.
 - e. Enable Exact Match and specify the prefix 172.21.111.0 255.255.255.0.
 - f. Click OK.
 - g. Click OK.

2. Configure BGP:
 - a. Go to Network > BGP.
 - b. Set Local AS to 65001
 - c. Set Router ID to 10.11.201.110.
 - d. In the Neighbors table, click Create New and set the following:

IP	172.21.111.5
Remote AS	65001

 - e. Click OK.
 - f. In the Neighbors table, click Create New again and set the following:

IP	172.22.222.5
Remote AS	65001
Distribute list out	Enable, and select the block_peer1 access list.

 - g. Click OK.
 - h. Under IPv4 Redistribute, enable OSPF and select ALL.
 - i. Expand Best Path Selection and enable EBGP multi path.
 - j. Click Apply.
To configure BGP in the CLI:

1. Configure an access list to block Peer 1 routes:

   ```
   config router access-list
   edit "block_peer1"
   config rule
   edit 1
   set action deny
   set prefix 172.21.111.0 255.255.255.0
   set exact-match enable
   next
   end
   next
   end
   ```

2. Configure BGP:

   ```
   config router bgp
   set as 65001
   set router-id 10.11.201.110
   set ebgp-multipath enable
   config neighbor
   edit "172.21.111.5"
   set remote-as 65001
   next
   edit "172.22.222.5"
   set distribute-list-out "block_peer1"
   set remote-as 65001
   next
   end
   config redistribute "ospf"
   set status enable
   end
   ```

Configuring OSPF

In this example, all of the traffic is within the one OSPF area, and there are other OSPF routers in the network. When adjacencies are formed, other routers receive the routes advertised from the FortiGate that are redistributed from BGP.

To configure OSPF in the GUI:

1. Go to Network > OSPF.
2. Set Router ID to 10.11.201.110.
3. In the Areas table, click Create New and set the following:

<table>
<thead>
<tr>
<th>Area ID</th>
<th>0.0.0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Regular</td>
</tr>
<tr>
<td>Authentication</td>
<td>None</td>
</tr>
</tbody>
</table>

4. Click OK.
5. In the Networks table, click Create New and set the following:
6. Click OK.
7. In the Interfaces table, click Create New and set the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>OSPF_dmz_network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>dmz</td>
</tr>
</tbody>
</table>

8. Click OK.
9. Enable Redistribute BGP and set Metric value to 1.
10. Click Apply.

To configure OSPF in the CLI:

```
config router ospf
    set router-id 10.11.201.110
config area
    edit 0.0.0.0
    next
end
config ospf-interface
    edit "OSPF_dmz_network"
    set interface "dmz"
    next
end
config network
    edit 1
    set prefix 10.11.201.0 255.255.255.0
    next
end
config redistribute "bgp"
    set status enable
    set metric 1
end
```

Testing the configuration

To test this configuration, run the standard connectivity checks, and also make sure that routes are being passed between protocols as expected. Use the following checklist to help verify that the FortiGate is configured successfully:

1. Check that the FortiGate has established peering with BGP Peer 1 and Peer 2:

 # get router info bgp summary
 # get router info bgp neighbors

2. Check that the FortiGate has formed adjacency with OSPF neighbors:

 # get router info ospf status
 # get router info ospf neighbors

3. Check the routing table on the FortiGate to make sure that routes from both OSPF and BGP are included:
4. Check devices in the OSPF network for internet connectivity and to confirm that routes redistributed from BGP are in their routing tables.
5. Check the routing table on Peer 2 to confirm that no routes from Peer 1 are included.
6. Check that the routes from the internal OSPF network are redistributed to Peer 1 and Peer 2.
7. Verify connectivity to the HTTP and email servers.

Next hop recursive resolution using other BGP routes

By default, BGP routes are not considered when a BGP next hop requires recursive resolution. They are considered when `recursive-next-hop` is enabled. Recursive resolution will resolve to one level.

To consider BGP routes for recursive resolution of next hops:

```plaintext
config router bgp
  set recursive-next-hop enable
end
```

Example

To see the change in the routing table when the option is enabled:

1. Check the BGP routing table:

   ```plaintext
   # get router info routing-table bgp
   Routing table for VRF=0
   B   10.100.1.4/30 [200/0] via 10.100.1.14 (recursive is directly connected, R560), 00:02:06
   ```

2. Enable BGP routes for recursive resolution of next hops:

   ```plaintext
   config router bgp
     set recursive-next-hop enable
   end
   ```

3. Check the BGP routing table again:

   ```plaintext
   # get router info routing-table bgp
   Routing table for VRF=0
   B   10.100.1.4/30 [200/0] via 10.100.1.14 (recursive is directly connected, R560), 00:02:15
   B   172.16.203.0/24 [200/0] via 10.100.1.6 (recursive via 10.100.1.14, R560), 00:00:06
   ```

 The second BGP route's next hop is now recursively resolved by another BGP route.
Next hop recursive resolution using ECMP routes

When there are multiple ECMP routes to a BGP next hop, all of them are considered for the next hop recursive resolution. This ensures that the outgoing traffic can be load balanced.

To support multipath, either EGBP or IGBP multipath must be enabled:

```
config router bgp
  set ebgp-multipath enable
  set ibgp-multipath enable
end
```

In this example, there are two static routes. The FortiGate has learned two BGP routes from Router 1 that have the same next hop at 10.100.100.1. The next hop is resolved by the two static routes.

To verify that the routes are added to the BGP routing table:

1. Check the two static routes:

   ```
   # get router info routing-table static
   Routing table for VRF=0
   S    10.100.100.0/24 [10/0] via 172.16.200.55, port9
       [10/0] via 172.16.203.2, agg1
   ```

2. Confirm that both routes are in the BGP routing table:

   ```
   # get router info routing-table bgp
   Routing table for VRF=0
   B    10.100.10.0/24 [20/200] via 10.100.100.1 (recursive via 172.16.200.55, port9),
       00:00:07 (recursive via 172.16.203.2, agg1),
       00:00:07
   00:00:07
   B    10.100.11.0/24 [20/200] via 10.100.100.1 (recursive via 172.16.200.55, port9),
       00:00:07 (recursive via 172.16.203.2, agg1),
       00:00:07
   00:00:07
   ```

BGP conditional advertisement

BGP conditional advertisement allows the router to advertise a route only when certain conditions are met. Multiple conditions can be used together, with conditional route map entries treated as an AND operator, and IPv6 is supported.
Multiple conditions example

In this example, the FortiGate only advertises routes to its neighbor 2.2.2.2 if it learns multiple BGP routes defined in its conditional route map entry. All conditionals must be met.

To configure multiple conditions in BGP conditional advertisements:

1. **Configure the IPv4 prefix list:**
   ```
   config router prefix-list
   edit "281"
   config rule
   edit 1
   set prefix 172.28.1.0 255.255.255.0
   unset ge
   unset le
   next
   end
   end
   edit "222"
   config rule
   edit 1
   set prefix 172.22.2.0 255.255.255.0
   unset ge
   unset le
   next
   end
   end
   ```

2. **Configure the community list:**
   ```
   config router community-list
   edit "30:5"
   config rule
   edit 1
   set action permit
   set match "30:5"
   ```

3. **Configure the IPv4 route maps:**
   ```
   config router route-map
   edit "comm1"
   config rule
   edit 1
   set match-community "30:5"
   ```
Network

```
set set-route-tag 15
next
end
next "2224"
  config rule
  edit 1
    set match-ip-address "222"
  next
end
next "2814"
  config rule
  edit 1
    set match-ip-address "281"
  next
end
next
end
```

4. Configure the IPv6 prefix list:

```
config router prefix-list6
edit "adv-222"
  config rule
  edit 1
    set prefix6 2003:172:22:1::/64
    unset ge
    unset le
  next
end
next
edit "list6-2"
  config rule
  edit 1
    set prefix6 2003:172:28:2::/64
    unset ge
    unset le
  next
end
next
```

5. Configure the IPv6 route maps:

```
config router route-map
edit "map-222"
  config rule
  edit 1
    set match-ip6-address "adv-222"
  next
end
next
edit "map-282"
  config rule
  edit 1
    set action deny
```
6. Configure the BGP settings:

```plaintext
cfg router bgp
  config neighbor
    edit "2.2.2.2"
      config conditional-advertise
        edit "2224"
          set condition-routemap "2814" "2224" "comml"
            set condition-type non-exist
        next
      next
    edit "2003::2:2:2:2"
      config conditional-advertise6
        edit "map-222"
          set condition-routemap "map-222" "map-282"
        next
      set route-reflector-client6 enable
next
end
```

To verify the IPv4 conditional advertisements:

```
# get router info bgp neighbors 2.2.2.2
...
  Conditional advertise-map:
    Adv-map 2224root 2814root, cond-state 0-1
    2224root, cond-state 0-1
    commlroot, cond-state 0-0
...
```

In this output, the condition is that the routes in route maps 2814, 2224 and comml do not exist. However, routes for 2814 and 2224 exist, so the conditions are not met.

To verify the IPv6 conditional advertisements:

```
# get router info6 bgp neighbors 2003::2:2:2:2
...
  Conditional advertise-map:
    Adv-map map-222root map-222root, cond-state 1-1
    map-282root, cond-state 1-0
...
```

In this output, the condition is that the routes in route maps map-222 and map-282 exist. However, routes for map-222 exist, but map-282 does not, so the conditions are not met.
To view the conditional route maps:

```bash
# diagnose ip router command show-vrf root show running router bgp
...
neighbor 2.2.2.2 advertise-map 2224root exist-map 2814root
neighbor 2.2.2.2 advertise-map 2224root exist-map 2224root
neighbor 2.2.2.2 advertise-map 2224root exist-map commlroot
...
!
address-family ipv6
neighbor 2003::2:2:2:2 advertise-map map-222root non-exist-map map-222root
neighbor 2003::2:2:2:2 advertise-map map-222root non-exist-map map-282root
!
```

IPv6 example 1

In this example, the FortiGate advertises its local network to the secondary router when the primary router is down. The FortiGate detects the primary router is down in the absence of a learned route.

- When the FortiGate learns route 2003:172:28:1::/64 from the primary router, it does not advertise its local route (2003:172:22:1::/64) to the secondary router.
- When the FortiGate does not learn route 2003:17:28:1::/64 from the primary router, advertises its local route (2003:172:22:1::/64) to the secondary router.
- The BGP conditional advertisement condition is set to be true if the condition route map (2003:172:28:1::/64) is not matched (non-exist).

To configure BGP conditional advertisement with IPv6:

1. Configure the IPv6 prefix lists:

   ```bash
   config router prefix-list6
   edit "adv-222"
   config rule
   edit 1
   set prefix6 2003:172:22:1::/64
   unset ge
   unset le
   next
   end
   next
   ```
edit "lrn-281"
 config rule
 edit 1
 set prefix6 2003:172:28:1::/64
 unset ge
 unset le
 next
 next
end
end

2. Configure the route maps:

config router route-map
edit "map-221"
 config rule
 edit 1
 set match-ip6-address "adv-222"
 next
end
next
edit "map-281"
 config rule
 edit 1
 set match-ip6-address "lrn-281"
 next
next
end

3. Configure BGP:

config router bgp
 set as 65412
 set router-id 1.1.1.1
 set ibgp-multipath enable
 set network-import-check disable
 set graceful-restart enable
 config neighbor
 edit "2003::2:2:2:2"
 set soft-reconfiguration6 enable
 set remote-as 65412
 set update-source "loopback1"
 config conditional-advertise6
 edit "map-221"
 set condition-routemap "map-281"
 set condition-type non-exist
 next
 next
 edit "2003::3:3:3:3"
 set soft-reconfiguration6 enable
 set remote-as 65412
 set update-source "loopback1"
 next
end
end
In this configuration, if route map map-281 does not exist, then the FortiGate advertises route map map-221 to neighbor 2003::2:2:2.

4. Verify the routing table:

```
# get router info6 routing-table bgp
```


IPv6 example 2

With the same IPv6 prefix lists and route maps, when the FortiGate does learn 2003:172:28:1::/64, it advertises local route 2003:172:22:1::/64 to the secondary router. The BGP conditional advertisement condition is set to be true if the condition route map is matched (exist).

To configure BGP conditional advertisement with IPv6:

1. Configure BGP:

```
config router bgp
config neighbor
   edit "2003::2:2:2:2"
   config conditional-advertise6
      edit "map-221"
      set condition-routemap "map-281"
      set condition-type exist
   next
next
end
```

2. Verify the routing table:

```
# get router info6 routing-table bgp
```


BGP error handling per RFC 7606

The FortiGate uses one of the three approaches to handle malformed attributes in BGP UPDATE messages, in order of decreasing severity:
1. Notification and Session reset
2. Treat-as-withdraw
3. Attribute discard

When a BGP UPDATE message contains multiple malformed attributes, the most severe approach that is triggered by one of the attributes is followed. See RFC 7606 for more information.

The following table lists the BGP attributes, and how FortiGate handles a malformed attribute in the UPDATE message:

<table>
<thead>
<tr>
<th>BGP attribute</th>
<th>Handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>origin</td>
<td>Handled by the treat-as-withdraw approach.</td>
</tr>
<tr>
<td>AS path</td>
<td>Handled by the treat-as-withdraw approach.</td>
</tr>
<tr>
<td>AS 4 path</td>
<td>Handled by the attribute discard approach.</td>
</tr>
<tr>
<td>aggregator</td>
<td>Handled by the attribute discard approach.</td>
</tr>
<tr>
<td>aggregator 4</td>
<td>Handled by the attribute discard approach.</td>
</tr>
<tr>
<td>next-hop</td>
<td>Handled by the treat-as-withdraw approach.</td>
</tr>
<tr>
<td>multiple exit discriminator</td>
<td>Handled by the treat-as-withdraw approach.</td>
</tr>
<tr>
<td>local preference</td>
<td>Handled by the treat-as-withdraw approach.</td>
</tr>
<tr>
<td>atomic aggregate</td>
<td>Handled by the attribute discard approach.</td>
</tr>
<tr>
<td>community</td>
<td>Handled by the treat-as-withdraw approach.</td>
</tr>
<tr>
<td>extended community</td>
<td>Handled by the treat-as-withdraw approach.</td>
</tr>
<tr>
<td>originator</td>
<td>Handled by the treat-as-withdraw approach.</td>
</tr>
<tr>
<td>cluster</td>
<td>Handled by the treat-as-withdraw approach.</td>
</tr>
<tr>
<td>PMSI</td>
<td>Handled by the treat-as-withdraw approach.</td>
</tr>
<tr>
<td>MP reach</td>
<td>Handled by the notification message approach.</td>
</tr>
<tr>
<td>MP unreach</td>
<td>Handled by the notification message approach.</td>
</tr>
<tr>
<td>attribute set</td>
<td>Handled by the treat-as-withdraw approach.</td>
</tr>
<tr>
<td>AIGP</td>
<td>Handled by the treat-as-withdraw approach.</td>
</tr>
<tr>
<td>Unknown</td>
<td>If the BGP flag does not indicate that this is an optional attribute, this malformed attribute is handled by the notification message approach.</td>
</tr>
</tbody>
</table>
This example shows how the ORIGIN attribute can be malformed, and how it is handled.

<table>
<thead>
<tr>
<th>Reason for malformed attribute</th>
<th>Handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGIN attribute length not one</td>
<td>The prefix will be gone and the BGP session will not be reset.</td>
</tr>
<tr>
<td>ORIGIN attribute value is invalid</td>
<td>The prefix will be gone and the BGP session will not be reset.</td>
</tr>
<tr>
<td>Two ORIGIN attributes with different values</td>
<td>The attributes are ignored, the BGP session will not be reset, and the BGP route will remain.</td>
</tr>
<tr>
<td>ORIGIN attribute is absent</td>
<td>The BGP session will be reset</td>
</tr>
</tbody>
</table>

For example, if the FortiGate receives a malformed UPDATE packet from the neighbor at 27.1.1.124 that has no ORIGIN attribute, the BGP session is reset and the state of the neighbor is shown as `Idle`, the first state of the BGP neighborship connection.

```
# get router info bgp summary
VRF 0 BGP router identifier 27.1.1.125, local AS number 125
BGP table version is 6
1 BGP AS-PATH entries
0 BGP community entries

Neighbor     V   AS  MsgRcvd  MsgSent  TblVer  InQ  OutQ  Up/Down  State/PfxRcd
3.3.3.3       4  33    0       0       0       0     0       never  Active
27.1.1.124    4  124   94      126     0       0     0       never  Idle

Total number of neighbors 2
```

BGP next hop tag-match mode

Tag-match mode can be configured to increase flexibility when controlling how BGP routes' next hops are resolved:

```
config router bgp
  set tag-resolve-mode {disable | preferred | merge}
end
```

| Best-match(disable) | Resolve the BGP route's next hops with best-matched routes. This is the default setting. |
Tag-match **(preferred)** Resolve the BGP route’s next hops with routes that have the same tag. If there are no results, resolve the next hops with best-matched routes.

Tag-and-best-match **(merge)** Merge tag-match with best-match if they are using different routes, then let shortcuts hide their parents. The results exclude the next hops of tag-match whose interfaces have appeared in best-match.

In these examples:

- Each spoke has two IPsec tunnels to each hub, and one BGP peer on loopback interface to each hub (route-reflector).
- The loopbacks are exchanged with IKE between the spokes and hubs. They are installed as static routes that are used to provide reachability for establishing BGP neighbors.
- The summary BGP routes from the loopback IP address ranges that originated on the hubs are advertised to the spokes for resolving the BGP next hops on the spokes.
- The spokes’ PC LAN subnets are reflected by the hubs.
- Spoke_1 receives BGP routes (the LAN subnet and loopback IP summary) from Hub_1 with tag 1 and from Hub_2 with tag 2.
- SD-WAN is enabled on Spoke_1, and all of the tunnels are SD-WAN members.

Example 1: Connection between Hub and Spoke down

If the connections between Hub_1 and Spoke_2 are down, traffic from PC_3 to PC_4 can still go through Hub_1 because of the best-match resolving on Spoke_1, but packets will be dropped on Hub_1. When tag-match is enabled on Spoke_1, the spoke will resolve the PC_4 LAN route to Hub2, and traffic will be forwarded to Hub_2 and reach its destination.

To test the tag-match mode:

1. View the key routes on Spoke_1:

   ```
   Spoke_1(root) # get router info routing-table all
   C 10.0.3.0/24 is directly connected, port4
   B 10.0.4.0/24 [200/0] via 172.31.0.66 [2] (recursive via H1_T11 tunnel 172.31.1.1), 20:09:52
   (recursive via H1_T22 tunnel 10.0.0.2), 20:09:52
   ```
(recursive via H2_T22 tunnel 172.31.1.101), 20:09:52
(recursive via H2_T22 tunnel 10.0.0.4), 20:09:52
B 172.31.0.0/25 [200/0] via 172.31.0.1 (recursive via H1_T11 tunnel 172.31.1.1),
23:25:37
(recursive via H1_T22 tunnel 10.0.0.2), 23:25:37
[200/0] via 172.31.0.2 (recursive via H2_T11 tunnel 172.31.1.101), 23:25:37
(recursive via H2_T22 tunnel 10.0.0.4), 23:25:37
S 172.31.0.1/32 [15/0] via H1_T11 tunnel 172.31.1.1, [1/0]
[15/0] via H1_T22 tunnel 10.0.0.2, [1/0]
S 172.31.0.2/32 [15/0] via H2_T11 tunnel 172.31.1.101, [1/0]
[15/0] via H2_T22 tunnel 10.0.0.4, [1/0]
C 172.31.0.65/32 is directly connected, Loopback0
...

172.31.0.0/25 is the loopback IP summary originated by both Hub_1 and Hub_2. The next hop of the PC_4 LAN route is resolved to Hub_1 (H1_T11, H1_T22) and Hub_2 (H2_T11, H2_T22) based on the loopback IP summary route.

2. When connections between Spoke_2 and Hub_1 fails due to the BGP neighbor, tunnels, or physical ports going down, the PC_4 LAN route can be still resolved to Hub_1 and Hub_2 because the loopback IP summary can still be received from both Hub_1 and Hub_2:

Spoke_1(root) # get router info routing-table all
C 10.0.3.0/24 is directly connected, port4
B 10.0.4.0/24 [200/0] via 172.31.0.66 (recursive via H1_T11 tunnel 172.31.1.1),
00:03:06
(recursive via H1_T22 tunnel 10.0.0.2), 00:03:06
(recursive via H2_T11 tunnel 172.31.1.101), 00:03:06
(recursive via H2_T22 tunnel 10.0.0.4), 00:03:06
B 172.31.0.0/25 [200/0] via 172.31.0.1 (recursive via H1_T11 tunnel 172.31.1.1),
23:55:34
(recursive via H1_T22 tunnel 10.0.0.2), 23:55:34
[200/0] via 172.31.0.2 (recursive via H2_T11 tunnel 172.31.1.101), 23:55:34
(recursive via H2_T22 tunnel 10.0.0.4), 23:55:34
...

3. If traffic sent from PC_3 to PC_4 goes through Hub_1, packets are dropped because there is no PC_4 LAN route on Hub_1:

Spoke_1 (root) # diagnose sniffer packet any 'host 10.0.4.2' 4
interfaces=[any]
filters=[host 10.0.4.2]
11.261264 port4 in 10.0.3.2 -> 10.0.4.2: icmp: echo request
11.261349 H1_T11 out 10.0.3.2 -> 10.0.4.2: icmp: echo request
12.260268 port4 in 10.0.3.2 -> 10.0.4.2: icmp: echo request
12.260291 H1_T11 out 10.0.3.2 -> 10.0.4.2: icmp: echo request

Hub_1 (root) # diagnose sniffer packet any 'host 10.0.4.2' 4
interfaces=[any]
filters=[host 10.0.4.2]
6.966064 EDGE_T1 in 10.0.3.2 -> 10.0.4.2: icmp: echo request
7.965012 EDGE_T1 in 10.0.3.2 -> 10.0.4.2: icmp: echo request

4. If the tag-match mode is set to tag-match (preferred) on Spoke_1, then the PC_4 LAN route can only be resolved to Hub_2 because of tag-match checking:

Spoke_1(root) # get router info routing-table all
C 10.0.3.0/24 is directly connected, port4
B 10.0.4.0/24 [200/0] via 172.31.0.66 tag 2 (recursive via H2_T11 tunnel 172.31.1.101), 00:02:35
(recursive via H2_T22 tunnel 10.0.0.4), 00:02:35
B 172.31.0.0/25 [200/0] via 172.31.0.1 tag 1 (recursive via H1_T11 tunnel 172.31.1.1), 03:18:41
(recursive via H1_T22 tunnel 10.0.0.2), 03:18:41
[200/0] via 172.31.0.2 tag 2 (recursive via H2_T11 tunnel 172.31.1.101),
03:18:41
(recursive via H2_T22 tunnel 10.0.0.4), 03:18:41
...

Spoke_1 (root) # get router info routing-table details 10.0.4.0/24
Routing table for VRF=0
Routing entry for 10.0.4.0/24
Known via "bgp", distance 200, metric 0, best
Last update 00:11 ago
* 172.31.0.66, tag 2 (recursive via H2_T11 tunnel 172.31.1.101), tag-match
(recursive via H2_T22 tunnel 10.0.0.4), tag-match

5. If traffic is again sent from PC_3 to PC_4, it will go through Hub_2 and reach the destination:

Spoke_1 (root) # diagnose sniffer packet any 'host 10.0.4.2' 4
interfaces=[host 10.0.4.2]
7.216948 port4 in 10.0.0.3.2 -> 10.0.4.2: icmp: echo request
7.217035 H2_T11 out 10.0.0.3.2 -> 10.0.4.2: icmp: echo request
7.217682 H2_T11 in 10.0.4.2 -> 10.0.0.3.2: icmp: echo reply
7.217729 port4 out 10.0.4.2 -> 10.0.0.3.2: icmp: echo reply

Example 2: SD-WAN failover when shortcut down

After the shortcut from Spoke_1 to Spoke_2 is established, Spoke_1 will only resolve the PC_4 LAN route to the shortcut, because of best-match resolving, prohibiting SD-WAN failover. When tag-and-best-match is enabled on Spoke_1, the spoke can resolve the PC_4 LAN route to the shortcut and to other alternative tunnels, allowing SD-WAN failover.

To test the tag-and-best-match mode:

1. Unset tag-resolve-mode and resume the connections between Spoke_2 and Hub_1. The routing table on Spoke_1 changes to the initial state:

Spoke_1(root) # get router info routing-table all
C 10.0.3.0/24 is directly connected, port4
B 10.0.4.0/24 [200/0] via 172.31.0.66 [2] (recursive via H1_T11 tunnel 172.31.1.1), 00:01:54
(recursive via H1_T22 tunnel 10.0.0.2), 00:01:54
(recursive via H2_T11 tunnel 172.31.1.101), 00:01:54
(recursive via H2_T22 tunnel 10.0.0.4), 00:01:54
B 172.31.0.0/25 [200/0] via 172.31.0.1 (recursive via H1_T11 tunnel 172.31.1.1), 03:30:35
(recursive via H1_T22 tunnel 10.0.0.2), 03:30:35
[200/0] via 172.31.0.2 (recursive via H2_T11 tunnel 172.31.1.101), 03:30:35
(recursive via H2_T22 tunnel 10.0.0.4), 03:30:35
S 172.31.0.1/32 [15/0] via H1_T11 tunnel 172.31.1.1, [1/0]
[15/0] via H1_T22 tunnel 10.0.0.2, [1/0]

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
2. **Send traffic from PC_3 to PC_4.**
 The shortcut from Spoke_1 to Spoke_2 is established.
 The PC_4 LAN route is only resolved to the shortcut because of best-match resolving. If the shortcut is out of SLA, then the traffic cannot switch over to another, alternative tunnel.

 Spoke_1 (root) # get router info routing-table all
 C 10.0.3.0/24 is directly connected, port4
 B 10.0.4.0/24 [200/0] via 172.31.0.66 [2] (recursive via H1_T11_0 tunnel 10.0.0.4), 00:07:36
 B 172.31.0.0/25 [200/0] via 172.31.0.1 (recursive via H1_T11 tunnel 172.31.1.1), 03:40:12
 (recursive via H1_T22 tunnel 10.0.0.2), 03:40:12
 [200/0] via 172.31.0.2 (recursive via H2_T11 tunnel 172.31.1.101), 03:40:12
 (recursive via H2_T22 tunnel 10.0.0.4), 03:40:12
 S 172.31.0.1/32 [15/0] via H1_T11 tunnel 172.31.1.1, [1/0]
 [15/0] via H1_T22 tunnel 10.0.0.2, [1/0]
 S 172.31.0.2/32 [15/0] via H2_T11 tunnel 172.31.1.101, [1/0]
 [15/0] via H2_T22 tunnel 10.0.0.4, [1/0]
 C 172.31.0.65/32 is directly connected, Loopback0
 S 172.31.0.66/32 [15/0] via H1_T11_0 tunnel 10.0.0.40, [1/0]
 ...

3. **If the tag-match mode is set to tag-and-best-match (merge) on Spoke_1, then the PC_4 LAN route is resolved to the H1_T11_0 shortcut based on best-match resolving, and to H1_T11, H1_T22, H2_T11, H2_T22 based on tag-match resolving. It is then resolved to H1_T11, H1_T22, H2_T11, H2_T22 after letting the shortcut hide its parent tunnel.**

 Spoke_1 (root) # get router info routing-table all
 C 10.0.3.0/24 is directly connected, port4
 B 10.0.4.0/24 [200/0] via 172.31.0.66 tag 1 (recursive via H1_T11_0 tunnel 10.0.0.4), 00:07:36
 (recursive via H1_T22 tunnel 10.0.0.2), 00:07:36
 [200/0] via 172.31.0.66 tag 2 (recursive via H1_T11_0 tunnel 10.0.0.40), 00:07:36
 (recursive via H2_T11 tunnel 172.31.1.101), 00:07:36
 (recursive via H2_T22 tunnel 10.0.0.4), 00:07:36
 B 172.31.0.0/25 [200/0] via 172.31.0.1 tag 1 (recursive via H1_T11 tunnel 172.31.1.1), 03:48:26
 (recursive via H1_T22 tunnel 10.0.0.2), 03:48:26
 [200/0] via 172.31.0.2 tag 2 (recursive via H2_T11 tunnel 172.31.1.101), 03:48:26
 (recursive via H2_T22 tunnel 10.0.0.4), 03:48:26
 S 172.31.0.1/32 [15/0] via H1_T11 tunnel 172.31.1.1, [1/0]
 [15/0] via H1_T22 tunnel 10.0.0.2, [1/0]
 S 172.31.0.2/32 [15/0] via H2_T11 tunnel 172.31.1.101, [1/0]
 [15/0] via H2_T22 tunnel 10.0.0.4, [1/0]
 C 172.31.0.65/32 is directly connected, Loopback0
 S 172.31.0.66/32 [15/0] via H1_T11_0 tunnel 10.0.0.40, [1/0]
 ...

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
Spoke_1 (root) # get router info routing-table details 10.0.4.0/24

Routing table for VRF=0
Routing entry for 10.0.4.0/24
Known via "bgp", distance 200, metric 0, best
Last update 00:01:02 ago
* 172.31.0.66, tag 1 (recursive via H1_T11_0 tunnel 10.0.0.42), best-match
 (recursive via H1_T22 tunnel 10.0.0.4), best-match
* 172.31.0.66, tag 2 (recursive via H1_T11_0 tunnel 10.0.0.42), best-match
 (recursive via H2_T11 tunnel 172.31.1.101), tag-match
 (recursive via H2_T22 tunnel 10.0.0.4), tag-match

4. If the H1_T11_0 shortcut goes out of SLA, traffic will switch to tunnel H1_T22 and shortcut H1_T22_0 is triggered.
The PC_4 LAN route is resolved to H1_T11, H1_T22, H2_T11, H2_T22.

Spoke_1 (root) # get router info routing-table all
C 10.0.3.0/24 is directly connected, port4
B 10.0.4.0/24 [200/0] via 172.31.0.66 tag 1 (recursive via H1_T11_0 tunnel 10.0.0.40), 00:18:50
 (recursive via H1_T22_0 tunnel 10.0.0.41), 00:18:50
 [200/0] via 172.31.0.66 tag 2 (recursive via H1_T11_0 tunnel 10.0.0.40),
 00:18:50
 (recursive via H1_T22_0 tunnel 10.0.0.41), 00:18:50
 (recursive via H2_T11 tunnel 172.31.1.101), 00:18:50
 (recursive via H2_T22 tunnel 10.0.0.4), 00:18:50
B 172.31.0.0/25 [200/0] via 172.31.0.1 tag 1 (recursive via H1_T11 tunnel 172.31.1.1), 03:59:40
 (recursive via H1_T22 tunnel 10.0.0.2), 03:59:40
 [200/0] via 172.31.0.2 tag 2 (recursive via H2_T11 tunnel 172.31.1.101),
 03:59:40
 (recursive via H2_T22 tunnel 10.0.0.4), 03:59:40
S 172.31.0.1/32 [15/0] via H1_T11 tunnel 172.31.1.1, [1/0]
 [15/0] via H1_T22 tunnel 10.0.0.2, [1/0]
S 172.31.0.2/32 [15/0] via H2_T11 tunnel 172.31.1.101, [1/0]
 [15/0] via H2_T22 tunnel 10.0.0.4, [1/0]
C 172.31.0.65/32 is directly connected, Loopback0
S 172.31.0.66/32 [15/0] via H1_T11_0 tunnel 10.0.0.40, [1/0]
 [15/0] via H1_T22_0 tunnel 10.0.0.41, [1/0]
...

Spoke_1 (root) # get router info routing-table details 10.0.4.0/24

Routing table for VRF=0
Routing entry for 10.0.4.0/24
Known via "bgp", distance 200, metric 0, best
Last update 00:06:40 ago
* 172.31.0.66, tag 1 (recursive via H1_T11_0 tunnel 10.0.0.42), best-match
 (recursive via H1_T22_0 tunnel 10.0.0.43), best-match
* 172.31.0.66, tag 2 (recursive via H1_T11_0 tunnel 10.0.0.42), best-match
 (recursive via H1_T22_0 tunnel 10.0.0.43), best-match
 (recursive via H2_T11 tunnel 172.31.1.101), tag-match
 (recursive via H2_T22 tunnel 10.0.0.4), tag-match

Spoke_1(root) # diagnose sys sdwan service

Service(1): Address Mode(IPV4) flags=0x200 use-shortcut-sla
 Gen(22), TOS(0x0/0x0), Protocol(0: 1->65535), Mode(sla), sla-compare-order
Member sub interface(4):
 1: seq_num(1), interface(H1_T11):
 1: H1_T11_0(93)
 3: seq_num(4), interface(H1_T22):
 1: H1_T22_0(94)
Members(4):
 1: Seq_num(1 H1_T11), alive, sla(0x1), gid(0), cfg_order(0), cost(0), selected
 2: Seq_num(4 H1_T22_0), alive, sla(0x1), gid(0), cfg_order(3), cost(0), selected
 3: Seq_num(4 H1_T22), alive, sla(0x1), gid(0), cfg_order(3), cost(0), selected
 4: Seq_num(1 H1_T11_0), alive, sla(0x0), gid(0), cfg_order(0), cost(0), selected
Src address(1):
 10.0.0.0-10.255.255.255
Dst address(1):
 10.0.0.0-10.255.255.255
Service(2): Address Mode(IPV4) flags=0x200 use-shortcut-sla
 Gen(10), TOS(0x0/0x0), Protocol(0: 1->65535), Mode(sla), sla-compare-order
Members(2):
 1: Seq_num(6 H2_T11), alive, sla(0x1), gid(0), cfg_order(0), cost(0), selected
 2: Seq_num(9 H2_T22), alive, sla(0x1), gid(0), cfg_order(3), cost(0), selected
Src address(1):
 10.0.0.0-10.255.255.255
Dst address(1):
 10.0.0.0-10.255.255.255

Troubleshooting BGP

There are some features in BGP that are used to deal with problems that may arise. Typically, the problems with a BGP network that has been configured involve routes going offline frequently. This is called route flap and causes problems for the routers using that route.

Clearing routing table entries

To see if a new route is being properly added to the routing table, you can clear all or some BGP neighbor connections (sessions) using the `execute router clear bgp command`

For example, if you have 10 routes in the BGP routing table and you want to clear the specific route to IP address 10.10.10.1, enter the following CLI command:

```
# execute router clear bgp ip 10.10.10.1
```

To remove all routes for AS number 650001, enter the following CLI command:

```
# execute router clear bgp as 650001
```

Route flap

When routers or hardware along a route go offline and back online that is called a route flap. Flapping is the term that is used if these outages continue, especially if they occur frequently.

Route flap is a problem in BGP because each time a peer or a route goes down, all the peer routers that are connected to that out-of-service router advertise the change in their routing tables. This creates a lot of administration traffic on the network and the same traffic re-occurs when that router comes back online. If the problem is something like a faulty network cable that alternates online and offline every 10 seconds, there could easily be an overwhelming amount of routing updates sent out unnecessarily.
Another possible reason for route flap occurs with multiple FortiGate devices in HA mode. When an HA cluster fails over to the secondary unit, other routers on the network may see the HA cluster as being offline, resulting in route flap. While this doesn't occur often, or more than once at a time, it can still result in an interruption in traffic which is disruptive for network users. The easy solution for this problem is to increase the timers on the HA cluster, such as TTL timers, so they don't expire during the failover process. Also, configuring graceful restart on the HA cluster helps with a smooth failover.

The first method of dealing with route flap is to check your hardware. If a cable is loose or bad, it can easily be replaced and eliminate the problem. If an interface on the router is bad, either avoid using that interface or swap in a functioning router. If the power source is bad on a router, either replace the power supply or use a power conditioning backup power supply. These quick and easy fixes can save you from configuring more complex BGP options. However, if the route flap is from another source, configuring BGP to deal with the outages will ensure your network users uninterrupted service.

Some methods of dealing with route flap in BGP include:

- **Holdtime timer on page 386**
- **Dampening on page 387**
- **Graceful restart on page 387**
- **BFD on page 389**

Holdtime timer

The first step to troubleshooting a flapping route is the holdtime timer. This timer reduces how frequently a route going down will cause a routing update to be broadcast.

Once activated, the holdtime timer won't allow the FortiGate to accept any changes to that route for the duration of the timer. If the route flaps five times during the timer period, only the first outage will be recognized by the FortiGate. For the duration of the other outages, there won't be changes because the Fortigate is essentially treating this router as down. If the route is still flapping after the timer expires, it will start again.

If the route isn't flapping (for example, if it goes down, comes up, and stays back up) the timer will still count down and the route is ignored for the duration of the timer. In this situation, the route is seen as down longer than it really is but there will be only the one set of route updates. This isn't a problem in normal operation because updates are not frequent.

The potential for a route to be treated as down when it's really up can be viewed as a robustness feature. Typically, you don't want most of your traffic being routed over an unreliable route. So if there's route flap going on, it's best to avoid that route if you can. This is enforced by the holdtime timer.

How to configure the holdtime timer

There are three different route flapping situations that can occur: the route goes up and down frequently, the route goes down and back up once over a long period of time, or the route goes down and stays down for a long period of time. These can all be handled using the holdtime timer.

For example, your network has two routes that you want to set the timer for. One is your main route (to 10.12.101.4) that all of your Internet traffic goes through, and it can't be down for long if it's down. The second is a low speed connection to a custom network that's used infrequently (to 10.13.101.4). The timer for the main route should be fairly short (for example, 60 seconds). The second route timer can be left at the default, since it's rarely used.

To configure the BGP holdtime timer:

```plaintext
config router bgp
  config neighbor
    edit 10.12.101.4
      set holdtime-timer 60
```
set keepalive-timer 60
next
edit 10.13.101.4
 set holdtime-timer 180
 set keepalive-timer 60
next
end
end

Dampening

Dampening is a method that's used to limit the amount of network problems due to flapping routes. With dampening, the flapping still occurs but the peer routers pay less and less attention to that route as it flaps more often. One flap doesn't start dampening, but the second flap starts a timer where the router won't use that route because it is considered unstable. If the route flaps again before the timer expires, the timer continues to increase. There's a period of time called the reachability half-life, after which a route flap will be suppressed for only half the time. This half-life comes into effect when a route has been stable for a while but not long enough to clear all the dampening completely. For the flapping route to be included in the routing table again, the suppression time must expire.

If the route flapping was temporary, you can clear the flapping or dampening from the FortiGate device's cache by using one of the execute router clear bgp CLI commands:

execute router clear bgp dampening {<ip_address> | <ip_address/netmask>}

or

execute router clear bgp flap-statistics {<ip_address> | <ip_address/netmask>}

For example, to remove route flap dampening information for the 10.10.0.0/16 subnet, enter the following CLI command:

execute router clear bgp dampening 10.10.0.0/16

To configure BGP route dampening:

config router bgp
 set dampening {enable | disable}
 set dampening-max-suppress-time <minutes_integer>
 set dampening-reachability-half-life <minutes_integer>
 set dampening-reuse <reuse_integer>
 set dampening-route-map <routemap-name_str>
 set dampening-suppress <limit_integer>
 set dampening-unreachability-half-life <minutes_integer>
end

Graceful restart

BGP4 has the capability to gracefully restart.

In some situations, route flap is caused by routers that appear to be offline but the hardware portion of the router (control plane) can continue to function normally. One example of this is when some software is restarting or being upgraded but the hardware can still function normally.

Graceful restart is best used for these situations where routing won't be interrupted, but the router is unresponsive to routing update advertisements. Graceful restart doesn't have to be supported by all routers in a network, but the network will benefit when more routers support it.
FortiGate HA clusters can benefit from graceful restart. When a failover takes place, the HA cluster advertises that it is going offline, and will not appear as a route flap. It will also enable the new HA main unit to come online with an updated and usable routing table. If there is a flap, the HA cluster routing table will be out-of-date.

For example, the FortiGate is one of four BGP routers that send updates to each other. Any of those routers may support graceful starting. When a router plans to go offline, it sends a message to its neighbors stating how long it expects to be offline. This way, its neighboring routers don't remove it from their routing tables. However, if that router isn't back online when expected, the routers will mark it offline. This prevents routing flap and its associated problems.

FortiGate devices support both graceful restart of their own BGP routing software and neighboring BGP routers.

To configure BGP graceful restart:

```bash
config router bgp
  set graceful-restart {disable | enable}
  set graceful-restart-time <seconds_integer>
  set graceful-stalepath-time <seconds_integer>
  set graceful-update-delay <seconds_integer>
config neighbor
  edit 10.12.101.4
    set capability-graceful-restart {enable | disable}
next
end
end
```

Before the restart, the router sends its peers a message to say it's restarting. The peers mark all the restarting router's routes as stale, but they continue to use the routes. The peers assume the router will restart, check its routes, and take care of them, if needed, after the restart is complete. The peers also know what services the restarting router can maintain during its restart. After the router completes the restart, the router sends its peers a message to say it's done restarting.

To restart the router:

```bash
# execute router restart
```

Scheduled time offline

Graceful restart is a means for a router to advertise that it is going to have a scheduled shutdown for a very short period of time. When neighboring routers receive this notice, they will not remove that router from their routing table until after a set time elapses. During that time, if the router comes back online, everything continues to function as normal. If that router remains offline longer than expected, then the neighboring routers will update their routing tables as they assume that the router will be offline for a long time.

The following example demonstrates if you want to configure graceful restart on the FortiGate where you expect the FortiGate to be offline for no more than two minutes, and after three minutes the BGP network should consider the FortiGate to be offline.

To configure graceful restart time settings:

```bash
config router bgp
  set graceful-restart enable
  set graceful-restart-time 120
  set graceful-stalepath-time 180
end
```
Network

BFD

Bidirectional Forwarding Detection (BFD) is a protocol that you can use to quickly locate hardware failures in the network. Routers running BFD communicate with each other and if a timer runs out on a connection then that router is declared down. BFD then communicates this information to the routing protocol and the routing information is updated.

For more information about BFD, see BFD on page 389.

BFD

Bidirectional Forwarding Detection (BFD) is a protocol that you can use to quickly locate hardware failures in the network. Routers running BFD communicate with each other at a negotiated rate. If packets from a BFD-enabled router fail to arrive, that router is declared to be down. BFD communicates this information to the associated routing protocols and the routing information is updated. It helps one way device failure and is used for fast convergence of routing protocols.

BFD can run on an entire FortiGate, selected interfaces, or on a protocol, such as BGP, for all configured interfaces. The configuration hierarchy allows each lower level to override the BFD setting of the upper level. For example, if you enable BFD for an entire FortiGate, you can disable BFD for an interface or for BGP.

Echo mode and authentication are not supported for BFD on the FortiGate.

BFD can be enabled per device, VDOM, or interface. Once enabled, a BFD neighbor should be defined. Finally, enable BFD on a route or routing protocol.

To configure BFD for an entire FortiGate:

```plaintext
config system settings
    set bfd {enable | disable}
    set bfd-desired-min-tx <ms>
    set bfd-required-min-rx <ms>
    set bfd-detect-mult <multiplier>
    set bfd-dont-enforce-src-port {enable | disable}
end
```

To configure BFD for an interface:

```plaintext
config system interface
    edit <interface-name>
        set bfd {global | enable | disable}
        set bfd-desired-min-tx <ms>
        set bfd-required-min-rx <ms>
        set bfd-detect-mult <multiplier>
next
end
```

To configure BFD neighbors:

```plaintext
config router {bfd | bfd6}
    config neighbor
        edit <IP-address>
```
set interface <interface-name>
 next
end
end

To show BFD neighbors:

get router {info | info6} bfd neighbor

To show BFD requests:

get router {info | info6} bfd requests

BFD and static routes

BFD for static routes allows you to configure routing failover based on remote path failure detection. BFD removes a static route from the routing table if the FortiGate can't reach the route's destination and returns the route to the routing table if the route's destination is restored.

For example, you can add two static routes with BFD enabled. If one of the routes has a higher priority, all matching traffic uses that route. If BFD determines that the link to the gateway of the route with the higher priority is down, the higher priority route is removed from the routing table and all matching traffic uses the lower priority route. If the link to the gateway for the higher priority route comes back up, BFD adds the route back into the routing table and all matching traffic switches to use the higher priority route.

You can configure BFD for IPv4 and IPv6 static routes.

To configure BFD for static routes:

```
config router {static | static6}
  edit <sequence-number>
    set bfd {enable | disable}
    set device <gateway-out-interface>
  next
end
```

Example

The following example demonstrates the configuration of static routes between two FortiGates. There is a host behind FortiGate 2 with an IP address of 1.1.1.1. FortiGate 1 has multiple paths to reach the host.
To configure static routes:

1. Configure FortiGate 1:

   ```
   config system interface
   edit "port1"
   set vdom "root"
   set ip 10.180.6.237 255.255.240.0
   set allowaccess ping
   set bfd enable
   next
   end
   config router bfd
   config neighbor
   edit 10.180.4.136
   set interface "port1"
   next
   end
   end
   ```

2. Configure FortiGate 2:

   ```
   config system interface
   edit "port1"
   set vdom "root"
   set ip 10.180.4.136 255.255.240.0
   set allowaccess ping
   set bfd enable
   next
   end
   config router bfd
   config neighbor
   edit 10.180.6.237
   set interface "port1"
   next
   end
   end
   ```

3. Configure two static routes:

   ```
   config router static
   edit 2
   set dst 1.1.1.1 255.255.255.255
   set gateway 10.180.4.136
   set device "port1"
   set bfd enable
   next
   edit 3
   set dst 1.1.1.1 255.255.255.255
   set gateway 10.180.2.44
   set distance 20
   set device "port1"
   next
   end
   ```

4. Confirm that BFD neighborship is established:
get router info bfd neighbor
<table>
<thead>
<tr>
<th>OurAddress</th>
<th>NeighAddress</th>
<th>State</th>
<th>Interface</th>
<th>LDesc/RDesc</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.180.6.237</td>
<td>10.180.4.136</td>
<td>UP</td>
<td>port1</td>
<td>1/1</td>
</tr>
</tbody>
</table>

5. Review the active route in the routing table:

get router info routing-table all
S 1.1.1.1/32 [10/0] via 10.180.4.136, port1
C 10.180.0.0/20 is directly connected, port1

The route with the lower distance is preferred in the routing table.

If port1 on FortiGate 2 goes down or FortiGate 1 is unable to reach 10.180.4.126, the BFD neighborship will go down.

get router info bfd neighbor
<table>
<thead>
<tr>
<th>OurAddress</th>
<th>NeighAddress</th>
<th>State</th>
<th>Interface</th>
<th>LDesc/RDesc</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.180.6.237</td>
<td>10.180.4.136</td>
<td>DOWN</td>
<td>port1</td>
<td>1/1</td>
</tr>
</tbody>
</table>

With BFD neighborship down, the FortiGate is unable to reach 1.1.1.1/32 through gateway 10.180.4.136. The routing table will be updated so that the route through gateway 10.180.2.44 is active in the routing table.

get router info routing-table all
S 1.1.1.1/32 [20/0] via 10.180.2.44, port1
C 10.180.0.0/20 is directly connected, port1

BFD removes a static route from the routing table if the FortiGate cannot reach the route's destination. The static route will be returned to the routing table is the route's destination is restored.

BFD and OSPF

You can configure BFD for Open Shortest Path First (OSPF) on a FortiGate. FortiGate supports BFD for OSPF for both IPv4 and IPv6. BFD must be configured globally and per interface.

To configure BFD for OSPF:

```
config router {ospf | ospf6}
  set bfd {enable | disable}
end
```

To enable BFD on a specific OSPF interface:

```
config router {ospf | ospf6}
  set bfd enable
  config {ospf-interface | ospf6-interface}
    edit <ID>
      set bfd {global | enable | disable}
      set area-id <IP address>
    next
  end
end
```

If BFD is configured when OSPF is not, no BFD packets will be sent. When both BFD and OSPF are configured, the neighbors for both will be the same. Use the following commands to confirm that the neighbor IP addresses match:
BFD and BGP

While BGP can detect route failures, BFD can be configured to detect these failures more quickly, which allows for faster responses and improved convergence. This can be balanced with the bandwidth BFD uses in its frequent route checking.

The `config router bgp` commands allow you to set the addresses of the neighbor units that are also running BFD. Both units must be configured with BFD in order to use it.

To configure BFD for BGP:

```fortistar
config router bgp
  config neighbor
    edit <neighbor-IP-address>
      set bfd {enable | disable}
    next
  end
end
```

BFD for Multihop paths

FortiGate BFD can support neighbors connected over multiple hops. When BFD is down, BGP sessions will be reset and will try to re-establish neighbor connection immediately. See BFD for multihop path for BGP on page 394 for more information.

To configure BFD for multihop paths:

```fortistar
config router {bfd | bfd6}
  config multihop-template
    edit <ID>
      set src <IP address/netmask>
      set dst <IP address/netmask>
      set bfd-desired-min-tx <integer>
      set bfd-required-min-rx <integer>
      set bfd-detect-mult <integer>
      set auth-mode {none | md5}
      set md5-key <password>
    next
  end
end
```

Troubleshooting BFD

You can troubleshoot BFD using the following commands:

```fortistar
# get router info ospf neighbor
# get router info bfd neighbor
# get router info ospf bfd neighbor
# get router info ospf bfd requests
# diagnose sniffer packet any <filter> <sniffer count>
```
diagnose debug application bfdd <debug level>
diagnose debug enable

BFD for multihop path for BGP

In BFD, a FortiGate can support neighbors connected over multiple hops. When BFD is down, BGP sessions are reset and will try to immediately re-establish neighbor connections. Previously, BFD was only supported when two routers or FortiGates were directly connected on the same network.

```plaintext
config router {bfd | bfd6}
  config multihop-template
    edit <ID>
      set src <class_IP/netmask>
      set dst <class_IP/netmask>
      set bfd-desired-min-tx <integer>
      set bfd-required-min-rx <integer>
      set bfd-detect-mult <integer>
      set auth-mode {none | md5}
      set md5-key <password>
    next
end
end
```

<table>
<thead>
<tr>
<th>src <class_IP/netmask></th>
<th>Enter the source prefix.</th>
</tr>
</thead>
<tbody>
<tr>
<td>dst <class_IP/netmask></td>
<td>Enter the destination prefix.</td>
</tr>
<tr>
<td>bfd-desired-min-tx <integer></td>
<td>Set the BFD desired minimal transmit interval, in milliseconds (100 - 30000, default = 250).</td>
</tr>
<tr>
<td>bfd-required-min-rx <integer></td>
<td>Set the BFD required minimal transmit interval, in milliseconds (100 - 30000, default = 250).</td>
</tr>
<tr>
<td>bfd-detect-mult <integer></td>
<td>Set the BFD detection multiplier (3 - 50, default = 3).</td>
</tr>
<tr>
<td>auth-mode {none</td>
<td>md5}</td>
</tr>
<tr>
<td>md5-key <password></td>
<td>Enter the password.</td>
</tr>
</tbody>
</table>

Example

This example includes IPv4 and IPv6 BFD neighbor configurations. The BFD neighbor is also a BGP neighbor that is in a different AS.
To configure BFD with multihop BGP paths:

1. Enable BFD on all interfaces:
   ```
   config system settings
   set bfd enable
   end
   ```

2. Enable BFD on port1 and ignore the global configuration:
   ```
   config system interface
   edit "port1"
   set bfd enable
   next
   end
   ```

3. Configure the BGP neighbors:
   ```
   config router bgp
   set as 65412
   set router-id 1.1.1.1
   config neighbor
   edit "172.16.201.2"
   set bfd enable
   set ebgp-enforce-multihop enable
   set soft-reconfiguration enable
   set remote-as 65050
   next
   edit "2000:172:16:201::2"
   set bfd enable
   set ebgp-enforce-multihop enable
   set soft-reconfiguration enable
   set remote-as 65050
   next
   end
   ```

4. Configure the IPv4 BFD:
   ```
   config router bfd
   config multihop-template
   edit 1
   set src 172.16.200.0 255.255.255.0
   set dst 172.16.201.0 255.255.255.0
   set auth-mode md5
   set md5-key **********
   next
   end
   ```

5. Configure the IPv6 BFD:
   ```
   config router bfd6
   config multihop-template
   edit 1
   set src 2000:172:16:200::/64
   set dst 2000:172:16:201::/64
   next
   ```
Testing the connection

1. Verify the BFD status for IPv4 and IPv6:

```bash
# get router info bfd requests
BFD Peer Requests:
    client types(ct in 0x): 01=external 02=static
    04=ospf 08=bgp 10=pim-sm
src=172.16.200.1 dst=172.16.201.2 ct=08 ifi=9 type=SM
```

```bash
# get router info bfd neighbor
OurAddress  NeighAddress  State  Interface   LDesc/RDesc
172.16.200.1  172.16.201.2  UP    port1      5/3/M
```

```bash
# get router info6 bfd requests
BFD Peer Requests:
    client types(ct in 0x): 01=external 02=static
    04=ospf 08=bgp 10=pim-sm
```

```bash
# get router info6 bfd neighbor
OurAddress: 2000:172:16:200::1
NeighAddress: 2000:172:16:201::2
State: UP Interface: port1 Desc: 6/4 Multi-hop
```

2. Verify the BGP status and the BGP routing table:

```bash
# get router info bgp summary
VRF 0 BGP router identifier 1.1.1.1, local AS number 65412
BGP table version is 11
3 BGP AS-PATH entries
0 BGP community entries
```

```bash
Neighbor  V  AS  MsgRcvd  MsgSent  TblVer  InQ  OutQ  Up/Down  State/PfxRcd
172.16.201.2  4  65050  185  187  10  0  0  00:54:20  4
2000:172:16:201::2  4  65050  159  160  10  0  0  00:54:24  4
```

Total number of neighbors 2

```bash
# get router info routing-table bgp
Routing table for VRF=0
B  172.28.1.0/24 [20/0] via 172.16.201.2 (recursive via 172.16.200.4, port1), 00:54:32
B  172.28.2.0/24 [20/0] via 172.16.201.2 (recursive via 172.16.200.4, port1), 00:54:32
B  172.28.5.0/24 [20/0] via 172.16.201.2 (recursive via 172.16.200.4, port1), 00:54:32
B  172.28.6.0/24 [20/0] via 172.16.201.2 (recursive via 172.16.200.4, port1), 00:54:32
```

```bash
# get router info6 bgp summary
VRF 0 BGP router identifier 1.1.1.1, local AS number 65412
BGP table version is 8
3 BGP AS-PATH entries
```
3. Simulate a disruption to the BFD connection. The BFD neighbor is lost:

```
# get router info6 bfd neighbor
OurAddress  NeighAddress  State  Interface   LDesc/RDesc
# get router info6 bfd neighbor
```

4. The BGP neighbor is reset, and the FortiGate attempts to re-establish a connection with the neighbor. The timers are reset once the neighbor connection is re-established:

```
# get router info bgp summary
VRF 0 BGP router identifier 1.1.1.1, local AS number 65412
BGP table version is 12
4 BGP AS-PATH entries
0 BGP community entries
```

```
Neighbor   V   AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
172.16.201.2  4   65050  185  187   7   0   0 00:54:24  3
2000:172:16:201::2  4   65050  159  160   7   0   0 00:54:28  3
```

```
Total number of neighbors 2
```

```
# get router info6 bgp summary
VRF 0 BGP router identifier 1.1.1.1, local AS number 65412
BGP table version is 10
4 BGP AS-PATH entries
0 BGP community entries
```

```
Neighbor   V   AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
172.16.201.2  4   65050  189  192   11  0   0 00:00:11  4
2000:172:16:201::2  4   65050  165  167   12  0   0 00:00:08  4
```

```
Total number of neighbors 2
```

```
# get router info6 bgp summary
VRF 0 BGP router identifier 1.1.1.1, local AS number 65412
BGP table version is 10
4 BGP AS-PATH entries
0 BGP community entries
```

```
Neighbor   V   AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
172.16.201.2  4   65050  189  192   8   0   0 00:00:15  3
2000:172:16:201::2  4   65050  165  167   9   0   0 00:00:12  3
```

```
Total number of neighbors 2
```

```
5. The BGP routes are learned again, and there are new timers in the route tables:
```
```
# get router info routing-table bgp
Routing table for VRF=0
B 172.28.1.0/24 [20/0] via 172.16.201.2 (recursive via 172.16.200.4, port1), 00:00:15
B 172.28.2.0/24 [20/0] via 172.16.201.2 (recursive via 172.16.200.4, port1),
```
Multicast

The following topics include information about multicast:

- Multicast routing and PIM support on page 398
- Configuring multicast forwarding on page 399

Multicast routing and PIM support

Multicasting (also called IP multicasting) consists of using a single multicast source to send data to many receivers. Multicasting can be used to send data to many receivers simultaneously while conserving bandwidth and reducing network traffic. Multicasting can be used for one-way delivery of media streams to multiple receivers and for one-way data transmission for news feeds, financial information, and so on. Many dynamic routing protocols such as RIPv2, OSPF, and EIGRP use multicasting to share hello packets and routing information.

A FortiGate can operate as a Protocol Independent Multicast (PIM) version 2 router. FortiGates support PIM sparse mode (RFC 4601) and PIM dense mode (RFC 3973), and can service multicast servers or receivers on the network segment to which a FortiGate interface is connected. Multicast routing is not supported in transparent mode.

To support PIM communications, the sending and receiving applications, and all connecting PIM routers in between, must be enabled with PIM version 2. PIM can use static routes, RIP, OSPF, or BGP to forward multicast packets to their destinations. To enable source-to-destination packet delivery, sparse mode or dense mode must be enabled on the PIM router interfaces. Sparse mode routers cannot send multicast messages to dense mode routers. If the FortiGate is located between a source and a PIM router, between two PIM routers, or is connected directly to a receiver, you must manually create a multicast policy to pass encapsulated (multicast) packets or decapsulated data (IP traffic) between the source and destination.

PIM domains

A PIM domain is a logical area comprising a number of contiguous networks. The domain contains at least one bootstrap router (BSR), and if sparse mode is enabled, a number of rendezvous points (RPs) and designated routers (DRs). When PIM is enabled, the FortiGate can perform any of these functions at any time as configured.
A PIM domain can be configured in the GUI by going to Network > Multicast, or in the CLI using `config router multicast`. Note that PIM version 2 must be enabled on all participating routers between the source and receivers. Use `config router multicast` to set the global operating parameters.

When PIM is enabled, the FortiGate allocates memory to manage mapping information. The FortiGate communicates with neighboring PIM routers to acquire mapping information and, if required, processes the multicast traffic associated with specific multicast groups.

Instead of sending multiple copies of generated IP traffic to more than one specific IP destination address, PIM-enabled routers encapsulate the data and use a Class D multicast group address (224.0.0.0 to 239.255.255.255) to forward multicast packets to multiple destinations. A single stream of data can be sent because one destination address is used. Client applications receive multicast data by requesting that the traffic destined for a certain multicast group address be delivered to them.

Configuring multicast forwarding

There is sometimes confusion between the terms forwarding and routing. These two functions should not take place at the same time. Multicast forwarding should be enabled when the FortiGate is in NAT mode and you want to forward multicast packets between multicast routers and receivers. However, this function should not be enabled when the FortiGate itself is operating as a multicast router, or has an applicable routing protocol that uses multicast.

Multicast forwarding is not supported on enhanced MAC VLAN interfaces. To use multicast with enhanced MAC VLAN interfaces, use PIM ([Multicast routing and PIM support on page 398](#)).

There are two steps to configure multicast forwarding:

1. Enabling multicast forwarding on page 399
2. Configuring multicast policies on page 400

Enabling multicast forwarding

Multicast forwarding is enabled by default. If a FortiGate is operating in transparent mode, adding a multicast policy enables multicast forwarding. In NAT mode you must use the `multicast-forward` setting to enable or disable multicast forwarding.

Multicast forwarding in NAT mode

When `multicast-forward` is enabled, the FortiGate forwards any multicast IP packets in which the TTL is 2 or higher to all interfaces and VLAN interfaces, except the receiving interface. The TTL in the IP header will be reduced by 1. Even though the multicast packets are forwarded to all interfaces, you must add multicast policies to allow multicast packets through the FortiGate.

To enable multicast forwarding in NAT mode:

```plaintext
config system settings
  set multicast-forward enable
end
```
Prevent the TTL for forwarded packets from being changed

You can use the `multicast-ttl-notchange` option so that the FortiGate does not increase the TTL value for forwarded multicast packets. Use this option only if packets are expiring before reaching the multicast router.

To prevent the TTL for forwarded packets from being changed:

```
config system settings
    set multicast-ttl-notchange enable
end
```

Disable multicast traffic from passing through the FortiGate without a policy check in transparent mode

In transparent mode, the FortiGate does not forward frames with multicast destination addresses. The FortiGate should not interfere with the multicast traffic used by routing protocols, streaming media, or other multicast communication. To avoid any issues during transmission, you can disable `multicast-skip-policy` and configure multicast security policies.

To disable multicast traffic from passing through the FortiGate without a policy check in transparent mode:

```
config system settings
    set multicast-skip-policy disable
end
```

Configuring multicast policies

Multicast packets require multicast policies to allow packets to pass from one interface to another. Similar to firewall policies, in a multicast policy you specify the source and destination interfaces, and the allowed address ranges for the source and destination addresses of the packets. You can also use multicast policies to configure source NAT and destination NAT for multicast packets.

Keep the following in mind when configuring multicast policies:

- The matched forwarded (outgoing) IP multicast source IP address is changed to the configured IP address.
- The `snat` setting is optional. Use it when SNAT is needed.

IPv4 and IPv6 multicast policies can be configured in the GUI. Go to **System > Feature Visibility**, and enable **Multicast Policy and IPv6**.

Sample basic policy

In this basic policy, multicast packets received on an interface are flooded unconditionally to all interfaces on the forwarding domain, except the incoming interface.

```
config firewall multicast-policy
    edit 1
        set srcintf "any"
        set dstintf "any"
```
The destination address (dstaddr) is a multicast address object. The all option corresponds to all multicast addresses in the range 224.0.0.0-239.255.255.255.

Sample policy with specific source and destination interfaces

This multicast policy only applies to the source port wan1 and the destination port internal.

```fortigate-config
config firewall multicast-policy
edit 1
    set srcintf "wan1"
    set dstintf "internal"
    set srcaddr "all"
    set dstaddr "all"
next
end
```

Sample policy with specific source address object

In this policy, packets are allowed to flow from wan1 to internal, and sourced by the address 172.20.120.129, which is represented by the example_addr-1 address object.

```fortigate-config
config firewall multicast-policy
edit 1
    set srcintf "wan1"
    set dstintf "internal"
    set srcaddr "example_addr-1"
    set dstaddr "all"
next
end
```

Sample detailed policy

This policy accepts multicast packets that are sent from a PC with IP address 192.168.5.18 to destination address range 239.168.4.0-255. The policy allows the multicast packets to enter the internal interface and then exit the external interface. When the packets leave the external interface, their source address is translated to 192.168.18.10.

```fortigate-config
config firewall address
edit "192.168.5.18"
    set subnet 192.168.5.18 255.255.255.255
next
end
config firewall multicast-address
edit "239.168.4.0"
    set start-ip 239.168.4.0
    set end-ip 239.168.4.255
next
end
config firewall multicast-policy
edit 1
    set srcintf "internal"
end
```
To configure multicast policies in the GUI, enable Multicast Policy in System > Feature Visibility.

FortiExtender

There are two configuration modes available on the FortiGate for FortiExtender integration: WAN extension mode and LAN extension mode.

WAN extension mode

In WAN extension mode, the FortiExtender works as an extended WAN interface in IP pass-through mode. The FortiGate manages FortiExtender over the CAPWAP protocol in IP pass-through mode, and is integrated into FortiOS as a manageable interface.

Sample configurations in WAN extension mode could include connecting a FortiExtender to two FortiGates in HA active-passive mode, or connecting two FortiExtenders to two FortiGates in HA active-active mode to provide dual active redundancy for wireless WAN access.

For more information, see FortiExtender and FortiGate integration in the FortiExtender (Managed) Administration Guide.

LAN extension mode

The LAN extension configuration mode allows FortiExtender to provide remote thin edge connectivity back to the FortiGate over a backhaul connection. A FortiExtender deployed at a remote location will discover the FortiGate access controller (AC) and form an IPsec tunnel (or multiple tunnels when multiple links exist on the FortiExtender) back to the FortiGate. A VXLAN is established over the IPsec tunnels to create an L2 network between the FortiGate and the network behind the remote FortiExtender.
Network

For more information, see FortiExtender as FortiGate LAN extension in the FortiExtender (Managed) Administration Guide.

Adding a FortiExtender

To add a FortiExtender to the FortiGate, create a virtual FortiExtender interface, then add a FortiExtender and assign the interface to the modem. Like other interface types, the FortiExtender interface can be used in static routes, SD-WAN (see Manage dual FortiExtender devices), policies, and other functions.

To create a virtual FortiExtender interface in the GUI:

1. Go to Network > Interfaces and click Create New > FortiExtender.
2. Enter a name for the interface.
3. Configure the remaining settings as needed. See Interface settings on page 137 for more details.
4. Click OK.

To add a FortiExtender in the GUI:

1. Go to Network > FortiExtender and click Create New > Extenders.
2. Enter your FortiExtender's serial number in the Serial number field.
3. Optionally, set an Alias for the FortiExtender.
4. In the State section, enable Authorized.
5. Set Interface to the FortiExtender interface.
6. Configure the remaining setting as required. See the FortiExtender Administration Guide (FGT-Managed) for more information.

![FortiExtender configuration interface]

7. Click OK.

8. In the extenders list, right-click on the FortiExtender and select Diagnostics and Tools to review the modem and SIM status, and other details about the FortiExtender.

To create a virtual FortiExtender interface in the CLI:

```bash
config system interface
edit "fext"
  set vdom "root"
  set mode dhcp
  set allowaccess ping https speed-test
  set type fext-wan
  set estimated-upstream-bandwidth 1000
  set estimated-downstream-bandwidth 500
next
end
```

To configure the FortiExtender in the CLI:

```bash
config extender-controller extender
edit "FX211E0000000000"
  set id "FX211E0000000000"
  set authorized enable
  config modem1
    set ifname "fext"
next
end
```

To verify the modem settings in the CLI:

```bash
get extender modem-status FX211E0000000000 1
Modem 0:
  physical_port: 2-1.2
  manufacture: Sierra Wireless, Incorporated
  product: Sierra Wireless, Incorporated
  ....
```
Direct IP support for LTE/4G

Direct IP is a public IP address that is assigned to a computing device, which allows the device to directly access the internet.

When an LTE modem is enabled in FortiOS, a DHCP interface is created. As a result, the FortiGate can acquire direct IP (which includes IP, DNS, and gateway) from the LTE network carrier.

Since some LTE modems require users to input the access point name (APN) for the LTE network, the LTE modem configuration allows you to set the APN.

LTE modems can only be enabled by using the CLI.

To enable direct IP support using the CLI:

1. Enable the LTE modem:
   ```
   config system lte-modem
   set status enable
   end
   ```

2. Check that the LTE interface was created:
   ```
   config system interface
   edit "wwan"
   set vdom "root"
   set mode dhcp
   set status down
   set distance 1
   set type physical
   set snmp-index 23
   next
   end
   ```

 Shortly after the LTE modem joins its carrier network, wwan is enabled and granted direct IP:
   ```
   config system interface
   edit wwan
   get
   name : wwan
   ....
   ip : 100.112.75.43 255.255.255.248
   ....
   status : up
   ....
   defaultgw : enable
   DHCP Gateway : 100.112.75.41
   Lease Expires : Thu Feb 21 19:33:27 2019
dns-server-override : enable
   Acquired DNS1 : 184.151.118.254
   Acquired DNS2 : 70.28.245.227
   ....
   ```
PCs can reach the internet via the following firewall policy:

```plaintext
config firewall policy
edit 5
    set name "LTE"
    set srcintf "port9"
    set dstintf "wwan"
    set srcaddr "all"
    set dstaddr "all"
    set action accept
    set schedule "always"
    set service "ALL"
    set utm-status enable
    set fsso disable
    set nat enable
next
end
```

Sample LTE interface

When an LTE modem is enabled, you can view the LTE interface in the GUI and check the acquired IP, DNS, and gateway.

To view the LTE interface in the GUI:

1. Go to **Network > Interfaces**.
2. Double-click the LTE interface (wwan) to view the properties.
3. Look in the *Address* section to see the *Obtained IP/Netmask*, *Acquired DNS*, and *Default Gateway*.
4. Click **Return**.

To configure the firewall policy that uses the LTE interface:

1. Go to **Policy & Objects > Firewall Policy**.
2. Edit the LTE policy.
3. In the *Outgoing Interface* field, select the interface (wwan in this example).
4. Configure the rest of the policy as needed.
5. Click OK.

Limitations

- Most LTE modems have a preset APN in their SIM card. Therefore, the APN does not need to be set in the FortiOS configuration. In cases where the internet cannot be accessed, consult with your carrier and set the APN in the LTE modem configuration (for example, inet.bell.ca):

  ```
  config system lte-modem
  set status enable
  set apn "inet.bell.ca"
  end
  ```

- Some models, such as the FortiGate 30E-3G4G, have built-in LTE modems. In this scenario, the LTE modem is enabled by default. The firewall policy via the LTE interface is also created by default. Once you plug in a SIM card, your network devices can connect to the internet.

Sample FortiGate 30E-3G4G default configuration:

```
LLDP reception

Device detection can scan LLDP as a source for device identification, but the FortiGate does not read or store the full information. Enabling LLDP reception allows the FortiGate to receive and store LLDP messages, learn about active neighbors, and makes the LLDP information available via the CLI, REST API, and SNMP.

You need to enable device-identification at the interface level, and then lldp-reception can be enabled on three levels: globally, per VDOM, or per interface.

To configure device identification on an interface:

```conf
config system interface
 edit <port>
 set device-identification enable
 next
end
```

To configure LLDP reception globally:

```conf
config system global
 set lldp-reception enable
end
```

To configure LLDP reception per VDOM:

```conf
config system setting
 set lldp-reception enable
end
```

To configure LLDP reception per interface:

```conf
config system interface
 edit <port>
 set lldp-reception enable
 next
end
```

To view the LLDP information in the GUI:

1. Go to Dashboard > Users & Devices.
2. Expand the Device Inventory widget to full screen.
Network

To view the received LLDP information in the CLI:

```bash
diagnose user device list
 hosts
 vd root/0 44:0a:a0:0a:0a:0a gen 3 req S/2
 created 10290s gen 1 seen 0s port3 gen 1
 ip 172.22.22.22 src lldp
 type 20 'Other Network Device' src lldp id 155 gen 2
 os 'Artist EOS ' version '4.20.4' src lldp id 155
 host 'artist' src lldp
```

To view additional information about LLDP neighbors and ports:

```bash
diagnose lldprx neighbor {summary | details | clear}
diagnose lldprx port {details | summary | neighbor | filter}
diagnose lldprx port neighbor {summary | details}
```

Note that the port index in the output corresponds to the port index from the following command:

```bash
diagnose netlink interface list port2 port3 | grep index
 if=port2 family=00 type=1 index=4 mtu=1500 link=0 master=0
 if=port3 family=00 type=1 index=5 mtu=1500 link=0 master=0
```

To view the received LLDP information in the REST API:

```json
{
 "http_method":"GET",
 "results":{
 "mac":"90:9c:9c:c9:c9:90",
 "chassis_id":"90:9C:C9:C9:90",
 "port":19,
 "port_id":"port12",
 "port_desc":"port12",
 "system_name":"S124DN3W00000000",
 "system_desc":"FortiSwitch-124D v3.6.6,build0416,180515 (GA)",
 "ttl":120,
 "addresses":[
 {"type":"ipv4",
 "address":"192.168.1.99"
 }
],
 "vdom":"root",
 }
}
```
**Virtual routing and forwarding**

Virtual Routing and Forwarding (VRF) is used to divide the FortiGate's routing functionality (layer 3), including interfaces, routes, and forwarding tables, into separate units. Packets are only forwarded between interfaces that have the same VRF.

VDOMs divide the FortiGate into two or more complete and independent virtual units that include all FortiGate functions. VDOMs can be used for routing segmentation, but that should not be the only reason to implement them when a less complex solution (VRFs) can be used. VDOMs also support administration boundaries, but VRFs do not.

Up to 64 VRFs can be configured per VDOM for any device, but only ten VDOMs can be configured by default on a FortiGate (more VDOMs can be configured on larger devices with additional licenses).

- Implementing VRF on page 411
- VRF routing support on page 412
- Route leaking between VRFs with BGP on page 416
- Route leaking between multiple VRFs on page 418
- VRF with IPv6 on page 429
- IBGP and EBGP support in VRF on page 433
Implementing VRF

VRFs are always enabled and, by default, all routing is done in VRF 0. To use additional VRFs, assign a VRF ID to an interface. All routes relating to that interface are isolated to that VRF specific routing table. Interfaces in one VRF cannot reach interfaces in a different VRF.

If some traffic does have to pass between VRFs, route leaking can be used. See Route leaking between VRFs with BGP on page 416.

Enable Advanced Routing in System > Feature Visibility to configure VRFs.

To configure a VRF ID on an interface in the GUI:

1. Go to Network > Interfaces and click Create New > Interface.
2. Enter a value in the VRF ID field.
3. Configure the other settings as needed.
4. Click OK.
5. To add the VRF column in the interface table, click the gear icon, select VRF, and click Apply.
To configure a VRF ID on an interface in the CLI:

```
config system interface
 edit interface42
 ...
 set vrf 14
 next
end
```

VRF routing support

VRF supports static routing, OSPF, and BGP. Other routing protocols require using VDOMs.

![Diagram of network configuration]

BGP

In this example, BGP is used to update the VRF that it is neighbors with.

The hub is configured with two neighbors connected to two interfaces. The branches are configured to match the hub, with branch networks configured to redistribute into BGP.

Policies must be created on the hub and branches to allow traffic between them.

To configure the hub:

```
config router bgp
 set as 65000
 config neighbor
 edit "10.101.101.2"
 set soft-reconfiguration enable
 set interface "port2"
 set remote-as 65101
 set update-source "port2"
 next
 edit "10.102.102.2"
 set soft-reconfiguration enable
 set interface "port3"
 set remote-as 65102
 set update-source "port3"
 next
 end
end
```
To configure branch 101:

```fortios
config router bgp
 set as 65101
 config neighbor
 edit "10.101.101.1"
 set soft-reconfiguration enable
 set interface "port2"
 set remote-as 65000
 set update-source "port2"
 next
 end
 config redistribute connected
 set status enable
 end
end
```

To configure branch 102:

```fortios
config router bgp
 set as 65102
 config neighbor
 edit "10.102.102.1"
 set soft-reconfiguration enable
 set interface "port2"
 set remote-as 65000
 set update-source "port2"
 next
 end
 config redistribute connected
 set status enable
 end
end
```

To verify the BGP neighbors and check the routing table on the hub:

```bash
get router info bgp summary
BGP router identifier 192.168.0.1, local AS number 65000
BGP table version is 2
2 BGP AS-PATH entries
0 BGP community entries

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
10.101.101.2 4 65101 4 4 2 0 0 00:01:05 3
10.102.102.2 4 65102 3 3 1 0 0

Total number of neighbors 2
```

```bash
get router info routing-table all
Routing table for VRF=0
Codes (…)
S* 0.0.0.0/0 [10/0] via 192.168.0.254, port1
C 10.101.101.0/24 is directly connected, port2
C 10.102.102.0/24 is directly connected, port3
C 192.168.0.0/24 is directly connected, port1
```
Network

To configure VRF on the hub:

1. Put the interfaces into VRF:

   ```
 config system interface
 edit port2
 set vrf 10
 next
 edit port3
 set vrf 20
 next
 end
   ```

2. Restart the router to reconstruct the routing tables:

   ```
 # execute router restart
   ```

3. Check the routing tables:

   ```
 # get router info routing-table all
 Routing table for VRF=0
 Codes (....)
 S* 0.0.0.0/0 [10/0] via 192.168.0.254, port1
 C 192.168.0.0/24 is directly connected, port1

 Routing table for VRF=10
 C 10.101.101.0/24 is directly connected, port2
 B 192.168.101.0/24 [20/0] via 10.101.101.2, port2, 00:02:25

 Routing table for VRF=20
 C 10.102.102.0/24 is directly connected, port3
 B 192.168.102.0/24 [20/0] via 10.102.102.2, port2, 00:01:50
   ```

4. Check the BGP summary:

   ```
 # get router info bgp summary
 VRF 10 BGP router identifier 10.101.101.1, local AS number 65000
 BGP table version is 1
 2 BGP AS-PATH entries
 0 BGP community entries

 Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
 10.101.101.2 4 65101 4 4 2 0 0 00:02:05 3

 Total number of neighbors 1

 VRF 10 BGP router identifier 10.101.101.1, local AS number 65000
 BGP table version is 1
 2 BGP AS-PATH entries
 0 BGP community entries

 Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
 10.102.102.2 4 65102 3 3 1 0 0 00:01:30 3
   ```
Total number of neighbors 1

**OSPF**

OSPF routes in VRFs work the same as BGP: the interface that OSPF is using is added to the VRF.

**To configure the hub:**

1. **Configure OSPF:**
   ```
 config router ospf
 set router-id 1.1.1.1
 config area
 edit 0.0.0.0
 next
 end
 config ospf-interface
 edit Branch101
 set interface "port2"
 set dead-interval 40
 set hello-interval 10
 next
 edit Branch102
 set dead-interval 40
 set hello-interval 10
 next
 end
 config network
 edit 0
 set prefix 10.101.101.0 255.255.255.0
 next
 edit 0
 set prefix 10.102.102.0 255.255.255.0
 next
 edit 0
 set prefix 192.168.1.0 255.255.255.0
 next
 end
   ```

2. **Put the interfaces into VRF:**
   ```
 config system interface
 edit port2
 set vrf 10
 next
 edit port3
 set vrf 20
 next
 end
   ```
To configure branch 101:

```
cfg router ospf
cfg area
 edit 0.0.0.0
 exit
exit
```
```
cfg ospf-interface
 edit HUB
 set interface port2
 set dead-interval 40
 set hello-interval 10
 exit
exit
```
```
cfg network
 edit 0
 set prefix 10.101.101.0 255.255.255.0
 exit
 edit 0
 set prefix 192.168.101.0 255.255.255.0
 exit
exit
```
To check the routing table and OSPF summary:

```
get router info routing-table ospf
get router info ospf interface
```

Route leaking between VRFs with BGP

Route leaking allows you to configure communication between VRFs. If route leaking is not configured, then the VRFs are isolated. This example shows route leaking with BGP using virtual inter-VDOM links.

In this example, a hub FortiGate forms BGP neighbors with two branches. It learns the networks 192.168.101.0/24 and 192.168.102.0/24 from the neighbors and separates them into VRF 10 and VRF 20.

To leak the learned routes to each other, an inter-VDOM link (IVL) is formed. An IVL normally bridges two VDOMs, but in this case the links reside on the same VDOM and are used to bridge the two VRFs. NPU links could also be used on models that support it to deliver better performance.

VRF 10 has a leaked route to 192.168.102.0/24 on IVL link-10-20-0, and VRF 20 has a leaked route to 192.168.101.0/24 on IVL link-10-20-1,
To configure route leaking:

1. Configure inter-VDOM links:

```plaintext
config global
cfg system vdom-link
 edit link-10-20-
 next
end
cfg system interface
 edit link-10-20-0
 set vdom "root"
 set vrf 10
 set ip 10.1.1.1/30
 next
 edit link-10-20-1
 set vdom "root"
 set vrf 20
 set ip 10.1.1.2/30
 next
end
```

2. Create prefix lists:
These object define the subnet and mask that are leaked.

```plaintext
config router prefix-list
 edit VRF10_Route
 config rule
 edit 1
 set prefix 192.168.101.0 255.255.255.0
 next
 end
 next
 edit VRF20_Route
 config rule
 edit 1
 set prefix 192.168.102.0 255.255.255.0
 next
 end
 next
end
```

3. Create the route map:
The route map can be used to group one or more prefix lists.

```plaintext
config router route-map
 edit "Leak_from_VRF10_to_VRF20"
 config rule
 edit 1
 set match-ip-address "VRF10_Route"
 next
 end
 next
 edit "Leak_from_VRF20_to_VRF10"
 config rule
 edit 1
```
set match-ip-address "VRF20_Route"
next
end
next
end

4. Configure the VRF leak in BGP, specifying a source VRF, destination VRF, an the route map to use:

```fortigate-config
config router bgp
config vrf
 edit "10"
 config leak-target
 edit "20"
 set route-map "Leak_from_VRF10_to_VRF20"
 set interface "link-10-20-0"
 next
 next
 next
edit "20"
config leak-target
 edit "10"
 set route-map "Leak_from_VRF20_to_VRF10"
 set interface "link-10-20-1"
 next
next
end
end
```

5. Create policies to allow traffic between the VRFs.
   Without a policy permitting traffic on the route between the VRFs, the VRFs are still isolated.

**Route leaking between multiple VRFs**

In this example, routing leaking between three VRFs in a star topology is configured. This allows the solution to be scaled to more VRFs without building full mesh, one-to-one connections between each pair of VRFs. VLAN subinterfaces are created on VDOM links to connect each VRF to the central VRF, allowing routes to be leaked from a VRF to the central VRF, and then to the other VRFs. Static routes are used for route leaking in this example.

For instructions on creating route leaking between two VRFs, see [Route leaking between VRFs with BGP on page 416](#).
In this example, a specific route is leaked from each of the VRFs to each of the other VRFs. VLAN subinterfaces are created based on VDOM links to connect each VRF to the core VRF router.

Multi VDOM mode is enabled so that NP VDOM links can be used. The setup could be configured without enabling multi VDOM mode by manually creating non-NP VDOM links, but this is not recommended as the links are not offloaded to the NPU.

After VDOMs are enabled, all of the configuration is done in the root VDOM.
To configure the FortiGate:

1. Enable multi VDOM mode:
   
   ```
 config system global
 set vdom-mode multi-vdom
 end
   ```

   If the FortiGate has an NP, the VDOM links will be created:
   
   ```
 # show system interface
 config system interface
 ...
 edit "npu0_vlink0"
 set vdom "root"
 set type physical
 next
 edit "npu0_vlink1"
 set vdom "root"
 set type physical
 next
 ...
 end
   ```

   If multi VDOM mode is not used, the VDOM links can be manually created:
   
   ```
 config system vdom-link
 edit <name of vdlink>
 next
 end
   ```

2. Allow interface subnets to use overlapping IP addresses:
   
   ```
 config vdom
 edit root
 config system settings
 set allow-subnet-overlap enable
 end
   ```

3. Configure the inter-connecting VLAN subinterfaces between VRF based on VDOM-LINK:
   
   ```
 config system interface
 edit "vlink0_Vlan_10"
 set vdom "root"
 set vrf 10
 set ip 10.1.1.1 255.255.255.252
 set allowaccess ping https ssh http
 set alias "vlink0_Vlan_10"
 set role lan
 set interface "npu0_vlink0"
 set vlanid 10
 next
 edit "vlink1_Vlan_10"
 set vdom "root"
 set vrf 31
 set ip 10.1.1.2 255.255.255.252
 set allowaccess ping https ssh http
 set alias "vlink1_Vlan_10"
 set role lan
   ```
set interface "npu0_vlink1"
set vlanid 10
next
edit "vlink0_Vlan_11"
    set vdom "root"
    set vrf 11
    set ip 11.1.1.1 255.255.255.252
    set allowaccess ping https ssh http
    set alias "vlink0_Vlan_11"
    set role lan
    set interface "npu0_vlink0"
    set vlanid 11
next
edit "vlink1_Vlan_11"
    set vdom "root"
    set vrf 31
    set ip 11.1.1.2 255.255.255.252
    set allowaccess ping https ssh http
    set alias "vlink1_Vlan_11"
    set role lan
    set interface "npu0_vlink1"
    set vlanid 11
next
edit "vlink0_Vlan_12"
    set vdom "root"
    set vrf 12
    set ip 12.1.1.1 255.255.255.252
    set allowaccess ping https ssh http
    set alias "vlink0_Vlan_12"
    set role lan
    set interface "npu0_vlink0"
    set vlanid 12
next
edit "vlink1_Vlan_12"
    set vdom "root"
    set vrf 31
    set ip 12.1.1.2 255.255.255.252
    set allowaccess ping https ssh http
    set alias "vlink1_Vlan_12"
    set role lan
    set interface "npu0_vlink1"
    set vlanid 12
next
end

4. Configure a zone to allow intrazone traffic between VLANs in the central VRF:

config system zone
    edit "Core-VRF-Router"
        set intrazone allow
        set interface "vlink1_Vlan_10" "vlink1_Vlan_11" "vlink1_Vlan_12"
    next
end

5. Add allow policies for the VRF31 core router:
config firewall policy
  edit 0
    set name "any_to_core_vrf31"
    set srcintf "any"
    set dstintf "Core-VRF-Router"
    set srcaddr "all"
    set dstaddr "all"
    set action accept
    set schedule "always"
    set service "ALL"
    set logtraffic all
  next
  edit 0
    set name "core_vrf31_to_any"
    set srcintf "Core-VRF-Router"
    set dstintf "any"
    set srcaddr "all"
    set dstaddr "all"
    set action accept
    set schedule "always"
    set service "ALL"
    set logtraffic all
  next
end

6. Configure VRF10, VRF11, and VRF12 on the Internal and WAN VLAN sub-interfaces:

config system interface
  edit "Internal_VRF10"
    set vdom "Root"
    set vrf 10
    set ip 172.16.10.1 255.255.255.0
    set allowaccess ping https ssh http
    set alias "Internal_VRF10"
    set role lan
    set interface "internal"
    set vlanid 10
  next
  edit "Internal_VRF11"
    set vdom "Root"
    set vrf 11
    set ip 172.16.11.1 255.255.255.0
    set allowaccess ping https ssh http
    set alias "Internal_VRF11"
    set role lan
    set interface "internal"
    set vlanid 11
  next
  edit "Internal_VRF12"
    set vdom "Root"
    set vrf 12
    set ip 172.16.12.1 255.255.255.0
    set allowaccess ping https ssh http
    set alias "Internal_VRF12"
    set role lan
    set interface "internal"
    set vlanid 12
7. Configure static routing and route leaking between each VRF and Core-VRF-Router:

```plaintext
config router static
edit 1
 set dst 172.16.10.0 255.255.255.0
 set gateway 10.1.1.1
 set device "vlink1_Vlan_10"
 set comment "VRF31_Core_Router"
next
edit 2
 set dst 172.16.11.0 255.255.255.0
 set gateway 11.1.1.1
 set device "vlink1_Vlan_11"
 set comment "VRF31_Core_Router"
next
edit 3
 set dst 172.16.12.0 255.255.255.0
 set gateway 12.1.1.1
 set device "vlink1_Vlan_12"
 set comment "VRF31_Core_Router"
next
edit 4
 set dst 172.16.11.0 255.255.255.0
```
In the GUI, go to **Network > Static Routes** to view the static routes:
8. Configure firewall policies for VRF10, VRF11, and VRF12

```bash
config firewall policy
edit 6
set name "VRF10_to_Internet_Policy"
set srcintf "Internal_VRF10"
set dstintf "wan1_VRF10"
set srcaddr "all"
set dstaddr "all"
set action accept
set schedule "always"
set service "ALL"
set logtraffic all
set nat enable
next
edit 7
set name "VRF10_to_VRF_Leaking_Route"
set srcintf "Internal_VRF10"
set dstintf "vlink0_Vlan_10"
set srcaddr "all"
set dstaddr "all"
set action accept
set schedule "always"
set service "ALL"
set logtraffic all
next
edit 8
set name "VRF_Leaking_Route_to_VRF10"
set srcintf "vlink0_Vlan_10"
set dstintf "Internal_VRF10"
set srcaddr "all"
set dstaddr "all"
set action accept
set schedule "always"
set service "ALL"
set logtraffic all
next
edit 9
set name "VRF11_to_Internet_Policy"
set srcintf "Internal_VRF11"
set dstintf "wan1_VRF11"
set srcaddr "all"
```
set dstaddr "all"
set action accept
set schedule "always"
set service "ALL"
set logtraffic all
set nat enable
next
edit 10
set name "VRF11_to_VRF_Leaking_Route"
set srcintf "Internal_VRF11"
set dstintf "vlink0_Vlan_11"
set srcaddr "all"
set dstaddr "all"
set action accept
set schedule "always"
set service "ALL"
set logtraffic all
next
edit 11
set name "VRF_Leaking_Route_to_VRF11"
set srcintf "vlink0_Vlan_11"
set dstintf "Internal_VRF11"
set srcaddr "all"
set dstaddr "all"
set action accept
set schedule "always"
set service "ALL"
set logtraffic all
next
edit 12
set name "VRF12_to_Internet_Policy"
set srcintf "Internal_VRF12"
set dstintf "wan1_VRF12"
set srcaddr "all"
set dstaddr "all"
set action accept
set schedule "always"
set service "ALL"
set logtraffic all
set nat enable
next
edit 13
set name "VRF12_to_VRF_Leaking_Route"
set uuid 92bccf8e-b27b-51eb-3c56-6d5259af6299
set srcintf "Internal_VRF12"
set dstintf "vlink0_Vlan_12"
set srcaddr "all"
set dstaddr "all"
set action accept
set schedule "always"
set service "ALL"
set logtraffic all
next
edit 14
set name "VRF_Leaking_Route_to_VRF12"
set srcintf "vlink0_Vlan_12"
set dstintf "Internal_VRF12"
set srcaddr "all"
set dstaddr "all"
set action accept
set schedule "always"
set service "ALL"
set logtraffic all

In the GUI, go to Policy & Objects > Firewall Policy to view the policies.

To check the results:

1. On the FortiGate, check the routing table to see each VRF:

   # get router info routing-table all
   Codes:  K - kernel,  C - connected,  S - static,  R - RIP,  B - BGP
   O - OSPF,  IA - OSPF inter area
   N1 - OSPF NSSA external type 1,  N2 - OSPF NSSA external type 2
   E1 - OSPF external type 1,  E2 - OSPF external type 2
   i - IS-IS,  L1 - IS-IS level-1,  L2 - IS-IS level-2,  ia - IS-IS inter area
   * - candidate default

   Routing table for VRF=0
   C   10.6.30.0/24 is directly connected, mgmt

   Routing table for VRF=10
   S*  0.0.0.0/0 [10/0] via 202.100.10.254, wan1_VRF10
   C   10.1.1.0/30 is directly connected, vlink0_Vlan_10
   C   172.16.10.0/24 is directly connected, Internal_VRF10
   S   172.16.11.0/24 [10/0] via 10.1.1.2, vlink0_Vlan_10
   S   172.16.12.0/24 [10/0] via 10.1.1.2, vlink0_Vlan_10
   C   202.100.10.0/24 is directly connected, wan1_VRF10

   Routing table for VRF=11
   S*  0.0.0.0/0 [10/0] via 202.100.11.254, wan1_VRF11
   C   11.1.1.0/30 is directly connected, vlink0_Vlan_11
   S   172.16.10.0/24 [10/0] via 11.1.1.2, vlink0_Vlan_11
   C   172.16.11.0/24 is directly connected, Internal_VRF11
   S   172.16.12.0/24 [10/0] via 11.1.1.2, vlink0_Vlan_11
   C   202.100.11.0/24 is directly connected, wan1_VRF11

   Routing table for VRF=12
   S*  0.0.0.0/0 [10/0] via 202.100.12.254, wan1_VRF12
   C   12.1.1.0/30 is directly connected, vlink0_Vlan_12
   S   172.16.10.0/24 [10/0] via 12.1.1.2, vlink0_Vlan_12
   S   172.16.11.0/24 [10/0] via 12.1.1.2, vlink0_Vlan_12
   C   172.16.12.0/24 is directly connected, Internal_VRF12
   C   202.100.12.0/24 is directly connected, wan1_VRF12

   Routing table for VRF=31
   C   10.1.1.0/30 is directly connected, vlink1_Vlan_10
   C   11.1.1.0/30 is directly connected, vlink1_Vlan_11
   C   12.1.1.0/30 is directly connected, vlink1_Vlan_12
### Network

S 172.16.10.0/24 [10/0] via 10.1.1.1, vlkl1_Vlan_10  
S 172.16.11.0/24 [10/0] via 11.1.1.1, vlkl1_Vlan_11  
S 172.16.12.0/24 [10/0] via 12.1.1.1, vlkl1_Vlan_12

2. From the FW10-PC:

```bash
ifconfig ens32
ens32: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 172.16.10.100 netmask 255.255.255.0 broadcast 172.16.10.255
 inet6 fe80::dbed:c7fe:170e:e61c prefixlen 64 scopeid 0x20<link>
 ether 00:0c:29:2a:3a:17 txqueuelen 1000 (Ethernet)
 RX packets 1632 bytes 160001 (156.2 KiB)
 RX errors 0 dropped 52 overruns 0 frame 0
 TX packets 2141 bytes 208103 (203.2 KiB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

```bash
route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 172.16.10.100 0.0.0.0 UG 100 0 0 ens32
172.16.10.0 0.0.0.0 255.255.255.0 U 100 0 0 ens32
192.168.122.0 0.0.0.0 255.255.255.0 U 0 0 0 virbr0
```

a. Ping a public IP address through VRF10:

```bash
ping 8.8.8.8
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=113 time=4.33 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=113 time=4.17 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=113 time=4.04 ms
^C
--- 8.8.8.8 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2002ms
rtt min/avg/max/mdev = 4.049/4.188/4.336/0.117 ms
```

b. Ping the internet gateway through VRF10:

```bash
ping 202.100.10.254
PING 202.100.10.254 (202.100.10.254) 56(84) bytes of data.
64 bytes from 202.100.10.254: icmp_seq=1 ttl=254 time=0.294 ms
64 bytes from 202.100.10.254: icmp_seq=2 ttl=254 time=0.225 ms
64 bytes from 202.100.10.254: icmp_seq=3 ttl=254 time=0.197 ms
^C
--- 202.100.10.254 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2000ms
rtt min/avg/max/mdev = 0.197/0.238/0.294/0.044 ms
```

c. Ping the FW11-PC on VRF11 from VRF10:

```bash
ping 172.16.11.100
PING 172.16.11.100 (172.16.11.100) 56(84) bytes of data.
64 bytes from 172.16.11.100: icmp_seq=1 ttl=61 time=0.401 ms
64 bytes from 172.16.11.100: icmp_seq=2 ttl=61 time=0.307 ms
64 bytes from 172.16.11.100: icmp_seq=3 ttl=61 time=0.254 ms
64 bytes from 172.16.11.100: icmp_seq=4 ttl=61 time=0.277 ms
64 bytes from 172.16.11.100: icmp_seq=5 ttl=61 time=0.262 ms
^C
--- 172.16.11.100 ping statistics ---
```
Network

5 packets transmitted, 5 received, 0% packet loss, time 3999ms
rtt min/avg/max/mdev = 0.254/0.300/0.401/0.054 ms

3. On the FortiGate, sniff traffic between VRF10 and VRF11:

   # diagnose sniffer packet any "icmp and host 172.16.11.100" 4 1 0
   interfaces=[any]
   filters=[icm and host 172.16.11.100]
   10.086656 Internal_VRF10 in 172.16.10.100 -> 172.16.11.100: icmp: echo request
   10.086705 vlink0_Vlan_10 out 172.16.10.100 -> 172.16.11.100: icmp: echo request
   10.086706 npu0_vlink0 out 172.16.10.100 -> 172.16.11.100: icmp: echo request

   10.086711 vlink1_Vlan_10 in 172.16.10.100 -> 172.16.11.100: icmp: echo request
   10.086739 vlink1_Vlan_11 out 172.16.10.100 -> 172.16.11.100: icmp: echo request
   10.086740 npu0_vlink1 out 172.16.10.100 -> 172.16.11.100: icmp: echo request

   10.086744 vlink0_Vlan_11 in 172.16.10.100 -> 172.16.11.100: icmp: echo request
   10.086929 Internal_VRF11 out 172.16.10.100 -> 172.16.11.100: icmp: echo request
   10.086930 internal out 172.16.10.100 -> 172.16.11.100: icmp: echo request
   10.087053 Internal_VRF11 in 172.16.11.100 -> 172.16.10.100: icmp: echo reply
   10.087061 vlink0_Vlan_11 out 172.16.11.100 -> 172.16.10.100: icmp: echo reply
   10.087062 npu0_vlink1 out 172.16.11.100 -> 172.16.10.100: icmp: echo reply

   10.087066 vlink1_Vlan_11 in 172.16.11.100 -> 172.16.10.100: icmp: echo reply
   10.087071 vlink1_Vlan_10 out 172.16.11.100 -> 172.16.10.100: icmp: echo reply
   10.087072 npu0_vlink0 out 172.16.11.100 -> 172.16.10.100: icmp: echo reply

   10.087076 vlink0_Vlan_10 in 172.16.11.100 -> 172.16.10.100: icmp: echo reply
   10.087176 Internal_VRF10 out 172.16.11.100 -> 172.16.10.100: icmp: echo reply
   10.087177 internal out 172.16.11.100 -> 172.16.10.100: icmp: echo reply

^C
20 packets received by filter
0 packets dropped by kernel

VRF with IPv6

IPv6 routes support VRF. Static, connected, OSPF, and BGP routes can be isolated in different VRFs. BGP IPv6 routes can be leaked from one VRF to another.

   config router bgp
   config vrf6
      edit <origin vrf-id>
      config leak-target
         edit <target vrf-id>
         set route-map <route-map>
         set interface <interface>
      next
   next
end
end
end

The origin or target VRF ID is an integer value from 0 - 31.
Using a VRF leak on BGP

In this example, the route 2000:5:5:5::/64 learned from Router 1 is leaked to VRF 20 through the interface vlan552. Conversely, the route 2009:3:3:3::/64 learned from Router 2 is leaked to VRF 10 through interface vlan55.

To configure VRF leaking in BGP:

1. Configure the BGP neighbors:
   ```
 config router bgp
 set as 65412
 config neighbor
 edit "2000:10:100:1::1"
 set activate disable
 set remote-as 20
 set update-source "R150"
 next
 edit "2000:10:100:1::5"
 set activate disable
 set soft-reconfiguration enable
 set interface "R160"
 set remote-as 20
 next
 end
 end
   ```

2. Configure the VLAN interfaces:
   ```
 config system interface
 edit "vlan55"
 set vdom "root"
 set vrf 10
 set ip 55.1.1.1 255.255.255.0
 set device-identification enable
 set role lan
 set snmp-index 51
 config ipv6
   ```
set ip6-address 2000:55::1/64
d
set ip6-address 2000:55::2/64

set interface "npu0_vlink0"
set vlanid 55
next
edit "vlan552"
set vdom "root"

set vrf 20
set ip 55.1.1.2 255.255.255.0
set device-identification enable
set role lan
set snmp-index 53
config ipv6

set ip6-address 2000:55::2/64

d
set interface "npu0_vlink1"
set vlanid 55
next
d

3. Configure the IPv6 prefixes:

config router prefix-list6
edit "1"
config rule
edit 1
set prefix6 2000:5:5:5::/64
unset ge
unset le
next
next
edit "2"
config rule
edit 1
set prefix6 2009:3:3:3::/64
unset ge
unset le
next
next
d

4. Configure the route maps:

config router route-map
edit "from106"
config rule
edit 1
set match-ip6-address "1"
next
next
edit "from206"
config rule
edit 1
set match-ip6-address "2"
5. Configure the IPv6 route leaking (leak route 2000:5:5:5::/64 learned from Router 1 to VRF 20, then leak route 2009:3:3:3::/64 learned from Router 2 to VRF 10):

```bash
config router bgp
 config vrf6
 edit "10"
 config leak-target
 edit "20"
 set route-map "from106"
 set interface "vlan55"
 next
 next
 edit "20"
 config leak-target
 edit "10"
 set route-map "from206"
 set interface "vlan552"
 next
 next
 end
end
end
```

To verify the VRF leaking:

1. Check the routing table before the leak:

```bash
get router info6 routing-table bgp
Routing table for VRF=10
B 2000:5:5:5::/64 [20/0] via fe00::2000:0000:0000:00, R150, 00:19:45
Routing table for VRF=20
B 2008:3:3:3::/64 [20/0] via fe00::3000:0000:0000:00, R160, 00:18:49
B 2009:3:3:3::/64 [20/0] via fe00::3000:0000:0000:00, R160, 00:18:49
```

2. Check the routing table after the leak:

```bash
get router info6 routing-table bgp
Routing table for VRF=10
B 2000:5:5:5::/64 [20/0] via fe00::2000:0000:0000:00, R150, 00:25:45
B 2009:3:3:3::/64 [20/0] via fe80::10:0000:0000:4245, vlan55, 00:00:17
Routing table for VRF=20
B 2000:5:5:5::/64 [20/0] via fe80::10:0000:0000:4244, vlan552, 00:00:16
B 2008:3:3:3::/64 [20/0] via fe00::3000:0000:0000:00, R160, 00:24:49
B 2009:3:3:3::/64 [20/0] via fe00::3000:0000:0000:00, R160, 00:24:49
```

Using VRF on a static route

In this example, a VRF is defined on static route 22 so that it will only appear in the VRF 20 routing table.
To configure the VRF on the static route:

```bash
config router static6
 edit 22
 set dst 2010:2:2:2::/64
 set blackhole enable
 set vrf 20
 next
end
```

**IBGP and EBGP support in VRF**

Support is included for internal and external border gateway protocols (IBGP and EBGP) in virtual routing and forwarding (VRF).

FortiGate can establish neighbor connections with other FortiGates or routers, and the learned routes are put into different VRF tables according to the neighbor’s settings.

This example uses the following topology:

- BGP routes learned from the Router1 neighbor are put into vrf10.
- BGP routes learned from the Router2 neighbor are put into vrf20.

**To configure this example:**

```bash
config system interface
 edit port1
 set vrf 10
 next
 edit port2
 set vrf 20
 next
end

config router bgp
 config neighbor
 edit "192.168.1.1"
 set update-source port1
 next
 edit "192.168.2.1"
 set interface port2
 next
```
Results

Using the above topology:

- Both Router1 and Router2 establish OSPF and BGP neighbor with the FortiGate.
- Router1 advertises 10.10.1.0/24 into OSPF and 10.10.2.0/24 into BGP.
- Router2 advertises 20.20.1.0/24 into OSPF and 20.20.2.0/24 into BGP.

When port1 and port2 have not set VRF, all of the routing is in VRF=0:

```
get router info routing-table all
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
 E1 - OSPF external type 1, E2 - OSPF external type 2
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default

Routing table for VRF=0
S* 0.0.0.0/0 [5/0] via 10.0.1.254, port9
C 10.0.1.0/24 is directly connected, port9
O 10.10.1.0/24 [110/10] via 192.168.1.1, port1, 00:18:31
B 10.10.2.0/24 [20/200] via 192.168.1.1, port1, 00:01:31
O 20.20.1.0/22 [110/10] via 192.168.2.1, port2, 00:19:05
B 20.20.2.0/24 [20/200] via 192.168.2.1, port2, 00:01:31
C 192.168.1.0/24 is directly connected, port1
C 192.168.2.0/24 is directly connected, port2
```

After VRF is set for BGP, BGP routes are added to the VRF tables along with OSPF and connected routes:

```
get router info routing-table all
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
 E1 - OSPF external type 1, E2 - OSPF external type 2
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default

Routing table for VRF=0
S* 0.0.0.0/0 [5/0] via 10.0.1.254, port9
C 10.0.1.0/24 is directly connected, port9

Routing table for VRF=10
O 10.10.1.0/24 [110/10] via 192.168.1.1, port1, 00:18:31
B 10.10.2.0/24 [20/200] via 192.168.1.1, port1, 00:01:31
C 192.168.1.0/24 is directly connected, port1

Routing table for VRF=20
O 20.20.1.0/22 [110/10] via 192.168.2.1, port2, 00:19:05
B 20.20.2.0/24 [20/200] via 192.168.2.1, port2, 00:01:31
C 192.168.2.0/24 is directly connected, port2
BGP neighbor groups

This feature is also supported in the BGP neighbor groups. For example:

```
config router bgp
    config neighbor-group
        edit "FGT"
            set update-source "port1"
        next
    end
    config neighbor-range
        edit 1
            set prefix 172.16.201.0 255.255.255.0
            set neighbor-group "FGT"
        next
    end
end
```

Note that the `set interface` command is not supported.

NetFlow

NetFlow allows you to collect IP network traffic statistics for an interface, and then export those statistics for analysis. NetFlow samplers, that sample every packet, are configured per interface. Full NetFlow is supported through the information maintained in the firewall session.

To configure NetFlow:

```
config system netflow
    set collector-ip <ip>
    set collector-port <port>
    set source-ip <ip>
    set active-flow-timeout <integer>
    set inactive-flow-timeout <integer>
    set template-tx-timeout <integer>
    set template-tx-counter <integer>
end
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>collector-ip <ip></td>
<td>Collector IP address.</td>
</tr>
<tr>
<td>collector-port <port></td>
<td>NetFlow collector port number (0 - 65535).</td>
</tr>
<tr>
<td>source-ip <ip></td>
<td>Source IP address, for communication with the NetFlow agent.</td>
</tr>
<tr>
<td>active-flow-timeout <integer></td>
<td>Timeout to report active flows, in seconds (60 - 3600, default = 1800).</td>
</tr>
<tr>
<td>inactive-flow-timeout <integer></td>
<td>Timeout for periodic report of finished flows, in seconds (10 - 600, default = 15).</td>
</tr>
<tr>
<td>template-tx-timeout <integer></td>
<td>Timeout for periodic template flowset transmission, in seconds (60 - 86400, default = 1800).</td>
</tr>
<tr>
<td>template-tx-counter <integer></td>
<td>Counter of flowset records, before resending a template flowset record (10 - 6000, default = 20).</td>
</tr>
</tbody>
</table>
To configure NetFlow in a specific VDOM:

```
config vdom
  edit <vdom>
    config system vdom-netflow
      set vdom-netflow enable
      set collector-ip <ip>
      set collector-port <port>
      set source-ip <ip>
    end
  next
end
```

To configure a NetFlow sampler on an interface:

```
config system interface
  edit <interface>
    set netflow-sampler {disable | tx | rx | both}
  next
end
```

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disable</td>
<td>Disable the NetFlow protocol on this interface (default).</td>
</tr>
<tr>
<td>tx</td>
<td>Monitor transmitted traffic on this interface.</td>
</tr>
<tr>
<td>rx</td>
<td>Monitor received traffic on this interface.</td>
</tr>
<tr>
<td>both</td>
<td>Monitor transmitted/received traffic on this interface.</td>
</tr>
</tbody>
</table>

Verification and troubleshooting

If data are not seen on the NetFlow collector after it has been configured, use the following sniffer commands to verify if the FortiGate and the collector are communicating:

- By collector port:
  ```
  # diagnose sniffer packet 'port <collector-port>' 6 0 a
  ```

- By collector IP address:
  ```
  # diagnose sniffer packet 'host <collector-ip>' 6 0 a
  ```

NetFlow uses the sflow daemon. The current NetFlow configuration can be viewed using test level 3 or 4:

```
# diagnose test application sflowd 3
# diagnose test application sflowd 4
```

NetFlow Cache Stats:
- vdoms=1
- Collectors=1
- Cached_intf=2
- Netflow_enabled_intf=1
- Live_sessions=0
- Session cache max count:71950

NetFlow templates

NetFlow uses templates to capture and categorize the data that it collects. FortiOS supports the following NetFlow templates:
<table>
<thead>
<tr>
<th>Name</th>
<th>Template ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT_OPTIONS</td>
<td>256</td>
<td>Statistics information about exporter</td>
</tr>
<tr>
<td>APP_ID_OPTIONS</td>
<td>257</td>
<td>Application information</td>
</tr>
<tr>
<td>IPV4</td>
<td>258</td>
<td>No NAT IPv4 traffic</td>
</tr>
<tr>
<td>IPV6</td>
<td>259</td>
<td>No NAT IPv6 traffic</td>
</tr>
<tr>
<td>ICMP4</td>
<td>260</td>
<td>No NAT ICMPv4 traffic</td>
</tr>
<tr>
<td>ICMP6</td>
<td>261</td>
<td>No NAT ICMPv6 traffic</td>
</tr>
<tr>
<td>IPV4_NAT</td>
<td>262</td>
<td>Source/Destination NAT IPv4 traffic</td>
</tr>
<tr>
<td>IPV4_AF_NAT</td>
<td>263</td>
<td>AF NAT IPv4 traffic (4->6)</td>
</tr>
<tr>
<td>IPV6_NAT</td>
<td>264</td>
<td>Source/Destination NAT IPv6 traffic</td>
</tr>
<tr>
<td>IPV6_AF_NAT</td>
<td>265</td>
<td>AF NAT IPv6 traffic (6->4)</td>
</tr>
<tr>
<td>ICMP4_NAT</td>
<td>266</td>
<td>Source/Destination NAT ICMPv4 traffic</td>
</tr>
<tr>
<td>ICMP4_AF_NAT</td>
<td>267</td>
<td>AF NAT ICMPv4 traffic (4->6)</td>
</tr>
<tr>
<td>ICMP6_NAT</td>
<td>268</td>
<td>Source/Destination NAT ICMPv6 traffic</td>
</tr>
<tr>
<td>ICMPv6_AF_NAT</td>
<td>269</td>
<td>AF NAT ICMPv6 traffic (6->4)</td>
</tr>
</tbody>
</table>

256 - STAT_OPTIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Statistics information about exporter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope Field Count</td>
<td>1</td>
</tr>
<tr>
<td>Data Field Count</td>
<td>7</td>
</tr>
<tr>
<td>Option Scope Length</td>
<td>4</td>
</tr>
<tr>
<td>Option Length</td>
<td>28</td>
</tr>
<tr>
<td>Padding</td>
<td>0000</td>
</tr>
</tbody>
</table>

Scope fields

<table>
<thead>
<tr>
<th>Field #</th>
<th>Field</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>System</td>
<td>System (1)</td>
<td>2</td>
</tr>
</tbody>
</table>

Data fields

<table>
<thead>
<tr>
<th>Field #</th>
<th>Field</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TOTAL_BYTES_EXP</td>
<td>TOTAL_BYTES_EXP (40)</td>
<td>8</td>
</tr>
<tr>
<td>Field #</td>
<td>Field</td>
<td>Type</td>
<td>Length</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>---------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>2</td>
<td>TOTAL_PKTS_EXP</td>
<td>TOTAL_PKTS_EXP (41)</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>TOTAL_FLOWS_EXP</td>
<td>TOTAL_FLOWS_EXP (42)</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>FLOW_ACTIVE_TIMEOUT</td>
<td>FLOW_ACTIVE_TIMEOUT (36)</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>FLOW_INACTIVE_TIMEOUT</td>
<td>FLOW_INACTIVE_TIMEOUT (37)</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>SAMPLING_INTERVAL</td>
<td>SAMPLING_INTERVAL (34)</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>SAMPLING_ALGORITHM</td>
<td>SAMPLING_ALGORITHM (35)</td>
<td>1</td>
</tr>
</tbody>
</table>

257 - APP_ID_OPTIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Application information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope Field Count</td>
<td>1</td>
</tr>
<tr>
<td>Data Field Count</td>
<td>4</td>
</tr>
<tr>
<td>Option Scope Length</td>
<td>4</td>
</tr>
<tr>
<td>Option Length</td>
<td>16</td>
</tr>
<tr>
<td>Padding</td>
<td>0000</td>
</tr>
</tbody>
</table>

Scope fields

<table>
<thead>
<tr>
<th>Field #</th>
<th>Field</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>System</td>
<td>System (1)</td>
<td>2</td>
</tr>
</tbody>
</table>

Data fields

<table>
<thead>
<tr>
<th>Field #</th>
<th>Field</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>APPLICATION_ID</td>
<td>APPLICATION_ID (95)</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>APPLICATION_NAME</td>
<td>APPLICATION_NAME (96)</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>APPLICATION_DESC</td>
<td>APPLICATION_DESC (94)</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>applicationCategoryName</td>
<td>applicationCategoryName (372)</td>
<td>32</td>
</tr>
</tbody>
</table>

258 - IPV4

<table>
<thead>
<tr>
<th>Description</th>
<th>No NAT IPv4 traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Field Count</td>
<td>17</td>
</tr>
</tbody>
</table>
Data fields

<table>
<thead>
<tr>
<th>Field #</th>
<th>Field</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BYTES</td>
<td>BYTES (1)</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>OUT_BYTES</td>
<td>OUT_BYTES (23)</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>PKTS</td>
<td>PKTS (2)</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>OUT_PKTS</td>
<td>OUT_PKTS (24)</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>FIRST_SWITCHED</td>
<td>FIRST_SWITCHED (22)</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>LAST_SWITCHED</td>
<td>LAST_SWITCHED (21)</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>L4_SRC_PORT</td>
<td>L4_SRC_PORT (7)</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>L4_DST_PORT</td>
<td>L4_DST_PORT (11)</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>INPUT_SNMP</td>
<td>INPUT_SNMP (10)</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>OUTPUT_SNMP</td>
<td>OUTPUT_SNMP (14)</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>PROTOCOL</td>
<td>PROTOCOL (4)</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>APPLICATION_ID</td>
<td>APPLICATION_ID (95)</td>
<td>9</td>
</tr>
<tr>
<td>13</td>
<td>FLOW_FLAGS</td>
<td>FLOW_FLAGS (65)</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>FORWARDING_STATUS</td>
<td>FORWARDING_STATUS (89)</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>flowEndReason</td>
<td>flowEndReason (136)</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>IP_SRC_ADDR</td>
<td>IP_SRC_ADDR (8)</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>IP_DST_ADDR</td>
<td>IP_DST_ADDR (12)</td>
<td>4</td>
</tr>
</tbody>
</table>

259 - IPV6

Description: No NAT IPv6 traffic

Data Field Count: 17

Data fields

<table>
<thead>
<tr>
<th>Field #</th>
<th>Field</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BYTES</td>
<td>BYTES (1)</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>OUT_BYTES</td>
<td>OUT_BYTES (23)</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>PKTS</td>
<td>PKTS (2)</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>OUT_PKTS</td>
<td>OUT_PKTS (24)</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>FIRST_SWITCHED</td>
<td>FIRST_SWITCHED (22)</td>
<td>4</td>
</tr>
<tr>
<td>Field #</td>
<td>Field</td>
<td>Type</td>
<td>Length</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------</td>
<td>---------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>6</td>
<td>LAST_SWITCHED</td>
<td>LAST_SWITCHED (21)</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>L4_SRC_PORT</td>
<td>L4_SRC_PORT (7)</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>L4_DST_PORT</td>
<td>L4_DST_PORT (11)</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>INPUT_SNMP</td>
<td>INPUT_SNMP (10)</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>OUTPUT_SNMP</td>
<td>OUTPUT_SNMP (14)</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>PROTOCOL</td>
<td>PROTOCOL (4)</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>APPLICATION_ID</td>
<td>APPLICATION_ID (95)</td>
<td>9</td>
</tr>
<tr>
<td>13</td>
<td>FLOW_FLAGS</td>
<td>FLOW_FLAGS (65)</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>FORWARDING_STATUS</td>
<td>FORWARDING_STATUS (89)</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>flowEndReason</td>
<td>flowEndReason (136)</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>IPV6_SRC_ADDR</td>
<td>IPV6_SRC_ADDR (27)</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>IPV6_DST_ADDR</td>
<td>IPV6_DST_ADDR (28)</td>
<td>16</td>
</tr>
</tbody>
</table>

260 - ICMP4

Description
No NAT ICMPv4 traffic

Data Field Count
16

Data fields

<table>
<thead>
<tr>
<th>Field #</th>
<th>Field</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BYTES</td>
<td>BYTES (1)</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>OUT_BYTES</td>
<td>OUT_BYTES (23)</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>PKTS</td>
<td>PKTS (2)</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>OUT_PKTS</td>
<td>OUT_PKTS (24)</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>FIRST_SWITCHED</td>
<td>FIRST_SWITCHED (22)</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>LAST_SWITCHED</td>
<td>LAST_SWITCHED (21)</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>INPUT_SNMP</td>
<td>INPUT_SNMP (10)</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>OUTPUT_SNMP</td>
<td>OUTPUT_SNMP (14)</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>ICMP_TYPE</td>
<td>ICMP_TYPE (32)</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>PROTOCOL</td>
<td>PROTOCOL (4)</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>APPLICATION_ID</td>
<td>APPLICATION_ID (95)</td>
<td>9</td>
</tr>
</tbody>
</table>
Network Field Types

<table>
<thead>
<tr>
<th>Field #</th>
<th>Field</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>FLOW_FLAGS</td>
<td>FLOW_FLAGS (65)</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>FORWARDING_STATUS</td>
<td>FORWARDING_STATUS (89)</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>flowEndReason</td>
<td>flowEndReason (136)</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>IP_SRC_ADDR</td>
<td>IP_SRC_ADDR (8)</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>IP_DST_ADDR</td>
<td>IP_DST_ADDR (12)</td>
<td>4</td>
</tr>
</tbody>
</table>

261 - ICMP6

Description

No NAT ICMPv6 traffic

Data Field Count

16

Data fields

<table>
<thead>
<tr>
<th>Field #</th>
<th>Field</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BYTES</td>
<td>BYTES (1)</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>OUT_BYTES</td>
<td>OUT_BYTES (23)</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>PKTS</td>
<td>PKTS (2)</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>OUT_PKTS</td>
<td>OUT_PKTS (24)</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>FIRST_SWITCHED</td>
<td>FIRST_SWITCHED (22)</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>LAST_SWITCHED</td>
<td>LAST_SWITCHED (21)</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>INPUT_SNMP</td>
<td>INPUT_SNMP (10)</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>OUTPUT_SNMP</td>
<td>OUTPUT_SNMP (14)</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>ICMP_TYPE</td>
<td>ICMP_TYPE (32)</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>PROTOCOL</td>
<td>PROTOCOL (4)</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>APPLICATION_ID</td>
<td>APPLICATION_ID (95)</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>FLOW_FLAGS</td>
<td>FLOW_FLAGS (65)</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>FORWARDING_STATUS</td>
<td>FORWARDING_STATUS (89)</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>flowEndReason</td>
<td>flowEndReason (136)</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>IPV6_SRC_ADDR</td>
<td>IPV6_SRC_ADDR (27)</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>IPV6_DST_ADDR</td>
<td>IPV6_DST_ADDR (28)</td>
<td>16</td>
</tr>
</tbody>
</table>
262 - IPV4_NAT

Description
Source/Destination NAT IPv4 traffic

Data Field Count
25

Data fields

<table>
<thead>
<tr>
<th>Field #</th>
<th>Field</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BYTES</td>
<td>BYTES (1)</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>OUT_BYTES</td>
<td>OUT_BYTES (23)</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>PKTS</td>
<td>PKTS (2)</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>OUT_PKTS</td>
<td>OUT_PKTS (24)</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>FIRST_SWITCHED</td>
<td>FIRST_SWITCHED (22)</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>LAST_SWITCHED</td>
<td>LAST_SWITCHED (21)</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>L4_SRC_PORT</td>
<td>L4_SRC_PORT (7)</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>L4_DST_PORT</td>
<td>L4_DST_PORT (11)</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>INPUT_SNMP</td>
<td>INPUT_SNMP (10)</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>OUTPUT_SNMP</td>
<td>OUTPUT_SNMP (14)</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>PROTOCOL</td>
<td>PROTOCOL (4)</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>postIpDiffServCodePoint</td>
<td>postIpDiffServCodePoint (98)</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>IP_TOS</td>
<td>ipClassofService (5)</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>DST_DOS</td>
<td>postIpClassOfService (55)</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>APPLICATION_ID</td>
<td>APPLICATION_ID (95)</td>
<td>9</td>
</tr>
<tr>
<td>16</td>
<td>INTERNET_APPLICATION_ID</td>
<td>INTERNET_APPLICATION_ID (66)</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>FLOW_FLAGS</td>
<td>FLOW_FLAGS (65)</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>FORWARDING_STATUS</td>
<td>FORWARDING_STATUS (89)</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>flowEndReason</td>
<td>flowEndReason (136)</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>IP_SRC_ADDR</td>
<td>IP_SRC_ADDR (8)</td>
<td>4</td>
</tr>
<tr>
<td>21</td>
<td>IP_DST_ADDR</td>
<td>IP_DST_ADDR (12)</td>
<td>4</td>
</tr>
<tr>
<td>22</td>
<td>postNATSourceIPv4Address</td>
<td>postNATSourceIPv4Address (225)</td>
<td>4</td>
</tr>
<tr>
<td>23</td>
<td>postNATDestinationIPv4Address</td>
<td>postNATDestinationIPv4Address (226)</td>
<td>4</td>
</tr>
<tr>
<td>24</td>
<td>postNAPTSourceTransportPort</td>
<td>postNAPTSourceTransportPort (227)</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>postNAPTDestinationTransportPort</td>
<td>postNAPTDestinationTransportPort (228)</td>
<td>2</td>
</tr>
</tbody>
</table>
263 - IPV4_AF_NAT

Description
AF NAT IPv4 traffic (4->6)

Data Field Count
21

Data fields

<table>
<thead>
<tr>
<th>Field #</th>
<th>Field</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BYTES</td>
<td>BYTES (1)</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>OUT_BYTES</td>
<td>OUT_BYTES (23)</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>PKTS</td>
<td>PKTS (2)</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>OUT_PKTS</td>
<td>OUT_PKTS (24)</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>FIRST_SWITCHED</td>
<td>FIRST_SWITCHED (22)</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>LAST_SWITCHED</td>
<td>LAST_SWITCHED (21)</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>L4_SRC_PORT</td>
<td>L4_SRC_PORT (7)</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>L4_DST_PORT</td>
<td>L4_DST_PORT (11)</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>INPUT_SNMP</td>
<td>INPUT_SNMP (10)</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>OUTPUT_SNMP</td>
<td>OUTPUT_SNMP (14)</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>PROTOCOL</td>
<td>PROTOCOL (4)</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>APPLICATION_ID</td>
<td>APPLICATION_ID (95)</td>
<td>9</td>
</tr>
<tr>
<td>13</td>
<td>FLOW_FLAGS</td>
<td>FLOW_FLAGS (65)</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>FORWARDING_STATUS</td>
<td>FORWARDING_STATUS (89)</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>flowEndReason</td>
<td>flowEndReason (136)</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>IPV6_SRC_ADDR</td>
<td>IPV6_SRC_ADDR (27)</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>IPV6_DST_ADDR</td>
<td>IPV6_DST_ADDR (28)</td>
<td>16</td>
</tr>
<tr>
<td>18</td>
<td>postNATSourceIPv6Address</td>
<td>postNATSourceIPv6Address (281)</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>postNATDestinationIPv6Address</td>
<td>postNATDestinationIPv6Address (282)</td>
<td>16</td>
</tr>
<tr>
<td>20</td>
<td>postNAPTSourceTransportPort</td>
<td>postNAPTSourceTransportPort (227)</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>postNAPTDestinationTransportPort</td>
<td>postNAPTDestinationTransportPort (228)</td>
<td>2</td>
</tr>
</tbody>
</table>

264 - IPV6_NAT

Description
Source/Destination NAT IPv6 traffic

Data Field Count
21
Data fields

<table>
<thead>
<tr>
<th>Field #</th>
<th>Field</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>bytes</td>
<td>bytes (1)</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>out_bytes</td>
<td>out_bytes (23)</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>pkts</td>
<td>pkts (2)</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>out_pkts</td>
<td>out_pkts (24)</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>first_switched</td>
<td>first_switched (22)</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>last_switched</td>
<td>last_switched (21)</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>l4_src_port</td>
<td>l4_src_port (7)</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>l4_dst_port</td>
<td>l4_dst_port (11)</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>input_snmp</td>
<td>input_snmp (10)</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>output_snmp</td>
<td>output_snmp (14)</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>protocol</td>
<td>protocol (4)</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>application_id</td>
<td>application_id (95)</td>
<td>9</td>
</tr>
<tr>
<td>13</td>
<td>flow_flags</td>
<td>flow_flags (65)</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>forwarding_status</td>
<td>forwarding_status (89)</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>flowEndReason</td>
<td>flowEndReason (136)</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>ip_src_addr</td>
<td>ip_src_addr (8)</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>ip_dst_addr</td>
<td>ip_dst_addr (12)</td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td>postNATSourceIPv6Address</td>
<td>postNATSourceIPv6Address (281)</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>postNATDestinationIPv6Address</td>
<td>postNATDestinationIPv6Address (282)</td>
<td>16</td>
</tr>
<tr>
<td>20</td>
<td>postNAPTSourceTransportPort</td>
<td>postNAPTSourceTransportPort (227)</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>postNAPTDestinationTransportPort</td>
<td>postNAPTDestinationTransportPort (228)</td>
<td>2</td>
</tr>
</tbody>
</table>

265 - IPv6_AF_NAT

<table>
<thead>
<tr>
<th>Description</th>
<th>AF NAT IPv6 traffic (6-4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Field Count</td>
<td>21</td>
</tr>
</tbody>
</table>
Data fields

<table>
<thead>
<tr>
<th>Field #</th>
<th>Field</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BYTES</td>
<td>BYTES (1)</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>OUT_BYTES</td>
<td>OUT_BYTES (23)</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>PKTS</td>
<td>PKTS (2)</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>OUT_PKTS</td>
<td>OUT_PKTS (24)</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>FIRST_SWITCHED</td>
<td>FIRST_SWITCHED (22)</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>LAST_SWITCHED</td>
<td>LAST_SWITCHED (21)</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>L4_SRC_PORT</td>
<td>L4_SRC_PORT (7)</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>L4_DST_PORT</td>
<td>L4_DST_PORT (11)</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>INPUT_SNMP</td>
<td>INPUT_SNMP (10)</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>OUTPUT_SNMP</td>
<td>OUTPUT_SNMP (14)</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>PROTOCOL</td>
<td>PROTOCOL (4)</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>APPLICATION_ID</td>
<td>APPLICATION_ID (95)</td>
<td>9</td>
</tr>
<tr>
<td>13</td>
<td>FLOW_FLAGS</td>
<td>FLOW_FLAGS (65)</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>FORWARDING_STATUS</td>
<td>FORWARDING_STATUS (89)</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>flowEndReason</td>
<td>flowEndReason (136)</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>IPV6_SRC_ADDR</td>
<td>IPV6_SRC_ADDR (27)</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>IPV6_DST_ADDR</td>
<td>IPV6_DST_ADDR (28)</td>
<td>16</td>
</tr>
<tr>
<td>18</td>
<td>postNATSourceIPv4Address</td>
<td>postNATSourceIPv4Address (225)</td>
<td>4</td>
</tr>
<tr>
<td>19</td>
<td>postNATDestinationIPv4Address</td>
<td>postNATDestinationIPv4Address (226)</td>
<td>4</td>
</tr>
<tr>
<td>20</td>
<td>postNAPTSourcTransportPort</td>
<td>postNAPTSourcTransportPort (227)</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>postNAPTDestinationTransportPort</td>
<td>postNAPTDestinationTransportPort (228)</td>
<td>2</td>
</tr>
</tbody>
</table>

266 - ICMPV4_NAT

<table>
<thead>
<tr>
<th>Description</th>
<th>Source/Destination NAT ICMPv4 traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Field Count</td>
<td>20</td>
</tr>
</tbody>
</table>
Data fields

<table>
<thead>
<tr>
<th>Field #</th>
<th>Field</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BYTES</td>
<td>BYTES (1)</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>OUT_BYTES</td>
<td>OUT_BYTES (23)</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>PKTS</td>
<td>PKTS (2)</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>OUT_PKTS</td>
<td>OUT_PKTS (24)</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>FIRST_SWITCHED</td>
<td>FIRST_SWITCHED (22)</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>LAST_SWITCHED</td>
<td>LAST_SWITCHED (21)</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>INPUT_SNMP</td>
<td>INPUT_SNMP (10)</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>OUTPUT_SNMP</td>
<td>OUTPUT_SNMP (14)</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>ICMP_TYPE</td>
<td>ICMP_TYPE (32)</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>PROTOCOL</td>
<td>PROTOCOL (4)</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>APPLICATION_ID</td>
<td>APPLICATION_ID (95)</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>FLOW_FLAGS</td>
<td>FLOW_FLAGS (65)</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>FORWARDING_STATUS</td>
<td>FORWARDING_STATUS (89)</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>flowEndReason</td>
<td>flowEndReason (136)</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>IP_SRC_ADDR</td>
<td>IP_SRC_ADDR (8)</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>IP_DST_ADDR</td>
<td>IP_DST_ADDR (12)</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>postNATSourceIPv4Address</td>
<td>postNATSourceIPv4Address (225)</td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td>postNATDestinationIPv4Address</td>
<td>postNATDestinationIPv4Address (226)</td>
<td>4</td>
</tr>
<tr>
<td>19</td>
<td>postNAPTSourceTransportPort</td>
<td>postNAPTSourceTransportPort (227)</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>postNAPTDestinationTransportPort</td>
<td>postNAPTDestinationTransportPort (228)</td>
<td>2</td>
</tr>
</tbody>
</table>

267 - ICMPV4_AF_NAT

Description

AF NAT ICMPv4 traffic (4->6)

Data Field Count

20

Data fields

<table>
<thead>
<tr>
<th>Field #</th>
<th>Field</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BYTES</td>
<td>BYTES (1)</td>
<td>8</td>
</tr>
<tr>
<td>Field #</td>
<td>Field</td>
<td>Type</td>
<td>Length</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------</td>
<td>---------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>2</td>
<td>OUT_BYTES</td>
<td>OUT_BYTES (23)</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>PKTS</td>
<td>PKTS (2)</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>OUT_PKTS</td>
<td>OUT_PKTS (24)</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>FIRST_SWITCHED</td>
<td>FIRST_SWITCHED (22)</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>LAST_SWITCHED</td>
<td>LAST_SWITCHED (21)</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>INPUT_SNMP</td>
<td>INPUT_SNMP (10)</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>OUTPUT_SNMP</td>
<td>OUTPUT_SNMP (14)</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>ICMP_TYPE</td>
<td>ICMP_TYPE (32)</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>PROTOCOL</td>
<td>PROTOCOL (4)</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>APPLICATION_ID</td>
<td>APPLICATION_ID (95)</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>FLOW_FLAGS</td>
<td>FLOW_FLAGS (65)</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>FORWARDING_STATUS</td>
<td>FORWARDING_STATUS (89)</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>flowEndReason</td>
<td>flowEndReason (136)</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>IPV6_SRC_ADDR</td>
<td>IPV6_SRC_ADDR (27)</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>IPV6_DST_ADDR</td>
<td>IPV6_DST_ADDR (28)</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>postNATSourceIPv6Address</td>
<td>postNATSourceIPv6Address (281)</td>
<td>16</td>
</tr>
<tr>
<td>18</td>
<td>postNATDestinationIPv6Address</td>
<td>postNATDestinationIPv6Address (282)</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>postNAPTSourceTransportPort</td>
<td>postNAPTSourceTransportPort (227)</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>postNAPTDestinationTransportPort</td>
<td>postNAPTDestinationTransportPort (228)</td>
<td>2</td>
</tr>
</tbody>
</table>

268 - ICMPV6_NAT

Description: Source/Destination NAT ICMPv6 traffic

Data Field Count: 20

Data fields

<table>
<thead>
<tr>
<th>Field #</th>
<th>Field</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BYTES</td>
<td>BYTES (1)</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>OUT_BYTES</td>
<td>OUT_BYTES (23)</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>PKTS</td>
<td>PKTS (2)</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>OUT_PKTS</td>
<td>OUT_PKTS (24)</td>
<td>4</td>
</tr>
<tr>
<td>Field #</td>
<td>Field</td>
<td>Type</td>
<td>Length</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>5</td>
<td>FIRST_SWITCHED</td>
<td>FIRST_SWITCHED (22)</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>LAST_SWITCHED</td>
<td>LAST_SWITCHED (21)</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>INPUT_SNMP</td>
<td>INPUT_SNMP (10)</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>OUTPUT_SNMP</td>
<td>OUTPUT_SNMP (14)</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>ICMP_TYPE</td>
<td>ICMP_TYPE (32)</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>PROTOCOL</td>
<td>PROTOCOL (4)</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>APPLICATION_ID</td>
<td>APPLICATION_ID (95)</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>FLOW_FLAGS</td>
<td>FLOW_FLAGS (65)</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>FORWARDING_STATUS</td>
<td>FORWARDING_STATUS (89)</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>flowEndReason</td>
<td>flowEndReason (136)</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>IP_SRC_ADDR</td>
<td>IP_SRC_ADDR (8)</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>IP_DST_ADDR</td>
<td>IP_DST_ADDR (12)</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>postNATSourceIPv6Address</td>
<td>postNATSourceIPv6Address (281)</td>
<td>16</td>
</tr>
<tr>
<td>18</td>
<td>postNATDestinationIPv6Address</td>
<td>postNATDestinationIPv6Address (282)</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>postNAPTSourceTransportPort</td>
<td>postNAPTSourceTransportPort (227)</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>postNAPTDestinationTransportPort</td>
<td>postNAPTDestinationTransportPort (228)</td>
<td>2</td>
</tr>
</tbody>
</table>

269 - ICMPV6_AF_NAT

Description
AF NAT ICMPv6 traffic (6->4)

Data Field Count
20

Data fields

<table>
<thead>
<tr>
<th>Field #</th>
<th>Field</th>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BYTES</td>
<td>BYTES (1)</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>OUT_BYTES</td>
<td>OUT_BYTES (23)</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>PKTS</td>
<td>PKTS (2)</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>OUT_PKTS</td>
<td>OUT_PKTS (24)</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>FIRST_SWITCHED</td>
<td>FIRST_SWITCHED (22)</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>LAST_SWITCHED</td>
<td>LAST_SWITCHED (21)</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>INPUT_SNMP</td>
<td>INPUT_SNMP (10)</td>
<td>2</td>
</tr>
</tbody>
</table>
NetFlow on FortiExtender and tunnel interfaces

NetFlow sampling is supported on FortiExtender and VPN tunnel interfaces.

VPN tunnel interfaces can be IPsec, IP in IP, or GRE tunnels. NetFlow sampling is supported on both NPU and non-NPU offloaded tunnels.

Examples

In the following examples, a FortiExtender and a VPN tunnel interface are configured with NetFlow sampling.

To configure a FortiExtender interface with NetFlow sampling:

1. Configure a FortiExtender interface with NetFlow sampling enabled for both transmitted and received traffic:

   ```
   config system interface
   edit "fext-211"
   set vdom "root"
   set mode dhcp
   set type fext-wan
   set netflow-sampler both
   set role wan
   set snmp-index 8
   set macaddr 2a:4e:68:a3:f4:6a
   next
   end
   ```

2. Check the NetFlow status and configuration:
Device index 26 is the FortiExtender interface fext-211.

diagnose test application sflowd 3
===== Netflow Configuration =====
Global collector:172.18.60.80:[2055] source ip: 0.0.0.0 active-timeout(seconds):60 inactive-timeout(seconds):600
___ vdom: root, index=0, is master, collector: disabled (use global config) (mgmt vdom)
|_ col1_ip:172.18.60.80[2055],src_ip:10.6.30.105,seq_num:300,pkts/time to next
template: 18/29
|___ interface:fext-211 sample_direction:both device_index:26 snmp_index:8

3. Check the network interface list:

diagnose netlink interface list
...
if=fext-211 family=00 type=1 index=26 mtu=1500 link=0 master=0
ref=27 state=start present fw_flags=60000 flags=up broadcast run multicast
...

4. Check the session list for the FortiExtender interface and NetFlow flowset packet:

diagnose sys session list
session info: proto=1 proto_state=00 duration=1732 expire=59 timeout=0 flags=00000000 socktype=0 sockport=0 av_idx=0 use=3
origin-shaper=
reply-shaper=
per_ip_shaper=
class_id=0 ha_id=0 policy_dir=0 tunnel=/ vlan_cos=0/255
state=may_dirty netflow-origin netflow-reply
statistic(byte/packets/allow_err): org=145572/1733/1 reply=145572/1733/1 tuples=2
tx speed(Bps/kbps): 83/0 rx speed(Bps/kbps): 83/0
origin->sink: org pre->post, reply pre->post dev=5->26/26->5
gw=10.39.252.244/172.16.200.55
hook=pre dir=reply act=dnat 8.8.8.8:61290->10.39.252.243:0(172.16.200.55:61290)
misc=0 policy_id=1 auth_info=0 chk_client_info=0 vd=0
serial=00001298 tos=ff/ff app_list=0 app=0 url_cat=0
sdwan_mbr_seq=0 sdwan_service_id=0
rpdb_link_id=00000000 rpdb_svc_id=0 ngfwid=n/a
npu_state=0x040000
no_ofld_reason: non-npu-intf
total session 1

5. The flowset packet can be captured on UDP port 2055 by a packet analyzer, such as Wireshark:
To configure a VPN tunnel interface with NetFlow sampling:

1. Configure a VPN interface with NetFlow sampling enabled for both transmitted and received traffic:

   ```
   config system interface
   edit "A-to-B_vpn"
      set vdom "vdom1"
      set type tunnel
         set netflow-sampler both
         set snmp-index 42
         set interface "port3"
   next
   end
   ```

2. Configure the VPN tunnel:

   ```
   config vpn ipsec phase1-interface
   edit "A-to-B_vpn"
      set interface "port3"
      set peertype any
      set net-device disable
      set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
      set comments "VPN: A-to-B_vpn [Created by VPN wizard]"
      set wizard-type static-fortigate
      set remote-gw 10.2.2.2
      set psksecret ENC
   next
   end
   ```

   ```
   config vpn ipsec phase2-interface
   edit "A-to-B_vpn"
      set phasename "A-to-B_vpn"
      set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256 aes128gcm
     aes256gcm chacha20poly1305
      set comments "VPN: A-to-B_vpn [Created by VPN wizard]"
      set src-addr-type name
      set dst-addr-type name
      set src-name "A-to-B_vpn_local"
   ```
set dst-name "A-to-B_vpn_remote"
 next
end

3. Check the NetFlow status and configuration:
 Device index 52 is the VPN interface A-to-B_vpn.

 # diagnose test application sflowd 3
 ===== Netflow Vdom Configuration =====
 Global collector:172.18.60.80:[2055] source ip: 0.0.0.0 active-timeout(seconds):60
 inactive-timeout(seconds):15
 ___ vdom: vdom1, index=1, is master, collector: disabled (use global config) (mgmt vdom)
 |__ coll_ip:172.18.60.80[2055],src_ip:10.1.100.1,seq_num:60,pkts/time to next
 template: 15/6
 |__ exported: Bytes:11795591, Packets:48160, Sessions:10 Flows:34
 |____ interface:A-to-B_vpn sample_direction:both device_index:52 snmp_index:42

4. Check the session list for the VPN interface and NetFlow flowset packet (unencapsulated traffic going through the VPN tunnel):

 # diagnose sys session list
 session info: proto=6 proto_state=01 duration=6 expire=3599 timeout=3600 flags=00000000
 socketype=0 sockport=0 av_idx=0 use=3
 origin-shaper=
 reply-shaper=
 per_ip_shaper=
 class_id=0 ha_id=0 policy_dir=0 tunnel=/ vlan_cos=0/255
 state=may_dirty npu netflow-origin netflow-reply
 statistic(bytes/packets/allow_err): org=6433/120/1 reply=884384/713/1 tuples=2
 tx speed(Bps/kbps): 992/7 rx speed(Bps/kbps): 136479/1091
 orgin->sink: org pre->post, reply pre->post dev=10->52/52->10 gwy=10.2.2.2/10.1.100.22
 hook=pre dir=org act=noop 10.1.100.22:43714->172.16.200.55:80(0.0.0.0:0)
 hook=post dir=reply act=noop 172.16.200.55:80->10.1.100.22:43714(0.0.0.0:0)
 pos/(before,after) 0/(0,0), 0/(0,0)
 src_mac=00:0c:29:ac:ae:4f
 misc=0 policy_id=5 auth_info=0 chk_client_info=0 vd=1
 serial=00003b6c tos=ff/ff app_list=0 app=0 url_cat=0
 sdmn_mbr_seq=0 sdmn_service_id=0
 rpdb_link_id=00000000 rpdb_svc_id=0 ngfwid=n/a
 npu_state=0x000001 no_offload
 npu info: flag=0x82/0x00, offload=0/0, ips_offload=0/0, epid=0/0, ipid=0/0, vlan=0x0000/0x0000
 vlifid=0/0, vtag_in=0x0000/0x0000 in_npu=0/0, out_npu=0/0, fwd_en=0/0, qid=0/0
 no_ofld_reason: disabled-by-policy
 total session 1

5. The flowset packet can be captured on UDP port 2055 by a packet analyzer, such as Wireshark:
sFlow

sFlow is a method of monitoring the traffic on your network to identify areas on the network that may impact performance and throughput. FortiGate supports sFlow v5. sFlow collector software is available from a number of third-party software vendors. For more information about sFlow, see www.sflow.org.

The packet information that the FortiGate's sFlow agent collects depends on the interface type:

- On an internal interface, when the interface receives packets from devices with private IP addresses, the collected information includes the private IP addresses.
- On an external, or WAN, interface, when the interface receives to route to or from the internet, the collected information includes the IP address of the WAN interface as the source or destination interface, depending on the direction of the traffic. It does not include IP addresses that are NATed on another interface.

sFlow datagrams contain the following information:

- Packet headers, such as MAC, IPv4, and TCP
- Sample process parameters, such as rate and pool
- Input and output ports
- Priority (802.1p and ToS)
- VLAN (802.1Q)
- Source prefixes, destination prefixes, and next hop addresses
- BGP source AS, source peer AS, destination peer AS, communities, and local preference
- User IDs (TACACS, RADIUS) for source and destination
- Interface statistics (RFC 1573, RFC 2233, and RFC 2358)

Configuring sFlow

sFlow can be configured globally, then on traffic VDOMs and individual interfaces.
When configuring sFlow on a VDOM, the collector can be specified, or the collector that is configured globally can be used.

sFlow is supported on some interface types, such as physical, VLAN, and aggregate. It is not supported on virtual interfaces, such as VDOM link, IPsec, GRE, or SSL. When configuring sFlow on an interface, the rate that the agent samples traffic, the direction of that traffic, and the frequency that the agent sends sFlow datagrams to the sFlow collector can be specified. If sFlow is configured on the VDOM that the interface belongs to, the agent sends datagrams to the collector configured for the VDOM. Otherwise, the datagrams are sent to the collector that is configured globally.

Configuring sFlow for an interface disables NP offloading for all traffic on that interface.

To configure sFlow globally:

```plaintext
config system sflow
  set collector-ip <ipv4_address>
  set collector-port <port>
  set source-ip <ipv4_address>
  set interface-select-method {auto | sdwan | specify}
  set interface <interface>
end
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>collector-ip <ipv4_address></td>
<td>The IPv4 address of the sFlow collector that sFlow agents added to interface (default = 0.0.0.0).</td>
</tr>
<tr>
<td>collector-port <port></td>
<td>The UDP port number used for sending sFlow datagrams (0 - 65535, default = 6343). Only configured this option if required by the sFlow collector or your network configuration.</td>
</tr>
<tr>
<td>source-ip <ipv4_address></td>
<td>The source IPv4 address that the sFlow agent used to send datagrams to the collector (default = 0.0.0.0). If this option is not configured, the FortiGate uses the IP address of the interface that it sends the datagram through.</td>
</tr>
<tr>
<td>interface-select-method</td>
<td>How the outgoing interface to reach the server is selected (default = auto).</td>
</tr>
<tr>
<td>interface <interface></td>
<td>The outgoing interface used to reach the server. This option is only available when interface-select-method is specify.</td>
</tr>
</tbody>
</table>

To configure sFlow for a VDOM:

```plaintext
config vdom
  edit <vdom>
    config system vdom-sflow
      set vdom-sflow {enable | disable}
      set collector-ip <ipv4_address>
      set collector-port <port>
      set source-ip <ipv4_address>
      set interface-select-method {auto | sdwan | specify}
      set interface <interface>
    end
next
end
```
Enable/disable the sFlow configuration for the current VDOM (default = disable).

The IPv4 address of the sFlow collector that sFlow agents added to interface (default = 0.0.0.0).

The UDP port number used for sending sFlow datagrams (0 - 65535, default = 6343).

The source IPv4 address that the sFlow agent used to send datagrams to the collector (default = 0.0.0.0).

How the outgoing interface to reach the server is selected (default = auto).

The outgoing interface used to reach the server. This option is only available when `interface-select-method` is `specify`.

To configure sFlow on an interface:

```
config system interface
  edit <interface>
    set sflow-sampler {enable | disable}
    set sample-rate <integer>
    set polling-interval <integer>
    set sample-direction {tx | rx | both}
  next
end
```

Enable/disable sFlow on this interface (default = disable).

The average number of packets that the agent lets pass before taking a sample (10 - 99999, default = 2000).

Setting a lower rate will sample a higher number of packets, increasing the accuracy or the sampling data, but also increasing the CPU and network bandwidth usage. The default value is recommended.

The amount of time that the agent waits between sending datagrams to the collector, in seconds (1 - 255, default = 20).

Setting a higher value lowers the amount of data that the agent sends across the network, but makes the collector's view of the network less current.

The direction of the traffic that the agent collects (default = both).
Link monitor

The link monitor is a mechanism that allows the FortiGate to probe the status of a detect server in order to determine the health of the link, next hop, or the path to the server. Ping, TCP echo, UDP echo, HTTP, and TWAMP protocols can be used for the probes. Typically, the detect server is set to a stable server several hops away. Multiple servers can also be configured with options to define the protocol and weights for each server.

The link monitor serves several purposes. In the most basic configuration, it can be used to detect failures and remove routes associated with the interface and gateway to prevent traffic from routing out the failed link. More granularity is added in 7.0 that allows only the routes specified in the link monitor to be removed from the routing table. With this benefit, only traffic to specific routing destinations are removed, rather than all routing destinations.

Another enhancement starting in 7.0.1 is an option to toggle between enabling or disabling policy route updates when a link health monitor fails.

The link monitor can also monitor remote servers for HA failover. Using the HA built-in link monitor, it is only able to detect physical link failovers to trigger HA link failover. With the link monitor, remote servers can be used to monitor the health of the path to the server in order to trigger HA failover.

Finally, the link monitor can cascade the failure to other interfaces. When the update-cascade-interface option is enabled, the interface can be configured in conjunction with fail-detect enabled to trigger a link down event on other interfaces.

The following topics provide more information about the link monitor:

- Link monitor with route updates on page 456
- Enable or disable updating policy routes when link health monitor fails on page 458
- Add weight setting on each link health monitor server on page 460
- Dual internet connections on page 313
- SLA link monitoring for dynamic IPsec and SSL VPN tunnels on page 463

Link monitor with route updates

When a link monitor fails, only the routes that are specified in the link monitor are removed from the routing table, instead of all the routes with the same interface and gateway. If no routes are specified, then all of the routes are removed. Only IPv4 routes are supported.

Example

In this example, the FortiGate has several routes to 23.2.2.2/32 and 172.16.202.2/24, and is monitoring the link agg1 by pinging the server at 10.1.100.22. The link monitor uses the gateway 172.16.203.2.
When the link monitor fails, only the routes to the specified subnet using interface `agg1` and gateway 172.16.203.2 are removed.

To configure the link monitor:

```plaintext
config system link-monitor
  edit "22"
    set srcintf "agg1"
    set server "10.1.100.22"
    set gateway-ip 172.16.203.2
    set route "23.2.2.2/32" "172.16.202.0/24"
next
end
```

To check the results:

1. When the link monitor is alive:

   ```plaintext
   # get router info routing-table static
   Routing table for VRF=0
   S* 0.0.0.0/0 [5/0] via 10.100.1.249, port12
   S 10.1.100.0/24 [10/0] via 172.16.203.2, agg1
   S 23.2.2.2/32 [10/0] via 172.16.203.2, agg1
   S 23.2.3.2/32 [10/0] via 172.16.203.2, agg1
   S 172.16.201.0/24 [10/0] via 172.16.200.4, port9
   S 172.16.202.0/24 [10/0] via 172.16.203.2, agg1
   S 172.16.203.0/24 [10/0] via 172.16.200.4, port9
   S 172.16.204.0/24 [10/0] via 172.16.200.4, port9
   S 172.16.205.0/24 [10/0] via 172.16.203.2, agg1
   S 172.16.206.2, vlan100, [100/0]
   ```

2. When the link monitor is dead:

   ```plaintext
   # get router info routing-table static
   Routing table for VRF=0
   S* 0.0.0.0/0 [5/0] via 10.100.1.249, port12
   S 10.1.100.0/24 [10/0] via 172.16.203.2, agg1
   S 23.2.3.2/32 [10/0] via 172.16.203.2, agg1
   S 172.16.201.0/24 [10/0] via 172.16.200.4, port9
   S 172.16.204.0/24 [10/0] via 172.16.200.4, port9
   S 172.16.205.0/24 [10/0] via 172.16.203.2, agg1
   S 172.16.206.2, vlan100, [100/0]
   ```
Enable or disable updating policy routes when link health monitor fails

An option has been added to toggle between enabling or disabling policy route updates when a link health monitor fails. By disabling policy route updates, a link health monitor failure will not cause corresponding policy-based routes to be removed.

```config
config system link-monitor
  edit <name>
    set update-policy-route {enable | disable}
  next
end
```

Example

In the following topology, the FortiGate is monitoring the detect server, 10.1.100.22. The FortiGate has a policy-based route to destination 172.16.205.10 using the same gateway (172.16.202.1) and interface (port22). By configuring `update-policy-route disable`, the policy-based route is not removed when the link health monitor detects a failure.

![Topology Diagram]

To disable updating policy routes when the link health monitor fails:

1. **Configure the link health monitor:**
   ```config
   config system link-monitor
     edit "test-1"
       set srcintf "port22"
       set server "10.1.100.22"
       set gateway-ip 172.16.202.1
       set failtime 3
       set update-policy-route disable
     next
   end
   ```

2. **Configure the policy route:**
   ```config
   config router policy
     edit 1
       set input-device "port16"
       set dst "172.16.205.10/255.255.255.255"
       set gateway 172.16.202.1
       set output-device "port22"
       set tos 0x14
       set tos-mask 0xff
   ```
3. When the health link monitor status is up, verify that the policy route is active.
 a. Verify the link health monitor status:

   ```
   # diagnose sys link-monitor status
   Link Monitor: test-1, Status: alive, Server num(1), HA state: local(alive), shared (alive)
   Flags=0x1 init, Create time: Fri May 28 15:20:15 2021
   Source interface: port22 (14)
   Gateway: 172.16.202.1
   Interval: 500 ms
   Service-detect: disable
   Diffservcode: 000000
   Class-ID: 0
   Peer: 10.1.100.22(10.1.100.22)
   Source IP(172.16.202.2)
   protocol: ping, state: alive
   Latency(Min/Max/Avg): 0.374/0.625/0.510 ms
   Jitter(Min/Max/Avg): 0.008/0.182/0.074
   Packet lost: 0.000%
   Number of out-of-sequence packets: 0
   Fail Times(0/3)
   Packet sent: 7209, received: 3400, Sequence(sent/rcvd/exp):
   7210/7210/7211
   ```

 b. Verify the policy route list:

   ```
   # diagnose firewall proute list
   list route policy info(vf=root):
   id=1 dscp_tag=0xff 0xff flags=0x0 tos=0x14 tos_mask=0xff protocol=0 sport=0-0 iif=41
   dport=0-65535 oif=14(port22) gwy=172.16.202.1
   source wildcard(1): 0.0.0.0/0.0.0.0
   destination wildcard(1): 172.16.205.10/255.255.255.255
   hit_count=1 last_used=2021-05-27 23:04:33
   ```

4. When the health link monitor status is down, verify that the policy route is active:
 a. Verify the link health monitor status:

   ```
   # diagnose sys link-monitor status
   Link Monitor: test-1, Status: die, Server num(1), HA state: local(die), shared(die)
   Flags=0x9 init log_downgateway, Create time: Fri May 28 15:20:15 2021
   Source interface: port22 (14)
   Gateway: 172.16.202.1
   Interval: 500 ms
   Service-detect: disable
   Diffservcode: 000000
   Class-ID: 0
   Peer: 10.1.100.22(10.1.100.22)
   Source IP(172.16.202.2)
   protocol: ping, state: die
   Packet lost: 11.000%
   Number of out-of-sequence packets: 0
   Recovery times(0/5) Fail Times(0/3)
   ```
Network

Packet sent: 7293, received: 3471, Sequence(sent/rcvd/exp):
7294/7281/7282

b. Verify the policy route list:

```
# diagnose firewall proute list
list route policy info(vf=root):
id=1 dscp_tag=0xff 0xff flags=0x0 tos=0x14 tos_mask=0xff protocol=0 sport=0-0 iif=41
dport=0-65535 oif=14(port22) gwy=172.16.202.1
source wildcard(1): 0.0.0.0/0.0.0.0
destination wildcard(1): 172.16.205.10/255.255.255.255
hit_count=1 last_used=2021-05-27 23:04:33
```

If the update-policy-route setting is enabled, the link health monitor would be down and the policy-based route would be disabled:

```
# diagnose firewall proute list
list route policy info(vf=root):
id=1 dscp_tag=0xff 0xff flags=0x8 disable tos=0x14 tos_mask=0xff protocol=0 sport=0-0
iif=41 dport=0-65535 oif=14(port22) gwy=172.16.202.1
source wildcard(1): 0.0.0.0/0.0.0.0
destination wildcard(1): 172.16.205.10/255.255.255.255
hit_count=1 last_used=2021-05-27 23:04:33
```

Add weight setting on each link health monitor server

Prior to FortiOS 7.0.1, the link health monitor is determined to be dead when all servers are unreachable. Starting in 7.0.1, the link health monitor can configure multiple servers and allow each server to have its own weight setting. When the link health monitor is down, it will trigger static route updates and cascade interface updates if the weight of all dead servers exceeds the monitor's fail weight threshold.

```
config system link-monitor
edit <name>
  set srcintf <interface>
  set server-config {default | individual}
  set fail-weight <integer>
  config server-list
    edit <id>
      set dst <address>
      set weight <integer>
    next
  next
next
```

server-config
Set the server configuration mode:
 - default: all servers share the same attributes.
 - individual: some attributes can be specified for individual servers.

fail-weight <integer>
Threshold weight to trigger link failure alert (0 - 255, default = 0).

server-list
Configure the servers to be monitored by the link monitor.

dst <address>
Enter the IP address of the server to be monitored.

weight <integer>
Weight of the monitor to this destination (0 - 255, default = 0).
Examples

In the following topology, there are two detect servers that connect to the FortiGate through a router: server 1 (10.1.100.22) and server 2 (10.1.100.55).

Alive link health monitor

In this configuration, one server is dead and one server alive. The failed server weight is not over the threshold, so the link health monitor status is alive.

To configure the weight settings on the link health monitor:

1. Configure the link health monitor:

```bash
config system link-monitor
edit "test-1"
  set srcintf "port22"
  set server-config individual
  set gateway-ip 172.16.202.1
  set failtime 3
  set fail-weight 40
config server-list
  edit 1
    set dst "10.1.100.22"
    set weight 60
  next
  edit 2
    set dst "10.1.100.55"
    set weight 30
  next
next
end
```

2. Trigger server 2 to go down. The link monitor is still alive because the fail weight threshold has not been reached.
3. Verify the link health monitor status:

```bash
# diagnose sys link-monitor status test-1
Link Monitor: test-1, Status: alive, Server num(2), HA state: local(alive), shared (alive)
Flags=0x1 init, Create time: Fri Jun 4 17:23:29 2021
Source interface: port22 (14)
Gateway: 172.16.202.1
Interval: 500 ms
Service-detect: disable
Diffservcode: 000000
Class-ID: 0

**Fail-weight (40): not activated**
Peer: 10.1.100.22 (10.1.100.22)
  Source IP (172.16.202.2)
  **protocol: ping, state: alive**
  Latency (Min/Max/Avg): 0.417/0.585/0.530 ms
  Jitter (Min/Max/Avg): 0.007/0.159/0.057
  Packet lost: 0.000%
  Number of out-of-sequence packets: 0
  Fail Times (0/3)
  Packet sent: 239, received: 236, Sequence (sent/rcvd/exp): 240/240/241

Peer: 10.1.100.55 (10.1.100.55)
  Source IP (172.16.202.2)
  **Fail weight 30 applied**
  **protocol: ping, state: dead**
  Packet lost: 100.000%
  Number of out-of-sequence packets: 0
  Recovery times (0/5) Fail Times (1/3)
  Packet sent: 239, received: 3, Sequence (sent/rcvd/exp): 240/4/5
```

Dead link health monitor

In this configuration, one server is dead and one server alive. The failed server weight is over the threshold, so the link health monitor status is dead.

To configure the weight settings on the link health monitor:

1. **Configure the link health monitor:**

   ```bash
   config system link-monitor
   edit "test-1"
     set srcintf "port22"
     set server-config individual
     set gateway-ip 172.16.202.1
     set failtime 3
     set fail-weight 40
   config server-list
     edit 1
     set dst "10.1.100.22"
     set weight 30
     next
     edit 2
     set dst "10.1.100.55"
   ```
2. Trigger server 2 to go down. The link monitor is dead because the fail weight threshold has been reached.

3. Verify the link health monitor status:

```
# diagnose sys link-monitor status test-1
Link Monitor: test-1, Status: dead, Server num(2), HA state: local(dead), shared(dead)
Flags=0x9 init log_downgateway, Create time: Fri Jun 4 17:23:29 2021
Source interface: port22 (14)
Gateway: 172.16.202.1
Interval: 500 ms
Service-detect: disable
Diffservcode: 000000
Class-ID: 0
Fail-weight (40): activated
Peer: 10.1.100.22(10.1.100.22)
   Source IP(172.16.202.2)
   protocol: ping, state: alive
      Latency(Min/Max/Avg): 0.393/0.610/0.520 ms
      Jitter(Min/Max/Avg): 0.009/0.200/0.095
      Packet lost: 0.000%
      Number of out-of-sequence packets: 0
      Fail Times(0/3)
      Packet sent: 680, received: 677, Sequence(sent/rcvd/exp): 681/681/682
Peer: 10.1.100.55(10.1.100.55)
   Source IP(172.16.202.2)
   Fail weight 50 applied
   protocol: ping, state: dead
      Packet lost: 100.000%
      Number of out-of-sequence packets: 0
      Recovery times(0/5) Fail Times(1/3)
      Packet sent: 680, received: 3, Sequence(sent/rcvd/exp): 681/4/5
```

SLA link monitoring for dynamic IPsec and SSL VPN tunnels

The link health monitor settings can measure SLA information of dynamic VPN interfaces, which assign IP addresses to their clients during tunnel establishment. This includes SSL VPN tunnels, IPsec remote access, and IPsec site-to-site tunnels.

This feature currently only supports IPv4 and the ICMP monitoring protocol. In the IPsec tunnel settings, `net-device` must be disabled.

```bash
config system link-monitor
   edit <name>
      set server-type {static | dynamic}
   next
end
```
To view the dial-up tunnel statistics:

```
# diagnose sys link-monitor tunnel {name | all} [<tunnel_name>]
```

Example

In this example, endpoint users dial up using FortiClient to create IPSec tunnels with the FortiGate and obtain IP addresses. The link monitor on the FortiGate’s dynamic VPN interface detects the path quality to the endpoints.

```
1. Configure the IPsec phase 1 interface:

    config vpn ipsec phase1-interface
    edit "for.Branch"
        set type dynamic
        set interface "port15"
        set mode aggressive
        set peertype any
        set net-device disable
        set mode-cfg enable
        set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
        set dpd on-idle
        set dhgrp 5
        set xauth-type auto
        set authusrgrp "vpngroup"
        set assign-ip-from name
        set ipv4-netmask 255.255.255.0
        set dns-mode auto
        set ipv4-split-include "172.16.205.0"
        set ipv4-name "client_range"
        set save-password enable
        set psksecret **********
        set dpd-retryinterval 60
    next
```

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
2. Configure the IPsec phase 2 interface:

```plaintext
config vpn ipsec phase2-interface
   edit "for_Branch_p2"
       set phase1name "for_Branch"
       set proposal aes128-shal aes256-shal aes128-sha256 aes256-sha256 aes128gcm
       set dhgrp 5
   next
end
```

3. Configure the dynamic interface:

```plaintext
config system interface
   edit "for_Branch"
       set vdom "root"
       set ip 10.10.10.254 255.255.255.255
       set type tunnel
       set remote-ip 10.10.10.253 255.255.255.0
       set snmp-index 100
       set interface "port15"
   next
end
```

4. Add the IPsec dial-up tunnel to the link health monitor:

```plaintext
config system link-monitor
   edit "1"
       set srcintf "for_Branch"
       set server-type dynamic
   next
end
```

5. Once endpoint users have connected using FortiClient, verify the tunnel information:

```plaintext
# get vpn ipsec tunnel summary
'for_Branch_0': state=alive, peer=10.10.10.1, create_time=2022-02-08 10:43:11, srcintf=for_Branch, latency=0.162, jitter=0.018, pktloss=0.000%
'for_Branch_1': state=alive, peer=10.10.10.2, create_time=2022-02-08 10:49:24, srcintf=for_Branch, latency=0.266, jitter=0.015, pktloss=0.000%
```

6. Verify the link health monitor status:

```plaintext
# diagnose sys link-monitor tunnel all
for_Branch_0 (1): state=alive, peer=10.10.10.1, create_time=2022-02-08 10:43:11, srcintf=for_Branch, latency=200.177, jitter=0.021, pktloss=0.000%
for_Branch_1 (1): state=alive, peer=10.10.10.2, create_time=2022-02-08 10:49:24, srcintf=for_Branch, latency=200.257, jitter=0.017, pktloss=0.000%
```

7. Manually add 200 ms latency on the path between the FortiGate and FortiClients.
8. Verify the link health monitor status again:

```plaintext
# diagnose sys link-monitor tunnel all
for_Branch_0 (1): state=alive, peer=10.10.10.1, create_time=2022-02-08 10:43:11, srcintf=for_Branch, latency=200.177, jitter=0.021, pktloss=0.000%
for_Branch_1 (1): state=alive, peer=10.10.10.2, create_time=2022-02-08 10:49:24, srcintf=for_Branch, latency=200.257, jitter=0.017, pktloss=0.000%
```
IPv6

The following topics provide information about IPv6:

- IPv6 tunneling on page 466
- IPv6 tunnel inherits MTU based on physical interface on page 468
- Configuring IPv4 over IPv6 DS-Lite service on page 470

IPv6 tunneling

IPv6 tunneling involves tunneling IPv6 packets from an IPv6 network through an IPv4 network to another IPv6 network. This is different than NAT because once the packet reaches its final destination, the true originating address of the sender is still readable. The IPv6 packets are encapsulated within packets with IPv4 headers that carry their IPv6 payload through the IPv4 network. IPv6 tunneling is suitable in networks that have completely transitioned over to IPv6 but need an internet connection, which is still mostly IPv4 addresses.

Both IPv6 tunneling devices, whether they are a host or a network device, must be dual stack compatible. The tunneling process is as follows:

1. The tunnel entry node creates an encapsulating IPv4 header and transmits the encapsulated packet.
2. The tunnel exit node receives the encapsulated packet.
3. The IPv4 header is removed.
4. The IPv6 header is updated and the IPv6 packet is processed.

There are two types of tunnels in IPv6 tunneling, automatic and configured. Automatic tunnels are configured by using IPv4 address information embedded in an IPv6 address. The IPv6 address of the destination host includes information about which IPv4 address the packet should be tunneled to. Configured tunnels are manually configured, and they are used for IPv6 addresses that do not have any embedded IPv4 information. The IPv6 and IPv4 addresses of the tunnel endpoints must be specified.

Tunnel configurations

There are four tunneling configurations available depending on which segment of the path between the endpoints of the session the encapsulation takes place.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network device-to-network device</td>
<td>Dual stack capable devices connected by an IPv4 infrastructure can tunnel IPv6 packets between themselves. The tunnel spans one segment of the path taken by the IPv6 packets.</td>
</tr>
<tr>
<td>Host-to-network device</td>
<td>Dual stack capable hosts can tunnel IPv6 packets to an intermediary IPv6 or IPv4 network device that is reachable through an IPv4 infrastructure. The tunnel spans the first segment of the path taken by the IPv6 packets.</td>
</tr>
<tr>
<td>Host-to-host</td>
<td>Dual stack capable hosts that are interconnected by an IPv4 infrastructure can tunnel IPv6 packets between themselves. The tunnel spans the entire path taken by the IPv6 packets.</td>
</tr>
</tbody>
</table>
Network device-to-host

Dual stack capable network devices can tunnel IPv6 packets to their final destination IPv6 or IPv4 host. The tunnel spans only the last segment of the path taken by the IPv6 packets.

Regardless of whether the tunnel starts at a host or a network device, the node that does the encapsulation needs to maintain soft state information, such as the maximum transmission unit (MTU), about each tunnel in order to process the IPv6 packets.

6in4 tunnel

The following tunnel configuration tunnels IPv6 traffic over an IPv4 network. An internal IPv6 interface can be configured under `config system interface`.

![Diagram of 6in4 tunnel configuration]

To configure an IPv6 tunnel over IPv4:

```plaintext
config system sit-tunnel
edit <name>
    set source <src_IPv4_address>
    set destination <dst_IPv4_address>
    set interface <src_interface>
    set ip6 <tunnel_IPv6_address>
next
end
```

4in6 tunnel

Conversely, the following tunnel configuration tunnels IPv4 traffic over an IPv6 network.

To configure an IPv4 tunnel over IPv6:

```plaintext
config system ipv6-tunnel
edit <name>
    set source <src_IPv6_address>
    set destination <dst_IPv6_address>
    set interface <src_interface>
next
end
```

The preceding configurations are not available in transparent mode.
IPv6 tunnel inherits MTU based on physical interface

The MTU of an IPv6 tunnel interface is calculated from the MTU of its parent interface minus headers.

Example

In this topology, FortiGate B and FortiGate D are connected over an IPv6 network. An IPv6 tunnel is formed, and IPv4 can be used over the IPv6 tunnel. The tunnel interface MTU is based on the physical interface MTU minus the IP and TCP headers (40 bytes). On FortiGate B’s physical interface port5, the MTU is set to 1320. The IPv6 tunnel is based on port5, and its MTU value of 1280 is automatically calculated from the MTU value of its physical interface minus the header. The same is true for port3 on FortiGate D.

To verify the MTU for the IPv6 tunnel on FortiGate B:

1. Configure port5:
   ```
   config system interface
   edit "port5"
   set vdom "root"
   set type physical
   set snmp-index 7
   config ipv6
   set ip6-address 2000:172:16:202::1/64
   set ip6-allowaccess ping
   end
   set mtu-override enable
   set mtu 1320
   next
   end
   ```

2. Configure the IPv6 tunnel:
   ```
   config system ipv6-tunnel
   edit "B_2_D"
   set source 2000:172:16:202::1
   set destination 2000:172:16:202::2
   set interface "port5"
   next
   end
   ```

3. Configure the tunnel interface:
   ```
   config system interface
   edit "B_2_D"
   set vdom "root"
   set ip 172.16.210.1 255.255.255.255
   set allowaccess ping https http
   set type tunnel
   ```
set remote-ip 172.16.210.2 255.255.255.255
set snmp-index 33
config ipv6
 set ip6-address 2000:172:16:210::1/64
 set ip6-allowaccess ping
 config ip6-extra-addr
 edit fe80::2222/10
 next
 end
end
set interface "port5"
next
end

4. Verify the interface lists:

 # diagnose netlink interface list port5
 if=port5 family=00 type=1 index=13 mtu=1320 link=0 master=0
 ref=68 state=start present fw_flags=0 flags=up broadcast run multicast
 Qdisc=eq hw_addr:::***:::* broadcast_addr:::***:*:*:*:*:*:
 stat: rxp=1577 txp=1744 rxb=188890 txb=203948 rxe=0 txe=0 rxd=0 txd=0 mc=825 collision=0
 @ time=1631647112
 re: rxl=0 rxo=0 rxc=0 rxf=0 rxfi=0 rxm=0
te: txa=0 txc=0 txfi=0 txh=0 txw=0
misc rxc=0 txc=0
input_type=0 state=3 arp_entry=0 refcnt=68

 # diagnose netlink interface list B_2_D
 if=B_2_D family=00 type=769 index=41 mtu=1280 link=0 master=0
 ref=25 state=start present fw_flags=0 flags=up p2p run noarp multicast
 Qdisc=noqueue local=0.0.0.0 remote=0.0.0.0
 stat: rxp=407 txp=417 rxb=66348 txb=65864 rxe=0 txe=61 rxd=0 txd=0 mc=0 collision=60
 @ time=1631647126
 re: rxl=0 rxo=0 rxc=0 rxf=0 rxfi=0 rxm=0
te: txa=0 txc=0 txfi=0 txh=0 txw=0
misc rxc=0 txc=0
input_type=0 state=3 arp_entry=0 refcnt=25

To verify the MTU for the IPv6 tunnel on FortiGate D:

1. Configure port3:

 config system interface
 edit "port3"
 set vdom "root"
 set type physical
 set snmp-index 5
 config ipv6
 set ip6-address 2000:172:16:202::2/64
 set ip6-allowaccess ping
 end
 set mtu-override enable
 set mtu 1320
 next
 end
2. Configure the IPv6 tunnel:

```plaintext
config system ipv6-tunnel
   edit "D_2_B"
      set source 2000:172:16:202::2
      set destination 2000:172:16:202::1
      set interface "port3"
   next
end
```

3. Configure the tunnel interface:

```plaintext
config system interface
   edit "D_2_B"
      set vdom "root"
      set ip 172.16.210.2 255.255.255.255
      set allowaccess ping https http
      set type tunnel
      set remote-ip 172.16.210.1 255.255.255.255
      set snmp-index 36
      config ipv6
         set ip6-address 2000:172:16:210::2/64
         set ip6-allowaccess ping
         config ip6-extra-addr
            edit fe80::4424/10
               next
            end
         end
      end
      set interface "port3"
   next
end
```

4. Verify the interface lists:

```plaintext
# diagnose netlink interface list port3
# diagnose netlink interface list D_2_B
```

Configuring IPv4 over IPv6 DS-Lite service

IPv4 over IPv6 DS-Lite service can be configured on a virtual network enabler (VNE) tunnel. In addition, VNE tunnel fixed IP mode supports username and password authentication.

```plaintext
config system vne-tunnel
   set status enable
   set mode {map-e | fixed-ip | ds-lite}
   set ipv4-address <IPv4_address>
   set br <IPv6_address or FQDN>
   set http-username <string>
   set http-password <password>
end
```

| mode {map-e | fixed-ip | ds-lite} | Set the VNE tunnel mode: |
|-------------------------------------|--------------------------|
| | • map-e: MAP-E |
| | • fixed-ip: fixed IP |
| | • ds-lite: DS-Lite |
Network

<table>
<thead>
<tr>
<th>ipv4-address <IPv4_address></th>
<th>Enter the tunnel IPv4 address and netmask. This setting is optional.</th>
</tr>
</thead>
<tbody>
<tr>
<td>br <IPv6_address or FQDN></td>
<td>Enter the IPv6 or FQDN of the border relay.</td>
</tr>
<tr>
<td>http-username <string></td>
<td>Enter the HTTP authentication user name.</td>
</tr>
<tr>
<td>http-password <password></td>
<td>Enter the HTTP authentication password.</td>
</tr>
</tbody>
</table>

DS-Lite allows applications using IPv4 to access the internet with IPv6. DS-Lite is supported by internet providers that do not have enough public IPv4 addresses for their customers, so DS-Lite is used for IPv6 internet connections. When a DS-Lite internet connections is used, the FortiGate encapsulates all data from IPv4 applications into IPv6 packets. The packets are then transmitted to the internet service provider using the IPv6 connection. Next, a dedicated server unpacks the IPv6 packets and forwards the IPv4 data to the actual destination on the internet.

DS-Lite example

In this example, DS-Lite VNE tunnel mode is used between the FortiGate and the BR.

To configure a DS-Lite tunnel between the FortiGate and the BR:

1. Configure the IPv6 interface:

```plaintext
config system interface
edit "wan1"
   set vdom "root"
   set mode dhcp
   set allowaccess ping fgfm
   set type physical
   set role wan
   set snmp-index 1
   config ipv6
      set ip6-allowaccess ping
      set dhcp6-information-request enable
      set autoconf enable
      set unique-autoconf-addr enable
   end
next
end
```
2. Configure the VNE tunnel:

```yaml
config system vne-tunnel
  set status enable
  set interface "wan1"
  set ssl-certificate "Fortinet_Factory"
  set auto-asic-offload enable
  set ipv4-address 192.168.1.99 255.255.255.255
  set br "dgw.xxxxx.jp"
  set mode ds-lite
end
```

3. View the wan1 IPv6 configuration details:

```yaml
config system interface
  edit "wan1"
  config ipv6
    get
      ip6-mode : static
      nd-mode : basic
      ip6-allowaccess : ping
      icmp6-send-redirect : enable
      ra-send-mtu : enable
      ip6-reachable-time : 0
      ip6-retrans-time : 0
      ip6-hop-limit : 0
      dhcp6-information-request: enable
      cli-conn6-status : 1
      vrrp-virtual-mac6 : disable
      vrip6_link_local : ::
      ip6-dns-server-override: enable
      Acquired DNS2 : ::
      ip6-extra-addr:
        ip6-send-adv : disable
        autoconf : enable
        prefix : 2001:f70:2880:xxxx::/64
        preferred-life-time : 942735360
        valid-life-time : 1077411840
        unique-autoconf-addr: enable
        interface-identifier: ::
        dhcp6-relay-service : disable
    end
  next
end
```

4. Verify the IPv6 address list:

```bash
# diagnose ipv6 address list
dev=5 devname=wan1 flag= scope=0 prefix=64 addr=2001:f70:2880:xxxx:xxxx:xxxx:fe39:ccd2
preferred=11525 valid=13325 cstamp=6520 tstamp=6892
dev=5 devname=wan1 flag=P scope=253 prefix=64 addr=fe80::xxxx:xxxx:fe39:ccd2
```
5. Test the tunnel connection by pinging the Google public DNS IPv6 address:

```
# execute ping6 2001:4860:4860::8888
PING 2001:4860:4860::8888 (2001:4860:4860::8888) 56 data bytes
64 bytes from 2001:4860:4860::8888: icmp_seq=1 ttl=114 time=6.89 ms
64 bytes from 2001:4860:4860::8888: icmp_seq=2 ttl=114 time=3.39 ms
64 bytes from 2001:4860:4860::8888: icmp_seq=3 ttl=114 time=3.46 ms
64 bytes from 2001:4860:4860::8888: icmp_seq=4 ttl=114 time=3.34 ms
64 bytes from 2001:4860:4860::8888: icmp_seq=5 ttl=114 time=3.39 ms
--- 2001:4860:4860::8888 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss, time 4079ms
rtt min/avg/max/mdev = 3.340/4.097/6.895/1.400 ms
```

Fixed IP mode example

In this example, fixed IP VNE tunnel mode with HTTP authentication is used between the FortiGate and the BR.

To configure a fixed IP mode with HTTP authentication between the FortiGate and the BR:

1. **Configure the IPv6 interface:**

   ```
   config system interface
   edit "wan1"
   set vdom "root"
   set mode dhcp
   set allowaccess ping fgfm
   set type physical
   set role wan
   set snmp-index 1
   config ipv6
   set ip6-allowaccess ping
   set dhcp6-information-request enable
   set autoconf enable
   end
   ```

2. **Configure the VNE tunnel:**

   ```
   config system vne-tunnel
   set status enable
   set interface "wan1"
   set ipv4-address 120.51.xxx.xxx1 255.255.255.255
   set br "2001:f60:xxxx:xxxx::1"
   ```
3. Verify the wan1 IPv6 configuration details:

 config system interface
 edit "wan1"
 config ipv6
 get

4. Verify the VNE daemon:

 # diagnose test application vned 1

 vdom: root/0, is master, devname=wan1 link=0 tun=vne.root mode=fixed-ip ssl_
cert=Fortinet_Factory
 end user ipv6 perfix: 2001:f70:2880:xxxx::/64
 config ipv4 perfix: 120.51.xxx.xxx1/255.255.255.255
 config br: 2001:f60:xxxx:xxxx::1
 HTTP username: laptop-
 update url: https://ddnsweb1.ddns.xxxxxx.jp/cgi-bin/ddns_
 api.cgi?d=xxxxxx.v4v6.xxxxx.jp&p=**********
 host: ddnsweb1.ddns.xxxxxx.jp path: /cgi-bin/ddns_
 api.cgi?d=xxxxxx.v4v6.xxxxx.jp&p=**********
 tunnel br: 2001:f60:xxxx:xxxx::1
 tunnel ipv4 addr: 120.51.xxx.xxx1/255.255.255.255
 update result: <H1>DDNS API</H1><HR><H2>*
 routerinfo check : OK</H2><H2>* routerinfo update : OK</H2><H2>* DDNS API update : Success [2022-01-
 18 18:37:58 1642498678]</H2>
 Fixed IP rule client: state=succeed retries=0 interval=0 expiry=0 reply_code=0
 fqdn=2001:f60:xxxx:xxxx::1 num=1 cur=0 ttl=4294967295 expiry=0
 2001:f60:xxxx:xxxx::1
 Fixed IP DDNS client: state=succeed retries=0 interval=10 expiry=0 reply_code=200
 fqdn=ddnsweb1.ddns.xxxxxx.jp num=1 cur=0 ttl=6 expiry=0
 2001:f61:0:2a::18

5. Test the tunnel connection by pinging the Google public DNS IPv4 and IPv6 addresses:

 # execute ping 8.8.8.8
 PING 8.8.8.8 (8.8.8.8): 56 data bytes
 64 bytes from 8.8.8.8: icmp_seq=0 ttl=119 time=3.7 ms
 64 bytes from 8.8.8.8: icmp_seq=1 ttl=119 time=3.6 ms
 64 bytes from 8.8.8.8: icmp_seq=2 ttl=119 time=3.6 ms
 64 bytes from 8.8.8.8: icmp_seq=3 ttl=119 time=3.6 ms
Network

64 bytes from 8.8.8.8: icmp_seq=4 ttl=119 time=3.5 ms
--- 8.8.8.8 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 3.5/3.6/3.7 ms

execute ping6 2001:4860:4860::8888
PING 2001:4860:4860::8888 (2001:4860:4860::8888) 56 data bytes
64 bytes from 2001:4860:4860::8888: icmp_seq=1 ttl=114 time=6.99 ms
64 bytes from 2001:4860:4860::8888: icmp_seq=2 ttl=114 time=3.61 ms
64 bytes from 2001:4860:4860::8888: icmp_seq=3 ttl=114 time=3.34 ms
64 bytes from 2001:4860:4860::8888: icmp_seq=4 ttl=114 time=3.27 ms
64 bytes from 2001:4860:4860::8888: icmp_seq=5 ttl=114 time=3.75 ms
--- 2001:4860:4860::8888 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss, time 4039ms
rtt min/avg/max/mdev = 3.276/4.195/6.992/1.409 ms

Diagnostics

Administrators can use the Diagnostics page to access the following tools:

<table>
<thead>
<tr>
<th>Capture packet</th>
<th>Captures packet streams in real-time to let you view header and payload information. See Using the packet capture tool on page 475.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debug flow</td>
<td>Traces packet flow through FortiOS to help you diagnose and debug issues. See Using the debug flow tool on page 479.</td>
</tr>
</tbody>
</table>

See also Performing a sniffer trace or packet capture on page 2660 and Debugging the packet flow on page 2661.

Using the packet capture tool

Administrators can use the packet capture tool to select a packet and view its header and payload information in real-time. Once completed, packets can be filtered by various fields or through the search bar. The capture can be saved as a PCAP file that you can use with a third-party application, such as Wireshark, for further analysis.

Recent capture criteria is saved after the packet capture, and you can select and use the same criteria again.

For information about running a packet capture in the CLI, see Performing a sniffer trace or packet capture on page 2660.

To use the packet capture tool in the GUI:

1. Go to Network > Diagnostics and select the Packet Capture tab.
2. Optionally, select an Interface (any is the default).
3. Optionally, enable Filters and select a Filtering syntax:
a. **Basic:** enter criteria for the Host, Port, and Protocol number.

![Packet Capture](image1)

b. **Advanced:** enter a string, such as `src host 172.16.200.254 and dst host 172.16.200.1 and dst port 443`.

![Packet Capture](image2)

4. Click *Start capture*. The capture is visible in real-time.
5. While the capture is running, select a packet, then click the Headers or Packet Data tabs to view more information.
6. When the capture is finished, click **Save as pcap**. The PCAP file is automatically downloaded.

7. Optionally, use the **Search** bar or the column headers to filter the results further. The packet capture history is listed under **Recent Capture Criteria** in the right-side of the screen. Clicking the hyperlink will take you back to the main page with the interface and filter settings already populated.
For more granular sniffer output with various verbose settings, use `diagnose sniffer packet <interface> <'filter'> <verbose> <count> <tsformat>`. See Performing a sniffer trace or packet capture on page 2660.

To use recent capture criteria:

1. Go to Network > Diagnostics and select the Packet Capture tab.
2. Under Recent Capture Criteria, click one of the saved capture criteria. The criteria populate the fields.
3. Click Start Capture.

Using the debug flow tool

Administrators can use the debug flow tool to display debug flow output in real-time until it is stopped. The completed output can be filtered by time, message, or function. The output can be exported as a CSV file.

For information about using the debug flow tool in the CLI, see Debugging the packet flow on page 2661.

To run a debug flow:

1. Go to Network > Diagnostics and select the Debug Flow tab.
2. Optionally, enable Filters and select a Filter type:
 a. Basic: filter by IP address, Port, and Protocol, which is the equivalent of:
 - `# diagnose debug flow filter addr <addr/range>`
 - `# diagnose debug flow filter port <port/range>`
 - `# diagnose debug flow filter proto <protocol>`
b. **Advanced**: filter by *Source IP, Source port, Destination IP, Destination port, and Protocol*, which is the equivalent of:

- `# diagnose debug flow filter saddr <addr/range>`
- `# diagnose debug flow filter sport <port/range>`
- `# diagnose debug flow filter daddr <addr/range>`
- `# diagnose debug flow filter dport <port/range>`
- `# diagnose debug flow filter proto <protocol>`

3. Click **Start debug flow**. The debug messages are visible in real-time.
4. When the debug flow is finished (or you click *Stop debug flow*), click *Save as CSV*. The CSV file is automatically downloaded.
The current output can be filtered by *Time* and *Message*. The *Function* field can be added.

5. Hover over the table header and click the gear icon (*Configure Table*).

6. Select *Function* and click *Apply*. The *Function* column is displayed and can be used to filter the output for further analysis.
SD-WAN

The following topics provide information about SD-WAN:

- SD-WAN overview on page 484
- SD-WAN quick start on page 488
- SD-WAN zones on page 498
- Performance SLA on page 507
- SD-WAN rules on page 539
- Advanced routing on page 603
- VPN overlay on page 633
- Advanced configuration on page 690
- SD-WAN cloud on-ramp on page 722
- Troubleshooting SD-WAN on page 744

SD-WAN overview

SD-WAN is a software-defined approach to managing Wide-Area Networks (WAN). It consolidates the physical transport connections, or underlays, and monitors and load-balances traffic across the links. VPN overlay networks can be built on top of the underlays to control traffic across different sites.

Health checks and SD-WAN rules define the expected performance and business priorities, allowing the FortiGate to automatically and intelligently route traffic based on the application, internet service, or health of a particular connection.

WAN security and intelligence can be extended into the LAN by incorporating wired and wireless networks under the same domain. FortiSwitch and FortiAP devices integrate seamlessly with the FortiGate to form the foundation of an SD-Branch.

Some of the key benefits of SD-WAN include:

- Reduced cost with transport independence across MPLS, 4G/5G LTE, and others.
- Reduced complexity with a single vendor and single-pane-of-glass management.
- Improve business application performance thanks to increased availability and agility.
- Optimized user experience and efficiency with SaaS and public cloud applications.

SD-WAN components

SD-WAN can be broken down into three layers:

- Management and orchestration
- Control, data plane, and security
- Network access
The control, data plane, and security layer can only be deployed on a FortiGate. The other two layers can help to scale and enhance the solution. For large deployments, FortiManager and FortiAnalyzer provide the management and orchestration capabilities FortiSwitch and FortiAP provide the components to deploy an SD-Branch.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Functions</th>
<th>Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management and orchestration</td>
<td>• Unified management</td>
<td>FortiManager</td>
</tr>
<tr>
<td></td>
<td>• Template based solution</td>
<td>FortiAnalyzer</td>
</tr>
<tr>
<td></td>
<td>• Zero touch provisioning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Logging, monitoring, and analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Automated orchestration using the REST API</td>
<td></td>
</tr>
<tr>
<td>Control, data plane, and security</td>
<td>• Consolidation of underlays and overlays into SD-WAN zones</td>
<td>FortiGate</td>
</tr>
<tr>
<td></td>
<td>• Scalable VPN solutions using ADVPN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Static and dynamic routing definition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SD-WAN health-checks and monitoring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Application-aware steering and intelligence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• NGFW firewalling</td>
<td></td>
</tr>
<tr>
<td>Network access</td>
<td>• Wired and wireless network segmentation</td>
<td>FortiSwitch</td>
</tr>
<tr>
<td></td>
<td>• Built-in network access control</td>
<td>FortiAP</td>
</tr>
</tbody>
</table>

SD-WAN designs and architectures

The core functionalities of Fortinet's SD-WAN solution are built into the FortiGate. Whether the environment contains one FortiGate, or one hundred, you can use SD-WAN by enabling it on the individual FortiGates.

At a basic level, SD-WAN can be deployed on a single device in a single site environment:

At a more advanced level, SD-WAN can be deployed in a multi-site, hub and spoke environment:
At an enterprise or MSSP level, the network can include multiple hubs, possibly across multiple regions:

For more details, see the SD-WAN / SD-Branch Architecture for MSSPs guide.

SD-WAN designs principles

The Five-pillar approach, described in the SD-WAN / SD-Branch Architecture for MSSPs guide, is recommended when designing a secure SD-WAN solution.

<table>
<thead>
<tr>
<th>Pillar</th>
<th>Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underlay</td>
<td>Choose the WAN links to use.</td>
</tr>
<tr>
<td>Overlay</td>
<td>Choose the topology to interconnect your sites.</td>
</tr>
<tr>
<td>Routing</td>
<td>Choose how to propagate routes between your sites.</td>
</tr>
<tr>
<td>Pillar</td>
<td>Overview</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>Security</td>
<td>Choose how to protect each of the available paths.</td>
</tr>
<tr>
<td>SD-WAN</td>
<td>Choose the strategy used to pick one of the available paths.</td>
</tr>
</tbody>
</table>

Underlay

Determine the WAN links that will be used for the underlay network, such as your broadband link, MPLS, 4G/5G LTE connection, and others.

For each link, determine the bandwidth, quality and reliability (packet loss, latency, and jitter), and cost. Use this information to determine which link to prefer, what type of traffic to send across the each link, and to help you the baselines for health-checks.

Overlay

VPN overlays are needed when traffic must travel across multiple sites. These are usually site-to-site IPsec tunnels that interconnect branches, datacenters, and the cloud, forming a hub-and-spoke topology.

The management and maintenance of the tunnels should be considered when determining the overlay network requirements. Manual tunnel configuration might be sufficient in a small environment, but could become unmanageable as the environment size increases. ADVPN can be used to help scale the solution; see ADVPN on page 1532 for more information.

Routing

Traditional routing designs manipulate routes to steer traffic to different links. SD-WAN uses traditional routing to build the basic routing table to reach different destinations, but uses SD-WAN rules to steer traffic. This allows the steering to be based on criteria such as destination, internet service, application, route tag, and the health of the link. Routing in an SD-WAN solution is used to identify all possible routes across the underlays and overlays, which the FortiGate balances using ECMP.

In the most basic configuration, static gateways that are configured on an SD-WAN member interface automatically provide the basic routing needed for the FortiGate to balance traffic across the links. As the number of sites and destinations increases, manually maintaining routes to each destination becomes difficult. Using dynamic routing to advertise routes across overlay tunnels should be considered when you have many sites to interconnect.

Security

Security involves defining policies for access control and applying the appropriate protection using the FortiGate’s NGFW features. Efficiently grouping SD-WAN members into SD-WAN zones must also be considered. Typically, underlays provide direct internet access and overlays provide remote internet or network access. Grouping the underlays together into one zone, and the overlays into one or more zones could be an effective method.

SD-WAN

The SD-WAN pillar is the intelligence that is applied to traffic steering decisions. It is comprised of four primary elements:
- **SD-WAN zones**
 SD-WAN is divided into zones. SD-WAN member interfaces are assigned to zones, and zones are used in policies as source and destination interfaces. You can define multiple zones to group SD-WAN interfaces together, allowing logical groupings for overlay and underlay interfaces. Routing can be configured per zone.
 See [SD-WAN zones on page 498](#).

- **SD-WAN members**
 Also called interfaces, SD-WAN members are the ports and interfaces that are used to run traffic. At least one interface must be configured for SD-WAN to function.
 See [Configuring the SD-WAN interface on page 489](#).

- **Performance SLAs**
 Also called health-checks, performance SLAs are used to monitor member interface link quality, and to detect link failures. When the SLA falls below a configured threshold, the route can be removed, and traffic can be steered to different links in the SD-WAN rule.
 SLA health-checks use active or passive probing:
 - Active probing requires manually defining the server to be probed, and generates consistent probing traffic.
 - Passive probing uses active sessions that are passing through firewall policies used by the related SD-WAN interfaces to derive health measurements. It reduces the amount of configuration, and eliminates probing traffic. See [Passive WAN health measurement on page 518](#) for details.
 See [Performance SLA on page 507](#).

- **SD-WAN rules**
 Also called services, SD-WAN rules control path selection. Specific traffic can be dynamically sent to the best link, or use a specific route.
 Rules control the strategy that the FortiGate uses when selecting the outbound traffic interface, the SLAs that are monitored when selecting the outgoing interface, and the criteria for selecting the traffic that adheres to the rule. When no SD-WAN rules match the traffic, the implicit rule applies.
 See [SD-WAN rules on page 539](#).

SD-WAN quick start

This section provides an example of how to start using SD-WAN for load balancing and redundancy.

In this example, two ISP internet connections, wan1 (DHCP) and wan2 (static), use SD-WAN to balance traffic between them at 50% each.

![SD-WAN quick start diagram](#)
1. Configuring the SD-WAN interface on page 489
2. Adding a static route on page 490
3. Selecting the implicit SD-WAN algorithm on page 490
4. Configuring firewall policies for SD-WAN on page 491
5. Link monitoring and failover on page 492
6. Results on page 493
7. Configuring SD-WAN in the CLI on page 496

Configuring the SD-WAN interface

First, SD-WAN must be enabled and member interfaces must be selected and added to a zone. The selected FortiGate interfaces can be of any type (physical, aggregate, VLAN, IPsec, and others), but must be removed from any other configurations on the FortiGate.

In this step, two interfaces are configured and added to the default SD-WAN zone (virtual-wan-link) as SD-WAN member interfaces. This example uses a mix of static and dynamic IP addresses; your deployment could also use only one or the other.

Once the SD-WAN members are created and added to a zone, the zone can be used in firewall policies, and the whole SD-WAN can be used in static routes.

To configure SD-WAN members:

1. Configure the wan1 and wan2 interfaces. See Interface settings on page 137 for details.
 a. Set the wan1 interface Addressing mode to DHCP and Distance to 10.

 By default, a DHCP interface has a distance of 5, and a static route has a distance of 10. It is important to account for this when configuring your SD-WAN for 50/50 load balancing by setting the DHCP interface’s distance to 10.

 b. Set the wan2 interface IP/Netmask to 10.100.20.1 255.255.255.0.
2. Go to Network > SD-WAN, select the SD-WAN Zones tab, and click Create New > SD-WAN Member.
3. Set the Interface to wan1.
4. Leave SD-WAN Zone as virtual-wan-link.
5. As wan1 uses DHCP, leave Gateway set to 0.0.0.0.
 If IPv6 visibility is enabled in the GUI, an IPv6 gateway can also be added for each member. See Feature visibility on page 2165 for details.
6. Leave Cost as 0.
 The Cost field is used by the Lowest Cost (SLA) strategy. The link with the lowest cost is chosen to pass traffic. The lowest possible Cost is 0.
7. Set Status to Enable, and click OK.
8. Repeat the above steps for wan2, setting Gateway to the ISP’s gateway: 10.100.20.2.

Adding a static route

You must configure a default route for the SD-WAN. The default gateways for each SD-WAN member interface do not need to be defined in the static routes table. FortiGate will decide what route or routes are preferred using Equal Cost Multi-Path (ECMP) based on distance and priority.

To create a static route for SD-WAN:

1. Go to Network > Static Routes.
2. Click Create New. The New Static Route page opens.
3. Set Destination to Subnet, and leave the IP address and subnet mask as 0.0.0.0/0.0.0.0.
4. In the Interface field select an SD-WAN zone.
5. Ensure that Status is Enabled.
6. Click OK.

Selecting the implicit SD-WAN algorithm

SD-WAN rules define specific routing options to route traffic to an SD-WAN member.
If no routing rules are defined, the default *Implicit* rule is used. It can be configured to use one of five different load balancing algorithms. See *Implicit rule on page 547* for more details and examples.

This example shows four methods to equally balance traffic between the two WAN connections. Go to *Network > SD-WAN*, select the *SD-WAN Rules* tab, and edit the *sd-wan* rule to select the method that is appropriate for your requirements.

- **Source IP** *(CLI command: source-ip-based)*:
 Select this option to balance traffic equally between the SD-WAN members according to a hash algorithm based on the source IP addresses.

- **Session** *(weight-based)*:
 Select this option to balance traffic equally between the SD-WAN members by the session numbers ratio among its members. Use weight 50 for each of the 2 members.

- **Source-Destination IP** *(source-dest-ip-based)*:
 Select this option to balance traffic equally between the SD-WAN members according to a hash algorithm based on the source and destination IP addresses.

- **Volume** *(measured-volume-based)*:
 Select this option to balance traffic equally between the SD-WAN members according to the bandwidth ratio among its members.

Configuring firewall policies for SD-WAN

SD-WAN zones can be used in policies as source and destination interfaces. Individual SD-WAN members cannot be used in policies.

You must configure a policy that allows traffic from your organization’s internal network to the SD-WAN zone. Policies configured with the SD-WAN zone apply to all SD-WAN interface members in that zone.

To create a firewall policy for SD-WAN:

1. Go to *Policy & Objects > Firewall Policy*.
2. Click *Create New*. The *New Policy* page opens.
3. Configure the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>Enter a name for the policy.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>internal</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>virtual-wan-link</td>
</tr>
<tr>
<td>Source</td>
<td>all</td>
</tr>
<tr>
<td>Destination</td>
<td>all</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>ALL</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>Firewall / Network Options</td>
<td>Enable NAT and set IP Pool Configuration to Use Outgoing Interface Address.</td>
</tr>
<tr>
<td>Security Profiles</td>
<td>Apply profiles as required.</td>
</tr>
<tr>
<td>Logging Options</td>
<td>Enable Log Allowed Traffic and select All Sessions. This allows you to verify results later.</td>
</tr>
</tbody>
</table>

4. Enable the policy, then click OK.

Link monitoring and failover

Performance SLA link monitoring measures the health of links that are connected to SD-WAN member interfaces by sending probing signals through each link to a server, and then measuring the link quality based on latency, jitter, and packet loss. If a link is broken, the routes on that link are removed and traffic is routed through other links. When the link is working again, the routes are re-enabled. This prevents traffic being sent to a broken link and lost.

In this example, the detection server IP address is 208.91.112.53. A performance SLA is created so that, if ping fails per the metrics defined, the routes to that interface are removed and traffic is detoured to the other interface. The ping protocol is used, but other protocols could also be selected as required.
To configure a performance SLA:

1. Go to Network > SD-WAN, select the Performance SLAs tab, and click Create New.
2. Enter a name for the SLA and set Protocol to Ping.
3. In the Server field, enter the detection server IP address (208.91.112.53 in this example).
4. In the Participants field, select Specify and add wan1 and wan2.

![SD-WAN SLA configuration interface](image)

SLA targets are not required for link monitoring.

5. Configure the required metrics in Link Status.
6. Ensure that Update static route is enabled. This disables static routes for the inactive interface and restores routes on recovery.
7. Click OK.

Results

The following GUI pages show the function of the SD-WAN and can be used to confirm that it is setup and running correctly:

- Interface usage on page 493
- Performance SLA on page 494
- Routing table on page 496
- Firewall policy on page 496

Interface usage

Go to Network > SD-WAN and select the SD-WAN Zones tab to review the SD-WAN interfaces’ usage.
SD-WAN

Bandwidth

Select *Bandwidth* to view the amount of downloaded and uploaded data for each interface.

![Bandwidth chart]

Volume

Select *Volume* to see donut charts of the received and sent bytes on the interfaces.

![Volume chart]

Sessions

Select *Sessions* to see a donut chart of the number of active sessions on each interface.

![Sessions chart]

Performance SLA

Go to *Network > SD-WAN*, select the *Performance SLAs* tab, and select the SLA from the table (server in this example) to view the packet loss, latency, and jitter on each SD-WAN member in the health check server.
Packet loss

Select *Packet Loss* to see the percentage of packets lost for each member.

Latency

Select *Latency* to see the current latency, in milliseconds, for each member.

Jitter

Select *Jitter* to see the jitter, in milliseconds, for each member.
Routing table

Go to Dashboard > Network, expand the Routing widget, and select Static & Dynamic to review all static and dynamic routes. For more information about the widget, see Static & Dynamic Routing monitor on page 89.

![Routing table](image)

Firewall policy

Go to Policy & Objects > Firewall Policy to review the SD-WAN policy.

![Firewall policy](image)

Configuring SD-WAN in the CLI

This example can be entirely configured using the CLI.

To configure SD-WAN in the CLI:

1. Configure the wan1 and wan2 interfaces:

   ```
   config system interface
   edit "wan1"
   set alias to_ISP1
   set mode dhcp
   set distance 10
   next
   edit "wan2"
   set alias to_ISP2
   set ip 10.100.20.1 255.255.255.0
   next
   end
   ```
2. Enable SD-WAN and add the interfaces as members:

```plaintext
config system sdwan
    set status enable
config members
    edit 1
        set interface "wan1"
    next
    edit 2
        set interface "wan2"
        set gateway 10.100.20.2
    next
end
end
```

If no SD-WAN zone is specified, members are added to the default `virtual-wan-link` zone.

3. Create a static route for SD-WAN:

```plaintext
config router static
    edit 1
        set sdwan-zone "virtual-wan-link"
    next
end
```

4. Select the implicit SD-WAN algorithm:

```plaintext
config system sdwan
    set load-balance-mode {source-ip-based | weight-based | source-dest-ip-based | measured-volume-based}
end
```

5. Create a firewall policy for SD-WAN:

```plaintext
config firewall policy
    edit <policy_id>
        set name <policy_name>
        set srcintf "internal"
        set dstintf "virtual-wan-link"
        set srcaddr all
        set dstaddr all
        set action accept
        set schedule always
        set service ALL
        set utm-status enable
        set ssl-ssh-profile <profile_name>
        set av-profile <profile_name>
        set webfilter-profile <profile_name>
        set dnsfilter-profile <profile_name>
        set emailfilter-profile <profile_name>
        set ips_sensor <sensor_name>
        set application-list <app_list>
        set voip-profile <profile_name>
        set logtraffic all
        set nat enable
```
set status enable
next
end

6. Configure a performance SLA:

config system sdwan
config health-check
edit "server"
 set server "208.91.112.53"
 set update-static-route enable
 set members 1 2
next
end

Results

To view the routing table:

get router info routing-table all

Routing table for VRF=0
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default

S* 0.0.0.0/0 [1/0] via 172.16.20.2, wan1
 [1/0] via 10.100.20.2, wan2
C 10.100.20.0/24 is directly connected, wan2
C 172.16.20.2/24 is directly connected, wan1
C 192.168.0.0/24 is directly connected, internal

To diagnose the Performance SLA status:

FGT # diagnose sys sdwan health-check
Health Check(server):
Seq(1): state(alive), packet-loss(0.000%) latency(15.247), jitter(5.231) sla_map=0x0
Seq(2): state(alive), packet-loss(0.000%) latency(13.621), jitter(6.905) sla_map=0x0

SD-WAN zones

SD-WAN is divided into zones. SD-WAN member interfaces are assigned to zones, and zones are used in policies, static routes, and SD-WAN rules.

You can define multiple zones to group SD-WAN interfaces together, allowing logical groupings for overlay and underlay interfaces. Zones are used in firewall policies, as source and destination interfaces, to allow for more granular control. SD-WAN members cannot be used directly in policies.
SD-WAN zones and members can both be used in IPv4 and IPv6 static routes to make route configuration more flexible, and in SD-WAN rules to simplify the rule configuration. See Specify an SD-WAN zone in static routes and SD-WAN rules on page 503 for more information.

In the CLI:
- `config system sdwan` has replaced `config system virtual-wan-link`.
- `diagnose sys sdwan` has replaced `diagnose sys virtual-wan-link`.
- When configuring a static route, the `sdwan-zone` variable has replaced the `sdwan` variable.

When the Security Fabric is configured, SD-WAN zones are included in the Security Fabric topology views.

To create an SD-WAN zone in the GUI:

1. Go to **Network > SD-WAN** and select the **SD-WAN Zones** tab.
 The default SD-WAN zones are **virtual-wan-link** and **SASE**.
2. Click **Create New > SD-WAN Zone**.
3. Enter a name for the new zone, such as **vpn-zone**.
4. If SD-WAN members have already been created, add the required members to the zone.
 Members can also be added to the zone after it has been created by editing the zone, or when creating or editing the member.
5. Click OK.

To create an SD-WAN interface member in the GUI:

1. Go to Network > SD-WAN, select the SD-WAN Zones tab, and click Create New > SD-WAN Member.
2. Select an interface. The interface can also be left as none and selected later, or click +VPN to create an IPsec VPN for the SD-WAN member.
3. Select the SD-WAN zone that the member will join. A member can also be moved to a different zone at any time.
4. Set the Gateway, Cost, and Status as required.
5. Click OK.

The interface list at Network > Interfaces shows the SD-WAN zones and their members.
To create a policy using the SD-WAN zone in the GUI:

1. Go to Policy & Objects > Firewall Policy, Policy & Objects > Proxy Policy, or Policy & Objects > Security Policy.
2. Click Create New.
3. Configure the policy settings as needed, selecting an SD-WAN zone or zones for the incoming and/or outgoing interface.

4. Click OK.

To view SD-WAN zones in a Security Fabric topology:

1. Go to Security Fabric > Physical Topology or Security Fabric > Logical Topology. The SD-WAN zones and their members are shown.
To configure SD-WAN in the CLI:

1. **Enable SD-WAN and create a zone:**
   ```
   config system sdwan
   set status enable
   config zone
   edit "vpn-zone"
   next
   end
   end
   ```

2. **Configure SD-WAN members and add them to a zone:**
   ```
   config system sdwan
   config members
   edit 1
   set interface "to_ISP2"
   set zone "vpn-zone"
   next
   edit 2
   set interface "vpn-to-dc"
   set zone "vpn-zone"
   next
   end
   end
   ```

To create a policy using the SD-WAN zone in the CLI:

```
config firewall policy
edit 1
set name sd-wan-1
set srcintf internal
set dstintf vpn-zone
set srcaddr all
set dstaddr all
set action accept
```
set schedule always
set service ALL
set utm-status enable
set logtraffic all
set nat enable
set status enable
next
end

Specify an SD-WAN zone in static routes and SD-WAN rules

SD-WAN zones can be used in IPv4 and IPv6 static routes, and in SD-WAN service rules. This makes route configuration more flexible, and simplifies SD-WAN rule configuration.

To configure an SD-WAN zone in a static route in the GUI:

1. Go to Network > Static Routes
2. Edit an existing static route, or click Create New to create a new route.
3. Set Interface to one or more SD-WAN zones.
4. Configure the remaining settings are required.
5. Click OK.

To configure an SD-WAN zone in a static route in the CLI:

```
config router {static | static6}
  edit 1
    set sdwan-zone <zone> <zone> ...
  next
end
```

To configure an SD-WAN zone in an SD-WAN rule in the GUI:

1. Go to Network > SD-WAN and select the SD-WAN Rules tab
2. Edit an existing rule, or click Create New to create a new rule.
3. In the Zone preference field add one or more SD-WAN zones.
4. Configure the remaining settings are needed.
5. Click OK.

To configure an SD-WAN zone in an SD-WAN rule in the CLI:

```plaintext
config system sdwan
  config service
    edit 1
      set priority-zone <zone>
    next
  end
end
```

Examples

In these two examples, three SD-WAN members are created. Two members, port13 and port15, are in the default zone (virtual-wan-link), and the third member, to_FG_B_root, is in the SASE zone.

Example 1

In this example:

- Two service rules are created. Rule 1 uses the virtual-wan-link zone, and rule 2 uses the SASE zone.
- Two IPv4 static routes are created. The first route uses the virtual-wan-link zone, and the second route uses the SASE zone.
To configure the SD-WAN:

1. Assign port13 and port15 to the `virtual-wan-link` zone and to _FG_B_root to the SASE zone:

   ```
   config system sdwan
   set status enable
   config members
   edit 1
     set interface "port13"
     set zone "virtual-wan-link"
     set gateway 10.100.1.1
   next
   edit 2
     set interface "port15"
     set zone "virtual-wan-link"
     set gateway 10.100.1.5
   next
   edit 3
     set interface "to_FG_B_root"
     set zone "SASE"
   next
   end
   end
   ```

2. Create two service rules, one for each SD-WAN zone:

   ```
   config system sdwan
   config service
   edit 1
     set dst "10.100.20.0"
     set priority-zone "virtual-wan-link"
   next
   edit 2
     set internet-service enable
     set internet-service-name "Fortinet-FortiGuard"
     set priority-zone "SASE"
   next
   end
   end
   ```

3. Configure static routes for each of the SD-WAN zones:

   ```
   config router static
   edit 1
     set distance 1
     set sdwan-zone "virtual-wan-link"
   next
   edit 2
     set dst 172.16.109.0 255.255.255.0
     set distance 1
     set sdwan-zone "SASE"
   next
   end
   ```
To verify the results:

1. Check the service rule 1 diagnostics:

   ```
   # diagnose sys sdwan service 1
   ```

 Service(1): Address Mode(IPV4) flags=0x200 use-shortcut-sla
 Gen(1), TOS(0x0/0x0), Protocol(0: 1->65535), Mode(manual)
 Members(2):
 1: Seq_num(1 port13), alive, selected
 2: Seq_num(2 port15), alive, selected
 Dst address(1):
 10.100.20.0-10.100.20.255

 Both members of the virtual-wan-link zone are selected. In manual mode, the interface members are selected based on the member configuration order. In SLA and priority mode, the order depends on the link status. If all of the link statuses pass, then the members are selected based on the member configuration order.

2. Check the service rule 2 diagnostics:

   ```
   # diagnose sys sdwan service 2
   ```

 Service(2): Address Mode(IPV4) flags=0x200 use-shortcut-sla
 Gen(1), TOS(0x0/0x0), Protocol(0: 1->65535), Mode(manual)
 Members(1):
 1: Seq_num(3 to_FG_B_root), alive, selected
 Dst address(1): Fortinet-FortiGuard(1245324,0,0,0)

 The member of the SASE zone is selected.

3. Review the routing table:

   ```
   # get router info routing-table static
   Routing table for VRF=0
   S* 0.0.0.0/0 [1/0] via 10.100.1.1, port13
       [1/0] via 10.100.1.5, port15
   S 172.16.109.0/24 [1/0] via 172.16.206.2, to_FG_B_root
   ```

 The default gateway has the members from the virtual-wan-link zone, and the route to 172.16.10.9.0/24 has the single member from the SASE zone.

Example 2

In this example, two IPv6 static routes are created. The first route uses the virtual-wan-link zone, and the second route uses the SASE zone.

To configure the SD-WAN:

1. Configure port13 and port15 with IPv6 addresses and assign them to the virtual-wan-link zone, and assign to_FG_B_root to the SASE zone:

   ```
   config system sdwan
   set status enable
   config members
   edit 1
   set interface "port13"
   set zone "virtual-wan-link"
   set gateway6 2004:10:100::1::1
   ```
set source6 2004:10:100:1::2
next
edit 2
 set interface "port15"
 set zone "virtual-wan-link"
 set gateway6 2004:10:100:1::5
 set source6 2004:10:100:1::6
next
edit 3
 set interface "to_FG_B root"
 set zone "SASE"
next
end
end

2. Configure IPv6 static routes for each of the SD-WAN zones:

 config router static6
 edit 1
 set distance 1
 set sdwan-zone "virtual-wan-link"
 next
 edit 2
 set dst 2003:172:16:109::/64
 set distance 1
 set sdwan-zone "SASE"
 next
end

To verify the results:

1. Review the routing table:

 # get router info6 routing-table static
 Routing table for VRF=0
 S* ::/0 [1/0] via 2004:10:100:1::1, port13, 00:20:51, [1024/0]
 [1/0] via 2004:10:100:1::5, port15, 00:20:51, [1024/0]
 S 2003:172:16:109::/64 [1/0] via ::ac10:ce02, to_FG_B_root, 00:20:51, [1024/0]

 The IPv6 default route includes the members from the virtual-wan-link zone, and the route to 2003:172:16:109::/64 has the single member from the SASE zone.

Performance SLA

The following topics provide instructions on configuring performance SLA:

- Link health monitor on page 508
- Factory default health checks on page 510
- Health check options on page 513
- Link monitoring example on page 515
- SLA targets example on page 516
- Passive WAN health measurement on page 518
Passive health-check measurement by internet service and application on page 523
Health check packet DSCP marker support on page 526
Manual interface speedtest on page 527
Scheduled interface speedtest on page 528
Monitor performance SLA on page 530
SLA monitoring using the REST API on page 533
Mean opinion score calculation and logging in performance SLA health checks on page 537

Link health monitor

Performance SLA link health monitoring measures the health of links that are connected to SD-WAN member interfaces by either sending probing signals through each link to a server, or using session information that is captured on firewall policies (see Passive WAN health measurement on page 518 for information), and measuring the link quality based on latency, jitter, and packet loss. If a link fails all of the health checks, the routes on that link are removed from the SD-WAN link load balancing group, and traffic is routed through other links. When the link is working again the routes are reestablished. This prevents traffic being sent to a broken link and lost.

When an SD-WAN member has multiple health checks configured, all of the checks must fail for the routes on that link to be removed from the SD-WAN link load balancing group.

Two health check servers can be configured to ensure that, if there is a connectivity issue, the interface is at fault and not the server. A server can only be used in one health check.

The FortiGate uses the first server configured in the health check server list to perform the health check. If the first server is unavailable, then the second server is used. The second server continues to be used until it becomes unavailable, and then the FortiGate returns to the first server, if it is available. If both servers are unavailable, then the health check fails.

You can configure the protocol that is used for status checks, including: Ping, HTTP, DNS, TCP echo, UDP echo, two-way active measurement protocol (TWAMP), TCP connect, and FTP. In the GUI, only Ping, HTTP, and DNS are available.

You can view link quality measurements by going to Network > SD-WAN and selecting the Performance SLAs tab. The table shows the default health checks, the health checks that you configured, and information about each health check. The values shown in the Packet Loss, Latency, and Jitter columns are for the health check server that the FortiGate is currently using. The green up arrows indicate that the server is responding, and does not indicate if the health checks are being met. See Results on page 493 for more information.

To configure a link health monitor in the GUI:

1. Go to Network > SD-WAN, select the Performance SLAs tab, and click Create New.
2. Set a Name for the SLA.
3. Set the Protocol that you need to use for status checks: Ping, HTTP, or DNS.
4. Set Server to the IP addresses of up to two servers that all of the SD-WAN members in the performance SLA can reach.
5. Set Participants to All SD-WAN Members, or select Specify to choose specific SD-WAN members.
6. Set Enable probe packets to enable or disable sending probe packets.
7. Configure SLA Target:
 - If the health check is used in an SD-WAN rule that uses Manual or Best Quality strategies, enabling SLA Target is optional. If the health check is used in an SD-WAN rule that uses Lowest Cost (SLA) or Maximum Bandwidth (SLA) strategies, then SLA Target is enabled.
When SLA Target is enabled, configure the following:

- **Latency threshold**: Calculated based on last 30 probes (default = 5ms).
- **Jitter threshold**: Calculated based on last 30 probes (default = 5ms).
- **Packet Loss threshold**: Calculated based on last 100 probes (default = 0%).

8. In the Link Status section configure the following:

- **Check interval**: The interval in which the FortiGate checks the interface, in milliseconds (500 - 3600000, default = 500).
- **Failures before inactive**: The number of failed status checks before the interface shows as inactive (1 - 3600, default = 5). This setting helps prevent flapping, where the system continuously transfers traffic back and forth between links.
- **Restore link after**: The number of successful status checks before the interface shows as active (1 - 3600, default = 5). This setting helps prevent flapping, where the system continuously transfers traffic back and forth between links.

9. In the Actions when Inactive section, enable **Update static route** to disable static routes for inactive interfaces and restore routes when interfaces recover.

10. Click OK.

To configure a link health monitor in the CLI:

```plaintext
config system sdwan
    config health-check
        edit "PingSLA"
            set addr-mode {ipv4 | ipv6}
            set server <server1_IP_address> <server2_IP_address>
            set detect-mode {active | passive | prefer-passive}
            set protocol {ping | tcp-echo | udp-echo | http | twamp | dns | tcp-connect | ftp}
            set ha-priority <integer>
            set probe-timeout <integer>
            set probe-count <integer>
            set probe-packets {enable | disable}
            set interval <integer>
            set failtime <integer>
            set recoverytime <integer>
            set diffservcode <binary>
```
set update-static-route {enable | disable}
set update-cascade-interface {enable | disable}
set sla-fail-log-period <integer>
set sla-pass-log-period <integer>
set threshold-warning-packetloss <integer>
set threshold-alert-packetloss <integer>
set threshold-warning-latency <integer>
set threshold-alert-latency <integer>
set threshold-warning-jitter <integer>
set threshold-alert-jitter <integer>
set members <member_number> ... <member_number>
cfgsla
 edit 1
 set link-cost-factor {latency jitter packet-loss}
 set latency-threshold <integer>
 set jitter-threshold <integer>
 set packetloss-threshold <integer>
 next
next
end
end

Additional settings are available for some of the protocols:

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Additional options</th>
</tr>
</thead>
<tbody>
<tr>
<td>http</td>
<td>port <port_number></td>
</tr>
<tr>
<td></td>
<td>http-get <url></td>
</tr>
<tr>
<td></td>
<td>http-match <response_string></td>
</tr>
<tr>
<td>twamp</td>
<td>port <port_number></td>
</tr>
<tr>
<td></td>
<td>security mode {none</td>
</tr>
<tr>
<td></td>
<td>password <password></td>
</tr>
<tr>
<td></td>
<td>packet-size <size></td>
</tr>
<tr>
<td>ftp</td>
<td>ftp {passive</td>
</tr>
<tr>
<td></td>
<td>ftp-file <path></td>
</tr>
</tbody>
</table>

For more examples see Health check options on page 513.

Factory default health checks

There are six predefined performance SLA profiles for newly created VDOMs or factory reset FortiGate devices:

- AWS
- System DNS
- FortiGuard
- Gmail
- Google Search
- Office 365

You can view and configure the SLA profiles by going to Network > SD-WAN and selecting the Performance SLAs tab.
After configuring a health check, you will be able to view packet loss, latency, and jitter data for the SLA profiles. If a value is colored red, it means that it failed to meet the SLA requirements.

To configure the performance SLA profiles in the CLI:

```
config system sdwan
  config health-check
    edit "Default_DNS"
      set system-dns enable
      set interval 1000
      set probe-timeout 1000
      set recoverytime 10
    config sla
      edit 1
        set latency-threshold 250
        set jitter-threshold 50
        set packetloss-threshold 5
      next
    next
  edit "Default_Office_365"
    set server "www.office.com"
    set protocol http
    set interval 1000
    set probe-timeout 1000
```

FortiOS 7.2.0 Administration Guide

Fortinet Inc.
set recoverytime 10
config sla
 edit 1
 set latency-threshold 250
 set jitter-threshold 50
 set packetloss-threshold 5
 next
end
next
edit "Default_Gmail"
 set server "gmail.com"
 set interval 1000
 set probe-timeout 1000
 set recoverytime 10
config sla
 edit 1
 set latency-threshold 250
 set jitter-threshold 50
 set packetloss-threshold 2
 next
end
next
edit "Default_AWS"
 set server "aws.amazon.com"
 set protocol http
 set interval 1000
 set probe-timeout 1000
 set recoverytime 10
config sla
 edit 1
 set latency-threshold 250
 set jitter-threshold 50
 set packetloss-threshold 5
 next
end
next
edit "Default_Google Search"
 set server "www.google.com"
 set protocol http
 set interval 1000
 set probe-timeout 1000
 set recoverytime 10
config sla
 edit 1
 set latency-threshold 250
 set jitter-threshold 50
 set packetloss-threshold 5
 next
end
next
edit "Default_FortiGuard"
 set server "fortiguard.com"
 set protocol http
 set interval 1000
 set probe-timeout 1000
 set recoverytime 10
```plaintext
config sla
   edit 1
      set latency-threshold 250
      set jitter-threshold 50
      set packetloss-threshold 5
   next
next
end
end
```

Health check options

Health checks include several protocols and protocol specific options.

The health check protocol options include:

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ping</td>
<td>Use PING to test the link with the server.</td>
</tr>
<tr>
<td>tcp-echo</td>
<td>Use TCP echo to test the link with the server.</td>
</tr>
<tr>
<td>udp-echo</td>
<td>Use UDP echo to test the link with the server.</td>
</tr>
<tr>
<td>http</td>
<td>Use HTTP-GET to test the link with the server.</td>
</tr>
<tr>
<td>twamp</td>
<td>Use TWAMP to test the link with the server.</td>
</tr>
<tr>
<td>dns</td>
<td>Use DNS query to test the link with the server.</td>
</tr>
<tr>
<td></td>
<td>The FortiGate sends a DNS query for an A Record and</td>
</tr>
<tr>
<td></td>
<td>the response matches the expected IP address.</td>
</tr>
<tr>
<td>tcp-connect</td>
<td>Use a full TCP connection to test the link with the</td>
</tr>
<tr>
<td></td>
<td>server.</td>
</tr>
<tr>
<td></td>
<td>The method to measure the quality of the TCP connection can be:</td>
</tr>
<tr>
<td></td>
<td>• half-open: FortiGate sends SYN and gets SYN-ACK. The latency is based on the</td>
</tr>
<tr>
<td></td>
<td>round trip between SYN and SYN-ACK (default).</td>
</tr>
<tr>
<td></td>
<td>• half-close: FortiGate sends FIN and gets FIN-ACK. The latency is based on the</td>
</tr>
<tr>
<td></td>
<td>round trip between FIN and FIN-ACK.</td>
</tr>
<tr>
<td>ftp</td>
<td>Use FTP to test the link with the server.</td>
</tr>
<tr>
<td></td>
<td>The FTP mode can be:</td>
</tr>
<tr>
<td></td>
<td>• passive: The FTP health-check initiates and</td>
</tr>
<tr>
<td></td>
<td>establishes the data connection (default).</td>
</tr>
<tr>
<td></td>
<td>• port: The FTP server initiates and establishes the</td>
</tr>
<tr>
<td></td>
<td>data connection.</td>
</tr>
</tbody>
</table>

SD-WAN health checks can generate traffic that becomes quite high as deployments grow. Please take this into consideration when setting DoS policy thresholds. For details on setting DoS policy thresholds, refer to [DoS policy on page 791](#).

To use UDP-echo and TCP-echo as health checks:

```plaintext
config system sdwan
   set status enable
config health-check
```
edit "h4_udp1"
 set protocol udp-echo
 set port 7
 set server <server>
next
edit "h4_tcp1"
 set protocol tcp-echo
 set port 7
 set server <server>
next
edit "h6_udp1"
 set addr-mode ipv6
 set server "2032::12"
 set protocol udp-echo
 set port 7
next
end
end

To use DNS as a health check, and define the IP address that the response must match:

config system sdwan
 set status enable
config health-check
 edit "h4_dns1"
 set protocol dns
 set dns-request-domain "ip41.forti2.com"
 set dns-match-ip 1.1.1.1
 next
 edit "h6_dns1"
 set addr-mode ipv6
 set server "2000::15.1.1.4"
 set protocol dns
 set port 53
 set dns-request-domain "ip61.xxx.com"
next
end
end

To use TCP Open (SYN/SYN-ACK) and TCP Close (FIN/FIN-ACK) to verify connections:

config system sdwan
 set status enable
config health-check
 edit "h4_tcpconnect1"
 set protocol tcp-connect
 set port 443
 set quality-measured-method {half-open | half-close}
 set server <server>
next
 edit "h6_tcpconnect1"
 set addr-mode ipv6
 set server "2032::13"
 set protocol tcp-connect
 set port 444
 set quality-measured-method {half-open | half-close}
To use active or passive mode FTP to verify connections:

```
config system sdwan
  set status enable
config health-check
  edit "h4_ftpl"
    set protocol ftp
    set port 21
    set user "root"
    set password **********
    set ftp-mode {passive | port}
    set ftp-file "1.txt"
    set server <server>
next
  edit "h6_ftpl"
    set addr-mode ipv6
    set server "2032::11"
    set protocol ftp
    set port 21
    set user "root"
    set password **********
    set ftp-mode {passive | port}
    set ftp-file "2.txt"
next
end
```

Link monitoring example

Performance SLA link monitoring measures the health of links that are connected to SD-WAN member interfaces by sending probing signals through each link to a server and measuring the link quality based on latency, jitter, and packet loss. If a link is broken, the routes on that link are removed, and traffic is routed through other links. When the link is working again, the routes are reenabbled. This prevents traffic being sent to a broken link and lost.

![Link monitoring example diagram](attachment://link_monitoring_example.png)
- Interfaces wan1 and wan2 connect to the internet through separate ISPs
- The detection server IP address is 208.91.114.182

A performance SLA is created so that, if one link fails, its routes are removed and traffic is detoured to the other link.

To configure a Performance SLA using the GUI:

1. On the FortiGate, add wan1 and wan2 as SD-WAN members, then add a policy and static route. See [SD-WAN quick start on page 488](#) for details.
2. Go to Network > SD-WAN, select the Performance SLAs tab, and click Create New.
3. Enter a name for the SLA and select a protocol.
4. In the Server field, enter the detection server IP address (208.91.114.182 in this example).
5. In the Participants field, select both wan1 and wan2.
6. Configured the remaining settings as needed, then click OK.

To configure a Performance SLA using the CLI:

```
cfg system sdwan
cfg health-check
ed "server"
   set server "208.91.114.182"
   set update-static-route enable
   set members 1 2

next
end
end
```

To diagnose the Performance SLA status:

```
# diagnose sys sdwan health-check
Health Check(server):
Seq(1): state(alive), packet-loss(0.000%) latency(15.247), jitter(5.231) sla_map=0x0
Seq(2): state(alive), packet-loss(0.000%) latency(13.621), jitter(6.905) sla_map=0x0
```

SLA targets example

SLA targets are a set of constraints that are used in SD-WAN rules to control the paths that traffic take.

The available constraints are:

- **Latency threshold**: Latency for SLA to make decision, in milliseconds (0 - 10000000, default = 5).
- **Jitter threshold**: Jitter for SLA to make decision, in milliseconds (0 - 10000000, default = 5).
- **Packet loss threshold**: Packet loss for SLA to make decision, in percentage (0 - 100, default = 0).
To configure Performance SLA targets using the GUI:

1. On the FortiGate, add wan1 and wan2 as SD-WAN members, then add a policy and static route. See SD-WAN quick start on page 488 for details.
2. Go to Network > SD-WAN and select the Performance SLAs tab.
3. Create a new Performance SLA or edit an existing one. See Link monitoring example on page 515.
4. Enable SLA Targets and configure the constraints. To add multiple SLA targets, use the CLI.
5. Configured the remaining settings as needed, then click OK.

To configure Performance SLA targets using the CLI:

```bash
config system sdwan
    config health-check
        edit "server"
            set server "208.91.114.182"
            set members 1 2
        config sla
            edit 1
                set link-cost-factor latency jitter packet-loss
                set latency-threshold 10
                set jitter-threshold 10
                set packetloss-threshold 1
            next
            edit 2
                set link-cost-factor latency packet-loss
                set latency-threshold 15
                set packetloss-threshold 2
            next
        end
    end
end
```

The link-cost-factor variable is used to select which constraints are enabled.
Passive WAN health measurement

SD-WAN passive WAN health measurement determines the health check measurements using session information that is captured on firewall policies that have Passive Health Check (passive-wan-health-measurement) enabled. Passive measurements analyze session information that is gathered from various TCP sessions to determine the jitter, latency, and packet loss.

Using passive WAN health measurement reduces the amount of configuration required and decreases the traffic that is produced by health check monitor probes doing active measurements. Passive WAN health measurement analyzes real-life traffic; active WAN health measurement using a detection server might not reflect the real-life traffic.

By default, active WAN health measurement is enabled when a new health check is created. It can be changed to passive or prefer passive:

<table>
<thead>
<tr>
<th>passive</th>
<th>Health is measured using traffic, without probes. No link health monitor needs to be configured.</th>
</tr>
</thead>
<tbody>
<tr>
<td>prefer-passive</td>
<td>Health is measured using traffic when there is traffic, and using probes when there is no traffic. A link health monitor must be configured, see Link health monitor for details.</td>
</tr>
</tbody>
</table>

When passive-wan-health-measurement is enabled, auto-asic-offload will be disabled.

Example

In this example, the FortiGate is configured to load-balance between two WAN interfaces, port15 and port16. A health check is configured in passive mode, and SLA thresholds are set. Passive WAN health measurement is enabled on the SD-WAN policy.

Measurements are taken from YouTube traffic generated by the PC. When latency is introduced to the traffic on port15, the passive health check trigger threshold is exceeded and traffic is rerouted to port16.

To configure the SD-WAN in the GUI:

1. Create the SD-WAN zone:
 a. Go to Network > SD-WAN and select the SD-WAN Zones tab.
 b. Click Create New > SD-WAN Zone.
 c. Enter a name for the zone, such as SD-WAN.
 d. Click OK.
2. Create the SD-WAN members:
a. Go to Network > SD-WAN and select the SD-WAN Zones tab.
b. Click Create New > SD-WAN Member.
c. Set Interface to port15, SD-WAN Zone to SD-WAN, and Gateway set to 172.16.209.2.
d. Click OK.
e. Click Create New > SD-WAN Member again.
f. Set Interface to port16, SD-WAN Zone to SD-WAN, and Gateway set to 172.16.210.2.
g. Click OK.

3. Create a performance SLA:
 a. Go to Network > SD-WAN and select the Performance SLAs tab.
 b. Edit an existing health check, or create a new one.
 c. Set Probe mode to Passive.
 d. Set Participants to Specify and add port15 and port16.
 e. Configure two SLA targets. Note that the second SLA target must be configured in the CLI.
 f. Configure the remaining settings as needed.
 g. Click OK.

The SLA list shows the probe mode in the Detect Server column, if the probe mode is passive or prefer passive.

Probe packets can only be disabled in the CLI and when the probe mode is not passive.

4. Create SD-WAN rules:
 a. Go to Network > SD-WAN, select the SD-WAN Rules tab, and click Create New.
 b. Configure the first rule:

<table>
<thead>
<tr>
<th>Name</th>
<th>Background_Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source address</td>
<td>172.16.205.0</td>
</tr>
</tbody>
</table>
Application
Click in the field, and in the *Select Entries* pane search for *YouTube* and select all of the entries

Strategy
Maximize Bandwidth (SLA)

Interface preference
port15 and port16

Required SLA target
Passive_Check#2

c. Click OK.
d. Click *Create New* again and configure the second rule:

<table>
<thead>
<tr>
<th>Name</th>
<th>Foreground_Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source address</td>
<td>172.16.205.0</td>
</tr>
<tr>
<td>Address</td>
<td>all</td>
</tr>
<tr>
<td>Protocol number</td>
<td>Specify - 1</td>
</tr>
<tr>
<td>Strategy</td>
<td>Lowest Cost (SLA)</td>
</tr>
<tr>
<td>Interface preference</td>
<td>port15 and port16</td>
</tr>
<tr>
<td>Required SLA target</td>
<td>Passive_Check#1</td>
</tr>
</tbody>
</table>

e. Click OK.

To configure the firewall policy in the GUI:

1. Go to *Policy & Objects* > *Firewall Policy* and click *Create New.*
2. Configure the policy:

<table>
<thead>
<tr>
<th>Name</th>
<th>SD-WAN-HC-policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>port5</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>SD-WAN</td>
</tr>
<tr>
<td>Source</td>
<td>all</td>
</tr>
<tr>
<td>Destination</td>
<td>all</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>ALL</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>Passive Health Check</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

 Passive health check can only be enabled in a policy when the outgoing interface is an SD-WAN zone.

3. Click OK.

To configure the SD-WAN in the CLI:

```
config system sdwan
set status enable
```
config zone
 edit "SD-WAN"
 next
end
config members
 edit 1
 set zone "SD-WAN"
 set interface "port15"
 set gateway 172.16.209.2
 next
 edit 2
 set zone "SD-WAN"
 set interface "port16"
 set gateway 172.16.210.2
 next
end
config health-check
 edit "Passive_Check"
 set detect-mode passive
 set members 1 2
config sla
 edit 1
 set latency-threshold 500
 set jitter-threshold 500
 set packetloss-threshold 10
 next
 edit 2
 set latency-threshold 1000
 set jitter-threshold 1000
 set packetloss-threshold 10
 next
end
next
end
config service
 edit 1
 set name "Background_Traffic"
 set mode load-balance
 set src "172.16.205.0"
 set internet-service enable
 set internet-service-app-ctrl 31077 33321 41598 31076 33104 23397 30201 16420
 17396 38569 25564
 config sla
 edit "Passive_Check"
 set id 2
 next
 set priority-member 1 2
 next
 edit 2
 set name "Foreground_Traffic"
 set mode sla
 set src "172.16.205.0"
 set protocol 1
 set dst "all"
 config sla
To configure the firewall policy in the CLI:

```plaintext
to configure the firewall policy in the CLI:

config firewall policy
to configure the firewall policy in the CLI:
```

Results

When both links pass the SLA:

```
# diagnose sys link-monitor-passive interface
Interface port16 (28):
    Latency 10.000 Jitter 5.000 Packet_loss 0.000% Last_updated Fri Mar 5 10:09:21 2021

Interface port15 (27):
    Latency 60.000 Jitter 0.000% Last_updated Fri Mar 5 10:39:24 2021

# diagnose sys sdwan health-check
Health Check(Passive_Check):
Seq(1 port15): state(alive), packet-loss(0.000%) latency(60.000), jitter(0.750) sla_map=0x3
Seq(2 port16): state(alive), packet-loss(0.000%) latency(10.000), jitter(5.000) sla_map=0x3

# diagnose sys sdwan service 2
Service(2): Address Mode(IPV4) flags=0x200
    Gen(1), TOS(0x0/0x0), Protocol(1: 1->65535), Mode(sla), sla-compare-order
    Members(2):
        1: Seq_num(1 port15), alive, sla(0x1), gid(0), cfg_order(0), cost(0), selected
        2: Seq_num(2 port16), alive, sla(0x1), gid(0), cfg_order(1), cost(0), selected
    Src address(1):
        172.16.205.0-172.16.205.255
    Dst address(1):
        8.8.8.8-8.8.8.8
```
When the latency is increased to 610ms on port15, the SLA is broken and pings are sent on port16:

```
# diagnose sys sdwan health-check
Health Check(Passive_Check):
Seq(1 port15): state(alive), packet-loss(0.000%) latency(610.000), jitter(2.500) sla_map=0x3
Seq(2 port16): state(alive), packet-loss(0.000%) latency(50.000), jitter(21.000) sla_map=0x3

# diagnose sys sdwan service 2

Service(2): Address Mode(IPV4) flags=0x200
   Gen(6), TOS(0x0/0x0), Protocol(1: 1->65535), Mode(sla), sla-compare-order
   Members(2):
      1: Seq_num(2 port16), alive, sla(0x1), gid(1), cfg_order(1), cost(0), selected
      2: Seq_num(1 port15), alive, sla(0x0), gid(2), cfg_order(0), cost(0), selected
   Src address(1):
      172.16.205.0-172.16.205.255
   Dst address(1):
      8.8.8.8-8.8.8.8
```

Passive health-check measurement by internet service and application

Passive health measurement supports passive detection for each internet service and application.

If internet services or applications are defined in an SD-WAN rule with passive health check, SLA information for each service or application will be differentiated and collected. SLA metrics (latency, jitter, and packet loss) on each SD-WAN member in the rule are then calculated based on the relevant internet service's or application's SLA information.

In this example, three SD-WAN rules are created:

- Rule 1: Best quality (latency) using passive SLA for the internet services Alibaba and Amazon.
- Rule 2: Best quality (latency) using passive SLA for the applications Netflix and YouTube.
- Rule 3: Best quality (latency) using passive SLA for all other traffic.

After passive application measurement is enabled for rules one and two, the SLA metric of rule one is the average latency of the internet services Alibaba and Amazon, and the SLA metric of rule two is the average latency of the applications Netflix and YouTube.

To configure the SD-WAN:

1. Configure the SD-WAN members:

   ```
   config system sdwan
   set status enable
   config zone
      edit "virtual-wan-link"
   next
   ```
2. Configure the passive mode health check:

```fortios
config health-check
  edit "Passive_HC"
    set detect-mode passive
    set members 1 2
  next
end
```

3. Configure SD-WAN service rules:

```fortios
config service
  edit 1
    set name "1"
    set mode priority
    set src "172.16.205.0"
    set internet-service enable
    set internet-service-name "Alibaba-Web" "Amazon-Web"
    set health-check "Passive_HC"
    set priority-members 1 2
    set passive-measurement enable //Enable "passive application measurement", it is a new command which is introduced in this project.
  next
  edit 2
    set name "2"
    set mode priority
    set src "172.16.205.0"
    set internet-service enable
    set internet-service-app-ctrl 18155 31077
    set health-check "Passive_HC"
    set priority-members 1 2
    set passive-measurement enable //Enable "passive application measurement"
  next
  edit 3
    set name "3"
    set mode priority
    set dst "all"
    set src "172.16.205.0"
    set health-check "Passive_HC"
    set priority-members 1 2
  next
end
```

4. Configure SD-WAN routes:
config router static
 edit 1
 set distance 1
 set sdwan-zone "virtual-wan-link"
 next
end

5. Configure the firewall policy with passive WAN health measurement enabled:

config firewall policy
 edit 1
 set uuid 972345c6-1595-51ec-66c5-d705d266f712
 set srcintf "port5"
 set dstintf "virtual-wan-link"
 set action accept
 set srcaddr "172.16.205.0"
 set dstaddr "all"
 set schedule "always"
 set service "ALL"
 set passive-wan-health-measurement enable
 set utm-status enable
 set ssl-ssh-profile "certificate-inspection"
 set application-list "g-default"
 set auto-asic-offload disable
 next
end

To verify the results:

1. On the PC, open the browser and visit the internet services and applications.
2. On the FortiGate, check the collected SLA information to confirm that each server or application on the SD-WAN members was measured individually:

 # diagnose sys link-monitor-passive interface

Interface dmz (5):
 Default(0x00000000): latency=3080.0 11:57:54, jitter=5.0 11:58:08, pktloss=0.0 % NA
 Alibaba-Web(0x00690001): latency=30.0 11:30:06, jitter=25.0 11:29:13, pktloss=0.0 % NA
 YouTube(0x00007965): latency=100.0 12:00:35, jitter=2.5 12:00:30, pktloss=0.0 % NA
 Netflix(0x000646eb): latency=10.0 11:31:24, jitter=10.0 11:30:30, pktloss=0.0 % NA
 Amazon-Web(0x00060001): latency=80.0 11:31:52, jitter=35.0 11:32:07, pktloss=0.0 % NA

Interface port15 (27):
 Default(0x00000000): latency=100.0 12:00:42, jitter=0.0 12:00:42, pktloss=0.0 % NA
 Amazon-Web(0x00060001): latency=30.0 11:56:05, jitter=0.0 11:55:21, pktloss=0.0 % NA
 Alibaba-Web(0x00690001): latency=0.0 11:26:08, jitter=35.0 11:27:08, pktloss=0.0 % NA
 YouTube(0x00007965): latency=100.0 11:33:34, jitter=0.0 11:33:50, pktloss=0.0 % NA
3. Verify that the SLA metrics on the members are calculated as expected:

```bash
# diagnose sys sdwan service

Service(1): Address Mode(IPV4) flags=0x600 use-shortcut-sla
  Gen(1), TOS(0x0/0x0), Protocol(0: 1->65535), Mode(priority), link-cost-factor
  (latency), link-cost-threshold(10), heath-check(Passive_HC)
  Members(2):
    1: Seq_num(2 port15), alive, latency: 15.000, selected // Average latency
  of "Alibaba-Web" and "Amazon-Web" on port15:  15.000 = (0.0+30.0)/2
    2: Seq_num(1 dmz), alive, latency: 55.000, selected // Average latency
  of "Alibaba-Web" and "Amazon-Web" on dmz:  55.000 = (30.0+80.0)/2

Internet Service(2): Alibaba-Web(6881281,0,0,0) Amazon-Web(393217,0,0,0)
  Src address(1):
    172.16.205.0-172.16.205.255

Service(2): Address Mode(IPV4) flags=0x600 use-shortcut-sla
  Gen(2), TOS(0x0/0x0), Protocol(0: 1->65535), Mode(priority), link-cost-factor
  (latency), link-cost-threshold(10), heath-check(Passive_HC)
  Members(2):
    1: Seq_num(1 dmz), alive, latency: 55.000, selected // Average latency
  of "Netflix" and "YouTube" on dmz:  55.000 = (10.0+100.0)/2
    2: Seq_num(2 port15), alive, latency: 50.000, selected // Average latency
  of "Netflix" and "YouTube" on port15:  50.000 = (0.0+100.0)/2

Internet Service(2): Netflix(4294837427,0,0,0 18155) YouTube(4294838283,0,0,0 31077)
  Src address(1):
    172.16.205.0-172.16.205.255

Service(3): Address Mode(IPV4) flags=0x200 use-shortcut-sla
  Gen(9), TOS(0x0/0x0), Protocol(0: 1->65535), Mode(priority), link-cost-factor
  (latency), link-cost-threshold(10), heath-check(Passive_HC)
  Members(2):
    1: Seq_num(2 port15), alive, latency: 46.000, selected // Average latency
  of all TCP traffic on port15:  46 = (100.0+30.0+0.0+100.0+0.0)/5
    2: Seq_num(1 dmz), alive, latency: 660.000, selected // Average latency of
  all TCP traffic on dmz:  660 = (3080.0+30.0+100.0+10.0+80.0)/5
  Src address(1):
    172.16.205.0-172.16.205.255

Dst address(1):
    0.0.0.0-255.255.255.255

Health check packet DSCP marker support

SD-WAN health check probe packets support Differentiated Services Code Point (DSCP) markers for accurate
evaluation of the link performance for high priority applications by upstream devices.

When the SD-WAN health check packet is sent out, the DSCP can be set with a CLI command.
To mark health-check packets with DSCP:

```
config system sdwan
 config health-check
 edit <name>
 set diffservcode <6 bits binary, range 000000-111111>
 next
 end
end
```

**Manual interface speedtest**

An interface speedtest can be manually performed on WAN interfaces in the GUI. The results of the test can be added to the interface’s *Estimated bandwidth*. The estimated upstream and downstream bandwidths can be used in SD-WAN service rules to determine the best link to use when either Maximize Bandwidth or Best Quality strategies are selected.

An SD-WAN Network Monitor license is required to use the speedtest. The *License* widget and the *System > FortiGuard* page show the license status.

To run an interface speedtest in the GUI:

1. Go to *Network > Interfaces*.
2. Edit a WAN interface. The interfaces can be grouped by role using the grouping dropdown on the right side of the toolbar.
3. Click **Execute speed test** in the right pane.

4. When the test completes, click **OK** in the **Confirm** pane to apply the results to the estimated bandwidth. The results can also be applied later by clicking **Apply results to estimated bandwidth**. The speedtest results are used to populate the *Estimated bandwidth* fields.

5. Click **OK**.

---

The FortiGate must be connected to FortiGuard, and able to reach either the AWS or Google speedtest servers.

---

**Scheduled interface speedtest**

The SD-WAN Network Monitor service supports running a speed test based on a schedule. The test results are automatically updated in the *measured-upstream-bandwidth* and *measured-downstream-bandwidth* fields. These fields do not impact the interface inbound bandwidth, outbound bandwidth, estimated upstream bandwidth, or estimated downstream bandwidth settings.

An SD-WAN Network Monitor license is required to use the speedtest. The **License** widget and the System > FortiGuard page show the license status.

When the scheduled speed tests run, it is possible to temporarily bypass the bandwidth limits set on the interface and configure custom maximum or minimum bandwidth limits. These configurations are optional.

```bash
config system speed-test-schedule
edit <interface>
 set schedules <schedule> ...
 set update-inbandwidth enable {enable | disable}
 set update-outbandwidth enable {enable | disable}
 set update-inbandwidth-maximum <integer>
 set update-inbandwidth-minimum <integer>
 set update-outbandwidth-maximum <integer>
 set update-outbandwidth-minimum <integer>
```
In the following example, a speed test is scheduled on port1 at 10:00 AM, and another one at 14:00 PM.

To run a speed test based on a schedule:

1. Configure the recurring schedules:

   ```
 config firewall schedule recurring
 edit "10"
 set start 10:00
 set end 12:00
 set day monday tuesday wednesday thursday friday
 next
 edit "14"
 set start 14:00
 set end 16:00
 set day monday tuesday wednesday thursday friday
 next
 end
   ```

2. Configure the speed test schedule:

   ```
 config system speed-test-schedule
 edit "port1"
 set schedules "10" "14"
 set update-inbandwidth enable
 set update-outbandwidth enable
 set update-inbandwidth-maximum 60000
 set update-inbandwidth-minimum 10000
 set update-outbandwidth-maximum 50000
 set update-outbandwidth-minimum 10000
 next
 end
   ```

3. View the speed test results:

   ```
 config system interface
 edit port1
   ```
Monitor performance SLA

SD-WAN diagnostics can be used to help maintain your SD-WAN solution

Monitoring SD-WAN link quality status

Link quality plays a significant role in link selection for SD-WAN. Investigate any prolonged issues with packet loss, latency, or jitter to ensure that your network does not experience degraded performance or an outage.

You can monitor the link quality status of SD-WAN interface members by going to Network > SD-WAN and selecting the Performance SLAs tab.

The live charts show the packet loss, latency, or jitter for the selected health check. Hover the cursor over a line in the chart to see the specific value for that interface at that specific time.

The table shows information about each health check, including the configured servers, link quality data, and thresholds. The colored arrow indicates the status of the interface when the last status check was performed: green means that the interface was active, and red means that the interface was inactive. Hover the cursor over the arrow for additional information.

Monitoring system event logs

The features adds an SD-WAN daemon function to keep a short, 10 minute history of SLA that can be viewed in the CLI. Performance SLA results related to interface selection, session failover, and other information, can be logged. These logs can then be used for long-term monitoring of traffic issues at remote sites, and for reports and views in FortiAnalyzer.

The time intervals that Performance SLA fail and pass logs are generated in can be configured.
To configure the fail and pass logs' generation time interval:

```plaintext
config system sdwan
 config health-check
 edit "PingSLA"
 set sla-fail-log-period 30
 set sla-pass-log-period 60
 end
 next
end
```

To view the 10 minute Performance SLA link status history:

```
FGDocs # diagnose sys sdwan sla-log PingSLA 1
Timestamp: Fri Sep 4 10:32:37 2020, vdom root, health-check PingSLA, interface: wan2, status: up, latency: 4.455, jitter: 0.430, packet loss: 0.000%.
Timestamp: Fri Sep 4 10:32:37 2020, vdom root, health-check PingSLA, interface: wan2, status: up, latency: 4.461, jitter: 0.436, packet loss: 0.000%.
Timestamp: Fri Sep 4 10:32:38 2020, vdom root, health-check PingSLA, interface: wan2, status: up, latency: 4.488, jitter: 0.415, packet loss: 0.000%.
 ...
Timestamp: Fri Sep 4 10:42:36 2020, vdom root, health-check PingSLA, interface: wan2, status: up, latency: 6.280, jitter: 0.302, packet loss: 0.000%.
Timestamp: Fri Sep 4 10:42:37 2020, vdom root, health-check PingSLA, interface: wan2, status: up, latency: 6.261, jitter: 0.257, packet loss: 0.000%.
Timestamp: Fri Sep 4 10:42:37 2020, vdom root, health-check PingSLA, interface: wan2, status: up, latency: 6.229, jitter: 0.245, packet loss: 0.000%.
```

**SLA pass logs**

The FortiGate generates Performance SLA logs at the specified pass log interval (`sla-pass-log-period`) when SLA passes.

```
date="2021-04-15" time="10:04:56" id=6951431609690095758 bid=52507 dvid=1047
itime=1618506296 euid=3 epid=3 dsteuid=3 dstepid=3 logver=700000066 logid="0113022925"
type="event" subtype="sdwan" level="information" msg="Health Check SLA status."
logdesc="SDWAN SLA information" status="up" interface="port1" eventtime=1618506296222639301
tz="-0700" eventtype="SLA" jitter="0.277" inbandwidthavailable="10.00Gbps"
outbandwidthavailable="10.00Gbps" bibandwidthavailable="20.00Gbps" packetloss="1.000%"
latency="186.071" slamap="0x1" healthcheck="BusinessCritical_CloudApps" slatargetid=1
outbandwidthused="40kbps" inbandwidthused="24kbps" bibandwidthused="64kbps"
devid="FGVM02TM20000000" vd="root" devname="Branch_Office_01" csf="fabric"
```

```
date="2021-04-15" time="10:04:56" id=6951431609690095759 bid=52507 dvid=1047
itime=1618506296 euid=3 epid=3 dsteuid=3 dstepid=3 logver=700000066 logid="0113022925"
type="event" subtype="sdwan" level="information" msg="Health Check SLA status."
logdesc="SDWAN SLA information" status="up" interface="port2" eventtime=1618506296223163068
tz="-0700" eventtype="SLA" jitter="0.204" inbandwidthavailable="10.00Gbps"
outbandwidthavailable="10.00Gbps" bibandwidthavailable="20.00Gbps" packetloss="0.000%"
latency="185.939" slamap="0x1" healthcheck="BusinessCritical_CloudApps" slatargetid=1
outbandwidthused="142kbps" inbandwidthused="23kbps" bibandwidthused="165kbps"
devid="FGVM02TM20000000" vd="root" devname="Branch_Office_01" csf="fabric"
```

In the FortiAnalyzer GUI:
SLA fail logs

The FortiGate generates Performance SLA logs at the specified fail log interval (sla-fail-log-period) when SLA fails.

date="2021-04-15" time="10:04:59" id=6951431618280030243 bid=52507 dvid=1047 itime=1618506298 euid=3 epid=3 dsteuid=3 dstepid=3 logver=700000066 logid="0113022925" type="event" subtype="sdwan" level="notice" msg="Health Check SLA status. SLA failed due to being over the performance metric threshold." logdesc="SDWAN SLA information" status="down" interface="To-HQ-MPLS" eventtime=161850629718862835 tz="-0700" eventtype="SLA" jitter="0.000" inbandwidthavailable="10.00Gbps" outbandwidthavailable="10.00Gbps" bibandwidthavailable="20.00Gbps" packetloss="100.000%" latency="0.000" slamap="0x0" healthcheck="BusinessCritical_CloudApps" slatargetid=1 metric="packetloss" outbandwidthused="0kbps" inbandwidthused="0kbps" bibandwidthused="0kbps" devid="FGVM02TM20000000" vd="root" devname="Branch_Office_01" csf="fabric"

date="2021-04-15" time="10:05:03" id=6951431639754866704 bid=52514 dvid=1046 itime=1618506303 euid=3 epid=3 dsteuid=3 dstepid=3 logver=700000066 logid="0113022925" type="event" subtype="sdwan" level="notice" msg="Health Check SLA status. SLA failed due to being over the performance metric threshold." logdesc="SDWAN SLA information" status="down" interface="To-HQ-MPLS" eventtime=161850630485862835 tz="-0700" eventtype="SLA" jitter="0.000" inbandwidthavailable="10.00Gbps" outbandwidthavailable="10.00Gbps" bibandwidthavailable="20.00Gbps" packetloss="100.000%" latency="0.000" slamap="0x0" healthcheck="BusinessCritical_CloudApps" slatargetid=1 metric="packetloss" outbandwidthused="6kbps" inbandwidthused="3kbps" bibandwidthused="9kbps" devid="FGVM02TM200000000" vd="root" devname="Branch_Office_02" csf="fabric"

In the FortiAnalyzer GUI:
SLA monitoring using the REST API

SLA log information and interface SLA information can be monitored using the REST API. This feature is also be used by FortiManager as part of its detailed SLA monitoring and drill-down features.

Interface log command example:


```json
{
 "http_method": "GET",
 "results": [
 {
 "interface": "port13",
 "logs": [
 {
 "timestamp": 1547087168,
 "tx_bandwidth": 3447,
 "rx_bandwidth": 3457,
 "bi_bandwidth": 6904,
 "tx_bytes": 748875,
 "rx_bytes": 708799,
 "egress_queue": []
 },
 {
 "timestamp": 1547087178,
 "tx_bandwidth": 3364,
 "rx_bandwidth": 3400,
 "bi_bandwidth": 6764,
 "tx_bytes": 753789,
 "rx_bytes": 712835,
 "egress_queue": []
 }
]
 }
]
}
```

...
**SLA log command example:**


```json
{
 "http_method":"GET",
 "results":[
 {
 "name":"ping",
 "interface":"spoke11-p1",
 "logs":[
 {
 "timestamp":1614813142,
 "link":"up",
 "latency":0.1376333857059479,
 "jitter":0.0299666356921196,
 "packetloss":0
 },
 "child_intfs":{
 "spoke11-p1_0":{
 {
 "timestamp":1614813142,
 "link":"up",
 "latency":0.12413334846496582,
 "jitter":0.028366668149828911,
 "packetloss":0
 },

 }
 }
 },
 {
 "name":"ping",
 "interface":"spoke12-p1",
 "logs":[
 {
 "timestamp":1614813143,
 "link":"up",
 "latency":0.11373334887887955,
 "jitter":0.023099998012185097,
 "packetloss":0
 },
 "child_intfs":{
 "spoke12-p1_0":{
 {
 "timestamp":1614813143,
 "link":"up",
 "latency":0.11373332887887955,
 "jitter":0.02309998012185097,
 "packetloss":0
 },

 }
 }
 }
 }
 }
]
}
```

**Health check command example:**

https://172.172.172.9/api/v2/monitor/virtual-wan/health-check

```json
{
}
```
"http_method":"GET",
"results":{
  "ping":{
    "spoke11-p1":{
      "status":"up",
      "latency":0.13406667113304138,
      "jitter":0.023000005632638931,
      "packet_loss":0,
      "packet_sent":29722,
      "packet_received":29718,
      "sla_targets_met":[
        1
      ],
      "session":2,
      "tx_bandwidth":1353,
      "rx_bandwidth":1536,
      "state_changed":1614798274,
      "child_intfs":{
        "spoke11-p1_0":{
          "status":"up",
          "latency":0.12929999828338623,
          "jitter":0.028200000524520874,
          "packet_loss":0,
          "packet_sent":29626,
          "packet_received":29625,
          "sla_targets_met":[
            1
          ],
          "session":0,
          "tx_bandwidth":2608,
          "rx_bandwidth":1491,
          "state_changed":0
        }
      }
    },
    "spoke12-p1":{
      "status":"up",
      "latency":0.11356667429208755,
      "jitter":0.015699999406933784,
      "packet_loss":0,
      "packet_sent":29626,
      "packet_received":29718,
      "sla_targets_met":[
        1
      ],
      "session":2,
      "tx_bandwidth":1353,
      "rx_bandwidth":1536,
      "state_changed":1614798274,
      "child_intfs":{
        "spoke12-p1_0":{
          "status":"up",
          "latency":0.095466658473014832,
          "jitter":0.0092999991029500961,
          "packet_loss":0,
          "packet_sent":29687,
"packet_received":29686,
"sla_targets_met":
  
  
  "session":0,
  "tx_bandwidth":1309,
  "rx_bandwidth":2553,
  "state_changed":0
}
}
},
....
....

CLI diagnose commands:

# diagnose sys sdwan intf-sla-log port13

# diagnose sys sdwan sla-log ping 1 spoke11-p1_0
   Timestamp: Wed Mar 3 15:35:20 2021, vdom root, health-check ping, interface: spoke11-p1_0, status: up, latency: 0.135, jitter: 0.029, packet loss: 0.000%.

# diagnose sys sdwan sla-log ping 2 spoke12-p1_0
   Timestamp: Wed Mar 3 15:36:08 2021, vdom root, health-check ping, interface: spoke12-p1_0, status: up, latency: 0.095, jitter: 0.010, packet loss: 0.000%.

# diagnose sys sdwan health-check
   Health Check(ping):
     Seq(1 spoke11-p1): state(alive), packet-loss(0.000%) latency(0.156), jitter(0.043) sla_map=0x1
     Seq(1 spoke11-p1_0): state(alive), packet-loss(0.000%) latency(0.128), jitter(0.024) sla_map=0x1
     Seq(2 spoke12-p1): state(alive), packet-loss(0.000%) latency(0.125), jitter(0.028) sla_map=0x1
     Seq(2 spoke12-p1_0): state(alive), packet-loss(0.000%) latency(0.093), jitter(0.008) sla_map=0x1
Mean opinion score calculation and logging in performance SLA health checks

The mean opinion score (MOS) is a method of measuring voice quality using a formula that takes latency, jitter, packet loss, and the codec into account to produce a score from zero to five (0 - 5). The G.711, G.729, and G.722 codecs can be selected in the health check configurations, and an MOS threshold can be entered to indicate the minimum MOS score for the SLA to pass. The maximum MOS score will depend on which codec is used, since each codec has a theoretical maximum limit.

```fortios
config system sdwan
 config health-check
 edit <name>
 set mos-codec {g711 | g729 | g722}
 config sla
 edit <id>
 set link-cost-factor {latency jitter packet-loss mos}
 set mos-threshold <value>
 next
 next
 end
end
```

| mos-codec {g711 | g729 | g722} | Set the VoIP codec to use for the MOS calculation (default = g711). |
|-----------------------------------|---------------------------------------------------------------|
| link-cost-factor {latency jitter packet-loss mos} | Set the criteria to base the link selection on. |
| mos-threshold <value> | Set the minimum MOS for the SLA to be marked as pass (1.0 - 5.0, default = 3.6). |

To configure a health check to calculate the MOS:

```fortios
config system sdwan
 set status enable
 config zone
 edit "virtual-wan-link"
 next
 end
 config members
 edit 1
 set interface "dmz"
 set gateway 172.16.208.2
 next
 edit 2
 set interface "port15"
 set gateway 172.16.209.2
 next
 end
 config health-check
 edit "Test_MOS"
 set server "2.2.2.2"
 set sla-fail-log-period 30
 set sla-pass-log-period 30
 set members 0
 set mos-codec g729
```
SD-WAN

```plaintext
config sla
 edit 1
 set link-cost-factor mos
 set mos-threshold "4.0"
 next
end
next
end
end
```

To use an MOS SLA to steer traffic in an SD-WAN rule:

```plaintext
config system sdwan
 config service
 edit 1
 set name "MOS_traffic_steering"
 set mode sla
 set dst "HQ_LAN"
 set src "Branch_LAN"
 config sla
 edit "Test_MOS"
 set id 1
 next
 end
 set priority-members 0
next
end
end
```

The MOS currently cannot be used to steer traffic when the mode is set to priority.

To verify the MOS calculation results:

1. Verify the health check diagnostics:

   ```plaintext
 # diagnose sys sdwan health-check
 Health Check(Test_MOS): Seq(1 dmz): state(alive), packet-loss(0.000%) latency(0.114), jitter(0.026), mos:4.123, bandwidth-up(999999), bandwidth-dw(999997), bandwidth-bi(1999996) sla_map=0x1
 Seq(2 port15): state(alive), packet-loss(0.000%) latency(0.100), jitter(0.008), mos:4.123, bandwidth-up(999999), bandwidth-dw(999999), bandwidth-bi(1999998) sla_map=0x1
 # diagnose sys sdwan sla-log Test_MOS 1
 Timestamp: Tue Jan 4 11:23:06 2022, vdom root, health-check Test_MOS, interface: dmz, status: up, latency: 0.151, jitter: 0.040, packet loss: 0.000%, mos: 4.123.
 Timestamp: Tue Jan 4 11:23:07 2022, vdom root, health-check Test_MOS, interface: dmz, status: up, latency: 0.149, jitter: 0.041, packet loss: 0.000%, mos: 4.123.
 # diagnose sys sdwan sla-log Test_MOS 2
 Timestamp: Tue Jan 4 11:25:09 2022, vdom root, health-check Test_MOS, interface: port15, status: up, latency: 0.097, jitter: 0.009, packet loss: 0.000%, mos: 4.123.
 Timestamp: Tue Jan 4 11:25:10 2022, vdom root, health-check Test_MOS, interface: port15, status: up, latency: 0.097, jitter: 0.008, packet loss: 0.000%, mos: 4.123.
   ```
2. Change the `mos-codec` to `g722`. The diagnostics will now display different MOS values:

```bash
diagnose sys sdwan health-check
Health Check (Test_MOS):
Seq1 (dmz): state(alive), packet-loss(0.000%) latency(0.150), jitter(0.031), mos(4.453), bandwidth-up(999999), bandwidth-dw(999999), bandwidth-bi(1999996) sla_map=0x1
Seq2 (port15): state(alive), packet-loss(0.000%) latency(0.104), jitter(0.008), mos (4.453), bandwidth-up(999999), bandwidth-dw(999999), bandwidth-bi(1999996) sla_map=0x1
```

3. Increase the latency on the link in `port15`. The calculated MOS value will decrease accordingly. In this example, `port15` is out of SLA since its MOS value is now less than the 4.0 minimum:

```bash
diagnose sys sdwan health-check
Health Check (Test_MOS):
Seq1 (dmz): state(alive), packet-loss(0.000%) latency(0.106), jitter(0.022), mos(4.453), bandwidth-up(999999), bandwidth-dw(999999), bandwidth-bi(1999996) sla_map=0x1
Seq2 (port15): state(alive), packet-loss(0.000%) latency(300.119), jitter(0.012), mos (3.905), bandwidth-up(999999), bandwidth-dw(999999), bandwidth-bi(1999998) sla_map=0x0
```

Sample logs:

```plaintext
date=2022-01-04 time=11:57:54 eventtime=1641326274876828300 tz="-0800" logid="0113022933" type="event" subtype="sdwan" level="notice" vd="root" logdesc="SDWAN SLA notification" eventtype="SLA" healthcheck="Test_MOS" sla_targetid=1 interface="port15" status="up"
latency="300.119" jitter="0.013" packetloss="0.000" mos="3.905"
inbandwidthavailable="1000.00Mbps" outbandwidthavailable="1000.00Mbps"
bibandwidthused="0kbps" outbandwidthused="0kbps" bibandwidthused="0kbps" slamap="0x0" metric="mos" msg="Health Check SLA status. SLA failed due to being over the performance metric threshold."
```

```plaintext
date=2022-01-04 time=11:57:24 eventtime=1641326244286635920 tz="-0800" logid="0113022923" type="event" subtype="sdwan" level="notice" vd="root" logdesc="SDWAN status" eventtype="Health Check" healthcheck="Test_MOS" sla_targetid=1 oldvalue="2" newvalue="1" msg="Number of pass member changed."
```

```
Sample logs:
```
```plaintext
date=2022-01-04 time=11:57:02 eventtime=1641326222516756500 tz="-0800" logid="0113022925" type="event" subtype="sdwan" level="information" vd="root" logdesc="SDWAN SLA information" eventtype="SLA" healthcheck="Test_MOS" sla_targetid=1 interface="port15" status="up"
latency="0.106" jitter="0.007" packetloss="0.000" mos="4.453"
inbandwidthavailable="1000.00Mbps" outbandwidthavailable="1000.00Mbps"
bibandwidthavailable="2.00Gbps" inbandwidthused="0kbps" outbandwidthused="0kbps" bibandwidthused="0kbps" slamap="0x1" msg="Health Check SLA status."
```

**SD-WAN rules**

SD-WAN rules, which are sometimes called *service rules*, identify traffic of interest, and then route the traffic based on a strategy and the condition of the route or *link* between two devices. You can use many strategies to select the outgoing interface and many performance service level agreements (SLAs) to evaluate the link conditions.

Use the following topics to learn about and create SD-WAN rules for your needs:
Overview

SD-WAN rules control how sessions are distributed to SD-WAN members. You can configure SD-WAN rules from the GUI and CLI.

From the GUI, go to Network > SD-WAN > SD-WAN Rules. When creating a new SD-WAN rule, or editing an existing SD-WAN rule, use the Source and Destination sections to identify traffic, and use the Outgoing interfaces section to configure WAN intelligence for routing traffic.

From the CLI, use the following command to configure SD-WAN rules:

```
config system sdwan
 config service
 edit <ID>
 next
```
The following topics describe the fields used to configure SD-WAN rules:

- Fields for identifying traffic on page 541
- Fields for configuring WAN intelligence on page 544
- Additional fields for configuring WAN intelligence on page 546

**Fields for identifying traffic**

This topic describes the fields in an SD-WAN rule used for defining the traffic to which the rule applies. Some fields are available only in the CLI.

SD-WAN rules can identify traffic by source address, destination address, service, and individual or user group matches. SD-WAN rules can also identify traffic by application control (application-aware routing), internet service database (ISDB), BGP route tags, and Differentiated Services Code Point (DSCP) tags.

In the GUI, go to **Network > SD-WAN > SD-WAN Rules**. Click **Create New**, or double-click an existing rule to open it for editing. The **Source** and **Destination** sections are used to identify traffic for the rule:

```
In the CLI, edit the service definition ID number to identify traffic for the rule:

config system sdwan
 config service
 edit <ID>
 <CLI commands from the following tables>
 ...
 end
 end
end
```

The following table describes the fields used for the name, ID, and IP version of the SD-WAN rule:

<table>
<thead>
<tr>
<th>Name, ID, and IP version</th>
<th>CLI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>set name &lt;string&gt;</td>
<td>The name does not need to relate to the traffic being matched, but it is good practice to have intuitive rule names.</td>
</tr>
</tbody>
</table>
### Name, ID, and IP version

<table>
<thead>
<tr>
<th>Field</th>
<th>CLI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>config system sdwan</td>
<td>ID is generated when the rule is created. You can only specify the ID from the CLI.</td>
</tr>
<tr>
<td></td>
<td>config service</td>
<td></td>
</tr>
<tr>
<td></td>
<td>edit &lt;ID&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>next</td>
<td></td>
</tr>
<tr>
<td></td>
<td>end</td>
<td></td>
</tr>
<tr>
<td></td>
<td>end</td>
<td></td>
</tr>
<tr>
<td>IP version</td>
<td>set addr-mode &lt;ipv4</td>
<td>ipv6&gt;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>To configure in the GUI, IPv6 must be enabled from System &gt; Feature Visibility page.</td>
</tr>
</tbody>
</table>

The following table describes the fields used for source section of the SD-WAN rule:

### Source

<table>
<thead>
<tr>
<th>Field</th>
<th>CLI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source address</td>
<td>set src &lt;object&gt;</td>
<td>One or more address objects.</td>
</tr>
<tr>
<td></td>
<td>May be negated from the CLI with set src-negate.</td>
<td></td>
</tr>
<tr>
<td>User group</td>
<td>set users &lt;user object&gt;</td>
<td>Individual users or user groups</td>
</tr>
<tr>
<td></td>
<td>set groups &lt;group object&gt;</td>
<td></td>
</tr>
<tr>
<td>Source interface</td>
<td>set input-device &lt;interface name&gt;</td>
<td>CLI only. Select one or more source interfaces.</td>
</tr>
<tr>
<td>(input-device)</td>
<td>May be negated with set input-device-negate enable.</td>
<td></td>
</tr>
</tbody>
</table>

The following table describes the fields used for the destination section of the SD-WAN rule:

### Destination

<table>
<thead>
<tr>
<th>Field</th>
<th>CLI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>set dst &lt;object&gt;</td>
<td>One or more address objects. One protocol and one port range can be combined with the address object. If it is necessary for an SD-WAN rule to match multiple protocols or multiple port ranges, you can create a custom Internet Service.</td>
</tr>
<tr>
<td></td>
<td>set protocol &lt;integer&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>set start-port &lt;integer&gt;, set end-port &lt;integer&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use set dst-negate enable to negate the address object.</td>
<td></td>
</tr>
<tr>
<td>Internet Service</td>
<td>set internet-service enable</td>
<td>One or more internet services or service groups.</td>
</tr>
<tr>
<td><strong>Destination Field</strong></td>
<td><strong>CLI</strong></td>
<td><strong>Description</strong></td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td><strong>set internet-service-custom</strong>&lt;br/&gt;&lt;name_1&gt; &lt;name_2&gt; ... &lt;name_n&gt;</td>
<td>This applies only to IPv4 rules, and cannot be used in conjunction with an address object.</td>
<td></td>
</tr>
<tr>
<td><strong>set internet-service-custom-group</strong>&lt;br/&gt;&lt;name_1&gt; &lt;name_2&gt; ... &lt;name_n&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>set internet-service-name</strong>&lt;br/&gt;&lt;name_1&gt; &lt;name_2&gt; ... &lt;name_n&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>set internet-service-group</strong>&lt;br/&gt;&lt;name_1&gt; &lt;name_2&gt; ... &lt;name_n&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Application</strong></td>
<td><strong>set internet-service-app-ctrl</strong>&lt;br/&gt;&lt;id_1&gt; &lt;id_2&gt; ... &lt;id_n&gt;</td>
<td>One or more applications or application groups.</td>
</tr>
<tr>
<td></td>
<td><strong>set internet-service-app-ctrl-group</strong>&lt;br/&gt;&lt;name_1&gt; &lt;name_2&gt; ... &lt;name_n&gt;</td>
<td>This applies only to IPv4 rules, and cannot be used in conjunction with an address object.</td>
</tr>
<tr>
<td></td>
<td><strong>set internet-service-app-ctrl-category</strong>&lt;br/&gt;&lt;id_1&gt; &lt;id_2&gt; ... &lt;id_n&gt;</td>
<td>May be used with internet services or service group.</td>
</tr>
<tr>
<td><strong>Route tag (route-tag)</strong></td>
<td><strong>set route-tag</strong>&lt;br/&gt;&lt;integer&gt;</td>
<td>CLI only. This replaces the &lt;b&gt;dst&lt;/b&gt; field (if previously configured) and matches a BGP route tag configured in a route map. See Using BGP tags with SD-WAN rules on page 609.</td>
</tr>
<tr>
<td><strong>TOS mask (tos-mask)</strong></td>
<td><strong>set tos-mask</strong>&lt;br/&gt;&lt;8-bit hex value&gt;</td>
<td>CLI only. In order to leverage type of service (TOS) matching or DSCP matching on the IP header, the SD-WAN rule must specify the bit mask of the byte holding the TOS value. For example, a TOS mask of 0xe0 (11100000) matches the upper 3 bits.</td>
</tr>
<tr>
<td><strong>TOS (tos)</strong></td>
<td><strong>set tos</strong>&lt;br/&gt;&lt;8 bit hex value&gt;</td>
<td>CLI only. The value specified here is matched after the &lt;b&gt;tos-mask&lt;/b&gt; is applied.</td>
</tr>
</tbody>
</table>
### Destination Field CLI Description

For example, the FortiGate receives DSCP values 110000 and 111011. (DSCP is the upper 6 bits of the TOS field – 11000000 and 11101100 respectively). Using the TOS value 0xe0 (11100000), only the second DSCP value is matched.

### Fields for configuring WAN intelligence

This topic describes the fields in an SD-WAN rule used for configuring WAN intelligence, which processes and routes traffic that matches the SD-WAN rule.

In the GUI, go to **Network > SD-WAN > SD-WAN Rules**. Click **Create New**, or double-click an existing rule to open it for editing. The **Outgoing Interfaces** section is used to configure WAN intelligence for the rule:

WAN intelligence is comprised of the following parts:

- **Interface or zone preference on page 544**
- **Strategy on page 545**
- **Performance SLA on page 545**

### Interface or zone preference

By default, the configured order of interfaces and/or zones in a rule are used. Interfaces and zones that are selected first have precedence over interfaces selected second and so on.
You can specify both interfaces and zones. When a zone is specified in the Zone preference field, it is equivalent to selecting each of the contained interface members in the Interface preference section. Interface members in a zone have lower priority than interfaces configured in the Interface preference section.

For example:

- There are 3 interfaces: port1, port2 and port3.
  - Port2 is in Zone1
  - Port1 and port3 belong to the default virtual-wan-link zone.
- An SD-WAN rule is created with Interface preference set to port3 and port1, and Zone preference set to Zone1.

The SD-WAN rule prefers the interfaces in the following order:

1. port3
2. port1
3. port2

You can configure the interface and zone preference in the CLI:

```
config system sdwan
 config service
 edit <ID>
 set priority-members <integer>
 set priority-zone <interface>
 next
 end
end
```

**Strategy**

Strategy dictates how the interface and/or zone order changes as link conditions change. You can use the following strategies:

- **Automatic (auto)**: interfaces are assigned a priority based on quality. See Automatic strategy on page 552.
- **Manual (manual)**: interfaces are manually assigned a priority. See Manual strategy on page 553.
- **Best Quality (priority)**: interfaces are assigned a priority based on the link-cost-factor of the interface. See Best quality strategy on page 554.
- **Lowest cost (SLA) (sla)**: interfaces are assigned a priority based on selected SLA settings. See Lowest cost (SLA) strategy on page 558.
- **Maximize Bandwidth (SLA) (load-balance)**: traffic is distributed among all available links based on the selected load balancing algorithm. See Maximize bandwidth (SLA) strategy on page 561.

**Performance SLA**

The best quality, lowest cost, and maximize bandwidth strategies are the most intelligent modes, and they leverage SLA health checks to provide meaningful metrics for a given link. FortiGate uses the metrics to make intelligent decisions to route traffic.

Automatic and manual strategies have pre-configured logic that do not leverage SLA health checks.
The goal of the performance SLA is to measure the quality of each SD-WAN member link. The following methods can be used to measure the quality of a link:

- **Active measurement**
  - Health-check traffic is sent to a server with a variety of protocols options.
  - The following SLA metrics are measured on this probe traffic:
    - Latency
    - Jitter
    - Packet loss

- **Passive measurement**
  - SLA metrics are measured on real or live traffic, reducing the amount of probe traffic that is sent and received.
  - There is the option (prefer passive) to initiate probe traffic when no live traffic is present.

Performance SLA is utilized by auto, Lowest Cost (SLA), Maximize Bandwidth (SLA), and Best Quality strategies. Lowest Cost (SLA) and Maximize Bandwidth SLA use SLA targets in a pass or fail style to evaluate whether a link is considered for traffic. Best Quality compares a specific metric of the SLA to pick the best result.

Therefore it is integral to select or create an SLA target(s) that relates to the traffic targeted by the rule. It does not make sense to evaluate a public resource, such as YouTube, when the rule matches Azure traffic.

See Performance SLA on page 507 for more details.

**Additional fields for configuring WAN intelligence**

This topic describes the fields in an SD-WAN rule used for configuring WAN intelligence for egress traffic:

- Forward and/or reverse differentiated services code point (DSCP) on page 546
- Default and gateway options on page 547

For information about accessing fields for configuring WAN intelligence, see Fields for configuring WAN intelligence on page 544.

**Forward and/or reverse differentiated services code point (DSCP)**

The FortiGate differentiated services feature can be used to change the DSCP value for all packets accepted by a policy.

The packet's DSCP field for traffic initiating a session (forward) or for reply traffic (reverse) can be changed and enabled in each direction separately by configuring it in the firewall policy using the Forward DSCP and Reverse DSCP fields.

From the CLI:

```
config system sdwan
 config service
 edit <ID>
 ... set dscp-forward enable
 ... next
 end
end

set dscp-forward enable
```

Enable use of forward DSCP tag.
**SD-WAN**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>set dscp-forward-tag 000000</td>
<td>Forward traffic DSCP tag.</td>
</tr>
<tr>
<td>set dscp-reverse enable</td>
<td>Enable use of reverse DSCP tag.</td>
</tr>
<tr>
<td>set dscp-reverse-tag 000000</td>
<td>Reverse traffic DSCP tag.</td>
</tr>
</tbody>
</table>

**Default and gateway options**

Following are additional gateway options that can be set only in the CLI:

```
config system sdwan
 config service
 edit <ID>
 ...
 set default enable
 ...
 next
 end
end
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>set default [enable</td>
<td>disable]</td>
</tr>
<tr>
<td>set gateway [enable</td>
<td>disable]</td>
</tr>
</tbody>
</table>

By default, these settings are set to **disable**.

These two commands help adjust FortiGate route selection by affecting how the FortiGate consults the Forward Information Base (FIB).

In order to decide whether an SD-WAN policy-route can be matched, FortiGate performs the following FIB lookups:

- FIB best match for the destination must return an SD-WAN member.
- FIB route to the destination must exist over the desired SD-WAN member.

When `set default enable` is used with `set gateway enable`, FortiGate bypasses the FIB checks, and instead routes any matching traffic of the SD-WAN rule to the chosen SD-WAN member using the member's configured gateway. SD-WAN members must have a gateway configured.

When `set default disable` is used with `set gateway enable`, FortiGate keeps the first rule in effect but causes the second rule to change to:

- FIB route to the gateway IP address must exist over any interface.

See also [Fields for configuring WAN intelligence on page 544](#).

**Implicit rule**

SD-WAN rules define specific policy routing options to route traffic to an SD-WAN member. When no explicit SD-WAN rules are defined, or if none of the rules are matched, then the default implicit rule is used.

In an SD-WAN configuration, the default route usually points to the SD-WAN interface, so each active member's gateway is added to the routing table's default route. FortiOS uses equal-cost multipath (ECMP) to balance traffic between the interfaces. One of five load balancing algorithms can be selected:
Source IP <span>(source-ip-based)</span>	Traffic is divided equally between the interfaces, including the SD-WAN interface. Sessions that start at the same source IP address use the same path. This is the default selection.
Sessions <span>(weight-based)</span>	The workload is distributing based on the number of sessions that are connected through the interface. The weight that you assign to each interface is used to calculate the percentage of the total sessions that are allowed to connect through an interface, and the sessions are distributed to the interfaces accordingly. Sessions with the same source and destination IP addresses <span>(src-ip and dst-ip)</span> are forwarded to the same path, but are still considered in later session ratio calculations. An interface's weight value cannot be zero.
Spillover <span>(usage-based)</span>	The interface is used until the traffic bandwidth exceeds the ingress and egress thresholds that you set for that interface. Additional traffic is then sent through the next SD-WAN interface member.
Source-Destination IP <span>(source-dest-ip-based)</span>	Traffic is divided equally between the interfaces. Sessions that start at the same source IP address and go to the same destination IP address use the same path.
Volume <span>(measured-volume-based)</span>	The workload is distributing based on the number of packets that are going through the interface. The volume weight that you assign to each interface is used to calculate the percentage of the total bandwidth that is allowed to go through an interface, and the bandwidth is distributed to the interfaces accordingly. An interface's volume value cannot be zero.

You cannot exclude an interface from participating in load balancing using the implicit rule. If the weight or volume were set to zero in a previous FortiOS version, the value is treated as a one. Interfaces with static routes can be excluded from ECMP if they are configured with a lower priority than other static routes.

**Examples**

The following four examples demonstrate how to use the implicit rules (load-balance mode).
If no SD-WAN zone is specified, members are added to the default virtual-wan-link zone.

**Example 1**

Outgoing traffic is equally balanced between wan1 and wan2, using source-ip-based or source-dest-ip-based mode.

**Using the GUI:**

1. On the FortiGate, enable SD-WAN and add wan1 and wan2 as SD-WAN members, then add a policy and static route. See SD-WAN quick start on page 488 for details.
2. Go to Network > SD-WAN and select the SD-WAN Rules tab.
3. Edit the sd-wan rule (the last default rule).
4. For the Load Balancing Algorithm, select either Source IP or Source-Destination IP.
5. Click OK.

**Using the CLI:**

1. Enable SD-WAN and add wan1 and wan2 as SD-WAN members, then add a policy and static route. See SD-WAN quick start on page 488 for details.
2. Set the load balancing algorithm:
   
   **Source IP based:**
   ```
 config system sdwan
 set load-balance-mode source-ip-based
 end
   ```

   **Source-Destination IP based:**
   ```
 config system sdwan
 set load-balance-mode source-dest-ip-based
 end
   ```


Example 2

Outgoing traffic is balanced between wan1 and wan2 with a customized ratio, using weight-based mode: wan1 runs 80% of the sessions, and wan2 runs 20% of the sessions.

Sessions with the same source and destination IP addresses (src-ip and dst-ip) will be forwarded to the same path, but will still be considered in later session ratio calculations.

Using the GUI:

1. Go to Network > SD-WAN and select the SD-WAN Rules tab.
2. Edit the sd-wan rule (the last default rule).
3. For the Load Balancing Algorithm, select Sessions.
4. Enter 80 in the wan1 field, and 20 in the wan2 field.
5. Click OK.

Using the CLI:

```
config system sdwan
 set load-balance-mode weight-based
config members
 edit 1
 set interface "wan1"
 set weight 80
 next
 edit 2
 set interface "wan2"
 set weight 20
 next
end
```

Example 3

Outgoing traffic is balanced between wan1 and wan2 with a customized ratio, using measured-volume-based mode: wan1 runs 80% of the volume, and wan2 runs 20% of the volume.
Using the GUI:

1. Go to Network > SD-WAN and select the SD-WAN Rules tab.
2. Edit the sd-wan rule (the last default rule).
3. For the Load Balancing Algorithm, select Volume.
4. Enter 80 in the wan1 field, and 20 in the wan2 field.
5. Click OK.

Using the CLI:

```fortios
config system sdwan
 set load-balance-mode measured-volume-based
config members
 edit 1
 set interface "wan1"
 set volume-ratio 80
 next
 edit 2
 set interface "wan2"
 set volume-ratio 20
 next
end
end
```

**Example 4**

Load balancing can be used to reduce costs when internet connections are charged at different rates. For example, if wan2 charges based on volume usage and wan1 charges a fixed monthly fee, we can use wan1 at its maximum bandwidth, and use wan2 for overflow.

In this example, wan1’s bandwidth is 10Mbps down and 2Mbps up. Traffic will use wan1 until it reaches its spillover limit, then it will start to use wan2. Note that auto-asic-offload must be disabled in the firewall policy.

Using the GUI:

1. On the FortiGate, enable SD-WAN and add wan1 and wan2 as SD-WAN members, then add a policy and static route. See SD-WAN quick start on page 488 for details.
2. Go to Network > SD-WAN and select the SD-WAN Rules tab.
3. Edit the sd-wan rule (the last default rule).
4. For the Load Balancing Algorithm, select Spillover.
5. Enter 10000 in the `wan1 Ingress Spillover Threshold` field, and 2000 in the `wan1 Egress Spillover Threshold` field.

6. Click OK.

Using the CLI:

```
config system sdwan
 set load-balance-mode usage-based
config members
 edit 1
 set interface "wan1"
 set spillover-threshold 2000
 set ingress-spillover-threshold 10000
 next
end
```

Automatic strategy

The automatic strategy is a legacy rule that lets you select an outgoing interface based on its performance ranking compared to the other SD-WAN interfaces. This is achieved by applying a performance SLA to rank the interfaces, and then selecting the desired rank.

In this example, you have three SD-WAN interfaces to three different ISPs that all go to the public internet. WAN1 is your highest quality link and should be reserved for business critical traffic. WAN2 and WAN3 are redundant backup links. You noticed one non-critical application is taking up a lot of bandwidth and want to prioritize it to the lowest quality link at any given time.

To configure automatic SD-WAN rules from the CLI:

```
config system sdwan
 config members
 edit 1
 set interface "wan1"
 next
 edit 2
 set interface "wan2"
 next
 edit 3
 set interface "wan3"
 next
```
```plaintext
end
config health-check
 edit "non-critical application"
 set server "noncritical.application.com"
 set members 1 2 3
 config sla
 edit 1
 set latency-threshold 250
 set jitter-threshold 50
 set packetloss-threshold 3
 next
 end
end
config service
 edit 1
 set name "non-critical application"
 set mode auto
 set quality-link 3
 set dst "non-critical-app-address-object"
 set health-check "non-critical application"
 next
end
end
```

The `auto` option is only available in the CLI. If you use the GUI to edit the rule, the `auto` option will be overwritten because you cannot select `auto` in the GUI.

**Manual strategy**

In manual mode, no health checks are used. As a result, the decision making closer resembles logic than intelligence. SD-WAN manual rules are similar to regular policy-based routes, but have the added features of application-aware routing and BGP-tag routing. A manual strategy rule is comprised of the following parts:

- Defining the interfaces to be used
- Ordering the interfaces based on preference

**To configure manual SD-WAN rules from the GUI:**

1. Go to *Network > SD-WAN*.
2. Select the *SD-WAN Rules* tab, and click *Create New*. 
3. Set the following options to create a manual rule:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type a name for the rule.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>(Optional) Specify a Source address and/or User group.</td>
</tr>
<tr>
<td>Destination</td>
<td>Specify the destination using an Address object or an Internet Service or an Application.</td>
</tr>
<tr>
<td>Zone preference</td>
<td>Specify one or more SD-WAN interfaces or zones. The order in which the interfaces or zones are specified determines their priority when the rule is matched.</td>
</tr>
</tbody>
</table>

4. Set the remaining options as desired, and click OK to create the rule.

**To configure manual SD-WAN rules from the CLI:**

```
config system sdwan
config members
 edit 1
 set interface "wan1"
 next
 edit 2
 set interface "wan2"
 next
end
config service
 edit 1
 set name "manual"
 set mode manual
 set priority-members 2 1
 set dst "DC_net"
 set hold-down-time 60
 next
end
end
```

- The command `set mode manual` will not appear in the configuration because it is the default mode.
- The command `set hold-down-time <integer>` is an optional command that controls how long to wait before switching back to the primary interface in the event of a failover.

### Best quality strategy

When using *Best Quality* mode, SD-WAN will choose the best link to forward traffic by comparing the *link-cost-factor*. A link-cost factor is a specific metric of participating link(s) (such as, latency, packet loss, and so on) evaluated against a target that you define (such as a health-check server), for example, the latency of WAN1 and WAN2 to your datacenter. Below is a list of link-cost factors available to you:
### GUI	CLI	Description
Latency | latency | Select a link based on latency.
Jitter | jitter | Select a link based on jitter.
Packet Loss | packet-loss | Select a link based on packet loss.
Downstream | inbandwidth | Select a link based on available bandwidth of incoming traffic.
Upstream | outbandwidth | Select a link based on available bandwidth of outgoing traffic.
Bandwidth | bibandwidth | Select a link based on available bandwidth of bidirectional traffic.
Customized profile | custom-profile-1 | Select link based on customized profile. If selected, set the following weights:
• packet-loss-weight: Coefficient of packet-loss.
• latency-weight: Coefficient of latency.
• jitter-weight: Coefficient of jitter.
• bandwidth-weight: Coefficient of reciprocal of available bidirectional bandwidth.

Although SD-WAN intelligence selects the best quality link according to the selected metric, by default a preference or advantage is given to the first configured SD-WAN member. This default is 10% and may be configured with the CLI command `set link-cost-threshold 10`.

**Example of how `link-cost-threshold` works:**

```plaintext
config system sdwan
 config members
 edit 1
 set interface "wan1"
 next
 edit 2
 set interface "wan2"
 next
 end
 config service
 edit 1
 set name "Best_Quality"
 set mode priority
 set priority-members 2 1
 set dst "DC_net"
 set health-check "DC_HealthCheck"
 set link-cost-factor latency
 set link-cost-threshold 10
 next
 end
end
```

In this example both WAN1 and WAN2 are assumed to have 200ms latency to the health-check server named `DC_HealthCheck`. Because WAN2 is specified before WAN1 in priority-members, SD-WAN parses the two interfaces metric as follows:

- WAN1: 200ms
- WAN2: \(200ms / (1+10\%) = \sim 182ms\)

As a result, WAN2 is selected because the latency is lower.
If the *Downstream* (*inbandwidth*), *Upstream* (*outbandwidth*), or *Bandwidth* (*bibandwidth*) quality criteria is used, the FortiGate uses the upstream and downstream bandwidth values configured on the member interfaces to calculate bandwidth.

The interface bandwidth configuration can be done manually, or the interface speedtest can be used to populate the bandwidth values based on the speedtest results. See *Manual interface speedtest on page 527* for details.

**To manually configure the upstream and downstream interface bandwidth values:**

```config
config system interface
 edit <interface>
 set estimated-upstream-bandwidth <speed in kbps>
 set estimated-downstream-bandwidth <speed in kbps>
 next
end
```

**Example**

In this example, your wan1 and wan2 SD-WAN interfaces connect to two ISPs that both go to the public internet, and you want Gmail services to use the link with the least latency.

**To configure an SD-WAN rule to use Best Quality:**

1. On the FortiGate, add wan1 and wan2 as SD-WAN members, then add a policy and static route. See *SD-WAN quick start on page 488* for details.
2. Create a new Performance SLA named *google*. See *Link monitoring example on page 515*.
3. Go to *Network > SD-WAN*, select the *SD-WAN Rules* tab, and click *Create New*.
4. Enter a name for the rule, such as *gmail*.
5. Configure the following settings:
Priority Rule

Name: gmail

Source
Source address
User group

Destination
Address
Internet Service
Application

Outgoing Interfaces
Select a strategy for how outgoing interfaces will be chosen.
- Manual
- Best Quality
  This interface with the best measured performance is selected.
- Lowest Cost (SLA)
  This interface that meets SLA targets is selected. When there is a tie, the interface with the lowest assigned cost is selected.
- Maximize Bandwidth (SLA)
  Traffic is load balanced among interfaces that meet SLA targets.

Interface preference
Zone preference
Measured SLA
Quality metric
Forward DSCP
Reverse DSCP
Status

Internet Service  Google-Gmail
Strategy  Best Quality
Interface preference  wan1 and wan2
Measured SLA  google (created in step 2).
Quality criteria  Latency

6. Click OK to create the rule.

To configure an SD-WAN rule to use priority:

```bash
config system sdwan
 config health-check
 edit "google"
 set server "google.com"
 set members 1 2
 next
 end
 config service
 edit 1
 set name "gmail"
 set mode priority
 set internet-service enable
 set internet-service-id 65646
 set health-check "google"
```
To diagnose the Performance SLA status:

FGT # diagnose sys sdwan health-check google
Health Check (google):
Seq(1): state(alive), packet-loss(0.000%) latency(14.563), jitter(4.334) sla_map=0x0
Seq(2): state(alive), packet-loss(0.000%) latency(12.633), jitter(6.265) sla_map=0x0

FGT # diagnose sys sdwan service 1
Service(1):

   TOS(0x0/0x0), protocol(0: 1->65535), Mode(priority), link-cost-factor(latency), link-cost-threshold(10), health-check (google) Members:

   1: Seq_num(2), alive, latency: 12.633, selected
   2: Seq_num(1), alive, latency: 14.563, selected

Internet Service: Google-Gmail(65646)

As wan2 has a smaller latency, SD-WAN will put Seq_num(2) on top of Seq_num(1) and wan2 will be used to forward Gmail traffic.

Lowest cost (SLA) strategy

When using Lowest Cost (SLA) mode (sla in the CLI), SD-WAN will choose the lowest cost link that satisfies SLA to forward traffic. The lowest possible cost is 0. If multiple eligible links have the same cost, the Interface preference order will be used to select a link.

In this example, your wan1 and wan2 SD-WAN interfaces connect to two ISPs that both go to the public internet. The cost of wan2 is less than that of wan1. You want to configure Gmail services to use the lowest cost interface, but the link quality must meet a standard of latency: 10ms, and jitter: 5ms.
SD-WAN

To configure an SD-WAN rule to use Lowest Cost (SLA):

1. On the FortiGate, add wan1 and wan2 as SD-WAN members, then add a policy and static route. See SD-WAN quick start on page 488 for details.
2. Create a new Performance SLA named google that includes an SLA Target with Latency threshold = 10ms and Jitter threshold = 5ms. See Link monitoring example on page 515.
3. Go to Network > SD-WAN, select the SD-WAN Rules tab, and click Create New.
4. Enter a name for the rule, such as gmail.
5. Configure the following settings:

<table>
<thead>
<tr>
<th>Internet Service</th>
<th>Google-Gmail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy</td>
<td>Lowest Cost (SLA)</td>
</tr>
<tr>
<td>Interface preference</td>
<td>wan1 and wan2</td>
</tr>
<tr>
<td>Required SLA target</td>
<td>google (created in step 2).</td>
</tr>
</tbody>
</table>

6. Click OK to create the rule.

To configure an SD-WAN rule to use SLA:

```config
config system sdwan
config members
 edit 1
 set interface "wan1"
 set cost 10
```
next
edit 2
   set interface "wan2"
   set cost 5
next
derm
config health-check
edit "google"
   set server "google.com"
   set members 1 2
   config sla
      edit 1
         set latency-threshold 10
         set jitter-threshold 5
      next
   next
end
derm
config service
edit 1
   set name "gmail"
   set mode sla
   set internet-service enable
   set internet-service-id 65646
   config sla
      edit "google"
         set id 1
      next
   set priority-members 1 2
next
derm

If no SD-WAN zone is specified, members are added to the default virtual-wan-link zone.

The CLI command set minimum-sla-meet-members allows you to specify the number of links that must meet SLA for the rule to take effect. If the number of members is less than the minimum set with this command, the rule will not take effect.

To diagnose the Performance SLA status:

FGT # diagnose sys sdwan health-check google
Health Check(google):
Seq(1): state(alive), packet-loss(0.000%) latency(14.563), jitter(4.334) sla_map=0x0
Seq(2): state(alive), packet-loss(0.000%) latency(12.633), jitter(6.265) sla_map=0x0

FGT # diagnose sys sdwan service 1
Service(1): Address Mode(IPV4) flags=0x0
           TOS(0x0/0x0), Protocol(0: 1->65535), Mode(sla)
Internet Service: Google.Gmail(65646)

When both wan1 and wan2 meet the SLA requirements, Gmail traffic will only use wan2. If only wan1 meets the SLA requirements, Gmail traffic will only use wan1, even though it has a higher cost. If neither interface meets the requirements, wan2 will be used.

If both interface had the same cost and both met the SLA requirements, the first link configured in set priority-members would be used.

Maximize bandwidth (SLA) strategy

When using Maximize Bandwidth mode (load-balance in the CLI), SD-WAN will choose all of the links that satisfies SLA to forward traffic based on a load balancing algorithm. The load balancing algorithm, or hash method, can be one of the following:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>round-robin</td>
<td>All traffic are distributed to selected interfaces in equal portions and circular order. This is the default method, and the only option available when using the GUI.</td>
</tr>
<tr>
<td>source-ip-based</td>
<td>All traffic from a source IP is sent to the same interface.</td>
</tr>
<tr>
<td>source-dest-ip-based</td>
<td>All traffic from a source IP to a destination IP is sent to the same interface.</td>
</tr>
<tr>
<td>inbandwidth</td>
<td>All traffic are distributed to a selected interface with most available bandwidth for incoming traffic.</td>
</tr>
<tr>
<td>outbandwidth</td>
<td>All traffic are distributed to a selected interface with most available bandwidth for outgoing traffic.</td>
</tr>
<tr>
<td>bibandwidth</td>
<td>All traffic are distributed to a selected interface with most available bandwidth for both incoming and outgoing traffic.</td>
</tr>
</tbody>
</table>

When the inbandwidth, outbandwidth, or bibandwidth load balancing algorithm is used, the FortiGate will compare the bandwidth based on the configured upstream and downstream bandwidth values.

The interface speedtest can be used to populate the bandwidth values based on the speedtest results. See Manual interface speedtest on page 527 for details.

To manually configure the upstream and downstream bandwidth values:

```
config system interface
 edit <interface>
 set estimated-upstream-bandwidth <speed in kbps>
 set estimated-downstream-bandwidth <speed in kbps>
 next
end
```

ADVPN is not supported in this mode.
In this example, your wan1 and wan2 SD-WAN interfaces connect to two ISPs that both go to the public internet. You want to configure Gmail services to use both of the interface, but the link quality must meet a standard of latency: 10ms, and jitter: 5ms. This can maximize the bandwidth usage.

To configure an SD-WAN rule to use Maximize Bandwidth (SLA):

1. On the FortiGate, add wan1 and wan2 as SD-WAN members, then add a policy and static route. See SD-WAN quick start on page 488 for details.
2. Create a new Performance SLA named google that includes an SLA Target 1 with Latency threshold = 10ms and Jitter threshold = 5ms. See Link monitoring example on page 515.
3. Go to Network > SD-WAN, select the SD-WAN Rules tab, and click Create New.
4. Enter a name for the rule, such as gmail.
5. Configure the following settings:
### SD-WAN Field Setting

<table>
<thead>
<tr>
<th>Field</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet Service</td>
<td>Google-Gmail</td>
</tr>
<tr>
<td>Strategy</td>
<td>Maximize Bandwidth (SLA)</td>
</tr>
<tr>
<td>Interface preference</td>
<td>wan1 and wan2</td>
</tr>
<tr>
<td>Required SLA target</td>
<td>google (created in step 2).</td>
</tr>
</tbody>
</table>

6. Click OK to create the rule.

**To configure an SD-WAN rule to use SLA:**

```
config system sdwan
 config health-check
 edit "google"
 set server "google.com"
 set members 1 2
 config sla
 edit 1
 set latency-threshold 10
 set jitter-threshold 5
 next
 next
 end
 end
config service
 edit 1
 set name "gmail"
 set addr-mode ipv4
 set mode load-balance
 set hash-mode round-robin
 set internet-service enable
 set internet-service-name Google-Gmail
 config sla
 edit "google"
 set id 1
 next
 end
 set priority-members 1 2
 next
end
```

The CLI command `set minimum-sla-meet-members` allows you to specify the number of links that must meet SLA for the rule to take effect. If the number of members is less than the minimum set with this command, the rule will not take effect.

**To diagnose the performance SLA status:**

```
FGT # diagnose sys sdwan health-check google
Health Check (google):
Seq(1): state(alive), packet-loss(0.000%) latency(14.563), jitter(4.334) sla_map=0x0
Seq(2): state(alive), packet-loss(0.000%) latency(12.633), jitter(6.265) sla_map=0x0
```
FGT # diagnose sys sdwan service 1
Service(1): Address Mode(IPV4) flags=0x0
   TOS(0x0/0x0), Protocol(0: 1->65535), Mode(load-balance)
   Members:<<BR>>
      1: Seq_num(1), alive, sla(0x1), num of pass(1), selected
      2: Seq_num(2), alive, sla(0x1), num of pass(1), selected

Internet Service: Google.Gmail(65646)

When both wan1 and wan2 meet the SLA requirements, Gmail traffic will use both wan1 and wan2. If only one of the interfaces meets the SLA requirements, Gmail traffic will only use that interface.

If neither interface meets the requirements but health-check is still alive, then wan1 and wan2 tie. The traffic will try to balance between wan1 and wan2, using both interfaces to forward traffic.

**Use MAC addresses in SD-WAN rules and policy routes**

You can use MAC addresses as the source in SD-WAN rules and policy routes.

The FABRIC_DEVICE address object (a dynamic object that includes the IPs of Security Fabric devices) can be used as a source or destination in SD-WAN rules and policy routes.

The `diagnose ip proute match` command accepts either the IP or MAC address format for the source:

```
diagnose ip proute match <destination> <source> <interface> <protocol> <port>
```

To configure a MAC address as a source for SD-WAN and a policy route:

1. Configure the MAC address:

   ```
 config firewall address
 edit "mac-add"
 set type mac
 set macaddr 70:4c:a5:86:de:56
 next
 end
   ```

2. Configure the policy route:

   ```
 config router policy
 edit 3
 set srcaddr "mac-add"
 set gateway 15.1.1.34
 set output-device ha
 next
 end
   ```

3. Configure the SD-WAN rule:

   ```
 config system sdwan
 config service
 edit 1
 set dst "all"
 set src "mac-add"
   ```
To verify the policy route matching for a MAC address:

```bash
diagnose ip proute match 3.1.1.34 70:4c:a5:86:de:56 port3 22 6
dst=3.1.1.34 src=0.0.0.0 smac=70:4c:a5:86:de:56 iif=11 protocol=22 dport=6
id=00000003 type=Policy Route
seq-num=3
```

### SD-WAN traffic shaping and QoS

Use a traffic shaper in a firewall shaping policy to control traffic flow. You can use it to control maximum and guaranteed bandwidth, or put certain traffic to one of the three different traffic priorities: high, medium, or low.

An advanced shaping policy can classify traffic into 30 groups. Use a shaping profile to define the percentage of the interface bandwidth that is allocated to each group. Each group of traffic is shaped to the assigned speed limit based on the outgoing bandwidth limit configured on the interface.

For more information, see Traffic shaping on page 918.

### Sample topology

![Sample topology diagram](image)

### Sample configuration

This example shows a typical customer usage where the customer's SD-WAN uses the default zone, and has two member: wan1 and wan2, each set to 10Mb/s.

An overview of the procedures to configure SD-WAN traffic shaping and QoS with SD-WAN includes:

1. Give HTTP/HTTPS traffic high priority and give FTP low priority so that if there are conflicts, FortiGate will forward HTTP/HTTPS traffic first.
2. Even though FTP has low priority, configure FortiGate to give it a 1Mb/s guaranteed bandwidth on each SD-WAN member so that if there is no FTP traffic, other traffic can use all the bandwidth. If there is heavy FTP traffic, it can still be guaranteed a 1Mb/s bandwidth.

3. Traffic going to specific destinations such as a VOIP server uses wan1 to forward, and SD-WAN forwards with an Expedited Forwarding (EF) DSCP tag 101110.

To configure SD-WAN traffic shaping and QoS with SD-WAN in the GUI:

1. On the FortiGate, add wan1 and wan2 as SD-WAN members, then add a policy and static route. See SD-WAN quick start on page 488.
2. Add a firewall policy with Application Control enabled. See Configuring firewall policies for SD-WAN on page 491.
   a. Enable Guaranteed Bandwidth and set it to 1000 kbps.
   a. Name the traffic shaping policy, for example, HTTP-HTTPS.
   b. Set the following:

<table>
<thead>
<tr>
<th>Source</th>
<th>all</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination</td>
<td>all</td>
</tr>
<tr>
<td>Service</td>
<td>HTTP and HTTPS</td>
</tr>
<tr>
<td>Outgoing interface</td>
<td>virtual-wan-link</td>
</tr>
<tr>
<td>Shared Shaper</td>
<td>Enable and set to high-priority</td>
</tr>
<tr>
<td>Reverse Shaper</td>
<td>Enable and set to high-priority</td>
</tr>
</tbody>
</table>

   c. Click OK.
5. Go to Policy & Objects > Traffic Shaping, select the Traffic Shaping Policies tab, and click Create New.
   a. Name the traffic shaping policy, for example, FTP.
   b. Set the following:

<table>
<thead>
<tr>
<th>Source</th>
<th>all</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination</td>
<td>all</td>
</tr>
<tr>
<td>Service</td>
<td>FTP, FTP_GET, and FTP_PUT</td>
</tr>
<tr>
<td>Outgoing interface</td>
<td>virtual-wan-link</td>
</tr>
<tr>
<td>Shared Shaper</td>
<td>Enable and set to low-priority</td>
</tr>
<tr>
<td>Reverse Shaper</td>
<td>Enable and set to low-priority</td>
</tr>
</tbody>
</table>

   c. Click OK
6. Go to Network > SD-WAN, select the SD-WAN Rules tab, and click Create New.
   a. Enter a name for the rule, such as Internet.
   b. In the Destination section, click Address and select the VOIP server that you created in the firewall address.
   d. For Interface preference select wan1.
   e. Click OK.
7. Use CLI commands to modify DSCP settings. See the DSCP CLI commands below.
To configure the firewall policy using the CLI:

```plaintext
config firewall policy
edit 1
 set name "1"
 set srcintf "dmz"
 set dstintf "virtual-wan-link"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set utm-status enable
 set ssl-ssh-profile "certificate-inspection"
 set application-list "default"
 set nat enable
next
end
```

To configure the firewall traffic shaper priority using the CLI:

```plaintext
config firewall shaper traffic-shaper
edit "high-priority"
 set maximum-bandwidth 1048576
 set per-policy enable
next
edit "low-priority"
 set guaranteed-bandwidth 1000
 set maximum-bandwidth 1048576
 set priority low
 set per-policy enable
next
end
```

To configure the firewall traffic shaping policy using the CLI:

```plaintext
config firewall shaping-policy
edit 1
 set name "http-https"
 set service "HTTP" "HTTPS"
 set dstintf "virtual-wan-link"
 set traffic-shaper "high-priority"
 set traffic-shaper-reverse "high-priority"
 set srcaddr "all"
 set dstaddr "all"
next
edit 2
 set name "FTP"
 set service "FTP" "FTP_GET" "FTP_PUT"
 set dstintf "virtual-wan-link"
 set traffic-shaper "low-priority"
 set traffic-shaper-reverse "low-priority"
 set srcaddr "all"
 set dstaddr "all"
next
end
```
To configure SD-WAN traffic shaping and QoS with SD-WAN in the CLI:

```plaintext
cfg system sdwan
 set status enable
cfg members
 edit 1
 set interface "wan1"
 set gateway 172.16.20.2
 next
 edit 2
 set interface "wan2"
 set gateway 10.100.20.2
 next
dn
end
cfg service
 edit 1
 set name "SIP"
 set priority-members 1
 set dst "voip-server"
 set dscp-forward enable
 set dscp-forward-tag 101110
 next
dn
end
```

If no SD-WAN zone is specified, members are added to the default `virtual-wan-link` zone.

To use the `diagnose` command to check if specific traffic is attached to the correct traffic shaper:

```plaintext
diagnose firewall irope list 100015

policy index=1 uuid_idx=0 action=accept
flag (0):
 shapers: orig=high-priority(2/0/134217728) reply=high-priority(2/0/134217728)
 cos_fwd=0 cos_rev=0
 group=00100015 av=00000000 au=00000000 split=00000000
 host=0 chk_client_info=0x0 app_list=0 ips_view=0
 misc=0 dd_type=0 dd_mode=0
 zone(1): 0 -> zone(2): 36 38
 source(1): 0.0.0.0-255.255.255.255, uuid_idx=6,
 dest(1): 0.0.0.0-255.255.255.255, uuid_idx=6,
 service(2):
 [6:0x0:0/(1,65535)->(80,80)] helper:auto
 [6:0x0:0/(1,65535)->(443,443)] helper:auto

policy index=2 uuid_idx=0 action=accept
flag (0):
 shapers: orig=low-priority(4/128000/134217728) reply=low-priority(4/128000/134217728)
 cos_fwd=0 cos_rev=0
 group=00100015 av=00000000 au=00000000 split=00000000
 host=0 chk_client_info=0x0 app_list=0 ips_view=0
 misc=0 dd_type=0 dd_mode=0
```
To use the diagnose command to check if the correct traffic shaper is applied to the session:

```
diagnose sys session list
session info: proto=6 proto_state=01 duration=11 expire=3599 timeout=3600 flags=00000000
sockflag=00000000 sockport=0 av_idx=0 use=5
origin-shaper=low-priority prio=4 guarantee 128000Bps max 1280000Bps traffic 1050Bps drops 0B
reply-shaper=
per_ip_shaper=
class_id=0 shaping_policy_id=2 ha_id=0 policy_dir=0 tunnel=/ helper=ftp vlan_cos=0/255
state=may_dirty npu npd os mif route_preserve
statistic(bytes/packets/allow_err): org=868/15/1 reply=752/10/1 tuples=2
tx speed(Bps/kbps): 76/0 rx speed(Bps/kbps): 66/0
orgin->sink: org pre->post, reply pre->post dev=39->38/38->39 qwy=172.16.200.55/0.0.0.0
hook=pre dir=reply act=dnat 172.16.200.55:21->172.16.200.1:58241(10.1.100.11:58241)
pos/(before,after) 0/(0,0), 0/(0,0)
misc=0 policy_id=1 auth_info=0 chk_client_info=0 vd=4
serial=0003255f tos=ff/app_list=0 app=0 url_cat=0
sdwan_mbr_seq=0 sdwan_service_id=0
rpdb_link_id = 00000000
dd_type=0 dd_mode=0
npu_state=0x100000
npu info: flag=0x00/0x00, offload=0/0, ips_offload=0/0, epid=0/0, ipid=0/0,
vlid=0/0, vtag_in=0x0000/0x0000 in_npu=0/0, out_npu=0/0, fwd_en=0/0, qid=0/0
no_ofld_reason: offload-denied helper
total session 1
```

To use the diagnose command to check the status of a shared traffic shaper:

```
diagnose firewall shaper traffic-shaper list

name high-priority
maximum-bandwidth 131072 KB/sec
guaranteed-bandwidth 0 KB/sec
current-bandwidth 0 B/sec
priority 2
tos ff
packets dropped 0
bytes dropped 0

name low-priority
maximum-bandwidth 131072 KB/sec
guaranteed-bandwidth 125 KB/sec
current-bandwidth 0 B/sec
priority 4
tos ff
```
packets dropped 0
bytes dropped 0

name high-priority
maximum-bandwidth 131072 KB/sec
Guaranteed-bandwidth 0 KB/sec
current-bandwidth 0 B/sec
priority 2
policy 1
tos ff
packets dropped 0
bytes dropped 0

name low-priority
maximum-bandwidth 131072 KB/sec
guaranteed-bandwidth 125 KB/sec
current-bandwidth 0 B/sec
priority 4
policy 2
tos ff
packets dropped 0
bytes dropped 0

SDN dynamic connector addresses in SD-WAN rules

SDN dynamic connector addresses can be used in SD-WAN rules. FortiGate supports both public (AWS, Azure, GCP, OCI, AliCloud) and private (Kubernetes, VMware ESXi and NSX, OpenStack, ACI, Nuage) SDN connectors.

The configuration procedure for all of the supported SDN connector types is the same. This example uses an Azure public SDN connector.

There are four steps to create and use an SDN connector address in an SD-WAN rule:

1. Configure the FortiGate IP address and network gateway so that it can reach the Internet.
2. Create an Azure SDN connector.
3. Create a firewall address to associate with the configured SDN connector.
4. Use the firewall address in an SD-WAN service rule.

To create an Azure SDN connector:

1. Go to Security Fabric > External Connectors.
2. Click Create New.
3. In the Public SDN section, click Microsoft Azure.
4. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>azure1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Enabled</td>
</tr>
<tr>
<td>Update Interval</td>
<td>Use Default</td>
</tr>
<tr>
<td>Server region</td>
<td>Global</td>
</tr>
<tr>
<td>Directory ID</td>
<td>942b80cd-1b14-42a1-8dcf-4b21dece61ba</td>
</tr>
<tr>
<td>Application ID</td>
<td>14dbd5c5-307e-4ea4-8133-68738141feb1</td>
</tr>
<tr>
<td>Client secret</td>
<td>xxxxxx</td>
</tr>
<tr>
<td>Resource path</td>
<td>disabled</td>
</tr>
</tbody>
</table>

5. Click OK.

To create a firewall address to associate with the configured SDN connector:

1. Go to Policy & Objects > Addresses.
2. Click Create New > Address.
3. Enter the following:

<table>
<thead>
<tr>
<th>Category</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>azure-address</td>
</tr>
<tr>
<td>Type</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Sub Type</td>
<td>Fabric Connector Address</td>
</tr>
<tr>
<td>SDN Connector</td>
<td>azure1</td>
</tr>
<tr>
<td>SDN address type</td>
<td>Private</td>
</tr>
<tr>
<td>Filter</td>
<td>SecurityGroup=edsouza-centos</td>
</tr>
<tr>
<td>Interface</td>
<td>Any</td>
</tr>
</tbody>
</table>

4. Click OK.
To use the firewall address in an SD-WAN service rule:

1. Go to Network > SD-WAN, select the SD-WAN Rules tab, and click Create New.
2. Set the Name to Azure1.
3. For the Destination Address select azure-address.
4. Configure the remaining settings as needed. See SD-WAN rules on page 539 for details.
5. Click OK.

Diagnostics

Use the following CLI commands to check the status of and troubleshoot the connector.

To see the status of the SDN connector:

```bash
diagnose sys sdn status
SDN Connector Type Status Updating Last update
azure1 azure connected no n/a
```

To debug the SDN connector to resolve the firewall address:

```bash
diagnose debug application azd -1
 Debug messages will be on for 30 minutes.

 ...
 azd sdn connector azure1 start updating IP addresses
 azd checking firewall address object azure-address-1, vd 0
 IP address change, new list:
 10.18.0.4
 10.18.0.12
 ...
 ...

diagnose sys sdwan service
Service(2): Address Mode(IPV4) flags=0x0
 TOS(0x0/0x0), Protocol(0: 1->65535), Mode(manual)
 Service role: standalone
 Member sub interface:
 Members:
 1: Seq_num(1), alive, selected
 Dst address:
 10.18.0.4 - 10.18.0.4
 10.18.0.12 - 10.18.0.12

 ...
 ...
```

Application steering using SD-WAN rules

This topic covers how to use application steering in a topology with multiple WAN links. The following examples illustrate how to use different strategies to perform application steering to accommodate different business needs:
Static application steering with a manual strategy on page 573
Dynamic application steering with lowest cost and best quality strategies on page 576

Application matching

To apply application steering, SD-WAN service rules match traffic based on the applications that are in the application signature database. To view the signatures, go to Security Profiles > Application Signatures and select Signature.

![Application Signatures Diagram]

On the first session that passes through, the IPS engine processes the traffic in the application layer to match it to a signature in the application signature database. The first session does not match any SD-WAN rules because the signature has not been recognized yet. When the IPS engine recognizes the application, it records the 3-tuple IP address, protocol, and port in the application control Internet Service ID list. To view the application and corresponding 3-tuple:

```
diagnose sys sdwan internet-service-app-ctrl-list [app ID]
52.114.142.254
```

The recognized application and 3-tuple stay in the application control list for future matches to occur. If there are no hits on the entry for eight hours, the entry is deleted.

For services with multiple IP addresses, traffic might not match the expected SD-WAN rule because the traffic is destined for an IP address that has no previously been recognized by the FortiGate. The `diagnose sys sdwan internet-service-app-ctrl-list` command can be used to help troubleshoot such situations.

Static application steering with a manual strategy

This example covers a typical usage scenario where the SD-WAN has two members: MPLS and DIA. DIA is primarily used for direct internet access to internet applications, such as Office365, Google applications, Amazon, and Dropbox. MPLS is primarily used for SIP, and works as a backup when DIA is not working.
This example configures all SIP traffic to use MPLS while all other traffic uses DIA. If DIA is not working, the traffic will use MPLS.

To configure an SD-WAN rule to use SIP and DIA in the GUI:

1. Add port1 (DIA) and port2 (MPLS) as SD-WAN members, and configure a static route. See Configuring the SD-WAN interface on page 489 for details.
2. Create a firewall policy with an Application Control profile configured. See Configuring firewall policies for SD-WAN on page 491 for details.
3. Go to Network > SD-WAN, select the SD-WAN Rules tab, and click Create New.
4. Enter a name for the rule, such as SIP.
5. Click the Application field and select the applicable SIP applications from the Select Entries panel.
7. For Interface preference, select MPLS.
8. Click OK.
9. Click Create New to create another rule.
10. Enter a name for the rule, such as Internet.
11. Click the Address field and select all from the panel.
13. For Interface preference, select DIA.
14. Click OK.

To configure the firewall policy using the CLI:

```
config firewall policy
 edit 1
 set name "1"
 set srcintf "dmz"
 set dstintf "virtual-wan-link"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set utm-status enable
 set fssso disable
```
To configure an SD-WAN rule to use SIP and DIA using the CLI:

```
set application-list "default"
 set ssl-ssh-profile "certificate-inspection"
 set nat enable
next
end
```

```
To use the diagnose command to check performance SLA status using the CLI:

diagnose sys sdwan service 1
```

```
Service(1): Address Mode(IPV4) flags=0x0
TOS(0x0/0x0), Protocol (0: 1->65535), Mode (manual)
Members:

1: Seq_num(1), alive, selected
```

```
Internet Service: SIP(4294836224 34640) SIP.Method(4294836225 152305677) SIP.Via.NAT
```

If no SD-WAN zone is specified, members are added to the default `virtual-wan-link` zone.
Dynamic application steering with lowest cost and best quality strategies

In this example, the SD-WAN has three members: two ISPs (DIA_1 and DIA_2) that are used for access to internet applications, and an MPLS link that is used exclusively as a backup for business critical applications.

Business applications, such as Office365, Google, Dropbox, and SIP, use the Lowest Cost (SLA) strategy to provide application steering, and traffic falls back to MPLS only if both ISP1 and ISP2 are down. Non-business applications, such as Facebook and Youtube, use the Best Quality strategy to choose between the ISPs.

To configure the SD-WAN members, static route, and firewall policy in the GUI:

1. Add port1 (DIA_1), port2 (DIA_2), and port3 (MPLS) as SD-WAN members. Set the cost of DIA_1 and DIA_2 to 0, and MPLS to 20. See Configuring the SD-WAN interface on page 489 for details.
2. Configure a static route. See Adding a static route on page 490 for details.
3. Create a firewall policy to allow traffic out on SD-WAN, with an Application Control profile configured. See Configuring firewall policies for SD-WAN on page 491 for details.

To configure the SD-WAN rule and performance SLA checks for business critical application in the GUI:

1. Go to Network > SD-WAN, select the SD-WAN Rules tab, and click Create New.
2. Set the name to BusinessCriticalApps.
   This rule will steer your business critical traffic to the appropriate link based on the Lowest Cost (SLA).
3. Set Source address to all.
4. Under Destination, set Application to your required applications. In this example: Microsoft.Office.365, Microsoft.Office.Online, Google.Docs, Dropbox, and SIP.
5. Under Outgoing Interfaces, select Lowest Cost (SLA).
   The lowest cost is defined in the SD-WAN member interface settings (see Configuring the SD-WAN interface on page 489). The lowest possible cost is 0, which represents the most preferred link. In this example, DIA_1 and DIA_2 both have a cost of 0, while MPLS has a cost of 20 because it is used for backup.
6. In Interface preference, add the interfaces in order of preference when the cost of the links is tied. In this example, DIA_1, DIA_2, then MPLS.
   MPLS will always be chosen last, because it has the highest cost. DIA_1 and DIA_2 have the same cost, so an interface is selected based on their order in the Interface preference list.
7. Set Required SLA target to ensure that only links that pass your SLA target are chosen in this SD-WAN rule:
   a. Click in the Required SLA target field.
   b. In the Select Entries pane, click Create. The New Performance SLA pane opens.
   c. Set Name to BusinessCriticalApps_HC.
      This health check is used for business critical applications in your SD-WAN rule.
   d. Leave Protocol set to Ping, and add up to two servers, such as office.com and google.com.
   e. Set Participants to Specify, and add all three interfaces: DIA_1, DIA_2, and MPLS.
   f. Enable SLA Target.
      The attributes in your target determine the quality of your link. The SLA target of each link is compared when determining which link to use based on the lowest cost. Links that meet the SLA target are preferred over links that fail, and move to the next step of selection based on cost. If no links meet the SLA target, then they all move to the next step.
      In this example, disable Latency threshold and Jitter threshold, and set Packet loss threshold to 1.
   g. Click OK.
   h. Select the new performance SLA to set it as the Required SLA target.
      When multiple SLA targets are added, you can choose which target to use in the SD-WAN rule.
8. Click OK to create the SD-WAN rule.

To configure the SD-WAN rule and performance SLA checks for non-business critical application in the GUI:

1. Go to Network > SD-WAN, select the SD-WAN Rules tab, and click Create New.
2. Set the name to NonBusinessCriticalApps.
   This rule will steer your non-business critical traffic to the appropriate link based on the Best Quality. No SLA target must be met, as the best link is selected based on the configured quality criteria and interface preference order.
3. Set Source address to all.
4. Under Destination, set Application to your required applications. In this example: Facebook, and Youtube.
5. Under Outgoing Interfaces, select Best Quality.
6. In Interface preference, add the interfaces in order of preference.
   By default, a more preferred link has an advantage of 10% over a less preferred link. For example, when latency is used, the preferred link’s calculated latency = real latency / (1+10%).
The preferred link advantage can be customized in the CLI when the mode is **priority** *(Best Quality)* or **auto**:

```plaintext
config system sdwan
 config service
 edit <id>
 set link-cost-threshold <integer>
 next
 end
end
```

7. Create and apply a new performance SLA profile:
   a. Click in the *Measured SLA* field.
   b. In the drop-down list, click **Create**. The *New Performance SLA* pane opens.
   c. Set *Name* to *NonBusinessCritical_HC*. This health check is used for non-business critical applications in your SD-WAN rule.
   d. Leave *Protocol* set to *Ping*, and add up to two servers, such as *youtube.com* and *facebook.com*.
   e. Set *Participants* to *Specify*, and add the DIA_1 and DIA_2 interfaces. In this example, MPLS is not used for non-business critical applications.
   f. Leave *SLA Target* disabled.
   g. Click **OK**.
   h. Select the new performance SLA from the list to set it as the *Measured SLA*.

8. Set *Quality criteria* as required. In this example, *Latency* is selected.
   For bandwidth related criteria, such as *Downstream, Upstream, and Bandwidth* (bi-directional), the selection is based on available bandwidth. An estimated bandwidth should be configured on the interface to provide a baseline, maximum available bandwidth.
9. Click OK to create the SD-WAN rule.

To configure the SD-WAN members, static route, and firewall policy in the CLI:

1. Configure the interfaces:

```plaintext
config system interface
 edit "port1"
 set ip <class_ip>&net_netmask>
 set alias "DIA_1"
 set role wan
 next
 edit "port2"
 set ip <class_ip>&net_netmask>
 set alias "DIA_2"
 set role wan
 next
 edit "port3"
 set ip <class_ip>&net_netmask>
 set alias "MPLS"
 set role wan
 next
end
```

2. Configure the SD-WAN members:

```plaintext
config system sdwan
 set status enable
 config members
```
edit 1
    set interface "port1"
    set gateway 172.16.20.2
next
edit 2
    set interface "port2"
    set gateway 172.17.80.2
next
edit 3
    set interface "port3"
    set gateway 10.100.20.2
    set cost 20
next
end
end

If no SD-WAN zone is specified, members are added to the default virtual-wan-link zone.

3. Configure a static route. See Adding a static route on page 490 for details.
4. Create a firewall policy to allow traffic out on SD-WAN, with an Application Control profile configured. See Configuring firewall policies for SD-WAN on page 491 for details.

To configure the SD-WAN rule and performance SLA checks for business critical application in the CLI:

1. Configure the BusinessCriticalApps_HC health-check:
   config system sdwan
   config health-check
   edit "BusinessCriticalApps_HC"
       set server "office.com" "google.com"
       set members 1 2 3
       config sla
           edit 1
               set link-cost-factor packet-loss
               set packetloss-threshold 1
           next
       end
   end
   end

2. Configure the BusinessCriticalApps service to use Lowest Cost (SLA):
   config system sdwan
   config service
       edit 1
           set name "BusinessCriticalApps"
           set mode sla
           set src "all"
           set internet-service enable
           set internet-service-app-ctrl 17459 16541 33182 16177 34640
           config sla
               edit "BusinessCriticalApps_HC"
                   set id 1
To configure the SD-WAN rule and performance SLA checks for non-business critical application in the CLI:

1. Configure the `nonBusinessCriticalApps_HC` health-check:

```plaintext
config system sdwan
config health-check
 edit "NonBusinessCriticalApps_HC"
 set server "youtube.com" "facebook.com"
 set members 1 2
 next
end
end
```

2. Configure the `NonBusinessCriticalApps` service to use Lowest Cost (SLA):

```plaintext
config system sdwan
config service
 edit 4
 set name "NonBusinessCriticalApps"
 set mode priority
 set src "all"
 set internet-service enable
 set internet-service-app-ctrl 15832 31077
 set health-check "NonBusinessCriticalApps_HC"
 set priority-members 1 2
 next
end
end
```

**Verification**

Check the following GUI pages, and run the following CLI commands to confirm that your traffic is being steered by the SD-WAN rules.
Health checks

To verify the status of each of the health checks in the GUI:

1. Go to Network > SD-WAN, select the Performance SLAs tab, and select each of the health checks from the list.

![SD-WAN Health checks GUI](image)

To verify the status of each of the health checks in the CLI:

```
diagnose sys sdwan health-check
Health Check(BusinessCritical_HC):
 Seq(1 port1): state(alive), packet-loss(0.000%) latency(12.884), jitter(0.919) sla_map=0x1
 Seq(2 port2): state(alive), packet-loss(0.000%) latency(13.018), jitter(0.723) sla_map=0x1
 Seq(3 port3): state(alive), packet-loss(0.000%) latency(13.018), jitter(0.923) sla_map=0x1
Health Check(NonBusinessCritical_HC):
 Seq(1 port1): state(alive), packet-loss(0.000%) latency(6.888), jitter(0.953) sla_map=0x0
 Seq(2 port2): state(alive), packet-loss(0.000%) latency(6.805), jitter(0.830) sla_map=0x0
```
Rule members and hit count

To verify the active members and hit count of the SD-WAN rule in the GUI:

1. Go to Network > SD-WAN and select the SD-WAN Rules tab.

The interface that is currently selected by the rule has a checkmark next to its name in the Members column. Hover the cursor over the checkmark to open a tooltip that gives the reason why that member is selected. If multiple members are selected, only the highest ranked member is highlighted (unless the mode is Maximize Bandwidth (SLA)).

To verify the active members and hit count of the SD-WAN rule in the CLI:

```
diagnose sys sdwan service

Service(3): Address Mode(IPV4) flags=0x0
 Gen(13), TOS(0x0/0x0), Protocol(0: 1->65535), Mode(sla), sla-compare-order
 Members:
 1: Seq_num(1 port1), alive, sla(0x1), cfg_order(0), cost(0), selected
 2: Seq_num(2 port2), alive, sla(0x1), cfg_order(1), cost(0), selected
 3: Seq_num(3 port3), alive, sla(0x1), cfg_order(2), cost(20), selected
 Internet Service: Dropbox(4294836727,0,0,0 17459) Google.Docs(4294836992,0,0,0 16541) Microsoft.Office.365(4294837472,0,0,0 33182) Microsoft.Office.Online(4294837475,0,0,0 16177) SIP(4294837918,0,0,0 34640)
 Src address:
 0.0.0.0-255.255.255.255

Service(4): Address Mode(IPV4) flags=0x0
 Gen(211), TOS(0x0/0x0), Protocol(0: 1->65535), Mode(priority), link-cost-factor(latency), link-cost-threshold(10), heath-check(NonBusinessCritical_HC)
 Members:
 1: Seq_num(1 port1), alive, latency: 5.712, selected
 2: Seq_num(2 port2), alive, latency: 5.511, selected
 Internet Service: Facebook(4294836806,0,0,0 15832) YouTube(4294838537,0,0,0 31077)
 Src address:
 0.0.0.0-255.255.255.255
```

Applications and sessions

To verify sessions in FortiView:

1. Go to a dashboard and add the FortiView Cloud Applications widget sorted by bytes. See Cloud application view on page 124 for details.
2. Drill down on an application, such as YouTube, then select the Sessions tab.

![YouTube Sessions](image)

To verify applications identified by Application Control in SD-WAN:

```
diagnose sys sdwan internet-service-app-ctrl-list
```

Steam (16518 4294838108): 23.6.148.10 6 443 Thu Apr 15 08:51:54 2021
Netflix (18155 4294837589): 54.160.93.182 6 443 Thu Apr 15 09:13:25 2021
Netflix (18155 4294837589): 54.237.226.164 6 443 Thu Apr 15 10:04:37 2021
Minecraft (27922 4294837491): 65.8.232.41 6 443 Thu Apr 15 09:12:19 2021
Minecraft (27922 4294837491): 65.8.232.46 6 443 Thu Apr 15 09:02:07 2021
Minecraft (27922 4294837491): 99.84.244.51 6 443 Thu Apr 15 10:23:57 2021
Minecraft (27922 4294837491): 99.84.244.63 6 443 Thu Apr 15 10:03:30 2021
YouTube (31077 4294838537): 74.125.69.93 6 443 Thu Apr 15 08:52:59 2021
YouTube (31077 4294838537): 108.177.112.136 6 443 Thu Apr 15 09:33:53 2021
YouTube (31077 4294838537): 142.250.1.93 6 443 Thu Apr 15 10:35:13 2021
...

DSCP tag-based traffic steering in SD-WAN

This document demonstrates the Differentiated Services Code Point (DSCP) tag-based traffic steering in Fortinet secure SD-WAN. You can use this guide as an example to deploy DSCP tag-based traffic steering in Fortinet secure SD-WAN.

DSCP tags are often used to categorize traffic to provide quality of service (QoS). Based on DSCP tags, you can provide SD-WAN traffic steering on an edge device.

In this example, we have two different departments at the Headquarters site - Customer Service and Marketing. Traffic from each of these departments is marked with separate DSCP tags by the core switch, and passes through the core switch to the edge FortiGate. The edge FortiGate reads the DSCP tags and steers traffic to the preferred interface based on the defined SD-WAN rules.
In our example, we consider two types of traffic - social media traffic and VoIP traffic. VoIP traffic from Customer Service is considered to be more important than social media traffic. Each of these traffic types is marked with a DSCP tag by the core switch - VoIP traffic is marked with the DSCP tag of 011100, and social media traffic is marked with the DSCP tag of 001100. The DSCP tagged traffic is then passed on to the edge FortiGate. The edge FortiGate identifies the DSCP tagged traffic and based on the defined SD-WAN rules, the edge FortiGate steers:

- VoIP traffic to the preferred VPN overlay with the least jitter in order to provide the best quality of voice communication with the remote VoIP server (PBX)
- Social media traffic to the preferred Internet link with a lower cost (less expensive and less reliable)

If you are familiar with SD-WAN configurations in FortiOS, you can directly jump to the Configuring SD-WAN rules on page 588 section to learn how to configure the SD-WAN rules to perform traffic steering. Otherwise, you can proceed with all of the following topics to configure the edge FortiGate:

- Configuring IPsec tunnels on page 586
- Configuring SD-WAN zones on page 587
- Configuring firewall policies on page 587
- Configuring Performance SLA test on page 588
- Configuring SD-WAN rules on page 588
- Results on page 591

**Configuring IPsec tunnels**

In our example, we have two interfaces Internet_A (port1) and Internet_B(port5) on which we have configured IPsec tunnels Branch-HQ-A and Branch-HQ-B respectively. To learn how to configure IPsec tunnels, refer to the IPsec VPNs on page 1330 section.

After you have configured the IPsec tunnels, go to VPN > IPsec Tunnels to verify the IPsec tunnels.
Configuring SD-WAN zones

In order for us to steer traffic based on SD-WAN rules, first we need to configure SD-WAN interface members and assign them to SD-WAN zones. For more information about SD-WAN zones, see SD-WAN zones on page 498.

In our example, we created two SD-WAN zones. The virtual-wan-link SD-WAN zone for the underlay traffic passing through the Internet_A(port1) and Internet_B(port5) interfaces, and the Overlay SD-WAN zone for the overlay traffic passing through the Branch-HQ-A and Branch-HQ-B interfaces.

Go to Network > SD-WAN and select the SD-WAN Zones tab to verify the configurations.

In this screenshot, we have configured the Internet_A(port1) and Internet_B(port5) SD-WAN interface members with their Cost values being 0 and 10 respectively. A lower Cost value indicates that this member is the primary interface member, and is preferred more than a member with a higher Cost value when using the Lowest Cost (SLA) strategy.

We also need to configure a static route that points to the SD-WAN interface. For more information static routes, see Adding a static route on page 490.

Configuring firewall policies

Configure firewall policies for both the overlay and underlay traffic. For more information about firewall policies, see Policies on page 759.

In this example, the Overlay-out policy governs the overlay traffic and the SD-WAN-Out policy governs the underlay traffic. The firewall policies are configured accordingly.

Once created, verify the firewall policies by navigating to Policy & Objects > Firewall Policy:
The *Security Profiles* column indicates that the Overlay-out firewall policy for the overlay traffic is set up to not scan any traffic, while the SD-WAN-Out firewall policy is set to scan all web traffic to identify and govern social media traffic as Application Control profile is active.

**Configuring Performance SLA test**

Configure a performance SLA test that will be tied to the SD-WAN interface members we created and assigned to SD-WAN zones. For more information about Performance SLA, see SLA targets example on page 516.

In this example, we created a Performance SLA test Default_DNS with Internet_A (port1) and Internet_B (port5) interface members as participants. We will use the created Performance SLA test to steer all web traffic passing through the underlays other than social media traffic based on the **Lowest Cost (SLA)** strategy.

**Configuring SD-WAN rules**

Configure SD-WAN rules to govern the steering of DSCP tag-based traffic to the appropriate interfaces. Traffic will be steered based on the *Criteria* configured as part of the SD-WAN rules configuration.

In our example, we configured three different SD-WAN rules to govern DSCP tagged traffic. We have one SD-WAN rule each for VoIP traffic, social media traffic (Facebook in this case), and all other web traffic. VoIP traffic is always steered to either of the two overlay SD-WAN zones - *VPN_A_tunnel (Branch-HQ-A)* or *VPN_B_tunnel (Branch-HQ-B)*. Similarly, social media traffic and other web traffic is always steered to either of the two underlay SD-WAN zones - Internet_A (port1) or Internet_B (port5). The interface that is preferred by the system over another depends upon the *Criteria* configured in the SD-WAN rule definition.

We configured the following SD-WAN rules:

- SD-WAN rule for VoIP traffic on page 589
- SD-WAN rule for social media traffic on page 589
- SD-WAN rule for other web traffic on page 590
### SD-WAN rule for VoIP traffic

To configure SD-WAN rule for DSCP tagged VoIP traffic using the CLI:

```plaintext
config sys sdwan
 config service
 edit 5
 set name "VoIP-Steer"
 set mode priority
 set tos 0x70
 set tos-mask 0xf0
 set dst "all"
 set health-check "Default_DNS"
 set link-cost-factor jitter
 set priority-members 4 3
next
end
end

The VoIP-Steer SD-WAN rule configured above governs the DSCP tagged VoIP traffic.

DSCP values commonly are 6-bit binary numbers that are padded with zeros at the end. Therefore, in this example, VoIP traffic with DSCP tag 011100 will become 01110000. This 8-bit binary number 01110000 is represented in its hexadecimal form 0x70 as the tos (Type of Service bit pattern) value. The tos-mask (Type of Service evaluated bits) hexadecimal value of 0xf0 (binary 11110000) is used to check the four most significant bits from the tos value in this case. Hence, the first four bits of the tos (0111) will be used to match the first four bits of the DSCP tag in our policy above. Only the non-zero bit positions are used for comparison and the zero bit positions are ignored from the tos-mask.

We used the Best Quality strategy to define the Criteria to select the preferred interface from the overlay SD-WAN zone. With the Best Quality strategy selected, the interface with the best measured performance is selected. The system prefers the interface with the least Jitter.

For more information about configuring SD-WAN rules with the Best Quality strategy, see Best quality strategy on page 554.

SD-WAN rule for social media traffic

To configure SD-WAN rule for DSCP tagged social media traffic using the CLI:

```plaintext
FortiGate # config sys sdwan
```
The Facebook-DSCP-steer SD-WAN rule configured above governs the DSCP tagged social media traffic. DSCP values commonly are 6-bit binary numbers that are padded with zeros at the end. Therefore, in this example, social media traffic with DSCP tag 001100 will become 00110000. This 8-bit binary number 00110000 is represented in its hexadecimal form 0x30 as the tos (Type of Service bit pattern) value. The tos-mask (Type of Service evaluated bits) hexadecimal value of 0xf0 (binary 11110000) is used to check the four most significant bits from the tos value in this case. Hence, the first four bits of the tos (0011) will be used to match the first four bits of the DSCP tag in our policy above. Only the non-zero bit positions are used for comparison and the zero bit positions are ignored from the tos-mask.

We used a manual strategy to select the preferred interface from the underlay SD-WAN zone. We manually select the preferred interface as Internet_B(port5) to steer all social media traffic to.

For more information about configuring SD-WAN rules with static application steering with a manual strategy, see Static application steering with a manual strategy on page 573.

SD-WAN rule for other web traffic

To configure SD-WAN rule for all other web traffic using the CLI:

```plaintext
FortiGate # config sys sdwan
config service
    edit 2
        set name "All-traffic"
        set mode sla
        set dst "all"
        config sla
            edit "Default_DNS"
                set id 1
                next
        end
    end
set priority-members 1 2
end
```
The All-traffic SD-WAN rule configured above governs all other web traffic.

We used the Lowest Cost (SLA) strategy to define the Criteria to select the preferred interface from the underlay SD-WAN zone. With the Lowest Cost (SLA) strategy selected, the interface that meets the defined Performance SLA targets (Default_DNS in our case) is selected. When there is a tie, the interface with the lowest assigned Cost (Internet_A (port1) in our case) is selected.

For more information about configuring SD-WAN rules with the Lowest Cost (SLA) strategy, see Lowest cost (SLA) strategy on page 558.

Once configured, verify your SD-WAN rules by navigating to Network > SD-WAN and selecting the SD-WAN Rules tab.

Results

The following sections show the function of the FortiGate and specifically of secure SD-WAN with respect to DSCP tagged traffic steering, and can be used to confirm that it is setup and running correctly:

- Verifying the DSCP tagged traffic on FortiGate on page 591
- Verifying service rules on page 593
- Verifying traffic steering as per the defined SD-WAN rules on page 594
- Verifying steered traffic leaving the required interface on page 594

Verifying the DSCP tagged traffic on FortiGate

To verify the incoming DSCP tagged traffic, we used packet sniffing and converting the sniffed traffic to a desired format. For more information about packet sniffing, see Using the FortiOS built-in packet sniffer on the Fortinet Knowledge Base.
For VoIP traffic that is marked with DSCP tag 0x70:

```bash
# diagnose sniffer packet any '(ip and ip[1] & 0xfc == 0x70)' 6 0 1
```

We used the open-source packet analyzer Wireshark to verify that VoIP traffic is tagged with the 0x70 DSCP tag.

For web traffic marked with DSCP tag 0x30:

```bash
# diagnose sniffer packet any '(ip and ip[1] & 0xfc == 0x30)' 6 0 1
```

We used the open-source packet analyzer Wireshark to verify that web traffic is tagged with the 0x30 DSCP tag.
Verifying service rules

The following CLI commands show the appropriate DSCP tags and the corresponding interfaces selected by the SD-WAN rules to steer traffic:

```
# diagnose sys sdwan service
```

Service(5): Address Mode (IPV4) flags=0x0
Gen(1), TOS(0x70/0xf0), Protocol(0: 1->65535), Mode (manual)
Members:
 1: Seq_num(4 Branch-HQ-B), alive, selected
Dst address:
 0.0.0.0-255.255.255.255

Service(3): Address Mode (IPV4) flags=0x0
Gen(1), TOS(0x30/0xf0), Protocol(0: 1->65535), Mode (manual)
Members:
 1: Seq_num(2 port5), alive, selected
Dst address:
 0.0.0.0-255.255.255.255

Service(2): Address Mode (IPV4) flags=0x0
SD-WAN

Verifying traffic steering as per the defined SD-WAN rules

Go to Network > SD-WAN and select the SD-WAN Rules tab to review the Hit Count on the appropriate SD-WAN interfaces.

Verifying steered traffic leaving the required interface

Go to Dashboard > Top Policies to confirm that web traffic (port 443) flows through the right underlay interface members, and VoIP traffic flows through the right overlay interface member.

Web traffic leaves either Interface_A(port1) or Interface_B(port5):

VoIP traffic leaves the preferred VPN_B_Tunnel(Branch-HQ-B) interface:
ECMP support for the longest match in SD-WAN rule matching

The longest match SD-WAN rule can match ECMP best routes. The rule will select the egress ports on ECMP specific routes, and not the less specific routes, to transport traffic.

The service mode determines which egress port on the ECMP specific routes is selected to forward traffic:

- **Manual** *(manual)*: The first configured alive port is selected.
- **Best Quality** *(priority)*: The best quality port is selected.
- **Lowest Cost** *(sla)*: The first configured or lower cost port in SLA is selected.

Example

By default, SD-WAN selects the outgoing interface from all of the links that have valid routes to the destination. In some cases, it is required that only the links that have the best (or longest match) routes (single or ECMP) to the destination are considered.

In this example, four SD-WAN members in two zones are configured. The remote PC (PC_2 - 10.1.100.22) is accessible on port15 and port16, even though there are valid routes for all of the SD-WAN members. A single SD-WAN service rule is configured that allows traffic to balanced between all four of the members, but only chooses between port15 and port16 for the specific 10.1.100.22 address.

A performance SLA health check is configured to monitor 10.1.100.2. An SD-WAN service rule in Lowest Cost (SLA) mode is configured to select the best interface to steer the traffic. In the rule, the method of selecting a member if more than one meets the SLA *(tie-break)* is configured to select members that meet the SLA and match the longest prefix in the routing table *(fib-best-match)*. If there are multiple ECMP routes with the same destination, the FortiGate will take the longest (or best) match in the routing table, and choose from those interface members.
To configure the SD-WAN:

```bash
config system sdwan
  config zone
    edit "virtual-wan-link"
    next
    edit "z1"
    next
  end
  config members
    edit 1
    set interface "port1"
    set gateway 172.16.200.2
    next
    edit 2
    set interface "dmz"
    set gateway 172.16.208.2
    next
    edit 3
    set interface "port15"
    set zone "z1"
    set gateway 172.16.209.2
    next
    edit 4
    set interface "port16"
    set zone "z1"
    set gateway 172.16.210.2
    next
  end
  config health-check
    edit "1"
    set server "10.1.100.2"
    set members 0
    config sla
      edit 1
      next
    end
  next
end
config service
  edit 1
  set name "1"
  set mode sla
  set dst "all"
  set src "172.16.205.0"
  config sla
    edit "1"
    set id 1
    next
  end
  set priority-members 1 2 3 4
  set tie-break fib-best-match
next
end
```
To check the results:

1. The debug shows the SD-WAN service rule. All of the members meet SLA, and because no specific costs are attached to the members, the egress interface is selected based on the interface priority order that is configured in the rule:

   ```
   FGT_A (root) # diagnose sys sdwan service
   
   Service(1): Address Mode(IPV4) flags=0x200 use-shortcut-sla
   Gen(4), TOS(0x0/0x0), Protocol(0:1->65535), Mode(sla), sla-compare-order
   Members(4):
   1: Seq_num(1 port1), alive, sla(0x1), gid(0), cfg_order(0), cost(0), selected
   2: Seq_num(2 dmz), alive, sla(0x1), gid(0), cfg_order(1), cost(0), selected
   3: Seq_num(3 port15), alive, sla(0x1), gid(0), cfg_order(2), cost(0), selected
   4: Seq_num(4 port16), alive, sla(0x1), gid(0), cfg_order(3), cost(0), selected
   
   Source address(1):
   172.16.205.0-172.16.205.255
   Dst address(1):
   0.0.0.0-255.255.255.255
   
   Service 1:
   ```

2. The routing table shows that there are ECMP default routes on all of the members, and ECMP specific (or best) routes only on port15 and port16:

   ```
   FGT_A (root) # get router info routing-table static
   
   Routing table for VRF=0
   S* 0.0.0.0/0 [1/0] via 172.16.200.2, port1
   [1/0] via 172.16.208.2, dmz
   [1/0] via 172.16.209.2, port15
   S 10.1.100.22/32 [10/0] via 172.16.209.2, port15
   
   Because tie-break is set to fib-best-match, the first configured member from port15 and port16 is selected to forward traffic to PC_2. For all other traffic, the first configured member from all four of the interfaces is selected to forward traffic.

3. On PC-1, generate traffic to PC-2:

   ```
 ping 10.1.100.22
   ```

4. On FGT_A, sniff for traffic sent to PC_2:

   ```
 # diagnose sniffer packet any 'host 10.1.100.22' 4
 interfaces=[any]
 filters=[host 10.1.100.22]

 2.831299 port5 in 172.16.205.11 -> 10.1.100.22: icmp: echo request
 2.831400 port15 out 172.16.205.11 -> 10.1.100.22: icmp: echo request
   ```

   Traffic is leaving on port15, the first configured member from port15 and port16.

**Override quality comparisons in SD-WAN longest match rule matching**

In SD-WAN rules, the longest match routes will override the quality comparisons when all of the specific routes are out of SLA.

With this feature in an SD-WAN rule:
• **Lowest Cost (sla):** Even though all of the egress ports on specific routes (longest matched routes) are out of SLA, the SD-WAN rule still selects the first configured or lower-cost port from the egress ports to forward traffic.

• **Best Quality (priority):** Even though the egress ports on specific routes (longest matched routes) have worse quality that all other ports on less specific routes, the SD-WAN rule still selects the best quality port from the ports on specific routes to forward traffic.

This feature avoids a situation where, if the members on specific routes (longest matched routes) are out of SLA or have worse quality, the traffic might be forwarded to the wrong members in SLA (higher quality) on the default or aggregate routes.

**Example**

In this example, four SD-WAN members in two zones are configured. The remote PC (PC_2 - 10.1.100.22) is accessible on port15 and port16, even though there are valid routes for all of the SD-WAN members. A single SD-WAN service rule is configured that allows traffic to be balanced between all four of the members, but only chooses between port15 and port16 for the specific 10.1.100.22 address. If neither port15 nor port16 meet the SLAs, traffic will be forwarded on one of these interfaces, instead of on port1 or dmz.

A performance SLA health check is configured to monitor 10.1.100.2. An SD-WAN service rule in Lowest Cost (SLA) mode is configured to select the best interface to steer the traffic. In the rule, the method of selecting a member if more than one meets the SLA (tie-break) is configured to select members that meet the SLA and match the longest prefix in the routing table (`fib-best-match`). If there are multiple ECMP routes with the same destination, the FortiGate will take the longest (or best) match in the routing table, and choose from those interface members.

**To configure the SD-WAN:**

```
config system sdwan
 config zone
 edit "virtual-wan-link"
 next
 edit "z1"
 next
 end
 config members
 edit 1
 set interface "port1"
 set gateway 172.16.200.2
 next
 edit 2
 set interface "dmz"
 set gateway 172.16.208.2
 next
 edit 3
```
To check the results:

1. The debug shows the SD-WAN service rule. Both port15 and port16 are up, but out of SLA:

   FGT_A (root) # diagnose sys sdwan service
   Service(1): Address Mode(IPV4) flags=0x200 use-shortcut-sla
   Gen(3), TOS(0x0/0x0), Protocol(0: 1->65535), Mode(sla), sla-compare-order
   Members(4):
   1: Seq_num(1 port1), alive, sla(0x1), gid(0), cfg_order(0), cost(0), selected
   2: Seq_num(2 dmz), alive, sla(0x1), gid(0), cfg_order(1), cost(0), selected
   3: Seq_num(3 port15), alive, sla(0x0), gid(0), cfg_order(2), cost(0), selected
   4: Seq_num(4 port16), alive, sla(0x0), gid(0), cfg_order(3), cost(0), selected
   Src address(1):
   172.16.205.0-172.16.205.255
   Dst address(1):
   0.0.0.0-255.255.255.255
2. The routing table shows that there are ECMP default routes on all of the members, and ECMP specific (or best) routes only on port15 and port16:

FGT_A (root) # get router info routing-table static
Routing table for VRF=0
S* 0.0.0.0/0 [1/0] via 172.16.200.2, port1
     [1/0] via 172.16.208.2, dmz
     [1/0] via 172.16.209.2, port15
S  10.1.100.22/32 [10/0] via 172.16.209.2, port15

Because tie-break is set to fib-best-match, even though both port15 and port16 are out of SLA, the first configured member of the two (port15) is selected to forward traffic to PC_2. For all other traffic, the first configured member from all of the interfaces that are in SLA is selected to forward traffic (port1).

3. On PC-1, generate traffic to PC-2:

    ping 10.1.100.22

4. On FGT_A, sniff for traffic sent to PC_2:

    # diagnose sniffer packet any 'host 10.1.100.22' 4
    interfaces=[any]
    filters=[host 10.1.100.22]
    2.831299 port5 in 172.16.205.11 -> 10.1.100.22: icmp: echo request
    2.831400 port15 out 172.16.205.11 -> 10.1.100.22: icmp: echo request

   Traffic is leaving on port15, the first configured member from port15 and port16, even though both are out of SLA.

Use an application category as an SD-WAN rule destination

An application category can be selected as an SD-WAN service rule destination criterion. Previously, only application groups or individual applications could be selected.

config system sdwan
    config service
        edit <id>
            set internet-service enable
            set internet-service-app-ctrl-category <id_1> <id_2> ... <id_n>
        next
    end
end

To view the detected application categories details based on category ID, use diagnose sys sdwan internet-service-app-ctrl-category-list <id>.

Example

In this example, traffic steering is applied to traffic detected as video/audio (category ID 5) or email (category ID 21) and applies the lowest cost (SLA) strategy to this traffic. When costs are tied, the priority goes to member 1, dmz.
To configure application categories as an SD-WAN rule destination:

1. Configure the SD-WAN settings:

   ```bash
 config system sdwan
 set status enable
 config zone
 edit "virtual-wan-link"
 next
 end
 config members
 edit 1
 set interface "dmz"
 set gateway 172.16.208.2
 next
 edit 2
 set interface "vlan100"
 set gateway 172.16.206.2
 next
 end
 config health-check
 edit "1"
 set server "8.8.8.8"
 set protocol dns
 set members 0
 config sla
 edit 1
 next
 end
 end
   ```

2. Configure the SD-WAN rule to use application categories 5 and 21:

   ```bash
 config system sdwan
 config service
 edit 1
 set name "1"
 set mode sla
 set src "172.16.205.0"
 set internet-service enable
 set internet-service-app-ctrl-category 5 21
 config sla
 edit "1"
 set id 1
 next
 end
 set priority-members 1 2
   ```
3. Configure the firewall policy:

```fortios```
config firewall policy
 edit 1
 set srcintf "port5"
 set dstintf "virtual-wan-link"
 set action accept
 set srcaddr 172.16.205.0
 set dstaddr "all"
 set schedule "always"
 set service "ALL"
 set utm-status enable
 set ssl-ssh-profile "certificate-inspection"
 set application-list "g-default"
 next
end
```fortios```

4. Verify that the traffic is sent over dmz:

```fortios```
diagnose firewall proute list
list route policy info(vf=root):
 id=2133590017(0x7f2c0001) vwl_service=1(1) vwl_mbr_seq=1 2 dscp_tag=0xff 0xff flags=0x0
tos=0x00 tos_mask=0x00 protocol=0 sport=0-65535 iif=0 dport=1-65535 path(2) oif=5(dmz)
oif=95(vlan100)
 source(1): 172.16.205.0-172.16.205.255
destination wildcard(1): 0.0.0.0/0.0.0.0
 internet service(2): (null) (0,5,0,0,0) (null) (0,21,0,0,0)
hit_count=469 last_used=2021-12-15 15:06:05
```fortios```

5. View some videos and emails on the PC, then verify the detected application details for each category:

```fortios```
diagnose sys sdwan internet-service-app-ctrl-category-list 5
YouTube(31077 4294838537): 209.52.146.205 6 443 Wed Dec 15 15:37:19 2021
diagnose sys sdwan internet-service-app-ctrl-category-list 21
```fortios```

6. Verify that the captured email traffic is sent over dmz:

```fortios```
diagnose sniffer packet any 'host 172.217.14.197' 4
interfaces=[any]
filters=[host 172.217.14.197]
5.079814 dmz out 172.16.205.100.60592 -> 172.217.14.197.443: psh 2961561240 ack
2277134591
```fortios```

7. Edit the SD-WAN rule so that dmz has a higher cost and vlan100 is preferred.

8. Verify that the traffic is now sent over vlan100:

```fortios```
diagnose firewall proute list
list route policy info(vf=root):
 id=2134048769(0x7f4233001) vwl_service=1(1) vwl_mbr_seq=2 1 dscp_tag=0xff 0xff flags=0x0
tos=0x00 tos_mask=0x00 protocol=0 sport=0-65535 iif=0 dport=1-65535 path(2) oif=5(dmz)
```fortios```
source(1): 172.16.205.0-172.16.205.255
destination wildcard(1): 0.0.0.0/0.0.0.0
internet service(2): (null) (0,5,0,0) (null) (0,21,0,0,0)
hit_count=635 last_used=2021-12-15 15:55:43

# diagnose sniffer packet any 'host 172.217.14.197' 4
interfaces=[any]
filters=[host 172.217.14.197]
304.625168 vlan100 in 172.16.205.100.60592 -> 172.217.14.197.443: psh 2961572711 ack 2277139565

**Advanced routing**

The following topics provide instructions on SD-WAN advanced routing:

- Local out traffic on page 603
- Using BGP tags with SD-WAN rules on page 609
- BGP multiple path support on page 612
- Controlling traffic with BGP route mapping and service rules on page 614
- Applying BGP route-map to multiple BGP neighbors on page 621
- Using multiple members per SD-WAN neighbor configuration on page 627

**Local out traffic**

Local out, or self-originating, traffic is traffic that originates from the FortiGate going to external servers and services. The traffic can be from Syslog, FortiAnalyzer logging, FortiGuard services, remote authentication, and others.

By default, local out traffic relies on routing table lookups to determine the egress interface that is used to initiate the connection. However, many types of local out traffic support selecting the egress interface based on SD-WAN or manually specified interfaces. When manually specifying the egress interface, the source IP address can also be manually configured.

Go to Network > Local Out Routing to configure the available types of local out traffic. Some types of traffic can only be configured in the CLI.

---

By default Local Out Routing is not visible in the GUI. Go to System > Feature Visibility to enable it. See Feature visibility on page 2165 for more information.

---

When VDOMs are enabled, the following entries are available on the local out routing page:

<table>
<thead>
<tr>
<th>Global view</th>
<th>VDOM view</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>External Resources</strong></td>
<td><strong>LDAP Servers</strong></td>
</tr>
<tr>
<td>AWS_IP_Blacklist</td>
<td>ldap</td>
</tr>
<tr>
<td>AWS_Malware_Hash</td>
<td>Log</td>
</tr>
</tbody>
</table>
If a service is disabled, it is grayed out. To enable it, select the service and click Enable Service. If a service is enabled, there is a Local Out Setting button in the gutter of that service's edit page to directly configure the local-out settings.

**Examples**

**To configure DNS local-out routing:**

1. Go to Network > Local Out Routing and double-click System DNS.
2. For Outgoing interface, select one of the following:
   - **Auto**: Select the outgoing interface automatically based on the routing table.
   - **SD-WAN**: Select the outgoing interface using the configured SD-WAN interfaces and rules.
   - **Specify**: Select the outgoing interface from the dropdown.
   - **Use Interface IP**: Use the primary IP, which cannot be configured by the user.
   - **Manually**: Selected an IP from the list, if the selected interface has multiple IPs configured.
3. If Specify is selected, select a setting for Source IP:
4. Click OK.
To edit local-out settings from a RADIUS server entry:

1. Go to User & Authentication > RADIUS Servers and double-click an entry to edit it.
2. Click Local Out Setting.

The Edit Local Out Setting pane opens.

3. Configure the settings for Outgoing interface and Source IP.

4. Click OK.

To edit multiple entries concurrently:

1. Go to Network > Local Out Routing.
2. If applicable, select IPv4 or IPv6. IPv4+IPv6 does not support multi-select.
3. Click Multi-Select Mode. All of the local out settings that can be edited concurrently are shown.
4. Select the specific entries, or click Select All to select all of the entries.
5. Click *Edit* and configure the local out settings as required.

6. Click *OK*.

7. Click *Exit Multi-Select Mode* to return to the normal view.

### Configuring local out routing in the CLI

Some local out routing settings can only be configured using the CLI.

**PING**

IPv4 and IPv6 pings can be configured to use SD-WAN rules:

```
execute ping-options use-sdwan {yes | no}
execute ping6-options use-sdwan {yes | no}
```

**Traceroute**

IPv4 traceroute can be configured to use SD-WAN rules:

```
execute traceroute-options use-sdwan {yes | no}
```

**Central management**

Central management traffic can use SD-WAN rules or a specific interface:

```
config system central-management
 set interface-select-method {auto | sdwan | specify}
 set interface <interface>
end
```

**NTP server**

NTP server traffic can use SD-WAN rules or a specific interface:

```
config system ntp
 config ntpserver
 edit <id>
 set interface-select-method {auto | sdwan | specify}
```
set interface <interface>
next
end

DHCP proxy

DHCP proxy traffic can use SD-WAN rules or a specific interface:

config system settings
    set dhcp-proxy-interface-select-method {auto | sdwan | specify}
    set dhcp-proxy-interface <interface>
end

| dhcp-proxy-interface-select-method {auto | sdwan | specify} | Select the interface selection method: |
|--------------------------------------------------------|---------------------------------------|
|                                                         | • auto: Set the outgoing interface automatically (default). |
|                                                         | • sdwan: Set the interface by SD-WAN or policy routing rules. |
|                                                         | • specify: Set the interface manually. |
| dhcp-proxy-interface <interface>                        | Specify the outgoing interface. This option is only available and must be configured when interface-select-method is specify. |

DHCP relay

DHCP relay traffic can use SD-WAN rules or a specific interface:

config system interface
    edit <interface>
        set dhcp-relay-interface-select-method {auto | sdwan | specify}
        set dhcp-relay-interface <interface>
    next
end

| dhcp-relay-interface-select-method {auto | sdwan | specify} | Select the interface selection method: |
|--------------------------------------------------------|---------------------------------------|
|                                                         | • auto: Set the outgoing interface automatically (default). |
|                                                         | • sdwan: Set the interface by SD-WAN or policy routing rules. |
|                                                         | • specify: Set the interface manually. |
| dhcp-relay-interface <interface>                        | Specify the outgoing interface. This option is only available and must be configured when interface-select-method is specify. |

CA and local certificate renewal with SCEP

Certificate renewal with SCEP traffic can use SD-WAN rules or a specific interface:

config vpn certificate setting
    set interface-select-method {auto | sdwan | specify}
    set interface <interface>
end

IPS TLS protocol active probing

TLS active probing can use SD-WAN rules or a specific interface:
config ips global
    config tls-active-probe
        set interface-selection-method {auto | sdwan | specify}
        set interface <interface>
        set vdom <VDOM>
        set source-ip <IPv4 address>
        set source-ip6 <IPv6 address>
    end
end

**interface-select-method {auto | sdwan | specify}**
- Select the interface selection method:
  - auto: Set the outgoing interface automatically (default).
  - sdwan: Set the interface by SD-WAN or policy routing rules.
  - specify: Set the interface manually.

**interface <interface>**
- Specify the outgoing interface. This option is only available and must be configured when `interface-select-method` is `specify`.

**vdom <VDOM>**
- Specify the VDOM. This option is only available and must be configured when `interface-select-method` is `sdwan` or `specify`.

**source-ip <IPv4 address>**
- Specify the source IPv4 address. This option is only available and must be configured when `interface-select-method` is `sdwan` or `specify`.

**source-ip6 <IPv6 address>**
- Specify the source IPv6 address. This option is only available and must be configured when `interface-select-method` is `sdwan` or `specify`.

**Netflow and sflow**

Netflow and sflow can use SD-WAN rules or a specific interface:

config system {netflow | sflow | vdom-netflow | vdom-sflow}
    set interface-select-method {auto | sdwan | specify}
    set interface <interface>
end

**interface-select-method {auto | sdwan | specify}**
- Select the interface selection method:
  - auto: Set the outgoing interface automatically (default).
  - sdwan: Set the interface by SD-WAN or policy routing rules.
  - specify: Set the interface manually.

**interface <interface>**
- Specify the outgoing interface. This option is only available and must be configured when `interface-select-method` is `specify`. 
Using BGP tags with SD-WAN rules

SD-WAN rules can use Border Gateway Protocol (BGP) learned routes as dynamic destinations.

In this example, a customer has two ISP connections, wan1 and wan2. wan1 is used primarily for direct access to internet applications, and wan2 is used primarily for traffic to the customer's data center.

The customer could create an SD-WAN rule using the data center's IP address range as the destination to force that traffic to use wan2, but the data center's IP range is not static. Instead, a BGP tag can be used.

For this example, wan2's BGP neighbor advertises the data center's network range with a community number of 30:5.

This example assumes that SD-WAN is enabled on the FortiGate, wan1 and wan2 are added as SD-WAN members in the virtual-wan-link SD-WAN zone, and a policy and static route have been created. See SD-WAN quick start on page 488 for details.

FortiOS supports IPv4 and IPv6 route tags.

To configure BGP tags with SD-WAN rules:

1. Configure the community list:

   ```
 config router community-list
 edit "30:5"
 config rule
 edit 1
 set action permit
 set match "30:5"
 next
 end
 next
 end
   ```

2. Configure the route map:

   ```
 config router route-map
 edit "comm1"
 config rule
 edit 1
 set match-community "30:5"
 set set-route-tag 15
 next
   ```
3. Configure BGP:

```plaintext
config router bgp
set as xxxxx
set router-id xxxx
config neighbor
edit "10.100.20.2"
 set soft-reconfiguration enable
 set remote-as xxxxx
 set route-map-in "comm1"
next
end
end
```

4. Configure a firewall policy:

```plaintext
config firewall policy
edit 1
 set name "1"
 set srcintf "dmz"
 set dstintf "virtual-wan-link"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set nat enable
next
end
```

5. Edit the SD-WAN configuration:

```plaintext
config system sdwan
set status enable
config members
 edit 1
 set interface "wan1"
 set gateway 172.16.20.2
next
 edit 2
 set interface "wan2"
next
end
config service
 edit 1
 set name "DataCenter"
 set mode manual
 set route-tag 15
 set priority-members 2
next
end
```
Troubleshooting BGP tags with SD-WAN rules

Check the network community

Use the `get router info bgp network` command to check the network community:

```
get router info bgp network
BGP table version is 5, local router ID is 1.1.1.1
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal, S Stale
Origin codes: i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight RouteTag Path
*> 0.0.0.0/0 10.100.1.5 32768 0 ?
*> 1.1.1.1/32 0.0.0.0 32768 0 ?
*> 10.1.100.0/24 172.16.203.2 32768 0 ?
*> 10.100.1.0/30 0.0.0.0 32768 0 ?
*> 10.100.1.4/30 0.0.0.0 32768 0 ?
*> 10.100.1.248/29 0.0.0.0 32768 0 ?
*> 10.100.10.0/24 10.100.1.5 202 10000 15 20 e
*> 172.16.200.0/24 0.0.0.0 32768 0 ?
*> 172.16.200.200/32
 0.0.0.0 32768 0 ?
*> 172.16.201.0/24 172.16.200.4 32768 0 ?
*> 172.16.203.0/24 0.0.0.0 32768 0 ?
*> 172.16.204.0/24 172.16.200.4 32768 0 ?
*> 172.16.205.0/24 0.0.0.0 32768 0 ?
*> 172.16.206.0/24 0.0.0.0 32768 0 ?
*> 172.16.207.1/32 0.0.0.0 32768 0 ?
*> 172.16.207.2/32 0.0.0.0 32768 0 ?
*> 172.16.212.1/32 0.0.0.0 32768 0 ?
*> 172.16.212.2/32 0.0.0.0 32768 0 ?
*> 172.17.200.200/32
 0.0.0.0 32768 0 ?
*> 172.27.1.0/24 0.0.0.0 32768 0 ?
*> 172.27.2.0/24 0.0.0.0 32768 0 ?
*> 172.27.5.0/24 0.0.0.0 32768 0 ?
*> 172.27.6.0/24 0.0.0.0 32768 0 ?
*> 172.27.7.0/24 0.0.0.0 32768 0 ?
*> 172.27.8.0/24 0.0.0.0 32768 0 ?
*> 172.29.1.0/24 0.0.0.0 32768 0 ?
*> 172.29.2.0/24 0.0.0.0 32768 0 ?
*> 192.168.1.0 0.0.0.0 32768 0 ?

Total number of prefixes 28

get router info bgp network 10.100.11.0
BGP routing table entry for 10.100.10.0/24
Paths: (2 available, best 1, table Default-IP-Routing-Table)
Advertised to non peer-group peers:
 172.10.22.2
20
 10.100.20.2 from 10.100.20.2 (6.6.6.6)
 Origin EGP metric 200, localpref 100, weight 10000, valid, external, best
Community: 30:5 <===============================
Last update: Wen Mar 20 18:45:17 2019
Check dynamic BGP addresses

Use the `get router info route-map-address` command to check dynamic BGP addresses:

```
# get router info route-map-address
Extend-tag: 15, interface(wan2:16)
  10.100.11.0/255.255.255.0
```

Check dynamic BGP addresses used in policy routes

Use the `diagnose firewall proute list` command to check dynamic BGP addresses used in policy routes:

```
# diagnose firewall proute list
list route policy info(vf=root):

id=4278779905 vwl_service=1(DataCenter) flags=0x0 tos=0x00 tos_mask=0x00 protocol=0 sport=0:65535 iif=0 dport=1-65535 oif=16
source wildcard(1): 0.0.0.0/0.0.0.0
destination wildcard(1): 10.100.11.0/255.255.255.0
```

BGP multiple path support

BGP supports multiple paths, allowing an ADVPN to advertise multiple paths. This allows BGP to extend and keep additional network paths according to RFC 7911.

In this example, Spoke1 and Spoke2 each have four VPN tunnels that are connected to the Hub with ADVPN. The Spoke-Hub has established four BGP neighbors on all four tunnels.

![Diagram of BGP multiple path support](image)

Spoke 1 and Spoke 2 can learn four different routes from each other.

To configure the hub:

```
config router bgp
  set as 65505
  set router-id 11.11.11.11
  set ibgp-multipath enable
  set additional-path enable
```
To configure a spoke:

```
config router bgp
  set as 65505
  set router-id 2.2.2.2
  set ibgp-multipath enable
  set additional-path enable
  set additional-path-select 4
  config neighbor
    edit "10.10.100.254"
      set soft-reconfiguration enable
      set remote-as 65505
      set additional-path both
      set adv-additional-path 4
    next
    edit "10.10.200.254"
      set soft-reconfiguration enable
      set remote-as 65505
      set additional-path both
      set adv-additional-path 4
    next
    edit "10.10.203.254"
      set soft-reconfiguration enable
      set remote-as 65505
      set additional-path both
      set adv-additional-path 4
    next
    edit "10.10.204.254"
      set soft-reconfiguration enable
      set remote-as 65505
      set additional-path both
      set adv-additional-path 4
    next
```
To view the BGP routing table on a spoke:

Spoke1 # get router info routing-table bgp
Routing table for VRF=0

B* 0.0.0.0/0 [200/0] via 10.10.200.254, vd2-2, 03:57:26
[200/0] via 10.10.203.254, vd2-3, 03:57:26
[200/0] via 10.10.204.254, vd2-4, 03:57:26
[200/0] via 10.10.100.254, vd2-1, 03:57:26

B 1.1.1.1/32 [200/0] via 11.1.1.1 (recursive via 12.1.1.1), 03:57:51

B 11.11.11/32 [200/0] via 10.10.200.254, vd2-2, 03:57:51
[200/0] via 10.10.203.254, vd2-3, 03:57:51
[200/0] via 10.10.204.254, vd2-4, 03:57:51
[200/0] via 10.10.100.254, vd2-1, 03:57:51

B 33.1.1.0/24 [200/0] via 10.10.204.3, vd2-4, 03:57:26
[200/0] via 10.10.203.3, vd2-3, 03:57:26
[200/0] via 10.10.200.3, vd2-2, 03:57:26
[200/0] via 10.10.100.3, vd2-1, 03:57:26
[200/0] via 10.10.204.3, vd2-4, 03:57:26
[200/0] via 10.10.203.3, vd2-3, 03:57:26
[200/0] via 10.10.200.3, vd2-2, 03:57:26
[200/0] via 10.10.100.3, vd2-1, 03:57:26

Controlling traffic with BGP route mapping and service rules

SD-WAN allows you to select different outbound WAN links based on performance SLAs. It is important that BGP neighbors are aware of these settings, and changes to them.

BGP can adapt to changes in SD-WAN link SLAs in the following ways:

- Applying different route-maps based on the SD-WAN's health checks. For example, different BGP community strings can be advertised to BGP neighbors when SLAs are not met.
- Traffic can be selectively forwarded based on the active BGP neighbor. If the SD-WAN service's role matches the active SD-WAN neighbor, the service is enabled. If there is no match, then the service is disabled.
Example

In this topology, a branch FortiGate has two SD-WAN gateways serving as the primary and secondary gateways. The gateways reside in different datacenters, but have a full mesh network between them.

This example shows how route-maps and service rules are selected based on performance SLAs and the member that is currently active. Traffic flows through the primary gateway unless the neighbor's health check is outside of its SLA. If that happens, traffic routes to the secondary gateway.

BGP NBR1 is the primary neighbor and BGP NBR2 is the secondary neighbor.

The branch FortiGate's wan1 and wan2 interfaces are members of the SD-WAN. When the SD-WAN neighbor status is primary, it will advertise community 20:1 to BGP NBR1 and 20:5 to BGP NBR2. When the SD-WAN neighbor status is secondary, it will advertise 20:5 to BGP NBR1 and 20:2 to BGP NBR2.

Only one of the primary or secondary neighbors can be active at one time. The SD-WAN neighbor status is used to decide which neighbor is selected:

- **Primary**: The primary neighbor takes precedence if its SLAs are met.
- **Secondary**: If the primary neighbor's SLAs are not met, the secondary neighbor becomes active if its SLAs are met.
- **Standalone**: If neither the primary or secondary neighbor's SLAs are met, the SD-WAN neighbor status becomes standalone.

Route map

SD-WAN is configured to let BGP advertise different communities when the SLA status changes. When the SLA is missed, it triggers BGP to advertise a different community to its BGP neighbor based on its route-map. The BGP neighbors can use the received community string to select the best path to reach the branch.

To configure BGP route-maps and neighbors:

1. Configure an access for the routes to be matched:

```plaintext
config router access-list  
edit "net192"  
config rule  
edit 1  
set prefix 192.168.20.0 255.255.255.0  
next
```
2. Configure the primary neighbor’s preferred route-map:

```plaintext
config router route-map
edit "comm1"
config rule
edit 1
    set match-ip-address "net192"
    set set-community "20:1"
next
next
end
end
```

3. Configure the secondary neighbor’s preferred route-map:

```plaintext
config router route-map
edit "comm2"
config rule
edit 1
    set match-ip-address "net192"
    set set-community "20:2"
next
next
end
end
```

4. Configure the failed route-map:

```plaintext
config router route-map
edit "comm5"
config rule
edit 1
    set match-ip-address "net192"
    set set-community "20:5"
next
next
end
end
```

5. Configure BGP neighbors:

```plaintext
config router bgp
    set as 65412
    set router-id 1.1.1.1
    set ibgp-multipath enable
config neighbor
    edit "10.100.1.1"
        set soft-reconfiguration enable
        set remote-as 20
        set route-map-out "comm5"
        set route-map-out-preferable "comm1"
    next
    edit "10.100.1.5"
        set soft-reconfiguration enable
        set remote-as 20
```
When SLAs are met, route-map-out-preferable is used. When SLAs are missed, route-map-out is used.

To configure SD-WAN:

1. Configure the SD-WAN members:

```plaintext
config system sdwan
  set status enable
  config members
    edit 1
      set interface "port1"
    next
    edit 2
      set interface "port2"
    next
  end
end
```

2. Configure health checks for each member:

```plaintext
config system sdwan
  config health-check
    edit "ping"
      set server "10.100.2.22"
      set members 1
      config sla
        edit 1
          set link-cost-factor packet-loss
          set packetloss-threshold 1
        next
      end
    next
    edit "ping2"
      set server "10.100.2.23"
      set members 2
      config sla
        edit 1
          set link-cost-factor packet-loss
          set packetloss-threshold 1
        next
      end
    next
end
```

3. Configure the SD-WAN neighbors and assign them a role and the health checks used to determine if the neighbor meets the SLA:

SD-WAN neighbors can only be configured in the CLI.

```plaintext
config system sdwan
  config neighbor
    edit "10.100.1.1"
```
Service rules

Create SD-WAN service rules to direct traffic to the primary neighbor when its SLAs are met, and to the secondary neighbor when the primary neighbor's SLAs are missed.

To configure the SD-WAN service rules:

```plaintext
config system sdwan
  config service
    edit 1
      set name "Primary-Out"
      set role primary
      set dst "all"
      set src "all"
      set priority-members 1
    next
    edit 2
      set name "Secondary-Out"
      set role secondary
      set dst "all"
      set src "all"
      set priority-members 2
    next
  end
end
```

If neither the primary nor secondary neighbors are active, the SD-WAN neighbor status becomes standalone. Only service rules with `standalone-action` enabled will continue to pass traffic. This option is disabled by default.

Verification

To verify when the primary neighbor is passing traffic:

1. Verify the health check status:

 FortiGate-Branch # diagnose sys sdwan health-check
 Health Check (ping):
 Seq(1 port1): state(alive), packet-loss(0.000%) latency(0.569), jitter(0.061) sla_
SD-WAN

map=0x1
Health Check (ping2):
Seq(2 port2): state(alive), packet-loss(0.000%) latency(3.916), jitter(2.373) sla_map=0x1

2. Verify SD-WAN neighbor status:
FortiGate/Branch # diagnose sys sdwan neighbor
SD-WAN neighbor status: hold-down(disable), hold-down-time(0), hold_boot_time(0)
 Selected role (primary) last Secondary_select_time/current_time in seconds 0/572
Neighbor(10.100.1.1): member(1) role(primary)
 Health-check(ping:1) sla-pass selected alive
Neighbor(10.100.1.15): member(2) role(secondary)
 Health-check(ping2:1) sla-pass alive

3. Verify service rules status:
FortiGate/Branch # diagnose sys sdwan service
Service(1): Address Mode(IPV4) flags=0x0
 Gen(3), TOS(0x0/0x0), Protocol(0: 1->65535), Mode(manual)
 Service role: primary
 Members:
 1: Seq_num(1 port1), alive, selected
 Src address:
 0.0.0.0-255.255.255.255

 Dst address:
 0.0.0.0-255.255.255.255

Service(2): Address Mode(IPV4) flags=0x0
 Gen(6), TOS(0x0/0x0), Protocol(0: 1->65535), Mode(manual)
 Service role: secondary, disabled by unselected.
 Members:
 1: Seq_num(2 port2), alive, selected
 Src address:
 0.0.0.0-255.255.255.255

 Dst address:
 0.0.0.0-255.255.255.255

4. Verify neighbor routers:
 a. Primary neighbor router:
 FGT-NBR1 # get router info bgp network 192.168.20.0
 BGP routing table entry for 192.168.20.0/24
 Paths: (1 available, best #1, table Default-IP-Routing-Table)
 Not advertised to any peer
 64512
 10.100.1.2 from 10.100.1.2 (192.168.122.98)
 Origin IGP metric 0, localpref 100, valid, external, best
 Community: 20:1
 Last update: Thu Apr 30 13:41:40 2020

 b. Secondary neighbor router:
 FGT-NBR2 # get router info bgp network 192.168.20.0
 VRF 0 BGP routing table entry for 192.168.20.0/24
 Paths: (1 available, best #1, table Default-IP-Routing-Table)
Not advertised to any peer
Original VRF 0
64512
10.100.1.6 from 10.100.1.6 (192.168.122.98)
 Origin IGP metric 0, localpref 100, valid, external, best
 Community: 20:5
 Last update: Thu Apr 30 13:41:39 2020

To verify when the secondary neighbor is passing traffic:

1. Verify the health check status:
 FortiGate-Branch # diagnose sys sdwan health-check
 Health Check(ping):
 Seq(1 port1): state(dead), packet-loss(54.000%) sla_map=0x0
 Health Check(ping2):
 Seq(2 port2): state(alive), packet-loss(0.000%) latency(4.339), jitter(3.701) sla_map=0x1

2. Verify SD-WAN neighbor status:
 FortiGate-Branch # diagnose sys sdwan neighbor
 SD-WAN neighbor status: hold-down(disable), hold-down-time(0), hold_boot_time(0)
 Selected role(secondary) last_secondary_select_time/current_time in seconds
 936/936
 Neighbor(10.100.1.1): member(1) role(primary)
 Health-check(ping:1) sla-fail dead
 Neighbor(10.100.1.5): member(2) role(secondary)
 Health-check(ping2:1) sla-pass selected alive

3. Verify service rules status:
 FortiGate-Branch # diagnose sys sdwan service
 Service(1): Address Mode(IPV4) flags=0x0
 Gen(4), TOS(0x0/0x0), Protocol(0: 1->65535), Mode(manual)
 Service role: primary, disabled by unselected.
 Members:
 1: Seq_num(1 port1), alive, selected
 Src address:
 0.0.0.0-255.255.255.255
 Dst address:
 0.0.0.0-255.255.255.255
 Service(2): Address Mode(IPV4) flags=0x0
 Gen(7), TOS(0x0/0x0), Protocol(0: 1->65535), Mode(manual)
 Service role: secondary
 Members:
 1: Seq_num(2 port2), alive, selected
 Src address:
 0.0.0.0-255.255.255.255
 Dst address:
 0.0.0.0-255.255.255.255
4. Verify neighbor routers:

a. Primary neighbor router:

FGT-NBR1 # get router info bgp network 192.168.20.0
BGP routing table entry for 192.168.20.0/24
Paths: (1 available, best #1, table Default-IP-Routing-Table)
Not advertised to any peer
64512
10.100.1.2 from 10.100.1.2 (192.168.122.98)
 Origin IGF metric 0, localpref 100, valid, external, best
Community: 20:5
 Last update: Thu Apr 30 15:41:58 2020

b. Secondary neighbor router:

FGT-NBR2 # get router info bgp network 192.168.20.0
VRF 0 BGP routing table entry for 192.168.20.0/24
Paths: (1 available, best #1, table Default-IP-Routing-Table)
Not advertised to any peer
Original VRF 0
64512
10.100.1.6 from 10.100.1.6 (192.168.122.98)
 Origin IGF metric 0, localpref 100, valid, external, best
Community: 20:2
 Last update: Thu Apr 30 15:42:07 2020

Applying BGP route-map to multiple BGP neighbors

Controlling traffic with BGP route mapping and service rules explained how BGP can apply different route-maps to the primary and secondary SD-WAN neighbors based on SLA health checks.

In this example, SD-WAN neighbors that are not bound to primary and secondary roles are configured.

The FortiGate has multiple SD-WAN links and has formed BGP neighbors with both ISPs.

ISP1 is used primarily for outbound traffic, and has an SD-WAN service rule using the lowest cost algorithm applied to it. When SLAs for ISP1 are not met, it will fail over to the MPLS line.

Inbound traffic is allowed by both WAN links, with each WAN advertising a community string when SLAs are met. When SLAs are not met, the WAN links advertise a different community string.

This example uses two SD-WAN links. The topology can be expanded to include more links as needed.
To configure BGP route-maps and neighbors:

1. Configure an access list for routes to be matched:

   ```
   config router access-list
   edit "net192"
   config rule
   edit 1
      set prefix 192.168.20.0 255.255.255.0
   next
   next
   end
   ```

2. Configure route-maps for neighbor ISP1:

   ```
   config router route-map
   edit "comml"
   config rule
   edit 1
      set match-ip-address "net192"
      set set-community "64511:1"
   next
   next
   edit "comm-fail1"
   config rule
   edit 1
      set match-ip-address "net192"
      set set-community "64511:5"
   next
   next
   end
   ```

3. Configure route-maps for neighbor ISP2:

   ```
   config router route-map
   edit "comm2"
   config rule
   edit 1
      set match-ip-address "net192"
      set set-community "64522:1"
   next
   next
   edit "comm-fail2"
   config rule
   edit 1
      set match-ip-address "net192"
      set set-community "64522:5"
   next
   next
   end
   ```
4. Configure the BGP neighbors:

```fortigateconfig
config router bgp
  set as 64512
  set keepalive-timer 1
  set holdtime-timer 3
config neighbor
  edit "192.168.2.1"
    set soft-reconfiguration enable
    set remote-as 64511
    set route-map-out "comm-fail1"
    set route-map-out-preferable "comm1"
  next
  edit "172.31.0.1"
    set soft-reconfiguration enable
    set remote-as 64522
    set route-map-out "comm-fail2"
    set route-map-out-preferable "comm2"
  next
end
config network
  edit 1
    set prefix 192.168.20.0 255.255.255.0
  next
end
```

When SLAs are met, route-map-out-preferable is used. When SLAs are missed, route-map-out is used.

To configure SD-WAN:

1. Configure the SD-WAN members:

```fortigateconfig
config system sdwan
  set status enable
config members
  edit 1
    set interface "port1"
    set gateway 192.168.2.1
  next
  edit 2
    set interface "MPLS"
    set cost 20
  next
end
```

2. Configure the health checks that must be met:

```fortigateconfig
config system sdwan
  config health-check
    edit "pingserver"
      set server "8.8.8.8"
      set members 2 1
      config sla
        edit 1
          set link-cost-factor packet-loss
          set packetloss-threshold 2
```
3. Configure the SD-WAN neighbors and assign them a role and the health checks used to determine if the neighbor meets the SLA:

When no role is defined, the default role, standalone, is used.

```plaintext
config system sdwan
  config neighbor
    edit "192.168.2.1"
      set member 1
      set health-check "pingserver"
      set sla-id 1
    next
    edit "172.31.0.1"
      set member 2
      set health-check "pingserver"
      set sla-id 1
    next
  end
end
```

Service rules

Create SD-WAN service rules to direct traffic to the SD-WAN links based on the lowest cost algorithm. The same SLA health check and criteria that are used for the SD-WAN neighbor are used for this SD-WAN service rule.

When no roles are defined in the service rule, the default role, standalone, is used.

To configure the SD-WAN service rule:

```plaintext
config system sdwan
  config service
    edit 1
      set name "OutboundAll"
      set mode sla
      set dst "all"
      set src "all"
      config sla
        edit "pingserver"
          set id 1
        next
        set priority-members 1 2
      next
    end
  end
end
```
Verification

To verify that when both SLAs are met, port1 is selected due to its lower cost:

1. Verify the health check status:

 FortiGate/Branch # diagnose sys sdwan health-check
 Health check(pingserver):
 Seq(2 MPLS): state(alive), packet-loss(0.000%) latency(24.709), jitter(14.996) sla_map=0x1
 Seq(1 port1): state(alive), packet-loss(0.000%) latency(28.771), jitter(14.840) sla_map=0x1

2. Verify SD-WAN neighbor status:

 FortiGate/Branch # diagnose sys sdwan neighbor
 Neighbor(192.168.2.1): member(1) role(standalone)
 Health-check(pingserver:1) sla-pass selected alive
 Neighbor(172.31.0.1): member(2) role(standalone)
 Health-check(pingserver:1) sla-pass selected alive

3. Verify service rules status:

 Because the service role is standalone, it matches both neighbors. The mode (SLA) determines that port1 is lower cost.

 FortiGate/Branch # diagnose sys sdwan service

 Service(1): Address Mode(IPV4) flags=0x0
 Gen(1), TOS(0x0/0x0), Protocol(0: 1->65535), Mode(sla), sla-compare-order
 Service role: standalone
 Members:
 1: Seq_num(1 port1), alive, sla(0x1), cfg_order(0), cost(0), selected
 2: Seq_num(2 MPLS), alive, sla(0x1), cfg_order(1), cost(20), selected
 Src address:
 0.0.0.0-255.255.255.255
 Dst address:
 0.0.0.0-255.255.255.255

4. Verify neighbor routers:

 a. Primary neighbor router:

 FGT-NBR1 # get router info bgp network 192.168.20.0
 BGP routing table entry for 192.168.20.0/24
 Paths: (1 available, best #1, table Default-IP-Routing-Table)
 Not advertised to any peer
 64512
 192.168.2.5 from 192.168.2.5 (192.168.122.98)
 Origin IGP metric 0, localpref 100, valid, external, best
 Community: 64511:1
 Last update: Thu Apr 30 23:59:05 2020

 b. Secondary neighbor router:

 FGT-NBR2 # get router info bgp network 192.168.20.0
 VRF 0 BGP routing table entry for 192.168.20.0/24
 Paths: (1 available, best #1, table Default-IP-Routing-Table)
 Not advertised to any peer
 Original VRF 0
To verify that when neighbor ISP1 misses SLAs, MPLS is selected and BGP advertises a different community string for ISP1:

1. Verify the health check status:

FortiGate-Branch # diagnose sys sdwan health-check
Health Check(pingserver):
Seq(2 MPLS): state(alive), packet-loss(0.000%) latency(25.637), jitter(17.820) sla_map=0x1
Seq(port1): state(dead), packet-loss(16.000%) sla_map=0x0

2. Verify SD-WAN neighbor status:

FortiGate-Branch # diagnose sys sdwan neighbor
Neighbor(192.168.2.1): member(1) role(standalone)
 Health-check(pingserver:1) sla-fail dead
Neighbor(172.31.0.1): member(2) role(standalone)
 Health-check(pingserver:1) sla-pass selected alive

3. Verify service rules status:

As SLA failed for neighbor ISP1, MPLS is preferred.

FortiGate-Branch # diagnose sys sdwan service
Service(1): Address Mode(IPV4) flags=0x0
 Gen(3), TOS(0x0/0x0), Protocol(0: 1->65535), Mode(sla), sla-compare-order
 Service role: standalone
 Members:
 1: Seq_num(2 MPLS), alive, sla(0x1), cfg_order(1), cost(20), selected
 2: Seq_num(port1), dead, sla(0x0), cfg_order(0), cost(0)
 Src address:
 0.0.0.0-255.255.255.255
 Dst address:
 0.0.0.0-255.255.255.255

4. Verify neighbor routers:

 The community received on ISP1 is updated.

 a. Primary neighbor router:

 FGT-NBR1 # get router info bgp network 192.168.20.0
 BGP routing table entry for 192.168.20.0/24
 Paths: (1 available, best #1, table Default-IP-Routing-Table)
 Not advertised to any peer
 64512
 192.168.2.5 from 192.168.2.5 (192.168.122.98)
 Origin IGP metric 0, localpref 100, valid, external, best
 Community: 64511:5
 Last update: Fri May 1 00:33:26 2020
b. Secondary neighbor router:

```bash
FGT-NBR2 # get router info bgp network 192.168.20.0
VRF 0 BGP routing table entry for 192.168.20.0/24
Paths: (1 available, best #1, table Default-IP-Routing-Table)
   Not advertised to any peer
   Original VRF 0
   64512
   172.31.0.2 from 172.31.0.2 (192.168.122.98)
   Origin IGP metric 0, localpref 100, valid, external, best
   Community: 64522:1
   Last update: Fri May 1 00:22:42 2020
```

Using multiple members per SD-WAN neighbor configuration

SD-WAN BGP neighbor configurations are used to define the SLA health check in which an SD-WAN member must meet to qualify as being up. When the SD-WAN member meets the SLA threshold, the FortiGate will apply the route map defined in the BGP neighbor's `route-map-out-preferable` option. If the SD-WAN member fails to meet the SLA, the FortiGate will apply the route map defined in the BGP neighbor's `route-map-out` option instead. This allows the FortiGate to advertise the health of the SD-WAN member to its BGP neighbor by advertising different community strings based on its SLA status.

For more information, refer to the following BGP examples: Controlling traffic with BGP route mapping and service rules on page 614 and Applying BGP route-map to multiple BGP neighbors on page 621.

Selecting multiple SD-WAN members allows the SD-WAN neighbor feature to support topologies where there are multiple SD-WAN overlays and/or underlays to a neighbor. The `minimum-sla-meet-members` option is used to configure the minimum number of members that must be in an SLA per neighbor for the preferable route map to be used.

```bash
config system sdwan
config neighbor
   edit <ip>
      set member {<seq-num_1>} [<seq-num_2>] ... [<seq-num_n>] member {<seq-num_1>}
      set minimum-sla-meet-members <integer>
      set next member {<seq-num_1>}
      [<seq-num_2>] ... [<seq-num_n>]
   end
end
```

<table>
<thead>
<tr>
<th>Enter the member sequence number list. Multiple members can be defined.</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>minimum-sla-meet-members <integer></code> Set the minimum number of members that meet SLA when the neighbor is preferred (1 - 255, default = 1).</td>
</tr>
<tr>
<td>• If the number of in SLA members is less than the <code>minimum-sla-meet-members</code> value, the default route map will be used.</td>
</tr>
<tr>
<td>• If the number of in SLA members is equal or larger than the <code>minimum-sla-meet-members</code> value, the preferable route map will be used.</td>
</tr>
</tbody>
</table>
Example

In the following example, the spoke FortiGate has four tunnels: two tunnels to Hub_1 and two tunnels to Hub_2. The spoke has two BGP neighbors: one to Hub_1 and one to Hub_2. BGP neighbors are established on loopback IPs.

The SD-WAN neighbor plus `route-map-out-preferable` configuration is deployed on the spoke to achieve the following:

- If any tunnel to Hub_1 or Hub_2 is in SLA, the preferable route map will be applied on the BGP neighbor to Hub_1 or Hub_2.
- If both tunnels to Hub_1 or Hub_2 are out of SLA, the default route map will be applied on the BGP neighbor to Hub_1 or Hub_2.

The preferable route map and default route map are used to set different custom BGP communities as the spoke advertises its LAN routes to the hub. Each hub can translate communities into different BGP MED or AS prepends and signal them to the external peers to manipulate inbound traffic, thereby routing traffic to the spoke only when the SLAs are met on at least one of two VPN overlays. In this example, community string 10:1 signals to the neighbor that SLAs are met, and 10:2 signals that SLAs are not met.

To configure the BGP route maps and neighbors:

1. Configure an access list of prefixes to be matched:

   ```
   config router access-list
   edit "net10"
   config rule
   edit 1
   set prefix 10.0.3.0 255.255.255.0
   next
   end
   next
   end
   ```
2. Configure route maps for neighbors in SLA (preferable) and out of SLA (default):

```config
config router route-map
edit "in_sla"
config rule
edit 1
  set match-ip-address "net10"
  set set-community "10:1"
next
next
edit "out_sla"
config rule
edit 1
  set match-ip-address "net10"
  set set-community "10:2"
next
next
end
end
```

3. Configure the BGP neighbors:

```config
config router bgp
set router-id 172.31.0.65
config neighbor
  edit "172.31.0.1"
    set route-map-out "out_sla"
    set route-map-out-preferable "in_sla"
    set update-source "Loopback0"
  next
  edit "172.31.0.2"
    set route-map-out "out_sla"
    set route-map-out-preferable "in_sla"
    set update-source "Loopback0"
  next
end
config network
  edit 1
    set prefix 10.0.3.0 255.255.255.0
  next
end
end
```

To configure SD-WAN:

1. Configure the SD-WAN members:

```config
config system sdwan
set status enable
config members
  edit 1
    set interface "H1_T11"
    set source 172.31.0.65
  next
  edit 4
    set interface "H1_T22"
```
set source 172.31.0.65
next
edit 6
 set interface "H2_T11"
 set source 172.31.0.65
next
edit 9
 set interface "H2_T22"
 set source 172.31.0.65
next
end
end

2. Configure the health check that must be met:

 config system sdwan
 config health-check
 edit "HUB"
 set server "172.31.100.100"
 set members 0
 config sla
 edit 1
 set link-cost-factor latency
 set latency-threshold 100
 next
 next
 end
end

3. Configure the SD-WAN neighbors:

 config system sdwan
 config neighbor
 edit "172.31.0.1"
 set member 1 4
 set health-check "HUB"
 set sla-id 1
 set minimum-sla-meet-members 1
 next
 edit "172.31.0.2"
 set member 6 9
 set health-check "HUB"
 set sla-id 1
 set minimum-sla-meet-members 1
 next
end
end

To verify that when two members to Hub_1/Hub_2 are in SLA, the preferable route map is be applied on BGP neighbors to Hub_1/Hub_2:

Branch1_A_FGT (root) # diagnose sys sdwan health-check
Health Check(HUB):
Seq(1 H1_T11): state(alive), packet-loss(0.000%) latency(0.209), jitter(0.017), mos(4.404), bandwidth-up(999999), bandwidth-dw(999999), bandwidth-bi(1999998) sla_map=0x1
Seq(4 H1_T22): state(alive), packet-loss(0.000%) latency(0.171), jitter(0.004), mos(4.404), bandwidth-up(999999), bandwidth-dw(999998), bandwidth-bi(1999997) sla_map=0x1
Seq(6 H2_T11): state(alive), packet-loss(0.000%) latency(0.175), jitter(0.014), mos(4.404), bandwidth-up(999999), bandwidth-dw(999999), bandwidth-bi(1999997) sla_map=0x1
Seq(9 H2_T22): state(alive), packet-loss(0.000%) latency(0.176), jitter(0.019), mos(4.404), bandwidth-up(999999), bandwidth-dw(999998), bandwidth-bi(1999997) sla_map=0x1

diagnose sys sdwan neighbor
Neighbor(172.31.0.1): member(1 4)role(standalone)
 Health-check(HUB:1) sla-pass selected alive
Neighbor(172.31.0.2): member(6 9)role(standalone)
 Health-check(HUB:1) sla-pass selected alive

On Hub_1 and Hub_2, the expected communities have been attached into the spoke's LAN route:

Hub_1_FGT (root) # get router info bgp network 10.0.3.0/24
VRF 0 BGP routing table entry for 10.0.3.0/24
Paths: (1 available, best #1, table Default-IP-Routing-Table)
 Not advertised to any peer
 Original VRF 0
 Local, (Received from a RR-client)
 172.31.0.65 from 172.31.0.65 (172.31.0.65)
 Origin IGP metric 0, localpref 100, valid, internal, best
 Community: 10:1
 Last update: Wed Dec 29 22:38:29 2021

Hub_2_FGT (root) # get router info bgp network 10.0.3.0/24
VRF 0 BGP routing table entry for 10.0.3.0/24
Paths: (1 available, best #1, table Default-IP-Routing-Table)
 Not advertised to any peer
 Original VRF 0
 Local, (Received from a RR-client)
 172.31.0.65 from 172.31.0.65 (172.31.0.65)
 Origin IGP metric 0, localpref 100, valid, internal, best
 Community: 10:1

If one member for each neighbor becomes out of SLA, the preferable route map is still applied:

Branch1_A_FGT (root) # diagnose sys sdwan health-check
Health Check(HUB):
Seq(1 H1_T11): state(alive), packet-loss(0.000%) latency(120.207), jitter(0.018), mos (4.338), bandwidth-up(999999), bandwidth-dw(999997), bandwidth-bi(1999996) sla_map=0x0
Seq(4 H1_T22): state(alive), packet-loss(0.000%) latency(0.182), jitter(0.008), mos(4.404), bandwidth-up(999999), bandwidth-dw(999998), bandwidth-bi(1999997) sla_map=0x1
Seq(6 H2_T11): state(alive), packet-loss(0.000%) latency(120.102), jitter(0.009), mos (4.404), bandwidth-up(999999), bandwidth-dw(999998), bandwidth-bi(1999997) sla_map=0x0
Seq(9 H2_T22): state(alive), packet-loss(0.000%) latency(0.176), jitter(0.009), mos(4.404), bandwidth-up(999999), bandwidth-dw(999997), bandwidth-bi(1999996) sla_map=0x1

diagnose sys sdwan neighbor
Neighbor(172.31.0.1): member(1 4)role(standalone)
 Health-check(HUB:1) sla-pass selected alive
Neighbor(172.31.0.2): member(6 9)role(standalone)
 Health-check(HUB:1) sla-pass selected alive

Hub_1_FGT (root) # get router info bgp network 10.0.3.0/24
VRF 0 BGP routing table entry for 10.0.3.0/24
Paths: (1 available, best #1, table Default-IP-Routing-Table)
 Not advertised to any peer
SD-WAN

Original VRF 0
Local, (Received from a RR-client)
172.31.0.65 from 172.31.0.65 (172.31.0.65)
 Origin IGF metric 0, localpref 100, valid, internal, best
 Community: 10:1
 Last update: Thu Dec 30 10:44:47 2021

Hub_2_FGT (root) # get router info bgp network 10.0.3.0/24
VRF 0 BGP routing table entry for 10.0.3.0/24
Paths: (1 available, best #1, table Default-IP-Routing-Table)
 Not advertised to any peer
Original VRF 0
Local, (Received from a RR-client)
172.31.0.65 from 172.31.0.65 (172.31.0.65)
 Origin IGF metric 0, localpref 100, valid, internal, best
 Community: 10:1

If both members for Hub_1 become out of SLA, the default route map is applied:

Branch1_A_FGT (root) # diagnose sys sdwan health-check
Health Check(HUB):
Seq(1 H1_T11): state(alive), packet-loss(0.000%) latency(120.194), jitter(0.018), mos(4.338), bandwidth-up(999999), bandwidth-dw(999997), bandwidth-bi(1999997) sla_map=0x0
Seq(4 H1_T22): state(alive), packet-loss(0.000%) latency(120.167), jitter(0.006), mos(4.338), bandwidth-up(999999), bandwidth-dw(999998), bandwidth-bi(1999997) sla_map=0x0
Seq(6 H2_T11): state(alive), packet-loss(0.000%) latency(120.180), jitter(0.012), mos(4.338), bandwidth-up(999999), bandwidth-dw(999998), bandwidth-bi(1999997) sla_map=0x0
Seq(9 H2_T22): state(alive), packet-loss(0.000%) latency(0.170), jitter(0.005), mos(4.040), bandwidth-up(999999), bandwidth-dw(999997), bandwidth-bi(1999996) sla_map=0x1

diagnose sys sdwan neighbor
Neighbor(172.31.0.1): member(1 4)role(standalone)
 Health-check(HUB:1) sla-fail alive
Neighbor(172.31.0.2): member(6 9)role(standalone)
 Health-check(HUB:1) sla-pass selected alive

Hub_1_FGT (root) # get router info bgp network 10.0.3.0/24
VRF 0 BGP routing table entry for 10.0.3.0/24
Paths: (1 available, best #1, table Default-IP-Routing-Table)
 Not advertised to any peer
Original VRF 0
Local, (Received from a RR-client)
172.31.0.65 from 172.31.0.65 (172.31.0.65)
 Origin IGF metric 0, localpref 100, valid, internal, best
 Community: 10:2
 Last update: Thu Dec 30 10:57:33 2021

Hub_2_FGT (root) # get router info bgp network 10.0.3.0/24
VRF 0 BGP routing table entry for 10.0.3.0/24
Paths: (1 available, best #1, table Default-IP-Routing-Table)
 Not advertised to any peer
Original VRF 0
Local, (Received from a RR-client)
172.31.0.65 from 172.31.0.65 (172.31.0.65)
 Origin IGF metric 0, localpref 100, valid, internal, best
 Community: 10:1

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
VPN overlay

The following topics provide instructions on SD-WAN VPN overlays:

- ADVPN and shortcut paths on page 633
- SD-WAN monitor on ADVPN shortcuts on page 646
- Hold down time to support SD-WAN service strategies on page 647
- SD-WAN integration with OCVPN on page 649
- Adaptive Forward Error Correction on page 656
- Dual VPN tunnel wizard on page 660
- Duplicate packets on other zone members on page 661
- Duplicate packets based on SD-WAN rules on page 664
- Speed tests run from the hub to the spokes in dial-up IPsec tunnels on page 665
- Interface based QoS on individual child tunnels based on speed test results on page 672
- Use SSL VPN interfaces in zones on page 675
- SD-WAN in large scale deployments on page 679

ADVPN and shortcut paths

This topic provides an example of how to use SD-WAN and ADVPN together.

ADVPN (Auto Discovery VPN) is an IPsec technology that allows a traditional hub-and-spoke VPN’s spokes to establish dynamic, on-demand, direct tunnels between each other to avoid routing through the topology’s hub device. The primary advantage is that it provides full meshing capabilities to a standard hub-and-spoke topology. This greatly reduces the provisioning effort for full spoke-to-spoke low delay reachability, and addresses the scalability issues associated with very large fully meshed VPN networks.

If a customer's head office and branch offices all have two or more internet connections, they can build a dual-hub ADVPN network. Combined with SD-WAN technology, the customer can load-balance traffic to other offices on multiple dynamic tunnels, control specific traffic using specific connections, or choose better performance connections dynamically.

SD-WAN load-balance mode rules (or services) do not support ADVPN members. Other modes’ rules, such as SLA and priority, support ADVPN members.

This topic covers three parts:

1. Configure dual-hub ADVPN with multiple branches.
2. Configure BGP to exchange routing information among hubs and spokes.
3. Configure SD-WAN on spoke to do load-balancing and control traffic.
A typical ADVPN configuration with SD-WAN usually has two hubs, and each spoke connects to two ISPs and establishes VPN tunnels with both hubs.

This example shows a hub-and-spoke configuration using two hubs and one spoke:

- Hub1 and Hub2 both use wan1 to connect to the ISPs and port10 to connect to internal network.
- Spoke1 uses wan1 to connect to ISP1 and wan2 to connect to ISP2.
- wan1 sets up VPN to hub1.
- wan2 sets up VPN to hub2.

The SD-WAN is configured on the spoke. It uses the two VPN interfaces as members and two rules to control traffic to headquarters or other spokes using ADVPN VPN interfaces. You can create more rules if required.

For this example:

- Use SD-WAN member 1 (via ISP1) and its dynamic shortcuts for financial department traffic if member 1 meets SLA requirements. If it doesn’t meet SLA requirements, it will use SD-WAN member 2 (via ISP2).
- Use SD-WAN member 2 (via ISP2) and its dynamic shortcuts for engineering department traffic.
- Load balance other traffic going to hubs and other spokes between these two members.
- Set up all other traffic to go with their original ISP connection. All other traffic does not go through SD-WAN.
- Set up basic network configuration to let all hubs and spokes connect to their ISPs and the Internet.
<table>
<thead>
<tr>
<th>Hub internal network</th>
<th>172.16.101.0/24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spoke1 internal network</td>
<td>10.1.100.0/24</td>
</tr>
<tr>
<td>ADVPN 1 network</td>
<td>10.10.100.0/24</td>
</tr>
<tr>
<td>ADVPN 2 network</td>
<td>10.10.200.0/24</td>
</tr>
<tr>
<td>Hub1 wan1 IP</td>
<td>11.1.1.11</td>
</tr>
<tr>
<td>Hub2 wan1 IP</td>
<td>11.1.2.11</td>
</tr>
<tr>
<td>Hub1 VPN IP</td>
<td>10.10.100.254</td>
</tr>
<tr>
<td>Hub2 VPN IP</td>
<td>10.10.200.254</td>
</tr>
<tr>
<td>Spoke1 to hub1 VPN IP</td>
<td>10.10.100.2</td>
</tr>
<tr>
<td>Spoke1 to hub2 VPN IP</td>
<td>10.10.200.2</td>
</tr>
<tr>
<td>Ping server in Headquarters</td>
<td>11.11.11.11</td>
</tr>
<tr>
<td>Internal subnet of spoke1</td>
<td>22.1.1.0/24</td>
</tr>
<tr>
<td>Internal subnet of spoke2</td>
<td>33.1.1.0/24</td>
</tr>
<tr>
<td>Firewall addresses</td>
<td>Configure hub_subnets and spoke_subnets before using in policies. These can be customized.</td>
</tr>
</tbody>
</table>

The GUI does not support some ADVPN related options, such as auto-discovery-sender, auto-discovery-receiver, auto-discovery-forwarder, and IBGP neighbor-group setting, so this example only provides CLI configuration commands.

Hub1 sample configuration

To configure the IPsec phase1 and phase2 interface:

```bash
config vpn ipsec phase1-interface
  edit "hub-phase1"
    set type dynamic
    set interface "wan1"
    set peer-type any
    set net-device disable
    set proposal aes128-sha256 aes256-sha256 3des-sha256 aes128-sha1 aes256-sha1 3des-sha1
    set add-route disable
    set dpd on-idle
    set auto-discovery-sender enable
    set psksecret sample
    set dpd-retryinterval 5
  next
end
config vpn ipsec phase2-interface
  edit "hub-phase2"
    set phasename "hub-phase1"
    set proposal aes128-sha1 aes256-sha1 3des-sha1 aes128-sha256 aes256-sha256 3des-sha256
  next
end
```
When net-device is disabled, a tunnel ID is generated for each dynamic tunnel. This ID, in the form of an IP address, is used as the gateway in the route entry to that tunnel. The tunnel-search option is removed in FortiOS 7.0.0 and later.

To configure the VPN interface and BGP:

```plaintext
config system interface
   edit "hub-phase1"
      set ip 10.10.100.254 255.255.255.255
      set remote-ip 10.10.100.253 255.255.255.0
   next
end
config router bgp
   set as 65505
config neighbor-group
   edit "advpn"
      set link-down-failover enable
      set remote-as 65505
      set route-reflector-client enable
   next
end
config neighbor-range
   edit 1
      set prefix 10.10.100.0 255.255.255.0
      set neighbor-group "advpn"
   next
end
config network
   edit 1
      set prefix 172.16.101.0 255.255.255.0
   next
   edit 2
      set prefix 11.11.11.0 255.255.255.0
   next
end
```

To configure the firewall policy:

```plaintext
config firewall policy
   edit 1
      set name "spoke2hub"
      set srcintf "hub-phase1"
      set dstintf "port10"
      set srcaddr "spoke_subnets"
      set dstaddr "hub_subnets"
      set action accept
      set schedule "always"
      set service "ALL"
      set comments "allow traffic from spokes to headquarter"
   next
   edit 2
      set name "spoke2spoke"
      set srcintf "hub-phase1"
```
set dstintf "hub-phase1"
set srcaddr "spoke_subnets"
set dstaddr "spoke_subnets"
set action accept
set schedule "always"
set service "ALL"
set comments "allow traffic from spokes to spokes"
next
edit 3
set name "internal2spoke"
set srcintf "port10"
set dstintf "hub-phase1"
set srcaddr "hub_subnets"
set dstaddr "spoke_subnets"
set action accept
set schedule "always"
set service "ALL"
set comments "allow traffic from headquarter to spokes"
next
end

Hub2 sample configuration

Hub2 configuration is the same as hub1 except the wan1 IP address, VPN interface IP address, and BGP neighbor-range prefix.

To configure the IPsec phase1 and phase2 interface:

```bash
config vpn ipsec phase1-interface
   edit "hub-phase1"
       set type dynamic
       set interface "wan1"
       set peertype any
       set net-device disable
       set proposal aes128-sha256 aes256-sha256 3des-sha256 aes128-shal aes256-shal 3des-shal
       set add-route disable
       set dpd on-idle
       set auto-discovery-sender enable
       set psksecret sample
       set dpd-retryinterval 5
next
end
config vpn ipsec phase2-interface
   edit "hub-phase2"
       set phasename "hub-phase1"
       set proposal aes128-shal aes256-shal 3des-shal aes128-sha256 aes256-sha256 3des-sha256
next
end
```

To configure the VPN interface and BGP:

```bash
config system interface
   edit "hub-phase1"
```
set ip 10.10.200.254 255.255.255.255
set remote-ip 10.10.200.253 255.255.255.0
next
end
config router bgp
set as 65505
config neighbor-group
edit "advpn"
 set link-down-failover enable
 set remote-as 65505
 set route-reflector-client enable
next
end
config neighbor-range
edit 1
 set prefix 10.10.200.0 255.255.255.0
 set neighbor-group "advpn"
next
end
config network
edit 1
 set prefix 172.16.101.0 255.255.255.0
next
edit 2
 set prefix 11.11.11.0 255.255.255.0
next
end
end

To configure the firewall policy:

config firewall policy
edit 1
 set name "spoke2hub"
 set srcintf "hub-phase1"
 set dstintf "port10"
 set srcaddr "spoke_subnets"
 set dstaddr "hub_subnets"
 set action accept
 set schedule "always"
 set service "ALL"
 set comments "allow traffic from spokes to headquarter"
next
edit 2
 set name "spoke2spoke"
 set srcintf "hub-phase1"
 set dstintf "hub-phase1"
 set srcaddr "spoke_subnets"
 set dstaddr "spoke_subnets"
 set action accept
 set schedule "always"
 set service "ALL"
 set comments "allow traffic from spokes to spokes"
next
edit 3
 set name "internal2spoke"
set srcintf "port10"
set dstintf "hub-phase1"
set srcaddr "hub_subnets"
set dstaddr "spoke_subnets"
set action accept
set schedule "always"
set service "ALL"
set comments "allow traffic from headquarter to spokes"

next
derm

Spoke1 sample configuration

To configure the IPsec phase1 and phase2 interface:

```
config vpn ipsec phase1-interface
  edit "spoke1-phase1"
    set interface "wan1"
    set peertype any
    set net-device enable
    set proposal aes128-sha256 aes256-sha256 aes128-shal aes256-shal
    set add-route disable
    set dpd on-idle
    set auto-discovery-receiver enable
    set remote-gw 11.1.1.11
    set psksecret sample
    set dpd-retryinterval 5
  next

  edit "spoke1-2-phase1"
    set interface "wan2"
    set peertype any
    set net-device enable
    set proposal aes128-sha256 aes256-sha256 aes128-shal aes256-shal
    set add-route disable
    set dpd on-idle
    set auto-discovery-receiver enable
    set remote-gw 11.1.2.11
    set psksecret sample
    set dpd-retryinterval 5
  next

config vpn ipsec phase2-interface
  edit "spoke1-phase2"
    set phasename "spoke1-phase1"
    set proposal aes128-shal aes256-shal aes128-sha256 aes256-sha256 aes128gcm aes256gcm
    set chacha20poly1305
    set auto-negotiate enable
  next

  edit "spoke1-2-phase2"
    set phasename "spoke1-2-phase1"
    set proposal aes128-shal aes256-shal aes128-sha256 aes256-sha256 aes128gcm aes256gcm
    set chacha20poly1305
    set auto-negotiate enable
  next
end
```
To configure the VPN interface and BGP:

```plaintext
cfg sys int
edit "spoke1-phase1"
    set ip 10.10.100.2 255.255.255.255
    set remote-ip 10.10.100.254 255.255.255.0
next
edit "spoke1-2-phase1"
    set ip 10.10.200.2 255.255.255.255
    set remote-ip 10.10.200.254 255.255.255.0
next
end

cfg router bgp
    set as 65505

cfg neighbor
    edit "10.10.100.254"
        set advertisement-interval 1
        set link-down-failover enable
        set remote-as 65505
next
edit "10.10.200.254"
    set advertisement-interval 1
    set link-down-failover enable
    set remote-as 65505
next
end

cfg net
    edit 1
        set prefix 10.1.100.0 255.255.255.0
next
end

global

To configure SD-WAN:

```plaintext
cfg sys sdwan
 set status enable

cfg members
 edit 1
 set interface "spoke1-phase1"
next
 edit 2
 set interface "spoke1-2-phase1"
next
end

cfg health-check
 edit "ping"
 set server "11.11.11.11"
 set members 1 2
 config sla
 edit 1
 set latency-threshold 200
 set jitter-threshold 50
 set packetloss-threshold 5
 next
 end
```
If no SD-WAN zone is specified, members are added to the default virtual-wan-link zone.

To configure the firewall policy:

```
config firewall policy
 edit 1
 set name "outbound_advpn"
 set srcintf "internal"
 set dstintf "virtual-wan-link"
 set srcaddr "spoke_subnets"
 set dstaddr "spoke_subnets" "hub_subnets"
 set action accept
 set schedule "always"
 set service "ALL"
 set comments "allow internal traffic going out to headquarter and other spokes"
 next
edit 2
 set name "inbound_advpn"
 set srcintf "virtual-wan-link"
 set dstintf "internal"
 set srcaddr "spoke_subnets" "hub_subnets"
 set dstaddr "spoke_subnets"
 set action accept
 set schedule "always"
 set service "ALL"
 set comments "allow headquarter and other spokes traffic coming in"
next
end
```
Troubleshooting ADVPN and shortcut paths

Before spoke vs spoke shortcut VPN is established

Use the following CLI commands to check status before spoke vs spoke shortcut VPN is established.

```
get router info bgp summary
BGP router identifier 2.2.2.2, local AS number 65505
BGP table version is 13
3 BGP AS-PATH entries
0 BGP community entries
```

<table>
<thead>
<tr>
<th>Neighbor</th>
<th>V</th>
<th>AS</th>
<th>MsgRcvd</th>
<th>MsgSent</th>
<th>TblVer</th>
<th>InQ</th>
<th>OutQ</th>
<th>Up/Down</th>
<th>State/PfxRcd</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10.100.254</td>
<td>4</td>
<td>65505</td>
<td>3286</td>
<td>3270</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>00:02:15</td>
<td>5</td>
</tr>
<tr>
<td>10.10.200.254</td>
<td>4</td>
<td>65505</td>
<td>3365</td>
<td>3319</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>00:02:14</td>
<td>5</td>
</tr>
</tbody>
</table>

Total number of neighbors 2

```
get router info routing-table bgp
Routing table for VRF=0
B* 0.0.0.0/0 [200/0] via 10.10.200.254, spoke1-2-phasel, 00:00:58
 [200/0] via 10.10.100.254, spoke1-phasel, 00:00:58
B 1.1.1.1/32 [200/0] via 11.1.1.1 (recursive via 12.1.1.1), 00:01:29
 [200/0] via 11.1.1.1 (recursive via 12.1.1.1), 00:01:29
B 11.11.11.0/24 [200/0] via 10.10.200.254, spoke1-2-phasel, 00:01:29
 [200/0] via 10.10.100.254, spoke1-phasel, 00:01:29
B 33.1.1.0/24 [200/0] via 10.10.200.3, spoke1-2-phasel, 00:00:58
 [200/0] via 10.10.100.3, spoke1-phasel, 00:00:58
 [200/0] via 10.200.3, spoke1-2-phasel, 00:00:58
 [200/0] via 10.10.100.3, spoke1-phasel, 00:00:58
```

```
diagnose vpn tunnel list
list all ipsec tunnel in vd 3
--
name=spoke1-phasel_ver=1_serial=5 12.1.1.2:0->11.1.1.11:0 tun_id=11.1.1.11 dst_mtu=15324
bound_if=48 lgw=static/1 tun=intf/0 mode=auto/1 encap=none/536 options[0218]=npu create_dev
frag RFC accept_traffic=1
proxyid_num=1 child_num=0 refcnt=22 ilast=0 olast=0 ad=r/2
stat: rtxp=1 txp=185 txr=16428 txb=11111
dpd: mode=on-demand on=1 idle=20000ms retry=3 count=0 seqno=4
natt: mode=none draft=0 interval=0 remote_port=0
proxy_id=spoke1 proto=0 sa=1 ref=4 serial=1 auto-negotiate adr
 src: 0.0.0.0/0.0.0.0:0
dst: 0.0.0.0/0.0.0.0:0
 SA: ref=6 options=1a227 type=0 soft=0 mtu=15262 expire=42820/0B replaywin=2048
 seqno=ba esn=0 replaywin_lastseq=00000002 itn=0 qat=0
 life: type=1 bytes=0/0 timeout=42903/43200
dec: spi=03e01a2a esp=aes esp=aes key=16 56e673f0df05186aa657f55cb631c13
 ah=sha1 key=20 b0d50597d9bed763c42469461b03da8041f87e88
 enc: spi=2ed61bc esp=aes esp=aes key=16 fe0cc43ae39fe6d520c437eb6b8987
 ah=sha1 key=20 e3e669bd6df41b88eadacba66463706f26fb53a
 dec: pkeys=bytes=1/16368, enc: pkeys/bytes=185/22360
 npu_flag=03 npu_rgwy=11.1.1.11 npu_lgw=12.1.1.2 npu_selid=0 dec_npuid=1 enc_npuid=1
--
name=spoke1-2-phasel_ver=1_serial=6 12.1.1.2:0->11.1.1.11:0 tun_id=11.1.2.11 dst_mtu=15324
```

FortiOS 7.2.0 Administration Guide

Fortinet Inc.
bound_if=90 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/536 options[0218]=npu create_dev frag-rfc accept_traffic=1

proxyid_num=1 child_num=0 refcnt=21 ilast=0 olast=0 ad=r/2
stat: rxp=1 txp=186 rxzp=16498 txzp=11163
dpd: mode=on-demand on=1 idle=20000ms retry=3 count=0 seqno=74
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=spoke1-2 proto=0 sa=1 ref=4 serial=1 auto-negotiate adr
src: 0:0:0.0/0.0.0.0:0
dst: 0:0:0.0/0.0.0.0:0
SA: ref=6 options=1a227 type=0 soft=0 mtu=15262 expire=42818/0B replaywin=2048 segno=bb eno=0 replaywin_lastseq=00000002 itn=0 qat=0
life: type=01 bytes=0/0 timeout=42901/43200
dec: spi=03e01a2b esp=aes key=16 fe49f5042a5ad236b1c6425dac2b3e15bec85
enc: spi=2ead61bd esp=aes key=16 d6d97be52c3cccbb9e88f28a9db64ac46
ah=sha1 key=20 5dbb15c8cbc046c284bb1c6425d8b17f52f1
dec:ptks/bytes=1/16438, enc:ptks/bytes=186/22480
npu_flag=03 npu_rgwy=11.1.1.2 npu_lgwyl=112.1.1.2 npu_selid=1 dec_npuid=1 enc_npuid=1

# diagnose sys sdwan service

Service(1): Address Mode(IPV4) flags=0x0
TOS(0x0/0x0), Protocol (0: 1->65535), Mode(sla)
Member sub interface:
Members:
  1: Seq_num(1), alive, sla(0x1), cfg_order(0), cost(0), selected
  2: Seq_num(2), alive, sla(0x1), cfg_order(1), cost(0), selected
Dst address: 33.1.1.1-33.1.1.100

Service(2): Address Mode(IPV4) flags=0x0
TOS(0x0/0x0), Protocol (0: 1->65535), Mode(manual)
Member sub interface:
Members:
  1: Seq_num(2), alive, selected
Dst address: 33.1.1.101-33.1.1.1200

# diagnose firewall proute list
list route policy info(vf=vd2):

id=213286921 vwl_service=1 vwl_mbr_seq=1 dscp_tag=0xff 0xff flags=0x0 tos=0x00 tos_mask=0x00 protocol=0 sport=0:65535 iif=0 dport=1-65535 oif=70 oif=71
destination(1): 33.1.1.1-33.1.1.100
source wildcard(1): 0.0.0.0/0.0.0.0

id=2132869122 vwl_service=2 vwl_mbr_seq=2 dscp_tag=0xff 0xff flags=0x0 tos=0x00 tos_mask=0x00 protocol=0 sport=0:65535 iif=0 dport=1-65535 oif=71
destination(1): 33.1.1.101-33.1.1.200
source wildcard(1): 0.0.0.0/0.0.0.0

After spoke vs spoke shortcut VPN is established

Use the following CLI commands to check status after spoke vs spoke shortcut VPN is established.

# get router info routing-table bgp
Routable table for VRF=0
# diagnose sys sdwan service

Service(1): Address Mode(IPV4) flags=0x0
TOS(0x0/0x0), Protocol(0: 1->65535), Mode(sla)
Member sub interface:
  1: seq_num(1), interface(spoke1-phase1):
    1: spoke1-phase1_0(111)
  2: seq_num(2), interface(spoke1-2-phase1):
    1: spoke1-2-phase1_0(113)
Members:
  1: Seq_num(1), alive, sla(0x1), cfg_order(0), cost(0), selected
  2: Seq_num(2), alive, sla(0x1), cfg_order(1), cost(0), selected
Dst address: 33.1.1.1-33.1.1.100

Service(2): Address Mode(IPV4) flags=0x0
TOS(0x0/0x0), Protocol(0: 1->65535), Mode(manual)
Member sub interface:
  1: seq_num(2), interface(spoke1-2-phase1):
    1: spoke1-2-phase1_0(113)
Members:
  1: Seq_num(2), alive, selected
Dst address: 33.1.1.101-33.1.1.100

# diagnose vpn tunnel list
list all ipsec tunnel in vd 3
-------------------------------
name=spoke1-phase1 ver=1 serial=5 12.1.1.2:0->11.1.1.11:0 tun_id=11.1.1.11 dst_mtu=15324
bound_if=48 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/536 options[0218]=npu create_dev
frag_rfc accept_traffic=1
proxyid_num=1 child_num=1 refcnt=20 ilast=0 olast=0 ad=r/2
stat: rxp=1 txp=759 rxb=16428 txb=48627
dpd: mode=on-demand on=1 idle=20000ms retry=3 count=0 seqno=4
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=vd2-1 proto=0 sa=1 ref=5 serial=1 auto-negotiate adr
src: 0.0.0.0/0.0.0.0/0
dst: 0.0.0.0/0.0.0.0/0
SA: ref=6 options=la227 type=00 soft=0 mtu=15262 expire=42536/0B replaywin=2048
  seqno=2f8 esn=0 replaywin_lastseg=00000002 itn=0 qat=0
life: type=01 bytes=0/0 timeout=42898/43200
dec: spi=03e01a42 esp=aes key=16 1f131bda108d33909d49fc2778bd08bb
  ah=sha1 key=20 14131d3f0da9b741a2fd13d530b0553aa1f58983
enc: spi=2ead61d8 esp=aes key=16 81ed24d5cd7bb59f4a80dceb5a560e1f
  ah=sha1 key=20 d2cc2f2323ce16514e75f672c888c4b4f48b6b1
dec:pkt/bytes=1/16360, enc:pkt/bytes=759/94434
npu_flag=03 npu_rgw=11.1.1.11 npu_lgw=12.1.1.2 npu_selid=0 dec_npuid=1 enc_npuid=1
name=spoke1-2-phase1 ver=1 serial=6 112.1.1.2:0->11.1.2.11:0 tun_id=111.2.11 dst_mtu=15324
bound_if=90 lgw=static/1 tun=intf/0 mode=auto/1 encap=none/536 options[0218]=npu create_dev frag/rfc accept_traffic=1

proxyid_num=1 child_num=1 refcnt=19 ilast=0 olast=0 ad=r/2
stat: rxp=1 txp=756 rxb=16450 txb=48460
dpd: mode=on-demand on=1 idle=20000ms retry=3 count=0 seqno=74
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=vd2-2 proto=0 sa=1 ref=5 serial=1 auto-negotiate adr
src: 0:0:0.0.0/0.0.0.0:0
dst: 0:0:0.0.0/0.0.0.0:0
SA: ref=6 options=1a27 type=00 soft=0 mtu=15262 expire=42538/0B replaywin=2048 segno=2f5 esn=0 replaywin_lastseq=00000002 itn=0 qat=0
life: type=01 bytes=0/0 timeout=42900/43200
dec: spi=03e01a43 esp=aes key=16 7fc87561369f88b56d08bfda769eb45b
ah=shal key=20 0ed554ef231c5ac16dc2e71d1907d7347dda33d6
enc: spi=2ed6d1d9 esp=aes key=16 00286687a176e27d8216881d6720ef3
ah=shal key=20 59d5ec62998b9c0f038c190860774e2833074d7c3
dec:cpkts/bytes=1/-16382, enc:cpkts/bytes=756/94058
npu_flag=03 npu_rgwy=11.1.2.11 npu_lgw=121.1.1.2 npu_selid=1 dec_npuid=1 enc_npuid=1

name=spoke1-phase1_0 ver=1 serial=55 121.1.1.2:0->121.1.1.3:0 tun_id=131.1.3 dst_mtu=15324
bound_if=48 lgw=static/1 tun=intf/0 mode=dialInst/3 encap=none/728 options[02d8]=npu create_dev no-sysctl rgw=chg frag/rfc accept_traffic=1

parent=vd2-1 index=0
proxyid_num=1 child_num=0 refcnt=18 ilast=8 olast=8 ad=r/2
stat: rxp=0 txp=0 rxb=0 txb=0
dpd: mode=on-demand on=1 idle=20000ms retry=3 count=0 seqno=0
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=vd2-2 proto=0 sa=1 ref=2 serial=1 auto-negotiate adr
src: 0:0:0.0.0/0.0.0.0:0
dst: 0:0:0.0.0/0.0.0.0:0
SA: ref=3 options=1a27 type=00 soft=0 mtu=15262 expire=42893/0B replaywin=2048 segno=1 esn=0 replaywin_lastseq=00000000 itn=0 qat=0
life: type=01 bytes=0/0 timeout=42901/43200
dec: spi=03e01a44 esp=aes key=16 c5b77a98e3002220e2373b73af14df6e
ah=shal key=20 d18d107c248564933874f60999d6082f7a78948
enc: spi=864f6d68 esp=aes key=16 eb6181806cbb9ac3793f9edadd4d5eb
ah=shal key=20 ab788f7a372877a5603c4ed1be89a592fc21873
dec:cpkts/bytes=0/0, enc:cpkts/bytes=0/0
npu_flag=00 npu_rgwy=131.1.1.3 npu_lgw=121.1.1.2 npu_selid=51 dec_npuid=0 enc_npuid=0

name=spoke1-2-phase1_0 ver=1 serial=57 112.1.1.2:0->113.1.1.3:0 tun_id=113.1.1.3 dst_mtu=15324
bound_if=90 lgw=static/1 tun=intf/0 mode=dial_inst/3 encap=none/728 options[02d8]=npu create_dev no-sysctl rgw=chg frag/rfc accept_traffic=1

parent=vd2-2 index=0
proxyid_num=1 child_num=0 refcnt=17 ilast=5 olast=5 ad=r/2
stat: rxp=0 txp=0 rxb=0 txb=0
dpd: mode=on-demand on=1 idle=20000ms retry=3 count=0 seqno=0
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=vd2-2 proto=0 sa=1 ref=3 serial=1 auto-negotiate adr
src: 0:0:0.0.0/0.0.0.0:0

FortiOS 7.2.0 Administration Guide 645
Fortinet Inc.
SD-WAN

dst: 0:0.0.0/0.0.0.0:0
SA: ref=3 options=1a27 type=00 soft=0 mtu=15262 expire=42900/0B replaywin=2048
    seqno=1 esn=0 replaywin_lastseq=00000000 itn=0 qat=0
life: type=01 bytes=0/0 timeout=42901/43200
dec: spi=03e01a45 esp=aes key=16 0beb519ed9f800e8b4c0aa4e1df7da35
    ah=sha1 key=20 bc9f38db5296ccee4208a69f1cc8a9f7ef4803c37
derc: spi=864f6dbb esp=aes key=16 1d26e3556acdb9f8e3e33b563b44228
    ah=sha1 key=20 564d05ed67f743ef0f9d0a97f9d87e
dec: pkts/bytes=0/0, enc: pkts/bytes=0/0

# diagnose firewall proute list
list route policy info (vf=vd2):

id=2132869121 vwl_service=1 vwl_mbr_seq=1 dscp_tag=0xff 0xff flags=0x0 tos=0x00 tos
mask=0x00 protocol=0 sport=0 dport=0 destination (1): 33.1.1.1-33.1.1.100
source wildcard (1): 0.0.0.0/0.0.0.0

id=2132869122 vwl_service=2 vwl_mbr_seq=2 dscp_tag=0xff 0xff flags=0x0 tos=0x00 tos
mask=0x00 protocol=0 sport=0 dport=0 destination (1): 33.1.1.101-33.1.1.200
source wildcard (1): 0.0.0.0/0.0.0.0

SD-WAN monitor on ADVPN shortcuts

SD-WAN monitors ADVPN shortcut link quality by dynamically creating link monitors for each ADVPN link. The dynamic
link monitor on the spoke will use ICMP probes and the IP address of the gateway as the monitored server. These ICMP
probes will not be counted as actual user traffic that keeps the spoke-to-spoke tunnel alive.

- - - Static tunnels
------- Dynamic tunnels (shortcuts)

- When no shortcut is established:

  # diagnose sys sdwan health-check
  Health Check (ping):
  Seq(1 tunnel-1): state (alive), packet-loss (0.000%) latency (0.038), jitter (0.006) sla
  map=0x3
  Seq(2 tunnel-2): state (alive), packet-loss (0.000%) latency (0.035), jitter (0.004) sla
  map=0x3
• When one shortcut is established:
  
  ```
 # diagnose sys sdwan health-check
 Health Check(ping):
 Seq(1 tunnel-1): state(alive), packet-loss(0.000%) latency(0.039), jitter(0.003) sla_map=0x3
 Seq(1 tunnel-1_0): state(alive), packet-loss(0.000%) latency(0.060), jitter(0.023) sla_map=0x3
 Seq(2 tunnel-2): state(alive), packet-loss(0.000%) latency(0.035), jitter(0.002) sla_map=0x3
  ```

• When more than one shortcut is established:
  
  ```
 # diagnose sys sdwan health-check
 Health Check(ping):
 Seq(1 tunnel-1): state(alive), packet-loss(0.000%) latency(0.036), jitter(0.004) sla_map=0x3
 Seq(1 tunnel-1_0): state(alive), packet-loss(0.000%) latency(0.041), jitter(0.009) sla_map=0x3
 Seq(2 tunnel-2): state(alive), packet-loss(0.000%) latency(0.030), jitter(0.005) sla_map=0x3
 Seq(2 tunnel-2_0): state(alive), packet-loss(0.000%) latency(0.031), jitter(0.004) sla_map=0x3
  ```

**Hold down time to support SD-WAN service strategies**

In a hub and spoke SD-WAN topology with shortcuts created over ADVPN, a downed or recovered shortcut can affect which member is selected by an SD-WAN service strategy. When a downed shortcut tunnel recovers and the shortcut is added back into the service strategy, the shortcut is held at a low priority until the hold down time has elapsed.

By default, the hold down time is zero seconds. It can be set to 0 - 10000000 seconds.

**To configure the hold down time:**

```
config system sdwan
 config service
 edit 1
 set hold-down-time <integer>
 next
 end
end
```

**Example**

In this example, the hold down time is set to 15 seconds, and then the SD-WAN service is looked at before and after the hold down elapses after a downed shortcut recovers.
To configure the hold down time:

```bash
config system sdwan
 config service
 edit 1
 set hold-down-time 15
 next
 end
end
```

To view which SD-WAN member is selected before and after the hold down time elapses:

Before the hold down time has elapsed:

```bash
diagnose sys sdwan service
Service(1): Address Mode(IPV4) flags=0x200
 Gen(34), TOS(0x0/0x0), Protocol(0: 1->65535), Mode(priority), link-cost-factor(packet-loss), link-cost-threshold(0), heath-check(ping)
Hold down time(15) seconds, Hold start at 2003 second, now 2010
 Member sub interface(4):
 1: seq_num(1), interface(vd2-1):
 1: vd2-1_0(86)
 3: seq_num(2), interface(vd2-2):
 1: vd2-2_0(88)

 Members(4):
 1: Seq_num(1 vd2-1), alive, packet loss: 27.000%, selected
 2: Seq_num(2 vd2-2_0), alive, packet loss: 0.000%, selected
 3: Seq_num(2 vd2-2), alive, packet loss: 0.000%, selected
 4: Seq_num(1 vd2-1_0), alive, packet loss: 61.000%, selected
 Dst address(1):
 33.1.1.101-33.1.1.200
```

After the hold down time has elapsed:

```bash
diagnose sys sdwan service
Service(1): Address Mode(IPV4) flags=0x200
 Gen(35), TOS(0x0/0x0), Protocol(0: 1->65535), Mode(priority), link-cost-factor(packet-loss), link-cost-threshold(0), heath-check(ping)
Hold down time(15) seconds, Hold start at 2018 second, now 2019
```
SD-WAN integration with OCVPN

OCVPN has the capability to enable SD-WAN in order to dynamically add its tunnel interfaces as SD-WAN members. Users can configure SD-WAN health checks and service rules to direct traffic over the OCVPN tunnels.

The following example uses a dual hub and spoke topology. Each hub and spoke has two WAN link connections to the ISP. The spokes generate two IPsec tunnels to each hub (four tunnels in total). BGP neighbors are established over each tunnel and routes from the hubs and other spokes learned from all neighbors, which forms an ECMP scenario. All tunnels are placed as SD-WAN members, so traffic can be distributed across tunnels based on the configured SD-WAN service rules.

To integrate SD-WAN with OCVPN in the GUI:

1. Configure the primary hub:
   a. Go to VPN > Overlay Controller VPN and set the Status to Enable.
   b. For Role, select Primary Hub.
c. Enter the WAN interfaces (port15 and port16) and tunnel IP allocation block (10.254.0.0/16).

The WAN interface is position sensitive, meaning a tunnel will be created with the first position interface on the hub to the first position interface on the spoke, and so on. In this example, FGT_A (primary hub) will create two tunnels with FGT_C (spoke):
- FGT_A port15 ==> FGT_C internal1
- FGT_A port16 ==> FGT_C internal2

d. Enable Auto-discovery shortcuts.

e. Enable Add OCVVPN tunnels to SD-WAN. The IPsec tunnels will be added automatically to the SD-WAN members if SD-WAN is enabled.

2. Configure the overlays on the primary hub:

a. In the Overlays section, click Create New.

b. Enter a name and add the local interface (port2). Note the overlay is either based on local subnets or local interfaces, but not both.

By default, inter-overlay traffic is not enabled. Toggle Allow traffic from other overlays to enable it.

c. Click OK and repeat these steps to create the second overlay (loop1).

d. Click Apply.

3. Configure the secondary hub with the same settings as the primary hub.

4. Configure the spoke:

a. Go to VPN > Overlay Controller VPN and set the Status to Enable.

b. For Role, select Spoke.

c. Enter the WAN interfaces (internal1 and internal2).

d. Enable Auto-discovery shortcuts.

e. Enable Add OCVVPN tunnels to SD-WAN. The IPsec tunnels will be added automatically to the SD-WAN members if SD-WAN is enabled.

f. Configure the overlays.

The overlay names on the spokes must match the names on the hub for the traffic to be allowed through the same overlay.

g. Click Apply.
5. Configure the other spoke with the same settings.
6. On a spoke, go to Network > SD-WAN and select the SD-WAN Zones tab to view the configuration generated by OCVPN.

Firewall policies will be automatically generated by OCVPN between the local interfaces and the SD-WAN interface. Each policy will define the proper local and remote networks for its source and destination addresses.

To integrate SD-WAN with OCVPN in the CLI:

1. Configure the primary hub:
   ```
 config vpn ocvpn
 set role primary-hub
 set sdwan enable
 set wan-interface "port15" "port16"
 set ip-allocation-block 10.254.0.0 255.255.0.0
 config overlays
 edit "overlay1"
 config subnets
 edit 1
 set type interface
 set interface "port2"
 next
 next
 edit "overlay2"
 config subnets
 edit 1
 set type interface
 set interface "loop1"
 next
 next
 end
 end
   ```
2. Configure the secondary hub with the same settings as the primary hub.
3. Configure the spoke:
   ```
 config vpn ocvpn
 set status enable
 set sdwan enable
 set wan-interface "internal1" "internal2"
 config overlays
 edit "overlay1"
 config subnets
   ```
4. Configure the other spoke with the same settings.

5. Configure SD-WAN:

```
edit 1
 set type interface
 set interface "wan2"
next
end
next
edit "overlay2"
 config subnets
 edit 1
 set type interface
 set interface "loop1"
next
end
next
end
```

Firewall policies will be automatically generated by OCVPN between the local interfaces and the SD-WAN interface. Each policy will define the proper local and remote networks for its source and destination addresses.

If no SD-WAN zone is specified, members are added to the default virtual-wan-link zone.

To verify the integration is working after the ADVPN shortcut is triggered:

1. Check the routing table on the spoke:

```
FGT_C # get router info routing-table all
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
 O - OSPF, IA - OSPF inter area
 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
 E1 - OSPF external type 1, E2 - OSPF external type 2
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
```
* - candidate default

Routing table for VRF=0
S* 0.0.0.0/0 [10/0] via 172.16.17.2, internal
[10/0] via 172.16.18.2, internal
B 10.1.100.0/24 [200/0] via 10.254.7.254, _OCVPN2-0a, 00:10:24
[200/0] via 10.254.15.254, _OCVPN2-0b, 00:10:24
B 10.1.200.0/24 [200/0] via 10.254.7.254, _OCVPN2-0a, 00:10:24
[200/0] via 10.254.15.254, _OCVPN2-0b, 00:10:24
B 10.2.100.0/24 [200/0] via 10.254.71.254, _OCVPN2-1a, 00:10:15
[200/0] via 10.254.79.254, _OCVPN2-1b, 00:10:15
B 10.2.200.0/24 [200/0] via 10.254.71.254, _OCVPN2-1a, 00:10:15
[200/0] via 10.254.79.254, _OCVPN2-1b, 00:10:15
B 10.254.0.0/16 [200/0] via 10.254.7.254, _OCVPN2-0a, 00:10:24
[200/0] via 10.254.15.254, _OCVPN2-0b, 00:10:24
[200/0] via 10.254.71.254, _OCVPN2-1a, 00:10:15
[200/0] via 10.254.79.254, _OCVPN2-1b, 00:10:15

C 10.254.0.0/21 is directly connected, _OCVPN2-0a
C 10.254.0.1/32 is directly connected, _OCVPN2-0a
C 10.254.8.0/21 is directly connected, _OCVPN2-0b
C 10.254.8.1/32 is directly connected, _OCVPN2-0b
C 10.254.64.0/21 is directly connected, _OCVPN2-1a
C 10.254.64.1/32 is directly connected, _OCVPN2-1b _OCVPN2-_1b_0 <=shortcut tunnel
C 10.254.64.2/32 is directly connected, _OCVPN2-1a
C 10.254.72.0/21 is directly connected, _OCVPN2-1b
C 10.254.72.2/32 is directly connected, _OCVPN2-1b _OCVPN2-_1b_0
C 172.16.17.0/24 is directly connected, internal
C 172.16.18.0/24 is directly connected, internal
C 172.16.200.0/24 is directly connected, wan1
C 192.168.1.0/24 is directly connected, internal
C 192.168.4.0/24 is directly connected, wan2
B 192.168.5.0/24 [200/0] via 10.254.0.2, _OCVPN2-0a, 00:00:10
[200/0] via 10.254.8.2, _OCVPN2-0b, 00:00:10
[200/0] via 10.254.0.2, _OCVPN2-0a, 00:00:10
[200/0] via 10.254.8.2, _OCVPN2-0b, 00:00:10
[200/0] via 10.254.64.1, _OCVPN2-1b_0, 00:00:10
[200/0] via 10.254.72.1, _OCVPN2-1b, 00:00:10
[200/0] via 10.254.64.1, _OCVPN2-1b_0, 00:00:10
[200/0] via 10.254.72.1, _OCVPN2-1b, 00:00:10
C 192.168.44.0/24 is directly connected, loop1
B 192.168.55.0/24 [200/0] via 10.254.0.2, _OCVPN2-0a, 00:00:10
[200/0] via 10.254.8.2, _OCVPN2-0b, 00:00:10
[200/0] via 10.254.0.2, _OCVPN2-0a, 00:00:10
[200/0] via 10.254.8.2, _OCVPN2-0b, 00:00:10
[200/0] via 10.254.64.1, _OCVPN2-1b_0, 00:00:10
[200/0] via 10.254.72.1, _OCVPN2-1b, 00:00:10
[200/0] via 10.254.64.1, _OCVPN2-1b_0, 00:00:10
[200/0] via 10.254.72.1, _OCVPN2-1b, 00:00:10

2. Check the VPN tunnel state:

   FGT_C # diagnose vpn tunnel list

   list all ipsec tunnel in vd 0

   ====================================================
   name=_OCVPN2-1b_0 ver=2 serial=1c 172.16.18.3:0->172.16.15.4:0 tun_id=172.16.15.4 dst_
mtu=1500
bound_if=9 lgwys=static/1 tun=intf/0 mode=dial_inst/3 encap=none/728 options[02d8]=npu
create_dev no-sysctl rgwy-chg frag-rfc accept_traffic=1 overlay_id=4

parent=OCVPN2-lb index=0
proxyid_num=1 child_num=0 refcnt=15 ilast=0 olast=0 ad=r/2
stat: rxp=641 txp=1025 rxb=16436 txb=16446
dpd: mode=on-idle on=1 idle=20000ms retry=3 count=0 seqno=0
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=OCVPN2-lb proto=0 sa=1 ref=3 serial=1 auto-negotiate adr
src: 0.0.0.0/0/0.0.0.0/0
dst: 0.0.0.0/0/0.0.0.0/0
SA: ref=6 options=1a227 type=0 soft=0 mtu=1438 expire=42650/DB replaywin=1024
seqno=407 esn=0 replaywin_lastseq=00000280 itn=0 qat=0 hash_search_len=1
life: type=01 bytes=0/0 timeout=43186/43200
dec: spi=90f03d9d esp=aes key=16 6cb33685bbc67c5c85488e0176ecf7b0
ah=shal key=20 7d11b3babe62c840bf444b7bf637b4324722a71
enc: spi=7bc94bda esp=aes key=16 b4d8fc731d411eb24448b4077a5872ca
ah=shal key=20 b72406d4827304aad80385ed4914461108b7312f
deckpts=bytes=641/16368, enc:deckpts=bytes=2053/123426
npu_flag=03 npu_rgwy=172.16.15.4 npu_lgwys=172.16.18.3 npu_selid=1f dec_npuid=1 enc_npuid=1
---------------------------------------------------------------------------------
name=OCVPN2-0a ver=2 serial=18 172.16.17.3:0->172.16.17.3:0 tun_id=172.16.17.3 dst_mtu=1500
bound_if=8 lgwys=static/1 tun=intf/0 mode=auto/1 encap=none/536 options[0218]=npu create_dev
frag-rfc accept_traffic=1 overlay_id=1

proxyid_num=1 child_num=0 refcnt=20 ilast=0 olast=0 ad=r/2
stat: rxp=1665 txp=2922 rxb=278598 txb=70241
dpd: mode=on-idle on=1 idle=20000ms retry=3 count=0 seqno=7
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=OCVPN2-0 proto=0 sa=1 ref=4 serial=1 auto-negotiate adr
src: 0.0.0.0/0/0.0.0.0/0
dst: 0.0.0.0/0/0.0.0.0/0
SA: ref=6 options=1a227 type=0 soft=0 mtu=1438 expire=41599/DB replaywin=1024
seqno=890 esn=0 replaywin_lastseq=00000680 itn=0 qat=0 hash_search_len=1
life: type=01 bytes=0/0 timeout=42899/43200
dec: spi=90f03d95 esp=aes key=16 a6ffcc197bbb1b46ec745d0b595cdd69a
ah=shal key=20 8007c134e41edf282f95da9c903d688ef05ccc
enc: spi=1bf21bf esp=aes key=16 ead05be389b0dec222f969e2f9c46b1d
ah=shal key=20 b04105d34d4b0e61b018f2e60591f9b1510783bb
deckpts=bytes=1665/278538, enc:deckpts=bytes=4237/265074
npu_flag=03 npu_rgwy=172.16.13.1 npu_lgwys=172.16.17.3 npu_selid=1b dec_npuid=1 enc_npuid=1
---------------------------------------------------------------------------------
name=OCVPN2-1a ver=2 serial=1a 172.16.17.3:0->172.16.11.1:0 tun_id=172.16.11.1 dst_mtu=1500
bound_if=8 lgwys=static/1 tun=intf/0 mode=auto/1 encap=none/536 options[0218]=npu create_dev
frag-rfc accept_traffic=1 overlay_id=3

proxyid_num=1 child_num=0 refcnt=17 ilast=0 olast=0 ad=r/2
stat: rxp=1 txp=2913 rxb=16376 txb=69642
dpd: mode=on-idle on=1 idle=20000ms retry=3 count=0 seqno=5
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=OCVPN2-1a proto=0 sa=1 ref=28 serial=1 auto-negotiate adr
src: 0.0.0.0/0.0.0.0

dst: 0.0.0.0/0.0.0.0

SA: ref=6 options=1a227 type=0 soft=0 mtu=1438 expire=41653/0B replaywin=1024
    seqno=887 esn=0 replaywin_lastseq=00000002 itn=0 qat=0 hash_search_len=1
life: type=01 bytes=0/0 timeout=42900/43200

dec: spi=90f03d9b esp=aes key=16 ee03f5b0f617a26c6177e91d60abf90b
    ah=shal key=20 f60cbcb4bd6d0327d23137da707b7ab2dc49e6
    enc: spi=a543a7d3 esp=aes key=16 1d37efab13a5c0347b582b219bb15cb8
    ah=shal key=20 427ee4c8b2ac6f6f0cbeb0e4328c7f57ce862e

dec: pkts/bytes=1/16321, enc: pkts/bytes=4223/264036

npu_flag=03 npu_rgwy=172.16.11.1 npu_lgwy=172.16.17.3 npu_selid=1d dec_npuid=1 enc_npuid=1

---------------------------------------------------------------------------

name=OCVPN2-0b ver=2 serial=19 172.16.18.3:0->172.16.14.1:0 tun_id=172.16.14.1 dst_mtu=1500
bound_if=9 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/536 options[0218]=npu create_dev frag/rfc accept_traffic=1 overlay_id=2

proxyid_num=1 child_num=0 refcnt=20 ilast=0 olast=0 ad=r/2
stat: rxp=1665 txp=2917 rxb=278576 txb=69755
dpd: mode=on-idle on=1 idle=2000ms retry=3 count=0 seqno=7
natt: mode=none draft=0 interval=0 remote_port=0

proxyid=_OCVPN2-0b proto=0 sa=1 ref=4 serial=1 auto-negotiate adr
src: 0.0.0.0.0/0.0.0.0:0
dst: 0.0.0.0.0/0.0.0.0:0

SA: ref=6 options=1a227 type=0 soft=0 mtu=1438 expire=41599/0B replaywin=1024
    seqno=888 esn=0 replaywin_lastseq=000000680 itn=0 qat=0 hash_search_len=1
life: type=01 bytes=0/0 timeout=42999/43200

dec: spi=90f03d96 esp=aes key=16 9d7eb233c1d095b30796c3711d53f2fd
    ah=shal key=20 d8feacd42b5e0ba8b5e38647b2f2734c94644bd1
    enc: spi=a1bf21c0 esp=aes key=16 d2c0984bf86dc504c5475230b2403f0
    ah=shal key=20 3946e4033e1f42b0d9a843b9448f56f5b57bee

dec: pkts/bytes=1665/278516, enc: pkts/bytes=4233/264411

npu_flag=03 npu_rgwy=172.16.14.1 npu_lgwy=172.16.18.3 npu_selid=1c dec_npuid=1 enc_npuid=1

---------------------------------------------------------------------------

name=OCVPN2-1b ver=2 serial=1b 172.16.18.3:0->172.16.12.1:0 tun_id=172.16.12.1 dst_mtu=1500
bound_if=9 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/536 options[0218]=npu create_dev frag/rfc accept_traffic=1 overlay_id=4

proxyid_num=1 child_num=1 refcnt=19 ilast=1 olast=0 ad=r/2
stat: rxp=1665 txp=2917 rxb=16430 txb=70173
dpd: mode=on-idle on=1 idle=2000ms retry=3 count=0 seqno=4
natt: mode=none draft=0 interval=0 remote_port=0

proxyid=_OCVPN2-1b proto=0 sa=1 ref=28 serial=1 auto-negotiate adr
src: 0.0.0.0.0/0.0.0.0:0
dst: 0.0.0.0.0/0.0.0.0:0

SA: ref=6 options=1a227 type=0 soft=0 mtu=1438 expire=41656/0B replaywin=1024
    seqno=890 esn=0 replaywin_lastseq=00000002 itn=0 qat=0 hash_search_len=1
life: type=01 bytes=0/0 timeout=42903/43200

dec: spi=90f03d9c esp=aes key=16 a655767c1ed6cff4575857eb3981ad81
    ah=shal key=20 afb5e0ba8b5e38647b2f2734c94644bd1
    enc: spi=a543a7d4 esp=aes key=16 7221b814e483165b01edfcd8260d261a
    ah=shal key=20 d54819643c2f1b20da2aa4282d50a1f1bc1d72a

dec: pkts/bytes=1/16370, enc: pkts/bytes=4238/265164
npu_flag=03 npu_rgwy=172.16.12.1 npu_lgwy=172.16.18.3 npu_selid=1e dec_npuid=1 enc_npuid=1

3. Check the SD-WAN state:

```bash
FGT_C # diagnose sys sdwan health-check
Health Check(Defalut_DNS):
Health Check(Default_Office_365):
Health Check(Default_Gmail):
Health Check(Default.AWS):
Health Check(Default_Google Search):
Health Check(Default_FortiGuard):
Health Check(ocvpn):
 Seq(1_OCVPN2-0a): state(alive), packet-loss(0.000%) latency(0.364), jitter(0.028) sla_map=0x0
 Seq(2_OCVPN2-0b): state(alive), packet-loss(0.000%) latency(0.287), jitter(0.026) sla_map=0x0
 Seq(3_OCVPN2-la): state(dead), packet-loss(100.000%) sla_map=0x0
 Seq(4_OCVPN2-lb): state(dead), packet-loss(100.000%) sla_map=0x0
 Seq(4_OCVPN2-lb_0): state(alive), packet-loss(0.000%) latency(0.289), jitter(0.029) sla_map=0x0
```

Adaptive Forward Error Correction

Forward Error Correction (FEC) is used to control and correct errors in data transmission by sending redundant data across the VPN in anticipation of dropped packets occurring during transit. The mechanism sends out x number of redundant packets for every y number of base packets.

Adaptive FEC considers link conditions and dynamically adjusts the FEC packet ratio:

- The FEC base and redundant packet relationship is dynamically adjusted based on changes to the network SLA metrics defined in the SD-WAN SLA health checks. For example, when there is no or low packet loss in the network, FEC can work on a low redundant level sending only one redundant packet for every 10 base packets. As packet loss increases, the number of redundant packets sent can rise accordingly.
- FEC can be applied only to streams that are sensitive to packet loss. For example, policies that allow the UDP based VoIP protocol can enable FEC, while TCP based traffic policies do not. This reduces unnecessary bandwidth consumption by FEC.
- Because FEC does not support NPU offloading, the ability to specify streams and policies that do not require FEC allows those traffic to be offloaded. This means that all traffic suffers a performance impact.

In this example, an IPsec tunnel is configured between two FortiGates that both have FEC enabled. The tunnel is an SD-WAN zone, and an SLA health-check is used to monitor the quality of the VPN overlay. The intention is to apply FEC to UDP traffic that is passing through the VPN overlay, while allowing all other traffic to pass through without FEC. An FEC profile is configured to adaptively increase redundant levels if the link quality exceeds a 10% packet loss threshold, or the bandwidth exceeds 950 Mbps.

The DMZ interface and IPsec tunnel vd1-p1 are SD-WAN members. FEC is enabled on vd1-p1, and health-check works on vd1-p1.
To configure the FortiGates:

1. On both FortiGates, enable FEC and NPU offloading on the IPsec tunnel vd1-p1:

   ```
 config vpn ipsec phase1-interface
 edit "vd1-p1"
 set npu-offload enable
 set fec-egress enable
 set fec-ingress enable
 next
 end
   ```

2. On FortiGate A, configure SD-WAN:

   The VPN overlay member (vd1-p1) must be included in the health-check and configured as the higher priority member in the SD-WAN rule.

   ```
 config system sdwan
 set status enable
 config zone
 edit "virtual-wan-link"
 next
 end
 config members
 edit 1
 set interface "dmz"
 set gateway 172.16.208.2
 next
 edit 2
 set interface "vd1-p1"
 next
 end
 config health-check
 edit "1"
 set server "2.2.2.2"
 set members 2
 config sla
 edit 1
 next
 end
 end
 config service
 edit 1
 set name "1"
 set dst "all"
 set src "172.16.205.0"
 set priority-members 2 1
   ```
3. On FortiGate A, create a policy to specify performing FEC on UDP traffic, and a policy for other traffic:

```plaintext
config firewall policy
 edit 1
 set srcintf "port5"
 set dstintf "virtual-wan-link"
 set action accept
 set srcaddr "172.16.205.0"
 set dstaddr "all"
 set schedule "always"
 set service "ALL_UDP"
 set fec enable
 next
 edit 2
 set srcintf "any"
 set dstintf "any"
 set action accept
 set srcaddr "all"
 set dstaddr "all"
 set schedule "always"
 set service "ALL"
 next
end
```

4. On FortiGate A, configure FEC mapping to bind network SLA metrics and FEC base and redundant packets:

```plaintext
config vpn ipsec fec
 edit "m1"
 config mappings
 edit 1
 set base 8
 set redundant 2
 set packet-loss-threshold 10
 next
 edit 2
 set base 9
 set redundant 3
 set bandwidth-up-threshold 950000
 next
 end
end
```

The mappings are matched from top to bottom: packet loss loss greater than 10% with eight base and two redundant packets, and then uploading bandwidth greater than 950 Mbps with nine base and three redundant packets.

5. On FortiGate A, apply the FEC mappings on vd1-p1:

```plaintext
config vpn ipsec phasel-interface
 edit "vd1-p1"
 set fec-health-check "1"
 set fec-mapping-profile "m1"
 set fec-base 10
 set fec-redundant 1
```
The FEC base and redundant values are used when the link quality has not exceeded the limits specified in the FEC profile mapping. If `fec-codec` is set to `xor` the base and redundant packet values will not be updated.

To verify the results:

1. **Send TCP and UDP traffic from PC1 to PC2, then check the sessions on FortiGate A:**

   To verify the results:

   ```
 # diagnose sys session list
 session info: proto=6 proto_state=01 duration=12 expire=3587 timeout=3600 flags=00000000
 socktype=0 sockport=0 av_idx=0 use=3
 origin-shaper= reply-shaper=
 per_ip_shaper=
 class_id=0 ha_id=0 policy_dir=0 tunnel=/ vlan_cos=0/255
 state=may_dirty npu
 statistic(bytes/packets/allow_err): org=112/2/1 reply=112/2/1 tuples=2
 tx speed(Bps/kbps): 0/0 rx speed(Bps/kbps): 0/0
 org->sink: org pre->post, reply pre->post dev=15->102/102->15
 gwy=172.16.209.2/172.16.205.11
 hook<pre dir=org act=noop 172.16.205.11:39176->10.1.100.22:5001(0.0.0.0:0)
 hook<post dir=reply act=noop 10.1.100.22:5001->172.16.205.11:39176(0.0.0.0:0)
 pos/(before,after) 0/(0,0), 0/(0,0)
 misc=0 policy_id=2 pol_uuid_id=719 auth_info=0 chk_client_info=0 vd=0
 serial=00020f7a tos=ff ff app_list=0 app=0 url_cat=0
 sdwan_mbr_seq=2 sdwan_service_id=1
 rpdb_link_id=ff000001 rpdb_svc_id=0 ngfwid=n/a
 npu_state=0x500c00
 npu info: flag=0x82/0x81, offload=8/8, ips_offload=0/0, epid=249/74, ipid=74/86,
 vlan=0x0000/0x0000
 vlifid=74/249, vtag_in=0x0000/0x0001 in_npu=1/1, out_npu=1/1, fwd_en=0/0, qid=5/5

 session info: proto=17 proto_state=00 duration=0 expire=180 timeout=0 flags=00000000
 socktype=0 sockport=0 av_idx=0 use=4
 origin-shaper= reply-shaper=
 per_ip_shaper=
 class_id=0 ha_id=0 policy_dir=0 tunnel=/ vlan_cos=0/255
 state=may_dirty fec
 statistic(bytes/packets/allow_err): org=100366/67/1 reply=0/0/0 tuples=2
 tx speed(Bps/kbps): 0/0 rx speed(Bps/kbps): 0/0
 org->sink: org pre->post, reply pre->post dev=15->102/102->15
 gwy=172.16.209.2/172.16.205.11
 hook<pre dir=org act=noop 172.16.205.11:49052->10.1.100.22:5001(0.0.0.0:0)
 hook<post dir=reply act=noop 10.1.100.22:5001->172.16.205.11:49052(0.0.0.0:0)
 misc=0 policy_id=1 pol_uuid_id=593 auth_info=0 chk_client_info=0 vd=0
 serial=000210fa tos=ff ff app_list=0 app=0 url_cat=0
 sdwan_mbr_seq=2 sdwan_service_id=1
 rpdb_link_id=ff000001 rpdb_svc_id=0 ngfwid=n/a
 npu_state=0x504000

 no_ofld_reason: non-npu-intf
   ```

   Non-FEC protected TCP traffic is offloaded, while FEC protected UDP traffic is not offloaded

2. **On FortiGate A, check the health-check result and the corresponding FEC base and redundant packets:**
# diagnose sys sdwan health-check
Health Check(1):
Seq(2 vd1-p1): state(alive), packet-loss(0.000%) latency(0.168), jitter(0.021),
bandwidth-up(999999), bandwidth-dw(999998), bandwidth-bi(1999997) sla_map=0x1

Because bandwidth-up is more than 950000kbps, base and redundant are set to 9 and 3:

# diagnose vpn tunnel fec vd1-p1
egress:
  enabled=1 base=9 redundant=3 codec=0 timeout=10(ms)
  encode=6621 encode_timeout=6621 encode_fail=0
tx_data=6880 tx parity=18601
ingress:
  enabled=1 timeout=50(ms)
fasm_cnt=0 fasm_full=0
ipsec_fec_chk_fail=0 complete=0
rx_data=0 rx parity=0
recover=0 recover_timeout=0 recover_fail=0
rx=0 rx fail=0

3. Make packet loss more than 10%, then check the health-check result and the corresponding FEC base and redundant packets again:

# diagnose sys sdwan health-check
Health Check(1):
Seq(2 vd1-p1): state(alive), packet-loss(15.000%) latency(0.168), jitter(0.017),
bandwidth-up(999999), bandwidth-dw(999998), bandwidth-bi(1999997) sla_map=0x0

Because packet loss is more than 10%, entry one in FEC mapping is first matched, and base and redundant are set to 8 and 2:

# diagnose vpn tunnel fec vd1-p1
egress:
  enabled=1 base=8 redundant=2 codec=0 timeout=10(ms)
  encode=6670 encode_timeout=6670 encode_fail=0
tx_data=6976 tx parity=18748
ingress:
  enabled=1 timeout=50(ms)
fasm_cnt=0 fasm_full=0
ipsec_fec_chk_fail=0 complete=0
rx_data=0 rx parity=0
recover=0 recover_timeout=0 recover_fail=0
rx=0 rx fail=0

**Dual VPN tunnel wizard**

This wizard is used to automatically set up multiple VPN tunnels to the same destination over multiple outgoing interfaces. This includes automatically configuring IPsec, routing, and firewall settings, avoiding cumbersome and error-prone configuration steps.
To create a new SD-WAN VPN interface using the tunnel wizard:

1. Go to Network > SD-WAN, select the SD-WAN Zones tab, and click Create New > SD-WAN Member.
2. In the Interface drop-down, click +VPN. The Create IPsec VPN for SD-WAN members pane opens.
3. Enter the required information, then click Next.
4. Review the settings then click Create.
5. Click Close to return to the SD-WAN page.
   The newly created VPN interface will be highlighted in the Interface drop-down list.
6. Select the VPN interface to add it as an SD-WAN member, then click OK.

**Duplicate packets on other zone members**

When duplication rules are used, packets are duplicated on other good links within the SD-WAN zone and de-duplicated on the destination FortiGate. Use force mode to force duplication on other links within the SD-WAN zone, or use on-demand mode to trigger duplication only when SLA fails on the selected member.

The duplication rule is configured in the CLI by using the `config duplication` command. The following options can be configured:
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>srcaddr</td>
<td>Source address or address group names.</td>
</tr>
<tr>
<td>dstaddr</td>
<td>Destination address or address group names.</td>
</tr>
<tr>
<td>srcaddr6</td>
<td>Source IPv6 address or IPv6 address group names.</td>
</tr>
<tr>
<td>dstaddr6</td>
<td>Destination IPv6 address or IPv6 address group names.</td>
</tr>
<tr>
<td>srcintf</td>
<td>Incoming (ingress) interfaces or zones.</td>
</tr>
<tr>
<td>dstintf</td>
<td>Outgoing (egress) interfaces or zones.</td>
</tr>
<tr>
<td>service</td>
<td>Service and service group names.</td>
</tr>
<tr>
<td>packet-duplication</td>
<td>Configure packet duplication method.</td>
</tr>
<tr>
<td></td>
<td>• disable: Disable packet duplication (default).</td>
</tr>
<tr>
<td></td>
<td>• force: Duplicate packets across all interface members of the SD-WAN zone.</td>
</tr>
<tr>
<td></td>
<td>• on-demand: Duplicate packets across all interface members of the SD-WAN</td>
</tr>
<tr>
<td></td>
<td>zone based on the link quality.</td>
</tr>
<tr>
<td>packet-de-duplication</td>
<td>Enable/disable discarding of packets that have been duplicated (default =</td>
</tr>
<tr>
<td></td>
<td>disable).</td>
</tr>
</tbody>
</table>

The `duplication-max-num <integer>` option under `config system sdwan` is the maximum number of interface members that a packet is duplicated on in the SD-WAN zone (2 - 4, default = 2). If this value is set to 3, the original packet plus two more copies are created. If there are three member interfaces in the SD-WAN zone and the `duplication-max-num` is set to 2, the packet duplication follows the configuration order, so the packets are duplicated on the second member.

**Example**

The packet duplication feature works best in a spoke-spoke or hub-and-spoke topology. In this example, a hub-and-spoke ADVPN topology is used. Before shortcuts are established, Hub 1 forwards the duplicate packets from Spoke 1 to Spoke 2. Once shortcuts are established, Hub 1 is transparent, and duplicate packets are exchanged directly between the spokes.

![Diagram of SD-WAN topology](image-url)
To configure packet duplication between Spoke 1 and Spoke 2:

1. Configure Spoke 1:

   ```
 config system sdwan
 set status enable
 config zone
 edit "virtual-wan-link"
 next
 edit "sdwanzone_v4"
 next
 end
 config members
 edit 1
 set interface "t1"
 set zone "sdwanzone_v4"
 next
 edit 4
 set interface "t21"
 set zone "sdwanzone_v4"
 next
 edit 2
 set interface "t2"
 set zone "sdwanzone_v4"
 next
 end
 config health-check
 edit "h1"
 set server "10.34.1.1"
 set interval 1000
 set failtime 10
 set members 1 2
 config sla
 edit 1
 set packetloss-threshold 40
 next
 end
 end
 config duplication
 edit 1
 set srcaddr "all"
 set dstaddr "all"
 set srcintf "port1"
 set dstintf "sdwanzone_v4"
 set service "ALL"
 set packet-duplication force
 set packet-de-duplication enable
 next
 end
   ```

2. Configure Spoke 2 with similar settings.
Duplicate packets based on SD-WAN rules

SD-WAN duplication rules can specify SD-WAN service rules to trigger packet duplication. This allows the duplication to occur based on an SD-WAN rule instead of the source, destination, and service parameters in the duplication rule.

1. Packets can be forced to duplicate to all members of the same SD-WAN zone. See Duplicate packets on other zone members on page 661 for details.
   For example, in Spoke 1 set packet-duplication to force so that when a client sends a packet to the server, it is duplicated to all members of the same zone as long as its health check is alive. If a members health check is dead, then the member is removed from the SD-WAN duplication zone.

2. Packets can be duplicated to other members of the SD-WAN zone on-demand only when the condition of the link is not good enough.
   Set packet-duplication to on-demand. If sla-match-service is disabled, when all the SLAs of the member exceed threshold (sla_map=0), the packet is duplicated. But when the SLAs are within threshold (sla_map!=0), the packet is not duplicated.
   If sla-match-service is enabled, then only the SLA health checks and targets used in the service rule need to exceed threshold in order to trigger packet duplication.

3. Packets can be duplicated to all members of the same SD-WAN zone when the traffic matches one or more regular SD-WAN service rules.

   The following example shows the third type of packet duplication.

   ![SD-WAN Diagram](image)

   In this example, SD-WAN is configured with three members: vpn1, vpn2, and vpn3. Service rule 1 controls all traffic from 10.100.20.0/24 to 172.16.100.0/24 using member 1.

   To send a duplicate of the traffic that matches service rule 1 using member 2, members 1 and 2 are added to the same SD-WAN zone, and a duplication rule is configured with service-id set to 1.

   **To send a duplicate of the traffic that matches service rule 1 using member 2:**

   ```
 config system sdwan
 set status enable
 config zone
 edit "virtual-wan-link"
 next
 edit "zone2"
   ```
next
end
config members
  edit 1
    set interface "vpn1"
  next
  edit 2
    set interface "vpn2"
  next
  edit 3
    set interface "vpn3"
    set zone "zone2"
  next
end
config service
  edit 1
    set dst "172.16.100.0"
    set src "10.100.20.0"
    set priority-members 1
  next
end
config duplication
  edit 1
    set service-id 1
    set packet-duplication force
  next
end
end

Speed tests run from the hub to the spokes in dial-up IPsec tunnels

In a hub and spoke SD-WAN topology that uses dial-up VPN overlays, QoS can be applied on individual tunnels based on the measured bandwidth between the hub and spokes. The FortiGate can use the built in speed test to dynamically populate the egress bandwidth to individual dial-up tunnels from the hub.

SD-WAN members on a spoke can switch routes when the speed test is running from the hub to the spoke. The speed test results can be cached for reuse when a tunnel comes back after going down.

CLI commands

Allow upload speed tests to be run from the hub to spokes on demand for dial-up IPsec tunnel:

```fortios
config system speed-test-schedule
 edit <interface>
 set dynamic-server {enable | disable}
 next
end
```

<table>
<thead>
<tr>
<th><code>&lt;interface&gt;</code></th>
<th>The dial-up IPsec tunnel interface on the hub.</th>
</tr>
</thead>
<tbody>
<tr>
<td>dynamic-server {enable</td>
<td>disable}</td>
</tr>
</tbody>
</table>
To limit the maximum and minimum bandwidth used in the speed test, enable \texttt{set update-inbandwidth} and \texttt{set update-outbandwidth}. See \texttt{Scheduled interface speedtest} on page 528 for more information.

\begin{verbatim}
config system global
    set speedtest-server {enable | disable}
end
速度测试服务器 \texttt{(enable | disable)}

Enable/disable the speed test server on the spoke (default = disable). This setting must be enabled on spoke FortiGates. This enables iPerf in server mode, which listens on the default iPerf TCP port 5201.

Allow an SD-WAN member on the spoke to switch routes when it is on speed test from the hub to spokes:

\begin{verbatim}
config system sdwan
    set speedtest-bypass-routing {enable | disable}
    config neighbor
        edit <bgp neighbor>
            set mode speedtest
        next
    end
end
速度测试绕行路由 \texttt{(enable | disable)}

Enable/disable bypass routing when doing a speed test on an SD-WAN member (default = disable).

Use the speed test to select the neighbor.

Manually run uploading speed test on the physical interfaces of each tunnel of an dial-up IPsec interface:

\begin{verbatim}
execute speed-test-dynamic <interface> <tunnel_name> '<y'/'n'> <max-out> <min-out>
\end{verbatim}

\begin{itemize}
    \item \texttt{<interface>} IPsec phase1 interface name.
    \item \texttt{<tunnel_name>} The tunnel name, or \texttt{all} for all tunnels.
    \item \texttt{'<y'/'n'>} Apply the result to the tunnels’ shaper or not.
    \item \texttt{<max-out>} The maximum speed used in a speed test, in kbps.
    \item \texttt{<min-out>} The minimum speed used in a speed test, in kbps.
\end{itemize}

Manually run a non-blocking uploading speed test:

\begin{verbatim}
diagnose netlink interface speed-test-tunnel <interface> <tunnel_name>
\end{verbatim}
**Debug and test commands:**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>diagnose debug application speedtest &lt;int&gt;</code></td>
<td>Enable debug of the speed test module in the forticron daemon.</td>
</tr>
<tr>
<td><code>diagnose debug application speedtestd &lt;int&gt;</code></td>
<td>Enable debug of the speed test server daemon.</td>
</tr>
<tr>
<td><code>diagnose test application forticron 9</code></td>
<td>List the scheduled speed tests.</td>
</tr>
<tr>
<td><code>diagnose test application forticron 10</code></td>
<td>Show the cached speed test results.</td>
</tr>
<tr>
<td><code>diagnose test application forticron 11</code></td>
<td>Write the cached speed test results to disk.</td>
</tr>
<tr>
<td><code>diagnose test application forticron 12</code></td>
<td>Load the speed test results from disk.</td>
</tr>
<tr>
<td><code>diagnose test application forticron 99</code></td>
<td>Cancel all pending speed tests.</td>
</tr>
</tbody>
</table>

**Example**

In this example, the hub is configured as a VPN dial-up server and both of the spokes are connected to the hub. It is assumed that the VPN configuration is already done, with a dynamic gateway type and kernel device creation (`net_device`) disabled. Only one SD-WAN interface is used, so there is only one VPN overlay member in the SD-WAN zone. Multiple WAN interfaces and VPN overlays could be used.

The VPN interfaces and IP addresses are:

<table>
<thead>
<tr>
<th>FortiGate</th>
<th>Interface</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGT_A (Hub)</td>
<td>hub-phase1</td>
<td>10.10.100.254</td>
</tr>
<tr>
<td>FGT_B (Spoke)</td>
<td>spoke11-p1</td>
<td>10.10.100.2</td>
</tr>
<tr>
<td>FGT_D (Spoke)</td>
<td>spoke21-p1</td>
<td>10.10.100.3</td>
</tr>
</tbody>
</table>

A recurring speed test is configured that runs on the hub over the dial-up interfaces. The speed tests are performed over the underlay interface from the hub to the spoke. Each spoke is configured to operate as a speed test server and to allow the speed test to run on its underlay interface. The spokes establish BGP peering with the hub over the VPN interface, and advertises its loopback network to the hub. The specific configuration is only shown for FGT_B.
When the speed test is running, routing through the VPN overlay can be bypassed, and route maps are used to filter the routes that are advertised to peers. The spoke's route map does not advertise any routes to the peer, forcing the hub to use others paths to reach the spoke's network.

When no speed tests are running, the spoke's route map allows its network to be advertised on the hub.

When the speed test is complete, the measured egress bandwidth is dynamically applied to the VPN tunnel on the hub, and the result is cached for future use, in case the tunnel is disconnected and reconnected again.

**To configure the hub FortiGate (FGT_A):**

1. **Configure a shaping profile:**
   ```
 config firewall shaping-profile
 edit "profile_1"
 config shaping-entries
 edit 1
 set class-id 2
 set priority low
 set guaranteed-bandwidth-percentage 10
 set maximum-bandwidth-percentage 10
 next
 end
   ```
   ```
 set default-class-id 2
 next
 end
   ```

   Three classes are used in the profile for low, medium, and high priority traffic. Each class is assigned a guaranteed and maximum bandwidth as a percentage of the measured bandwidth from the speed test.

2. **Use the shaping profile in the interface:**
   ```
 config system interface
 edit "hub-phase1"
 set egress-shaping-profile "profile_1"
 next
 end
   ```

3. **Configure a schedule to use for the speed tests:**
   ```
 config firewall schedule recurring
 edit "speedtest_recurring"
 set start 01:00
 set end 23:00
 set day monday tuesday wednesday thursday friday saturday
 next
 end
   ```

4. **Configure the speed test schedule:**
   ```
 config system speed-test-schedule
 edit "hub-phase1"
 set schedules "speedtest_recurring"
 set dynamic-server enable
 next
 end
   ```
To configure the spoke FortiGates (FGT_B and FGT_D):

1. Enable the speed test daemon:

   ```
 config system global
 set speedtest-server enable
 end
   ```

2. Allow speed tests on the interface:

   ```
 config system interface
 edit "port1"
 append allowaccess speed-test
 next
 end
   ```

3. Configure SD-WAN with bypass routing enabled for speed tests on member spoke11-p1:

   ```
 config system sdwan
 set speedtest-bypass-routing enable
 config members
 edit 1
 set interface "spoke11-p1"
 next
 end
 config neighbor
 edit "10.10.100.254"
 set member 1
 set mode speedtest
 next
 end
   ```

4. Configure BGP routing:

   ```
 config router route-map
 edit "No_Speed-Test"
 config rule
 edit 1
 set action permit
 next
 next
 end
 next
 edit "Start_Speed-Test"
 config rule
 edit 1
 set action deny
 next
 next
 end
   ```

   ```
 config router bgp
 set as 65412
 config neighbor
 edit "10.10.100.254"
 set remote-as 65412
 set route-map-out "Start_Speed-Test"
 set route-map-out-preferable "No_Speed-Test"
   ```
To manually run the speed test:

# execute speed-test-dynamic hub-phase1 all y 1000 100
Start testing the speed of each tunnel of hub-phase1
[6400d9] hub-phase1_0: physical_intf=port1, local_ip=172.16.200.1, server_ip=172.16.200.2
Wait for test 6400d9 to finish...
Speed-test result for test ID 6400d9:
  Completed
  measured upload bandwidth is 1002 kbps
  measured time Sun Jun 20 15:56:34 2021

The tested out-bandwidth is more than the set maximum accepted value 1000. Will update the tunnel's shaper by the set update-outbandwidth-maximum.
Apply shaping profile 'profile_1' with bandwidth 1000 to tunnel hub-phase1_0 of interface hub-phase1
[6400e0] hub-phase1_1: physical_intf=port1, local_ip=172.16.200.1, server_ip=172.16.200.4
Wait for test 6400e0 to finish...
Speed-test result for test ID 6400e0:
  Completed
  measured upload bandwidth is 1002 kbps
  measured time Sun Jun 20 15:56:39 2021

The tested out-bandwidth is more than the set maximum accepted value 1000. Will update the tunnel's shaper by the set update-outbandwidth-maximum.
Apply shaping profile 'profile_1' with bandwidth 1000 to tunnel hub-phase1_1 of interface hub-phase1

# diagnose netlink interface speed-test-tunnel hub-phase1 all
send speed test request for tunnel 'hub-phase1_0' of 'hub-phase1': 172.16.200.1 -> 172.16.200.2
send speed test request for tunnel 'hub-phase1_1' of 'hub-phase1': 172.16.200.1 -> 172.16.200.4

Results

1. Before the speed test starts, FGT_A can receive the route from FGT_B by BGP:

   # get router info routing-table bgp
   Routing table for VRF=0
   B 2.2.2.32 [200/0] via 10.10.100.2 (recursive via 172.16.200.2, hub-phase1), 00:00:10
   B 10.1.100.0/24 [200/0] via 10.10.100.2 (recursive via 172.16.200.2, hub-phase1), 00:00:10

2. At the scheduled time, the speed test starts for the hub-phase1 interface from hub to spoke:
# diagnose test application forticron 9
Speed test schedules:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Server</th>
<th>Update</th>
<th>Up/Down-limit (kbps)</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>H:M</td>
<td>TOS</td>
<td>Schedule</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

-----------------------------------------------

hub-phase1  dynamic  111111
14:41 0x00  speedtest_recurring
Active schedules:

64002f: hub-phase1(port1) 172.16.200.2  hub-phase1_1
64002e: hub-phase1(port1) 172.16.200.4  hub-phase1_0

The `diagnose` command can be used on both the hub and spokes to check the speed test execution.

3. While the speed test is running, FGT_A does not receive the route from FGT_B by BGP:

```
get router info routing-table bgp
Routing table for VRF=0
```

4. Speed tests results can be dynamically applied to the dial-up tunnel for egress traffic shaping:

```
diagnose vpn tunnel list

name=hub-phase1_0 ver=2 serial=c 172.16.200.1:0->172.16.200.4:0 tun_id=172.16.200.4 dst_net=1500 dpd-link=on remote_location=0.0.0.0 weight=1
... egress traffic control:
 bandwidth=737210(kbps) lock_hit=0 default_class=2 n_active_class=3
 class-id=2 allocated-bandwidth=73720(kbps) guaranteed-bandwidth=73720(kbps)
 max-bandwidth=73720(kbps) current-bandwidth=0(kbps)
 priority=low forwarded_bytes=52
 dropped_packets=0 dropped_bytes=0
 class-id=3 allocated-bandwidth=221163(kbps) guaranteed-bandwidth=221162(kbps)
 max-bandwidth=294883(kbps) current-bandwidth=0(kbps)
 priority=medium forwarded_bytes=0
 dropped_packets=0 dropped_bytes=0
 class-id=4 allocated-bandwidth=442325(kbps) guaranteed-bandwidth=147441(kbps)
 max-bandwidth=442325(kbps) current-bandwidth=0(kbps)
 priority=high forwarded_bytes=0
 dropped_packets=0 dropped_bytes=0

name=hub-phase1_1 ver=2 serial=d 172.16.200.1:0->172.16.200.2:0 tun_id=172.16.200.2 dst_net=1500 dpd-link=on remote_location=0.0.0.0 weight=1
... egress traffic control:
 bandwidth=726813(kbps) lock_hit=0 default_class=2 n_active_class=3
 class-id=2 allocated-bandwidth=72681(kbps) guaranteed-bandwidth=72681(kbps)
 max-bandwidth=72681(kbps) current-bandwidth=0(kbps)
 priority=low forwarded_bytes=123
 dropped_packets=0 dropped_bytes=0
 class-id=3 allocated-bandwidth=218044(kbps) guaranteed-bandwidth=218043(kbps)
 max-bandwidth=290725(kbps) current-bandwidth=0(kbps)
```

FortiOS 7.2.0 Administration Guide

Fortinet Inc.
5. Speed test results can be cached, indexed, and written to disk:

```bash
diagnose test application forticron 10
Speed test results:
1: vdom=root, phaselntf=hub-phasel, peer-id='spokell-pl', bandwidth=737210, last_log=1624226603
2: vdom=root, phaselntf=hub-phasel, peer-id='spoke2l-pl', bandwidth=726813, last_log=1624226614
diagnose test application forticron 11
Write 2 logs to disk.
diagnose test application forticron 12
load 2 results.
```

Disable then reenable the IPsec VPN tunnel and the cached speed test results can be applied to the tunnel again:

```bash
diagnose vpn tunnel list
name=hub-phasel_0 ver=2 serial=c 172.16.200.1:0->172.16.200.4:0 tun_id=172.16.200.4 dst_mtu=1500 dpd-link=on remote_location=0.0.0.0 weight=1
... egress traffic control:
 bandwidth=737210 (kbps) lock_hit=0 default_class=2 n_active_class=3
diagnose vpn tunnel list
name=hub-phasel_1 ver=2 serial=d 172.16.200.1:0->172.16.200.2:0 tun_id=172.16.200.2 dst_mtu=1500 dpd-link=on remote_location=0.0.0.0 weight=1
... egress traffic control:
 bandwidth=726813 (kbps) lock_hit=0 default_class=2 n_active_class=3
```

### Interface based QoS on individual child tunnels based on speed test results

In a hub and spoke SD-WAN topology that uses dial-up VPN overlays, QoS can be applied on individual tunnels based on the measured bandwidth between the hub and spokes. The FortiGate can use the built in speed test to dynamically populate the egress bandwidth to individual dial-up tunnels from the hub.

A bandwidth limit, derived from the speed test, and a traffic shaping profile can be applied on the dial-up IPsec tunnel interface on the hub. A class ID and percentage based QoS settings can be applied to individual child tunnels using a traffic shaping policy and profile.

### CLI commands

If the interface is an IPsec dial-up server, then egress shaping profile type can only be set to `policing`; it cannot be set to `queuing`:

```bash
config firewall shaping-profile
edit <profile-name>
```

---

SD-WAN

<table>
<thead>
<tr>
<th>priority</th>
<th>forwarded_bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>medium</td>
<td>0</td>
</tr>
<tr>
<td>dropped_packets</td>
<td>0</td>
</tr>
<tr>
<td>dropped_bytes</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>class-id</th>
<th>allocated_bandwidth</th>
<th>guaranteed_bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>145362 (kbps)</td>
<td>436087 (kbps)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>max_bandwidth</th>
<th>current_bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>436087 (kbps)</td>
<td>0 (kbps)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>priority</th>
<th>forwarded_bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td>0</td>
</tr>
<tr>
<td>dropped_packets</td>
<td>0</td>
</tr>
<tr>
<td>dropped_bytes</td>
<td>0</td>
</tr>
</tbody>
</table>

---

FortiOS 7.2.0 Administration Guide
Fortinet Inc. 672
set type policing
next
end

The outbandwidth value is dynamically obtained from the speed test results for each individual child tunnel, and should not be set manually:

```
config system interface
 edit <dialup-server-phasel-name>
 set egress-shaping-profile <profile-name>
 set outbandwidth <bandwidth>
 next
end
```

### Example

In this example, the hub is configured as a VPN dial-up server and both of the spokes are connected to the hub. It is assumed that the VPN configuration is already done, with a dynamic gateway type and kernel device creation (*net-device*) disabled. Only one SD-WAN interface is used, so there is only one VPN overlay member in the SD-WAN zone. Multiple WAN interfaces and VPN overlays could be used.

The VPN interfaces and IP addresses are:

<table>
<thead>
<tr>
<th>FortiGate</th>
<th>Interface</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGT_A (Hub)</td>
<td>hub-phase1</td>
<td>10.10.100.254</td>
</tr>
<tr>
<td>FGT_B (Spoke)</td>
<td>spoke11-p1</td>
<td>10.10.100.2</td>
</tr>
<tr>
<td>FGT_D (Spoke)</td>
<td>spoke21-p1</td>
<td>10.10.100.3</td>
</tr>
</tbody>
</table>

The hub VPN has two child tunnels, one to each spoke.

The speed test configuration is shown in *Speed tests run from the hub to the spokes in dial-up IPsec tunnels on page 665*. This example shows applying a shaping profile to the hub’s tunnel interface in order to apply interface based traffic shaping to the child tunnels.

A traffic shaping policy is used to match and assign traffic to the classes in the shaping profile.

**To configure the hub FortiGate (FGT_A) and check the results:**

1. Configure the hub FortiGate (FGT_A) as in *Speed tests run from the hub to the spokes in dial-up IPsec tunnels on page 665*.  
2. Configure the shaping profile:

```plaintext
config firewall shaping-profile
 edit "profile_1"
 config shaping-entries
 edit 1
 set class-id 2
 set priority low
 set guaranteed-bandwidth-percentage 10
 set maximum-bandwidth-percentage 10
 next
 edit 2
 set class-id 3
 set priority medium
 set guaranteed-bandwidth-percentage 30
 set maximum-bandwidth-percentage 40
 next
 edit 3
 set class-id 4
 set priority high
 set guaranteed-bandwidth-percentage 20
 set maximum-bandwidth-percentage 60
 next
 end
 end
```

3. Configure a traffic shaping policy:

```plaintext
config firewall shaping-policy
 edit 2
 set service "ALL"
 set schedule "always"
 set dstintf "hub-phase1"
 set class-id 3
 set srcaddr "all"
 set dstaddr "all"
 next
end
```

In this example, all traffic through the hub-phase1 interface is put into class ID 3. Class IDs an be assigned based on your traffic requirements.

4. At the schedules time, the speed test will start for the hub-phase1 interface from the hub to the spokes. The speed test results can then be dynamically applied on individual child tunnels as egress traffic shaping, and the class ID percentage based QoS settings is applicable on them as templates.

```plaintext
diagnose vpn tunnel list

name=hub-phase1_0 ver=2 serial=c 172.16.200.1:0->172.16.200.4:0 tun_id=172.16.200.4 dst_
mtu=1500 dpd-link=on remote_location=0.0.0.0 weight=1
... egress traffic control:
 bandwidth=737210(kbps) lock_hit=0 default_class=2 n_active_class=3
class-id=2 allocated-bandwidth=73720(kbps) guaranteed-
bandwidth=73720(kbps)
 max-bandwidth=73720 (kbps) current-bandwidth=0(kbps)
```
SD-WAN

priority=low forwarded_bytes=52
 dropped_packets=0 dropped_bytes=0
class-id=3 allocated-bandwidth=221163(kbps) guaranteed-
bandwidth=221162(kbps)
 max-bandwidth=294883(kbps) current-bandwidth=0(kbps)
priority=medium forwarded_bytes=0
dropped_packets=0 dropped_bytes=0
class-id=4 allocated-bandwidth=442325(kbps) guaranteed-
bandwidth=147441(kbps)
 max-bandwidth=442325(kbps) current-bandwidth=0(kbps)
priority=high forwarded_bytes=0
dropped_packets=0 dropped_bytes=0

---------------------------------------------------------------------
name=hub-phase1_1 ver=2 serial=d 172.16.200.1:0->172.16.200.2:0 tun_id=172.16.200.2 dst_mtu=1500 dpd-link=on remote_location=0.0.0.0 weight=1 ... 

egress traffic control:

 bandwidth=726813(kbps) lock_hit=0 default_class=2 n_active_class=3
class-id=2 allocated-bandwidth=72681(kbps) guaranteed-
bandwidth=72681(kbps)
 max-bandwidth=72681(kbps) current-bandwidth=0(kbps)
priority=low forwarded_bytes=123
dropped_packets=0 dropped_bytes=0
class-id=3 allocated-bandwidth=218044(kbps) guaranteed-
bandwidth=218043(kbps)
 max-bandwidth=290725(kbps) current-bandwidth=0(kbps)
priority=medium forwarded_bytes=0
dropped_packets=0 dropped_bytes=0
class-id=4 allocated-bandwidth=436087(kbps) guaranteed-
bandwidth=145362(kbps)
 max-bandwidth=436087(kbps) current-bandwidth=0(kbps)
priority=high forwarded_bytes=0
dropped_packets=0 dropped_bytes=0

The guaranteed and maximum bandwidths equal 10% of the speed test result, as expected.

Use SSL VPN interfaces in zones

SSL VPN interfaces can be used in zones, simplifying firewall policy configuration in some scenarios.

Example

In this example, a zone is created that includes a physical interface (port4) and an SSL VPN interface. The zone is used as the source interface in a firewall policy. PC1 is used for regular access with a firewall policy, and PC2 uses the SSL VPN for access.
To create a zone that includes the port4 and ssl.root interfaces in the GUI:

1. Go to Network > Interfaces and click Create New > Zone.
2. Set the name of the zone, such as zone_sslvpn_and_port4.
3. Add port4 and ssl.root to the Interface members.
4. Click OK.

To configure SSL VPN settings in the GUI:

1. Go to VPN > SSL-VPN Settings.
2. Set Listen on Interface(s) to port2.
3. Set Listen on Port to 1443.
4. Configure the remaining settings as required.
5. Click Apply.
To configure a firewall policy with the zone as the source interface in the GUI:

1. Go to Policy & Objects > Firewall Policy and click Create New.
2. Set the policy name, such as policy_to_sslvpn_tunnel.
3. Set Incoming Interface to zone_sslvpn_and_port4.
4. Set Outgoing Interface to port1.
5. Configure the remaining settings as required.

6. Click OK.

To configure the zone, SSL VPN, and policy in the CLI:

1. Create a zone that includes the port4 and ssl.root interfaces:

   ```
 config system zone
 edit "zone_sslvpn_and_port4"
 set interface "port4" "ssl.root"
 next
 end
   ```

2. Configure SSL VPN settings with port2 as the source interface:

   ```
 config vpn ssl settings
 set servercert "fgt_gui_automation"
 set tunnel-ip-pools "SSLVPN_TUNNEL_ADDR1"
 set tunnel-ipv6-pools "SSLVPN_TUNNEL_IPV6_ADDR1"
 set dns-server1 8.8.8.8
 set dns-server2 8.8.4.4
 set port 1443
 set source-interface "port2"
 set source-address "all"
 set source-address6 "all"
 set default-portal "web-access"
 end
   ```

3. Configure a firewall policy with the zone as the source interface:

   ```
 config firewall policy
 edit 2
 set name "policy_to_sslvpn_tunnel"
 set srcintf "zone_sslvpn_and_port4"
 set dstintf "port1"
   ```
To test the configuration:

1. On PC1, open a browser and try to access the server at 172.16.200.44. You are redirected to the authentication page.

   ![Authentication Required](image1)

   **Authentication Required**
   Please enter your username and password to continue.
   Username:  
   Password:  
   Continue

2. Enter the **Username** and **Password**, then click **Continue**.
   You are redirected back to the server.

3. On PC2, access the SSL VPN web portal.

   ![Please Login](image2)

4. Enter the **Username** and **Password**, then click **Login**.
5. Access the server using the bookmark.

SD-WAN in large scale deployments

Phase 2 selectors can be used to inject IKE routes on the ADVPN shortcut tunnel. When configuration method (mode-cfg) is enabled in IPsec phase 1 configuration, enabling mode-cfg-allow-client-selector allows custom phase 2 selectors to be configured. By also enabling the addition of a route to the peer destination selector (add-route) in the phase 1 configuration, IKE routes based on the phase 2 selectors can be injected. This means that routes do not need to be reflected on the hub to propagate them between spokes, avoiding possible BGP daemon process load issues and improving network scalability in a large-scale ADVPN network.

Route map rules can apply priorities to BGP routes. On the hub, priorities can be set in a route map’s rules, and the route map can be applied on BGP routes. This allows the hub to mark the preferred path learned from the spokes with a higher priority, instead of using multiple SD-WAN policy routes on the hub. When a preferred outbound route map (route-map-out-preferable) is also configured in an SD-WAN neighbor on the spoke, deploying SD-WAN rules on the hub to steer traffic from the hub to a spoke is unnecessary.

SD-WAN members’ local cost can be exchanged on the ADVPN shortcut tunnel so that spokes can use the remote cost as tiebreak to select a preferred shortcut. If multiple shortcuts originate from the same member to different members on the same remote spoke, then the remote cost on the shortcuts is used as the tiebreak to decide which shortcut is preferred.

In this example, SD-WAN is configured on an ADVPN network with a BGP neighbor per overlay.

Instead of reflecting BGP routes with the route-reflector on the hub, when the shortcuts are triggered, IKE routes on the shortcuts are directly injected based on the configured phase 2 selectors to allow routes to be exchanged between spokes.
Routes between the hub and the spokes are exchanged by BGP, and the spokes use the default route to send spoke-to-spoke traffic to the hub and trigger the shortcuts.

Instead of configuring SD-WAN rules on the hub, different priorities are configured on the BGP routes by matching different BGP communities to steer traffic from the hub to the spokes.

**To configure Spoke 1:**

1. **Configure phase 1:**

   ```
 config vpn ipsec phasel-interface
 edit "spoke11-p1"
 ... set ike-version 2
 set net-device enable
 set add-route enable
 set mode-cfg enable
 set auto-discovery-receiver enable
 set mode-cfg-allow-client-selector enable
 ... next
 edit "spoke12-p1"
 ... set ike-version 2
 set net-device enable
 set add-route enable
 set mode-cfg enable
 set auto-discovery-receiver enable
 set mode-cfg-allow-client-selector enable
 next
 end
   ```

2. **Configure phase 2:**

   ```
 config vpn ipsec phase2-interface
 edit "spoke11-p2"
 ... set src-name "LAN_Net"
 set dst-name "all"
 next
 edit "spoke12-p2"
 ... set src-name "LAN_Net"
 set dst-name "all"
 next
 end
   ```

3. **Configure an address group:**

   Spoke 1 uses LAN subnet 10.1-3.100.0/24.

   ```
 config firewall addrgrp
 edit "LAN_Net"
 set member "10.1.100.0" "10.2.100.0" "10.3.100.0"
 next
 end
   ```

4. **Configure route maps:**
- If overlay 1 to the hub is in SLA, attach "65000:1" to the BGP routes advertised to the hub over overlay 1.
- If overlay 2 to the hub is in SLA, attach "65000:2" to the BGP routes advertised to the hub over overlay 2.
- If any overlay to the hub is out of SLA, attach "65000:9999" to the BGP routes advertised to the hub over any overlay.

```plaintext
config router route-map
 edit "HUB_CARRIER1"
 config rule
 edit 1
 set set-community "65000:1"
 ...
 next
 end
 ...
next
edit "HUB_CARRIER2"
config rule
 edit 1
 set set-community "65000:2"
 ...
 next
 ...
next
edit "HUB_BAD"
config rule
 edit 1
 set set-community "65000:9999"
 ...
 next
end
...
next
eend
```

5. Configure BGP and SD-WAN members and neighbors:

```plaintext
config router bgp
 set as 65412
config neighbor
 edit "10.10.15.253"
 set remote-as 65412
 set route-map-out "HUB_BAD"
 set route-map-out-preferable "HUB_CARRIER1"
 ...
 next
 edit "10.10.16.253"
 set remote-as 65412
 set route-map-out "HUB_BAD"
 set route-map-out-preferable "HUB_CARRIER2"
 ...
 next
end
config system sdwan
config members
```
edit 1
   set interface "spoke11-p1"
next
edit 2
   set interface "spoke12-p1"
next
end

cfg neighbor
edit "10.10.15.253"
   set member 1
   set health-check "1"
   set sla-id 1
next
edit "10.10.16.253"
   set member 2
   set health-check "11"
   set sla-id 1
next
end

To configure Spoke 2:

1. Configure phase 1:

   config vpn ipsec phase1-interface
      edit "spoke21-p1"
         ...
         set ike-version 2
         set net-device enable
         set add-route enable
         set mode-cfg enable
         set auto-discovery-receiver enable
         set mode-cfg-allow-client-selector enable
         ...
next
edit "spoke22-p1"
         ...
         set ike-version 2
         set net-device enable
         set add-route enable
         set mode-cfg enable
         set auto-discovery-receiver enable
         set mode-cfg-allow-client-selector enable
next
end

2. Configure phase 2:

   config vpn ipsec phase2-interface
      edit "spoke21-p2"
         ...
         set src-name "LAN_Net"
         set dst-name "all"
next
edit "spoke22-p2"
         ...
3. Configure an address group:
Spoke 2 uses LAN subnet 192.168.5-7.0/24.

```
set src-name "LAN_Net"
set dst-name "all"
next
derm
```

4. Configure route maps:
- If overlay 1 to the hub is in SLA, attach "65000:1" to the BGP routes advertised to the hub over overlay 1.
- If overlay 2 to the hub is in SLA, attach "65000:2" to the BGP routes advertised to the hub over overlay 2.
- If any overlay to the hub is out of SLA, attach "65000:9999" to the BGP routes advertised to the hub over any overlay.

```
config router route-map
 edit "HUB_CARRIER1"
 config rule
 edit 1
 set set-community "65000:1"
 ...
next
...
next
edit "HUB_CARRIER2"
 config rule
 edit 1
 set set-community "65000:2"
 ...
next
...
next
edit "HUB_BAD"
 config rule
 edit 1
 set set-community "65000:9999"
 ...
next
...
next
derm
```

5. Configure BGP and SD-WAN members and neighbors:

```
config router bgp
 set as 65412
config neighbor
 edit "10.10.15.253"
 set remote-as 65412
```
To configure the hub:

1. Configure the route maps:
   - Set the priority to 100 for routes with community 65000:1, indicating that they are in SLA for overlay 1.
   - Set the priority to 200 for routes with community 65000:2, indicating that they are in SLA for overlay 2.
   - Set the priority to 9999 for routes with community 65000:9999, indicating that they are out of SLA for any overlay.

   ```
 config router route-map
 edit "Set Pri"
 config rule
 edit 1
 set match-community "comm_65000:1"
 set set-priority 100
 next
 edit 2
 set match-community "comm_65000:2"
 set set-priority 200
   ```
2. Configure BGP:

```plaintext
config router bgp
 set as 65412
config neighbor-group
 edit "advpn"
 set remote-as 65412
 set route-map-in "Set_Pri"
 ...
 next
 edit "advpn2"
 set remote-as 65412
 set route-map-in "Set_Pri"
 ...
next
config neighbor-range
 edit 1
 set prefix 10.10.15.0 255.255.255.0
 set neighbor-group "advpn"
 next
 edit 2
 set prefix 10.10.16.0 255.255.255.0
 set neighbor-group "advpn2"
next
end

to test the configuration:
1. Check the routing tables on the spokes:

Spoke 1:
```
spoke-1 (root) # get router info routing-table all
  B*  0.0.0.0/0 [200/0] via 10.10.15.253 (recursive is directly connected, spoke11-p1), 00:01:17, [1/0] // default route to hub
  [200/0] via 10.10.16.253 (recursive is directly connected, spoke12-p1), 00:01:17, [1/0]
  B  9.0.0.0/24 [200/0] via 10.10.15.253 (recursive is directly connected, spoke11-p1), 00:01:17, [1/0] // route to the server behind hub
  [200/0] via 10.10.16.253 (recursive is directly connected, spoke12-p1), 00:01:17, [1/0]
  C  10.1.100.0/24 is directly connected, port2 // route to PC 1
  C  10.10.15.0/24 is directly connected, spoke11-p1 // overlay 1
  C  10.10.15.1/32 is directly connected, spoke11-p1
  C  10.10.16.0/24 is directly connected, spoke12-p1 // overlay 2
  C  10.10.16.1/32 is directly connected, spoke12-p1
```
2. Send traffic from PC 1 to PC 2 and trigger the shortcut:
The IKE routes on the shortcut are directly injected based on the phase 2 selectors, and spoke-to-spoke traffic then
goes directly through the shortcut instead of going through the hub.

Spoke 1:

```
spoke-1 (root) # get router info routing-table static
S 192.168.5.0/24 [15/0] via spoke11-p1_0 tunnel 172.16.200.4 vrf 0, [1/0]  
S 192.168.6.0/24 [15/0] via spoke11-p1_0 tunnel 172.16.200.4 vrf 0, [1/0]  
S 192.168.7.0/24 [15/0] via spoke11-p1_0 tunnel 172.16.200.4 vrf 0, [1/0]  

spoke-1 (root) # diagnose sniffer packet any 'host 192.168.5.44' 4  
filters=[host 192.168.5.44]  
1.446306 port2 in 10.1.100.22 -> 192.168.5.44: icmp: echo request  
1.446327 spoke11-p1_0 out 10.1.100.22 -> 192.168.5.44: icmp: echo request  
1.446521 spoke11-p1_0 in 192.168.5.44 -> 10.1.100.22: icmp: echo reply  
1.446536 port2 out 192.168.5.44 -> 10.1.100.22: icmp: echo reply
```

Spoke 2:

```
spoke-2 (root) # get router info routing-table static
S 10.1.100.0/24 [15/0] via spoke21-p1_0 tunnel 10.10.15.1 vrf 0, [1/0]  
S 10.2.100.0/24 [15/0] via spoke21-p1_0 tunnel 10.10.15.1 vrf 0, [1/0]  
S 10.3.100.0/24 [15/0] via spoke21-p1_0 tunnel 10.10.15.1 vrf 0, [1/0]  
```

3. Confirm that the overlays are in SLA on the spokes:

Spoke 1:

```
spoke-1 (root) # diagnose sys sdwan neighbor  
Neighbor(10.10.15.253): member(1)role(standalone)  
  Health-check(1:1) sla-pass selected alive  
Neighbor(10.10.16.253): member(2)role(standalone)  
  Health-check(1:1) sla-pass selected alive
```

Spoke 2:

```
spoke-2 (root) # diagnose sys sdwan neighbor  
Neighbor(10.10.15.253): member(1)role(standalone)  
  Health-check(1:1) sla-pass selected alive  
Neighbor(10.10.16.253): member(2)role(standalone)  
  Health-check(2:1) sla-pass selected alive
```
4. On the hub, check that the routes received from the spokes have the expected priorities:

```plaintext
hub (root) # diagnose ip route list | grep proto=11
```
```
tab=254 vf=0 scope=0 type=1 proto=11 prio=100 0.0.0.0/0/0.0.0.0/0->10.1.100.0/24
pref=0.0.0.0 gwy=10.10.15.1 dev=101(hub-phase1)
tab=254 vf=0 scope=0 type=1 proto=11 prio=200 0.0.0.0/0/0.0.0.0/0->10.1.100.0/24
pref=0.0.0.0 gwy=10.10.16.1 dev=102(hub2-phase1)
tab=254 vf=0 scope=0 type=1 proto=11 prio=100 0.0.0.0/0/0.0.0.0/0->192.168.5.0/24
pref=0.0.0.0 gwy=10.10.15.2 dev=101(hub-phase1)
tab=254 vf=0 scope=0 type=1 proto=11 prio=200 0.0.0.0/0/0.0.0.0/0->192.168.5.0/24
pref=0.0.0.0 gwy=10.10.16.2 dev=102(hub2-phase1)
```

The priority set by the hub’s route map is based on the community string received from the spoke. The route with a lower priority value is selected, so traffic to Spoke 1 goes out on the hub-phase1 tunnel:

```plaintext
hub (root) # diagnose sniffer packet any 'host 9.0.0.2' 4 interfaces=[any]
filters=[host 9.0.0.2]
2.735456 R190 in 9.0.0.2 -> 10.1.100.22: icmp: echo request
2.735508 hub-phase1 out 9.0.0.2 -> 10.1.100.22: icmp: echo request
2.735813 hub-phase1 in 10.1.100.22 -> 9.0.0.2: icmp: echo reply
2.735854 R190 out 10.1.100.22 -> 9.0.0.2: icmp: echo reply

5. If overlay 1 goes out of SLA, the priorities of the routes on the hub are updated and traffic from the hub to Spoke 1 goes through overlay 2:

**Spoke 1:**
```
spoke-1 (root) # diagnose sys sdwan neighbor
Neighbor(10.10.15.253): member(1) role(standalone)
 Health-check(1:1) sla-fail alive
```
```
Neighbor(10.10.16.253): member(2) role(standalone)
 Health-check(11:1) sla-pass selected alive
```

**Spoke 2:**
```
spoke-2 (root) # diagnose sys sdwan neighbor
Neighbor(10.10.15.253): member(1) role(standalone)
 Health-check(1:1) sla-fail alive
```
```
Neighbor(10.10.16.253): member(2) role(standalone)
 Health-check(11:1) sla-pass selected alive
```

**Hub:**
```
hub (root) # diagnose ip route list | grep proto=11
```
```
tab=254 vf=0 scope=0 type=1 proto=11 prio=200 0.0.0.0/0/0.0.0.0/0->10.1.100.0/24
pref=0.0.0.0 gwy=10.10.15.1 dev=101(hub2-phase1)
tab=254 vf=0 scope=0 type=1 proto=11 prio=9999 0.0.0.0/0/0.0.0.0/0->10.1.100.0/24
pref=0.0.0.0 gwy=10.10.16.1 dev=102(hub2-phase1)
tab=254 vf=0 scope=0 type=1 proto=11 prio=200 0.0.0.0/0/0.0.0.0/0->192.168.5.0/24
pref=0.0.0.0 gwy=10.10.15.2 dev=101(hub-phase1)
tab=254 vf=0 scope=0 type=1 proto=11 prio=9999 0.0.0.0/0/0.0.0.0/0->192.168.5.0/24
pref=0.0.0.0 gwy=10.10.16.2 dev=102(hub2-phase1)
```
```
hub (root) # diagnose sniffer packet any 'host 9.0.0.2' 4 interfaces=[any]
filters=[host 9.0.0.2]
3.550181 R190 in 9.0.0.2 -> 10.1.100.22: icmp: echo request
3.550234 hub2-phase1 out 9.0.0.2 -> 10.1.100.22: icmp: echo request
```
3.550713 hub2-phase1 in 10.1.100.22 -> 9.0.0.2: icmp: echo reply
3.550735 R190 out 10.1.100.22 -> 9.0.0.2: icmp: echo reply

6. Trigger shortcuts between Spoke 1 and Spoke 2:
   - Shortcuts spoke11-p1_1 and spoke11-p1_0 originate from spoke11-p1.
   - spoke11-p1_1 corresponds to spoke21-p1_0 on Spoke 2.
   - spoke11-p1_0 corresponds to spoke22-p1_0 on Spoke 2.

Spoke 1:
spoke-1 (root) # diagnose sys sdwan service

Service(1): Address Mode (IPV4) flags=0x200 use-shortcut-sla
  Tie break: cfg
  Gen(12), TOS(0x0/0x0), Protocol(0: 1->65535), Mode(sla), sla-compare-number
  Service role: standalone
  Member sub interface(4):
  3: seq_num(1), interface(spoke11-p1):
     1: spoke11-p1_0(75)
     2: spoke11-p1_1(76)
  Members(4):
     1: Seq_num(1 spoke11-p1_1, alive, sla(0x1), gid(0), remote cost(100), cfg_order(0), local cost(0), selected
     2: Seq_num(1 spoke11-p1_0, alive, sla(0x1), gid(0), remote cost(200), cfg_order(0), local cost(0), selected
     3: Seq_num(1 spoke11-p1, alive, sla(0x1), gid(0), cfg_order(0), local cost(0), selected
     4: Seq_num(2 spoke12-p1), alive, sla(0x2), gid(0), cfg_order(1), local cost(0), selected

Src address(1):
   10.1.100.0-10.1.100.255

Dst address(1):
   0.0.0.0-255.255.255.255

Spoke 2:
spoke-2 (root) # diagnose sys sdwan service

Service(1): Address Mode (IPV4) flags=0x200 use-shortcut-sla
  Tie break: cfg
  Gen(9), TOS(0x0/0x0), Protocol(0: 1->65535), Mode(sla), sla-compare-number
  Service role: standalone
  Member sub interface(4):
  2: seq_num(1), interface(spoke21-p1):
     1: spoke21-p1_0(68)
  4: seq_num(2), interface(spoke22-p1):
     1: spoke22-p1_0(67)
  Members(4):
     1: Seq_num(1 spoke21-p1_0, alive, sla(0x1), gid(0), cfg_order(0), local cost(100), selected
     2: Seq_num(1 spoke21-p1, alive, sla(0x1), gid(0), cfg_order(0), local cost(100), selected
     3: Seq_num(2 spoke22-p1_0, alive, sla(0x2), gid(0), cfg_order(1), local cost(200), selected
     4: Seq_num(2 spoke22-p1), alive, sla(0x2), gid(0), cfg_order(1), local cost(200), selected
Src address(1):
   192.168.5.0-192.168.5.255

Dst address(1):
   0.0.0.0-255.255.255.255

7. On Spoke 2, increase the cost of spoke21-p1_0 to 300.

   spoke-2 (root) # config system sdwan
   config members
   edit 1
      set interface "spoke21-p1"
         set cost 300
   next
   end
   end

The new cost is learned by the spoke11-p1_1 shortcut on Spoke 1, and that shortcut is no longer preferred due to its higher remote cost:

Spoke 1:

   spoke-1 (root) # diagnose sys sdwan service

   Service(1): Address Mode (IPV4) flags=0x200 use-shortcut-sla
   Tie break: cfg
      Gen(13), TOS(0x0/0x0), Protocol (0: 1->65535), Mode(sla), sla-compare-number
   Service role: standalone
   Member sub interface(4):
      3: seq_num(1), interface(spoke11-p1):
         1: spoke11-p1_0(78)
         2: spoke11-p1_1(79)
   Members(4):
      1: Seq_num(1 spoke11-p1_0), alive, sla(0x1), gid(0), remote cost(200), cfg_order(0),
         local cost(0), selected
      2: Seq_num(1 spoke11-p1_1), alive, sla(0x1), gid(0), remote cost(300), cfg_order(0),
         local cost(0), selected
      3: Seq_num(1 spoke11-p1), alive, sla(0x1), gid(0), cfg_order(0), local cost(0),
         selected
      4: Seq_num(2 spoke12-p1), alive, sla(0x2), gid(0), cfg_order(1), local cost(0),
         selected
   Src address(1):
      10.1.100.0-10.1.100.255

   Dst address(1):
      0.0.0.0-255.255.255.255

Spoke 2:

   spoke-2 (root) # diagnose sys sdwan service

   Service(1): Address Mode (IPV4) flags=0x200 use-shortcut-sla
   Tie break: cfg
      Gen(1), TOS(0x0/0x0), Protocol (0: 1->65535), Mode(sla), sla-compare-number
   Service role: standalone
   Member sub interface(4):
      2: seq_num(2), interface(spoke22-p1):
         1: spoke22-p1_0(70)
4: seq_num(1), interface(spoke21-p1):
   1: spoke21-p1_0(71)
Members(4):
   1: Seq_num(2 spoke22-p1_0), alive, sla(0x2), gid(0), cfg_order(1), local cost(200), selected
   2: Seq_num(2 spoke22-p1), alive, sla(0x2), gid(0), cfg_order(1), local cost(200), selected
   3: Seq_num(1 spoke21-p1_0), alive, sla(0x1), gid(0), cfg_order(0), local cost(300), selected
   4: Seq_num(1 spoke21-p1), alive, sla(0x1), gid(0), cfg_order(0), local cost(300), selected
Src address(1):
   192.168.5.0-192.168.5.255
Dst address(1):
   0.0.0.0-255.255.255.255

Advanced configuration

The following topics provide instructions on SD-WAN advanced configuration:

- SD-WAN with FGCP HA on page 690
- Configuring SD-WAN in an HA cluster using internal hardware switches on page 697
- SD-WAN configuration portability on page 701
- SD-WAN segmentation over a single overlay on page 707

See also Packet distribution for aggregate static IPsec tunnels in SD-WAN on page 1489.

SD-WAN with FGCP HA

This example shows how to convert a standalone FortiGate SD-WAN solution to a FGCP HA cluster with full-mesh WAN set up. This configuration allows you to load balance your internet traffic between multiple ISP links. It also provides redundancy for your internet connection if your primary ISP is unavailable, or if one of the FortiGates in the HA cluster fails.

This example assumes that a standalone FortiGate has already been configured for SD-WAN by following the SD-WAN quick start on page 488.
**Standalone FortiGate:**

The following devices are required to convert the topology to HA:

- A second FortiGate that is the same model running the same firmware version.
- Two switches for connecting each FortiGate's WAN interface to the corresponding ISP modem.

**Before you begin:**

- Ensure that the licenses and subscriptions on both HA members match.
- Ensure that there are one or more ports reserved for HA heartbeat.
- Ensure you have physical access to both HA members.

---

**FGCP HA cluster:**

Enabling HA and re-cabling the WAN interfaces will cause network interruptions. This procedure should be performed during a maintenance window.
**Configuring the standalone FortiGate for HA**

After running the following commands, the FortiGate negotiates to establish an HA cluster. You might temporarily lose connectivity with the FortiGate as FGCP negotiations take place and the MAC addresses of the FortiGate interfaces are changed to HA virtual MAC addresses.

This configurations sets the HA mode to active-passive.

The ha1 and ha2 interfaces are configured as the heartbeat interfaces, with priorities set to 200 and 100 respectively. Setting different priorities for the heartbeat interfaces is a best practice, but is not required.

If you have more than one cluster on the same network, each cluster should have a different group ID. Changing the group ID changes the cluster interface's virtual MAC addresses. If the group IP causes a MAC address conflict on your network, select a different group ID.

Enabling override and increasing the device priority means that this FortiGate always becomes the primary unit.

**To configure the standalone FortiGate for HA in the GUI:**

1. Go to System > Settings and change the Host name so that the FortiGate can be easily identified as the primary unit.
2. Go to System > HA and configure the following options:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Active-Passive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device priority</td>
<td>250</td>
</tr>
<tr>
<td>Group name</td>
<td>My-cluster</td>
</tr>
<tr>
<td>Password</td>
<td>&lt;password&gt;</td>
</tr>
<tr>
<td>Heartbeat interfaces</td>
<td>ha1 and ha2</td>
</tr>
</tbody>
</table>
| Heartbeat Interface Priority | port2 (ha1): 200  
                           | port3 (ha2): 100 |

 Override and the group ID can only be configured from the CLI.
3. Click OK.
Connectivity with the FortiGate will temporarily be lost.

To configure the standalone FortiGate for HA in the CLI:

1. Change the host name so that the FortiGate can be easily identified:
   
   ```
 config system global
 set hostname primary_FG
 end
   ```

2. Configure HA:
   
   ```
 config system ha
 set mode a-p
 set group-id 100
 set group-name My-cluster
 set password <password>
 set priority 250
 set override enable
 set hbdev ha1 200 ha2 100
 end
   ```

   If HA mode does not start after running the above steps, ensure that none of the FortiGate's interfaces use DHCP or PPPoE addressing.

Configuring the secondary FortiGate for HA

The secondary FortiGate must be the same model and running the same firmware version as the primary FortiGate. The HA settings are the same as for the primary unit, except the secondary device has a lower priority and override is not enabled.
It is best practice to reset the FortiGate to factory default settings prior to configuring HA. This reduces the chance of synchronization problems.

```
execute factoryreset
This operation will reset the system to factory default!
Do you want to continue? (y/n) y
```

This is unnecessary if the device is new from the factory.

**To configure the secondary FortiGate for HA in the GUI:**

1. Go to System > Settings and change the Host name so that the FortiGate can be easily identified as the backup unit.
2. Go to System > HA and configure the options the same as for the primary FortiGate, except with a lower priority:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Active-Passive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device priority</td>
<td>128</td>
</tr>
<tr>
<td>Group name</td>
<td>My-cluster</td>
</tr>
<tr>
<td>Password</td>
<td>&lt;password&gt;</td>
</tr>
<tr>
<td>Heartbeat interfaces</td>
<td>ha1 and ha2</td>
</tr>
<tr>
<td>Heartbeat Interface Priority</td>
<td>port2 (ha1): 200</td>
</tr>
<tr>
<td></td>
<td>port3 (ha2): 100</td>
</tr>
</tbody>
</table>

3. Click OK.

**To configure the secondary FortiGate for HA in the CLI:**

1. Change the host name so that the secondary FortiGate can be easily identified:

   ```
 config system global
 set hostname secondary_FG
 end
   ```

2. Configure HA:

   ```
 config system ha
 set mode a-p
 set group-id 100
 set group-name My-cluster
 set password <password>
 set priority 128
 set hbdev ha1 200 ha2 100
 end
   ```

**Connecting the heartbeat interfaces between the FortiGates**

**To connect and check the heartbeat interfaces:**

1. Connect the heartbeat interfaces ha1 and ha2 between the primary and secondary FortiGate.
   a. An HA primary device is selected. Because the primary FortiGate has a higher priority and override enabled, it assumes the role of HA primary.
b. The secondary FortiGate synchronizes its configuration from the primary device.

diagnose sys ha checksum cluster

is_master = 1, is_root_master = 1
dumpconfig
 global: 2b e9 81 38 c2 9d 4f db b7 0e 1f 49 42 c6 le fb
 root: af a6 48 c5 c2 9a 8b 81 a5 03 fb 27 e9 ae 01 6a
 all: 89 1f 63 77 48 8a 30 ee 57 06 ca eb 71 e6 8e ad

dumpconfig
 global: 2b e9 81 38 c2 9d 4f db b7 0e 1f 49 42 c6 le fb
 root: af a6 48 c5 c2 9a 8b 81 a5 03 fb 27 e9 ae 01 6a
 all: 89 1f 63 77 48 8a 30 ee 57 06 ca eb 71 e6 8e ad

If all of the cluster members have identical checksums, then their configurations are synchronized. If the checksums are not the same, wait for a few minutes, then repeat the command. Some parts of the configuration might take a significant amount of time to synchronize (tens of minutes).

Connecting other traffic interfaces

After the device configurations are synchronized, you can connect the rest of the traffic interfaces. Making these connections will disrupt traffic as cables are disconnected and reconnected.

Switches must be used between the cluster and the ISPs, and between the cluster and the internal network, as shown in the topology diagram.

Checking cluster operations

The HA Status dashboard widget shows the synchronization status. Hover over the host names of each FortiGate in the widget to verify that they are synchronized and have the same checksum.

To view more information about the cluster status, including the number of sessions passing through the cluster members, go to System > HA.

See Check HA synchronization status on page 2046 for more information.
Results

1. Browse the internet on a computer in the internal network.
2. Go to Network > SD-WAN and select the SD-WAN Zones tab to see the bandwidth, volume, and sessions for traffic on the SD-WAN interfaces. See Results on page 493 for details.
3. Go to Dashboard > Network, and expand the SD-WAN widget to see information about each interface, such as the number of sessions and the bit rate.

Testing HA failover

All traffic should currently be flowing through the primary FortiGate. If it becomes unavailable, traffic fails over to the secondary FortiGate. When the primary FortiGate rejoins the cluster, the secondary FortiGate continues to operate as the primary FortiGate.

To test this, ping a reliable IP address from a computer in the internal network, and then power off the primary FortiGate. There will be a momentary pause in the ping results until traffic diverts to the backup FortiGate, allowing the ping traffic to continue:

```
64 bytes from 184.25.76.114: icmp_seq=69 ttl=52 time=8.719 ms\n64 bytes from 184.25.76.114: icmp_seq=70 ttl=52 time=8.822 ms\n64 bytes from 184.25.76.114: icmp_seq=74 ttl=52 time=8.901 ms\nRequest timeout for icmp_seq 75\n64 bytes from 184.25.76.114: icmp_seq=76 ttl=52 time=8.860 ms\n64 bytes from 184.25.76.114: icmp_seq=77 ttl=52 time=9.174 ms\n64 bytes from 184.25.76.114: icmp_seq=83 ttl=52 time=8.639 ms
```

If you are using port monitoring, you can also unplug the primary FortiGate's internet facing interface to test failover.

After the secondary FortiGate becomes the primary, you can log into the cluster using the same IP address as before the fail over. If the primary FortiGate is powered off, you will be logged into the backup FortiGate. Check the host name to verify what device you have logged into. The FortiGate continues to operate in HA mode, and if you restart the primary FortiGate, it will rejoin the cluster and act as the backup FortiGate. Traffic is not disrupted when the restarted FortiGate rejoins the cluster.

You can also use the CLI to force an HA failover. See Force HA failover for testing and demonstrations on page 2071 for information.

Testing ISP failover

To test a failover of the redundant internet configuration, you need to simulate a failed internet connection to one of the ports. You can do this by disconnecting power from the wan1 switch, or by disconnecting the wan1 interfaces of both FortiGates from ISP1.

After disconnecting, verify that users still have internet access.
- Go to Dashboard > Network, and expand the SD-WAN widget. The Upload and Download columns for wan1 show that traffic is not going through that interface.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Status</th>
<th>Upload</th>
<th>Download</th>
</tr>
</thead>
<tbody>
<tr>
<td>wan1</td>
<td></td>
<td>0 bps</td>
<td>0 bps</td>
</tr>
<tr>
<td>wan2</td>
<td></td>
<td>2.97 kbps</td>
<td>6.76 kbps</td>
</tr>
</tbody>
</table>

- Go to Network > SD-WAN and select the SD-WAN Zones tab. The Bandwidth, Volume, and Sessions tabs show that traffic is entirely diverted to wan2.

Users on the network should not notice the wan1 failure. If you are using the wan1 gateway IP address to connect to the administrator dashboard, it will appear as though you are still connecting through wan1.

After verifying a successful failover, reestablish the connection to ISP1.

**Configuring SD-WAN in an HA cluster using internal hardware switches**

In this SD-WAN configuration, two FortiGates in an active-passive (A-P) HA pair are used to provide hardware redundancy. Instead of using external switches to provide a mesh network connection to the ISP routers, the FortiGates use their built-in hardware switches to connect to the ISP routers.

Only FortiGate models that have hardware switches can be used for this solution. Ports in a software switch are not in a forwarding state when a FortiGate is acting as a secondary device in a A-P cluster.
In this topology:
- Two hardware switches are created, HD_SW1 and HD_SW2.
- HD_SW1 is used to connect to ISP 1 Router and includes the internal1 and internal2 ports.
- HD_SW2 is used to connect to ISP 2 Router and includes the internal3 and internal4 ports.
- Another interface on each device is used as the HA heartbeat interface, connecting the two FortiGates in HA.

The FortiGates create two hardware switches to connect to ISP 1 and ISP2. When FGT_A is the primary device, it reaches ISP 1 on internal1 in HD_SW1 and ISP 2 on internal4 in HD_SW2. When FGT_B is the primary device, it reaches ISP 1 on internal2 in HD_SW1 and ISP 2 on internal3 on HD_SW2.

**HA failover**

This is not a standard HA configuration with external switches. In the case of a device failure, one of the ISPs will no longer be available because the switch that is connected to it will be down.

For example, if FGT_A loses power, HA failover will occur and FGT_B will become the primary unit. Its connection to internal2 on HD_SW1 will also be down, so it will be unable to connect to ISP 1. Its SD-WAN SLAs will be broken, and traffic will only be routed through ISP 2.

A link on a hardware switch cannot be monitored in HA monitor, so it is impossible to perform link failure when a port in either of the hardware switches fails. Performing a link failure is unnecessary in this configuration though, because any link failure on the hardware switch will be experienced by both cluster members. SD-WAN SLA health checks should be used to monitor the health of each ISP.

**Failure on a hardware switch or ISP router**

If a hardware switch or switch interface is down, or the ISP router is down, the SD-WAN can detect the broken SLA and continue routing to the other ISP.

For example, if FGT_A is the primary unit, and ISP 2 Router becomes unreachable, the SLA health checks on SD-WAN will detect the broken SLA and cause traffic to stop routing to ISP 2.

**Configuration**

**To configure the HA A-P cluster with internal hardware switches:**

1. Configure two FortiGates with internal switches in an A-P HA cluster (follow the steps in HA active-passive cluster setup on page 2037), starting by connecting the heartbeat interface.
2. When the HA cluster is up, connect to the primary FortiGate’s GUI.
3. Remove the existing interface members from the default hardware switch:
   a. Go to Network > Interfaces.
   b. In the LAN section, double-click the internal interface to edit it.
   c. In Interface Members, remove all of the interfaces
4. Configure the hardware switch interfaces for the two ISPs:
   a. Go to Network > Interfaces and click Create New > Interface.
   b. Enter a name (HD_SW1).
   c. Set Type to Hardware Switch.
   d. In Interface Members, add two interfaces (internal1 and internal2).
   e. Set IP/Netmask to 192.168.1.2/24.
   f. Configure the remaining settings as needed.
   g. Click OK.
   h. Repeat these steps to create a second hardware switch interface (HD_SW2) with two interface members
(internal3 and internal4) and IP/Netmask set to 192.168.3.2/24.

To connect the devices as shown in the topology:

1. Connect the incoming interface to the internal switch on both FortiGates.
2. On FGT_A, connect internal1 of HD_SW1 to ISP 1 Router.
3. On FGT_B, connect internal3 of HD_SW2 to ISP 2 Router.
4. For HD_SW1, connect FGT_A internal2 directly to FGT_B internal2.
5. For HD_SW2, connect FGT_A internal4 directly to FGT_B internal4.

To configure SD-WAN:

The primary FortiGate makes all the SD-WAN decisions.

1. On the primary FortiGate, go to Network > SD-WAN, select the SD-WAN Zones tab, and click Create New > SD-WAN Member.
2. In the Interface dropdown, select HD_SW1.
3. Leave SD-WAN Zone set to virtual-wan-link.
4. Enter the Gateway address 192.168.1.1.
5. Click OK.
6. Repeat these steps to add the second interface (HD_SW2) with the gateway 192.168.3.1.
7. Click Apply.
8. Create a health check:
   a. Go to Network > SD-WAN, select the Performance SLA tab, and click Create New.
   b. Set Name to GW_HC.
   c. Set Protocol to Ping and Servers to 8.8.8.8.
   d. Set Participants to All SD-WAN Members.
   e. Enable SLA Target and leave the default values.
   f. Click OK.

9. Create SD-WAN rules as needed. The SLA health check can be used to determine when the ISP connections are in or out of SLA, and to failover accordingly.

SD-WAN configuration portability

When configuring SD-WAN, adding interfaces to members is optional.

This allows the SD-WAN to be configured without associating any interfaces to SD-WAN members. It also allows a configuration to be copied directly from one device to another, without requiring the devices to have interfaces with the same names.

After the configuration is created, add interfaces to the members make it functional.
Example 1

In this example, we create a template with two SD-WAN members configured without assigned interfaces that are used in a performance SLA and SD-WAN rule. The template can be used to configure new devices, as in Example 2 on page 705. Interfaces are then assigned to the members, and the configuration becomes active.

To create the SD-WAN members in the GUI:

1. Go to Network > SD-WAN, select the SD-WAN Zones tab, and click Create New > SD-WAN Member.
2. Leave all the settings set to their default values and click OK.
3. Repeat the above steps to create a second member.

The empty members are listed on the SD-WAN Zones tab.

The members are disabled until interfaces are configured, but can still be used in performance SLAs and SD-WAN rules.

To create a performance SLA in the GUI:

1. Go to Network > SD-WAN and select the Performance SLAs tab.
2. Click Create New.
3. Configure the performance SLA, specifying the empty members as participants.

4. Click OK.

To create an SD-WAN rule in the GUI:

1. Go to Network > SD-WAN, select the SD-WAN Rules tab, and click Create New.
2. Configure the rule, adding both members to the Interface preference field:

3. Click OK.

To assign interfaces to the SD-WAN members in the GUI:

1. Go to Network > SD-WAN and select the SD-WAN Zones tab.
2. Edit the first member
3. Set *Interface* to an actual interface.

4. Click OK.
5. Repeat the above steps to assign an interface to the second member.

To configure the SD-WAN in the CLI:

1. Create SD-WAN members:

   ```
 config system sdwan
 set status enable
 config members
 edit 1
 next
 edit 2
 next
 end
 end
   ```

2. Create a health check (performance SLA):

   ```
 config system sdwan
 config health-check
 edit "office"
 set server "office365.com"
 set protocol http
 set sla-fail-log-period 300
 set sla-pass-log-period 300
 set members 2 1
 config sla
 edit 1
 set latency-threshold 300
 set jitter-threshold 200
 next
 edit 2
 set link-cost-factor latency
 set latency-threshold 20
 next
 end
 next
 end
   ```

3. Create a service (rule):

   ```
 config system sdwan
 config service
 edit 3
 set name "Office365"
   ```
set mode sla
set internet-service enable
set internet-service-app-ctrl 33182
config sla
edit "office"
   set id 2
   next
end
set priority-members 1 2
next
end
end

The SD-WAN configuration can now be used in as a template for new spokes, as in Example 2 on page 705.

To assign interfaces to the SD-WAN members in the CLI:

```plaintext
config system sdwan
config members
edit 1
 set interface "OCVPN4-0.0"
next
edit 2
 set interface "OCVPN4-0.1"
next
end
end
```

If no SD-WAN zone is specified, members are added to the default virtual-wan-link zone.

---

**Example 2**

In this example, the configuration from Example 1 is copied onto a new FortiGate.

**Using the CLI console and the GUI**

**To copy the SD-WAN configuration from the original FortiGate:**

1. Optionally, change the console screen paging setting. See Screen paging on page 37 for details.
2. Open the CLI console.
3. If necessary, click Clear console to empty the console.
4. Enter the following command:
   ```plaintext
 show system sdwan
   ```
5. Either click Download and open the file in a text editor, or click Copy to clipboard and paste the content into a text editor.
6. Edit the CLI configuration as necessary. For example, the first line that shows the `show` command should be deleted, and the default health checks can be removed.

7. If required, save the CLI configuration as a text file.

**To paste the SD-WAN configuration onto a new FortiGate:**

1. Copy the SD-WAN configuration from the text editor.
2. On the new FortiGate, open the CLI console.
3. Press Ctrl + v to paste the CLI commands.
4. In necessary, press Enter to apply the last `end` command.
   The SD-WAN configuration is copied to the new FortiGate.
   If the interfaces do not exist, the SD-WAN members are created without interfaces, and are disabled until interfaces are configured.

**To assign interfaces to the SD-WAN members:**

1. Go to Network > SD-WAN and select the SD-WAN Zones tab.
2. Edit the first member
3. Set Interface to an actual interface.
4. Click OK.
5. Repeat the above steps to assign an interface to the second member.

**Using a terminal emulator**

The following instructions use PuTTY. The steps may vary in other terminal emulators.

**To copy the SD-WAN configuration from the original FortiGate:**

1. Connect to the FortiGate. See Connecting to the CLI on page 29 for details.
2. Enter the following command:
   ```
 show system sdwan
   ```
3. Select the output, press Ctrl + c to copy it, and then paste it into a text editor.
4. Edit the CLI configuration as necessary. For example, the default health checks can be removed.
5. If required, save the CLI configuration as a text file.
To paste the SD-WAN configuration onto a new FortiGate:

1. Connect to the new FortiGate. See Connecting to the CLI on page 29 for details.
2. Copy the SD-WAN configuration from the text editor.
3. Right-click to paste the SD-WAN configuration.
4. In necessary, press Enter to apply the last end command.
   The SD-WAN configuration is copied to the new FortiGate.
   If the interfaces do not exist, the SD-WAN members are created without interfaces, and are disabled until interfaces are configured.

To assign interfaces to the SD-WAN members in the CLI:

```plaintext
config system sdwan
 config members
 edit 1
 set interface "_OCVPN4-0.0"
 next
 edit 2
 set interface "_OCVPN4-0.1"
 next
 end
end
```

If no SD-WAN zone is specified, members are added to the default virtual-wan-link zone.

SD-WAN segmentation over a single overlay

SD-WAN, VPN, and BGP configurations support L3 VPN segmentation over a single overlay. In these configurations, a hub and spoke SD-WAN deployment requires that branch sites, or spokes, are able to accommodate multiple companies or departments, and each company's subnet is separated by a different VRF. A subnet on one VRF cannot communicate with a subnet on another VRF between different branches, but can communicate with the same VRF.

SD-WAN options

VRF-aware SD-WAN health checks

SD-WAN on the originating spoke can tag the health check probes with the correct VRF when transmitting to a multi-VRF tunnel. The hub can then forward the probes to the correct health check server in the same VRF as the hub.

```plaintext
config system sdwan
 config health-check
 edit <name>
 set vrf <vrf id>
 set source <address>
 next
 end
end
```
SD-WAN

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf &lt;vrf id&gt;</td>
<td>Virtual Routing Forwarding ID.</td>
</tr>
<tr>
<td>source &lt;address&gt;</td>
<td>Source IP address used in the health-check packet to the server.</td>
</tr>
</tbody>
</table>

**Overlay stickiness**

When a hub has multiple overlays, traffic received on one overlay should egress on the same overlay when possible. The `service-sla-tie-break` option ensures overlay stickiness. In SD-WAN service rules, options are available to ensure that traffic received in a zone stays in that zone.

```plaintext
config system sdwan
 config zone
 edit <name>
 set service-sla-tie-break input-device
 next
 end
config service
 edit <id>
 set input-zone <zone>
 set tie-break input-device
 next
end
```

- **service-sla-tie-break**
  - Members that meet the SLA are selected by matching the input device.
- **input-zone <zone>**
  - Source input-zone name.
- **tie-break input-device**
  - Members that meet the SLA are selected by matching the input device.

**IPsec options**

**Configurable rate limit for shortcut offers sent by the hub**

By default, the hub sends a shortcut offer to a spoke every five seconds. If the hub continues to send offers that keep failing, and there are a large number of spokes, this can cause a high load on the hub. This setting makes the interval between shortcut offers configurable.

```plaintext
config vpn ipsec phase1-interface
 edit <name>
 set auto-discovery-offer-interval <interval>
 next
end
```

- **auto-discovery-offer-interval <interval>**
  - Interval between shortcut offer messages, in seconds (1 - 300, default = 5).

**Segmentation over a single overlay**

Segmentation requires that VRF info is encapsulated within the IPsec VPN tunnel. This setting enables multi-VRF IPSEC tunnels.
config vpn ipsec phase1-interface
  edit <name>
    set encapsulation vpn-id-ipip
  next
end

encapsulation vpn-id-ipip  VPN ID with IPIP encapsulation.

VPN configuration for BGP

The role of a VRF can be specified, along with other VRF details. Up to 64 VRFs can be configured per VDOM for any device.

config router bgp
  config vrf
    edit <vrf>
      set role {standalone | ce | pe}
      set rd <string>
      set export-rt <route_target>
      set import-rt <route_target>
      set import-route-map <route_map>
      config leak-target
        edit <vrf>
          set route-map <route-map>
          set interface <interface>
        next
        next
      end
    end
  end

role {standalone | ce | pe}  VRF role: standalone, customer edge (CE), or provider edge (PE).
rd <string>  Route Distinguisher: AA|AA:NN. This option is only available when the role is CE.
export-rt <route_target>  List of export route target. This option is only available when the role is CE.
import-rt <route_target>  List of import route target. This option is only available when the role is CE.
import-route-map <route_map>  Import route map. This option is only available when the role is CE.
route-map <route-map>  Route map of VRF leaking.
interface <interface>  Interface that is used to leak routes to the target VRF.

In FortiOS 7.0, config vrf was config vrf-leak, and config leak-target was config target.
Display BGP routes by VRF and neighbor

```plaintext
diagnose ip router bgp set-filter vrf <vrf>
diagnose ip router bgp set-filter neighbor <neighbor address>
diagnose ip router bgp set-filter reset
execute router clear bgp vpnv4 unicast soft {in | out}
get router info filter show
get router info filter vrf {vrf | all}
```

Examples

In example 1, multiple companies (or departments of a company) share the ADVPN. Company A and company B each have two branches in two different locations. Company A's branches (A-1 and A-2) can talk to each other using the VPN shortcut, but not to company B's branches (B-1 and B-2). Likewise, company B's branches can talk to each other using the VPN shortcut, but not to company A's branches. Traffic can share the tunnels and shortcuts, but cannot be mixed up.

Example 2 shows that performance SLA health checks can be sent from a spoke's VRF to the loopback on the hub that is in the same VRF.

Example 3 shows that when traffic is ingress on the hub on one overlay, it will preferably egress on the same overlay.

Example 1

In this example, two spokes each have two tunnels to the hub.

- Each spoke has two VRFs behind it that can use the same IP address or subnets.
- The computers in VRF1 behind spoke 1 can talk to the computers in VRF1 behind spoke 2, but not to any of the computers in the VRF2s behind either spoke.
- The computers in VRF2 behind spoke 1 can talk to the computers in VRF2 behind spoke 2, but not to any of the computers in the VRF1s behind either spoke.
To configure the hub:

```bash
config router bgp
 set as 65505
 set router-id 11.11.11.11
 set ibgp-multipath enable
 set additional-path enable
 set additional-path-vpnv4 enable
 set cluster-id 11.12.13.14
 set additional-path-select 3
 config neighbor-group
 edit "gr1"
 set capability-graceful-restart enable
 set capability-default-originate enable
 set next-hop-self-rr enable
 set soft-reconfiguration-vpnv4 enable
 set remote-as 65505
 set additional-path both
 set additional-path-vpnv4 both
 set adv-additional-path 3
 set route-reflector-client enable
 set route-reflector-client-vpnv4 enable
 next
 edit "gr2"
 set capability-graceful-restart enable
 set capability-default-originate enable
 set next-hop-self-rr enable
 set soft-reconfiguration-vpnv4 enable
 set remote-as 65505
 set additional-path both
 set additional-path-vpnv4 both
 set adv-additional-path 3
 set route-reflector-client enable
 set route-reflector-client-vpnv4 enable
 next
 end
config neighbor-range
 edit 1
 set prefix 10.10.100.0 255.255.255.0
 set neighbor-group "gr1"
 next
 edit 2
 set prefix 10.10.200.0 255.255.255.0
 set neighbor-group "gr2"
 next
end
config network
 edit 12
 set prefix 11.11.11.11 255.255.255.255
 next
 edit 22
 set prefix 11.11.22.11 255.255.255.255
 next
 edit 10
 set prefix 100.1.1.0 255.255.255.0
 next
```
edit 33
  set prefix 11.1.1.0 255.255.255.0
next
end
config vrf
  edit "0"
    set role pe
next
  edit "1"
    set role ce
    set rd "1:1"
    set export-rt "1:1"
    set import-rt "1:1"
next
  edit "2"
    set role ce
    set rd "2:1"
    set export-rt "2:1"
    set import-rt "2:1"
next
end
end
config vpn ipsec phase1-interface
  edit "p1"
    set type dynamic
    set interface "vd11-vlan1"
    set peertype any
    set net-device disable
    set proposal aes128-shal
    set add-route disable
    set dpd on-idle
    set dhgrp 5
    set auto-discovery-sender enable
    set auto-discovery-offer-interval 10
    set encapsulation vpn-id-ipip
    set psksecret **********
    set dpd-retryinterval 60
next
  edit "p2"
    set type dynamic
    set interface "vd11-vlan2"
    set peertype any
    set net-device disable
    set proposal aes128-shal
    set add-route disable
    set dpd on-idle
    set dhgrp 5
    set auto-discovery-sender enable
    set auto-discovery-offer-interval 10
    set encapsulation vpn-id-ipip
    set psksecret **********
    set dpd-retryinterval 60
next
end
config vpn ipsec phase2-interface
  edit "p1"
    set phaselname "p1"
    set proposal aes128-shal
    set dhgrp 5
  next
edit "p2"
  set phaselname "p2"
  set proposal aes128-shal
  set dhgrp 5
next
end

To configure a spoke:

config router bgp
  set as 65505
  set router-id 2.2.2.2
  set ebgp-multipath enable
  set ibgp-multipath enable
  set network-import-check disable
  set additional-path enable
  set additional-path6 enable
  set additional-path-vpnv4 enable
  set recursive-next-hop enable
  set graceful-restart enable
  set additional-path-select 4
config neighbor
  edit "10.10.100.254"
    set capability-dynamic enable
    set capability-graceful-restart-vpnv4 enable
    set soft-reconfiguration enable
    set soft-reconfiguration-vpnv4 enable
    set remote-as 65505
    set additional-path both
    set additional-path-vpnv4 both
    set adv-additional-path 3
next
edit "10.10.200.254"
  set capability-dynamic enable
  set capability-graceful-restart-vpnv4 enable
  set soft-reconfiguration enable
  set soft-reconfiguration-vpnv4 enable
  set remote-as 65505
  set additional-path both
  set additional-path-vpnv4 both
  set adv-additional-path 3
next
end
config network
  edit 3
    set prefix 22.1.1.0 255.255.255.0
  next
  edit 4
    set prefix 12.12.12.0 255.255.255.0
  next
end
cfg vrf
  edit "0"
    set role pe
next
edit "1"
    set role ce
    set rd "1:1"
    set export-rt "1:1"
    set import-rt "1:1"
next
edit "2"
    set role ce
    set rd "2:1"
    set export-rt "2:1"
    set import-rt "2:1"
next
end
end

cfg vpn ipsec phase1-interface
edit "vd2-1"
  set interface "vd2-vlan12"
  set peertype any
  set net-device enable
  set proposal aes128-shal
  set add-route disable
  set dhgrp 5
  set idle-timeout enable
  set idle-timeoutinterval 5
  set auto-discovery-receiver enable
  set encapsulation vpn-id-ipip
  set remote-gw 11.1.1.11
  set psksecret *********
next
edit "vd2-2"
  set interface "vd2-vlan112"
  set peertype any
  set net-device enable
  set proposal aes128-shal
  set add-route disable
  set dhgrp 5
  set auto-discovery-receiver enable
  set encapsulation vpn-id-ipip
  set remote-gw 11.1.2.11
  set psksecret *********
next
end

cfg vpn ipsec phase2-interface
edit "vd2-1"
  set phasename "vd2-1"
  set proposal aes128-shal
  set dhgrp 5
  set auto-negotiate enable
next
edit "vd2-2"
set phasename "vd2-2"
set proposal aes128-shal
set dhgrp 5
set auto-negotiate enable
next
end
config system sdwan
set status enable
config zone
    edit "virtual-wan-link"
    next
    edit "SASE"
    next
    edit "zon2"
    next
end
config members
    edit 1
        set interface "vd2-1"
        set cost 10
    next
    edit 2
        set interface "vd2-2"
        set cost 20
    next
end
config health-check
    edit "ping"
        set server "11.11.11.11"
        set members 1 2
    config sla
        edit 1
            set latency-threshold 200
            set jitter-threshold 50
        next
        next
    edit "1"
        set server "22.1.1.2"
        set vrf 1
        set members 1 2
    next
config service
    edit 2
        set mode sla
        set dst "100-200"
    config sla
        edit "ping"
            set id 1
        next
        next
    set priority-members 2
        set use-shortcut-sla disable
    next
    edit 1
set name "test-tag"
set mode sla
set dst "001-100"
config sla
   edit "ping"
      set id 1
   next
end
set priority-members 1 2
next
end

To check the spoke 1 routes:

# get router info routing-table bgp
Routing table for VRF=0

Routing table for VRF=1
B V 33.1.1.0/24 [200/0] via 10.10.100.3 [2] (recursive via vd2-1 tunnel 11.1.1.11 vrf 0), 04:42:57, [1/0]  [200/0] via 10.10.200.3 [2] (recursive is directly connected, vd2-2_0), 04:42:57, [1/0]

Routing table for VRF=2
B V 33.1.1.0/24 [200/0] via 10.10.100.3 [2] (recursive via vd2-1 tunnel 11.1.1.11 vrf 0), 04:42:56, [1/0]  [200/0] via 10.10.200.3 [2] (recursive is directly connected, vd2-2_0), 04:42:56, [1/0]

VRF1 routes:

# get router info filter vrf 1
# get router info routing-table bgp
Routing table for VRF=1
B V 33.1.1.0/24 [200/0] via 10.10.100.3 [2] (recursive via vd2-1 tunnel 11.1.1.11 vrf 0), 04:44:11, [1/0]
To test the configuration on shortcut 1:

1. From VRF1 of spoke 1 ping VRF1 of spoke 2 and from VRF2 of spoke 1 ping VRF2 spoke 2. Both VRF1 and VRF2 source and destination IP addresses are the same, so you can see how the traffic is isolated.

2. Check sessions on spoke 1:

The output `vd=<vdom ID>:<VRF ID>` indicates that sessions are created in and stay in the corresponding VRFs.

- User at 22.1.1.22 in VRF1 on spoke 1 ping 33.1.1.33 in VRF1 on spoke2:

```bash
diagnose sys session list
session info: proto=1 proto_state=00 duration=21 expire=42 timeout=0 flags=00000000
socktype=0 sockport=0 av_idx=0 use=3
origin-shaper=
reply-shaper=
per_ip_shaper=
class_id=0 ha_id=0 policy_dir=0 tunnel=/ vlan_cos=0/255
state=may_dirty
statistic(bytes/packets/allow_err): org=420/5/1 reply=420/5/1 tuples=2
tx speed(Bps/kbps): 0/0 rx speed(Bps/kbps): 0/0
origin->sink: org pre->post, reply pre->post dev=89->131/131->89
gw=10.10.200.3/22.1.1.22
hook=pre dir=org act=noop 22.1.1.12:22:48417->33.1.1.33:8(0.0.0.0:0)
hook=post dir=reply act=noop 33.1.1.33:48417->22.1.1.22:0(0.0.0.0:0)
src_mac=02:4c:a5:fc:6a:7f
misc=0 policy_id=1 pol_uuid_idx=566 auth_info=0 chk_client_info=0 vd=1:1
serial=00092eee tos=ff/ff app_list=0 app=0 url_cat=0
sdwan_mbr_seq=0 sdwan_service_id=1
rpdb_link_id=ff000001 ngfwid=n/a
npu_state=0x5040001 no_offload
no_ofld_reason: disabled-by-policy non-npu-intf
```

- User at 22.1.1.22 in VRF2 on spoke 1 ping 33.1.1.33 in VRF2 on spoke2:

```bash
diagnose sys session list
session info: proto=1 proto_state=00 duration=4 expire=56 timeout=0 flags=00000000
socktype=0 sockport=0 av_idx=0 use=3
origin-shaper=
reply-shaper=
per_ip_shaper=
class_id=0 ha_id=0 policy_dir=0 tunnel=/ vlan_cos=0/255
state=may_dirty
statistic(bytes/packets/allow_err): org=168/2/1 reply=168/2/1 tuples=2
tx speed(Bps/kbps): 39/0 rx speed(Bps/kbps): 39/0
origin->sink: org pre->post, reply pre->post dev=113->131/131->113
gw=10.10.200.3/22.1.1.22
hook=pre dir=org act=noop 22.1.1.22:55841->33.1.1.33:8(0.0.0.0:0)
hook=post dir=reply act=noop 33.1.1.33:55841->22.1.1.22:0(0.0.0.0:0)
src_mac=02:4c:a5:fc:6a:7f
misc=0 policy_id=1 pol_uuid_idx=566 auth_info=0 chk_client_info=0 vd=1:2
serial=00092f77 tos=ff/ff app_list=0 app=0 url_cat=0
dswan_mbr_seq=0 sdwan_service_id=1
rpdb_link_id=ff000001 ngfwid=n/a
npu_state=0x5040001 no_offload
no_ofld_reason: disabled-by-policy non-npu-intf
```
3. Check sessions on spoke 2:

The output `vd=<vdom ID>:<VRF ID>` indicates that sessions are created in and stay in the corresponding VRFs.

- User at 22.1.1.22 in VRF1 on spoke 1 pings 33.1.1.33 in VRF1 on spoke 2:

```bash
diagnose sys session list
session info: proto=1 proto_state=00 duration=11 expire=49 timeout=0 flags=00000000
socktype=0 sockport=0 av_idx=0 use=3
origin-shaper=
reply-shaper=
per_ip_shaper=
class_id=0 ha_id=0 policy_dir=0 tunnel=/ vlan_cos=0/255
state=may_dirty npu
statistic(bytes/packets/allow_err): org=168/2/1 reply=168/2/1 tuples=2
tx speed(Bps/kbps): 14/0 rx speed(Bps/kbps): 14/0
origin->sink: org pre->post, reply pre->post dev=132->92/92->132
gwy=33.1.1.33/10.10.200.2
hook=pre dir=org act=noop 22.1.1.22:27733->33.1.1.33:8(0.0.0.0:0)
hook=reply act=noop 33.1.1.33:27733->22.1.1.22:0(0.0.0.0:0)
misc=0 policy_id=1 pol_uuid_idx=630 auth_info=0 chk_client_info=0 vd=6:1
serial=000a29fd tos=ff/ff app_list=0 app=0 url_cat=0
rpdb_link_id=00000000 ngfwid=n/a
npu state=0x4000001 no_offload
npu info: flag=0x00/0x82, offload=0/0, ips_offload=0/0, epid=0/0, ipid=0/0,
vlan=0x0000/0x0000
vlifid=0/0, vtag_in=0x0000/0x0000 in_npu=0/0, out_npu=0/0, fwd_en=0/0, qid=0/0
no_ofld_reason: disabled-by-policy
```

- User at 22.1.1.22 in VRF2 on spoke 1 pings 33.1.1.33 in VRF2 on spoke 2:

```bash
diagnose sys session list
session info: proto=1 proto_state=00 duration=17 expire=43 timeout=0 flags=00000000
socktype=0 sockport=0 av_idx=0 use=3
origin-shaper=
reply-shaper=
per_ip_shaper=
class_id=0 ha_id=0 policy_dir=0 tunnel=/ vlan_cos=0/255
state=may_dirty npu
statistic(bytes/packets/allow_err): org=168/2/1 reply=168/2/1 tuples=2
tx speed(Bps/kbps): 9/0 rx speed(Bps/kbps): 9/0
origin->sink: org pre->post, reply pre->post dev=115/115->132
gwy=33.1.1.33/10.10.200.2
hook=pre dir=org act=noop 22.1.1.22:24917->33.1.1.33:8(0.0.0.0:0)
hook=reply act=noop 33.1.1.33:24917->22.1.1.22:0(0.0.0.0:0)
dst_mac=02:4ca5:fc:6a:7f
misc=0 policy_id=1 pol_uuid_idx=630 auth_info=0 chk_client_info=0 vd=6:2
serial=000a29ca tos=ff/ff app_list=0 app=0 url_cat=0
rpdb_link_id=00000000 ngfwid=n/a
npu state=0x4000001 no_offload
npu info: flag=0x00/0x82, offload=0/0, ips_offload=0/0, epid=0/0, ipid=0/0,
vlan=0x0000/0x0000
vlifid=0/0, vtag_in=0x0000/0x0000 in_npu=0/0, out_npu=0/0, fwd_en=0/0, qid=0/0
no_ofld_reason: disabled-by-policy
```
To test the configuration on shortcut 2:

1. From VRF1 of spoke 1 ping VRF1 of spoke 2 and from VRF2 of spoke 1 ping VRF2 spoke 2. Both VRF1 and VRF2 source and destination IP addresses are the same, so you can see how the traffic is isolated.

2. Check sessions on spoke 1:
   
   The output `vd=<vdom ID>:<VRF ID>` indicates that sessions are created in and stay in the corresponding VRFs.
   
   - **User at 22.1.1.22 in VRF1 on spoke 1 pings 33.1.1.133 in VRF1 on spoke 2:**

     ```
 # diagnose sys session listsession info: proto=1 proto_state=00 duration=17 expire=45 timeout=0 flags=00000000 socktype=0 sockport=0 av_idx=0 use=3
 origin-shaper=
 reply-shaper=
 per_ip_shaper=
 class_id=0 ha_id=0 policy_dir=0 tunnel=/ vlan_cos=0/255
 state=may_dirty
 statistic(bytes/packets/allow_err): org=336/4/1 reply=336/4/1 tuples=2
 tx speed(Bps/kbps): 19/0 rx speed(Bps/kbps): 19/0
 origin->sink: org pre->post, reply pre->post dev=89->137/137->89
 gwy=10.10.200.3/22.1.1.122
 hook=pre dir=org act=noop 22.1.1.1.22:25968->33.1.1.133:8(0.0.0.0:0)
 hook=post dir=reply act=noop 33.1.1.133:25968->22.1.1.1.22:0(0.0.0.0:0)
 src_mac=02:4c:a5:fc:6a:7f
 misc=0 policy_id=1 pol_uuid_idx=566 auth_info=0 chk_client_info=0 vd=1:1
 serial=000aa475 tos=ff/ff app_list=0 app=0 url_cat=0
 sdwan_mbr_seq=0 sdwan_service_id=2
 rpdb_link_id=ff0000ff ngfwid=n/a
 npu_state=0x5040001 no_offload
 no_ofld_reason: disabled-by-policy non-npu-intf
     ```
   
   - **User at 22.1.1.22 in VRF2 on spoke 1 pings 33.1.1.133 in VRF2 on spoke 2:**

     ```
 # diagnose sys session listsession info: proto=1 proto_state=00 duration=8 expire=53 timeout=0 flags=00000000 socktype=0 sockport=0 av_idx=0 use=3
 origin-shaper=
 reply-shaper=
 per_ip_shaper=
 class_id=0 ha_id=0 policy_dir=0 tunnel=/ vlan_cos=0/255
 state=may_dirty
 statistic(bytes/packets/allow_err): org=252/3/1 reply=252/3/1 tuples=2
 tx speed(Bps/kbps): 30/0 rx speed(Bps/kbps): 30/0
 origin->sink: org pre->post, reply pre->post dev=113->137/137->113
 gwy=10.10.200.3/22.1.1.122
 hook=pre dir=org act=noop 22.1.1.1.22:28528->33.1.1.133:8(0.0.0.0:0)
 hook=post dir=reply act=noop 33.1.1.133:28528->22.1.1.1.22:0(0.0.0.0:0)
 src_mac=02:4ca5:fc:6a:7f
 misc=0 policy_id=1 pol_uuid_idx=566 auth_info=0 chk_client_info=0 vd=1:2
 serial=000aa49f tos=ff/ff app_list=0 app=0 url_cat=0
 sdwan_mbr_seq=0 sdwan_service_id=2
 rpdb_link_id=ff0000ff ngfwid=n/a
 npu_state=0x5040001 no_offload
 no_ofld_reason: disabled-by-policy non-npu-intf
     ```

3. Check sessions on spoke 2:
   
   The output `vd=<vdom ID>:<VRF ID>` indicates that sessions are created in and stay in the corresponding VRFs.
• User at 22.1.1.22 in VRF1 on spoke 1 pings 33.1.1.133 in VRF1 on spoke 2:

```
diagnose sys session list
session info: proto=1 proto_state=00 duration=24 expire=38 timeout=0 flags=00000000
socktype=0 sockport=0 av_idx=0 use=3
origin-shaper=
reply-shaper=
per_ip_shaper=
class_id=0 ha_id=0 policy_dir=0 tunnel=/ vlan_cos=0/255
state=may_dirty
pu
statistic(bytes/packets/allow_err): org=336/4/1 reply=336/4/1 tuples=2
tx speed(Bps/kbps): 13/0 rx speed(Bps/kbps): 13/0
origin->sink: org pre->post, reply pre->post dev=138->92/92->138
gw=33.1.1.133/10.10.200.2
hook=pre dir=org act=noop 22.1.1.22:25968->33.1.1.133:8(0.0.0.0:0)
hook=post dir=reply act=noop 33.1.1.133:25968->22.1.1.22:0(0.0.0.0:0)
misc=0 policy_id=1 pol_uuid_idx=630 auth_info=0 chk_client_info=0 vd=6:1
serial=000aa476 tos=ff/ff app_list=0 app=0 url_cat=0
rpdb_link_id=00000000 ngfwid=n/a
pu
pu_statue=0x4000001 no_offload
pn info: flag=0x00/0x82, offload=0/0, ips_offload=0/0, epid=0/0, bid=0/0,
vl=0x0000/0x0000
vlifid=0/0, vtag_in=0/000/0x0000 in_pu=0/0, out_pu=0/0, fwy=0/0
no_ofld_reason: disabled-by-policy
```

• User at 22.1.1.22 in VRF2 on spoke 1 pings 33.1.1.133 in VRF2 on spoke 2:

```
diagnose sys session list
session info: proto=1 proto_state=00 duration=15 expire=46 timeout=0 flags=00000000
socktype=0 sockport=0 av_idx=0 use=3
origin-shaper=
reply-shaper=
per_ip_shaper=
class_id=0 ha_id=0 policy_dir=0 tunnel=/ vlan_cos=0/255
state=may_dirty
pu
statistic(bytes/packets/allow_err): org=252/3/1 reply=252/3/1 tuples=2
tx speed(Bps/kbps): 16/0 rx speed(Bps/kbps): 16/0
origin->sink: org pre->post, reply pre->post dev=138->115/115->138
gw=33.1.1.133/10.10.200.2
hook=pre dir=org act=noop 22.1.1.22:28528->33.1.1.133:8(0.0.0.0:0)
hook=post dir=reply act=noop 33.1.1.133:28528->22.1.1.22:0(0.0.0.0:0)
misc=0 policy_id=1 pol_uuid_idx=630 auth_info=0 chk_client_info=0 vd=6:2
serial=000aa476 tos=ff/ff app_list=0 app=0 url_cat=0
rpdb_link_id=00000000 ngfwid=n/a
pu
pu_statue=0x4000001 no_offload
pu info: flag=0x00/0x82, offload=0/0, ips_offload=0/0, epid=0/0, bid=0/0,
vl=0x0000/0x0000
vlifid=0/0, vtag_in=0/000/0x0000 in_pu=0/0, out_pu=0/0, fwy=0/0
no_ofld_reason: disabled-by-policy
```

Example 2

In this example, SLA health checks are sent from a spoke's VRF to the loopback on the hub that is in the same VRF.
To configure the health check:

```fortigate
config system sdwan
 config health-check
 edit "1"
 set server "11.11.22.11"
 set vrf 1
 set source 22.1.1.2
 set members 1 2
 config sla
 edit 1
 set latency-threshold 200
 set jitter-threshold 50
 next
 next
 end
end
```

To check the health check status:

```fortigate
diagnose sys sdwan health-check status 1
Health Check(1):
Seq(1 vd2-1): state(alive), packet-loss(0.000%) latency(0.023), jitter(0.002), mos(4.404),
bandwidth-up(0), bandwidth-dw(0), bandwidth-bi(0) sla_map=0x1
Seq(2 vd2-2): state(alive), packet-loss(0.000%) latency(0.022), jitter(0.002), mos(4.404),
bandwidth-up(0), bandwidth-dw(0), bandwidth-bi(0) sla_map=0x1
```

**Example 3**

In this example, when traffic from spoke 1 arrives at the hub on tunnel 1, it will egress the hub on tunnel 1 to go to other spokes. If traffic arrives on tunnel 2, it will egress on tunnel 2, and not tunnel 1.

To configure SD-WAN on the hub:

```fortigate
config system sdwan
 set status enable
 config zone
 edit "virtual-wan-link"
 set service-sla-tie-break input-device
 next
 end
 config members
 edit 1
 set interface "p1"
 next
 edit 2
 set interface "p2"
 next
 end
 config health-check
 edit "1"
 set server "22.1.1.2"
 set members 1 2
 config sla
```
To verify that traffic stays in the same overlay on ingress and egress on the hub:

1. Confirm that the SD-WAN service rule has Tie break set to input-device so that, when SLAs are met on all of the members, traffic prefers to egress on the same member as the input device:

   ```
 # diagnose sys sdwan service
 ``

   ```
   Service(1): Address Mode(IPV4) flags=0x200 use-shortcut-sla
   Tie break: input-device
   Gen(1), TOS(0x0/0x0), Protocol(0: 1->65535), Mode(sla), sla-compare-order
   Members(2):
     1: Seq_num(1 p1), alive, sla(0x1), gid(0), cfg_order(0), local cost(0), selected
     2: Seq_num(2 p2), alive, sla(0x1), gid(0), cfg_order(1), local cost(0), selected
   Dst address(1):
     0.0.0.0-255.255.255.255
   ```

2. Use `diagnose sniffer packet` commands to verify that traffic ingress and egress are on the same overlay.

SD-WAN cloud on-ramp

In this example, you configure a connection to a new cloud deployment that has some remote servers. SD-WAN is used to steer traffic through the required overlay tunnel.

The on-premise FortiGate has two internet connections, each with a single VPN connection. The two VPN gateways are configured on the cloud for redundancy, one terminating at the FortiGate-VM, and the other at the native AWS VPN Gateway.

This example uses AWS as the Infrastructure as a Service (IaaS) provider, but the same configuration can also apply to other services. A full mesh VPN setup is not shown, but can be added later if required.
To connect to the servers that are behind the cloud FortiGate-VM, virtual IP addresses (VIPs) are configured on port2 to map to the servers:

- VPN traffic terminating on port1 is routed to the VIP on port2 to access the web servers.
- VPN traffic terminating on the VPN gateway accesses the VIPs on port2 directly.

There are four major steps to configure this setup:

1. Configuring the VPN overlay between the HQ FortiGate and cloud FortiGate-VM on page 723
2. Configuring the VPN overlay between the HQ FortiGate and AWS native VPN gateway on page 728
3. Configuring the VIP to access the remote servers on page 731
4. Configuring the SD-WAN to steer traffic between the overlays on page 734

After the configuration is complete, verify the traffic to ensure that the configuration is working as expected, see Verifying the traffic on page 738.

Configuring the VPN overlay between the HQ FortiGate and cloud FortiGate-VM

Configure the cloud FortiGate-VM

To create an address for the VPN gateway:

1. Go to Policy & Objects > Addresses and click Create New > Address.
2. Set Name to local_subnet_10_0_2_0.
3. Set IP/Netmask to 10.0.2.0/24.
4. Click OK.
To configure a custom IPsec VPN:

1. Go to VPN > IPsec Wizard.
2. Set Name to Core_Dialup.
3. Set Template type to Custom.

![VPN Creation Wizard](image)

4. Click Next.
5. Configure Network settings:
 - Remote Gateway: Dialup User
 - Interface: port1
 - NAT Traversal: Enable

6. Configure Authentication settings:
 - Method: Pre-shared Key
 - Pre-shared Key: Enter the pre-shared key.
 - Version: 1
 - Mode: Aggressive
 This setting allows the peer ID to be specified.
 - Accept Types: Specific peer ID
 - Peer ID: IaaS
 The other end of the tunnel needs to have its local ID set to IaaS.

![Authentication](image)

7. Leave the default Phase 1 Proposal settings and disable XAUTH.
8. Configure the *Phase 2 Selector* settings:

<table>
<thead>
<tr>
<th>Name</th>
<th>Ent_Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Address</td>
<td>Named Address - local_subnet_10_0_2_0</td>
</tr>
<tr>
<td>Remote Address</td>
<td>Named Address - all</td>
</tr>
</tbody>
</table>

This setting allows traffic originating from both the remote subnet 10.100.88.0 and the health checks from the VPN interface on the remote FortiGate. For increased security, each subnet can be specified individually.

9. Click OK.

To configure remote and local tunnel IP addresses:

1. Go to *Network > Interfaces* and edit the *Core.Dialup* interface under *port1*.
2. Set *IP* to *172.16.200.1*.
3. Set *Remote IP/Netmask* to *172.16.200.2 255.255.255.0*. This is where remote health check traffic will come from.
4. Enable *Administrative access* for HTTPS, PING, and SSH.

5. Click OK.

To configure a route to the remote subnet through the tunnel:

1. Go to *Network > Static Routes* and click *Create New*.
2. Set *Destination* to *Subnet* and enter the IP address and netmask: 10.100.88.0/255.255.255.0.
3. Set *Interface* to *Core.Dialup*.

4. Click OK.
To configure a firewall policy to allow traffic from the tunnel to port2:

1. Go to Policy & Objects > Firewall Policy and click Create New.
2. Configure the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>Core_Dialup-to-port2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>Core_Dialup</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>port2</td>
</tr>
<tr>
<td>Source</td>
<td>all</td>
</tr>
<tr>
<td>Destination</td>
<td>local_subnet_10_0_2_0</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>ALL</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
</tbody>
</table>

3. Configure the remaining settings as required.
4. Click OK.

Configure the HQ FortiGate

To create an address for the VPN gateway:

1. Go to Policy & Objects > Addresses and click Create New > Address.
2. Set Name to remote_subnet_10_0_2_0.
3. Set IP/Netmask to 10.0.2.0/24.
4. Click OK.

To configure a custom IPsec VPN:

1. Go to VPN > IPsec Wizard.
2. Set Name to FGT_AWS_Tun.
3. Set Template type to Custom.
4. Click Next.
5. Configure Network settings:
Remote Gateway | Static IP Address
---|---
IP Address | 100.21.29.17
Interface | port5
NAT Traversal | Enable

6. Configure Authentication settings:

<table>
<thead>
<tr>
<th>Method</th>
<th>Pre-shared Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-shared Key</td>
<td>Enter the pre-shared key.</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
<tr>
<td>Mode</td>
<td>Aggressive</td>
</tr>
<tr>
<td>Accept Types</td>
<td>Any peer ID</td>
</tr>
</tbody>
</table>

7. Leave the default Phase 1 Proposal settings, except set Local ID to IaaS.
8. Disable XAUTH.
9. Configure the Phase 2 Selector settings:

<table>
<thead>
<tr>
<th>Name</th>
<th>FGT_AWS_Tun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Address</td>
<td>Named Address - all</td>
</tr>
<tr>
<td></td>
<td>This setting allows traffic originating from both the local subnet 10.100.88.0 and the health checks from the VPN interface. For increased security, each subnet can be specified individually.</td>
</tr>
<tr>
<td>Remote Address</td>
<td>Named Address - remote_subnet_10_0_2_0</td>
</tr>
</tbody>
</table>

10. Click OK.

To configure local and remote tunnel IP addresses:

1. Go to Network > Interfaces and edit the FGT_AWS_Tun interface under port5.
2. Set IP to 172.16.200.2.
3. Set Remote IP/Netmask to 172.16.200.1 255.255.255.0.
4. Enable Administrative access for HTTPS, PING, and SSH.
5. Click OK.

Routing is defined when creating the SD-WAN interface. The firewall policy is created after the SD-WAN interface is defined.
Configuring the VPN overlay between the HQ FortiGate and AWS native VPN gateway

This example uses static routing. It is assumed that the AWS VPN Gateway is already configured, and that proper routing is applied on the corresponding subnet.

Verify the AWS configuration

See Creating routing tables and associate subnets in the AWS Administration Guide for configuration details.

To check the AWS configuration:

1. Go to Virtual Private Network (VPN) > Customer Gateways to confirm that the customer gateway defines the FortiGate IP address as its Gateway IP address, in this case 34.66.121.231.

2. Go to Virtual Private Network (VPN) > Virtual Private Gateways to confirm that a virtual private gateway (VPG) has been created. In this case it is attached to the Cloud_onRamp VPC that contains the FortiGate and servers.

3. Go to Virtual Private Network (VPN) > Site-to-Site VPN Connections to confirm that site-to-site VPN connections have been created and attached to the customer gateway and virtual private gateway.
 If Routing Options is Static, the IP prefix of the remote subnet on the HQ FortiGate (10.100.88.0) is entered here.

AWS site-to-site VPN always creates two VPN tunnels for redundancy. In this example, only Tunnel 1 is used.

4. Click Download Configuration to download the FortiGate’s tunnel configurations. The configuration can be referred to when configuring the FortiGate VPN.
5. The new VPG is attached to your VPC, but to successfully route traffic to the VPG, proper routing must be defined. Go to Virtual Private Cloud > Subnets, select the Cloud-OnRamp-VPN, and select the Route Table tab to verify that there are at least two routes to send traffic over the VPG.

- 169.254.0.0/24 defines the tunnel IP address. Health check traffic originating from the FortiGate will come from this IP range.
- 10.100.0.0/16 defines the remote subnet from the HQ FortiGate.
- Both routes point to the just created VPG vgw-04xxxx.

6. On the cloud FortiGate-VM EC2 instances, ensure that port1 and port2 both have Source/Dest. Check set to false. This allows the FortiGate to accept and route traffic to and from a different network.
If you launched the instance from the AWS marketplace, this setting defaults to true.

Configure routing to the VPG on the cloud FortiGate-VM

To configure routing to the VPG on the cloud FortiGate-VM:

1. Go to Network > Static Routes and click Create New.
2. Set Destination to Subnet and enter the IP address and netmask: 10.100.88.0/255.255.255.0.
3. Set Gateway Address to Specify and enter 10.0.2.1.
4. Set Interface to port2.
 The new route must have the same Administrative Distance as the route that was created for traffic through the Core_Dialup tunnel to ensure that both routes are added to the routing table (see To configure a route to the remote subnet through the tunnel).
 The Gateway Address is arbitrarily set to 10.0.2.1. The VPG does not have an IP address, but the address defined here allows the FortiGate to route traffic out of port2, while AWS routes the traffic based on its routing table.

5. Click OK.

6. Go to Network > Static Routes to view the configured static routes:

 ![Static Routes Table]

7. If Optimal dashboards is selected, go to Dashboard > Network and expand the Routing widget to view the routing table.
 If Comprehensive dashboards is selected, go to Dashboard > Routing Monitor and select Static & Dynamic in the widget toolbar to view the routing table:

 ![Routing Table]

Configure IPsec VPN on the HQ FortiGate

To configure a custom IPsec VPN:

1. Go to VPN > IPsec Wizard.
2. Set Name to AWS_VPG.
3. Set Template type to Custom.
4. Click Next.
5. Configure Network settings:

<table>
<thead>
<tr>
<th>Remote Gateway</th>
<th>Static IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>34.210.19.225</td>
</tr>
<tr>
<td>This address is taken from the downloaded AWS configuration file.</td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td>port1</td>
</tr>
<tr>
<td>NAT Traversal</td>
<td>Enable</td>
</tr>
</tbody>
</table>

6. Configure Authentication settings:

<table>
<thead>
<tr>
<th>Method</th>
<th>Pre-shared Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-shared Key</td>
<td>Enter the pre-shared key.</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
<tr>
<td>Mode</td>
<td>Main</td>
</tr>
</tbody>
</table>

7. Configure the Phase 1 Proposal settings using information from the downloaded AWS configuration file.
8. Disable XAUTH.
9. Configure the Phase 2 Selector settings:

<table>
<thead>
<tr>
<th>Name</th>
<th>AWS_VPG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Address</td>
<td>Named Address - all</td>
</tr>
<tr>
<td></td>
<td>This setting allows traffic originating from both the local subnet 10.100.88.0 and the health checks from the VPN interface. For increased security, each subnet can be specified individually.</td>
</tr>
<tr>
<td>Remote Address</td>
<td>Named Address - remote_subnet_10_0_2_0</td>
</tr>
</tbody>
</table>

10. Click OK.

To configure local and remote tunnel IP addresses:

1. Go to Network > Interfaces and edit the AWS_VPG interface under port1.
2. Set IP to 169.254.55.154.
4. Enable Administrative access for HTTPS and PING.
5. Click OK.

Routing is defined when creating the SD-WAN interface. The firewall policy is created after the SD-WAN interface is defined.

Configuring the VIP to access the remote servers

VIPs, interface IP addresses, and policies are created on the cloud FortiGate-VM to allow access to the remote servers.

To configure additional private IPs on AWS for the FortiGate VIP:

1. On the FortiGate EC2 instance, edit the Elastic Network Interface that corresponds to port2. In this example, Network Interface eth1.
2. Go to Actions > Manage IP Addresses.
3. Add two private IP address in the 10.0.2.0/24 subnet.
 These address will be used in the VIPs on the FortiGate. This ensures that traffic to these IP addresses is routed to the FortiGate by AWS.
4. Click Yes, Update.

To configure VIPs on the cloud FortiGate-VM:

1. Go to Policy & Objects > Virtual IPs and click Create New > Virtual IP.
2. Configure the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>VIP-HTTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>port2</td>
</tr>
<tr>
<td>External IP address/range</td>
<td>10.0.2.20</td>
</tr>
<tr>
<td>Map to IPv4 address/range</td>
<td>10.0.3.33</td>
</tr>
</tbody>
</table>

3. Click OK.
4. Create a second VIP for the FTP server with the following settings:

<table>
<thead>
<tr>
<th>Name</th>
<th>VIP-FTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>port2</td>
</tr>
<tr>
<td>External IP address/range</td>
<td>10.0.2.21</td>
</tr>
<tr>
<td>Map to IPv4 address/range</td>
<td>10.0.3.44</td>
</tr>
</tbody>
</table>

To configure firewall policies to allow traffic from port2 to port3:

1. Go to Policy & Objects > Firewall Policy and click Create New.
2. Configure the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>To-WebServer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>port2</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>port3</td>
</tr>
<tr>
<td>Source</td>
<td>all</td>
</tr>
<tr>
<td>Destination</td>
<td>VIP-HTTP</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>ALL</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>NAT</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

3. Configure the remaining settings as required.
4. Click OK.
5. Create a second policy for the FTP VIP with the following settings:

<table>
<thead>
<tr>
<th>Name</th>
<th>To-FTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>port2</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>port3</td>
</tr>
<tr>
<td>Source</td>
<td>all</td>
</tr>
<tr>
<td>Destination</td>
<td>VIP-FTP</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>ALL</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
</tbody>
</table>
SD-WAN

NAT Enabled

6. Click OK.

Configuring the SD-WAN to steer traffic between the overlays

Configure the HQ FortiGate to use two overlay tunnels for SD-WAN, steering HTTPS and HTTP traffic through the FGT_AWS_Tun tunnel, and SSH and FTP through the AWS_VPG tunnel.

1. Add SD-WAN member interfaces
2. Configure a route to the remote network
3. Configure firewall policies
4. Configure a health check
5. Configure SD-WAN rules

To add SD-WAN member interfaces:

1. Go to Network > SD-WAN, select the SD-WAN Zones tab, and click Create New > SD-WAN Member.
2. Set Interface to AWS_VPG then click OK.

3. Click Create New > SD-WAN Member again.
4. Set Interface to FGT_AWS_Tun.
5. Set Gateway to 172.16.200.1.
6. Click OK.

To configure a route to the remote network 10.0.2.0/24:

1. Go to Network > Static Routes and click Create New.
2. Set Destination to Subnet and enter the IP address and netmask: 10.0.2.0/255.255.255.0.
3. Set Interface to virtual-wan-link.
4. Click OK.

Individual routes to each tunnel are automatically added to the routing table with the same distance:

To configure firewall policies to allow traffic from the internal subnet to SD-WAN:

1. Go to Policy & Objects > Firewall Policy and click Create New.
2. Configure the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>ISFW-to-IaaS</th>
</tr>
</thead>
</table>
Configuration Settings:

<table>
<thead>
<tr>
<th>Incoming Interface</th>
<th>port3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outgoing Interface</td>
<td>virtual-wan-link</td>
</tr>
<tr>
<td>Source</td>
<td>all</td>
</tr>
<tr>
<td>Destination</td>
<td>all</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>ALL</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>NAT</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

3. Configure the remaining settings as required.

4. Click OK.

Once the firewall policies are configured, the VPN tunnels should come up when there is traffic.

To Configure a Health Check to Monitor the Status of the Tunnels:

As you are accessing the servers on the 10.0.2.0/24 subnet, it is preferable to use the FortiGate port2 interface as the ping server for detection. This ensures that, if the gateway is not reachable in either tunnel, its routes are brought down and traffic continues on the other tunnel.

1. Go to Network > SD-WAN, select the Performance SLAs tab, and click Create New.

2. Configure the following:

 - **Name**: ping_AWS_Gateway
 - **Protocol**: Ping
 - **Server**: 10.0.2.10
 - **Participants**: Specify Add AWS_VPG and FGT_AWS_Tun as participants.

3. Click OK.
Health check probes originate from the VPN interface’s IP address. This is why the phase2 selectors are configured with Local Address set to all.

To configure SD-WAN rules to steer traffic:

HTTPS and HTTP traffic is steered to the FGT_AWS_Tun tunnel, and SSH and FTP traffic is steered to the AWS_VPG tunnel. The Manual algorithm is used in this example.

1. Go to Network > SD-WAN, select the SD-WAN Rules tab, and click Create New.
2. Configure the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>http-to-FGT_AWS_Tun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Address</td>
<td>all</td>
</tr>
<tr>
<td>Address</td>
<td>remote_subnet_10_0_2_0</td>
</tr>
<tr>
<td>Protocol</td>
<td>TCP</td>
</tr>
<tr>
<td>Port range</td>
<td>80 - 80</td>
</tr>
<tr>
<td>Outgoing Interfaces</td>
<td>Manual</td>
</tr>
<tr>
<td>Interface preference</td>
<td>FGT_AWS_Tun</td>
</tr>
</tbody>
</table>

3. Click OK.
4. Create other SD-WAN rules as required:
Verifying the traffic

To verify that pings are sent across the IPsec VPN tunnels

- On the HQ FortiGate, run the following CLI command:

```bash
# diagnose sniffer packet any 'host 10.0.2.10' 4 0 1 interfaces=[any]
Using Original Sniffing Mode
interfaces=[any]
filters=[host 10.0.2.10]
pcap_snapshot: snaplen raised from 0 to 262144
2021-06-05 11:35:14.822600 AWS_VPG out 169.254.55.154 -> 10.0.2.10: icmp: echo request
2021-06-05 11:35:14.822789 FGT_AWS_Tun out 172.16.200.2 -> 10.0.2.10: icmp: echo request
```

- On the cloud FortiGate-VM, run the following CLI command:

```bash
# diagnose sniffer packet any 'host 10.0.2.10' 4 0 1 interfaces=[any]
Using Original Sniffing Mode
interfaces=[any]
filters=[host 10.0.2.10]
pcap_snapshot: snaplen raised from 0 to 262144
2021-06-05 11:37:57.176329 port2 in 169.254.55.154 - 10.0.2.10: icmp: echo request
2021-06-05 11:37:57.176363 port2 out 10.0.2.10 - 169.254.55.154: icmp: echo reply
2021-06-05 11:37:57.176505 Core_Dialup in 172.16.200.2 - 10.0.2.10: icmp: echo request
2021-06-05 11:37:57.176514 Core_Dialup out 10.0.2.10 - 172.16.200.2: icmp: echo reply
```

To verify the SLA health checks on the HQ FortiGate:

1. Go to Network > SD-WAN, select the Performance SLAs tab, select Packet Loss, and click the ping_AWS_Gateway SLA:

2. Run the following CLI command:

```bash
# diagnose sys sdwan health-check
...
Seq(1 AWS_VPG): state(alive), packet-loss(0.000%) latency(56.221), jitter(0.290) sla_map=0x0
Seq(2 FGT_AWS_Tun): state(alive), packet-loss(0.000%) latency(55.039), jitter(0.223) sla_map=0x0
```
To verify service rules:

1. Go to Network > SD-WAN and select the SD-WAN Rules tab:

 ![SD-WAN Rules tab](image)

2. Run the following CLI command:

   ```
   # diagnose sys sdwan service
   
   Service(1): Address Mode(IPV4) flags=0x0  
   Gen(1), TOS(0x0/0x0), Protocol(6: 80->80), Mode(manual)  
   Members:  
   1: Seq_num(2 FGT_AWS_Tun), alive, selected  
   Src address:  
   0.0.0.0-255.255.255.255  
   Dst address:  
   10.0.2.0-10.0.2.255
   
   Service(2): Address Mode(IPV4) flags=0x0  
   Gen(1), TOS(0x0/0x0), Protocol(6: 22->22), Mode(manual)  
   Members:  
   1: Seq_num(1 AWS_VPG), alive, selected  
   Src address:  
   0.0.0.0-255.255.255.255  
   Dst address:  
   10.0.2.0-10.0.2.255
   
   Service(3): Address Mode(IPV4) flags=0x0  
   Gen(1), TOS(0x0/0x0), Protocol(6: 443->443), Mode(manual)  
   Members:  
   1: Seq_num(2 FGT_AWS_Tun), alive, selected  
   Src address:  
   0.0.0.0-255.255.255.255  
   Dst address:  
   10.0.2.0-10.0.2.255
   
   Service(4): Address Mode(IPV4) flags=0x0  
   Gen(1), TOS(0x0/0x0), Protocol(0: 1->65535), Mode(manual)  
   Members:  
   1: Seq_num(1 AWS_VPG), alive, selected  
   Src address:  
   0.0.0.0-255.255.255.255  
   Dst address:  
   10.0.2.21-10.0.2.21
   ```
To verify that sessions are going to the correct tunnel:

1. Run the following CLI command to verify that HTTPS and HTTP traffic destined for the Web server at 10.0.2.20 uses FGT_AWS_Tun:

```
# diagnose sys session filter dst 10.0.2.20
# diagnose sys session list
```

```
session info: proto=6 proto_state=11 duration=2 expire=3597 timeout=3600 flags=00000000
socktype=0 sockport=0 av_idx=0 use=4
origin-shaper=
reply-shaper=
per_ip_shaper=
class_id=0 ha_id=0 policy_dir=0 tunnel=FGT_AWS_Tun/ vlan_cos=0/255
state=log may_dirty npu f00 csf_syncd_log app_valid
statistic(bytes/packets/allow_err): org=593/4/1 reply=3689/5/1 tuples=3
tx speed(Bps/kbps): 264/2 rx speed(Bps/kbps): 1646/13
orig->sink: org pre->post, reply pre->post dev=0->18/18->0 gwy=172.16.200.1/0.0.0.0
hook=post dir=org act=snat 10.100.88.101:55589->10.0.2.20:80(172.16.200.2:55589)
hook=pre dir=reply act=dnat 10.0.2.20:80->172.16.200.2:55589(10.100.88.101:55589)
hook=post dir=reply act=noop 10.0.2.20:80->10.100.88.101:55589(0.0.0.0:0)
pos/(before,after) 0/(0,0), 0/(0,0)
src_mac=00:09:0f:00:03:01
misc=0 policy_id=32 auth_info=0 chk_client_info=0 vd=0
serial=00b7442c5 tos=ff ff app_list=2000 app=34050 url_cat=0
sdwan_mbr_seq=0 sdwan_service_id=0
rpdb_link_id=ff000001 rpdb_svc_id=2154552596 ngfwid=n/a
npu_state=0x3041008
```

```
session info: proto=6 proto_state=11 duration=2 expire=3597 timeout=3600 flags=00000000
socktype=0 sockport=0 av_idx=0 use=4
origin-shaper=
reply-shaper=
per_ip_shaper=
class_id=0 ha_id=0 policy_dir=0 tunnel=FGT_AWS_Tun/ vlan_cos=0/255
state=log may_dirty npu f00 csf_syncd_log
statistic(bytes/packets/allow_err): org=48/1/0 reply=40/1/1 tuples=3
tx speed(Bps/kbps): 26/0 rx speed(Bps/kbps): 22/0
orig->sink: org pre->post, reply pre->post dev=5->18/18->5
gwy=172.16.200.1/10.100.88.101
hook=post dir=org act=snat 10.100.88.101:55621->10.0.2.20:443(172.16.200.2:55621)
hook=pre dir=reply act=dnat 10.0.2.20:443->172.16.200.2:55621(10.100.88.101:55621)
hook=post dir=reply act=noop 10.0.2.20:443->10.100.88.101:55621(0.0.0.0:0)
pos/(before,after) 0/(0,0), 0/(0,0)
src_mac=00:09:0f:00:03:01
misc=0 policy_id=32 auth_info=0 chk_client_info=0 vd=0
serial=00b744b5 tos=ff ff app_list=2000 app=0 url_cat=0
sdwan_mbr_seq=0 sdwan_service_id=0
rpdb_link_id=ff000003 rpdb_svc_id=2154552596 ngfwid=n/a
npu_state=0x3041008
```

2. Run the following CLI command to verify that SSH and FTP traffic destined for the FTP server at 10.0.2.21 uses AWS_VPG:

```
# diagnose sys session filter dst 10.0.2.20
# diagnose sys session list
```
session info: proto=6 proto_state=11 duration=197 expire=3403 timeout=3600
flags=00000000 socktype=0 sockport=0 av_idx=0 use=4
origin-shaper=
reply-shaper=
per_ip_shaper=
class_id=0 ha_id=0 policy_dir=0 tunnel=AWS_VPG/ helper=ftp vlan_cos=0/255
state=log may_dirty ngr npu f00 csf_syncd_log app_valid
statistic(byte/packets/allow_err): org=580/12/1 reply=863/13/1 tuples=3
tx speed(Bps/kbps): 2/0 rx speed(Bps/kbps): 4/0
orgin->sink: org pre->post, reply pre->post dev=5->17/17->5
gw=169.254.55.153/10.100.88.101
hook=post dir=org act=snat 10.100.88.101:55528->10.0.2.21:21(169.254.55.154:55528)
hook<pre dir=reply act=dnat 10.0.2.21:21->169.254.55.154:55528(10.100.88.101:55528)
hook=post dir=reply act=noop 10.0.2.21:21->10.100.88.101:55528(0.0.0.0:0)
pos/(before,after) 0/(0,0), 0/(0,0)
src_mac=00:09:0f:00:03:01
misc=0 policy_id=32 auth_info=0 chk_client_info=0 vd=0
serial=00b72a5f tos=ff/app_list=2000 app=15896 url_cat=0
sdwan_mbr_seq=0 sdwan_service_id=0
rpdb_link_id= ff000004 rpdb_svc_id=2149689849 ngfwid=n/a
npu_state=0x3041008

session info: proto=6 proto_state=11 duration=3 expire=3596 timeout=3600 flags=00000000
socktype=0 sockport=0 av_idx=0 use=4
origin-shaper=
reply-shaper=
per_ip_shaper=
class_id=0 ha_id=0 policy_dir=0 tunnel=AWS_VPG/ vlan_cos=0/255
state=log may_dirty ngr npu f00 csf_syncd_log app_valid
statistic(byte/packets/allow_err): org=1496/6/1 reply=1541/5/1 tuples=3
tx speed(Bps/kbps): 416/3 rx speed(Bps/kbps): 429/3
orgin->sink: org pre->post, reply pre->post dev=5->17/17->5
gw=169.254.55.153/10.100.88.101
hook=post dir=org act=snat 10.100.88.101:55644->10.0.2.21:22(169.254.55.154:55644)
hook<pre dir=reply act=dnat 10.0.2.21:22->169.254.55.154:55644(10.100.88.101:55644)
hook=post dir=reply act=noop 10.0.2.21:22->10.100.88.101:55644(0.0.0.0:0)
pos/(before,after) 0/(0,0), 0/(0,0)
src_mac=00:09:0f:00:03:01
misc=0 policy_id=32 auth_info=0 chk_client_info=0 vd=0
serial=00b72a5f tos=ff/app_list=2000 app=16060 url_cat=0
sdwan_mbr_seq=0 sdwan_service_id=0
rpdb_link_id= ff000002 rpdb_svc_id=2149689849 ngfwid=n/a
npu_state=0x3041008

To simulate an issue on an overlay VPN tunnel:

On the cloud FortiGate-VM, disable the firewall policy allowing Core_Dialup to port2.

1. Health-checks through the FGT_AWS_Tun tunnel fail:
 a. Go to Network > SD-WAN, select the Performance SLAs tab, select Packet Loss, and click the ping_AWS_Gateway SLA:
b. Run the following CLI command:

```bash
# diagnose sys sdwan health-check
...
Seq(1 AWS_VPG): state(alive), packet-loss(0.000%) latency(52.746), jitter(0.713) sla_map=0x0
Seq(2 FGT_AWS_Tun): state(dead), packet-loss(19.000%) sla_map=0x0
```

2. Service rules show that the member is down:

a. Go to Network > SD-WAN and select the SD-WAN Rules tab:

b. Run the following CLI command:

```bash
# diagnose sys sdwan service

Service(1): Address Mode(IPV4) flags=0x0
  Gen(2), TOS(0x0/0x0), Protocol(6: 80->80), Mode(manual)
Members:
  1: Seq_num(2 FGT_AWS_Tun), dead
  Src address:
    0.0.0.0-255.255.255.255
  Dst address:
    10.0.2.0-10.0.2.255

Service(2): Address Mode(IPV4) flags=0x0
  Gen(1), TOS(0x0/0x0), Protocol(6: 22->22), Mode(manual)
Members:
  1: Seq_num(1 AWS_VPG), alive, selected
  Src address:
    0.0.0.0-255.255.255.255
  Dst address:
    10.0.2.0-10.0.2.255
```
Service(3): Address Mode(IPV4) flags=0x0
 Gen(2), TOS(0x0/0x0), Protocol(6: 443->443), Mode(manual)
Members:
 1: Seq_num(2 FGT_AWS_Tun), dead
 Src address: 0.0.0.0-255.255.255.255
 Dst address: 10.0.2.0-10.0.2.255

Service(4): Address Mode(IPV4) flags=0x0
 Gen(1), TOS(0x0/0x0), Protocol(0: 1->65535), Mode(manual)
Members:
 1: Seq_num(1 AWS_VPG), alive, selected
 Src address: 0.0.0.0-255.255.255.255
 Dst address: 10.0.2.21-10.0.2.21

3. Sessions are redirected to the working tunnel:
 a. Run the following CLI command:

   ```
   # diagnose sys session list
   ```

 session info: proto=6 proto_state=11 duration=3 expire=3596 timeout=3600
 flags=00000000 socktype=0 sockport=0 av_idx=0 use=4
 origin-shaper=
 reply-shaper=
 per_ip_shaper=
 class_id=0 ha_id=0 policy_dir=0 tunnel=AWS_VPG/ vlan_cos=0/255
 state=log may_dirty ndr npu f00 csf_syncd_log app_valid
 statistic(bytes/packets/allow_err): org=504/4/0 reply=620/3/1 tuples=3
 tx speed(Bps/kbps): 150/1 rx speed(Bps/kbps): 184/1
 orgin->sink: org pre->post, reply pre->post dev=0->17/17->0
 gw=169.254.55.153/0.0.0.0
 hook=post dir=org act=snat 10.100.88.101:56373->10.0.2.20:80(169.254.55.154:56373)
 hook=pre dir=reply act=dnat 10.0.2.20:80->169.254.55.154:56373(10.100.88.101:56373)
 hook=post dir=reply act=noop 10.0.2.20:80->10.100.88.101:56373(0.0.0.0:0)
 pos/(before,after) 0/(0,0), 0/(0,0)
 src_mac=00:09:0f:00:03:01
 misc=0 policy_id=32 auth_info=0 chk_client_info=0 vd=0
 serial=0b87199 tos=ff app_list=2000 app=34050 url_cat=0
 rpdb_link_id= 80000000 rpdb_svc_id=0 nfgwtd=n/a
 npu_state=0x3041008

 session info: proto=6 proto_state=66 duration=3 expire=1 timeout=3600
 flags=00000000 socktype=0 sockport=0 av_idx=0 use=4
 origin-shaper=
 reply-shaper=
 per_ip_shaper=
 class_id=0 ha_id=0 policy_dir=0 tunnel=AWS_VPG/ vlan_cos=0/255
 state=log may_dirty ndr f00 csf_syncd_log
 statistic(bytes/packets/allow_err): org=48/1/0 reply=40/1/1 tuples=3
 tx speed(Bps/kbps): 15/0 rx speed(Bps/kbps): 12/0
 orgin->sink: org pre->post, reply pre->post dev=5->17/17->5
 gw=169.254.55.153/10.100.88.101
 hook=post dir=org act=snat 10.100.88.101:56383->10.0.2.20:443(169.254.55.154:56383)
hook=pre dir=reply act=dnat 10.0.2.20:443->169.254.55.154:56383(10.100.88.101:56383)
hook=post dir=reply act=noop 10.0.2.20:443->10.100.88.101:56383(0.0.0.0:0)
pos/(before,after) 0/(0,0), 0/(0,0)
src_mac=00:09:0f:00:03:01
misc=0 policy_id=32 auth_info=0 chk_client_info=0 vd=0
serial=0b876bb tos=ff/ff app_list=2000 app=0 url_cat=0
rpdb_link_id=80000000 rpdb_svc_id=0 ngfwid=n/a
npu_state=0x3041008
total session 2

4. Routes to the FGT_AWS_Tun tunnel are removed:
 a. If Optimal dashboards is selected, go to Dashboard > Network and expand the Routing widget to view the routing table.

 If Comprehensive dashboards is selected, go to Dashboard > Routing Monitor and select Static & Dynamic in the widget toolbar to view the routing table:

 ![Routing Table Screenshot]

 b. Run the following CLI command:

   ```
   # get router info routing-table all
   Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
          O - OSPF, IA - OSPF inter area
          N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
          E1 - OSPF external type 1, E2 - OSPF external type 2
          i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
          * - candidate default
   
   Routing table for VRF=0
   S* 0.0.0.0/0 [1/0] via 10.100.64.254, port1
       [1/0] via 10.100.65.254, port5
   S 10.0.2.0/24 [1/0] via 169.254.55.153, AWS_VPG
   C 10.0.10.0/24 is directly connected, Branch-HQ-A
   C 10.0.10.1/32 is directly connected, Branch-HQ-A
   ...
   ```

Troubleshooting SD-WAN

The following topics provide instructions on SD-WAN troubleshooting:

- Tracking SD-WAN sessions on page 745
- Understanding SD-WAN related logs on page 745
- SD-WAN related diagnose commands on page 748
- SD-WAN bandwidth monitoring service on page 752
- Using SNMP to monitor health check on page 755
Tracking SD-WAN sessions

You can check the destination interface in Dashboard > FortiView Sessions in order to see which port the traffic is being forwarded to.

The example below demonstrates a source-based load-balance between two SD-WAN members:

- If the source IP address is an **even** number, it will go to **port13**.
- If the source IP address is an **odd** number, it will go to **port12**.

![FortiView Sessions interface](image)

Understanding SD-WAN related logs

This topic lists the SD-WAN related logs and explains when the logs will be triggered.

Health-check detects a failure:

- When health-check detects a failure, it will record a log:

 1: date=2021-04-20 time=17:06:31 eventtime=1618963591590008160 tz="-0700"
 logid="0100022921" type="event" subtype="system" level="critical" vd="root"
 logdesc="Routing information changed" name="test" interface="R150" status="down"
 msg="Static route on interface R150 may be removed by health-check test. Route:
 (10.100.1.2->10.100.2.22 ping-down)"

- When health-check detects a recovery, it will record a log:

 2: date=2021-04-20 time=17:11:46 eventtime=1618963591590008160 tz="-0700"
 logid="0100022921" type="event" subtype="system" level="critical" vd="root"
 logdesc="Routing information changed" name="test" interface="R150" status="up"
 msg="Static route on interface R150 may be added by health-check test. Route:
 (10.100.1.2->10.100.2.22 ping-up)"

Health-check has an SLA target and detects SLA qualification changes:

- When health-check has an SLA target and detects SLA changes, and changes to fail:

 1: date=2021-04-20 time=21:32:33 eventtime=161897955388763760 tz="-0700"
 logid="0113022923" type="event" subtype="sdwan" level="notice" vd="root"
 logdesc="SDWAN status" eventtype="Health Check" healthcheck="test" slatargetid=1 oldvalue="2"
 newvalue="1" msg="Number of pass member changed."
SD-WAN calculates a link’s session/bandwidth over/under its ratio and stops/resumes traffic:

- When SD-WAN calculates a link’s session/bandwidth over its configured ratio and stops forwarding traffic:

 1: date=2021-04-20 time=21:55:14 eventtime=1618980914728863220 tz="-0700"
 logid=0113022924 type="event" subtype="sdwan" level="notice" vd="root" logdesc="SDWAN volume status" eventtype="Volume" interface="R160" member="2" msg="Member enters into conservative status with limited ability to receive new sessions for too much traffic."

- When SD-WAN calculates a link’s session/bandwidth according to its ratio and resumes forwarding traffic:

 2: date=2021-04-20 time=22:12:52 eventtime=1618981972698753360 tz="-0700"
 logid=0113022924 type="event" subtype="sdwan" level="notice" vd="root" logdesc="SDWAN volume status" eventtype="Volume" interface="R160" member="2" msg="Member resume normal status to receive new sessions for internal adjustment"

The SLA mode service rule’s SLA qualified member changes:

- When the SLA mode service rule’s SLA qualified member changes. In this example R150 fails the SLA check, but is still alive:

 1: date=2021-04-20 time=22:40:46 eventtime=1618983646428803040 tz="-0700"
 logid=0113022923 type="event" subtype="sdwan" level="notice" vd="root" logdesc="SDWAN status" eventtype="Service" serviceid=1 service="test" seq="2,1" msg="Service prioritized by SLA will be redirected in sequence order."

- When the SLA mode service rule’s SLA qualified member changes. In this example R150 changes from fail to pass:

 2: date=2021-04-20 time=22:41:51 eventtime=1618983711679827920 tz="-0700"
 logid=0113022923 type="event" subtype="sdwan" level="notice" vd="root" logdesc="SDWAN status" eventtype="Service" serviceid=1 service="test" seq="1,2" msg="Service prioritized by SLA will be redirected in sequence order."

The priority mode service rule member’s link status changes:

- When priority mode service rule member’s link status changes. In this example R150 changes to better than R160, and both are still alive:

 1: date=2021-04-20 time=22:56:55 eventtime=1618984615708804760 tz="-0700"
 logid=0113022923 type="event" subtype="sdwan" level="notice" vd="root" logdesc="SDWAN status" eventtype="Service" serviceid=1 service="test" metric="packet-loss" seq="2,1" msg="Service prioritized by performance metric will be redirected in sequence order."
• When priority mode service rule member's link status changes. In this example R160 changes to better than R150, and both are still alive:

2: date=2021-04-20 time=22:56:58 eventtime=1618984618278852140 tz="-0700" logid="0113022923" type="event" subtype="sdwan" level="notice" vd="root" logdesc="SDWAN status" eventtype="Service" serviceid=1 service="test" metric="packet-loss" seq="1,2" msg="Service prioritized by performance metric will be redirected in sequence order."

SD-WAN member is used in service and it fails the health-check:

• When SD-WAN member fails the health-check, it will stop forwarding traffic:

1: date=2021-04-20 time=23:04:32 eventtime=1618985072898756700 tz="-0700" logid="0113022923" type="event" subtype="sdwan" level="notice" vd="root" logdesc="SDWAN status" eventtype="Service" interface="R150" member="1" serviceid=1 service="test" gateway=10.100.1.1 msg="Member link is unreachable or miss threshold. Stop forwarding traffic."

• When SD-WAN member passes the health-check again, it will resume forwarding logs:

2: date=2021-04-20 time=23:06:08 eventtime=1618985168018789600 tz="-0700" logid="0113022923" type="event" subtype="sdwan" level="notice" vd="root" logdesc="SDWAN status" eventtype="Service" interface="R150" member="1" serviceid=1 service="test" gateway=10.100.1.1 msg="Member link is available. Start forwarding traffic."

Load-balance mode service rule's SLA qualified member changes:

• When load-balance mode service rule's SLA qualified member changes. In this example R150 changes to not meet SLA:

1: date=2021-04-20 time=23:10:24 eventtime=1618985425048820800 tz="-0700" logid="0113022923" type="event" subtype="sdwan" level="notice" vd="root" logdesc="SDWAN status" eventtype="Service" serviceid=1 service="test" member="2(R160)" msg="Service will be load balanced among members with available routing."

• When load-balance mode service rule's SLA qualified member changes. In this example R150 changes to meet SLA:

2: date=2021-04-20 time=23:11:34 eventtime=1618985494478807100 tz="-0700" logid="0113022923" type="event" subtype="sdwan" level="notice" vd="root" logdesc="SDWAN status" eventtype="Service" serviceid=1 service="test" member="2(R160),1(R150)" msg="Service will be load balanced among members with available routing."

SLA link status logs, generated with interval sla-fail-log-period or sla-pass-log-period:

• When SLA fails, SLA link status logs will be generated with interval sla-fail-log-period:

1: date=2021-04-20 time=23:18:10 eventtime=1618985890469018260 tz="-0700" logid="0113022925" type="event" subtype="sdwan" level="notice" vd="root" logdesc="SDWAN SLA information" eventtype="SLA" healthcheck="test" slatargetid=1 interface="R150" status="up" latency="0.061" jitter="0.004" packetloss="2.000%" inbandwidthavailable="0kbps" outbandwidthavailable="200.00Mbps" bibandwidthavailable="200.00Mbps" inbandwidthused="1kbps" outbandwidthused="1kbps" bibandwidthused="2kbps" slamap="0x0" metric="packetloss" msg="Health Check SLA status. SLA failed due to being over the performance metric threshold."
SD-WAN related diagnose commands

This topic lists the SD-WAN related diagnose commands and related output.

To check SD-WAN health-check status:

FGT # diagnose sys sdwan health-check
Health Check (server):
Seq(1 R150): state(alive), packet-loss(0.000%) latency(0.110), jitter(0.024) sla_map=0x0
Seq(2 R160): state(alive), packet-loss(0.000%) latency(0.068), jitter(0.009) sla_map=0x0

FGT # diagnose sys sdwan health-check
Health Check (ping):
Seq(1 R150): state(alive), packet-loss(0.000%) latency(0.100), jitter(0.017) sla_map=0x0
Seq(2 R160): state(dead), packet-loss(100.000%) sla_map=0x0

FGT # diagnose sys sdwan health-check google
Health Check (google):
Seq(1 R150): state(alive), packet-loss(0.000%) latency(0.081), jitter(0.019) sla_map=0x0
Seq(2 R160): state(alive), packet-loss(0.000%) latency(0.060), jitter(0.004) sla_map=0x0

To check SD-WAN member status:

- When SD-WAN load-balance mode is source-ip-based/source-dest-ip-based.

 FGT # diagnose sys sdwan member
 Member(1): interface: R150, gateway: 10.100.1.1 2000:10:100:1::1, priority: 0 1024, weight: 0
 Member(2): interface: R160, gateway: 10.100.1.5 2000:10:100:1::5, priority: 0 1024, weight: 0

- When SD-WAN load-balance mode is weight-based.

 FGT # diagnose sys sdwan member
 Member(1): interface: R150, gateway: 10.100.1.1 2000:10:100:1::1, priority: 0 1024, weight: 33
 Session count: 15
 Member(2): interface: R160, gateway: 10.100.1.5 2000:10:100:1::5, priority: 0 1024, weight: 66
 Session count: 1

- When SD-WAN load-balance mode is measured-volume-based.
 - Both members are under volume and still have room:

 FGT # diagnose sys sdwan member
 Member(1): interface: R150, gateway: 10.100.1.1 2000:10:100:1::1, priority: 0 1024,
weight: 33
Config volume ratio: 33, last reading: 218067B, volume room 33MB
Member(2): interface: R160, gateway: 10.100.1.5 2000:10:100:1::5, priority: 0 1024, weight: 66
Config volume ratio: 66, last reading: 202317B, volume room 66MB

- Some members are overloaded and some still have room:

 FGT # diagnose sys sdwan member
 Member(1): interface: R150, gateway: 10.100.1.1 2000:10:100:1::1, priority: 0 1024, weight: 0
 Config volume ratio: 33, last reading: 1287767633B, overload volume 517MB
 Member(2): interface: R160, gateway: 10.100.1.5 2000:10:100:1::5, priority: 0 1024, weight: 63
 Config volume ratio: 66, last reading: 1686997898B, volume room 63MB

- When SD-WAN load balance mode is usage-based/spillover:

 FGT # diagnose sys sdwan member
 Member(1): interface: R150, gateway: 10.100.1.1 2000:10:100:1::1, priority: 0 1024, weight: 255
 Egress-spillover-threshold: 400kbit/s, ingress-spillover-threshold: 300kbit/s
 Egress-overbps=0, ingress-overbps=0
 Member(2): interface: R160, gateway: 10.100.1.5 2000:10:100:1::5, priority: 0 1024, weight: 254
 Egress-spillover-threshold: 0kbit/s, ingress-spillover-threshold: 0kbit/s
 Egress-overbps=0, ingress-overbps=0

- When member has reached limit and spillover occurs:

 FGT # diagnose sys sdwan member
 Member(1): interface: R150, gateway: 10.100.1.1 2000:10:100:1::1, priority: 0 1024, weight: 255
 Egress-spillover-threshold: 400kbit/s, ingress-spillover-threshold: 300kbit/s
 Egress-overbps=0, ingress-overbps=0
 Member(2): interface: R160, gateway: 10.100.1.5 2000:10:100:1::5, priority: 0 1024, weight: 254
 Egress-spillover-threshold: 0kbit/s, ingress-spillover-threshold: 0kbit/s
 Egress-overbps=0, ingress-overbps=0

- You can also use the `diagnose netlink dstmac list` command to check if you are over the limit.

 FGT # diagnose netlink dstmac list R150
 dev=R150 mac=00:00:00:00:00:00 vwl rx_tcp_mss=0 tx_tcp_mss=0 egress_overspill_threshold=50000 egress_bytes=100982 egress_over_bps=1 ingress_overspill_threshold=37500 ingress_bytes=40 ingress_over_bps=0 sampler_rate=0 vwl_zone_id=1 intf_qua=0

To check SD-WAN service rules status:

- **Manual mode service rules.**

 FGT # diagnose sys sdwan service
 Service(1): Address Mode(IPV4) flags=0x200
 Gen(1), TOS(0x0/0x0), Protocol(0: 1->65535), Mode(manual)
 Members(2):
 1: Seq_num(1 R150), alive, selected
 2: Seq_num(2 R160), alive, selected
Dst address(1):
 10.100.21.0-10.100.21.255

- **Auto mode service rules.**

  ```
  FGT # diagnose sys sdwan service
  Service(1): Address Mode(IPV4) flags=0x200
  Gen(1), TOS(0x0/0x0), Protocol(0: 1->65535), Mode(auto), link-cost-factor(latency),
  link-cost-threshold(10), health-check(ping)
  Members(2):
    1: Seq_num(2 R160), alive, latency: 0.066, selected
    2: Seq_num(1 R150), alive, latency: 0.093
  Dst address(1):
    10.100.21.0-10.100.21.255
  ```

- **Priority mode service rules.**

  ```
  FGT # diagnose sys sdwan service
  Service(1): Address Mode(IPV4) flags=0x200
  Gen(1), TOS(0x0/0x0), Protocol(0: 1->65535), Mode(priority), link-cost-factor
  (latency), link-cost-threshold(10), health-check(ping)
  Members(2):
    1: Seq_num(2 R160), alive, latency: 0.059, selected
    2: Seq_num(1 R150), alive, latency: 0.077, selected
  Dst address(1):
    10.100.21.0-10.100.21.255
  ```

- **Load-balance mode service rules.**

  ```
  FGT # diagnose sys sdwan service
  Service(1): Address Mode(IPV4) flags=0x200
  Gen(1), TOS(0x0/0x0), Protocol(0: 1->65535), Mode(load-balance hash-mode=round-robin)
  Members(2):
    1: Seq_num(1 R150), alive, sla(0x1), gid(2), num of pass(1), selected
    2: Seq_num(2 R160), alive, sla(0x1), gid(2), num of pass(1), selected
  Dst address(1):
    10.100.21.0-10.100.21.255
  ```

- **SLA mode service rules.**

  ```
  FGT # diagnose sys sdwan service
  Service(1): Address Mode(IPV4) flags=0x200
  Gen(1), TOS(0x0/0x0), Protocol(0: 1->65535), Mode(sla), sla-compare-order
  Members(2):
    1: Seq_num(1 R150), alive, sla(0x1), gid(0), cfg_order(0), cost(0), selected
    2: Seq_num(2 R160), alive, sla(0x1), gid(0), cfg_order(1), cost(0), selected
  Dst address(1):
    10.100.21.0-10.100.21.255
  ```

To check interface logs from the past 15 minutes:

```
FGT (root) # diagnose sys sdwan intf-sla-log R150
Timestamp: Wed Apr 21 16:58:27 2021, used inbandwidth: 655bps, used outbandwidth:
81655306bps, used bibandwidth: 81655961bps, tx bys: 3413479982bytes, rx bytes: 207769bytes.
Timestamp: Wed Apr 21 16:58:37 2021, used inbandwidth: 649bps, used outbandwidth:
81655540bps, used bibandwidth: 81656189bps, tx bys: 3515590414bytes, rx bytes: 208529bytes.
Timestamp: Wed Apr 21 16:58:47 2021, used inbandwidth: 655bps, used outbandwidth:
81655546bps, used bibandwidth: 81656201bps, tx bys: 3617700886bytes, rx bytes: 209329bytes.
Timestamp: Wed Apr 21 16:58:57 2021, used inbandwidth: 620bps, used outbandwidth:
```
To check SLA logs in the past 10 minutes:

FGT (root) # diagnose sys sdwan sla-log ping l
Timestamp: Wed Apr 21 17:10:11 2021, vdom root, health-check ping, interface: R150, status: up, latency: 0.079, jitter: 0.023, packet loss: 0.000%.
Timestamp: Wed Apr 21 17:10:12 2021, vdom root, health-check ping, interface: R150, status: up, latency: 0.079, jitter: 0.023, packet loss: 0.000%.
Timestamp: Wed Apr 21 17:10:12 2021, vdom root, health-check ping, interface: R150, status: up, latency: 0.081, jitter: 0.024, packet loss: 0.000%.
Timestamp: Wed Apr 21 17:10:13 2021, vdom root, health-check ping, interface: R150, status: up, latency: 0.081, jitter: 0.025, packet loss: 0.000%.
Timestamp: Wed Apr 21 17:10:13 2021, vdom root, health-check ping, interface: R150, status: up, latency: 0.082, jitter: 0.026, packet loss: 0.000%.
Timestamp: Wed Apr 21 17:10:14 2021, vdom root, health-check ping, interface: R150, status: up, latency: 0.083, jitter: 0.026, packet loss: 0.000%.
Timestamp: Wed Apr 21 17:10:14 2021, vdom root, health-check ping, interface: R150, status: up, latency: 0.084, jitter: 0.026, packet loss: 0.000%.

To check Application Control used in SD-WAN and the matching IP addresses:

FGT # diagnose sys sdwan internet-service-app-ctrl-list
Gmail(15817 4294836957): 64.233.191.19 6 443 Thu Apr 22 10:10:34 2021
Gmail(15817 4294836957): 142.250.128.83 6 443 Thu Apr 22 10:06:47 2021
Facebook(15832 4294836806): 69.171.250.35 6 443 Thu Apr 22 10:12:00 2021
Amazon(16492 4294836342): 3.226.60.231 6 443 Thu Apr 22 10:10:57 2021
Amazon(16492 4294836342): 52.46.135.211 6 443 Thu Apr 22 10:10:58 2021
Amazon(16492 4294836342): 52.46.141.85 6 443 Thu Apr 22 10:09:58 2021
Amazon(16492 4294836342): 52.46.155.13 6 443 Thu Apr 22 10:10:58 2021
Amazon(16492 4294836342): 54.82.242.32 6 443 Thu Apr 22 10:10:59 2021
YouTube(31077 4294838537): 108.177.121.119 6 443 Thu Apr 22 10:08:24 2021
YouTube(31077 4294838537): 142.250.136.119 6 443 Thu Apr 22 10:02:02 2021
YouTube(31077 4294838537): 142.250.136.132 6 443 Thu Apr 22 10:08:16 2021
YouTube(31077 4294838537): 142.250.148.100 6 443 Thu Apr 22 10:07:28 2021
YouTube(31077 4294838537): 142.250.148.132 6 443 Thu Apr 22 10:10:32 2021
YouTube(31077 4294838537): 172.253.119.91 6 443 Thu Apr 22 10:02:01 2021
YouTube(31077 4294838537): 184.150.64.211 6 443 Thu Apr 22 10:04:36 2021
YouTube(31077 4294838537): 184.150.168.175 6 443 Thu Apr 22 10:02:26 2021
YouTube(31077 4294838537): 184.150.168.211 6 443 Thu Apr 22 10:02:26 2021
YouTube(31077 4294838537): 209.85.145.190 6 443 Thu Apr 22 10:10:36 2021
YouTube(31077 4294838537): 209.85.200.132 6 443 Thu Apr 22 10:02:03 2021

To check the dynamic tunnel status:

diagnose sys link-monitor interface <name> <name>_0

For example:
diagnose sys link-monitor interface vd2-2
Interface(vd2-2): state(up, since Tue Jun 15 12:31:28 2021), bandwidth(up:1299bps, down:0bps), session count(IPv4:2, IPv6:0), tx(2409919 bytes), rx(5292290 bytes), latency (0.03), jitter(0.00), packet-loss(0.00).

diagnose sys link-monitor interface vd2-2 vd2-2_0
Interface(vd2-2_0): state(up, since Tue Jun 15 15:21:52 2021), bandwidth(up:640bps, down:0bps), session count(IPv4:0, IPv6:0), tx(102242 bytes), rx(16388 bytes), latency (0.03), jitter(0.00), packet-loss(0.00).

To check BGP learned routes and determine if they are used in SD-WAN service:

FGT # get router info bgp network 10.100.11.0/24
VRF 0 BGP routing table entry for 10.100.11.0/24
Paths: (2 available, best #2, table Default-IP-Routing-Table)
 Advertised to non peer-group peers:
 10.100.1.1
 Original VRF 0
 20 10
 10.100.1.1 from 10.100.1.1 (5.5.5.5)
 Origin incomplete metric 0, route tag 15, localpref 100, valid, external, best
 Community: 30:5
 Advertised Path ID: 2
 Last update: Thu Apr 22 10:27:27 2021

 Original VRF 0
 20 10
 10.100.1.5 from 10.100.1.5 (6.6.6.6)
 Origin incomplete metric 0, route tag 15, localpref 100, valid, external, best
 Community: 30:5
 Advertised Path ID: 1
 Last update: Thu Apr 22 10:25:50 2021

FGT # diagnose sys sdwan route-tag-list
Route-tag: 15, address: v4(1), v6(0) Last write/now: 6543391 6566007
 service(1), last read route-tag 15 at 6543420
Prefix(24): Address list(1):
 10.100.11.0-10.100.11.255 oif: 50 48

FGT # diagnose firewall proute list
list route policy info(vf=root):
id=2133196801(0x7f260001) vwl_service=1(DataCenter) vwl_mbr_seq=1 2 dscp_tag=0xff 0xff
flags=0x40 order-addr tos=0x00 tos_mask=0x00 protocol=0 sport=0-65535 iif=0 dport=1-65535
 oif=48 (R150) oif=50 (R160)
destination(1): 10.100.11.0-10.100.11.255
source wildcard(1): 0.0.0.0/0.0.0.0
hit_count=0 last_used=2021-04-22 10:25:10

SD-WAN bandwidth monitoring service

The bandwidth measuring tool is used to detect true upload and download speeds. Bandwidth tests can be run on demand or automated using a script, and can be useful when configuring SD-WAN SLA and rules to balance SD-WAN traffic.

The speed test tool requires a valid SD-WAN Bandwidth Monitoring Service license.
The speed test tool is compatible with iperf3.6 with SSL support. It can test the upload bandwidth to the FortiGate Cloud speed test service. It can initiate the server connection and send download requests to the server. The tool can be run up to 10 times a day.

FortiGate downloads the speed test server list. The list expires after 24 hours. One of the speed test servers is selected, based on user input. The speed test runs, testing upload and download speeds. The test results are shown in the command terminal.

To download the speed test server list:

```bash
# execute speed-test-server download
Download completed.
```

To check the speed test server list:

```bash
# execute speed-test-server list
AWS_West valid
  Host: 34.210.67.183 5204 fortinet
  Host: 34.210.67.183 5205 fortinet
  Host: 34.210.67.183 5206 fortinet
  Host: 34.210.67.183 5207 fortinet
Google_West valid
  Host: 35.197.55.210 5204 fortinet
  Host: 35.197.55.210 5205 fortinet
  Host: 35.197.55.210 5206 fortinet
  Host: 35.197.55.210 5207 fortinet
  Host: 35.230.2.124 5204 fortinet
  Host: 35.230.2.124 5205 fortinet
  Host: 35.230.2.124 5206 fortinet
  Host: 35.230.2.124 5207 fortinet
  Host: 35.197.18.234 5204 fortinet
  Host: 35.197.18.234 5205 fortinet
  Host: 35.197.18.234 5206 fortinet
  Host: 35.197.18.234 5207 fortinet
```

To run the speed test:

You can run the speed test without specifying a server. The system will automatically choose one server from the list and run the speed test.

```bash
# execute speed-test auto
The license is valid to run speed test.
Speed test quota for 2/1 is 9
current vdom=root
Run in uploading mode.
Connecting to host 35.230.2.124, port 5206
[ 16] local 172.16.78.185 port 2475 connected to 35.230.2.124 port 5206
[ ID] Interval Transfer Bitrate Retr Cwnd
[ 16] 0.00-1.01 sec 11.0 MBytes 91.4 Mbits/sec 0 486 KBytes
[ 16] 1.01-2.00 sec 11.6 MBytes 98.4 Mbits/sec 0 790 KBytes
[ 16] 2.00-3.01 sec 11.0 MBytes 91.6 Mbits/sec 15 543 KBytes
[ 16] 3.01-4.01 sec 11.2 MBytes 94.2 Mbits/sec 1 421 KBytes
[ 16] 4.01-5.01 sec 11.2 MBytes 93.5 Mbits/sec 0 461 KBytes
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
[ ID] Interval Transfer Bitrate Retr
```
Speed Test Results

Speed Test Done.
Run in reverse downloading mode!

Connecting to host 35.230.2.124, port 5206
Reverse mode, remote host 35.230.2.124 is sending

<table>
<thead>
<tr>
<th>ID</th>
<th>Interval</th>
<th>Transfer</th>
<th>Bitrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>0.00-5.01 sec</td>
<td>56.1 MBytes</td>
<td>93.8 Mbits/sec</td>
</tr>
<tr>
<td>16</td>
<td>0.00-5.06 sec</td>
<td>55.8 MBytes</td>
<td>92.6 Mbits/sec</td>
</tr>
</tbody>
</table>

speed test Done

To run the speed test on a server farm or data center:

```
# execute speed-test auto AWS_West
The license is valid to run speed test.
Speed test quota for 2/1 is 8
current vdom=root
Run in uploading mode.
Connecting to host 34.210.67.183, port 5205
```

To run the speed test on a local interface when there are multiple valid routes:

```
# execute speed-test port1 Google_West
The license is valid to run speed test.
Speed test quota for 2/1 is 6
bind to local ip 172.16.78.202
current vdom=root
Specified interface port1 does not comply with default outgoing interface port2 in routing table!
Force to use the specified interface!
Run in uploading mode.
Connecting to host 35.197.18.234, port 5205
```

<table>
<thead>
<tr>
<th>ID</th>
<th>Interval</th>
<th>Transfer</th>
<th>Bitrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>0.00-1.01 sec</td>
<td>10.7 MBytes</td>
<td>89.0 Mbits/sec</td>
</tr>
<tr>
<td>11</td>
<td>1.01-2.01 sec</td>
<td>10.5 MBytes</td>
<td>88.5 Mbits/sec</td>
</tr>
<tr>
<td>11</td>
<td>2.01-3.01 sec</td>
<td>11.3 MBytes</td>
<td>94.5 Mbits/sec</td>
</tr>
<tr>
<td>11</td>
<td>3.01-4.01 sec</td>
<td>11.2 MBytes</td>
<td>94.3 Mbits/sec</td>
</tr>
<tr>
<td>11</td>
<td>4.01-5.00 sec</td>
<td>11.3 MBytes</td>
<td>95.2 Mbits/sec</td>
</tr>
</tbody>
</table>

speed test Done.
Run in reverse downloading mode!
Connecting to host 35.197.18.234, port 5205
Reverse mode, remote host 35.197.18.234 is sending
[11] local 172.16.78.202 port 20853 connected to 35.197.18.234 port 5205
[ID] Interval Transfer Bitrate
[11] 0.00-1.00 sec 10.9 MBytes 91.1 Mbits/sec
[11] 1.00-2.00 sec 11.2 MBytes 94.0 Mbits/sec
[11] 2.00-3.00 sec 11.2 MBytes 94.0 Mbits/sec
[11] 3.00-4.00 sec 11.2 MBytes 94.0 Mbits/sec
[11] 4.00-5.00 sec 11.2 MBytes 94.0 Mbits/sec
- -
[ID] Interval Transfer Bitrate Retr
[11] 0.00-5.00 sec 57.4 MBytes 95.8 Mbits/sec 33 sender
[11] 0.00-5.00 sec 55.7 MBytes 93.4 Mbits/sec receiver

speed test Done.

To add a script to run a speed test automatically once every 24 hours:

```bash
config system auto-script
  edit "speedtest"
    set interval 86400
    set repeat 0
    set start auto
    set script "
execute speed-test-server download
execute speed-test"
  next
end

To view the results of the speed test script:

execute auto-script result speedtest
```

Using SNMP to monitor health check

You can monitor SD-WAN health check related statistics using SNMP. The MIB file can be downloaded by going to System > SNMP and clicking Download FortiGate MIB File.

The following OIDs can be monitored:

<table>
<thead>
<tr>
<th>Name</th>
<th>OID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fgVWLHealthCheckLinkNumber</td>
<td>.1.3.6.1.4.1.12356.101.4.9.1</td>
<td>The number of health check links in fgVWLHealthCheckLinkTable</td>
</tr>
<tr>
<td>fgVWLHealthCheckLinkTable</td>
<td>.1.3.6.1.4.1.12356.101.4.9.2</td>
<td>SD-WAN health check statistics table. This table has a dependent expansion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>relationship with fgVdTable. Only health checks with a configured member</td>
</tr>
<tr>
<td></td>
<td></td>
<td>link are present in this table.</td>
</tr>
<tr>
<td>Name</td>
<td>OID</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>fgVWLHealthCheckLinkTableEntry</td>
<td>.1.3.6.1.4.1.12356.101.4.9.2.1.1</td>
<td>SD-WAN health check statistics on a virtual domain.</td>
</tr>
<tr>
<td>fgVWLHealthCheckLinkID</td>
<td>.1.3.6.1.4.1.12356.101.4.9.2.1.1.1</td>
<td>SD-WAN health check link ID. Only health checks with configured member link are present in this table. Virtual-wan-link health check link IDs are only unique within a virtual domain.</td>
</tr>
<tr>
<td>fgVWLHealthCheckLinkName</td>
<td>.1.3.6.1.4.1.12356.101.4.9.2.1.2.2</td>
<td>Health check name.</td>
</tr>
<tr>
<td>fgVWLHealthCheckLinkSeq</td>
<td>.1.3.6.1.4.1.12356.101.4.9.2.1.3</td>
<td>SD-WAN member link sequence.</td>
</tr>
<tr>
<td>fgVWLHealthCheckLinkState</td>
<td>.1.3.6.1.4.1.12356.101.4.9.2.1.4</td>
<td>Health check state on a specific member link.</td>
</tr>
<tr>
<td>fgVWLHealthCheckLinkLatency</td>
<td>.1.3.6.1.4.1.12356.101.4.9.2.1.5</td>
<td>The average latency of a health check on a specific member link within last 30 probes, in float number.</td>
</tr>
<tr>
<td>fgVWLHealthCheckLinkJitter</td>
<td>.1.3.6.1.4.1.12356.101.4.9.2.1.6</td>
<td>The average jitter of a health check on a specific member link within last 30 probes, in float number.</td>
</tr>
<tr>
<td>fgVWLHealthCheckLinkPacketSend</td>
<td>.1.3.6.1.4.1.12356.101.4.9.2.1.7</td>
<td>The total number of packets sent by a health check on a specific member link.</td>
</tr>
<tr>
<td>fgVWLHealthCheckLinkPacketRecv</td>
<td>.1.3.6.1.4.1.12356.101.4.9.2.1.8</td>
<td>The total number of packets received by a health check on a specific member link.</td>
</tr>
<tr>
<td>fgVWLHealthCheckLinkPacketLoss</td>
<td>.1.3.6.1.4.1.12356.101.4.9.2.1.9</td>
<td>The packet loss percentage of a health check on a specific member link within last 30 probes, in float number.</td>
</tr>
<tr>
<td>fgVWLHealthCheckLinkVdom</td>
<td>.1.3.6.1.4.1.12356.101.4.9.2.1.10</td>
<td>The VDOM that the link monitor entry exists in. This name corresponds to the fgVdEntName used in fgVdTable.</td>
</tr>
<tr>
<td>fgVWLHealthCheckLinkBandwidthIn</td>
<td>.1.3.6.1.4.1.12356.101.4.9.2.1.11</td>
<td>The available bandwidth of incoming traffic detected by a health check on a specific member link, in Mbps,</td>
</tr>
</tbody>
</table>
Example

This example shows a SD-WAN health check configuration and its collected statistics.

To configure the SD-WAN health check:

```plaintext
config system sdwan
    set status enable
config zone
    edit "virtual-wan-link"
        next
end
config members
    edit 1
        set interface "port1"
        set gateway 192.168.2.1
    next
    edit 2
        set interface "MPLS"
        set zone "SD-Zone2"
        set cost 20
    next
    edit 3
        set interface "port2"
    next
end
config health-check
    edit "pingserver"
        set server "8.8.8.8"
        set sla-fail-log-period 10
        set sla-pass-log-period 20
        set members 2 1 3
    config sla
        edit 1
            set link-cost-factor jitter packet-loss
            set packetloss-threshold 2
        next
    next
```
The collected statistics:

<table>
<thead>
<tr>
<th>Metric</th>
<th>.1.3.6.1.4.1.12356.101.4.9.2.1.1</th>
<th>.1.3.6.1.4.1.12356.101.4.9.2.1.2</th>
<th>.1.3.6.1.4.1.12356.101.4.9.2.1.3</th>
<th>.1.3.6.1.4.1.12356.101.4.9.2.1.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>fgVWLHealthCheckLinkID</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>fgVWLHealthCheckLinkName</td>
<td>pingserver</td>
<td>pingserver</td>
<td>pingserver</td>
<td></td>
</tr>
<tr>
<td>fgVWLHealthCheckLinkSeq</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>fgVWLHealthCheckLinkState</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>fgVWLHealthCheckLinkLatency</td>
<td>39.302</td>
<td>43.124</td>
<td>44.348</td>
<td></td>
</tr>
<tr>
<td>fgVWLHealthCheckLinkJitter</td>
<td>4.346</td>
<td>3.951</td>
<td>5.05</td>
<td></td>
</tr>
<tr>
<td>fgVWLHealthCheckLinkPacketSend</td>
<td>3657689</td>
<td>3657689</td>
<td>3657689</td>
<td></td>
</tr>
<tr>
<td>fgVWLHealthCheckLinkPacketRecv</td>
<td>3196258</td>
<td>3220258</td>
<td>3219466</td>
<td></td>
</tr>
<tr>
<td>fgVWLHealthCheckLinkPacketLoss</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>fgVWLHealthCheckLinkVdom</td>
<td>root</td>
<td>root</td>
<td>root</td>
<td></td>
</tr>
<tr>
<td>fgVWLHealthCheckLinkBandwidthIn</td>
<td>9999963</td>
<td>9999937</td>
<td>9999999</td>
<td></td>
</tr>
<tr>
<td>fgVWLHealthCheckLinkBandwidthOut</td>
<td>9999981</td>
<td>9999953</td>
<td>9999998</td>
<td></td>
</tr>
<tr>
<td>fgVWLHealthCheckLinkBandwidthBi</td>
<td>19999944</td>
<td>19999890</td>
<td>19999997</td>
<td></td>
</tr>
<tr>
<td>fgVWLHealthCheckLinkIfName</td>
<td>MPLS</td>
<td>port1</td>
<td>port2</td>
<td></td>
</tr>
</tbody>
</table>
Policy and Objects

This section contains topics on configuring policies and traffic shaping:

- Policies on page 759
- Objects on page 868
- Protocol options on page 916
- Traffic shaping on page 918
- Zero Trust Network Access on page 970

Policies

The firewall policy is the axis around which most features of the FortiGate revolve. Many firewall settings end up relating to or being associated with the firewall policies and the traffic they govern. Any traffic going through a FortiGate has to be associated with a policy. These policies are essentially discrete compartmentalized sets of instructions that control the traffic flow going through the firewall. These instructions control where the traffic goes, how it is processed, if it is processed, and whether or not it is allowed to pass through the FortiGate.

When the firewall receives a connection packet, it analyzes the source address, destination address, and service (by port number). It also registers the incoming interface, the outgoing interface it needs to use, and the time of day. Using this information, the FortiGate firewall attempts to locate a security policy that matches the packet. If a policy matches the parameters, then the FortiGate takes the required action for that policy. If it is Accept, the traffic is allowed to proceed to the next step. If the action is Deny or a match cannot be found, the traffic is not allowed to proceed.

The two basic actions at the initial connection are either Accept or Deny:

- If the action is Accept, the policy permits communication sessions. There may be other packet processing instructions, such as requiring authentication to use the policy or restrictions on the source and destination of the traffic.
- If the action is Deny, the policy blocks communication sessions, and you can optionally log the denied traffic. If no security policy matches the traffic, the packets are dropped. A Deny security policy is needed when it is required to log the denied traffic, also called violation traffic.

One other action can be associated with the policy:

- **IPsec**: this is an Accept action that is specifically for IPsec VPNs.

| 🧠 | Each field in a firewall policy that accepts multiple inputs, such as srcaddr and dstaddr, can accept as many inputs as there are unique objects created. The maximum number of objects depends on the model. See the Maximum Values Table for more details. |

The following topics provide information on the available types of policies and configuration instructions:

- Firewall policy on page 760
- NGFW policy on page 773
- Local-in policy on page 789
Firewall policy

The firewall policy is the axis around which most of the other features of the FortiGate firewall revolve. A large portion of the settings in the firewall at some point will end up relating to or being associated with the firewall policies and the traffic that they govern. Any traffic going through a FortiGate unit has to be associated with a policy. These policies are essentially discrete compartmentalized sets of instructions that control the traffic flow going through the firewall. These instructions control where the traffic goes, how it's processed, if it's processed, and even whether or not it's allowed to pass through the FortiGate.

The following topics provide information on the firewall policy and configuration:

- Firewall policy parameters on page 760
- Configurations in the GUI on page 761
- Configurations in the CLI on page 766
- Policy views on page 771
- Policy lookup on page 773

Firewall policy parameters

For traffic to flow through the FortiGate firewall, there must be a policy that matches its parameters:

- Incoming interface(s)
- Outgoing interface(s)
- Source address(es)
- User(s) identity
- Destination address(es)
- Internet service(s)
- Schedule
- Service

Traffic parameters are checked against the configured policies for a match. If the parameters do not match any configured policies, the traffic is denied.

Traffic flow initiated from each direction requires a policy, that is, if sessions can be initiated from both directions, each direction requires a policy.

Just because packets can go from point A to point B on port X does not mean that the traffic can flow from point B to point A on port X. A policy must be configured for each direction.

When designing a policy, there is often reference to the traffic flow, but most communication is two-way so trying to determine the direction of the flow might be confusing. If traffic is HTTP web traffic, the user sends a request to the
website, but most of the traffic flow will be coming from the website to the user or in both directions? For the purposes of determining the direction for a policy, the important factor is the direction of the initiating communication. The user is sending a request to the website, so this is the initial communication; the website is responding so the traffic is from the user's network to the Internet.

FortiOS does not perform a reverse-path check on reply traffic that matches an allowed session based on the IP tuple. The request traffic can be sent on one interface and the reply traffic could return on another interface.

Configurations in the GUI

Firewall policies can be created in the GUI by configuring the necessary parameters.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming interface(s)</td>
<td>This is the interface or interfaces by which the traffic is first connected to the FortiGate unit. The exception being traffic that FortiGate generates itself. This is not limited to the physical Ethernet ports found on the device. The incoming interface can also be a logical or virtual interface such as a VPN tunnel, a Virtual WAN link, or a wireless interface.</td>
</tr>
<tr>
<td>Outgoing interface(s)</td>
<td>This is the interface or interfaces used by traffic leaving a port once it has been processed by the firewall. Similar to incoming interfaces, it is not limited to only physical interfaces.</td>
</tr>
<tr>
<td>Source address(es)</td>
<td>The addresses that a policy can receive traffic from can be wide open or tightly controlled. For a public web server that the world at large should be able to access, the best choice will be all. If the destination is a private web server that only the branch offices of a company should be able to access, or a list of internal computers that are the only ones allowed to access an external resource, then a group of preconfigured addresses is the better strategy.</td>
</tr>
<tr>
<td>User(s) identity</td>
<td>This parameter is based on a user identity that can be from a number of authentication authorities. It will be an account or group that has been set up in advance that can be selected from the drop down menu. The exception to this is the feature that allows the importing of LDAP Users. When the feature is used, a small wizard window will appear to guide the user through the setup. The caveat is that the LDAP server object in the User & Authentication > LDAP Servers section has to be already configured to allow the use of this import feature.</td>
</tr>
<tr>
<td>Destination address(es)</td>
<td>In the same way that the source address may need to be limited, the destination address can be used as a traffic filter. When the traffic is destined for internal resources, the specific address of the resource can be defined to better protect the other resources on the network. One of the specialized destination address options is to use a Virtual IP address. If the destination address doesn’t need to be internal, you can define policies that are only for connecting to specific addresses on the Internet.</td>
</tr>
<tr>
<td>Internet service(s)</td>
<td>In this context, an Internet service is a combination of one or more addresses and one or more services associated with a service found on the Internet such as an update service for software.</td>
</tr>
</tbody>
</table>
Schedule

The time frame that is applied to the policy. This can be something as simple as a time range that the sessions are allowed to start, such as between 8:00 am and 5:00 pm. Something more complex like business hours that include a break for lunch and time of the session’s initiation may need a schedule group because it will require multiple time ranges to make up the schedule.

Service

The services chosen represent the TCP/IP suite port numbers that will most commonly be used to transport the named protocols or groups of protocols. This is different than Application Control which looks more closely at the packets to determine the actual protocol used to create them.

A case where either side can initiate the communication, like between two internal interfaces on the FortiGate unit, would be a more likely situation to require a policy for each direction.

Enabling advanced policy options in the GUI

Advanced policy options can be enabled so that you can configure the options in the GUI.

To enable advanced policy options:

```
config system settings
   set gui-advanced-policy enable
end
```

Advanced policy options are now available when creating or editing a policy in the GUI:

To enable configuring TCP sessions without SYN:

```
config system settings
   set tcp-session-without-syn enable
end
```

TCP sessions without SYN can now be configured when creating or editing a policy in the GUI:
Add Policy change summary and Policy expiration to Workflow Management

Two options, Policy change summary and Policy expiration, are included in Workflow Management. Policy change summary enforces an audit trail for changes to firewall policies. Policy expiration allows administrators to set a date for the firewall policy to be disabled.

There are three states for the Policy change summary:
- **Disable**: users will not be prompted to add a summary when editing a policy.
- **Required**: the Policy change summary will be enabled and will require users to add a summary when editing or creating a firewall policy.
- **Optional**: the Policy change summary will be enabled but users can leave the summary empty, if preferred, when editing or creating a firewall policy.

There are three states for Policy expiration:
- **Disable**: the firewall policy will not expire. This is the default setting for Policy expiration.
- **Default**: the firewall policy will expire after the default number of days.
- **Specify**: the firewall policy will expire at a set date and time.

The default value for Policy expiration is 30 days. This number can be changed in the CLI or in System > Settings in the GUI to any value between zero and 365 days. If the default value is set to zero, the Default state will disable the Policy expiration.

To configure the firewall policy change summary and default expiration in the GUI:

1. Go to System > Feature Visibility.
2. Enable Workflow Management.
3. Click Apply.
4. Go to System > Settings.
5. In the Workflow Management section, set Policy change summary to Required. Policies expire by default is enabled by default with an Expire after value of 30.
To configure firewall policy expiration in the GUI:

1. Go to Policy & Objects > Firewall Policy and click Create New.
2. Name the policy and configure the necessary parameters.
3. Set Policy expiration to Specify. The Expiration date fields appears with the current date and time.
4. Select the date and time for the policy to expire from the Expiration date fields.
5. Click OK. The Workflow Management - Summarize Changes pane opens.
Policy and Objects

6. In the Change summary field, enter details about the changes made to the policy. These details can be referred to later for auditing purposes.

7. Click OK.

To configure the firewall policy change summary in the CLI:

```
config system settings
    set gui-enforce-change-summary {disable | require | optional}
end
```

To configure the policy expiration default value in the CLI:

```
config system settings
    set default-policy-expiry-days <integer>
end
```

To configure firewall policy expiration in the CLI:

```
config firewall policy
    edit <id>
        set policy-expiry {enable | disable}
        set policy-expiry-date <YYYY-MM-DD HH:MM:SS>
    next
end
```

Policy change summaries are used to track changes made to a firewall policy. The Audit trail allow users to review the policy change summaries, including the date and time of the change and which user made the change.

To review the audit trail in the GUI:

1. Go to Policy & Objects > Firewall Policy.
2. Select the policy you want to review and click Edit.
3. In the right-side banner, click Audit Trail. The Audit trail for Firewall Policy pane opens and displays the policy change summaries for the selected policy.

4. Select an entry to review the details of the change made.
5. When you are done reviewing the Audit Trail, click Close.
6. Click Cancel to exit the Edit Policy page.

Configurations in the CLI

Firewall policies can be created in the CLI by configuring the necessary parameters. See Configurations in the GUI on page 761 for more information on the various parameters.
Policy and Objects

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>srcintf</td>
<td>Incoming (ingress) interface.</td>
</tr>
<tr>
<td>dstintf</td>
<td>Outgoing (egress) interface.</td>
</tr>
<tr>
<td>srcaddr</td>
<td>Source IPv4 address and address group names.</td>
</tr>
<tr>
<td>dstaddr</td>
<td>Destination IPv4 address and address group names.</td>
</tr>
<tr>
<td>internet-service</td>
<td>Enable/disable use of Internet Services for this policy. If enabled,</td>
</tr>
<tr>
<td></td>
<td>destination address and service are not used.</td>
</tr>
<tr>
<td>schedule</td>
<td>Schedule name.</td>
</tr>
<tr>
<td>service</td>
<td>Service and service group names.</td>
</tr>
<tr>
<td>anti-replay</td>
<td>Enable/disable checking of TCP flags per policy.</td>
</tr>
<tr>
<td>match-vip</td>
<td>Enable/disable matching of VIPs when used in a policy with a deny action.</td>
</tr>
<tr>
<td>auto-asic-offload</td>
<td>Enable/disable hardware acceleration. Available on select FortiGate</td>
</tr>
<tr>
<td></td>
<td>models with Secure Processing Unit (SPU) hardware only.</td>
</tr>
<tr>
<td>tcp-mss-sender</td>
<td>Sender TCP maximum segment size (MSS).</td>
</tr>
<tr>
<td>tcp-mss-receiver</td>
<td>Receiver TCP maximum segment size (MSS).</td>
</tr>
<tr>
<td>session-ttl</td>
<td>Time-to-live (TTL) in seconds for session accepted by this policy.</td>
</tr>
</tbody>
</table>

Firewall anti-replay option per policy

When the global anti-replay option is disabled, the FortiGate does not check TCP flags in packets. The per policy anti-replay option overrides the global setting. This allows you to control whether or not TCP flags are checked per policy.

To enable the anti-replay option so TCP flags are checked using the CLI:

```config firewall policy
edit 1
  set name "policyid-1"
  set srcintf "wan2"
  set dstintf "wan1"
  set srcaddr "all"
  set dstaddr "all"
  set action accept
  set schedule "always"
  set service "ALL"
  set anti-replay enable
  set logtraffic all
  set nat enable
next
end
```

Deny matching with a policy with a virtual IP applied

Preventing hosts with specific source addresses from accessing a server behind the FortiGate may be required in some cases. For this scenario, you should have previously configured a firewall policy with a virtual IP (VIP) object applied to it.
Policy and Objects

to allow such access. See Destination NAT on page 816 for details.

When denying traffic destined for a typical firewall policy without a VIP applied, you would simply configure a new firewall policy with an action of deny and with specific source addresses above the firewall policy that you want to prevent these hosts from accessing. However, the FortiGate matches firewall policies with VIPs applied differently than typical firewall policies. Policies with VIPs applied have priority over typical firewall policies.

Therefore, to block specific source traffic destined for a firewall policy specified with an action of accept and with a VIP applied, you should configure set match-vip enable on the firewall policy with a deny action that has been configured to match traffic before the firewall policy with the VIP applied.

If the policy action is set to accept, match-vip cannot be enabled.

To block VIP traffic in a deny policy:

```
cfg firewall policy
  ed 1
    set name "deny-policy-1"
    set srcintf "wan1"
    set dstintf "lan1"
    set srcaddr "src-hosts-to-deny-access"
    set dstaddr "all"
    set action "deny"
    set schedule "always"
    set service "all"
    set match-vip enable
  next
  ed 2
    set name "vip-policy-1"
    set srcintf "wan1"
    set dstintf "lan1"
    set srcaddr "all"
    set dstaddr "vip-object-1"
    set action "accept"
    set schedule "always"
    set service "ALL"
  next
end
```

Alternatively, to block access to a firewall policy with a VIP applied, you can configure a new VIP object configured with set src-filter <range>. Configure a new firewall policy with a deny action and with this new VIP applied, and then configure this policy to match traffic before the firewall policy with the same VIP applied with an action of accept. In this case, the firewall policy can simply have set match-vip disable, which is the default setting in a new firewall policy.

To specify a VIP with source addresses specified with a deny policy:

```
cfg firewall vip
  ed "vip-with-srcaddr-to-deny"
    set extip "10.1.100.199"
    set extintf "wan1"
    set mappedip "172.16.200.55"
```
```
set src-filter "1.1.1.1/24"
next
end
```

```
config firewall policy
edit 3
set name "deny-policy-3"
set srcintf "wan1"
set dstintf "lan1"
set srcaddr "all"
set dstaddr "vip-with-srcaddr-to-deny"
set action "deny"
set match-vip disable
set schedule "always"
set service "ALL"
next
edit 2
set name "vip-policy-1"
set srcintf "wan1"
set dstintf "lan1"
set srcaddr "all"
set dstaddr "vip-object-1"
set action "accept"
set match-vip disable
set schedule "always"
set service "ALL"
next
end
```

Hardware acceleration

Hardware acceleration is supported on select FortiGate devices and is enabled by default on all firewall policies to ensure optimal performance when processing network traffic traversing the FortiGate. See the Hardware Acceleration Reference Manual for details.

Typically, hardware acceleration on a specific firewall policy is disabled for one of two purposes:

- To allow CLI commands such as the packet sniffer and debug flow to display all traffic matching the policy since traffic offloaded by SPU hardware on a FortiGate device is not visible by those CLI tools.
- To troubleshoot any possible issues arising by using hardware acceleration.

To disable hardware acceleration in an IPv4 firewall policy:

```
config firewall policy
edit 1
    set auto-asic-offload disable
next
end
```

To disable hardware acceleration in an IPv6 firewall policy:

```
config firewall policy6
edit 1
    set auto-asic-offload disable
next
end
```
To disable hardware acceleration in a multicast firewall policy:

```bash
config firewall multicast-policy
    edit 1
        set auto-asic-offload disable
    next
end
```

TCP Maximum Segment Size (MSS)

The TCP maximum segment size (MSS) is the maximum amount of data that can be sent in a TCP segment. The MSS is the MTU size of the interface minus the 20 byte IP header and 20 byte TCP header. By reducing the TCP MSS, you can effectively reduce the MTU size of the packet.

The TCP MSS can be configured in a firewall policy, or directly on an interface. See Interface MTU packet size on page 150 for details on configuring TCP MSS directly on an interface.

To configure TCP MSS in a firewall policy:

```bash
config firewall policy
    edit <policy ID>
        set srcintf "internal"
        set dstintf "wan1"
        set srcaddr "10.10.10.6"
        set dstaddr "all"
        set schedule "always"
        set service "ALL"
        set tcp-mss-sender 1448
        set tcp-mss-receiver 1448
    next
end
```

Adjusting session time-to-live (TTL)

A session is a communication channel between two devices or applications across the network. Sessions allow FortiOS to inspect and act on a sequential group of packets in a session all at once instead of inspecting each packet individually. Each session has an entry in the session table that includes important information about the session.

The session time-to-live (TTL) parameter determines how long a session of a particular protocol such as TCP, UDP, or ICMP remains in the session table. To ensure proper operation of some devices or applications, the session TTL parameter may need to be increased or decreased to allow sessions to remain active in the session table for a longer or shorter duration, respectively.

To configure a modified session TTL in a firewall policy:

```bash
config firewall policy
    edit <policy ID>
        set srcintf "internal"
        set dstintf "wan1"
        set srcaddr "10.10.10.6"
        set dstaddr "all"
        set schedule "always"
        set service "ALL"
        set session-ttl 1800
```
Policy and Objects

The session TTL can be set to zero or never to ensure a session never times out. See No session timeout on page 860 for details.

Session TTL should only be set to zero or never after careful consideration of:

- The connected device’s or application’s requirements for sessions to always stay alive
- The expectation that a connected device or application will use the same session determined by traffic using a fixed source port, fixed destination port, fixed source IP address, and fixed destination IP address.

When session TTL is set to zero or never, then sessions will not be cleared from the session table or expire after a specified time unless the CLI commands `diagnose system session filter <filter>` and `diagnose system session clear` are used. If this setting is used in the case when traffic through a firewall policy can generate numerous unique sessions, then this may have unintended consequences to the FortiGate’s memory usage and performance due to the session table constantly growing and not clearing out idle sessions.

To disable session TTL in a firewall policy:

```
config firewall policy
edit <policy ID>
  set srcintf "internal"
  set dstintf "wan1"
  set srcaddr "10.10.10.6"
  set dstaddr "all"
  set schedule "always"
  set service "ALL"
  set session-ttl never
next
end
```

Policy views

In Policy & Objects policy list pages, there are two policy views: Interface Pair View and By Sequence view.

Interface Pair View displays the policies in the order that they are checked for matching traffic, grouped by the pairs of incoming and outgoing interfaces in collapsible sections.
Policy and Objects

By Sequence displays policies in the order that they are checked for matching traffic without any grouping.

The default display is Interface Pair View. You can switch between the two views except if any or multiple interfaces are applied in the policy. The FortiGate automatically changes the view on the policy list page to By Sequence whenever there is a policy containing any or multiple interfaces as the Source or Destination interface. If the Interface Pair View is grayed out, it is likely that one or more policies have used the any or multiple interfaces.

You can export the current view to CSV and JSON formats by clicking Export and selecting CSV or JSON. The file is automatically downloaded.
Policy lookup

Firewall policy lookup is based on the `Source_interfaces/Protocol(Source_Address)/Destination_Address` that matches the `source-port` and `dst-port` of the protocol. Use this tool to find out which policy matches specific traffic from a number of policies. After completing the lookup, the matching firewall policy is highlighted on the policy list page.

The `Policy Lookup` tool has the following requirements:

- Transparent mode does not support policy lookup function.
- When executing the policy lookup, you need to confirm whether the relevant route required for the policy work already exists.

Sample configuration

This example uses the TCP protocol to show how policy lookup works:

1. On a `Policy & Objects` policy list page, click `Policy Lookup` and enter the traffic parameters.

2. Click Search to display the policy lookup results.

NGFW policy

Profile-based next-generation firewall (NGFW) mode is the traditional mode where you create a profile (antivirus, web filter, and so on) and then apply the profile to a policy.

In policy-based NGFW mode, you allow applications and URL categories to be used directly in security policies, without requiring web filter or application control profiles. However, it is possible to select and apply web filter URL categories and groups.
In policy-based mode:

- Central NAT is always enabled. If no Central SNAT policy exists, you must create one. See Central SNAT on page 807 for more information.
- Pre-match rules are defined separately from security policies, and define broader rules, such as SSL inspection and user authentication.
- The IPsec wizard is not supported.

If your FortiGate operates in NAT mode, rather than enabling source NAT in individual NGFW policies, go to Policy & Objects > Central SNAT and add source NAT policies that apply to all matching traffic. In many cases, you may only need one SNAT policy for each interface pair.

The NGFW mode is set per VDOM, and it is only available when the VDOM inspection mode is flow-based. You can operate your entire FortiGate or individual VDOMs in NGFW policy mode. The application default port can be set as a service port in the NGFW mode using the default-app-port-as-service option.

In NGFW mode, administrators can configure a security policy in learn mode to monitor traffic. See Learn mode in security policies in NGFW mode on page 785 for more information.

Switching from profile-based to policy-based mode converts your policies to policy-based. To avoid issues, you could create a new VDOM for the policy-based mode. We recommend backing up your configuration before switching modes. See Configuration backups on page 65 for information.

Enabling policy-based NGFW mode

To enable policy-based NGFW mode without VDOMs in the GUI:

1. Go to System > Settings.
2. In NGFW Mode, select Policy-based.
3. Click Apply.

To enable policy-based NGFW mode with VDOMs in the GUI:

1. Go to System > VDOM.
2. Double-click a VDOM to edit the settings.
3. In NGFW Mode, select Policy-based.
4. Click OK.

To enable policy-based NGFW mode without VDOMs in the CLI:

```bash
config system settings
    set ngfw-mode policy-based
end
```

To enable policy-based NGFW mode with VDOMs in the CLI:

```bash
config vdom
    edit <vdom>
        config system settings
            set ngfw-mode policy-based
```
Security and SSL Inspection & Authentication policies

Security policies work with SSL Inspection & Authentication policies to inspect traffic. To allow traffic from a specific user or user group, both Security and SSL Inspection & Authentication policies must be configured. A default SSL Inspection & Authentication policy with the certificate-inspection SSL Inspection profile is preconfigured. Traffic will match the SSL Inspection & Authentication policy first. If the traffic is allowed, packets are sent to the IPS engine for application, URL category, user, and user group match, and then, if enabled, UTM inspection (antivirus, IPS, DLP, and email filter) is performed.

SSL Inspection & Authentication policies are used to pre-match traffic before sending the packets to the IPS engine:

- There are no schedule or action options; traffic matching the policy is always redirected to the IPS engine.
- SSL inspection, formerly configured in the VDOM settings, is configured in an SSL Inspection & Authentication policy.
- Users and user groups that require authentication must be configured in an SSL Inspection & Authentication policy.

Security policies work with SSL Inspection & Authentication policies to inspect traffic:

- Applications and URL categories can be configured directly in the policy.
- Users and user groups that require authentication must also be configured in a security policy.
- The available actions are Accept or Deny.
- The Service option can be used to enforce the standard port for the selected applications.
- UTM inspection is configured in a security policy.
To configure policies for Facebook and Gmail access in the CLI:

1. Configure an SSL Inspection & Authentication policy:

```plaintext
config firewall policy
  edit 1
    set name "Policy-1"
    set srcintf "port18"
    set dstintf "port17"
    set srcaddr "all"
    set dstaddr "all"
    set service "ALL"
    set ssl-ssh-profile "new-deep-inspection"
  set groups "Dev" "HR" "QA" "SYS"
next
end
```

2. Configure security policies:

```plaintext
config firewall security-policy
  edit 2
    set name "allow-QA-Facebook"
    set srcintf "port18"
    set dstintf "port17"
    set srcaddr "all"
    set dstaddr "all"
    set action accept
    set schedule "always"
    set application 15832
    set groups "Dev" "QA"
next
  edit 4
    set name "allow-QA-Email"
    set srcintf "port18"
    set dstintf "port17"
    set srcaddr "all"
    set dstaddr "all"
    set action accept
    set schedule "always"
```
Policy and Objects

set url-category 23
set groups "QA"
end

Logs

In the application control and web filter logs, securityid maps to the security policy ID.

Application control log:

date=2019-06-17 time=16:35:47 logid="1059028704" type="utm" subtype="app-ctrl"
eventtype="signature" level="information" vd="vd1" eventtime=156081457702405829 tz="-0700"
appid=15832 user="Jack" group="QA" srcip=10.1.100.102 dstip=157.240.3.29 srcport=56572
dstport=443 srcintf="port18" srcintfrole="undefined" dstintf="port17"
dstintfrole="undefined" proto=6 service="P2P" direction="incoming" policyid=1
sessionid=42445 appcat="Social.Media" app="Facebook" action="pass"
hostname="external-seal-1.xx.fbcdn.net" incidentserialno=1419629662 url="/" securityid=2 msg="Social.Media,
apprisk="medium" scertcname="*.facebook.com" scertissuer="DigiCert SHA2 High Assurance Server CA"

Web filter log:

date=2019-06-17 time=16:42:41 logid="0317013312" type="utm" subtype="webfilter"
eventtype="ftgd_allow" level="notice" vd="vd1" eventtime=156081496114836 tz="-0700"
policyid=4 sessionid=43201 user="Jack" group="QA" srcip=10.1.100.102 srcport=56668
srcintf="port18" srcintfrole="undefined" dstip=172.217.3.165 dstport=443 dstintf="port17"
dstintfrole="undefined" proto=6 service="HTTPS" hostname="mail.google.com"
action="passthrough" reqtype="direct" url="/" sentbyte=709 rcvdbyte=0 direction="outgoing"
msg="URL belongs to an allowed category in policy" method="domain" cat=23 catdesc="Web-based Email"
securityid=4

Traffic logs:

date=2019-06-17 time=16:35:53 logid="0000000013" type="traffic" subtype="forward"
level="notice" vd="vd1" eventtime=1560815265058557636 tz="-0700"
srcip=10.1.100.102 srcport=56572 srcintf="port18" srcintfrole="undefined" dstip=157.240.3.29 dstport=443
dstintf="port17" dstintfrole="undefined" poluuid="b740d418-8ed3-51e9-5a7b-114e99ab6370"
sessionid=42445 proto=6 action="timeout" user="Jack" group="QA" policyid=1
policytype="consolidated" centralnatid=1 service="HTTPS" dstcountry="United States"
srccountry="Reserved" transdis="snat" transip=172.16.200.2 transport=56572 duration=6
sentbyte=276 rcvdbyte=745 sentpkt=4 rcvdpkt=11 appid=15832 app="Facebook"
appcat="Social.Media" apprisk="medium" utmaction="allow" countapp=1 utmref=65531-294

2: date=2019-06-17 time=16:47:45 logid="0000000013" subtype="forward"
level="notice" vd="vd1" eventtime=1560815265058557636 tz="-0700"
srcip=10.1.100.102 srcport=56668 srcintf="port18" srcintfrole="undefined" dstip=157.240.3.165 dstport=443
dstintf="port17" dstintfrole="undefined" poluuid="b740d418-8ed3-51e9-5a7b-114e99ab6370"
sessionid=43201 proto=6 action="timeout" user="Jack" group="QA" policyid=1
policytype="consolidated" centralnatid=1 service="HTTPS" dstcountry="United States"
srccountry="Reserved" transdis="snat" transip=172.16.200.2 transport=56668 duration=303
sentbyte=406 rcvdbyte=384 sentpkt=4 rcvdpkt=4 appcat="unscanned" utmaction="allow"
countweb=1 utmref=65531-3486

Other NGFW policy-based mode options

You can combine Application Control and Web Filter in the same NGFW mode policy.
The following security profiles can be used in NGFW policy-based mode:

- AntiVirus
- Web Filter
- Intrusion Prevention
- File Filter
- Email Filter

Logging can also be enabled in security policies.

Inspection mode per policy

Inspection mode is configured on a per-policy basis in NGFW mode. This gives you more flexibility when setting up different policies.

When configuring a firewall policy, you can select a *Flow-based* or *Proxy-based* Inspection Mode. The default setting is *Flow-based*.

To configure inspection mode in a policy:

1. Go to Policy & Objects > Firewall Policy.
2. Create a new policy, or edit an existing policy.
3. Configure the policy as needed.

 a. If you change the Inspection Mode to *Proxy-based*, the Proxy HTTP(S) traffic option displays.

 ![Diagram](image1)

 b. In the Security Profiles section, if no security profiles are enabled, the default SSL Inspection is *no-inspection*.

 c. In the Security Profiles section, if you enable any security profile, the SSL Inspection changes to certificate-inspection.

 ![Diagram](image2)
To see the inspection mode changes using the CLI:

```
config firewall policy
edit 1
  set srcintf "wan2"
  set dstintf "wan1"
  set srcaddr "all"
  set dstaddr "all"
  set action accept
  set schedule "always"
  set service "ALL"
  set inspection-mode proxy
  set nat enable
next
end
```

To see the HTTP and SSH policy redirect settings when inspection mode is set to proxy using the CLI:

```
config firewall policy
edit 1
  set srcintf "wan2"
  set dstintf "wan1"
  set srcaddr "all"
  set dstaddr "all"
  set action accept
  set schedule "always"
  set service "ALL"
  set inspection-mode proxy
  set http-policy-redirect enable
  set ssh-policy-redirect enable
  set nat enable
next
end
```

To see the default SSL-SSH policy set to no inspection using the CLI:

```
config firewall policy
edit 1
  show fu | grep ssl-ssh-profile
  set ssl-ssh-profile "no-inspection"
next
end
```

NGFW policy mode application default service

In NGFW policy-based mode, the application default service enforces applications running only on their default service port. The applications specified in the policy are monitored, and if traffic is detected from a nonstandard port, it is blocked, and a log entry is recorded with a *port-violation* event type.

If you are not using the default ports, and need to pick specific services, select *Specify* to select the required services.

Example

In this example, the standard port is enforced for HTTPS traffic using the HTTP.AUDIO application.
First, an SSL Inspection & Authentication policy is created to traffic pre-match, and then a security policy is created to allow the HTTP.Audio application when using the default port. Fetching an MP3 file from an HTTP server using port 443 is allowed, but is blocked when using a nonstandard port, such as 8443.

To enforce the HTTP.Audio application using the default port in the GUI:

1. Create a new SSL Inspection & Authentication policy, or use the default policy.
2. Go to Policy & Objects > Security Policy, and click Create New.
3. Enter a name for the policy, such as allow_HTTP.Audio.
4. Configure the ports as needed.
5. Set Service to App Default.
6. In the Application field, select HTTP.Audio.
7. Set the Action to Accept.
8. Click OK.

To enforce the HTTP.Audio application using the default port in the CLI:

1. Create a firewall policy:

   ```
   config firewall policy
   edit 1
   set name "consolidated_all"
   set srcintf "port13"
   set dstintf "port14"
   set srcaddr "all"
   set dstaddr "all"
   set service "ALL"
   set ssl-ssh-profile "new-deep-inspection"
   next
   end
   ```

2. Create a security policy:

   ```
   config firewall security-policy
   edit 1
   ```
set name "allow_HTTP.Audio"
set srcintf "port13"
set dstintf "port14"
set srcaddr "all"
set enforce-default-app-port enable
set action accept
set schedule "always"
set logtraffic all
set application 15879
next
end

Logs

The application logs show logs with an event type of port-violation for traffic on port 8443 that is blocked, and an event type of signature for traffic on port 443 that is allowed.

Blocked:

2: date=2019-06-18 time=16:15:40 logid="1060028736" type="utm" subtype="app-ctrl" eventtype="port-violation" level="warning" vd="vd1" eventtime=1560899740218875746 tz="-0700" appid=15879 srcip=10.1.100.22 dstip=172.16.200.216 srcport=52680 dstport=8443 srcintf="port13" srcintfrole="undefined" dstintf="port14" dstintfrole="undefined" proto=6 service="HTTPS" direction="incoming" policyid=1 sessionid=5041 appcat="Video/Audio" app="HTTP.Audio" action="block" hostname="172.16.200.216" incidentserialno=1906780850 url="/app_data/story.mp3" securityid=2 msg="Video/Audio: HTTP.Audio," apprisk="elevated"

Allowed:

1: date=2019-06-18 time=16:15:49 logid="1059028704" type="utm" subtype="app-ctrl" eventtype="signature" level="information" vd="vd1" eventtime=1560899749258579372 tz="-0700" appid=15879 srcip=10.1.100.22 dstip=172.16.200.216 srcport=54527 dstport=443 srcintf="port13" srcintfrole="undefined" dstintf="port14" dstintfrole="undefined" proto=6 service="HTTPS" direction="incoming" policyid=1 sessionid=5064 appcat="Video/Audio" app="HTTP.Audio" action="pass" hostname="172.16.200.216" incidentserialno=1139663486 url="/app_data/story.mp3" securityid=2 msg="Video/Audio: HTTP.Audio," apprisk="elevated"

Add option to set application default port as a service port

The default-app-port-as-service option can be used in NGFW mode to set the application default port as a service port. This allows applications to match the policy and be blocked immediately the first time that traffic hits the firewall. When this option is enabled, the NGFW policy aggregates the ports used by the applications in the policy and performs a pre-match on the traffic.

config system settings
 set default-app-port-as-service {enable | disable}
end

This option can be configured on a per-VDOM level.

This setting is enabled by default on new installations. When upgrading, the setting is disabled to retain the previous behavior.
To configure the application default port as service port:

1. Configure the VDOM settings:
   ```
   config system settings
   set vdom-type traffic
   set opmode nat
   set ngfw-mode policy-based
   set block-land-attack disable
   set default-app-port-as-service enable
   set application-bandwidth-tracking disable
   end
   ```

2. Configure the NGFW policy:
   ```
   config firewall security-policy
   edit 1
   set name "test"
   set srcintf "port2"
   set dstintf "port1"
   set srcaddr "all"
   set dstaddr "all"
   set internet-service-src disable
   set enforce-default-service-port enable
   set action accept
   next
   end
   ```

Sample logs

The following logging behavior occurs in NGFW mode with `default-app-port-as-service` enabled, traffic that does not match the default port is blocked immediately. Only a traffic log is generated.

Log with SSH and FTP traffic:

```
1: date=2022-02-24 time=11:16:36 eventtime=1645730197145603994 tz="-0800"
logid="0000000013" type="traffic" subtype="forward" level="notice" vd="vd1"
srcip=10.1.100.12 srcport=40402 srcintf="port2" srcintfrole="undefined"
dstip=172.16.200.55 dstport=21 dstintf="port1" dstintfrole="undefined"
srccountry="Reserved" dstcountry="Reserved" sessionid=6811 proto=6 action="deny"
policyid=0 policytype="security-policy" poluuuid="7ed35582-95a2-51ec-0d21-4093cb91e67b"
policyname="Default" centrlnatid=1 service="FTP" transdisp="snat" transip=172.16.200.4
transport=40402 duration=10 sentbyte=0 rcvdbyte=0 sentpkt=0 rcvdpkt=0 appcat="unscanned"
```

Log with SSH and FTP traffic with port 2121:

```
1: date=2022-02-24 time=11:19:20 eventtime=1645730360685614031 tz="-0800"
logid="0000000013" type="traffic" subtype="forward" level="notice" vd="vd1"
srcip=10.1.100.12 srcport=41362 srcintf="port2" srcintfrole="undefined"
dstip=172.16.200.55 dstport=2121 dstintf="port1" dstintfrole="undefined"
srccountry="Reserved" dstcountry="Reserved" sessionid=7213 proto=6 action="deny"
policyid=0 policytype="security-policy" poluuuid="7ed35582-95a2-51ec-0d21-4093cb91e67b"
policyname="Default" centrlnatid=1 service="tcp/2121" transdisp="snat"
```
Policy and Objects

transip=172.16.200.4 transport=41362 duration=9 sentbyte=60 rcvdbyte=0 sentpkt=1 rcvdpkt=0 appcat="unscanned"

- When default-app-port-as-service is disabled and enforce-default-app-port is enabled, traffic that does not match the default port is not blocked immediately. Application and traffic logs are generated.

Traffic log with SSH and FTP traffic:

1: date=2022-02-24 time=11:21:51 eventtime=1645730511325606916 tz="-0800" logid="0000000013" type="traffic" subtype="forward" level="notice" vd="vd1" srcip=10.1.100.12 srsrcport=40408 srcsintf="port2" srcsintfrole="undefined" dstip=172.16.200.55 dstport=21 dstsintf="port1" dstsintfrole="undefined" srccountry="Reserved" dstcountry="Reserved" sessionid=7522 proto=6 action="deny" policyid=0 policytype="security-policy" poluuuid="7ed35582-95a2-51ec-0d21-4093cb91e67b" policyname="Default" centralnatid=1 service="FTP" transdisp="snat" transip=172.16.200.4 transport=40408 duration=14 sentbyte=164 rcvdbyte=171 sentpkt=3 rcvdpkt=2 appid=15896 appcat="Network.Service" app="FTP" apprisk="elevated" utmaction="block" countapp=1 utmref=65501-0

Application log with SSH and FTP traffic:

2: date=2022-02-24 time=11:21:39 eventtime=1645730499338228209 tz="-0800" logid="1059028705" type="utm" subtype="app-ctrl" eventtype="signature" level="warning" vd="vd1" appid=15896 srcip=10.1.100.12 srccountry="Reserved" dstip=172.16.200.55 dstsintf="port2" dstsintfrole="undefined" dstport=21 srcsintfrole="undefined" proto=6 service="FTP" direction="outgoing" policyid=0 sessionid=7522 action="block" appcat="Network.Service" app="FTP" incidentserialno=188744239 msg="Network.Service: FTP" apprisk="elevated"

Traffic log with SSH and FTP traffic with port 2121:

1: date=2022-02-24 time=11:24:25 eventtime=1645730665235613912 tz="-0800" logid="0000000013" type="traffic" subtype="forward" level="notice" vd="vd1" srcip=10.1.100.12 srsrcport=41366 srcsintf="port2" srcsintfrole="undefined" dstip=172.16.200.55 dstport=2121 dstsintfrole="undefined" srccountry="Reserved" dstcountry="Reserved" sessionid=7876 proto=6 action="deny" policyid=0 policytype="security-policy" poluuuid="7ed35582-95a2-51ec-0d21-4093cb91e67b" policyname="Default" centralnatid=1 service="tcp/2121" transdisp="snat" transip=172.16.200.4 transport=41366 duration=11 sentbyte=112 rcvdbyte=171 sentpkt=2 rcvdpkt=2 appid=15896 appcat="Network.Service" app="FTP" apprisk="elevated" utmaction="block" countapp=1 utmref=65500-0

Application log with SSH and FTP traffic with port 2121:

2: date=2022-02-24 time=11:24:16 eventtime=1645730656426052412 tz="-0800" logid="1060028736" type="utm" subtype="app-ctrl" eventtype="port-violation" level="warning" vd="vd1" appid=15896 srcip=10.1.100.12 srccountry="Reserved" dstip=172.16.200.55 dstcountry="Reserved" srsrcport=41366 dstport=2121 dstsintfrole="undefined" dstsintfrole="undefined" proto=6 service="FTP" direction="outgoing" policyid=0 sessionid=7876 action="block" appcat="Network.Service" app="FTP" incidentserialno=188744241 msg="Network.Service: FTP, non-default port used: 2121" apprisk="elevated"
Application logging in NGFW policy mode

In NGFW policy mode, if an application, application category, or application group is selected on a security policy, and traffic logging is set to UTM or All, then application control logs will be generated. In addition, when a signature is set to the ACCEPT action under a security policy, all corresponding child signatures will be assessed and logged as well.

Under NGFW, with `default-app-port-as-service` enabled, enable APP Default. The traffic which doesn’t match the default port will be blocked immediately, and there is only traffic log generated.

Under NGFW, with `default-app-port-as-service` disabled, enable APP Default. The traffic which doesn’t match the default port will not be blocked immediately, and there is app and traffic logs generated.

To verify application logging:

1. Go to Policy & Objects > Security Policy and configure a new policy for YouTube.
2. Set Action to ACCEPT and Log Allowed Traffic to Security Events.

3. Configure the remaining settings as required, then click OK.
4. On a client system, play some YouTube videos.
5. On FortiOS, go to Log & Report > Security Events and view the Application Control logs.

There are logs not only for YouTube, but also for `YouTube_Video.Play`, `YouTube_Video.Access`, and so on, as verified from the Application Name column.
Learn mode in security policies in NGFW mode

In NGFW mode, administrators can configure a security policy in learn mode to monitor traffic that passes through the source and destination interfaces. The learn mode uses a special prefix in the policy mode and profile fields in traffic and UTM logs for use by FortiAnalyzer and the Policy Analyzer Management Extension Application (MEA) that is available with FortiManager.

When enabled on FortiManager, Policy Analyzer MEA works with security policies in learning mode to analyze logs sent from a managed FortiGate to FortiAnalyzer. Based on the analyzed traffic, FortiManager administrators can choose to automatically create a policy in FortiManager for the managed FortiGate. For more information about Policy Analyzer MEA, see the Policy Analyzer Administration Guide.

The following limitations apply when learn mode is enabled in a security policy:

- Only interfaces with device-identification enable can be used as source interfaces in a security policy with learning mode enabled.
- Incoming and outgoing interfaces do not support any.
- Internet service is not supported.
- NAT46 and NAT64 are not supported.
- Users and groups are not supported.
- Some negate options are not supported.

To enable learn mode in the GUI:

1. Enable policy-based NGFW mode:
 a. Go to System > Settings.
 b. Set the NGFW Mode to Policy-based and click Apply.
2. Go to Policy & Objects > Security Policy, and open a security policy for editing.
3. Set the Policy Mode to Learn Mode.
4. Select an *Incoming Interface*.
5. Select an *Outgoing Interface*.
6. (Optional) Type a comment in the *Comments box*.
7. Toggle on *Enable this policy*.
8. Click *OK* to save the security policy.

To enable learn mode in the CLI:

1. Enable policy-based NGFW mode:

```plaintext
config system settings
    set ngfw-mode policy-based
end
```

2. Enable learn mode in a security policy:

```plaintext
config firewall security-policy
    edit <id>
        set learning-mode enable
    next
end
```

To view learn mode fields in logs in the CLI:

1. Filter and view fields in traffic logs:

```plaintext
# execute log filter category 0
# execute log display

1 logs found.
1 logs returned.
```

```
1: date=2022-03-21 time=10:21:11 eventtime=1647883271150012188 tz=-0700 logid=0000000013 type=traffic subtype=forward level=notice vd=root srcip=10.1.100.41 srcport=43296 srcintf=port24 srcintfrole=undefined dstip=172.16.200.55 dstport=80 dstintf=port17 dstintfrole=wan srccountry=Reserved dstcountry=Reserved sessionid=33934 policyid=99 policytype=security-policy poluuid=6e3f7f54-a932-51ec-73ba-8282cfd0b73c policymode=learn action=accept countweb=1 countav=1 countips=3 countapp=1 crscore=50 craction=2 srchwvendor=VMware devtype=Computer osname=Debian mastersrcmac=00:0c:29:b5:92:8d srcmac=00:0c:29:b5:92:8d srcserver=0 utmref=65534-0
```
2. Filter and view fields in UTM logs:

 # execute log filter category 2

 # execute log display

1 logs found.

1 logs returned.

1: date=2022-03-21 time=10:21:09 eventtime=1647883270101403283 tz="-0700"
logid="0211008193" type="utm" subtype="virus" eventtype="infected" level="notice"
vd="root" policyid=99 poluuid="6e3f7f54-a932-51ec-73ba-8282cfd0b73c"
policytype="security-policy" policymode="learn" msg="File is infected."
action="monitored" service="HTTP" sessionid=33934 srcip=10.1.100.41
dstip=172.16.200.55 srcport=43296 dstport=80 srccountry="Reserved"
dstcountry="Reserved" srcintf="port24" srcintfrole="undefined" dstintf="port17"
dstintfrole="wan" proto=6 direction="incoming" filename="eicar.com"
quarsskip="Quarantine-disabled" virus="EICAR_TEST_FILE" viruscat="Virus" dtype="av-engine" ref="http://www.fortinet.com/ve?vn=EICAR_TEST_FILE" virusid=2172
url="http://172.16.200.55/virus/eicar.com" profile="learn-av" agent="curl/7.35.0"
httpmethod="GET"
analyticscksum="275a021bbf6489e54d471899f7db9d1663fc695ec2fe2a2c4538aabf651fd0f"
analyticssubmit="false" crscore=50 craction=2 crlevel="critical" rawdata="Response-Content-Type=application/x-msdos-program"

3. Filter and view fields in UTM-IPS logs:

 # execute log filter category 4

 # execute log display

3 logs found.

3 logs returned.

1: date=2022-03-21 time=10:21:09 eventtime=1647883270101403283 tz="-0700"
logid="0419013684" type="utm" subtype="ips" eventtype="signature" level="alert"
vd="root" severity="info" srcip=10.1.100.41 srccountry="Reserved" dstip=172.16.200.55 dstcountry="Reserved" srcintf="port24" srcintfrole="undefined" dstintf="port17" dstintfrole="wan" sessionid=33934 action="detected" proto=6
service="HTTP" policyid=99 poluuid="6e3f7f54-a932-51ec-73ba-8282cfd0b73c"
policytype="security-policy" policymode="learn" attack="Eicar.Virus.Test.File"
srcport=43296 dstport=80 agent="curl/7.35.0" httpmethod="GET" direction="incoming"
attackid=29844 profile="learn-ips" ref="http://www.fortinet.com/ids/VID29844"
incidentserialno=158335134 attackcontextid="2/2"
attackcontext="YWQNCg0KWDVP1VA1QEFQwZrCfUPyYNTqO5UF4pN0NDKtD9JEVjQ0FSVNUQU5EQQVJELUFOVElWSvJUy1URVNULUZJTEUoJggrSCo8Li1BBQ0tFVD4="

2: date=2022-03-21 time=10:21:09 eventtime=1647883270101403283 tz="-0700"
logid="0419013684" type="utm" subtype="ips" eventtype="signature" level="alert"
Local-in policy

While security profiles control traffic flowing through the FortiGate, local-in policies control inbound traffic that is going to a FortiGate interface.

Administrative access traffic (HTTPS, PING, SSH, and others) can be controlled by allowing or denying the service in the interface settings. Trusted hosts can be configured under an administrator to restrict the hosts that can access the administrative service.

Local-in policies allow administrators to granularly define the source and destination addresses, interface, and services. Traffic destined for the FortiGate interface specified in the policy that meets the other criteria is subject to the policies action.

Local-in policies can be used to restrict administrative access or other services, such as VPN, that can be specified as services. You can define source addresses or address groups to restrict access from. For example, by using a geographic type address you can restrict a certain geographic set of IP addresses from accessing the FortiGate.

By default, no local-in policies are defined, so there are no restrictions on local-in traffic.

Local-in policies can only be created or edited in the CLI. You can view the existing local-in policies in the GUI by enabling it in System > Feature Visibility under the Additional Features section. This page does not list the custom local-in policies.

To configure a local-in policy using the CLI:

```
config firewall (local-in-policy | local-in-policy6)
  edit <policy_number>
    set intf <interface>
    set srcaddr <source_address> [source_address] ...
    set dstaddr <destination_address> [destination_address] ...
    set action {accept | deny}
    set service <service_name> [service_name] ...
    set schedule <schedule_name>
    set comments <string>
  next
end
```

For example, to prevent the source subnet 10.10.10.0/24 from pinging port1, but allow administrative access for PING on port1:

```
config firewall address
  edit "10.10.10.0"
    set subnet 10.10.10.0 255.255.255.0
  next
end
```
Policy and Objects

config firewall local-in-policy
 edit 1
 set intf "port1"
 set srcaddr "10.10.10.0"
 set dstaddr "all"
 set service "PING"
 set schedule "always"
 next
end

To test the configuration:
1. From the PC at 10.10.10.12, start a continuous ping to port1:
 ping 192.168.2.5 -t
2. On the FortiGate, enable debug flow:
 # diagnose debug flow filter addr 10.10.10.12
 # diagnose debug flow filter proto 1
 # diagnose debug enable
 # diagnose debug flow trace start 10
3. The output of the debug flow shows that traffic is dropped by local-in policy 1:
 # id=20085 trace_id=1 func=print_pkt_detail line=5746 msg="vd-root:0 received a packet (proto=1, 10.10.10.12:1->192.168.2.5:2048) from port1. type=8, code=0, id=1, seq=128."
 id=20085 trace_id=1 func=init_ip_session_common line=5918 msg="allocate a new session-0017c5ad"
 id=20085 trace_id=1 func=vf_ip_route_input_common line=2615 msg="find a route: flag=800000 gw=192.168.2.5 via root"
 id=20085 trace_id=1 func=fw_local_in_handler line=474 msg="iprobe_in_check() check failed on policy 1, drop"

Additional options

To disable or re-enable the local-in policy, use the set status {enable | disable} command.

To dedicate the interface as an HA management interface, use the set ha-mgmt-intf-only enable command.

TTL policies

You can configure a time-to-live (TTL) policy to block attack traffic with high TTLs. This feature only applies to local-in traffic and does not apply to traffic passing through the FortiGate. You can use srcintf to set the interface that the local-in traffic hits. See config firewall ttl-policy.

To configure a TTL policy using the CLI:

config firewall ttl-policy
 edit <id>
 set status {enable | disable}
 set action {accept | deny}
 set srcintf <interface>
 set srcaddr <source_address> [source_address] ...
 set service <service_name> [service_name] ...
 set schedule <schedule_name>
set ttl <value/range>
next
end

DoS policy

A Denial of Service (DoS) policy examines network traffic arriving at a FortiGate interface for anomalous patterns, which usually indicates an attack.

A denial of service occurs when an attacking system starts an abnormally large number of sessions with a target system. The large number of sessions slows down or disables the target system, preventing legitimate users from using it.

DoS policies are checked before security policies, preventing attacks from triggering more resource intensive security protection and slowing down the FortiGate.

DoS anomalies

Predefined sensors are setup for specific anomalous traffic patterns. New DoS anomalies cannot be added by the user.

The predefined anomalies that can be used in DoS policies are:

<table>
<thead>
<tr>
<th>Anomaly</th>
<th>Description</th>
<th>Recommended Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>tcp_syn_flood</td>
<td>If the SYN packet rate of new TCP connections, including retransmission, to one destination IP address exceeds the configured threshold value, the action is executed.</td>
<td>2000 packets per second.</td>
</tr>
<tr>
<td>tcp_port_scan</td>
<td>If the SYN packet rate of new TCP connections, including retransmission, from one source IP address exceeds the configured threshold value, the action is executed.</td>
<td>1000 packets per second.</td>
</tr>
<tr>
<td>tcp_src_session</td>
<td>If the number of concurrent TCP connections from one source IP address exceeds the configured threshold value, the action is executed.</td>
<td>5000 concurrent sessions.</td>
</tr>
<tr>
<td>tcp_dst_session</td>
<td>If the number of concurrent TCP connections to one destination IP address exceeds the configured threshold value, the action is executed.</td>
<td>5000 concurrent sessions.</td>
</tr>
<tr>
<td>udp_flood</td>
<td>If the UDP traffic to one destination IP address exceeds the configured threshold value, the action is executed.</td>
<td>2000 packets per second.</td>
</tr>
<tr>
<td>udp_scan</td>
<td>If the UDP sessions setup rate originating from one source IP address exceeds the configured threshold value, the action is executed.</td>
<td>2000 sessions per second.</td>
</tr>
<tr>
<td>udp_src_session</td>
<td>If the number of concurrent UDP connections from one source IP address exceeds the configured threshold value, the action is executed.</td>
<td>5000 concurrent sessions.</td>
</tr>
<tr>
<td>udp_dst_session</td>
<td>If the number of concurrent UDP connections to one destination IP address exceeds the configured threshold value, the action is executed.</td>
<td>5000 concurrent sessions.</td>
</tr>
<tr>
<td>Anomaly</td>
<td>Description</td>
<td>Recommended Threshold</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>-----------------------</td>
</tr>
<tr>
<td>icmp_flood</td>
<td>If the number of ICMP packets sent to one destination IP address exceeds the configured threshold value, the action is executed.</td>
<td>250 packets per second</td>
</tr>
<tr>
<td>icmp_sweep</td>
<td>If the ICMP sessions setup rate originating from one source IP address exceeds the configured threshold value, the action is executed.</td>
<td>100 sessions per second</td>
</tr>
<tr>
<td>icmp_src_session</td>
<td>If the number of concurrent ICMP connections from one source IP address exceeds the configured threshold value, the action is executed.</td>
<td>300 concurrent sessions</td>
</tr>
<tr>
<td>icmp_dst_session</td>
<td>If the number of concurrent ICMP connections to one destination IP address exceeds the configured threshold value, the action is executed.</td>
<td>1000 concurrent sessions</td>
</tr>
<tr>
<td>ip_src_session</td>
<td>If the number of concurrent IP connections from one source IP address exceeds the configured threshold value, the action is executed.</td>
<td>5000 concurrent sessions</td>
</tr>
<tr>
<td>ip_dst_session</td>
<td>If the number of concurrent IP connections to one destination IP address exceeds the configured threshold value, the action is executed.</td>
<td>5000 concurrent sessions</td>
</tr>
<tr>
<td>sctp_flood</td>
<td>If the number of SCTP packets sent to one destination IP address exceeds the configured threshold value, the action is executed.</td>
<td>2000 packets per second</td>
</tr>
<tr>
<td>sctp_scan</td>
<td>If the number of SCTP sessions originating from one source IP address exceeds the configured threshold value, the action is executed.</td>
<td>1000 packets per second</td>
</tr>
<tr>
<td>sctp_src_session</td>
<td>If the number of concurrent SCTP connections from one source IP address exceeds the configured threshold value, the action is executed.</td>
<td>5000 concurrent sessions</td>
</tr>
<tr>
<td>sctp_dst_session</td>
<td>If the number of concurrent SCTP connections to one destination IP address exceeds the configured threshold value, the action is executed.</td>
<td>5000 concurrent sessions</td>
</tr>
</tbody>
</table>

For thresholds based on the number of concurrent sessions, blocking the anomaly will not allow more than the number of concurrent sessions to be set as the threshold.

For example, if the period for a particular anomaly is 60 seconds, such as those where the threshold is measured in concurrent sessions, after the 60 second timer has expired the number of allowed sessions that match the anomaly criteria is reset to zero. This means that, if you allow 10 sessions through before blocking, after the 60 seconds has elapsed, another 10 sessions will be allowed. The attrition of sessions from expiration should keep the allowed sessions from reaching the maximum.

For rate based thresholds, where the threshold is measured in packets per second, the Block action prevents anomalous traffic from overwhelming the firewall in two ways:
Policy and Objects

- **continuous**: Block packets once an anomaly is detected, and continue to block packets while the rate is above the threshold. This is the default setting.
- **periodical**: After an anomaly is detected, allow the configured number of packets per second.

For example, if a DoS policy is configured to block icmp_flood with a threshold of 10pps, and a continuous ping is started at a rate of 20pps for 1000 packets:

- In continuous mode, the first 10 packets are passed before the DoS sensor if triggered, and then the remaining 990 packets are blocked.
- In periodical mode, 10 packets are allowed to pass per second, so 500 packets are blocked in the 50 seconds during which the ping is occurring.

The actual numbers of passed and blocked packets may not be exact, as fluctuations in the rates can occur, but the numbers should be close to the defined threshold.

To configure the block action for rate based anomaly sensors:

```
config ips global
  set anomaly-mode {continuous | periodical}
end
```

DoS policies

A DoS policy can be configured to use one or more anomalies.

To configure a DoS policy in the GUI:

1. Go to `Policy & Objects > IPv4 DoS Policy` or `Policy & Objects > IPv6 DoS Policy` and click `Create New`. If the option is not visible, enable `DoS Policy` in `Feature Visibility`. See [Feature visibility on page 2165](#) for details.
2. Configure the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>Enter a name for the policy.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>Enter the interface that the policy applies to.</td>
</tr>
<tr>
<td>Source Address</td>
<td>Enter the source address.</td>
</tr>
<tr>
<td>Destination Address</td>
<td>Enter the destination address. This is the address that the traffic is addressed to. In this case, it must be an address that is associated with the firewall interface. For example, it could be an interface address, a secondary IP address, or the address assigned to a VIP address.</td>
</tr>
<tr>
<td>Service</td>
<td>Select the services or service groups. The ALL service can be used or, to optimize the firewall resources, only the services that will be answered on an interface can be used.</td>
</tr>
</tbody>
</table>

L3 Anomalies

L4 Anomalies

Configure the anomalies:

- **Logging**: Enable/disable logging for specific anomalies or all of them. Anomalous traffic will be logged when the action is *Block or Monitor*.
- **Action**: Select the action to take when the threshold is reached:
 - **Disable**: Do not scan for the anomaly.
 - **Block**: Block the anomalous traffic.
 - **Monitor**: Allow the anomalous traffic, but record a log message if logging is enabled.
- **Threshold**: The number of detected instances that triggers the anomaly action.

| **Comments** | Optionally, enter a comment. |

3. Enable the policy, then click OK.

The quarantine option is only available in the CLI. See Quarantine on page 795 for information.

To configure a DoS policy in the GUI:

```bash
config firewall DoS-policy
edit 1
  set name "Flood"
  set interface "port1"
  set srcaddr "all"
  set dstaddr "all"
  set service "ALL"
config anomaly
  edit "icmp_flood"
  set status enable
  set log enable
  set action block
  set quarantine attacker
  set quarantine-expiry 1d1h1m
```
```
set quarantine-log enable
set threshold 100
```

name <string>
Enter a name for the policy.

interface <string>
Enter the interface that the policy applies to.

srcaddr <string>
Enter the source address.

dstaddr <string>
Enter the destination address.
This is the address that the traffic is addressed to. In this case, it must be an
address that is associated with the firewall interface. For example, it could be an
interface address, a secondary IP address, or the address assigned to a VIP
address.

service <string>
Enter the services or service groups.
The **ALL** service can used or, to optimize the firewall resources, only the services
that will be answered on an interface can be used.

status {enable | disable}
Enable/disable this anomaly.

log {enable | disable}
Enable/disable anomaly logging. When enabled, a log is generated whenever the
anomaly action is triggered, regardless of which action is configured.

action {pass | block}
Set the action to take when the threshold is reached:
- **pass**: Allow traffic, but record a log message if logging is enabled.
- **block**: Block traffic if this anomaly is found.

quarantine {none | attacker}
Set the quarantine method (see Quarantine on page 795):
- **none**: Disable quarantine.
- **attacker**: Block all traffic from the attacker's IP address, and add the
 attacker's IP address to the banned user list.

quarantine-expiry <###d##h##m>
Set the duration of the quarantine, in days, hours, and minutes (###d##h##m)
(1m - 364d23h59m, default = 5m). This option is available if quarantine is set
attacker.

quarantine-log {enable | disable}
Enable/disable quarantine logging (default = disable). This option is available if
quarantine is set attacker.

threshold <integer>
The number of detected instances - packets per second or concurrent session
number - that triggers the anomaly action.

Quarantine

Quarantine is used to block any further traffic from a source IP address that is considered a malicious actor or a source of
traffic that is dangerous to the network. Traffic from the source IP address is blocked for the duration of the quarantine,
and the source IP address is added to the banned user list.

The banned user list is kept in the kernel, and used by Antivirus, Data Leak Prevention (DLP), DoS, and Intrusion
Prevention System (IPS). Any policies that use any of these features will block traffic from the attacker's IP address.
To view the quarantined user list:

```
# diagnose user quarantine list
src-ip-addr  created       expires       cause
```

Troubleshooting DoS attacks

The best way to troubleshoot DoS attacks is with Anomaly logs and IPS anomaly debug messages.

To test an icmp_flood attack:

1. From the Attacker, launch an icmp_flood with 50pps lasting for 3000 packets.
2. On the FortiGate, configure continuous mode and create a DoS policy with an icmp_flood threshold of 30pps:

   ```
   config firewall DoS-policy
   edit 1
   set name icmpFlood
   set interface "port1"
   set srcaddr "all"
   set dstaddr "all"
   set service "ALL"
   config anomaly
   edit "icmp_flood"
   set status enable
   set log enable
   set action block
   set threshold 30
   next
   end
   next
   end
   ```

3. Configure the debugging filter:

   ```
   # diagnose ips anomaly config
   DoS sensors in kernel vd 0:
   DoS id 1 proxy 0
   0 tcp_syn_flood status 0 log 0 nac 0 action 0 threshold 2000
   ... 7 udp_dst_session status 0 log 0 nac 0 action 0 threshold 5000
   8 icmp_flood status 1 log 1 nac 0 action 7 threshold 30
   9 icmp_sweep status 0 log 0 nac 0 action 0 threshold 100
   ...
   total # DoS sensors: 1.
   ```
diagnose ips anomaly filter id 8

4. Launch the icmp_flood from a Linux machine. This example uses Nmap:

 $ sudo nping --icmp --rate 50 -c 3000 192.168.2.50
 SENT (0.0522s) ICMP [192.168.2.205 > 192.168.2.50 Echo request {type=8/code=0} id=8597
 seq=1] IP [ttl=64 id=47459 iplen=28]

 Max rtt: 11.096ms | Min rtt: 0.028ms | Avg rtt: 1.665ms
 Raw packets sent: 3000 (84.000KB) | Rcvd: 30 (840B) | Lost: 2970 (99.00%)
 Nping done: 1 IP address pinged in 60.35 seconds

5. During the attack, check the anomaly list on the FortiGate:

 $ diagnose ips anomaly list
 list nids meter:
 id=icmp_flood ip=192.168.2.50 dos_id=1 exp=998 pps=46 freq=50

 total # of nids meters: 1.

<table>
<thead>
<tr>
<th>id=icmp_flood</th>
<th>The anomaly name.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip=192.168.2.50</td>
<td>The IP address of the host that triggered the anomaly. It can be either the client or the server. For icmp_flood, the IP address is the destination IP address. For icmp_sweep, it would be the source IP address.</td>
</tr>
<tr>
<td>dos_id=1</td>
<td>The DoS policy ID.</td>
</tr>
<tr>
<td>exp=998</td>
<td>The time to be expired, in jiffies (one jiffy = 0.01 seconds).</td>
</tr>
<tr>
<td>pps=46</td>
<td>The number of packets that had been received when the diagnose command was executed.</td>
</tr>
</tbody>
</table>
 | freq=50 | For session based anomalies, freq is the number of sessions. For packet rate based anomalies (flood, scan):
 * In continuous mode: freq is the greater of pps, or the number of packets received in the last second.
 * In periodic mode: freq is the pps. |

6. Go to Log & Report > Security Events and download the Anomaly logs:

 date=2020-11-20 time=14:38:39 eventtime=16059119824184594 tz="-0800"
 logid="0720018433" type="utm" subtype="anomaly" eventtype="anomaly" level="alert"
 vd="root" severity="critical" srcip=192.168.2.205 srcrcountry="Reserved" dstip=192.168.2.50 srcintf="port1" srcintfrole="undefined" sessionid=0 action="clear_session" proto=1 service="PING" count=1307 attack=icmp_flood icmpid="0x2195" icmptype="0x08" icmpcode="0x00" attackid=16777316 policyid=1 policytype="DoS-policy"
 ref="http://www.fortinet.com/ids/VID16777316" msg="anomaly: icmp_flood, 31 > threshold 30, repeats 28 times" crscore=50 craction=4096 crlevel="critical"

 date=2020-11-20 time=14:39:09 eventtime=16059119826224056 tz="-0800"
 logid="0720018433" type="utm" subtype="anomaly" eventtype="anomaly" level="alert"
 vd="root" severity="critical" srcip=192.168.2.205 srcrcountry="Reserved" dstip=192.168.2.50 srcintf="port1" srcintfrole="undefined" sessionid=0 action="clear_session" proto=1 service="PING" count=1497 attack=icmp_flood icmpid="0x2195" icmptype="0x08" icmpcode="0x00" attackid=16777316 policyid=1 policytype="DoS-policy"
Analysis

In the first log message:

msg="anomaly: icmp_flood, 31 > threshold 30"	At the beginning of the attack, a log is recorded when the threshold of 30pps is broken.
repeats 28 times	The number of packets that has exceeded the threshold since the last time a log was recorded.
srcip=192.168.2.205	The source and destination IP addresses of the attack.
dstip=192.168.2.50	action="clear_session"
equivalent to block.	
If action was set to monitor and logging was enabled, this would be action="detected".	

In the second log message:

- Because it is an ongoing attack, the FortiGate generates one log message for multiple packets every 30 seconds.
- It will not generate a log message if:
 - The same attack ID happened more than once in a five second period, or
 - The same attack ID happened more than once in a 30 second period and the actions are the same and have the same source and destination IP addresses.

| msg="anomaly: icmp_flood, 50 > threshold 30" | In the second before the log was recorded, 50 packets were detected, exceeding the configured threshold. |
| repeats 1497 times | The number of packets that has exceeded the threshold since the last time a log was recorded |

Access control lists

An access control list (ACL) is a granular, targeted blocklist that is used to block IPv4 and IPv6 packets on a specified interface based on the criteria configured in the ACL policy.

On FortiGate models with ports that are connected through an internal switch fabric with TCAM capabilities, ACL processing is offloaded to the switch fabric and does not use CPU resources. VLAN interfaces that are based on physical switch fabric interfaces are also supported. Interfaces that are connected through an internal switch fabric usually have names prefixed with port or lan, such as port1 or lan2; other interfaces are not supported.

The packets will be processed by the CPU when offloading is disabled or not possible, such as when a port on a supported model does not connect to the internal fabric switch.

ACL is supported on the following FortiGate models:

- 100D, 100E, 100EF, 101E
- 140D, 140D-POE, 140E, 140E-POE
- 1500D, 1500DT
Policy and Objects

- 3000D, 3100D, 3200D, 3700D
- All 300E and larger E-series models
- All 100F and larger F-series models

Example

To block all IPv4 and IPv6 telnet traffic from port2 to Company_Servers:

```
config firewall acl
   edit 1
      set interface "port2"
      set srcaddr "all"
      set dstaddr "Company_Servers"
      set service "TELNET"
   next
end
config firewall acl6
   edit 1
      set interface "port2"
      set srcaddr "all"
      set dstaddr "Company_Servers_v6"
      set service "TELNET"
   next
end
```

Diagnose commands

To check the number of packets dropped by an ACL:

```
# diagnose firewall acl counter
ACL id 1 dropped 0 packets
# diagnose firewall acl counter6
ACL id 2 dropped 0 packets
```

To clear the packet drop counters:

```
# diagnose firewall acl clearcounter
# diagnose firewall acl clearcounter6
```

Interface policies

Interface policies are implemented before the security policies and are only flow-based. They are configured in the CLI.

This feature allows you to attach a set of IPS policies with the interface instead of the forwarding path, so packets can be delivered to IPS before entering the firewall. This feature is used for following IPS deployments:

- One-Arm: By defining interface policies with IPS and DoS anomaly checks and enabling sniff-mode on the interface, the interface can be used for one-arm IDS.
- IPv6 IPS: IPS inspection can be enabled through interface IPv6 policy.
- Scan traffic that is destined to the FortiGate.
- Scan and log traffic that are silently dropped or flooded by Firewall or Multicast traffic.

IPS sensors can be assigned to an interface policy. Both incoming and outgoing packets are inspected by IPS sensor (signature).

To configure an interface policy:

```plaintext
config firewall interface-policy
edit 1
    set status enable
    set comments 'test interface policy #1'
    set logtraffic utm
    set interface "port2"
    set srcaddr all
    set dstaddr all
    set service "ALL"
    set application-list-status disable
    set ips-sensor-status disable
    set dsri disable
    set av-profile-status enable
    set av-profile default
    set webfilter-profile-status disable
next
end
```

Source NAT

The following topics provide instructions on configuring policies with source NAT:

- Static SNAT on page 800
- Dynamic SNAT on page 801
- Central SNAT on page 807
- Configuring an IPv6 SNAT policy on page 812
- SNAT policies with virtual wire pairs on page 814

Static SNAT

Network Address Translation (NAT) is the process that enables a single device such as a router or firewall to act as an agent between the Internet or Public Network and a local or private network. This agent acts in real time to translate the source or destination IP address of a client or server on the network interface. For the source IP translation, this enables a single public address to represent a significantly larger number of private addresses. For the destination IP translation, the firewall can translate a public destination address to a private address. So we don't have to configure a real public IP address for the server deployed in a private network.

We can subdivide NAT into two types: source NAT (SNAT) and destination NAT (DNAT). This topic is about SNAT. We support three NAT working modes: static SNAT, dynamic SNAT, and central SNAT.
In static SNAT all internal IP addresses are always mapped to the same public IP address. This is a port address translation, Since we have 60416 available port numbers, this one public IP address can handle the conversion of 60,416 internal IP addresses.

<table>
<thead>
<tr>
<th>Internal Source IP</th>
<th>Source Port</th>
<th>Translated Source IP</th>
<th>Translated Source Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.100.1</td>
<td>11119</td>
<td>172.16.200.1</td>
<td>5117</td>
</tr>
<tr>
<td>10.1.100.1</td>
<td>11111</td>
<td>172.16.200.1</td>
<td>5118</td>
</tr>
<tr>
<td>10.1.100.2</td>
<td>11112</td>
<td>172.16.200.1</td>
<td>5119</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>172.16.200.1</td>
<td>-----</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>172.16.200.1</td>
<td>65533</td>
</tr>
</tbody>
</table>

FortiGate firewall configurations commonly use the Outgoing Interface address.

Sample configuration

The following example of static SNAT uses an internal network with subnet 10.1.100.0/24 (vlan20) and an external/ISP network with subnet 172.16.200.0/24 (vlan30).

When the clients in internal network need to access the servers in external network, We need to translate IP addresses from 10.1.100.0/24 to an IP address 172.16.200.0/24, In this example, we implement static SNAT by creating a firewall policy.

To configure static NAT:

1. Go to Policy & Objects > Firewall Policy and click Create New.
2. Configure the required policy parameters.
3. Enable NAT and select Use Outgoing Interface Address. For packets that match this policy, its source IP address is translated to the IP address of the outgoing interface.
4. If needed, enable Preserve Source Port to keep the same source port for services that expect traffic to come from a specific source port. Disable Preserve Source Port to allow more than one connection through the firewall for that service.

5. Click OK.

Dynamic SNAT

Dynamic SNAT maps the private IP addresses to the first available public address from a pool of addresses. In the FortiGate firewall, this can be done by using IP pools. IP pools is a mechanism that allows sessions leaving the FortiGate firewall to use NAT. An IP pool defines a single IP address or a range of IP addresses to be used as the source address for the duration of the session. These assigned addresses are used instead of the IP address assigned to that FortiGate interface.
IP pool types

FortiGate uses four types of IPv4 IP pools. This topic focuses on some of the differences between them.

Overload

This type of IP pool is similar to static SNAT mode. We need to define an external IP range that contains one or more IP addresses. When there is only one IP address it is almost the same as static SNAT, the outgoing interface address is used. When it contains multiple IP addresses, it is equivalent to an extended mode of static SNAT.

For instance, if we define an overload type IP pool with two external IP addresses (172.16.200.1—172.16.200.2), since there are 60,416 available port numbers per IP, this IP pool can handle 60,416*2 internal IP addresses.

<table>
<thead>
<tr>
<th>Original Source IP</th>
<th>Original Source Port</th>
<th>Translated Source IP</th>
<th>Translated Source Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.100.1</td>
<td>11110</td>
<td>172.16.200.1</td>
<td>5117</td>
</tr>
<tr>
<td>10.1.100.2</td>
<td>11111</td>
<td>172.16.200.1</td>
<td>5118</td>
</tr>
<tr>
<td>.....</td>
<td>.....</td>
<td>172.16.200.1</td>
<td>.....</td>
</tr>
<tr>
<td>.....</td>
<td>.....</td>
<td>172.16.200.1</td>
<td>65533</td>
</tr>
<tr>
<td>.....</td>
<td>.....</td>
<td>172.16.200.2</td>
<td>5117</td>
</tr>
<tr>
<td>.....</td>
<td>.....</td>
<td>172.16.200.2</td>
<td>65533</td>
</tr>
</tbody>
</table>

The mapped IP address can be calculated from the source IP address. The index number of the address in the pool is the remainder of the source IP address, in decimal, divided by the number addresses in the pool.

To calculate the decimal value of the source IP address, either use an online calculator, or use the following equation:

\[a.b.c.d = a \times (256)^3 + b \times (256)^2 + c \times (256) + d \]

For example:

\[192.168.0.1 = 192 \times (256)^3 + 168 \times (256)^2 + 0 \times (256) + 1 = 3232235521 \]

If there is one IP pool, where:

- \(P_1 \) = the first address in the IP pool
- \(R_1 \) = the number of IP addresses in the IP pool
- \(X \) = the source IP address as a decimal number
- \(Y \) = the mapped IP address

Then the equation to determine the mapped address is:

\[Y = P_1 + X \mod R_1 \]

For example:

<table>
<thead>
<tr>
<th>IP pool</th>
<th>Source IP address</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.26.73.20 to 172.26.73.90</td>
<td>192.168.1.200</td>
</tr>
</tbody>
</table>

1. Convert the source IP address to a decimal number:

\[192 \times (256)^3 + 168 \times (256)^2 + 1 \times (256) + 200 = 3232235976 \]

2. Determine the number of IP addresses in the pool:

\[172.26.73.90 - 172.26.73.20 = 71 \]
3. Find the remainder of the source IP address divided by the number of addresses in the pool:
 \[3232235976 \mod 71 = 26 \]

4. Add the remainder to the first IP address in the pool:
 \[172.26.73.20 + 26 = 172.26.73.46 \]

So, the mapped IP address is \textbf{172.26.73.46}.

If there are multiple IP pools, the calculation is similar to when there is only one pool.

If there are two IP pools, where:
- \(P_1 \) = the first address in the first IP pool
- \(P_2 \) = the first address in the second IP pool
- \(R_1 \) = the number of IP addresses in the first IP pool
- \(R_2 \) = the number of IP addresses in the second IP pool
- \(X \) = the source IP address as a decimal number
- \(Y \) = the mapped IP address

Then the equations to determine the mapped address are:

- If \(X \mod (R_1 + R_2) \geq R_1 \), then \(Y = P_2 + X \mod R_2 \)
- If \(X \mod (R_1 + R_2) < R_1 \), then \(Y = P_1 + X \mod R_1 \)

For example:

<table>
<thead>
<tr>
<th>IP pools</th>
<th>Source IP address</th>
</tr>
</thead>
<tbody>
<tr>
<td>pool01: 172.26.73.20 to 172.26.73.90</td>
<td>192.168.1.200</td>
</tr>
<tr>
<td>pool02: 172.26.75.50 to 172.26.75.150</td>
<td></td>
</tr>
</tbody>
</table>

1. Convert the source IP address to a decimal number:
 \[192 \times (256)^2 + 168 \times (256)^2 + 1 \times (256) + 200 = 3232235976 \]

2. Determine the total number of IP addresses in the pools:
 \[(172.26.73.90 - 172.26.73.20) + (172.26.75.50 - 172.26.75.150) = 71 + 101 = 172 \]

3. Find the remainder of the source IP address divided by the number of addresses in the pools:
 \[3232235976 \mod 172 = 108 \]

4. The remainder is greater than the number of addresses in pool01, so the address is selected from pool02 and the remainder is recalculated based only on pool02:
 \[3232235976 \mod 101 = 40 \]

5. Add the new remainder to the first IP address in pool02:
 \[172.26.75.50 + 40 = 172.26.75.90 \]

So, the mapped IP address is \textbf{172.26.75.90}.

One-to-one

This type of IP pool means that the internal IP address and the external (translated) IP address match one-to-one. The port address translation (PAT) is disabled when using this type of IP pool. For example, if we define a one-to-one type IP pool with two external IP addresses (172.16.200.1 - 172.16.200.2), this IP pool only can handle two internal IP addresses.
Fixed port range

For the overload and one-to-one IP pool types, we do not need to define the internal IP range. For the fixed port range type of IP pool, we can define both internal IP range and external IP range. Since each external IP address and the number of available port numbers is a specific number, if the number of internal IP addresses is also determined, we can calculate the port range for each address translation combination. So we call this type fixed port range. This type of IP pool is a type of port address translation (PAT).

For instance, if we define one external IP address (172.16.200.1) and ten internal IP addresses (10.1.100.1-10.1.100.10), we have translation IP+Port combination like following table:

<table>
<thead>
<tr>
<th>Original Source IP</th>
<th>Original Source Port</th>
<th>Translated Source IP</th>
<th>Translated Source Port Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.100.1</td>
<td>..</td>
<td>172.16.200.1</td>
<td>5117–11157</td>
</tr>
<tr>
<td>10.1.100.2</td>
<td>..</td>
<td>172.16.200.1</td>
<td>11158–17100</td>
</tr>
<tr>
<td>10.1.100.3</td>
<td>..</td>
<td>172.16.200.1</td>
<td>..</td>
</tr>
<tr>
<td>10.1.100.4</td>
<td>..</td>
<td>172.16.200.1</td>
<td>..</td>
</tr>
<tr>
<td>10.1.100.5</td>
<td>..</td>
<td>172.16.200.1</td>
<td>..</td>
</tr>
<tr>
<td>10.1.100.6</td>
<td>..</td>
<td>172.16.200.1</td>
<td>..</td>
</tr>
<tr>
<td>10.1.100.7</td>
<td>..</td>
<td>172.16.200.1</td>
<td>..</td>
</tr>
<tr>
<td>10.1.100.8</td>
<td>..</td>
<td>172.16.200.1</td>
<td>..</td>
</tr>
<tr>
<td>10.1.100.9</td>
<td>..</td>
<td>172.16.200.1</td>
<td>53445–59465</td>
</tr>
<tr>
<td>10.1.100.10</td>
<td>..</td>
<td>172.16.200.1</td>
<td>59466–65525</td>
</tr>
</tbody>
</table>

Port block allocation

This type of IP pool is also a type of port address translation (PAT). It gives users a more flexible way to control the way external IPs and ports are allocated. Users need to define Block Size/Block Per User and external IP range. Block Size means how many ports each Block contains. Block per User means how many blocks each user (internal IP) can use.

The following is a simple example:

- **External IP Range**: 172.16.200.1—172.16.200.1
- **Block Size**: 128
- **Block Per User**: 8

Result:

- **Total-PBAs**: 472 (60416/128)
- **Maximum ports can be used per User (Internal IP Address)**: 1024 (128*8)
- **How many Internal IP can be handled**: 59 (60416/1024 or 472/8)

Sample configuration

To configure overload IP pool in the GUI:

1. In Policy & Objects > IP Pools, click Create New.
2. Select IPv4 Pool and then select Overload.
3. Enter the external IP range separated by a hyphen (172.16.200.1-172.16.200.1).

4. Click OK.

To configure overload IP pool in the CLI:

```
config firewall ippool
    edit "Overload-ippool"
        set startip 172.16.200.1
        set endip 172.16.200.1
    next
end
```

To configure one-to-one IP pool using the GUI:

1. In Policy & Objects > IP Pools, click Create New.
2. Select IPv4 Pool and then select One-to-One.
3. Enter the external IP range separated by a hyphen (172.16.200.1-172.16.200.2).

4. Click OK.

To configure one-to-one IP pool in the CLI:

```
config firewall ippool
    edit "One-to-One-ippool"
        set type one-to-one
```

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
To configure fixed port range IP pool in the GUI:

1. In Policy & Objects > IP Pools, click Create New.
2. Select IPv4 Pool and then select Fixed Port Range.
4. Enter the internal IP range separated by a hyphen 10.1.100.1-10.1.100.10.
5. Click OK.

To configure fixed port range IP pool in the CLI:

```
config firewall ippool
edit "FPR-ippool"
  set type fixed-port-range
  set startip 172.16.200.1
  set endip 172.16.200.1
  set source-startip 10.1.100.1
  set source-endip 10.1.100.10
next
end
```

To configure port block allocation IP pool in the GUI:

1. In Policy & Objects > IP Pools, click Create New.
2. Select IPv4 Pool and then select Port Block Allocation.
3. Enter the external IP range separated by a hyphen 172.16.200.1-172.16.200.1).

4. Click OK.

To configure port block allocation IP pool in the CLI:

```plaintext
config firewall ippool
  edit PBA-ippool
    set type port-block-allocation
    set startip 172.16.200.1
    set endip 172.16.200.1
    set block-size 128
    set num-blocks-per-user 8
  next
end
```

Central SNAT

The central SNAT table enables you to define and control (with more granularity) the address translation performed by FortiGate. With the NAT table, you can define the rules for the source address or address group, and which IP pool the destination address uses.

FortiGate reads the NAT rules from the top down until it hits a matching rule for the incoming address. This enables you to create multiple NAT policies that dictate which IP pool is used based on source address, destination address, and source port. NAT policies can be rearranged within the policy list. NAT policies are applied to network traffic after a security policy.

The central SNAT table allows you to create, edit, delete, and clone central SNAT entries.

Central SNAT notes

- The central NAT feature is not enabled by default.
- If central NAT is enabled, the NAT option under IPv4 policies is skipped and SNAT must be done via `central-snat-map`. The firewall policy list and dialog boxes have messages and redirection links to show this information.
- If NGFW mode is policy-based, then it is assumed that central NAT (specifically SNAT) is enabled implicitly.
Sample configuration

To enable central SNAT from the GUI:

1. In System > Settings, under System Operations Settings, enable Central SNAT.
2. Click Apply.

To enable or disable central SNAT using the CLI:

```plaintext
config system settings
    set central-nat {enable | disable}
end
```

When central NAT is enabled, Policy & Objects displays the Central SNAT section.

The Central SNAT policy has many options:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Specify whether you are performing SNAT on IPv4 or IPv6. This option only appears when IPv6 is enabled under Feature Visibility.</td>
</tr>
<tr>
<td>Incoming Interface</td>
<td>Specify one or more interfaces for the ingress traffic.</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>Specify one or more interfaces for the egress traffic.</td>
</tr>
<tr>
<td>Source Address</td>
<td>Specify the address or address group of the source.</td>
</tr>
<tr>
<td>Destination Address</td>
<td>Specify the address or address group of the destination.</td>
</tr>
<tr>
<td>NAT</td>
<td>Enable or disable to perform NAT. When disabled, no source address translation will occur.</td>
</tr>
<tr>
<td>IP Pool Configuration</td>
<td>Use outgoing interface address:</td>
</tr>
<tr>
<td></td>
<td>• Use the address of the outgoing interfaces as source address.</td>
</tr>
<tr>
<td></td>
<td>Use Dynamic IP Pool:</td>
</tr>
<tr>
<td></td>
<td>• Choose an IP Pool to perform source NAT.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Choose from any, TCP, UDP, SCTP, or specify the protocol number to match. For example, for ICMP, click specify with the protocol number 1.</td>
</tr>
<tr>
<td>Explicit port mapping</td>
<td>Enable in order to match this NAT policy only when the following ports are a match:</td>
</tr>
<tr>
<td></td>
<td>• Choose an original source port from one to 65535. NAT'd port will be chosen by the FortiGate based on the IP Pool configuration.</td>
</tr>
<tr>
<td></td>
<td>Explicit port mapping cannot apply to some protocols which do not use ports, such as ICMP. When enabling a NAT policy which uses Explicit port mapping, always consider that ICMP traffic will not match this policy.</td>
</tr>
<tr>
<td></td>
<td>When using IP Pools, only the Overload type IP Pool allows Explicit port mapping. When Explicit port mapping is applied, you must define an original source port range and a translated sort port range. The source port will map one to one with the translated port.</td>
</tr>
<tr>
<td></td>
<td>Refer to Dynamic SNAT to understand how each IP Pool type works.</td>
</tr>
</tbody>
</table>
Policy and Objects

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comments</td>
<td>Enter comments for this NAT policy.</td>
</tr>
<tr>
<td>Enable this policy</td>
<td>Enable or disable this policy.</td>
</tr>
</tbody>
</table>

To configure central SNAT using the CLI:

```plaintext
cfg firewall central-snat-map
edit <policyID number>
  set status {enable|disable}
  set orig-addr <valid address object preconfigured on the FortiGate>
  set srcintf <name of interface on the FortiGate>
  set dst-addr <valid address object preconfigured on the FortiGate>
  set dstintf <name of interface on the FortiGate>
  set protocol <integer for protocol number>
  set orig-port <integer for original port number>
  set nat-port <integer for translated port number>
  set comments <string>
next
end
```

Example one

Apply SNAT to all traffic from port2 to port3.

To configure from the CLI:

```plaintext
cfg firewall central-snat-map
  edit 1
    set srcintf "port3"
    set dstintf "port2"
    set orig-addr "all"
    set dst-addr "all"
next
end
```

Example two

Apply an IP Pool to all traffic from port3 to port2 that are TCP. NAT all other traffic using the outgoing interface IP.

To configure from the CLI:

```plaintext
cfg firewall ippool
  edit "Overload-IPPOOL"
    set startip 192.168.2.201
    set endip 192.168.2.202
next
end
cfg firewall central-snat-map
  edit 1
    set srcintf "port3"
    set dstintf "port2"
    set orig-addr "all"
    set dst-addr "all"
```
Policy and Objects

```
set protocol 6
set nat-ippool "Overload-IPPOOL"
next
edit 2
  set srcintf "port3"
  set dstintf "port2"
  set orig-addr "all"
  set dst-addr "all"
next
end
```

To collect session table output from the CLI:

diagnose sys session list

The TCP session (protocol 6) is NAT’d with Overload-IPPOOL to 192.168.2.201:

```
session info: proto=6 proto_state=05 duration=14 expire=0 timeout=3600 flags=00000000
socktype=0 sockport=0 av_idx=0 use=3
origin-shaper=
reply-shaper=
per_ip_shaper=
class_id=0 ha_id=0 policy_dir=0 tunnel=/ vlan_cos=0/255
state=may_dirty
statistic(bytes/packets/allow_err): org=860/7/1 reply=555/8/1 tuples=2
  tx speed(Bps/kbps): 60/0 rx speed(Bps/kbps): 38/0
origin->sink: org pre->post, reply pre->post dev=9->6/6->9 gwy=192.168.2.1/192.168.0.10
hook=pre dir=org act=snat 192.168.0.10:49531->23.57.57.114:443 (192.168.2.201:61776)
hook=pre dir=reply act=dnat 23.57.57.114:443->192.168.2.201:61776 (192.168.0.10:49531)
prom/before,after) 0/(0,0), 0/(0,0)
dst_mac=04:d5:90:5f:a2:2a
misc=0 policy_id=2 auth_info=0 chk_client_info=0 vd=0
serial=00011065 tos=ff app_list=0 app=0 url_cat=0
sdwan_mbr_seq=0 sdwan_service_id=0
rpdb_link_id=00000000 rpdb_svc_id=0 ngfwid=n/a
npu_state=0x040000
```

A UDP session (protocol 17) is NAT’d to the outgoing interface IP address 192.168.2.86:

```
session info: proto=17 proto_state=01 duration=16 expire=163 timeout=0 flags=00000000
socktype=0 sockport=0 av_idx=0 use=3
origin-shaper=
reply-shaper=
per_ip_shaper=
class_id=0 ha_id=0 policy_dir=0 tunnel=/ helper=dns-udp vlan_cos=0/255
state=may_dirty
statistic(bytes/packets/allow_err): org=59/1/1 reply=187/1/1 tuples=2
  tx speed(Bps/kbps): 3/0 rx speed(Bps/kbps): 11/0
origin->sink: org pre->post, reply pre->post dev=9->6/6->9 gwy=192.168.2.1/192.168.0.10
hook=pre dir=org act=snat 192.168.0.10:52177->4.2.2.1:53 (192.168.2.86:61770)
hook=pre dir=reply act=dnat 4.2.2.1:53->192.168.2.86:61770 (192.168.0.10:52177)
dst_mac=04:d5:90:5f:a2:2a
misc=0 policy_id=2 auth_info=0 chk_client_info=0 vd=0
serial=00011061 tos=ff app_list=0 app=0 url_cat=0
sdwan_mbr_seq=0 sdwan_service_id=0
rpdb_link_id=00000000 rpdb_svc_id=0 ngfwid=n/a
npu_state=0x040000
```
Example three

Apply an IP Pool to all traffic from port3 to port2 that have a specific original port range, mapping the ports to the same NAT'd port range. Nat all other traffic using the outgoing interface IP.

To configure from the CLI:

```
config firewall central-snat-map
edit 1
    set srcintf "port3"
    set dstintf "port2"
    set orig-addr "all"
    set dst-addr "all"
    set orig-port 50000-65535
    set nat-ippool "Overload-IPPOOL"
    set nat-port 50000-65535
next
edit 2
    set srcintf "port3"
    set dstintf "port2"
    set orig-addr "all"
    set dst-addr "all"
next
end
```

To collect session table output from the CLI:

```
diagnose sys session list
```

Traffic with original port in the range between 50000-65535 will be NAT'd with the Overload type IP Pool. The mapped port is in the same port range:

```
session info: proto=17 proto_state=01 duration=3 expire=176 timeout=0 flags=00000000
socktype=0 sockport=0 av_idx=0 use=3
origin-shaper=
reply-shaper=
per_ip_shaper=
class_id=0 ha_id=0 policy_dir=0 tunnel=/ helper=dns-udp vlan_cos=0/255
state=may_dirty
statistic(bytes/packets/allow_err): org=71/1/1 reply=123/1/1 tuples=2
tx speed(Bps/kbps): 23/0 rx speed(Bps/kbps): 40/0
origin->sink: org pre->post, reply pre->post dev=9->6/6->9 qwy=192.168.2.1/192.168.0.10
hook=post dir=org act=snat 192.168.0.10:52540->4.2.2.1:53(192.168.2.201:52540)
hook=pre dir=reply act=dnat 4.2.2.1:53->192.168.2.201:52540(192.168.0.10:52540)
dst_mac=d9:05:6f:12:34
misc=0 policy_id=2 auth_info=0 chk_client_info=0 vd=0
serial=00011399 tos=ff/ff app_list=0 app=0 url_cat=0
sdwan_mbr_seq=0 sdwan_service_id=0
rpdb_link_id=00000000 rpdb_svc_id=0 ngfwd=n/a
npu_state=0x040000
```

Traffic with original port outside the range of 50000-65535 will be NAT'd to the outgoing interface IP:

```
session info: proto=6 proto_state=01 duration=3 expire=3597 timeout=3600 flags=00000000
socktype=0 sockport=0 av_idx=0 use=3
origin-shaper=
reply-shaper=
```
per_ip_shaper=
class_id=0 ha_id=0 policy_dir=0 tunnel=/ vlan_cos=0/255
state=may_dirty
statistic(bytes/packets/allow_err): org=2262/10/1 reply=2526/11/1 tuples=2
tx speed(Bps/kbps): 741/5 rx speed(Bps/kbps): 828/6
orgin->sink: org pre->post, reply pre->post dev=9->6/6->9 qwy=192.168.2.1/192.168.0.10
hook=post dir=org act=snat 192.168.0.10:49805->142.250.68.66:443(192.168.2.86:62214)
hook=pre dir=reply act=dnat 142.250.68.66:443->192.168.2.86:62214(192.168.0.10:49805)
pos/(before,after) 0/(0,0), 0/(0,0)
dst_mac=04:d5:90:5f:a2:2a
misc=0 policy_id=2 auth_info=0 chk_client_info=0 vd=0
serial=0001139a tos=ff/app_list=0 app=0 url_cat=0
sdwan_mbr_seq=0 sdwan_service_id=0
rpdb_link_id=00000000 rpdb_svc_id=0 ngfwid=n/a
npu_state=0x040000

Protocols which do not use ports, such as ICMP, will be NAT’d to the outgoing interface IP:

session info: proto=1 proto_state=00 duration=7 expire=59 timeout=0 flags=00000000
socktype=0 sockport=0 av_idx=0 use=3
origin-shaper=
reply-shaper=
per_ip_shaper=
class_id=0 ha_id=0 policy_dir=0 tunnel=/ vlan_cos=0/255
state=may_dirty
statistic(bytes/packets/allow_err): org=480/8/1 reply=480/8/1 tuples=2
tx speed(Bps/kbps): 66/0 rx speed(Bps/kbps): 66/0
orgin->sink: org pre->post, reply pre->post dev=9->6/6->9 qwy=192.168.2.1/192.168.0.10
hook=post dir=org act=snat 192.168.0.10:1->4.2.2.1:8(192.168.2.86:62209)
hook=pre dir=reply act=dnat 4.2.2.1:62209->192.168.2.86:0(192.168.0.10:1)
dst_mac=04:d5:90:5f:a2:2a
misc=0 policy_id=2 auth_info=0 chk_client_info=0 vd=0
serial=0001138b tos=ff/app_list=0 app=0 url_cat=0
sdwan_mbr_seq=0 sdwan_service_id=0
rpdb_link_id=00000000 rpdb_svc_id=0 ngfwid=n/a
npu_state=0x040000

Configuring an IPv6 SNAT policy

IPv4 and IPv6 central SNAT maps are displayed in the same table.

To configure an IPv6 policy with central SNAT in the GUI:

1. Enable central SNAT:
 a. In the Global VDOM, go to System > VDOM.
 b. Select a VDOM and click Edit. The Edit Virtual Domain Settings pane opens.
 c. Enable Central SNAT.
d. Click OK.

2. In the VDOM with central SNAT enabled (FG-traffic in this example), go to Policy & Objects > Central SNAT and click Create New.

3. Configure the policy settings:
 a. For Type, select IPv6.
 b. Enter the interface, address, and IP pool information.
 c. Configure the remaining settings as needed.

 d. Click OK.

The matching SNAT traffic will be handled by the IPv6 central SNAT map.

To configure an IPv6 policy with central SNAT in the CLI:

1. Enable central SNAT:

   ```
   config vdom
   edit FG-traffic
   config system settings
   set central-nat enable
   end
   next
   end
   ```

2. Create an IPv6 central SNAT policy:

   ```
   config vdom
   edit FG-traffic
   config firewall central-snat-map
   ```
Policy and Objects

```fortios-config
edit 2
   set type ipv6
   set srcintf "wan2"
   set dstintf "wan1"
   set orig-addr6 "all"
   set dst-addr6 "all"
   set nat-ippool6 "test-ippool6-1"
next
end
next
end
```

3. Verify the SNAT traffic:

```fortios-config
(FG-traffic) # diagnose sniffer packet any icmp6 4
interfaces=[any]
filters=[icmp6]
^C
8 packets received by filter
0 packets dropped by kernel
```

SNAT policies with virtual wire pairs

Source NAT (SNAT) can be configured in IPv4 and IPv6 policies with virtual wire pair (VWP) interfaces, and between VWP interfaces when central NAT is enabled.

To configure a policy using SNAT and a VWP interface when central NAT is disabled:

1. Create the VWP interface:

   ```fortios-config
   config system virtual-wire-pair
      edit "test-vw-1"
         set member "port1" "port4"
      next
   end
   ```

2. Create the IP pool. The IP pool must have a different subnet than the VWP peers.

   ```fortios-config
   config firewall ippool
      edit "vwp-pool-1"
         set startip 172.16.222.99
         set endip 172.16.222.100
      next
   end
   ```

3. Configure the firewall policy:

   ```fortios-config
   config firewall policy
      edit 88
   ```
Policy and Objects

```
set srcintf "port4"
set dstintf "port1"
set srcaddr "all"
set dstaddr "all"
set action accept
set schedule "always"
set service "ALL"
set logtraffic all
set nat enable
set ippool enable
set poolname "vwp-pool-1"
```

```
next
end
```

4. Verify the IP pool functions as expected and traffic passes through:

```
# diagnose sniffer packet any icmp 4
interfaces=[any]
filters=[icmp]
23.438095 port4 in 172.16.200.11 -> 172.16.200.156: icmp: echo request
23.438126 port1 out 172.16.222.100 -> 172.16.200.156: icmp: echo request
23.438492 port1 in 172.16.200.156 -> 172.16.222.100: icmp: echo reply
24.439305 port4 out 172.16.200.11 -> 172.16.200.156: icmp: echo request
24.439319 port1 out 172.16.222.100 -> 172.16.200.156: icmp: echo request
24.439684 port1 in 172.16.200.156 -> 172.16.222.100: icmp: echo reply
24.439692 port4 out 172.16.200.156 -> 172.16.200.11: icmp: echo reply
```

8 packets received by filter
0 packets dropped by kernel

To configure a SNAT between VWP interfaces when central NAT is enabled:

1. Enable central NAT:

```
config system settings
    set central-nat enable
end
```

2. Create the VWP interface:

```
config system virtual-wire-pair
    edit "test-vw-1"
        set member "port1" "port4"
    next
end
```

3. Create the IP pool. The IP pool must have a different subnet than the VWP peers.

```
config firewall ippool
    edit "vwp-pool-1"
        set startip 172.16.222.99
        set endip 172.16.222.100
    next
end
```
4. Configure the SNAT policy:

   ```
   config firewall central-snat-map
   edit 2
   set srcintf "port4"
   set dstintf "port1"
   set orig-addr "all"
   set dst-addr "all"
   set nat-ippool "vwp-pool-1"
   next
   end
   ```

5. Configure the firewall policy:

   ```
   config firewall policy
   edit 90
   set srcintf "port4"
   set dstintf "port1"
   set srcaddr "all"
   set dstaddr "all"
   set action accept
   set schedule "always"
   set service "ALL"
   set logtraffic all
   next
   end
   ```

Destination NAT

The following topics provide instructions on configuring policies with destination NAT:

- [Static virtual IPs on page 816](#)
- [Virtual IP with services on page 819](#)
- [Virtual IPs with port forwarding on page 820](#)
- [Virtual server load balance on page 822](#)

Static virtual IPs

Static Virtual IPs (VIP) are used to map external IP addresses to internal IP addresses. This is also called destination NAT, where a packet's destination is being NAT'd, or mapped, to a different address.

Static VIPs are commonly used to map public IP addresses to resources behind the FortiGate that use private IP addresses. A static one-to-one VIP is when the entire port range is mapped. A port forwarding VIP is when the mapping is configured on a specific port or port range.

Some of the VIP configuration options are:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIP Type</td>
<td>• IPv4 (config firewall vip) - The source and destination are both IPv4.</td>
</tr>
<tr>
<td></td>
<td>• IPv6 (config firewall vip6) - The source and destination are both IPv6.</td>
</tr>
<tr>
<td></td>
<td>Note: IPv6 is only available when IPv6 is enabled in the Feature Visibility.</td>
</tr>
<tr>
<td>Setting</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Interface (ext intf)</td>
<td>The external interface that the firewall policy source interface must match. For example, if the external interface is port1, then the VIP can be used in a policy from port1 to port3, but not in a policy from port2 to port3.</td>
</tr>
<tr>
<td></td>
<td>If the external interface is any, then the VIP can be used in any firewall policy.</td>
</tr>
</tbody>
</table>
| Type (type) | - Static NAT - Use an external IP address or address range.
- FQDN - Use an external IP or FQDN address.
- load-balance (CLI only) - Load balance traffic.
- server-load-balance - Load balance traffic across multiple servers. SSL processing can be offloaded to the FortiGate. This type of VIP is configure from Policy & Objects > Virtual Servers.
- dns-translation (CLI only) - DNS translation.
- access-proxy - Used for ZTNA. See ZTNA HTTPS access proxy example on page 989 for details. |
| External IP address/range (ext ip) | In a static NAT VIP, the external IP address is the IP address that the FortiGate listens for traffic on.
When the external interface is not any, 0.0.0.0 can be used to make the external IP address equivalent to the external interface’s IP address.
The external IP address is also used to perform SNAT for the mapped server when the server outbound traffic with a destination interface that matches the external interface. The firewall policy must also have NAT enabled. |
<p>| IPv4 address/range (mapped ip) | The IPv4 address or range that the internal resource is being mapped to. |
| IPv6 address/range (ipv6-mapped) | The IPv6 address or range that the internal resource is being mapped to. |
| srcintf-filter (CLI only) | Listen for traffic to the external IP address only on the specified interface. While the external interface restricts the policies where the VIP can be used, it does not restrict listening to only the external interface. To restrict listening to only a specific interface, srcintf-filter must be configured. |
| nat-source-vip (CLI only) | Force all of the traffic from the mapped server to perform SNAT with the external IP address, regardless of the destination interface. If srcintf-filter is defined, then nat-source-vip only forces SNAT to be performed when the destination matches the srcintf-filter interface. In both cases, the firewall policy must have NAT enabled. |
| arp-reply (CLI only) | Enable/disable responding to ARP requests on the external IP address (default = enable). |
| Source address (src-filter) | Restrict the source IP address, address range, or subnet that is allowed to access the VIP. |
| Services (service) | Set the services that are allowed to be mapped. |
| Port Forwarding (portforward) | Enable port forwarding to specify the port (mappedport) to map to. |</p>
<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>If no services are configured, you can configure the protocol (protocol) to use when forwarding packets, the external service port range (extport) to be mapped to a port range on the destination network, and the mapped port range (mappedport and ipv6-mappedport) on the destination network.</td>
<td></td>
</tr>
</tbody>
</table>

Port Mapping Type

- One to one - Each external service port is mapped to one port. A range is allowed, but the number of ports should be the same.
- Many to Many - The port mapping can be one to one, one to many, or many to one. There are no restrictions on how many external ports must map to internal ports.

Sample configuration

To create a virtual IP in the GUI:

1. In Policy & Objects > Virtual IPs and click Create New > Virtual IP.
2. Select a VIP Type based on the IP versions used.
3. Enter a unique name for the virtual IP.
4. Enter values for the external IP address/range and map to IPv4/IPv6 address/range fields.

```plaintext
config firewall vip
edit "Internal_WebServer"
set extip 10.1.100.199
set extintf "any"
set mappedip "172.16.200.55"
commit
```

To create a virtual IP in the CLI:
To apply a virtual IP to policy in the CLI:

```plaintext
config firewall policy
  edit 8
    set name "Example_Virtual_IP_in_Policy"
    set srcintf "wan2"
    set dstintf "internal"
    set srcaddr "all"
    set dstaddr "Internal_WebServer"
    set action accept
    set schedule "always"
    set service "ALL"
    set nat enable
  next
end
```

Virtual IP with services

Virtual IP with services is a more flexible virtual IP mode. This mode allows users to define services to a single port number mapping.

This topic shows how to use virtual IP with services enabled. This example has one public external IP address. We map TCP ports 8080, 8081, and 8082 to an internal WebServer TCP port 80. This allows remote connections to communicate with a server behind the firewall.

Sample configuration

To create a virtual IP with services in the GUI:

1. In *Policy & Objects > Virtual IPs* and click *Create New > Virtual IP*.
2. Set *VIP Type* to *IPv4*.
3. Enter a unique name for the virtual IP and fill in the other fields.
4. Configure the fields in the *Network* section. For example:
 - Set *Interface* to *any*.
 - Set *External IP Address/Range* to *10.1.100.199*.
 - Set *Mapped IP Address/Range* to *172.16.200.55*.
5. Enable *Optional Filters* and then enable *Services*.
6. In the *Services* field click + to display the *Services* pane.
7. In the *Services* pane select *TCP_8080*, *TCP_8081*, and *TCP_8082*.
8. Enable *Port Forwarding* and set *Map to IPv4 port* to *80*.
9. Click OK.

To see the results:

1. Apply the above virtual IP to the firewall policy.
2. The results are:
 - Access 10.1.100.199:8080 from external network and FortiGate maps to 172.16.200.55:80 in internal network.
 - Access 10.1.100.199:8081 from external network and FortiGate maps to 172.16.200.55:80 in internal network.
 - Access 10.1.100.199:8082 from external network and FortiGate maps to 172.16.200.55:80 in internal network.

To create a virtual IP with services in the CLI:

```bash
config firewall vip
edit "WebServer_VIP_Services"
   set service "TCP_8080" "TCP_8081" "TCP_8082"
   set extip 10.1.100.199
   set extintf "any"
   set portforward enable
   set mappedip "172.16.200.55"
   set mappedport 80
next
end
```

Virtual IPs with port forwarding

If you need to hide the internal server port number or need to map several internal servers to the same public IP address, enable port-forwarding for Virtual IP.
This topic shows how to use virtual IPs to configure port forwarding on a FortiGate unit. This example has one public external IP address. We map TCP ports 8080, 8081, and 8082 to different internal WebServers’ TCP port 80. This allows remote connections to communicate with a server behind the firewall.

Sample configuration

To create a virtual IP with port forwarding in the GUI:

1. In Policy & Objects > Virtual IPs.
2. Click Create New and select Virtual IP.
3. For VIP Type, select IPv4.
4. Enter a unique name for the virtual IP and fill in the other fields.
5. Configure the fields in the Network section. For example:
 - Set Interface to any.
 - Set External IP Address/Range to 10.1.100.199.
 - Set Mapped IP Address/Range to 172.16.200.55.
7. Enable Port Forwarding.
8. Configure the fields in the Port Forwarding section. For example:
 - Set Protocol to TCP.
 - Set External Service Port to 8080.
 - Set Map to IPv4 port to 80.
9. Click OK.
10. Follow the above steps to create two additional virtual IPs.
 a. For one virtual IP:
 - Use a different Mapped IP Address/Range, for example, 172.16.200.56.
 - Set External Service Port to 8081.
- Use the same *Map to IPv4* port number: 80.

 b. For the other virtual IP:
 - Use a different *Mapped IP Address/Range*, for example, 172.16.200.57.
 - Set *External Service Port* to 8082.
 - Use the same *Map to IPv4* port number: 80.

11. Create a *Virtual IP Group* and put the above three virtual IPs into that group.

![Virtual IP Group](image)

To see the results:

1. Apply the above virtual IP to the Firewall policy.
2. The results are:
 - Access 10.1.100.199:8080 from external network and FortiGate maps to 172.16.200.55:80 in internal network.
 - Access 10.1.100.199:8081 from external network and FortiGate maps to 172.16.200.56:80 in internal network.
 - Access 10.1.100.199:8082 from external network and FortiGate maps to 172.16.200.57:80 in internal network

Virtual server load balance

This topic shows a special virtual IP type: virtual server. Use this type of VIP to implement server load balancing.

The FortiOS server load balancing contains all the features of a server load balancing solution. You can balance traffic across multiple backend servers based on multiple load balancing schedules including:

- Static (failover)
- Round robin
- Weighted (to account for different sized servers or based on the health and performance of the server including round trip time and number of connections)

The load balancer supports HTTP, HTTPS, IMAPS, POP3S, SMTPS, SSL/TLS, and generic TCP/UDP and IP protocols. Session persistence is supported based on the SSL session ID based on an injected HTTP cookie, or based on the HTTP or HTTPS host. SSL/TLS load balancing includes protection from protocol downgrade attacks. Server load balancing is supported on most FortiGate devices and includes up to 10,000 virtual servers on high end systems.
SSL/TLS offloading

FortiGate SSL/TLS offloading is designed for the proliferation of SSL/TLS applications. The key exchange and encryption/decryption tasks are offloaded to the FortiGate unit where they are accelerated using FortiASIC technology which provides significantly more performance than a standard server or load balancer. This frees up valuable resources on the server farm to give better response to business operations. Server load balancing offloads most SSL/TLS versions including SSL 3.0, TLS 1.0, and TLS 1.2, and supports full mode or half mode SSL offloading with DH key sizes up to 4096 bits.

FortiGate SSL offloading allows the application payload to be inspected before it reaches your servers. This prevents intrusion attempts, blocks viruses, stops unwanted applications, and prevents data leakage. SSL/TLS content inspection supports TLS versions 1.0, 1.1, and 1.2 and SSL versions 1.0, 1.1, 1.2, and 3.0.

Virtual server requirements

When creating a new virtual server, you must configure the following options:

- Virtual Server Type.
- Load Balancing Methods.
- Health check monitoring (optional).
- Session persistence (optional).
- Virtual Server IP (External IP Address).
- Virtual Server Port (External Port).
- Real Servers (Mapped IP Address & Port).

Virtual server types

Select the protocol to be load balanced by the virtual server. If you select a general protocol such as IP, TCP, or UDP, the virtual server load balances all IP, TCP, or UDP sessions. If you select specific protocols such as HTTP, HTTPS, or SSL, you can apply additional server load balancing features such as Persistence and HTTP Multiplexing.
<table>
<thead>
<tr>
<th>Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP</td>
<td>Select HTTP to load balance only HTTP sessions with the destination port number that matches the Virtual Server Port setting. Change Virtual Server Port to match the destination port of the sessions to be load balanced (usually port 80 for HTTP sessions). You can enable HTTP Multiplexing. You can also set Persistence to HTTP Cookie to enable cookie-based persistence.</td>
</tr>
<tr>
<td>HTTPS</td>
<td>Select HTTPS to load balance only HTTPS sessions with the destination port number that matches the Virtual Server Port setting. Change Virtual Server Port to match the destination port of the sessions to be load balanced (usually port 443 for HTTPS sessions). You can enable HTTP Multiplexing. You can also set Persistence to HTTP Cookie to enable cookie-based persistence, or you can set Persistence to SSL Session ID.</td>
</tr>
<tr>
<td>IMAPS</td>
<td>Select IMAPS to load balance only IMAPS sessions with the destination port number that matches the Virtual Server Port setting. Change Virtual Server Port to match the destination port of the sessions to be load balanced (usually port 993 for IMAPS sessions). You can also set Persistence to SSL Session ID.</td>
</tr>
<tr>
<td>POP3S</td>
<td>Select POP3S to load balance only POP3S sessions with the destination port number that matches the Virtual Server Port setting. Change Virtual Server Port to match the destination port of the sessions to be load balanced (usually port 995 for POP3S sessions). You can also set Persistence to SSL Session ID.</td>
</tr>
<tr>
<td>SMTPS</td>
<td>Select SMTPS to load balance only SMTPS sessions with the destination port number that matches the Virtual Server Port setting. Change Virtual Server Port to match the destination port of the sessions to be load balanced (usually port 465 for SMTPS sessions). You can also set Persistence to SSL Session ID.</td>
</tr>
<tr>
<td>SSL</td>
<td>Select SSL to load balance only SSL sessions with the destination port number that matches the Virtual Server Port setting. Change Virtual Server Port to match the destination port of the sessions to be load balanced. You can also set Persistence to SSL Session ID.</td>
</tr>
<tr>
<td>TCP</td>
<td>Select TCP to load balance only TCP sessions with the destination port number that matches the Virtual Server Port setting. Change Virtual Server Port to match the destination port of the sessions to be load balanced.</td>
</tr>
<tr>
<td>UDP</td>
<td>Select UDP to load balance only UDP sessions with the destination port number that matches the Virtual Server Port setting. Change Virtual Server Port to match the destination port of the sessions to be load balanced.</td>
</tr>
<tr>
<td>IP</td>
<td>Select IP to load balance all sessions accepted by the security policy that contains this virtual server.</td>
</tr>
</tbody>
</table>

Load balancing methods

The load balancing method defines how sessions are load balanced to real servers.

All load balancing methods do not send traffic to real servers that are down or not responding. FortiGate can only determine if a real server is not responding by using a health check monitor. You should always add at least one health check monitor to a virtual server or to real servers; otherwise load balancing might try to distribute sessions to real servers that are not functioning.
<table>
<thead>
<tr>
<th>Load Balancing Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>The traffic load is statically spread evenly across all real servers. Sessions are not assigned according to how busy individual real servers are. This load balancing method provides some persistence because all sessions from the same source address always go to the same real server. Because the distribution is stateless, so if a real server is added, removed, or goes up or down, the distribution is changed and persistence might be lost.</td>
</tr>
<tr>
<td>Round Robin</td>
<td>Directs new requests to the next real server. This method treats all real servers as equals regardless of response time or the number of connections. This method does not direct requests to real servers that are down or non-responsive.</td>
</tr>
<tr>
<td>Weighted</td>
<td>Real servers with a higher weight value receive a larger percentage of connections. Set the real server weight when adding a real server.</td>
</tr>
<tr>
<td>Least Session</td>
<td>Directs requests to the real server that has the least number of current connections. This method works best in environments where the real servers or other equipment you are load balancing all have similar capabilities. This load balancing method uses the FortiGate session table to track the number of sessions being processed by each real server. The FortiGate unit cannot detect the number of sessions actually being processed by a real server.</td>
</tr>
<tr>
<td>Least RTT</td>
<td>Directs sessions to the real server with the lowest round trip time. The round trip time is determined by a ping health check monitor. The default is 0 if no ping health check monitors are added to the virtual server.</td>
</tr>
<tr>
<td>First Alive</td>
<td>Directs sessions to the first live real server. This load balancing schedule provides real server failover protection by sending all sessions to the first live real server. If a real server fails, all sessions are sent to the next live real server. Sessions are not distributed to all real servers so all sessions are processed by the first real server only.</td>
</tr>
<tr>
<td>HTTP Host</td>
<td>Load balances HTTP host connections across multiple real servers using the host’s HTTP header to guide the connection to the correct real server.</td>
</tr>
</tbody>
</table>

Health check monitoring

In the FortiGate GUI, you can configure health check monitoring so that the FortiGate unit can verify that real servers are able respond to network connection attempts. If a real server responds to connection attempts, the load balancer continues to send sessions to it. If a real server stops responding to connection attempts, the load balancer assumes that the server is down and does not send sessions to it. The health check monitor configuration determines how the load balancer tests real servers. You can use a single health check monitor for multiple load balancing configurations. You can configure TCP, HTTP, DNS, and ping health check monitors. You usually set the health check monitor to use the same protocol as the traffic being load balanced to it. For example, for an HTTP load balancing configuration, you would normally use an HTTP health check monitor.

Session persistence

Use persistence to ensure a user is connected to the same real server every time the user makes an HTTP, HTTPS, or SSL request that is part of the same user session. For example, if you are load balancing HTTP and HTTPS sessions to a collection of eCommerce web servers, when users make a purchase, they will be starting multiple sessions as they navigate the eCommerce site. In most cases, all the sessions started by this user during one eCommerce session should be processed by the same real server. Typically, the HTTP protocol keeps track of these related sessions using cookies. HTTP cookie persistence ensure all sessions that are part of the same user session are processed by the same real server.
When you configure persistence, the FortiGate unit load balances a new session to a real server according to the load balance method. If the session has an HTTP cookie or an SSL session ID, the FortiGate unit sends all subsequent sessions with the same HTTP cookie or SSL session ID to the same real server.

Real servers

Add real servers to a load balancing virtual server to provide information the virtual server requires to send sessions to the server. A real server configuration includes the IP address of the real server and port number the real server receives sessions on. The FortiGate unit sends sessions to the real server’s IP address using the destination port number in the real server configuration.

When configuring a real server, you can also specify the weight (if the load balance method is set to Weighted) and you can limit the maximum number of open connections between the FortiGate unit and the real server. If the maximum number of connections is reached for the real server, the FortiGate unit automatically switches all further connection requests to other real servers until the connection number drops below the limit. Setting *Maximum Connections* to 0 means that the FortiGate unit does not limit the number of connections to the real server.

Sample of HTTP load balancing to three real web servers

This example describes the steps to configure the load balancing configuration below. In this configuration, a FortiGate unit is load balancing HTTP traffic from the Internet to three HTTP servers on the internal network. HTTP sessions are accepted at the wan1 interface with destination IP address 172.20.120.121 on TCP port 8080, and forwarded from the internal interface to the web servers. When forwarded, the destination address of the session is translated to the IP address of one of the web servers.

This load balancing configuration also includes session persistence using HTTP cookies, round-robin load balancing, and TCP health monitoring for the real servers. Ping health monitoring consists of the FortiGate unit using ICMP ping to ensure the web servers can respond to network traffic.
General steps:

1. Create a health check monitor.
 A ping health check monitor causes the FortiGate to ping the real servers every 10 seconds. If one of the servers does not respond within 2 seconds, the FortiGate unit will retry the ping 3 times before assuming that the HTTP server is not responding.

2. Create a load balance virtual server with three real servers.

3. Add the load balancing virtual server to a policy as the destination address.

To see the virtual servers and health check monitors options in the GUI, Load Balance must be selected in Feature Visibility > Additional Features. See Feature visibility on page 2165 on page 1 for details.

Configure a load balancing virtual server in the GUI

To create a health check monitor:

1. Go to Policy & Objects > Health Check.
2. Click Create New.
3. Set the following:
 - Name to Ping-mon-1
 - Type to Ping
 - Interval to 10 seconds
 - Timeout to 2 seconds
 - Retry to 3 attempt(s)

4. Click OK.

To create a virtual server:

1. Go to Policy & Objects > Virtual Servers.
2. Click Create New.
3. Set the following:
 - Name to Vserver-HTTP-1
 - Type to HTTP
 - Interface to wan1
 - Virtual Server IP to 172.20.120.121
 - Virtual Server Port to 8080
4. In the Real Servers table, click Create New.
5. Set the following for the first real server:
 - Type to IP
 - IP Address to 10.31.101.30
 - Port to 80
 - Max Connections to 0
 - Mode to Active

6. Click OK. Configure two more real servers with IP addresses 10.31.101.40 and 10.31.101.50, and the same settings as the first real server.
7. Click OK.
To create a security policy that includes the load balance virtual server as the destination address:

1. Go to Policy & Objects > Firewall Policy.
2. Click Create New.
3. Set the Inspection Mode to Proxy-based. The new virtual server will not be available if the inspection mode is Flow-based.
4. Set the following:
 - Name to LB-policy
 - Incoming Interface to wan1
 - Outgoing Interface to internal
 - Source to all
 - Destination to Vserver-HTTP-1
 - Schedule to always
 - Service to ALL
 - Action to ACCEPT
5. Enable NAT and set IP Pool Configuration to Use Outgoing Interface Address.
6. Enable AntiVirus and select an antivirus profile.
7. Click OK.
Configure a load balancing virtual server in the CLI

To configure HTTP load balancing to three real web servers in the CLI:

1. Create a health check monitor:

```plaintext
config firewall ldb-monitor
    edit "Ping-mon-1"
      set type ping
      set interval 10
      set timeout 2
      set retry 3
    next
end
```

2. Create a virtual server:

```plaintext
config firewall vip
    edit "Vserver-HTTP-1"
      set type server-load-balance
      set extip 172.20.120.121
      set extintf "any"
      set server-type http
      set monitor "Ping-mon-1"
      set ldb-method round-robin
      set persistence http-cookie
      set extport 8080
    config realservers
      edit 1
        set type ip
        set ip 10.31.101.30
        set port 80
      next
      edit 2
        set type ip
        set ip 10.31.101.40
        set port 80
      next
      edit 3
        set type ip
        set ip 10.31.101.50
        set port 80
      next
    end
next
end
```

3. Add the load balancing virtual server to a policy as the destination address:

```plaintext
config firewall policy
    edit 2
      set name "LB-policy"
      set inspection-mode proxy
      set srcintf "wan1"
      set dstintf "internal"
      set srcaddr "all"
      set dstaddr "Vserver-HTTP-1"
      set action accept
```
set schedule "always"
set service "ALL"
set utm-status enable
set ssl-ssh-profile "certificate-inspection"
set av-profile "default"
set fsso disable
set nat enable
next
end

Results

Traffic accessing 172.20.120.121:8080 is forwarded in turn to the three real servers.

If the access request has an http-cookie, FortiGate forwards the access to the corresponding real server according to the cookie.

Examples and policy actions

The following topics provide examples and instructions on policy actions:

- NAT64 policy and DNS64 (DNS proxy) on page 831
- NAT46 policy on page 836
- NAT46 and NAT64 policy and routing configurations on page 839
- Mirroring SSL traffic in policies on page 850
- Recognize anycast addresses in geo-IP blocking on page 852
- Matching GeoIP by registered and physical location on page 853
- HTTP to HTTPS redirect for load balancing on page 855
- Use Active Directory objects directly in policies on page 856
- No session timeout on page 860
- MAP-E support on page 861
- Seven-day rolling counter for policy hit counters on page 865
- Cisco Security Group Tag as policy matching criteria on page 866

NAT64 policy and DNS64 (DNS proxy)

NAT64 policy translates IPv6 addresses to IPv4 addresses so that a client on an IPv6 network can communicate transparently with a server on an IPv4 network.

NAT64 policy is usually implemented in combination with the DNS proxy called DNS64. DNS64 synthesizes AAAA records from A records and is used to synthesize IPv6 addresses for hosts that only have IPv4 addresses. DNS proxy and DNS64 are interchangeable terms.
Policy and Objects

Sample topology

In this example, a host on the internal IPv6 network communicates with ControlPC.qa.fortinet.com that only has IPv4 address on the Internet. Central NAT is disabled.

1. The host on the internal network does a DNS lookup for ControlPC.qa.fortinet.com by sending a DNS query for an AAAA record for ControlPC.qa.fortinet.com.
2. The DNS query is intercepted by the FortiGate DNS proxy. The DNS proxy performs an A-record query for ControlPC.qa.fortinet.com and gets back an RRSet containing a single A record with the IPv4 address 172.16.200.55.
3. The DNS proxy then synthesizes an AAAA record. The IPv6 address in the AAAA record begins with the configured NAT64 prefix in the upper 96 bits and the received IPv4 address in the lower 32 bits. By default, the resulting IPv6 address is 64:ff9b::172.16.200.55.
4. The host on the internal network receives the synthetic AAAA record and sends a packet to the destination address 64:ff9b::172.16.200.55.
5. The packet is routed to the FortiGate internal interface (port10) where it is accepted by the NAT64 security policy.
6. The FortiGate translates the destination address of the packets from IPv6 address 64:ff9b::172.16.200.55 to IPv4 address 172.16.200.55 and translates the source address of the packets to 172.16.200.200 (or another address in the IP pool range) and forwards the packets out the port9 interface to the Internet.

Sample configuration

To configure a NAT64 policy with DNS64 in the GUI:

1. Enable IPv6 and DNS database:
 a. Go to System > Feature Visibility.
 b. In the Core Features section, enable IPv6.
 c. In the Additional Features section, enable DNS Database.
 d. Click Apply.
2. Enable DNS proxy on the IPv6 interface:
 a. Go to Network > DNS Servers.
 b. In the DNS Service on Interface table, click Create New.
 c. For Interface, select port10.
 d. For Mode, select Forward to System DNS.
 e. Click OK.
3. Configure the IPv6 DHCP server:
 a. Go to Network > Interfaces and edit port10.
 b. Enable DHCPv6 Server and enter the following:
IPv6 subnet | 2001:db8:1::/64
---|---
DNS service | Specify
DNS server 1 | 2001:db8:1::10

c. Click OK.

4. Configure the IPv6 VIP for the destination IPv6 addresses:
These are all of the IPv6 addresses that the FortiGate DNS proxy synthesizes when an IPv6 device performs a DNS query that resolves to an IPv4 Address. In this example, the synthesized IPv6 address in theAAAA record begins with the configured NAT64 prefix in the upper 96 bits, so the VIP is for all the IPv6 addresses that begin with 64:ff9b.
 a. Go to Policy & Objects > Virtual IPs and click Create New > Virtual IP.
 b. Enter the following:
 | VIP type | IPv6
 | Name | vip6
 | Eternal IP address/range | 64:ff9b::-64:ff9b::ffff:ffff
 | Map to IPv4 address/range | Use Embedded
 c. Click OK.

5. Configure the IPv6 firewall address for the internal network:
 a. Click Create New > Address.
 b. Enter the following:
 | Category | IPv6 Address
 | Name | internal-net6
 | Type | IPv6 Subnet
 | IP/Netmask | 2001:db8:1::/48
 c. Click OK.

6. Configure the IP pool containing the IPv4 address that is used as the source address of the packets exiting port9:
 a. Go to Policy & Objects > IP Pools and click Create New.
 b. Enter the following:
 | IP Pool Type | IPv4 Pool
 | Name | exit-pool4
 | Type | Overload
 | External IP address/range | 172.16.200.200-172.16.200.207
 | NAT64 | Enable

 External IP address/range must start and end on the boundaries of a valid subnet. For example, 172.16.200.0-172.16.200.7 and 172.16.200.16-172.16.200.31 are a valid subnets (/29 and /28 respectively).
c. Click OK.

7. Configure the NAT64 policy:
 a. Go to Policy & Objects > Firewall Policy and click Create New.
 b. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>policy64-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>port10</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>port9</td>
</tr>
<tr>
<td>Source</td>
<td>internal-net6</td>
</tr>
<tr>
<td>Destination</td>
<td>vip6</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>ALL</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>NAT</td>
<td>NAT64</td>
</tr>
<tr>
<td>IP Pool Configuration</td>
<td>exit-pool4</td>
</tr>
</tbody>
</table>

c. Click OK.

To configure a NAT64 policy with DNS64 in the CLI:

1. Enable IPv6 and DNS database:
   ```
   config system global
   set gui-ipv6 enable
   end
   config system settings
   set gui-dns-database enable
   end
   ```

2. Enable DNS proxy on the IPv6 interface:
   ```
   config system dns-server
   edit "port10"
   set mode forward-only
   next
   end
   ```

3. Configure the IPv6 DHCP server:
   ```
   config system dhcp6 server
   edit 1
   set subnet 2001:db8:1::/64
   set interface "port10"
   set dns-server1 2001:db8:1::10
   next
   end
   ```

4. Configure the IPv6 VIP for the destination IPv6 addresses:
config firewall vip6
 edit "vip6"
 set extip 64:ff9b::64:ff9b::ffff:ffff
 set embedded-ipv4-address enable
 next
end

5. Configure the IPv6 firewall address for the internal network:

config firewall address6
 edit "internal-net6"
 set ip6 2001:db8:1::/48
 next
end

6. Configure the IP pool containing the IPv4 address that is used as the source address of the packets exiting port9:

config firewall ippool
 edit "exit-pool4"
 set startip 172.16.200.200
 set endip 172.16.200.207
 set nat64 enable
 next
end

7. Configure the NAT64 policy:

config firewall policy
 edit 1
 set name "policy64-1"
 set srcintf "port10"
 set dstintf "port9"
 set action accept
 set nat64 enable
 set srcaddr "all"
 set dstaddr "all"
 set srcaddr6 internal-net6
 set dstaddr6 vip6
 set schedule "always"
 set service "ALL"
 set ippool enable
 set poolname "exit-pool4"
 next
end

To enable DNS64 and related settings using the CLI:

Enabling DNS64 means that all IPv6 traffic received by the current VDOM can be subject to NAT64 if the source and destination address matches an NAT64 security policy.

By default, the setting always-synthesize-aaaa-record is enabled. If you disable this setting, the DNS proxy (DNS64) will attempt to find an AAAA records for queries to domain names and therefore resolve the host names to IPv6 addresses. If the DNS proxy cannot find an AAAA record, it synthesizes one by adding the NAT64 prefix to the A record.
config system dns64
 set status {enable | disable}
 set dns64-prefix <ipv6-prefix>
 set always-synthesize-aaaa-record {enable | disable}
end

By default, the `dns64-prefix` is 64:ff9b::/96.

NAT46 policy

NAT46 refers to the mechanism that allows IPv4 addressed hosts to communicate with IPv6 hosts. Without such a mechanism, IPv4 environments cannot connect to IPv6 networks.

Sample topology

In this example, an IPv4 client tries to connect to an IPv6 server. A VIP is configured on FortiGate to map the server IPv6 IP address 2000:172:16:200::55 to an IPv4 address 10.1.100.55. On the other side, an IPv6 IP pool is configured and the source address of packets from client are changed to the defined IPv6 address. In this setup, the client PC can access the server by using IP address 10.1.100.55.

Sample configuration

To configure NAT46 in the GUI:

1. **Enable IPv6:**
 a. Go to **System > Feature Visibility**.
 b. In the **Core Features** section, enable **IPv6**.
 c. Click **Apply**.
2. **Configure the VIP:**
 a. Go to **Policy & Objects > Virtual IPs and click **Create New > Virtual IP**.
 b. Enter the following:

<table>
<thead>
<tr>
<th>VIP type</th>
<th>IPv4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>vip46_server</td>
</tr>
<tr>
<td>Interface</td>
<td>port2</td>
</tr>
<tr>
<td>Type</td>
<td>Static NAT</td>
</tr>
<tr>
<td>External IP address/range</td>
<td>10.1.100.55</td>
</tr>
<tr>
<td>Map to IPv6 address/range</td>
<td>2000:172:16:200::55</td>
</tr>
</tbody>
</table>

c. Click **OK**.
3. Configure the IPv6 IP pool:
 a. Go to Policy & Objects > IP Pools and click Create New.
 b. Enter the following:

<table>
<thead>
<tr>
<th>IP Pool Type</th>
<th>IPv6 Pool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>client_external</td>
</tr>
<tr>
<td>NAT46</td>
<td>Enable</td>
</tr>
</tbody>
</table>
 c. Click OK.

4. Configure the firewall policy:
 a. Go to Policy & Objects > Firewall Policy and click Create New.
 b. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>policy46-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>port10</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>port9</td>
</tr>
<tr>
<td>Source</td>
<td>all</td>
</tr>
<tr>
<td>Destination</td>
<td>vip46_server</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>ALL</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>NAT</td>
<td>NAT46</td>
</tr>
<tr>
<td>IP Pool Configuration</td>
<td>client_external</td>
</tr>
</tbody>
</table>
 c. Configure the other settings as needed.
 d. Click OK.

To configure NAT46 in the CLI:

1. Enable IPv6:
   ```
cfg system global
   set gui-ipv6 enable
   end
   ```

2. Configure the VIP:
   ```
cfg firewall vip
   edit "vip46_server"
   set extip 10.1.100.55
   set nat44 disable
   set nat46 enable
   set extintf "port2"
   set ipv6-mappedip 2000:172:16:200::55
   ```
3. Configure the IPv6 IP pool:

```plaintext
config firewall ippool6
edit "client_external"
    set startip 2000:172:16:201::
    set endip 2000:172:16:201::7
    set nat46 enable
next
end
```

4. Configure the firewall policy:

```plaintext
config firewall policy
edit 2
    set name "policy46-1"
    set srcintf "port10"
    set dstintf "port9"
    set action accept
    set nat46 enable
    set srcaddr "all"
    set dstaddr "vip46_server"
    set srcaddr6 "all"
    set dstaddr6 "all"
    set schedule "always"
    set service "ALL"
    set logtraffic all
    set auto-asic-offload disable
    set ippool enable
    set poolname6 "client_external"
next
end
```

Sample troubleshooting

To trace the flow and troubleshoot:

```plaintext
# diagnose debug flow filter saddr 10.1.100.11
# diagnose debug flow show function-name enable
# diagnose debug flow show iprope enable
# diagnose debug flow trace iprope start 5
```

```
id=20085 trace_id=1 func=print_pkt_detail line=5401 msg="vd-root:0 received a packet (proto=1, 10.1.100.11:27592->10.1.100.55:2048) from port10. type=8, code=0, id=27592, seq=1."
```

```
id=20085 trace_id=1 func=init_ip_session_common line=5561 msg="allocate a new session-000003b9"
```

```
id=20085 trace_id=1 func=iprope_dnat_check line=4948 msg="in-[port10], out-[]"
id=20085 trace_id=1 func=iprope_dnat_tree_check line=822 msg="len=1"
```
NAT46 and NAT64 policy and routing configurations

Multiple NAT46 and NAT64 related objects are consolidated into regular objects. A per-VDOM virtual interface, naf.<vdom>, is automatically added to process NAT46/NAT64 traffic. The features include:

- **vip46 and vip64 settings are consolidated in vip and vip6 configurations.**
- **policy46 and policy64 settings are consolidated in firewall policy settings.**
- **nat46&nat64 are included in firewall policy settings.**
- **ippool and ippool6 support NAT46 and NAT64 (when enabled, the IP pool should match a subnet).**
- **Central SNAT supports NAT46 and NAT64.**
- **add-nat46:route in ippool6 and add-nat64:route in ippool are enabled by default. The FortiGate generates a static route that matches the IP range in ippool6 or ippool for the naf tunnel interface.**

Automatic processing of the naf tunnel interface is not supported in security policies.

To configure NAT46/NAT64 translation, use the standard vip/vip6 setting, apply it in a firewall policy, enable NAT46/NAT64, and enter the IP pool to complete the configuration.
The external IP address cannot be the same as the external interface IP address.

Examples

IPv6 must be enabled to configure these examples. In the GUI, so go to System > Feature Visibility and enable IPv6. In the CLI, enter the following:

```bash
config system global
    set gui-ipv6 enable
end
```

NAT46 policy

In this example, a client PC is using IPv4 and an IPv4 VIP to access a server that is using IPv6. The FortiGate uses NAT46 to translate the request from IPv4 to IPv6 using the virtual interface naf.root. An ippool6 is applied so that the request is SNATed to the ippool6 address (2000:172:16:200::1 - 2000:172:16:101::1).

To create a NAT46 policy in the GUI:

1. **Configure the VIP:**
 a. Go to Policy & Objects > Virtual IPs and click Create New > VIP.
 b. Enter the following:

<table>
<thead>
<tr>
<th>VIP type</th>
<th>IPv4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>test-vip46-1</td>
</tr>
<tr>
<td>Interface</td>
<td>To_vlan20</td>
</tr>
<tr>
<td>Type</td>
<td>Static NAT</td>
</tr>
<tr>
<td>External IP address/range</td>
<td>10.1.100.150</td>
</tr>
<tr>
<td>Map to IPv6 address/range</td>
<td>2000:172:16:200::156</td>
</tr>
</tbody>
</table>
2. Configure the IPv6 pool:
 a. Go to Policy & Objects > IP Pools and click Create New.
 b. Enter the following:

<table>
<thead>
<tr>
<th>IP Pool Type</th>
<th>IPv6 Pool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>test-ippool6-1</td>
</tr>
<tr>
<td>NAT46</td>
<td>Enable</td>
</tr>
</tbody>
</table>

 c. Click OK.

3. Configure the firewall policy:
 a. Go to Policy & Objects > Firewall Policy and click Create New or edit an existing policy.
 b. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>policy46-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>To_vlan20</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>To_vlan30</td>
</tr>
<tr>
<td>Source</td>
<td>all</td>
</tr>
<tr>
<td>Destination</td>
<td>test-vip46-1</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
</tbody>
</table>
Policy and Objects

<table>
<thead>
<tr>
<th>Service</th>
<th>ALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>NAT</td>
<td>NAT46</td>
</tr>
<tr>
<td>IP Pool Configuration</td>
<td>test-ippool6-1</td>
</tr>
</tbody>
</table>

c. Configure the other settings as needed.

d. Click OK.

To create a NAT46 policy in the CLI:

1. **Configure the VIP:**
   ```
   config firewall vip
   edit "test-vip46-1"
       set extsip 10.1.100.150
       set nat44 disable
       set nat46 enable
       set extintf "port24"
       set arp-reply enable
       set ipv6-mappedip 2000:172:16:200::156
   next
   end
   ```

2. **Configure the IPv6 pool:**
   ```
   config firewall ippool6
   edit "test-ippool6-1"
       set startip 2000:172:16:101::1
       set endip 2000:172:16:101::1
       set nat46 enable
       set add-nat46-route enable
   ```
3. Configure the firewall policy:

```plaintext
config firewall policy
edit 2
set name "policy46-1"
set srcintf "port24"
set dstintf "port17"
set action accept
set nat46 enable
set srcaddr "all"
set dstaddr "test-vip46-1"
set srcaddr6 "all"
set dstaddr6 "all"
set schedule "always"
set service "ALL"
set logtraffic all
set auto-asic-offload disable
set ippool enable
set poolname6 "test-ippool6-1"
next
end
```

To verify the traffic and session tables:

1. Verify the traffic by the sniffer packets:

```plaintext
(rroot) # diagnose sniffer packet any 'icmp or icmp6' 4
interfaces=[any]
filters=[icmp or icmp6]
2.593302 port24 in 10.1.100.41 -> 10.1.100.150: icmp: echo request
2.593344 naf.root out 10.1.100.41 -> 10.1.100.150: icmp: echo request
2.593790 naf.root in 10.1.100.150 -> 10.1.100.41: icmp: echo reply
2.593804 port24 out 10.1.100.150 -> 10.1.100.41: icmp: echo reply
11 packets received by filter
0 packets dropped by kernel
```

2. Verify the session tables for IPv4 and IPv6:

```plaintext
(rroot) # diagnose sys session list
session info: proto=1 proto_state=00 duration=2 expire=59 timeout=0 flags=00000000
socktype=0 sockport=0 av_idx=0 use=3
origin-shaper=
reply-shaper=
per_ip_shaper=
class_id=0 ha_id=0 policy_dir=0 tunnel=/ vlan_cos=0/255
state=log may_dirty f00 netflow-origin netflow-reply
statistic(bytes/packets/allow_err): org=252/3/1 reply=252/3/1 tuples=2
tx speed(Bps/kbps): 106/0 rx speed(Bps/kbps): 106/0
```
orgin->sink: org pre->post, reply pre->post dev=24-53/53-24
gwy=10.1.100.150/10.1.100.41
hook=pre dir=org act=noop 10.1.100.41:29388->10.1.100.150:8(0.0.0.0:0)
hook=post dir=reply act=noop 10.1.100.150:29388->10.1.100.41:0(0.0.0.0:0)
misc=0 policy_id=2 auth_info=0 chk_client_info=0 vd=0
serial=00012b77 tos=ff/ff app_list=0 app=0 url_cat=0
sdwan_mbr_seq=0 sdwan_service_id=0
rpdb_link_id=00000000 rpdb_svc_id=0 ngfwid=n/a
npu_state=0x040001 no_offload
no_ofld_reason: disabled-by-policy non-npu-intf
total session 1

(root) # diagnose sys session6 list
session6 info: proto=58 proto_state=0 duration=5 expire=56 timeout=0 flags=00000000
sockport=0 socktype=0 use=3
origin-shaper=
reply-shaper=
per_ip_shaper=
class_id=0 ha_id=0 policy_dir=0 tunnel=/ vlan_cos=0/0
state=log may_dirty
statistic(byte/packets/allow_err): org=312/3/0 reply=312/3/0 tuples=2
tx speed(Bps/kbps): 0/0 rx speed(Bps/kbps): 0/0
orgin->sink: org pre->post, reply pre->post dev=53-17/17-53
peer=10.1.100.150:29388->10.1.100.41:0 naf=2
hook=post dir=org act=noop 10.1.100.41:29388->10.1.100.150:8(0.0.0.0:0)
hook=post dir=reply act=noop 10.1.100.150:29388->10.1.100.41:0(0.0.0.0:0)
misc=0 policy_id=2 auth_info=0 chk_client_info=0 vd=0
serial=00012b77 tos=ff/ff ips_view=1024 app_list=0 app=0 url_cat=0
rpdb_link_id = 00000000 ngfwid=n/a
npu_state=0x000001 no_offload
no_ofld_reason: disabled-by-policy
total session 1

The IPv4 session is between the incoming physical interface port24 and naf.root. The IPv6 session is between the naf.root and the outgoing physical interface port17.

NAT64 policy

In this example, a client PC is using IPv6 and an IPv6 VIP to access a server that is using IPv4. The FortiGate uses NAT64 to translate the request from IPv6 to IPv4 using the virtual interface naf.root. An ippool is applied so that the request is SNATed to the ippool address (172.16.101.2 - 172.16.101.3).

An embedded VIP64 object is used in this configuration so a specific IPv4 mapped IP does not need to be set. The lower 32 bits of the external IPv6 address are used to map to the IPv4 address. Only an IPv6 prefix is defined. In this example, the IPv6 prefix is 2001:10:1:100::; so the IPv6 address 2001:10:1:100::ac10:c89c will be translated to 172.16.200.156.
To create a NAT64 policy in the GUI:

1. Configure the VIP:
 a. Go to Policy & Objects > Virtual IPs and click Create New > VIP.
 b. Enter the following:

<table>
<thead>
<tr>
<th>VIP type</th>
<th>IPv6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>test-vip64-1</td>
</tr>
<tr>
<td>External IP address/range</td>
<td>2000:10:1:100::150</td>
</tr>
<tr>
<td>Map to IPv4 address/range</td>
<td>Specify: 172.16.200.156</td>
</tr>
</tbody>
</table>

 c. Click OK.

2. Configure the VIP with the embedded IPv4 address enabled:
 a. Go to Policy & Objects > Virtual IPs and click Create New > VIP.
 b. Enter the following:

<table>
<thead>
<tr>
<th>VIP type</th>
<th>IPv6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>test-vip64-2</td>
</tr>
<tr>
<td>External IP address/range</td>
<td>2001:10:1:100::-2001:10:1:100::ffff:ffff</td>
</tr>
<tr>
<td>Map to IPv4 address/range</td>
<td>Use Embedded</td>
</tr>
</tbody>
</table>
3. Configure the IP pool:
 a. Go to Policy & Objects > IP Pools and click Create New.
 b. Enter the following:

<table>
<thead>
<tr>
<th>IP Pool Type</th>
<th>IPv4 Pool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>test-ippool4-1</td>
</tr>
<tr>
<td>Type</td>
<td>Overload</td>
</tr>
<tr>
<td>External IP address/range</td>
<td>172.16.101.2-172.16.101.3</td>
</tr>
<tr>
<td>NAT64</td>
<td>Enable</td>
</tr>
</tbody>
</table>

 c. Click OK.

4. Configure the firewall policy:
 a. Go to Policy & Objects > Firewall Policy and click Create New or edit an existing policy.
 b. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>policy64-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>To_vlan20</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>To_vlan30</td>
</tr>
<tr>
<td>Source</td>
<td>all</td>
</tr>
<tr>
<td>Destination</td>
<td>test-vip64-1</td>
</tr>
<tr>
<td></td>
<td>test-vip64-2</td>
</tr>
</tbody>
</table>
Schedule | always
--- | ---
Service | ALL
Action | ACCEPT
NAT | NAT64
IP Pool Configuration | test-ippool4-1

d. Configure the other settings as needed.

e. Click OK.

To create a NAT64 policy in the CLI:

1. Configure the VIP:
   ```
   config firewall vip6  
   edit "test-vip64-1"  
   set extip 2000:10:1:100::150  
   set nat66 disable  
   set nat64 enable  
   set ipv4-mappedip 172.16.200.156  
   next  
   end
   ```

2. Configure the VIP with the embedded IPv4 address enabled:
   ```
   config firewall vip6  
   edit "test-vip64-2"  
   set nat66 disable  
   set nat64 enable  
   set embedded-ipv4-address enable
   ```
3. Configure the IP pool:

```plaintext
config firewall ippool
  edit "test-ippool4-1"
  set startip 172.16.101.2
  set endip 172.16.101.3
  set nat64 enable
  set add-nat64-route enable
next
end
```

4. Configure the firewall policy:

```plaintext
config firewall policy
  edit 1
  set name "policy64-1"
  set srcintf "port24"
  set dstintf "port17"
  set action accept
  set nat64 enable
  set srcaddr "all"
  set dstaddr "all"
  set srcaddr6 "all"
  set dstaddr6 "all"
  set dstaddr6 "test-vip64-1" "test-vip64-2"
  set schedule "always"
  set service "ALL"
  set logtraffic all
  set auto-asic-offload disable
  set ippool enable
  set poolname "test-ippool4-1"
next
end
```

To verify the traffic and session tables:

1. Verify the VIP64 traffic by the sniffer packets:

```plaintext
(root) # diagnose sniffer packet any 'icmp or icmp6' 4
  interfaces=[any]
  filters=[icmp or icmp6]
  20.578854 port17 out 172.16.101.2 -> 172.16.200.156: icmp: echo request
  20.579083 port17 in 172.16.200.156 -> 172.16.101.2: icmp: echo reply
11 packets received by filter
0 packets dropped by kernel
```
2. Verify the session tables for IPv6 and IPv4:

```
(root) # diagnose sys session6 list
session6 info: proto=58 proto_state=00 duration=5 expire=56 timeout=0 flags=00000000
sockport=0 socktype=0 use=3
origin-shaper=
reply-shaper=
per_ip_shaper=
```

```
class_id=0 ha_id=0 policy_dir=0 tunnel=/ vlan_cos=0/0
state=log may_dirty
statistic(bytes/packets/allow_err): org=312/3/0 reply=312/3/0 tuples=2
tx speed(Bps/kbps): 55/0 rx speed(Bps/kbps): 55/0
origin->sink: org pre->post, reply pre->post dev=24->53/53->24
```

```
peer=172.16.101.2:45392->172.16.101.2:45392->172.16.200.156:8 naf=1
hook=pre dir=org act=noop 172.16.101.2:45392->172.16.200.156:8(0.0.0.0:0)
hook=pre dir=reply act=noop 172.16.101.2:45392->172.16.200.156:8(0.0.0.0:0)
misc=0 policy_id=1 auth_info=0 chk_client_info=0 vd=0
serial=000021ec tos=ff/ff ips_view=1024 app_list=0 app=0 url_cat=0
rpdb_link_id = 00000000 ngfwid=n/a
```

```
npu_state=0x040001 no_offload
no_ofld_reason: disabled-by-policy non-npu-intf
total session 1
```

```
(root) # diagnose sys session list
session info: proto=1 proto_state=00 duration=7 expire=54 timeout=0 flags=00000000
socktype=0 sockport=0 av_idx=0 use=3
origin-shaper=
reply-shaper=
per_ip_shaper=
```

```
class_id=0 ha_id=0 policy_dir=0 tunnel=/ vlan_cos=0/0
state=log may_dirty
statistic(bytes/packets/allow_err): org=252/3/1 reply=252/3/1 tuples=2
```

```
tx speed(Bps/kbps): 0/0 rx speed(Bps/kbps): 0/0
origin->sink: org pre->post, reply pre->post dev=53->17/17->53
```

```
gwy=172.16.200.156/172.16.101.2
```

```
hook=pre dir=org act=noop 172.16.101.2:45392->172.16.200.156:8(0.0.0.0:0)
hook=pre dir=reply act=noop 172.16.101.2:45392->172.16.200.156:8(0.0.0.0:0)
misc=0 policy_id=1 auth_info=0 chk_client_info=0 vd=0
serial=00001347f tos=ff/ff ips_view=1024 app_list=0 app=0 url_cat=0
```

```
rpdb_link_id = 00000000 ngfwid=n/a
```

```
npu_state=0x040001 no_offload
no_ofld_reason: disabled-by-policy
```

```
total session 1
```

The IPv6 session is between the incoming physical interface port24 and naf.root. The IPv4 session is between the naf.root and the outgoing physical interface port17.

3. Verify the embedded VIP64 traffic by the sniffer packets:

```
(root) # diagnose sniffer packet any 'icmp or icmp6' 4
```

```
interfaces=[any]
filters=['icmp or icmp6']
```
MIRRORS SSL TRAFFIC IN POLICIES

SSL mirroring allows the FortiGate to decrypt and mirror traffic to a designated port. A new decrypted traffic mirror profile can be applied to IPv4, IPv6, and explicit proxy firewall policies in both flow and proxy mode. Full SSL inspection must be used in the policy for the traffic mirroring to occur.

SSL inspection is automatically enabled when you enable a security profile on the policy configuration page.

To configure SSL mirroring in a policy in the GUI:

1. Go to Policy & Objects > Firewall Policy.
2. Create a new policy, or edit an existing one.
3. Configure the interfaces, sources, and other required information.
4. In the Security Profiles section, for SSL Inspection, select deep-inspection, or another profile that uses Full SSL Inspection.
5. Enable *Decrypted Traffic Mirror*. The terms of use agreement opens.

6. Click *Agree* to accept the terms.

7. In the drop-down list, select a decrypted traffic mirror, or click *Create* to create a new one. In this example, a new decrypted traffic mirror is created using the port3 interface.

8. Click *OK* to save the policy.

To configure SSL mirroring in proxy mode in the CLI:

1. Create the decrypted traffic mirror profile:
   ```
   config firewall decrypted-traffic-mirror
   edit SSL-to-port3
   set dstmac ff:ff:ff:ff:ff:ff
   set traffic-type ssl
   set traffic-source client
   set interface port3
   next
   end
   ```

2. Configure the policy to enable SSL traffic mirroring:
   ```
   config firewall policy
   edit 1
   set name "mirror-policy"
   set srcintf "port1"
   set dstintf "port2"
   set srcaddr "all"
   set dstaddr "all"
   set action accept
   set schedule "always"
   set service "ALL"
   set nat enable
   ```
PARTY
good

852

Fortinet

Policy

Anycast is an hosted and anycast end Do personal resolved Customer State 7.

6.

5.

4.

3.

2.

1.

AGREEMENT, BE MODIFICATIONS THIS REPRESENT CONSENT AGREEMENT. CONTRACT ("CUSTOMER"), THIS REPRESENTED BY AN AUTHORIZED REPRESENTATIVE ON BEHALF OF CUSTOMER, CONSENT TO BE BOUND BY AND BECOME A PARTY TO THIS AGREEMENT ("AGREEMENT") AND YOU REPRESENT THAT YOU HAVE READ AND UNDERSTAND THIS AGREEMENT AND HAVE HAD SUFFICIENT OPPORTUNITY TO CONSULT WITH COUNSEL, PRIOR TO AGREEING TO THE TERMS HEREFIN AND ENABLING THIS FEATURE. IF YOU HAVE ANY QUESTIONS OR CONCERNS, OR DESIRE TO SUGGEST ANY MODIFICATIONS TO THIS AGREEMENT, PLEASE CONTACT YOUR FORTINET SUPPORT REPRESENTATIVE TO BE REFERRED TO FORTINET LEGAL. IF YOU DO NOT AGREE TO ALL OF THE TERMS OF THIS AGREEMENT, DO NOT CONTINUE WITH THE ACCEPTANCE PROCESS. BY ACCEPTING THE TERMS AND CONDITIONS HEREFIN, CUSTOMER HEREBY AGREES THAT:

1. Customer represents and warrants that Customer, not Fortinet, is engaging this feature.
2. Customer represents and warrants that Customer has provided the requisite notice(s) and obtained the required consent(s) to utilize this feature.
3. Customer represents and warrants that Customer will only access data as necessary in a good faith manner to detect malicious traffic and will put in place processes and controls to ensure this occurs.
4. Customer represents and warrants that Customer has the right to enable and utilize this feature, and Customer is fully in compliance with all applicable laws in so doing.
5. Customer shall indemnify Fortinet in full for any of the above certifications being untrue.
6. Customer shall promptly notify Fortinet Legal in writing of any breach of these Terms and Conditions and shall indemnify Fortinet in full for any failure by Customer or any of its employees or representatives to abide in full by the Terms and Conditions above.
7. Customer agrees that these Terms and Conditions shall be governed by the laws of the State of California, without regards to the choice of laws provisions thereof and Customer hereby agrees that any dispute related to these Terms and Conditions shall be resolved in Santa Clara County, California, USA, and Customer hereby consents to personal jurisdiction in Santa Clara County, California, USA.

Do you want to continue? (y/n) y

next end

Recognize anycast addresses in geo-IP blocking

An anycast IP can be advertised from multiple locations and the router selects a path based on latency, distance, cost, number of hops, and so on. This technique is widely used by providers to route users to the closest server. Since the IP is hosted in multiple geographic locations, there is no way to specify one single location to that IP.

Anycast IP address ranges can be bypassed in geo-IP blocking. The ISDB contains a list of confirmed anycast IP ranges that can be used for this purpose.
When the source or destination is set to `geoip`, you can enable the `geoip-anycast` option. Once enabled, IPs where the anycast option is set to 1 in `geoip_db` are bypassed in country matching and blocking.

You can only use the CLI to configure this feature.

To enable the geoip-anycast option using the CLI:

```plaintext
cfg firewall policy
e1
  set name "policyid-1"
  set srcintf "wan2"
  set dstintf "wan1"
  set srcaddr "all"
  set dstaddr "test-geoip-CAN_1"
  set action accept
  set schedule "always"
  set service "ALL"
  set geoip-anycast enable
  set logtraffic all
  set nat enable
  next
end
```

To check the geoip-anycast option for an IP address using the CLI:

```plaintext
diagnose geoip ip2country 1.0.0.1
  1.0.0.1 - Australia, is anycast ip
```

The anycast IP is 1.0.0.1.

Matching GeoIP by registered and physical location

IP addresses have both a physical and registered location in the geography IP database. Sometimes these two locations are different. The `geoip-match` command allows users to match an IPv4 address in a firewall policy to its physical or registered location when a GeoIP is used as a source or destination address. IPv6 policies currently support geography address objects but do not support `geoip-match`.

In the following example, the physical location of 220.243.219.10 is CA (Canada), the registered location is CN (China), and it is not an anycast IP.

To configure GeoIP matching based on registered location:

1. Create a firewall policy to match the IP:

   ```plaintext
cfg firewall policy
e1
  set name "policy_id_1"
  set srcintf "wan2"
  set dstintf "wan1"
  set srcaddr "all"
```

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
set dstaddr "test-geoip-CA"
set action accept
set schedule "always"
set service "ALL"
set geoip-match registered-location
set logtraffic all
set auto-asic-offload disable
set nat enable
next
end

Since CA is applied as a destination address and registered location IP matching is enabled, if the destination IP of the traffic is 220.243.219.10, then the traffic will be blocked because the registered location is CN.

2. Verify that the policy is blocking traffic from the IP address:

diagnose sniffer packet any icmp 4
interfaces=[any]
filters=[icmp]
5.383798 wan2 in 10.1.100.41 -> 220.243.219.10: icmp: echo request
6.381982 wan2 in 10.1.100.41 -> 220.243.219.10: icmp: echo request
7.382608 wan2 in 10.1.100.41 -> 220.243.219.10: icmp: echo request
^C
3 packets received by filter
0 packets dropped by kernel

To configure GeoIP matching based on physical location:

1. Create a firewall policy to match the IP:

config firewall policy
edit 1
set name "policy_id_1"
set srcintf "wan2"
set dstintf "wan1"
set srcaddr "all"
set dstaddr "test-geoip-CA"
set action accept
set schedule "always"
set service "ALL"
set geoip-match physical-location
set logtraffic all
set auto-asic-offload disable
set nat enable
next
end

Since CA is applied as a destination address and physical location IP matching is enabled, if the destination IP of the traffic is 220.243.219.10, then the traffic will pass through.

2. Verify that the policy is allowing traffic from the IP address:

diagnose sniffer packet any icmp 4
interfaces=[any]
filters=[icmp]
5.273985 wan2 in 10.1.100.41 -> 220.243.219.10: icmp: echo request
5.274176 wan1 out 172.16.200.10 -> 220.243.219.10: icmp: echo request
6.274426 wan2 in 10.1.100.41 -> 220.243.219.10: icmp: echo request
6.274438 wan1 out 172.16.200.10 -> 220.243.219.10: icmp: echo request
HTTP to HTTPS redirect for load balancing

You can configure a virtual server with HTTP to HTTPS redirect enabled. When enabled, a virtual server can convert a client's HTTP requests to HTTPS requests. Through this mandatory conversion, HTTP traffic is converted to HTTPS traffic. This conversion improves the security of the user network.

You can only enable this feature by using the CLI. After you enable this feature, traffic flows as follows:

- When FortiGate receives an HTTP request for an external IP, such as 10.1.100.201 in the following example, FortiGate sends an HTTP 303 response back to the original client and redirects HTTP to HTTPS, instead of forwarding the HTTP request to the real backend servers.
- The client browser restarts the TCP session to HTTPS.
- The HTTPS session comes to the FortiGate where a matching firewall policy allows the HTTPS traffic and establishes a secure SSL connection, and then forwards the request to the real backend servers.

To configure virtual server with HTTPS redirect enabled:

1. Create a virtual server with server-type set to http:

```plaintext
config firewall vip
edit "virtual-server-http"
   set type server-load-balance
   set extip 10.1.100.201
   set extintf "wan2"
   set server-type http
   set ldb-method round-robin
   set extport 80
config realservers
   edit 1
       set ip 172.16.200.44
       set port 80
   next
   edit 2
       set ip 172.16.200.55
       set port 80
   next
end
```

2. Create a virtual server with server-type set to https and with the same external IP address:

```plaintext
config firewall vip
edit "virtual-server-https"
   set type server-load-balance
   set extip 10.1.100.201
   set extintf "wan2"
   set server-type https
   set ldb-method round-robin
   set extport 443
config realservers
   edit 1 set ip 172.16.200.44
```
set port 443
next
edit 2
 set ip 172.16.200.55
 set port 443
next
end
set ssl-certificate "Fortinet_CA_SSL"
next
end

3. Enable the http-redirect option for the virtual server with server-type set to http:
config firewall vip
 edit "virtual-server-http"
 set http-redirect enable
 next
end

4. Add the two virtual servers to a policy:
config firewall policy
 edit 9
 set srcintf "wan2"
 set dstintf "wan1"
 set srcaddr "all"
 set dstaddr "virtual-server-http" "virtual-server-https"
 set action accept
 set schedule "always"
 set service "ALL"
 set inspection-mode proxy set logtraffic all
 set auto-asic-offload disable
 set nat enable
 next
end

Use Active Directory objects directly in policies

Active Directory (AD) groups can be used directly in identity-based firewall policies. You do not need to add remote AD groups to local FSSO groups before using them in policies.

FortiGate administrators can define how often group information is updated from AD LDAP servers.

To retrieve and use AD user groups in policies:

1. Set the FSSO Collector Agent AD access mode on page 856
2. Add an LDAP server on page 857
3. Create the FSSO collector that updates the AD user groups list on page 858
4. Use the AD user groups in a policy on page 859

Set the FSSO Collector Agent AD access mode

To use this feature, you must set FSSO Collector Agent to Advanced AD access mode. If the FSSO Collector Agent is running in the default mode, FortiGate cannot correctly match user group memberships.
Add an LDAP server

To add an LDAP server in the GUI:

1. Go to User & Authentication > LDAP Servers.
2. Click Create New.
3. Configure the settings as needed.

4. If secure communication over TLS is supported by the remote AD LDAP server:
 a. Enable Secure Connection.
 b. Select the protocol.
 c. Select the certificate from the CA that issued the AD LDAP server certificate.
 If the protocol is LDAPS, the port will automatically change to 636.

5. Click OK.

To add an LDAP server in the CLI:

```bash
cfg user ldap
   edit "AD-ldap"
      set server "10.1.100.131"
```
```plaintext
set cnid "cn"
set dn "dc=fortinet-fsso,dc=com"
set type regular
set username "cn=Administrator,cn=users,dc=fortinet-fsso,dc=com"
set password Xxxxxxxxxxxxxxxxxxxxxxxxxx
next
end
```

Create the FSSO collector that updates the AD user groups list

To create an FSSO agent connector in the GUI:

1. Go to Security Fabric > External Connectors.
2. Click Create New.
3. In the Endpoint/Identity section, click FSSO Agent on Windows AD.
4. Fill in the Name
5. Set the Primary FSSO Agent to the IP address of the FSSO Collector Agent, and enter its password.
6. Set the User Group Source to Local.
7. Set the LDAP Server to the just created AD-ldap server.
8. Enable Proactively Retrieve from LDAP Server.
9. Set the Search Filter to `(&(objectClass=group)(cn=group*))`.

 The default search filter retrieves all groups, including Microsoft system groups. In this example, the filter is configured to retrieve group1, group2, etc, and not groups like grp199.

 The filter syntax is not automatically checked; if it is incorrect, the FortiGate might not retrieve any groups.
10. Set the Interval (minutes) to configure how often the FortiGate contacts the remote AD LDAP server to update the group information.

11. Click OK.
12. To view the AD user groups that are retrieved by the FSSO agent, hover the cursor over the group icon on the fabric.
To create an FSSO agent connector in the CLI:

```
config user fss
  edit "ad-advanced"
    set server "10.1.100.131"
    set password XXXXXXXXXXXXX
    set ldap-server "AD-ldap"
    set ldap-poll enable
    set ldap-poll-interval 2
    set ldap-poll-filter "((objectClass=group)(cn=group*))"
next
end
```

You can view the retrieved AD user groups with the `show user adgrp` command.

Use the AD user groups in a policy

The AD user groups retrieved by the FortiGate can be used directly in firewall policies.
No session timeout

To allow clients to permanently connect with legacy medical applications and systems that do not have keepalive or auto-reconnect features, the session timeout can be set to never for firewall services, policies, and VDOMs.

The options to disable session timeout are hidden in the CLI.

To set the session TTL value of a custom service to never:

```
config firewall service custom
  edit "tcp_23"
    set tcp-portrange 23
    set session-ttl never
  next
end
```

To set the session TTL value of a policy to never:

```
config firewall policy
  edit 201
    set srcintf "wan1"
    set dstintf "wan2"
    set srcaddr "all"
    set dstaddr "all"
    set action accept
    set schedule "always"
    set service "TCP_8080"
    set logtraffic disable
    set session-ttl never
    set nat enable
  next
end
```

To set the session TTL value of a VDOM to never:

```
config system session-ttl
  set default never
  config port
    edit 1
      set protocol 6
      set timeout never
      set start-port 8080
      set end-port 8080
    next
  end
end
```

To view a session list with the timeout set to never:

```
# diagnose sys session list
session info: proto=6 proto_state=01 duration=9 expire=never timeout=never flags=00000000
sockflag=00000000 sockport=0 av_idx=0 use=3
origin-shaper=
reply-shaper=
```
MAP-E support

On a customer edge (CE) FortiGate, an IPv4-over-IPv6 (MAP-E) tunnel can be created between the FortiGate and the border relay (BR) operating in an IPv6 network. A tunnel interface is created between the FortiGate and BR, which can be applied to firewall policies and IPsec VPN.

To configure a MAP-E tunnel between the FortiGate and the BR:

1. Configure fixed IP mode.
 a. Configure IPv6 on the interface:

      ```
      config system interface
      edit "wan1"
      config ipv6
      set autoconf enable
      set unique-autoconf-addr enable
      set interface-identifier ::6f:6clf:3400:0
      ```
The interface-identifier is an IPv6 address. Its last 64-bit will be kept and the rest will be cleared automatically. It will combine with the IPv6 prefix it gets from the IPv6 router to generate the IPv6 address of the interface.

By default, unique-autoconf-addr is disabled. It must be enabled so it can handle IPv6 prefix changing.

b. Configure the VNE tunnel:

```plaintext
config system vne-tunnel
  set status enable
  set interface "wan1"
  set mode fixed-ip
  set ipv4-address 10.10.81.81 255.255.255.0
  set br 2001:160::82
end
```

Initial sequence overview of VNE tunnel under fixed IP mode:

Once the IPv6 address of the FortiGate changes, the tunnel will be down because the BR does not know the FortiGate’s new IPv6 address. The FortiGate uses update-url to update the new IPv6 address to the provisioning server. The provisioning server updates the FortiGate’s IPv6 address to the BR so the VNE tunnel can be re-established.

Communication sequence overview of re-establishing VNE tunnel:
2. Configure the VNE tunnel to use MAP-E mode:

```plaintext
config system vne-tunnel
  set status enable
  set interface 'wan1'
  set ssl-certificate "Fortinet_Factory"
  set bmr-hostname ********
  set auto-asic-offload enable
  set mode map-e
end
```

Initial sequence overview of VNE tunnel under MAP-E mode:
The FortiGate sends a MAP rule request to the MAP distribution server once the IPv6 address is configured on the FortiGate by RS/RA. Next, the FortiGate will send an AAAA query to get the IPv6 address of the MAP distribution server. After sending the BMR request to the MAP distribution server, the FortiGate will get the IPv4 address, port set, BR IPv6 address, and hostname of the address resolution server from the BMR reply. The VNE tunnel between the FortiGate and BR is now established.

The address resolution server is actually a dynamic DNS. The hostname is used for the FortiGate to maintain an IPv6 address when it changes.

The FortiGate updates the DDNS server with its IPv6 address whenever it updates, which in turn provides the update to the MAP distribution server and BR so they know how to resolve the FortiGate by hostname.

Once the VNE tunnel is established, a tunnel interface is created (vne.root), and an IPv4-over-IPv6 tunnel is set up between the FortiGate and BR. The route, firewall policy, and DNS server can now be configured to let the traffic go through the VNE tunnel and the and protect the end-user. The VNE tunnel can also be used in IPsec phase 1.

3. Configure the route:

```plaintext
config router static
  edit 1
    set device "vne.root"
  next
end
```

4. Configure the firewall policy:

```plaintext
config firewall policy
  edit 111
    set name "ff"
    set srcintf "port2"
    set dstintf "vne.root"
```
set srcaddr "all"
set dstaddr "all"
set action accept
set schedule "always"
set service "ALL"
set utm-status enable
set ssl-ssh-profile "certificate-inspection"
set av-profile "default"
set nat enable
next
end

5. Configure the DNS server:

 config system dns-server
 edit "port2"
 next
 end

Seven-day rolling counter for policy hit counters

Instead of storing a single number for the hit count and byte count collected since the inception of each policy, seven numbers for the last seven days and an active counter for the current day are stored. The past seven-day hit count is displayed in the policy list and policy pages. A seven-day bar chart shows statistics on each policy page. This feature is currently supported in firewall and multicast policies, but not security policies.

To view the rolling counter information in the GUI:

1. Go to Policy & Objects > Firewall Policy or Policy & Objects > Multicast Policy.
2. Select a policy and hover over the Bytes, Packets, or Hit Count values to view the tooltip with the corresponding traffic statistics and bar graph (this example uses firewall policies).

3. Click Edit. The policy traffic statistics appear in the right-hand side of the page.
4. Use the dropdowns to filter the bar graph data by counter (Bytes, Packets, or Hit Count) and policy type (IPv4, IPv6, or IPv4 + IPv6).

5. Optionally, click Clear Counters to delete the traffic statistics for the policy.
6. Click OK.

To view the rolling counter information in the CLI:

```
# diagnose firewall iprope show 100004 2
idx=2 pkts/bytes=14709/18777329 asic_pkts/asic_bytes=8087/10413737 nturbo_pkts/nturbo_bytes=8087/10413737 flag=0x0 hit count:19 (4 7 0 1 1 3 3 0)  
  first:2021-03-02 17:09:00 last:2021-03-08 17:23:40  
  established session count:0  
  first est:2021-03-02 17:11:20 last est:2021-03-08 17:23:40

# diagnose firewall iprope6 show 100004 2
idx=2 pkts/bytes=15698/19307164 asic_pkts/asic_bytes=7006/8578911 nturbo_pkts/nturbo_bytes=7006/8578911 flag=0x0 hit count:19 (4 7 0 1 3 2 2 0)  
  first:2021-03-02 17:10:32 last:2021-03-08 17:23:33  
  established session count:0  
  first est:2021-03-02 17:11:43 last est:2021-03-08 17:23:33
```

Cisco Security Group Tag as policy matching criteria

The FortiGate can read the Cisco Security Group Tag (SGT) in Ethernet frames, and use them as matching criteria in firewall policies. A policy can match based on the presence of an SGT, or the detection of a specific ID or IDs.

When a packet with a SGT passes through and a session is established, the `ext_header_type=0xc5:0xc5` flag is included in the session table.

This feature is available in flow mode policies for virtual wire pair policies or policies in transparent mode VDOMs.
To configure a firewall policy to detect SGTs in Ethernet frames:

```
config firewall policy
  edit 1
    set sgt-check {enable | disable}
    set sgt <ID numbers>
  next
end
```

Examples

In these examples, port2 and port5 are in a virtual wire pair. Firewall policies are created that pass traffic with SGTs with a specific ID number, any ID number, or either of two specific ID numbers.

To configure the virtual wire pair:

```
config system virtual-wire-pair
  edit "test-vwp-1"
    set member "port5" "port2"
    set wildcard-vlan enable
  next
end
```

To configure a firewall policy to match frames that have an SGT with ID 20 and allow them through:

```
config firewall policy
  edit 1
    set srcintf "port2"
    set dstintf "port5"
    set action accept
    set srcaddr "all"
    set dstaddr "all"
    set schedule "always"
    set service "ALL"
    set sgt-check enable
    set sgt 20
  next
end
```

To configure a firewall policy to match frames that have an SGT with any ID:

```
config firewall policy
  edit 1
    set srcintf "port2"
    set dstintf "port5"
    set action accept
    set srcaddr "all"
```
To configure a firewall policy to match frames that have the SGT with IDs 20 or 21:

```plaintext
config firewall policy
  edit 1
    set srcintf "port2"
    set dstintf "port5"
    set action accept
    set srcaddr "all"
    set dstaddr "all"
    set schedule "always"
    set service "ALL"
    set sgt-check enable
    set sgt 20 21
next
end
```

To check the session list:

```plaintext
# diagnose sys session list

session info: proto=6 proto_state=01 duration=10 expire=3593 timeout=3600 flags=00000000
socktype=0 sockport=0 av_idx=0 use=3
origin-shaper=
reply-shaper=
per_ip_shaper=
class_id=0 ha_id=0 policy_dir=0 tunnel=/ vlan_cos=0/0
state=log may_dirty br dst-vis f00
statistic(bytes/packets/allow_err): org=112/2/1 reply=60/1/1 tuples=2
tx speed(Bps/kbps): 10/0 rx speed(Bps/kbps): 5/0
origin->sink: org pre->post, reply pre->post dev=13->10/10->13 gwy=0.0.0.0/0.0.0.0
hook=pre dir=org act=noop 10.1.1.11:36970->10.1.2.11:80(0.0.0.0:0)
hook=pre dir=reply act=noop 10.1.2.11:80->10.1.1.11:36970(0.0.0.0:0)
pos/(before,after) 0/(0,0), 0/(0,0)
dst_mac=00:b0:e1:22:cf:e4
misc=0 policy_id=1 auth_info=0 chk_client_info=0 vd=1
serial=0000183c tos=ff/ff app_list=0 app=0 url_cat=0
sdwan_mbr_seq=0 sdwan_service_id=0
rpdb_link_id=00000000 rpdb_svc_id=0 ngfwid=n/a
npu_state=0x0000001 no_offload
no_ofld_reason: disabled-by-policy
ext_header_type=0xc5:0xc5
```

Objects

The following topics provide information about objects:
Policy and Objects

- Address group exclusions on page 869
- MAC addressed-based policies on page 870
- ISDB well-known MAC address list on page 872
- Dynamic policy — fabric devices on page 873
- FSSO dynamic address subtype on page 875
- ClearPass integration for dynamic address objects on page 879
- Group address objects synchronized from FortiManager on page 882
- Using wildcard FQDN addresses in firewall policies on page 884
- Configure FQDN-based VIPs on page 886
- IPv6 geography-based addresses on page 887
- Array structure for address objects on page 889
- IPv6 MAC addresses and usage in firewall policies on page 891
- FortiNAC tag dynamic address on page 893
- Allow empty address groups on page 896
- Remove overlap check for VIPs on page 896
- VIP groups on page 897
- Internet Services on page 898

Address group exclusions

Specific IP addresses or ranges can be subtracted from the address group with the *Exclude Members* setting in IPv4 address groups.

This feature is only supported for IPv4 address groups, and only for addresses with a Type of *IP Range* or *Subnet*.

To exclude addresses from an address group using the GUI:

1. Go to *Policy & Objects > Addresses*.
2. Create a new address group, or edit an existing address group.
3. Enable *Exclude Members* and click the + to add entries.
4. Configure the other settings as needed.
5. Click *OK*.
The excluded members are listed in the *Exclude Members* column.

To exclude addresses from an address group using the CLI:

```bash
config firewall addrgrp
edit <address group>
    set exclude enable
    set exclude-member <address> <address> ...
next
end
```

MAC addressed-based policies

MAC addresses can be added to the following IPv4 policies:

- Firewall
- Virtual wire pair
- ACL
- Central SNAT
- DoS

A MAC address is a link layer-based address type and it cannot be forwarded across different IP segments. In FortiOS, you can configure a firewall address object with a singular MAC, wildcard MAC, multiple MACs, or a MAC range.

FortiOS only supports the MAC address type as source address for policies in NAT mode VDOM. When you use the MAC address type in a policy as source address in NAT mode VDOM, IP address translation (NAT) is still performed according to the rules defined in the policy. The MAC address type only works for source address matching. It does not have any association with NAT actions.

For policies in transparent mode or the virtual wire pair interface, you can use the MAC address type as source or destination address.

To configure a MAC address using the GUI:

1. Go to *Policy & Objects > Addresses* and click *Create New > Address*.
2. Enter a name.
3. For *Category*, select *Address*.
4. For *Type*, select *Device (MAC Address)*.
5. Enter the MAC address.

6. Click OK.

7. Go to Policy & Objects > Firewall Policy to apply the address type to a policy in NAT mode VDOM:
 a. For Source, select the MAC address you just configured.
 b. For Destination, select an address.

 In NAT mode VDOM, this address type cannot be used as destination address.

 c. Configure the other settings as needed.
 d. Click OK.

To configure a MAC address using the CLI:

1. Create a new MAC address:

   ```
   config firewall address
   edit "test-mac-addr1"
     set type mac
     set macaddr 00:0c:29:41:98:88
   next
   end
   ```

2. Apply the address type to a policy. In transparent mode or the virtual wire pair interface, this address type can be mixed with other address types in the policy:

   ```
   config firewall policy
   edit 1
     set srcintf "port2"
     set dstintf "port1"
     set srcaddr "test-mac-addr1" "10-1-100-42"
     set dstaddr "all"
     set action accept
     set schedule "always"
     set service "ALL"
     set logtraffic all
   ```
set nat enable
next
end

ISDB well-known MAC address list

The Internet Service Database (ISDB) includes well-known vendor MAC address range lists. The lists can only be used for source MAC addresses in IPv4 policies, and include the vendor name and the MAC address ranges that the vendor belongs to.

To view the vendor list:

```plaintext
# diagnose vendor-mac id
Please input Vendor MAC ID.
ID: 1 name: "Asus"
ID: 2 name: "Acer"
ID: 3 name: "Amazon"
ID: 4 name: "Apple"
ID: 5 name: "Xiaomi"
ID: 6 name: "Blackberry"
ID: 7 name: "Canon"
ID: 8 name: "Cisco"
ID: 9 name: "Linksys"
ID: 10 name: "D-Link"
ID: 11 name: "Dell"
ID: 12 name: "Ericsson"
ID: 13 name: "LG"
ID: 14 name: "Fujitsu"
ID: 15 name: "Fitbit"
ID: 16 name: "Fortinet"
ID: 17 name: "OPPO"
ID: 18 name: "Hitachi"
ID: 19 name: "HTC"
ID: 20 name: "Huawei"
ID: 21 name: "HP"
ID: 22 name: "IBM"
ID: 23 name: "Juniper"
ID: 24 name: "Lenovo"
ID: 25 name: "Microsoft"
ID: 26 name: "Motorola"
ID: 27 name: "Netgear"
ID: 28 name: "Nokia"
ID: 29 name: "Nintendo"
ID: 30 name: "PaloAltoNetworks"
ID: 31 name: "Polycom"
ID: 32 name: "Samsung"
ID: 33 name: "Sharp"
ID: 34 name: "Sony"
ID: 35 name: "Toshiba"
ID: 36 name: "VMware"
ID: 37 name: "Vivo"
ID: 38 name: "ZyXel"
ID: 39 name: "ZTE"
```
To view the MAC address ranges for a vendor:

```
# diagnose vendor-mac id 16
Vendor MAC: 16(Fortinet)
Version: 0000700021
Timestamp: 201908081432
Number of MAC ranges: 6
00:09:0f:00:00:00 - 00:09:0f:ff:ff:ff
04:d5:90:00:00:00 - 04:d5:90:ff:ff:ff
08:5b:0e:00:00:00 - 08:5b:0e:ff:ff:ff
70:4c:a5:00:00:00 - 70:4c:a5:ff:ff:ff
90:6c:ac:00:00:00 - 90:6c:ac:ff:ff:ff
e8:1c:ba:00:00:00 - e8:1c:ba:ff:ff:ff
```

To query the vendor of a specific MAC address or range:

```
# diagnose vendor-mac match 00:09:0f:ff:ff:ff 48
Vendor MAC: 16(Fortinet), matched num: 1
```

To use the vendor ID in a firewall policy:

```
config firewall policy
    edit 9
        set name "policy_id_9"
        set uuid 6150cf30-308d-51e9-a7a3-bcbd05d61f93
        set srcintf "wan2"
        set dstintf "wan1"
        set srcaddr "all"
        set dstaddr "all"
        set vendor-mac 36 16
        set action accept
        set schedule "always"
        set service "ALL"
        set logtraffic all
        set auto-asic-offload disable
        set nat enable
next
end
```

Only packets whose source MAC address belong to Fortinet or VMware are passed by the policy.

Dynamic policy — fabric devices

The dynamic address group represents the configured IP addresses of all Fortinet devices connected to the Security Fabric. It currently includes FortiManager, FortiAnalyzer, FortiClient EMS, FortiMail, FortiAP(s), and FortiSwitch(es). Like other dynamic address groups for fabric connectors, it can be used as an IPv4 address in firewall policies and objects.

The list of firewall addresses includes a default address object called FABRIC_DEVICE. You can apply the FABRIC_DEVICE object to the following types of policies:

- Firewall policy, including virtual wire pairs, NAT 46, and NAT 64 (IPv4 only)
- IPv4 shaping policy
- IPv4 ACL policy
You cannot apply the **FABRIC_DEVICE** object to the following types of policies:

- IPv4 explicit proxy policy

You also cannot use the **FABRIC_DEVICE** object with the following settings:

- Custom extension on *internet-service*
- Exclusion of *addrgrp*

Initially the **FABRIC_DEVICE** object does not have an address value. The address value is populated dynamically as things change. As a result, you cannot edit the **FABRIC_DEVICE** object, add any addresses to the object, or remove any addresses from the object. The *Edit Address* pane in the GUI only has a *Return* button because the object is read-only:

The **FABRICDEVICE** object address values are populated based on:

- FortiAnalyzer IP (from the *Fabric Settings* pane)
- FortiManager IP (from the *Fabric Settings* pane)
- FortiMail IP (from the *Fabric Settings* pane)
- FortiClient EMS IP (from the *Fabric Settings* pane)
- FortiAP IPs (from the *FortiAP Setup* pane or DHCP)
- FortiSwitch IPs (from the *FortiSwitch Setup* page or DHCP)

To apply the FABRIC_DEVICE object to a firewall policy using the GUI:

1. Go to *Policy & Objects > Firewall Policy*.
2. Create a new policy or edit an existing policy.
3. For the *Destination* field, select **FABRIC_DEVICE** from the list of address entries.
4. Configure the rest of the policy as needed.
5. Click OK.

To apply the FABRICDEVICE object to a firewall policy using the CLI:

```plaintext
config firewall address
edit "FABRIC_DEVICE"
   set type ipmask
   set comment "IPv4 addresses of Fabric Devices."
   set visibility enable
```
set associated-interface ''
set color 0
set allow-routing disable
set subnet 0.0.0.0 0.0.0.0
next
end
config firewall policy
edit 1
 set srcintf "port2"
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "FABRICDEVICE"
 set action accept
 set schedule "always"
 set service "ALL"
 set utm-status enable
 set fsso disable
 set nat enable
next
end

Diagnose command

You can use the diagnose command to list IP addresses of Fortinet devices that are configured in the Security Fabric.

To run the diagnose command using the CLI:

(root) # diagnose firewall sf-addresses list

FabricDevices: 172.18.64.48
FortiAnalyzer: 172.18.60.25
FortiSandbox: 172.18.52.154
FortiManager: 172.18.28.31
FortiClientEMS: 172.18.62.6
FortiAP:
FortiSwitch:
FortiAP/SW-DHCP:

FSSO dynamic address subtype

The Fortinet Single Sign-On (FSSO) dynamic firewall address subtype can be used in policies that support dynamic address types. The FortiGate will update the dynamic address used in firewall policies based on the source IP information for the authenticated FSSO users.

It can also be used with FSSO group information that is forwarded by ClearPass Policy Manager (CPPM) via FortiManager, and other FSSO groups provided by the FSSO collector agent or FortiNAC.

To configure FSSO dynamic addresses with CPPM and FortiManager in the GUI:

1. Create the dynamic address object:
 a. Go to Policy & Objects > Addresses, and click Create New > Address.
 b. For Type, select Dynamic.
c. For Sub Type, select Fortinet Single Sign-On (FSSO). The Select Entries pane opens and displays all available FSSO groups.

d. Select one or more groups.

e. Click OK to save the configuration.

![Image of Configure FSSO groups]

In the address table, there will be an error message for the address you just created (Unresolved dynamic address: fsso). This is expected because there are currently no authenticated FSSO users (based on source IP) in the local FSSO user list.

2. Add the dynamic address object to a firewall policy:
 a. Go to Policy & Objects > Firewall Policy.
 b. Create a new policy or edit an existing policy.
 c. For Source, add the dynamic FSSO address object you just created.
 d. Configure the rest of the policy as needed.
 e. Click OK to save your changes.

![Image of Configure firewall policy]

3. Test the authentication to add a source IP address to the FSSO user list:
 a. Log in as user and use CPPM for user authentication to connect to an external web server. After successful authentication, CPPM forwards the user name, source IP address, and group membership to the FortiGate via FortiManager.
 b. Go to Monitor > Firewall User Monitor to view the user name (fsso1) and IP address.

![Image of Firewall User Monitor]

c. Go to Policy & Objects > Addresses to view the updated address table. The error message no longer appears.
d. Hover over the dynamic FSSO address to view the IP address (*fsso resolves to: 10.1.100.185*).

To verify user traffic in the GUI:

 Details for the user *fsso1* are visible in the traffic log:

 ![Traffic Log Example]

 - If another user is authenticated by CPPM, then the dynamic address *fsso* entry in the address table will be updated. The IP address for user *fsso2 (10.1.100.188)* is now visible:

 ![Address Table Example]

2. Go to FortiView > Sources to verify that the users were able to successfully pass the firewall policy.

 ![Source Table Example]

 If a user logs off and CPPM receives log off confirmation, then CPPS updates the FortiGate FSSO user list via FortiManager. The user IP address is deleted from the dynamic FSSO address, and the user is no longer be able to pass the firewall policy.
To configure FSSO dynamic addresses with CPPM and FortiManager in the CLI:

1. Create the dynamic address object:

```plaintext
cfg firewall address
edit "fsso"
    set type dynamic
    set sub-type fsso
    set fsso-group "cp_test_FSSOROLE"
next
end
```

2. Add the dynamic address object to a policy:

```plaintext
cfg firewall policy
edit 1
    set name "pol1"
    set srcintf "port2"
    set dstintf "port3"
    set srcaddr "fsso"
    set dstaddr "all"
    set action accept
    set schedule "always"
    set service "ALL"
    set logtraffic all
    set fsso disable
    set nat enable
next
end
```

To verify user traffic in the CLI:

1. Check the FSSO user list:

```plaintext
diagnose debug authd fsso list
----FSSO logons----
IP: 10.1.100.185 User: fsso1 Groups: cp_test_FSSOROLE Workstation: MemberOf: FSSO-CPPM cp_test_FSSOROLE
Total number of logons listed: 1, filtered: 0
----end of FSSO logons----
```

2. Check the authenticated firewall users list:

```plaintext
diagnose firewall auth list
10.1.100.185, fsso1
type: fsso, id: 0, duration: 2928, idled: 2928
server: FortiManager
packets: in 0 out 0, bytes: in 0 out 0
group_id: 2 33554433
group_name: FSSO-CPPM cp_test_FSSOROLE
----- 1 listed, 0 filtered ------

After user traffic passes through the firewall, the nu

```plaintext
diagnose firewall auth list
10.1.100.185, fsso1
type: fsso, id: 0, duration: 3802, idled: 143
server: FortiManager
packets: in 1629 out 1817, bytes: in 2203319 out 133312
```
Policy and Objects

```
group_id: 23354433

group_name: FSSO-CPPM cp_test_FSSOROLE

1 listed, 0 filtered
```

ClearPass integration for dynamic address objects

ClearPass Policy Manager (CPPM) can gather information about the statuses of network hosts, for example, the latest patches or virus infections. Based on this information, CPPM send the IP addresses and current states, such as Healthy or Infected, to the FortiGate.

On the FortiGate, the IP addresses received from CPPM are added to a dynamic firewall address with the `clearpass-spt` subtype. This address can be used in any policy that supports dynamic addresses, such as Firewall or SSL-VPN policies.

In this example, you create two dynamic IP addresses that are used in two firewall policies (deny and allow). One policy allows traffic (host state = Healthy), and the other denies traffic (host state = Infected). When CPPM sends the information, the IP addresses are assigned according to their host state: Healthy or Infected.

You can then verify that traffic from the Infected host is denied access by the deny policy, and traffic from the Healthy host is allowed access by the allow policy.

Create a REST API administrator

A REST API administrator is required to generate an authorization token for REST API messages, and to limit hosts that can send REST API messages to the FortiGate.

To create a REST API administrator in the GUI:

1. Go to System > Administrators.
2. Click Create New > REST API Admin.
3. Configure the Username and other information as needed.
5. In the Trusted Hosts field, enter 10.1.100.0/24.

```
New REST API Admin

Username: cpl-back
Comments: 0/255
Administrator profile: clearpass
PKI Group:
CORS Allow Origin:

Restrict login to trusted hosts

Trusted Hosts: 10.1.100.0/24

OK Cancel
```

For this example, an administrator profile called `clearpass` was created with full read/write access. See Administrator profiles on page 1951 for details.

6. Click OK.
   The New API key pane opens.
The API key is the REST API authorization token that is used in REST API messages sent by CPPM to the FortiGate.

7. Copy the API key to a secure location. A new key can be generated if this one is lost or compromised.
8. Click Close.

**To create a REST API administrator in the CLI:**

```bash
config system api-user
 edit "cpi-back"
 set accprofile "clearpass"
 config trusthost
 edit 1
 set ipv4-trusthost 10.1.100.0 255.255.255.0
 next
 end
 end
execute api-user generate-key cp-api
 New API key: 0f1HxGHh9r9p74k7qgfHNH40p51bjs
 NOTE: The bearer of this API key will be granted all access privileges assigned to the api-user cp-api.
```

**Create dynamic IP addresses with the clearpass subtype**

Two dynamic IP addresses are required, one for the allow policy, and the other for the deny policy.

**To create the dynamic IP addresses:**

```bash
config firewall address
 edit "cppm"
 set type dynamic
 set sub-type clearpass-spt
 set clearpass-spt healthy
 set comment ''
 set visibility enable
 set associated-interface ''
 set color 0
 next
 edit "cppm-deny"
 set type dynamic
```
Create firewall policies

Two firewall policies are required, one to accept traffic (cppm-allow), and the other to deny traffic (cppm-deny).

To create the firewall policies in the GUI:

1. Go to Policy & Objects > Firewall Policy.
2. Configure the allow policy:
   a. Click Create New.
   b. Enter a name for the policy.
   c. Set Source set to cppm.
   d. Set Action to ACCEPT.
   e. Configure the remaining settings as needed.
   f. Click OK.
3. Configure the deny policy:
   a. Click Create New.
   b. Enter a name for the policy.
   c. Set Source set to cppm-deny.
   d. Set Action to DENY.
   e. Configure the remaining settings as needed.
   f. Click OK.

To create the firewall policies in the CLI:

```
config firewall address
edit "cppm"
 set type dynamic
 set sub-type clearpass-spt
 set clearpass-spt healthy
 set comment ''
 set visibility enable
 set associated-interface ''
 set color 0
next
edit "cppm-deny"
 set type dynamic
 set sub-type clearpass-spt
 set clearpass-spt infected
 set comment ''
 set visibility enable
 set associated-interface ''
 set color 0
```
Policy and Objects

Verification

Go to Log & Report > Forward Traffic to review traffic logs and ensure that traffic is allowed or denied as expected.

To verify that FortiGate addresses are assigned correctly, enter the following:

```bash
diagnose firewall dynamic list
List all dynamic addresses:
cppm-deny: ID(141)
 ADDR(10.1.100.188)

cppm: ID(176)
 ADDR(10.1.100.185)
 ADDR(10.1.100.186)
```

Group address objects synchronized from FortiManager

Address objects from external connectors that are learned by FortiManager are synchronized to FortiGate. These objects can be grouped together with the FortiGate CLI to simplify selecting connector objects in the FortiGate GUI. Multiple groups can be created.

This option is only available for objects that are synchronized from FortiManager.

To add an object to a connector group:

```bash
config user adgrp
 edit <object_name>
 set server-name "FortiManager"
 set connector-source <group_name>
next
end
```

Example

In this example, objects learned by the FortiManager from an Aruba ClearPass device are synchronized to the FortiGate. Some of the objects are then added to a group called ClearPass to make them easier to find in the object list when creating a firewall policy.

Prior to being grouped, the synchronized objects are listed under the FortiManager heading in the object lists.
To add some of the objects to a group:

```plaintext
config user adgrp
 edit "cp_test_FSSOROLE"
 set server-name "FortiManager"
 set connector-source "ClearPass"
 next
 edit "cp_test_[AirGroup v2]"
 set server-name "FortiManager"
 set connector-source "ClearPass"
 next
end
```

The objects are now listed under the *ClearPass* heading.
Using wildcard FQDN addresses in firewall policies

You can use wildcard FQDN addresses in firewall policies. IPv4, IPv6, ACL, local, shaping, NAT64, NAT46, and NGFW policy types support wildcard FQDN addresses.

For wildcard FQDN addresses to work, the FortiGate should allow DNS traffic to pass through.

Initially, the wildcard FQDN object is empty and contains no addresses. When the client tries to resolve a FQDN address, the FortiGate will analyze the DNS response. The IP address(es) contained in the answer section of the DNS response will be added to the corresponding wildcard FQDN object. It is therefore necessary to have the DNS session-helpers defined in the `config system session-helper` setting.

Since FortiGate must analyze the DNS response, it does not work with DNS over HTTPS.

In FortiOS 7.0 and later, FortiGate supports DNS over TLS. It is possible to analyze DNS responses sent over DoT, as long as there is a firewall policy that allows the DNS traffic from the client and is configured with a DNS filter that supports DoT. For information on configuring this, see DNS inspection with DoT and DoH on page 1186.

When the wildcard FQDN gets the resolved IP addresses, FortiOS loads the addresses into the firewall policy for traffic matching.

The FortiGate will keep the IP addresses in the FQDN object table as long as the DNS entry itself has not expired. Once it expires, the IP address is removed from the wildcard FQDN object until another query is made. At any given time, a single wildcard FQDN object may have up to 1000 IP addresses.

The DNS expiry TTL value is set by the authoritative name server for that DNS record. If the TTL for a specific DNS record is very short and you would like to cache the IP address longer, then you can extend it with the CLI. See To extend the TTL for a DNS record in the CLI: on page 886

For more information, see FQDN address firewall object type.

Wildcard FQDN IPs are synchronized to other autoscale members whenever a peer learns of a wildcard FQDN address.

To create a wildcard FQDN using the GUI:

1. Go to Policy & Objects > Addresses and click Create New > Address.
2. Specify a Name.
3. For Type, select FQDN.
4. For **FQDN**, enter a wildcard FQDN address, for example, `*.fortinet.com`.

![Configuration Interface](image)

5. Click **OK**.

**To use a wildcard FQDN in a firewall policy using the GUI:**

1. Go to **Policy & Objects > Firewall Policy** and click **Create New**.
2. For **Destination**, select the wildcard FQDN.
3. Configure the rest of the policy as needed.
4. Click **OK**.

**To create a wildcard FQDN using the CLI:**

```plaintext
config firewall address
 edit "test-wildcardfqdn-1"
 set type fqdn
 set fqdn "*.fortinet.com"
 next
end
```

**To use wildcard FQDN in a firewall policy using the CLI:**

```plaintext
config firewall policy
 edit 2
 set srcintf "port3"
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "test-wildcardfqdn-1"
 set action accept
 set schedule "always"
 set service "ALL"
 set auto-asic-offload disable
 set nat enable
 next
end
```

**To use the diagnose command to list resolved IP addresses of wildcard FQDN objects:**

```bash
diagnose firewall fqdn list
List all FQDN:
```
Policy and Objects

*fortinet.com: ID(48) ADDR(96.45.36.159) ADDR(192.168.100.161) ADDR(65.39.139.161)

Alternatively:

```
diagnose test application dnsproxy 6
worker idx: 0
vfid=0 name=*fortinet.com ver=IPv4 min_ttl=3266:0, cache_ttl=0 , slot=-1, num=3, wildcard=1
 96.45.36.159 (ttl=68862:68311:68311) 192.168.100.161 (ttl=3600:3146:3146)
 65.39.139.161
(ttl=3600:3481:3481)
```

To use the diagnose command for firewall policies which use wildcard FQDN:

```
diagnose firewall iprope list 100004
...
destination fqdn or dynamic address (1):*fortinet.com ID(48) uuid_idx=57 ADDR
 (208.91.114.104) ADDR(208.91.114.142) ADDR(173.243.137.143) ADDR(65.104.9.196) ADDR
 (96.45.36.210)
...
```

To extend the TTL for a DNS record in the CLI:

```
In this the example the set cache-ttl value has been extended to 3600 seconds.
config firewall address
 edit "fortinet.com"
 set type fqdn
 set fqdn "www.fortinet.com"
 set cache-ttl 3600
 next
end
```

Configure FQDN-based VIPs

In public cloud environments, sometimes it is necessary to map a VIP to an FQDN address.

To configure an FQDN-based VIP in the GUI:

1. Go to Policy & Objects > Virtual IPs and click Create New > Virtual IP.
2. Enter a name for the VIP.
3. Select an interface.
4. For Type, select FQDN.
5. For External, select IP and enter the external IP address.
6. For Mapped address, select an FQDN address.

For Mapped address, select an FQDN address.

7. Click OK.

To configure an FQDN-based VIP in the CLI:

```
config firewall vip
 edit "FQDN-vip-1"
 set type fqn
 set extip 10.2.2.199
 set extintf "any"
 set mapped-addr "destination"
next
end
```

IPv6 geography-based addresses

IPv6 geography-based addresses can be created and applied to IPv6 firewall policies.

IPv6 geography-based addresses do not support geoip-override or geoip-anycast.
To create an IPv6 geography-based address in the GUI:

1. Go to Policy and Objects > Addresses.
2. Click Create New > Address.
3. Set Category to IPv6 Address.
4. Enter a name for the address.
5. Set Type to IPv6 Geography.
6. Select the Country/Region from the list.
7. Optionally, enter comments.
8. Click OK.

To use the IPv6 geography address in a policy:

1. Go to Policy & Objects > Firewall Policy.
2. Edit an existing policy, or create a new one, using the IPv6 geography address as the Source or Destination Address.
3. In the policy list, hover over the address to view details.

To configure an IPv6 geography-based address in the CLI:

1. Create an IPv6 geography-based address:

   config firewall address6  
   edit "test-ipv6-geoip"  
   set type geography  
   set color 6  
   set comment "IPv6 Geography address"  
   set country "CA"  
   next  
   end

2. Use the IPv6 geography-based address in a policy:

   config firewall policy  
   edit 1  
   set name "test-policy6-1"  
   set srcintf "port6"  
   set dstintf "port5"  
   set srcaddr6 "all"  
   set dstaddr6 "test-ipv6-geoip"  
   set action accept  
   set schedule "always"  
   set service "ALL"  
   set nat enable  
   next  
   end

Array structure for address objects

Some address objects logically belong to the same device, such as two IPs from the same computer. These address objects can be grouped into an address folder, which is an exclusive list of address objects that do not appear in other address groups or folders.

In the CLI, the folder type can be set after the member list is already populated. If the member list contains an incompatible entry, then the setting will be discarded when the next/end command is issued. If the folder type is set before the member list is populated, then the possible member entry list will be filtered according to the selected type.
To create an address folder in the GUI:

1. Go to Policy & Objects > Addresses.
2. Click Create New > Address Group and enter a name.
3. For Type, select Folder.
4. For Members, click the + to add the addresses. Address folders and groups are exclusive, so the Select Entries window filters out address objects that are a member of an existing group or folder.

5. Click OK.
6. In the address table, expand the Address Group section to view the folder (dev1-addr-comb). The expandable folder view shows the address folder's child objects:

<table>
<thead>
<tr>
<th></th>
<th>Safe-network1-devices</th>
<th>Address Group (Folder)</th>
<th>2 entries</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dev1-addr-comb</td>
<td>Address Group (Folder)</td>
<td>3 entries</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>dev1-IP-nic1</td>
<td>Subnet</td>
<td>192.168.1.25/32</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>dev1-IP-nic2</td>
<td>Subnet</td>
<td>192.168.1.122/32</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>dev1-mac</td>
<td>Device (MAC Address)</td>
<td>00:0a:95:9d:68:16</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>dev2-addr-comb</td>
<td>Address Group (Folder)</td>
<td>4 entries</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>dev2-IP-nic1</td>
<td>Subnet</td>
<td>192.168.1.101/32</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>dev2-IP-nic2</td>
<td>Subnet</td>
<td>192.168.1.102/32</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>dev2-IP-nic3</td>
<td>Subnet</td>
<td>192.168.1.103/32</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>dev2-mac</td>
<td>Device (MAC Address)</td>
<td>11:5b:12:2c:87:02</td>
<td>1</td>
</tr>
</tbody>
</table>

To configure an address folder in the CLI:

```bash
config firewall addrgrp
edit "safe-network1-devices"
 set type folder
 set member "dev1-addr-comb" "dev2-addr-comb"
 set comment ''
 set exclude disable
 set color 13
next
end
config firewall addrgrp
edit "dev1-addr-comb"
 set type folder
 set member "dev1-IP-nic1" "dev1-IP-nic2" "dev1-mac"
```
IPv6 MAC addresses and usage in firewall policies

Users can define IPv6 MAC addresses that can be applied to the following policies:

- Firewall
- Virtual wire pair
- ACL/DoS
- Central NAT
- NAT64
- Local-in

In FortiOS, you can configure a firewall address object with a singular MAC, wildcard MAC, multiple MACs, or a MAC range. In this example, a firewall policy is configured in a NAT mode VDOM with the IPv6 MAC address as a source address.

IPv6 MAC addresses cannot be used as destination addresses in VDOMs when in NAT operation mode.

To configure IPv6 MAC addresses in a policy in the GUI:

1. Create the MAC address:
   a. Go to Policy & Objects > Addresses and click Create New > Address.
   b. For Category, select IPv6 Address.
   c. Enter an address name.
   d. For Type, select Device (MAC Address).
Policy and Objects

e. Enter the MAC address.

f. Click OK.

2. Configure the policy:
   a. Go to Policy & Objects > Firewall Policy and click Create New.
   b. For Source, select the IPv6 MAC address object.
   c. Configure the other settings as needed.
   d. Click OK.

To configure IPv6 MAC addresses in a policy in the CLI:

1. Create the MAC address:

   ```
 config firewall address6
 edit "test-ipv6-mac-addr-1"
 set type mac
 set macaddr 00:0c:29:b5:92:8d
 next
 end
   ```

2. Configure the policy:

   ```
 config firewall policy
 edit 2
 set srcintf "wan2"
 set dstintf "wan1"
 set srcaddr "all"
 set dstaddr "all"
 set srcaddr6 "test-ipv6-mac-addr-1" "2000-10-1-100-0"
 set dstaddr6 "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set logtraffic all
 set auto-asic-offload disable
 set nat enable
 next
 end
   ```
FortiNAC tag dynamic address

The FortiNAC tag dynamic firewall address type is used to store the device IP, FortiNAC firewall tags, and FortiNAC group information sent from FortiNAC by the REST API when user logon and logoff events are registered.

In the following example, the user connecting to the network will be required to first log on to the FortiNAC. When the login succeeds, the logon information is synchronized to the FortiGate using the REST API. The FortiGate updates the dynamic firewall address object with the user and IP information of the user device. This firewall address is used in firewall policies to dynamically allow network access for authenticated users, thereby allowing SSO for the end user.

This example assumes the following:

- The FortiGate is the Security Fabric root device (refer to Configuring the root FortiGate and downstream FortiGates on page 2210 for more information).
- The FortiNAC is running version 9.2.2 (or later), and it is connected to the Security Fabric (refer to Configuring FortiNAC on page 2252 for more information).
- Firewall tags and groups have been assigned in FortiNAC to the registered FortiGate (refer to Virtualized Devices for more information). Unlike firewall tags, which are simple labels that can be configured on FortiNAC, firewall groups can be local, built-in, user-defined, or remote user groups imported from a remote server used for user authentication. Only groups that the user of the current logon event belongs to are sent to the FortiGate. Firewall tags are sent for all user authentication.

To use a FortiNAC tag dynamic firewall address in a policy:

1. Trigger two user logon events on the FortiNAC.
2. In FortiOS, go to Policy & Objects > Addresses, and expand the FortiNAC Tag (IP Address) section to view the newly created dynamic firewall address objects. The dynamic firewall addresses matching the current user logon status on FortiNAC have the current IP address of user devices. The addresses without matching user logons are marked with a red exclamation mark (!).
3. Go to Policy & Objects > Firewall Policy and click Create New or edit an existing policy. FortiNAC tag dynamic firewall address an be used as source or destination addresses.

4. Configure the settings as needed, then click OK. In this policy, traffic can only pass if it originates from any of the mapped IP addresses (10.1.100.184 and 10.1.100.185); other traffic cannot pass.
5. Hover over the address in the policy, then in the tooltip, click View Matched Addresses.

6. Have one of the users log off from the FortiNAC.

7. In FortiOS, go to Policy & Objects > Addresses and verify the FortiNAC Tag addresses. A user logged off from 10.1.100.184, so now only 10.1.100.185 is mapped to the dynamic firewall objects.

All firewall policies using those objects are automatically updated.

8. Go to Policy & Objects > Firewall Policy. Hover over the address in the policy, then in the tooltip, click View Matched Addresses.

The firewall policy was automatically updated so that traffic from 10.1.100.184 can no longer pass, and only traffic from 10.1.100.185 can pass.
Allow empty address groups

Address groups with no members can be configured in the GUI, CLI, and through the API. In previous versions of FortiOS, error messages appear for empty address groups and they cannot be configured.

To create an empty address group in the GUI:

1. Go to Policy & Objects > Addresses and click Create New > Address Group.
2. Enter a name.
3. Click OK. The This field is required. error is not displayed under the Members field.

To create an empty address group in the CLI:

```bash
config firewall addrgrp
ten edit "test-empty-addrgrp4-1"
next
end
```

No error message is returned in the console.

Remove overlap check for VIPs

There is no overlap check for VIPs, so there are no constraints when configuring multiple VIPs with the same external interface and IP. A new security rating report alerts users of any VIP overlaps.

To configure two VIPs with the same external interface and IP:

```bash
config firewall vip
ten edit "test-vip44-1"
 set extip 10.1.100.154
 set mappedip "172.16.200.156"
 set extintf "port24"
nexten edit "test-vip44-1_clone"
 set extip 10.1.100.154
 set mappedip "172.16.200.156"
 set extintf "port24"
 set src-filter 10.1.100.11
nexten end
```
No error message appears regarding the overlapping VIPs.

To view the security rating report:

2. Expand the Failed section. The Virtual IP Overlap results show an overlap (test-vip44-1 and test-vip44-1_clone) on the root FortiGate.

VIP groups

Virtual IP addresses (VIPs) can be organized into groups. This is useful in scenarios where there are multiple VIPs that are used together in firewall policies. If the VIP group members change, or a group member's settings change (such as the IP address, port, or port mapping type), then those changes are automatically updated in the corresponding firewall policies.

The following table summarizes which VIP types are allowed and not allowed to be members of a VIP group:

<table>
<thead>
<tr>
<th>Group type</th>
<th>VIP types allowed as members</th>
<th>VIP types not allowed as members</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4</td>
<td>• Static NAT</td>
<td>• Access proxy</td>
</tr>
<tr>
<td></td>
<td>• Load balance</td>
<td>• Server load balance</td>
</tr>
<tr>
<td></td>
<td>• DNS translation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• FQDN</td>
<td></td>
</tr>
<tr>
<td>IPv6</td>
<td>• Static NAT</td>
<td>• Access proxy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Server load balance</td>
</tr>
</tbody>
</table>

Different VIP types can be added to the same group.
To configure a VIP group in the GUI:

1. Go to Policy & Objects > Virtual IPs and click Create New > Virtual IP Group.
2. Set the Type to IPv4 or IPv6.
3. Enter a name.
4. Optionally, enter additional information in the Comments field.
5. For IPv4 groups, select the Interface. Select a specific interface if all of the VIPs are on the same interface; otherwise, select any.
6. Click the + in the Members field and select the members to add to the group.
7. Click OK.

To configure an IPv4 VIP group in the CLI:

```plaintext
config firewall vipgrp
 edit <name>
 set interface <name>
 set member <vip1> <vip2> ...
 next
end
```

To configure an IPv6 VIP group in the CLI:

```plaintext
config firewall vipgrp6
 edit <name>
 set member <vip1> <vip2> ...
 next
end
```

Internet Services

The following topics provide instructions on configuring policies with Internet Service:

- Using Internet Service in policy on page 898
- Using custom Internet Service in policy on page 900
- Using extension Internet Service in policy on page 902
- Global IP address information database on page 904
- IP reputation filtering on page 906
- Internet service groups in policies on page 908
- Allow creation of ISDB objects with regional information on page 912
- Internet service customization on page 914
- Look up IP address information from the Internet Service Database page on page 915

Using Internet Service in policy

This topic shows how to apply a predefined Internet Service entry into a policy.

The Internet Service Database is a comprehensive public IP address database that combines IP address range, IP owner, service port number, and IP security credibility. The data comes from the FortiGuard service system. Information is regularly added to this database, for example, geographic location, IP reputation, popularity & DNS, and so on. All this
information helps users define Internet security more effectively. You can use the contents of the database as criteria for inclusion or exclusion in a policy.

From FortiOS version 5.6, Internet Service is included in the firewall policy. It can be applied to a policy only as a destination object. From version 6.0, Internet Service can be applied both as source and destination objects in a policy. You can also apply Internet Services to shaping policy.

There are three types of Internet Services you can apply to a firewall policy:

- Predefined Internet Services
- Custom Internet Services
- Extension Internet Services

**Sample configuration**

To apply a predefined Internet Service entry to a policy using the GUI:

1. Go to Policy & Objects > Firewall Policy and click Create New.
2. Click in the Destination field.
3. In the Select Entries pane, click Internet Service and select Google-Gmail.
4. Configure the remaining fields as needed.
5. Click OK.

To apply a predefined Internet Service entry to a policy in the CLI:

In the CLI, enable the `internet-service` first and then use its ID to apply the policy.

This example uses Google Gmail and its ID is 65646. Each Internet Service has a unique ID.

```
config firewall policy
 edit 9
 set name "Internet Service in Policy"
 set srcintf "wan2"
 set dstintf "wan1"
 set srcaddr "all"
 set internet-service enable
 set internet-service-id 65646
 set action accept
 set schedule "always"
 set utm-status enable
 set av-profile "g-default"
```
set ssl-ssh-profile "certificate-inspection"
set nat enable
next
end

To diagnose an Internet Service entry in the CLI:

# diagnose internet-service id-summary 65646
Version: 0000600096
Timestamp: 201902111802
Total number of IP ranges: 444727
Number of Groups: 7
Group(0), Singularity(20), Number of IP ranges(142740)
Group(1), Singularity(19), Number of IP ranges(1210)
Group(2), Singularity(16), Number of IP ranges(241)
Group(3), Singularity(15), Number of IP ranges(38723)
Group(4), Singularity(10), Number of IP ranges(142586)
Group(5), Singularity(8), Number of IP ranges(5336)
Group(6), Singularity(6), Number of IP ranges(113891)
Internet Service: 65646(Google.Gmail)
Number of IP range: 60
Number of IP numbers: 322845
Singularity: 15
Reputation: 5(Known and verified safe sites such as Gmail, Amazon, eBay, etc.)
Icon Id: 510
Second Level Domain: 53(gmail.com)
Direction: dst
Data source: isdb

Result

Because the IP and services related to Google Gmail on the Internet are included in this Internet Service (65646), all traffic to Google Gmail is forwarded by this policy.

Using custom Internet Service in policy

Custom Internet Services can be created and used in firewall policies.

When creating a custom Internet Service, you must set following elements:

- IP or IP ranges
- Protocol number
- Port or port ranges
- Reputation

You must use CLI to create a custom Internet Service, except for geographic based services (see Allow creation of ISDB objects with regional information on page 912).

CLI syntax

config firewall internet-service-custom
   edit <name>
      set comment <comment>
      set reputation {1 | 2 | 3 | 4 | 5}
config entry
  edit <ID>
    set protocol <protocol #>
    set dst <object_name>
  config port-range
    edit <ID>
      set start-port <port #>
      set end-port <port #>
    next
  next
end
end

Sample configuration

To configure a custom Internet Service:

cfg firewall internet-service-custom
  edit "test-isdb-1"
    set comment "Test Custom Internet Service"
    set reputation 4
  config entry
    edit 1
      set protocol 6
      config port-range
        edit 1
          set start-port 80
          set end-port 443
        next
      end
    set dst "10-1-100-0"
  next
  edit 2
    set protocol 6
    config port-range
      edit 1
        set start-port 80
        set end-port 80
      next
    end
    set dst "172-16-200-0"
  next
end

To apply a custom Internet Service into a policy:

cfg firewall policy
  edit 1
    set name "Internet Service in Policy"
    set srcintf "wan2"
    set dstintf "wan1"
Policy and Objects

```
set srcaddr "all"
set internet-service enable
set internet-service-id 65646
set internet-service-custom "test-isdb-1"
set action accept
set schedule "always"
set utm-status enable
set av-profile "g-default"
set ssl-ssh-profile "certificate-inspection"
set nat enable
next
end
```

**Result**

In addition to the IP address, IP address ranges, and services allowed by Google.Gmail, this policy also allows the traffic which access to 10.1.100.0/24 and TCP/80-443 and 172.16.200.0/24 and TCP/80.

**Using extension Internet Service in policy**

Extension Internet Service lets you add custom or remove existing IP address and port ranges to an existing predefined Internet Service entries. Using an extension type Internet Service is actually editing a predefined type Internet Service entry and adding IP address and port ranges to it.

When creating an extension Internet Service and adding custom ranges, you must set following elements:

- IP or IP ranges
- Protocol number
- Port or port ranges

You must use CLI to add custom IP address and port entries into a predefined Internet Service.

You must use GUI to remove entries from a predefined Internet Service.

**Custom extension Internet Service CLI syntax**

```
config firewall internet-service-extension
edit <ID #>
 set comment <comment>
 config entry
 edit <ID #>
 set protocol <number #>
 set dst <object_name>
 config port-range
 edit <ID #>
 set start-port <number #>
 set end-port <number #>
 next
 end
 next
 end
end
```

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
Sample configuration

To configure an extension Internet Service in the CLI:

```sh
config firewall internet-service-extension
 edit 65646
 set comment "Test Extension Internet Service 65646"
 config entry
 edit 1
 set protocol 6
 config port-range
 edit 1
 set start-port 80
 set end-port 443
 next
 end
 next
 set dst "172-16-200-0"
 next
 edit 2
 set protocol 17
 config port-range
 edit 1
 set start-port 53
 set end-port 53
 next
 set dst "10-1-100-0"
 next
 next
end
```

To remove IP address and port entries from an existing Internet Service in the GUI:

1. Go to Policy & Objects > Internet Service Database.
2. Search for Google-Gmail.
3. Select Google-Gmail and click Edit.
4. In the gutter, click View/Edit Entries.
5. Select the IP entry that you need to remove and click Disable.

6. Click Return twice.
To remove IP address and port entries from an existing Internet Service in the CLI:

```
config firewall internet-service-extension
 edit 65646
 config disable-entry
 edit 1
 set protocol 17
 config port-range
 edit 1
 next
 end
 config ip-range
 edit 1
 set start-ip 142.250.191.165
 set end-ip 142.250.191.165
 next
 end
 next
 end
 end
end
```

To apply an extension Internet Service into policy in the CLI:

```
config firewall policy
 edit 9
 set name "Internet Service in Policy"
 set srcintf "wan2"
 set dstintf "wan1"
 set srcaddr "all"
 set internet-service enable
 set internet-service-id 65646
 set action accept
 set schedule "always"
 set utm-status enable
 set av-profile "g-default"
 set ssl-ssh-profile "certificate-inspection"
 set nat enable
 next
end
```

**Result**

In addition to the IP addresses, IP address ranges, and services allowed by Google.Gmail, this policy also allows the traffic which accesses 10.1.100.0/24 and UDP/53 and 172.16.200.0/24 and TCP/80-443. At the same time, the traffic that accesses 2.20.183.160 is dropped because this IP address and port is disabled from Google.Gmail.

**Global IP address information database**

The Internet Service and IP Reputation databases download details about public IP address, including: ownership, known services, geographic location, blocklisting information, and more. The details are available in drilldown information, tooltips, and other mechanisms in the FortiView and other pages.
The global IP address database is an integrated database containing all public IP addresses, and is implemented in the Internet Service Database.

To view the owner of the IP address:

(global) # get firewall internet-service-owner ?
  id  Internet Service owner ID.
  1 Google
  2 Facebook
  3 Apple
  4 Yahoo
  ...... 
  115 Cybozu
  116 VNC

To check for any known service running on an IP address:

(global) # diagnose internet-service info FG-traffic 6 80 8.8.8.8
  Internet Service: 65537(Google.Web)

To check GeoIP location and blocklist information:

(global) # diagnose internet-service id 65537 | grep 8.8.8.8
  8.8.8.8-8.8.8.8 geo_id(11337) block list(0x0) proto(6) port(80 443)
  8.8.8.8-8.8.8.8 geo_id(11337) block list(0x0) proto(17) port(443)

To check a known malicious server:

(global) # diagnose internet-service id-summary 3080383
  Version: 0000600096
  Timestamp: 201902111802
  Total number of IP ranges: 444727
  Number of Groups: 7
  Group(0), Singularity(20), Number of IP ranges(142740)
  Group(1), Singularity(19), Number of IP ranges(1210)
  Group(2), Singularity(16), Number of IP ranges(241)
  Group(3), Singularity(15), Number of IP ranges(38723)
  Group(4), Singularity(10), Number of IP ranges(142586)
  Group(5), Singularity(8), Number of IP ranges(5336)
  Group(6), Singularity(6), Number of IP ranges(113891)
  Internet Service: 3080383(Botnet.C&C.Server)
  Number of IP range: 111486
  Number of IP numbers: 111486
  Singularity: 20
  Reputation: 1(Known malicious sites related to botnet servers, phishing sites, etc.)
  Icon Id: 591
  Second Level Domain: 1(other)
  Direction: dst
  Data source: irdb

To check questionable usage:

(global) # diagnose internet-service id-summary 2818238
  Version: 0000600096
Policy and Objects

Timestamp: 201902111802
Total number of IP ranges: 444727
Number of Groups: 7
Group(0), Singularity(20), Number of IP ranges(142740)
Group(1), Singularity(19), Number of IP ranges(1210)
Group(2), Singularity(16), Number of IP ranges(241)
Group(3), Singularity(15), Number of IP ranges(38723)
Group(4), Singularity(10), Number of IP ranges(142586)
Group(5), Singularity(8), Number of IP ranges(5336)
Group(6), Singularity(6), Number of IP ranges(113891)
Internet Service: 2818238(Tor.Relay.Node)
Number of IP range: 13718
Number of IP numbers: 13718
Singularity: 20
Reputation: 2(Sites providing high risk services such as TOR, proxy, P2P, etc.)
Icon Id: 43
Second Level Domain: 1(other)
Direction: dst
Data source: irdb

(global) # diagnose internet-service id-summary 2818243
Version: 0000600096
Timestamp: 201902111802
Total number of IP ranges: 444727
Number of Groups: 7
Group(0), Singularity(20), Number of IP ranges(142740)
Group(1), Singularity(19), Number of IP ranges(1210)
Group(2), Singularity(16), Number of IP ranges(241)
Group(3), Singularity(15), Number of IP ranges(38723)
Group(4), Singularity(10), Number of IP ranges(142586)
Group(5), Singularity(8), Number of IP ranges(5336)
Group(6), Singularity(6), Number of IP ranges(113891)
Internet Service: 2818243(Tor.Exit.Node)
Number of IP range: 1210
Number of IP numbers: 1210
Singularity: 19
Reputation: 2(Sites providing high risk services such as TOR, proxy, P2P, etc.)
Icon Id: 43
Second Level Domain: 1(other)
Direction: src
Data source: irdb

IP reputation filtering

There are currently five reputation levels in the Internet Service Database (ISDB), and custom reputation levels can be defined in a custom internet service. You can configure firewall policies to filter traffic according to the desired reputation level. If the reputation level of either the source or destination IP address is equal to or greater than the level set in the policy, then the packet is forwarded, otherwise, the packet is dropped.

The five default reputation levels are:

1. Known malicious sites, such as phishing sites or sites related to botnet servers
2. High risk services sites, such as TOR, proxy, and P2P
3. Unverified sites

4. Reputable social media sites, such as Facebook and Twitter

5. Known and verified safe sites, such as Gmail, Amazon, and eBay

The default minimum reputation level in a policy is zero, meaning that the reputation filter is disabled.

For IP addresses that are not included in the ISDB, the default reputation level is three.

The default reputation direction is destination.

**Example 1**

Packets from the source IP address with reputation levels three, four, or five will be forwarded by this policy.

**To set the reputation level and direction in a policy using the CLI:**

```
config firewall policy
edit 1
 set srcintf "wan2"
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "all"
 set reputation-minimum 3
 set reputation-direction source
 set action accept
 set schedule "always"
 set service "ALL"
 set logtraffic all
 set auto-asic-offload disable
 set nat enable
next
end
```

Packets from the source IP address with reputation levels three, four, or five will be forwarded by this policy.

**Example 2**

This policy allows only outbound FTP traffic, if the destination server has a minimum reputation of 4.

**To set the reputation level and direction in a policy using the CLI:**

```
cfg firewall policy
edit 1
 set srcintf "port1"
 set dstintf "wan2"
 set srcaddr "all"
 set dstaddr "all"
 set reputation-minimum 4
 set reputation-direction destination
 set action accept
```
Policy and Objects

set schedule "always"
set service "FTP"
set logtraffic all
set auto-asic-offload disable
set nat enable
next
d

Internet service groups in policies

This feature provides support for Internet Service Groups in traffic shaping and firewall policies. Service groups can be used as the source and destination of the policy. Internet Service Groups are used as criteria to match traffic; the shaper will be applied when the traffic matches.

To use a group as a destination, `internet-service` must be enabled. To use a group as a source, `internet-service-src` must be enabled.

The following CLI variables are available in the `firewall policy` and `firewall shaping-policy` commands:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>internet-service-group &lt;string&gt;</td>
<td>Internet Service group name.</td>
</tr>
<tr>
<td>internet-service-custom-group &lt;string&gt;</td>
<td>Custom Internet Service group name.</td>
</tr>
<tr>
<td>internet-service-src-group &lt;string&gt;</td>
<td>Internet Service source group name.</td>
</tr>
<tr>
<td>internet-service-src-custom-group &lt;string&gt;</td>
<td>Custom Internet Service source group name.</td>
</tr>
</tbody>
</table>

Examples

The following examples use the below topology.

![Topology Diagram]

Example 1

In this example, the PC is allowed to access Google, so all Google services are put into an Internet Service Group.

To configure access to Google services using an Internet Service Group using the CLI:

1. Create a Service Group:
   
   ```
 config firewall internet-service-group
 edit "Google_Group"
 set direction destination
   ```
### Policy and Objects

```plaintext
next
end
```

2. Create a firewall policy to allow access to all Google Services from the PC:

```plaintext
cfg firewall policy
edit 1
 set name "PC to Google"
 set srcintf "port2"
 set dstintf "port1"
 set srcaddr "all"
 set internet-service enable
 set internet-service-group "Google_Group"
 set action accept
 set schedule "always"
 set fsso disable
 set nat enable
next
end
```

**To configure access to Google services using an Internet Service Group in the GUI:**

1. On the FortiGate, create a Service Group using the CLI.
2. Go to Policy & Objects > Firewall Policy, and create a new policy.
3. Set the Destination as the just created Internet Service Group.
4. Configure the remaining options, then click OK.
5. Go to Policy & Objects > Firewall Policy and hover over the group to view a list of its members.

Example 2

In this example, two office FTP servers are put into an Internet Custom Service Group, and the PC connection to the FTP servers is limited to 1Mbps.

To put two FTP servers into a custom service group and limit the PC connection speed to them in the CLI:

1. Create custom internet services for the internal FTP servers:

```plaintext
config firewall internet-service-custom
edit "FTP_PM"
 config entry
e edit 1
 config port-range
e edit 1
 set start-port 21
 set end-port 21
 next
 end
 set dst "PM_Server"
 next
end
next
edit "FTP_QA"
 config entry
e edit 1
 config port-range
e edit 1
 set start-port 21
 set end-port 21
 next
 end
 set dst "QA_Server"
 next
end
```
2. Create a custom internet server group and add the just created custom internet services to it:

```plaintext
config firewall internet-service-custom-group
edit "Internal_FTP"
 set member "FTP_QA" "FTP_PM"
next
end
```

3. Create a traffic shaper to limit the maximum bandwidth:

```plaintext
config firewall shaper traffic-shaper
edit "Internal_FTP_Limit_1Mbps"
 set guaranteed-bandwidth 500
 set maximum-bandwidth 1000
 set priority medium
next
end
```

4. Create a firewall shaping policy to limit the speed from the PC to the internal FTP servers:

```plaintext
config firewall shaping-policy
edit 1
 set name "For Internal FTP"
 set internet-service enable
 set internet-service-custom-group "Internal_FTP"
 set dstintf "port1"
 set traffic-shaper "Internal_FTP_Limit_1Mbps"
 set traffic-shaper-reverse "Internal_FTP_Limit_1Mbps"
 set srcaddr "PC"
next
end
```

To put two FTP servers into a custom service group and limit the PC connection speed to the in the GUI:

1. Create custom internet services for the internal FTP servers using the CLI.
2. Create a custom internet server group and add the just created custom internet services to it using the CLI.
3. Create a traffic shaper to limit the maximum bandwidth:
   a. Go to Policy & Objects > Traffic Shaping, select the Traffic Shapers tab, and click Create New.
   b. Enter a Name for the shaper, such as Internal_FTP_Limit_1Mbps.
   c. Set the Traffic Priority to Medium.
   d. Enable Max Bandwidth and set it to 1000.
   e. Enable Guaranteed Bandwidth and set it to 500.
   f. Click OK.
4. Create a firewall shaping policy to limit the speed from the PC to the internal FTP servers:
   a. Go to Policy & Objects > Traffic Shaping, select the Traffic Shaping Policy tab, and click Create New.
   b. Set the Destination to the just created custom internet service group, and apply the just create traffic shaper.
Configure the remaining options as shown, then click OK.

Allow creation of ISDB objects with regional information

Geographic-based Internet Service Database (ISDB) objects allow users to define a country, region, and city. These objects can be used in firewall policies for more granular control over the location of the parent ISDB object. ISDB objects are now referenced in policies by name instead of ID.

To apply a location-based ISDB object to a policy in the GUI:

1. Create the ISDB object:
   a. Go to Policy & Objects > Internet Service Database and click Create New > Geographic Based Internet Service.
   b. Configure the settings as required.
   c. Click OK.

2. View the IP ranges in the location-based internet service:
   a. Go to Policy & Objects > Internet Service Database.
   b. In the table, hover over the object created in step 1 and click View/Edit Entries. The list of IPs is displayed:
c. Click Return.

3. Add the ISDB object to a policy:
   a. Go to Policy & Objects > Firewall Policy and create a new policy or edit an existing one.
   b. For Destination, click Internet Service and select the ISDB object created in step 1.
   c. Configure the other settings as needed.
   d. Click OK.

To apply a location-based ISDB object to a policy in the CLI:

1. Create the ISDB object:

```
config firewall internet-service-name
edit "test-location-isdb-1"
 set type location
 set internet-service-id 65536
 set country-id 840
 set region-id 283
 set city-id 23352
next
end
```

2. View the IP ranges in the location-based internet service:

```
diagnose internet-service id 65536 | grep "country(840) region(283) city(23352)"
96.45.33.73-96.45.33.73 country(840) region(283) city(23352) blocklist(0x0) reputation(4), domain(5) popularity(0) botnet(0) proto(6) port(1-65535)
96.45.33.73-96.45.33.73 country(840) region(283) city(23352) blocklist(0x0) reputation(4), domain(5) popularity(0) botnet(0) proto(17) port(1-65535)
198.94.221.56-198.94.221.56 country(840) region(283) city(23352) blocklist(0x0) reputation(4), domain(5) popularity(4) botnet(0) proto(6) port(1-65535)
198.94.221.56-198.94.221.56 country(840) region(283) city(23352) blocklist(0x0) reputation(4), domain(5) popularity(4) botnet(0) proto(17) port(1-65535)
```
3. Add the ISDB object to a policy:

```
config firewall policy
edit 3
 set name "PC to Google"
 set srcintf "port2"
 set dstintf "port1"
 set srcaddr "PC"
 set internet-service enable
 set internet-service-name "test-location-isdb-1"
 set action accept
 set schedule "always"
 set logtraffic all
 set logtraffic-start enable
 set auto-asic-offload disable
 set nat enable
next
end
```

**Internet service customization**

Internet Service Database (ISDB) entries can be tuned for their environments by adding custom ports and port ranges, as well as port mapping.

**To add a custom port range:**

```
config firewall internet-service-addition
edit 65646
 set comment "Add custom port-range:tcp/8080-8090 into 65646"
config entry
 edit 1
 set protocol 6
 config port-range
 edit 1
 set start-port 8080
 set end-port 8090
next
end
end
```

Warning: Configuration will only be applied after rebooting or using the 'execute internet-service refresh' command.

**To verify that the change was applied:**

```
diagnose internet-service info FG-traffic 6 8080 2.20.183.160
Internet Service: 65646(Google.Gmail)
```

**To configure additional port mapping:**

```
config firewall internet-service-append
 set match-port 10
```
set append-port 20
end

Warning: Configuration will only be applied after rebooting or using the 'execute internet-service refresh' command.

Look up IP address information from the Internet Service Database page

The IP Address Lookup button allows users to look up IP address information from the Internet Service Database and GeoIP Database. Returned IP address information includes the reverse IP address/domain lookup, location, reputation, and other internet service information.

To look up IP address information:

1. Go to Policy & Objects > Internet Service Database.
2. Click IP Address Lookup. The IP Address Lookup pane opens.
3. In the IP Address Query field, enter the IP address and press Enter.

Results of an IP address from the Internet Service Database:

Results of an IP address from the GeoIP Database:

Results of an IPv6 address from the GeoIP Database:
4. Click Close.

Protocol options

Firewall policies contain a Protocol Options field that defines the parameters for handling protocol-specific traffic. Multiple protocol options profiles can be configured in FortiOS since the requirements may differ between policies. A single protocol options profile is applied per policy, but the profile can be used in multiple policies.

To create a protocol options profile, go to Policy & Objects > Protocol Options. The following settings can be configured.

Log oversized files

Enable this option to log the occurrence of oversized files being processed. This does not change how they are processed. It only allows the FortiGate to log that they were either blocked or allowed through.

It is common practice to allow larger files through without antivirus processing. Monitor the logs for the frequency of oversized file processing to determine whether or not to alter the settings for treating oversized files. The threshold setting for oversized files and emails is located in the Common Options section.

RPC over HTTP

This protocol is used by Microsoft Exchange Servers to perform virus scanning on emails that use RPC over HTTP.

Protocol port mapping

To optimize the FortiGate’s resources, the mapping and inspection of the following protocols can be enabled or disabled:

- HTTP
- SMTP
- POP3
- IMAP
- FTP
- NNTP
- MAPI
- DNS
- CIFS

Each protocol has a default TCP port. The ports can be modified to inspect any port with flowing traffic. The packet headers indicate which protocol generated the packet.
Common options

The *Comfort Clients* and *Block Oversized File/Email* options apply to multiple protocols.

**Comfort clients**

When proxy-based antivirus scanning is enabled, the FortiGate buffers files as they are downloaded. Once the entire file is captured, the FortiGate begins scanning the file. The user must wait during the buffering and scanning procedure. After the scan is completed and if no infection is found, the file is sent to the next step in the process flow. If the file is large, this part of the process can take some time. In some cases, enough time that some users may get impatient and cancel the download.

The *Comfort Clients* option mitigates this potential issue by feeding a trickle of data while waiting for the scan to complete. The user is aware that processing is taking place, and that there has not been a failure in the transmission. The slow transfer rate continues until the antivirus scan is complete. The transfer will proceed at full speed once the file is scanned successfully and does not contain any viruses.

If there is evidence of an infection, the FortiGate caches the URL and drops the connection. The client does not receive any notification of what happened because the download to the client has already started. Instead, the download stops and the user is left with a partially downloaded file. If the user tries to download the same file again within a short period of time, the cached URL is matched and the download is blocked. A notification is displayed that the download was blocked. The number of URLs in the cache is limited by the size of the cache.

Client comforting is available for HTTP and FTP traffic. If the FortiGate supports SSL content scanning and inspection, client comforting can be configured for HTTPS and FTPS traffic.

Buffering the entire file allows the FortiGate to eliminate the danger of missing an infection due to fragmentation because the file is reassembled before examination. This buffering is performed whenever the *Comfort Clients* option is disabled.

Client comforting can send unscanned and potentially infected content to the client, so only enable this option if you are prepared to accept this risk. Keeping the client comforting interval high and the amount low will reduce the amount of potentially infected data that is downloaded.

**Block oversized files and emails**

This option is related to antivirus scanning. The FortiGate has a finite amount of resources to buffer and scan a file. If a large file (such as an ISO image or video file) is downloaded, this could overwhelm or exceed the FortiGate’s memory, especially if other large files are being downloaded at the same time.

A threshold is assigned to identify an oversize file or email. The default is 10 MB. The range varies per model, and the minimum is 1 MB. Any file or email over this threshold will not be processed by policies applying the antivirus security profile.

If the FortiGate enters conserve mode on a regular basis, lowering the threshold can lessen the impact of processing the files on memory. This can increase risk, even though malware is more likely to be in smaller files.
Web options

The Chunked Bypass option applies to traffic containing web protocols.

Chunked bypass

Chunked bypass is a mechanism in HTTP 1.1 that allows a web server to start sending chunks of dynamically generated output in response to a request before actually knowing the actual size of the content. For dynamically generated content, enabling chunked bypass speeds up the initial response to HTTP requests, but the content is not held in the proxy as an entire file before proceeding.

Email options

The Allow Fragmented Messages and Append Signature (SMTP) options apply to email protocols.

Allow fragmented messages

The specifications of RFC 2046 allow for the breaking up of emails and sending the fragments in parallel to be rebuilt and read at the other end by the mail server. It was originally designed to increase the performance over slower connections where larger email messages were involved. Feasibility of using this function depends on the mail configuration. Outside of Microsoft Outlook, not many email clients are set up to break up messages like this. The drawback of this feature is that if malware is broken up between multiple fragments of the message, there is a risk that it will not be detected by some antivirus configurations because all the code may not be present at the same time to identify the malware.

Append signature

This option adds a plain text email signature to SMTP email messages as they pass through the FortiGate. The message maximum is 1023 characters.

This feature works best in an environment where there is some standardization of what goes into the senders' personal signatures so that there is no duplication or contradiction of information. For example:

- This email should not be forwarded without prior approval.
- Please consider the environment before printing this email.
- For questions regarding purchasing our products, please call ...

Traffic shaping

A FortiGate provides quality of service (QoS) by applying bandwidth limits and prioritization to network traffic. Traffic shaping is one technique used by the FortiGate to provide QoS. A basic approach to traffic shaping is to prioritize higher priority traffic over lower priority traffic during periods of traffic congestion. This provides a stabilizing effect for important traffic while throttling less important traffic.

The FortiGate can be configured to deliver traffic shaping with policing or traffic shaping with queuing. The general difference between the two is as follows:
Policy and Objects

<table>
<thead>
<tr>
<th>Technique</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic shaping with policing</td>
<td>When traffic exceeds the configured bandwidth limits, traffic is dropped.</td>
</tr>
<tr>
<td>Traffic shaping with queuing</td>
<td>When traffic exceeds the configured bandwidth limits, traffic is delayed for transport until bandwidth frees up. Traffic may be dropped if the queues are full.</td>
</tr>
</tbody>
</table>

Policing and queuing can both prioritize traffic and deliver guaranteed bandwidth and maximum bandwidth by setting bandwidth limits. The implementation differs though, since queuing uses queues, and policing does not. In queuing, before a packet egresses an interface, it is first enqueued to a queue using an algorithm such as RED or FIFO. The kernel dequeues the packet based on the HTB algorithm before sending it out. In policing, traffic simply drops if it is over the allocated bandwidth.

The following topics provide information about configuring traffic shaping:

- Traffic shaping policies on page 921
- Traffic shaping profiles on page 925
- Traffic shapers on page 935
- Global traffic prioritization on page 947
- DSCP matching and DSCP marking on page 950
- Examples on page 954

### Configuration methods

There are different methods to configure traffic shaping on the FortiGate. The following table lists the methods and their capabilities in order of preference. If all three methods are configured, the first will be preferred over the second, which is preferred over the third.

<table>
<thead>
<tr>
<th>Method</th>
<th>Traffic prioritization</th>
<th>Policing</th>
<th>Queuing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic shaping profile*</td>
<td>Yes</td>
<td>Yes, based on percentage of outbandwidth</td>
<td>Yes</td>
</tr>
<tr>
<td>Traffic shaper</td>
<td>Yes</td>
<td>Yes, based on rate</td>
<td>No</td>
</tr>
<tr>
<td>Global traffic prioritization</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

*Traffic shaping profiles are configured as either policing or queuing types. Queuing allows for additional options when configuring a shaping class entry.

The features of each method’s implementation are slightly different. The following is a brief summary of the traffic policing features and the approach each method takes.

### Traffic prioritization

The FortiGate can place packets into different priority levels in order to prioritize certain traffic over others.
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic shaping profile</td>
<td>Traffic is placed into classes. A total of 30 classes are available. For each class, traffic can be configured into five priority levels.</td>
</tr>
<tr>
<td>Traffic shaper</td>
<td>Traffic can be prioritized into the high (2), medium (3), or low (4) levels. When traffic is below the guaranteed bandwidth of the shaper, the traffic is automatically applied the critical level (1).</td>
</tr>
<tr>
<td>Global traffic prioritization</td>
<td>Traffic is prioritized into high (2), medium (3), or low (4) based on ToS (type of service) or DSCP.</td>
</tr>
</tbody>
</table>

**Guaranteed and maximum bandwidth limits**

The general purpose for configuring guaranteed bandwidth is to allocate a certain proportion of the total outbound bandwidth to guarantee transport for a certain type of traffic. This is configured and handled differently in each method.

A traffic shaping profile, when applied to an interface’s egress shaping profile, can be configured to use up to 100% of the interface’s configured bandwidth between all the classes. It does not matter what priority is configured in each class. The guaranteed bandwidth is always honored.

Traffic shapers, however, do not have a hard limit on the guaranteed bandwidth. Administrators need to be aware how much guaranteed bandwidth has been allocated to all their traffic shapers, so that they do not exceed the total outbound bandwidth of an interface. Traffic under the guaranteed bandwidth of a traffic shaper is given a priority of one. If the total traffic with priority one exceeds the total outbound bandwidth, traffic can be dropped.

The maximum bandwidth limit caps the maximum bandwidth that can be used. This is configured as a percentage of the outbound bandwidth in a traffic shaping profile. It is configured as a rate for traffic shapers.

**Configuring outbound bandwidth**

Traffic shaping is generally configured for egress traffic leaving the FortiGate. Therefore, it is necessary for the interface outbound bandwidth to be defined for traffic prioritization to take place in all of the traffic shaping configuration methods. Interface outbound bandwidth is also needed when defining the guaranteed and maximum bandwidth in a traffic shaping profile.

For traffic shapers, configuring outbound bandwidth is not necessary to apply maximum bandwidth limits; however, outbound bandwidth is necessary for guaranteed bandwidth. Traffic under the guaranteed bandwidth limit on a traffic shaper is given priority 1. If outbound bandwidth is not configured, traffic prioritization does not take place and the priority is meaningless.

**Traffic shaping policy**

Traffic shaping profiles and traffic shapers are methods of policing traffic. Traffic shaping policies are used to map traffic to a traffic shaper or assign them to a class.

A traffic shaping policy is a rule that matches traffic based on certain IP header fields and/or upper layer criteria. For example, it can match traffic based on source and destination IP, service, application, and URL category. One common use case is to match traffic based on the ToS or DS (differentiated services) field in the IP header. This allows Type of Service or Differentiated Services (DiffServ) tags to be read from traffic from a downstream device and prioritized accordingly on the FortiGate.
DSCP matching and DSCP marking

DSCP matching and DSCP marking can be performed on a firewall shaping policy and a regular firewall policy. DSCP matching is used to match DSCP tags from ingress traffic, and DSCP marking is used to change the DSCP tag on egress traffic.

In a firewall shaping policy and regular firewall policy, use the tos and tos-mask fields to perform DSCP matching. Use the diffserv-forward and diffserv-reverse fields to perform DSCP marking.

Traffic shaping policies

As mentioned in Traffic shaping on page 918, traffic shaping starts with the traffic shaping policy. Traffic shaping policies are used to map traffic to a traffic shaper or assign them to a class. Traffic is then shaped by the shaper or the shaping profile that is applied on an interface.
Traffic can also be shaped by applying traffic shapers directly on a firewall policy. However, this legacy approach can only be configured from the CLI, and is not a preferred method for applying traffic shaping. As the number of firewall policies increases, managing shaping on each individual policy becomes increasingly difficult. For the same reason, it is also not recommended to mix the legacy approach with traffic shaping policies to avoid the added complexity.

**Overview**

A traffic shaping policy is a rule that matches traffic based on certain IP header fields and/or upper layer criteria. When traffic hits the firewall, the FortiGate will first look up a firewall policy, and then match a shaping policy. The matching traffic will apply a traffic shaper, class ID, or assign a DSCP DiffServ tag to the outgoing traffic.
The traffic shaping policies must be placed in the correct order in the traffic shaping policy list page to obtain the desired results. Policies are matched from top-down, so the traffic shaping policies should be arranged in a sequence that places the more granular policies above general policies.

The policy can be configured by going to Policy & Objects > Traffic Shaping and selecting the Traffic Shaping Policies tab. If the menu does not display the traffic shaping settings, go to System > Feature Visibility and enable Traffic Shaping.

### Configuring traffic shaping policies

A traffic shaping policy can be split into two parts:

- Options used to match the traffic
- Options used to apply actions to the matched traffic

In the GUI, the options are configured in the If Traffic Matches and Then sections. In the CLI, all options are configured under `config firewall shaping-policy`. Some options can only be configured from the CLI.

The following options can be configured for traffic matching criteria:

<table>
<thead>
<tr>
<th>GUI option</th>
<th>CLI option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Source</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td>set srcaddr &lt;address_object&gt;</td>
<td>Select the address object to match the source IP.</td>
</tr>
<tr>
<td>User</td>
<td>set users &lt;user_object&gt;</td>
<td>Select the user object to match the user authenticated for the session.</td>
</tr>
<tr>
<td>Internet Service</td>
<td>set internet-service-src enable</td>
<td>Select the internet service to match the source of the incoming traffic. Internet service currently cannot be used with source address.</td>
</tr>
<tr>
<td></td>
<td>set internet-service-src-name &lt;name&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>set internet-service-src-group &lt;group&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>set internet-service-src-custom &lt;custom&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>set internet-service-src-custom-group &lt;custom_group&gt;</td>
<td></td>
</tr>
<tr>
<td><strong>Destination</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td>set dstaddr &lt;address_object&gt;</td>
<td>Select the address object to match the destination IP.</td>
</tr>
<tr>
<td>Internet Service</td>
<td>set internet-service enable</td>
<td>Select the internet service to match the destination of the incoming traffic. Internet service currently cannot be used with destination address and service.</td>
</tr>
<tr>
<td></td>
<td>set internet-service-name &lt;name&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>set internet-service-group &lt;group&gt;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>set internet-service-custom &lt;custom&gt;</td>
<td></td>
</tr>
<tr>
<td>GUI option</td>
<td>CLI option</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td><strong>Policy</strong></td>
<td>set internet-service-custom-group &lt;custom_group&gt;</td>
<td>Enable to select a schedule (one-time, recurring, or group).</td>
</tr>
<tr>
<td><strong>Objects</strong></td>
<td>set schedule &lt;schedule&gt;</td>
<td>Select the service or service group for the traffic.</td>
</tr>
<tr>
<td><strong>Schedule</strong></td>
<td>set service &lt;service&gt;</td>
<td>Application control must be enabled in the related firewall policy to learn the application of the traffic.</td>
</tr>
<tr>
<td><strong>Service</strong></td>
<td>set application &lt;application&gt;</td>
<td>Select the application to match the traffic.</td>
</tr>
<tr>
<td><strong>Application</strong></td>
<td>set app-category &lt;category&gt;</td>
<td>Select the application category to match the traffic.</td>
</tr>
<tr>
<td><strong>Category</strong></td>
<td>set app-group &lt;groups&gt;</td>
<td>Select the application group to match the traffic.</td>
</tr>
<tr>
<td><strong>Group</strong></td>
<td>set url-category &lt;category&gt;</td>
<td>Select the URL category to match the URL of the traffic. A web filter profile must be enabled in the related firewall policy to know the URL of the traffic (see Web filter on page 1124).</td>
</tr>
<tr>
<td><strong>URL Category</strong></td>
<td>set tos-mask &lt;hexadecimal_mask&gt; set tos &lt;value&gt; set tos-negate {enable</td>
<td>disable}</td>
</tr>
</tbody>
</table>

The following options can be configured for actions to apply to the matched traffic:

<table>
<thead>
<tr>
<th>GUI option</th>
<th>CLI option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Outgoing interface</strong></td>
<td>set dstintf &lt;interface&gt;</td>
<td>Select the destination interface that the traffic shaping applies to (required).</td>
</tr>
<tr>
<td><strong>Apply shaper</strong></td>
<td>set traffic-shaper &lt;shaper&gt;</td>
<td>Select the shared shaper to be applied to traffic in the ingress-to-egress direction. For example, on traffic that egresses on the wan interface, the shaper is applied to upload or outbound traffic.</td>
</tr>
<tr>
<td>GUI option</td>
<td>CLI option</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------------------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Reverse shaper</td>
<td>set traffic-shaper-reverse &lt;shaper&gt;</td>
<td>Select the reverse shaper to be applied to traffic in the egress-to-ingress direction. For example, on traffic that egresses on the wan interface, the shaper is applied to download or inbound traffic.</td>
</tr>
<tr>
<td>Per-IP shaper</td>
<td>set per-ip-shaper &lt;shaper&gt;</td>
<td>Select the per-IP shaper. Per-IP shapers affect downloads and uploads. The allotted bandwidth applies to each individual IP. In a shared shaper, the allotted bandwidth applies to all IPs.</td>
</tr>
</tbody>
</table>

Assign shaping class ID

<table>
<thead>
<tr>
<th>Traffic shaping class ID</th>
<th>set class-id &lt;class&gt;</th>
<th>Set the class ID to apply the matching traffic. Class IDs are further prioritized within a traffic shaping profile and applied to an interface.</th>
</tr>
</thead>
<tbody>
<tr>
<td>n/a</td>
<td>set diffserv-forward {enable</td>
<td>disable}</td>
</tr>
</tbody>
</table>

Traffic shapers and class IDs can be applied at the same time when configuring traffic shaping policies. However, to reduce the complexity, it is recommended to use one method over the other.

The following topics include examples with traffic shaping policies:
- Interface-based traffic shaping profile on page 954
- Shared traffic shaper on page 935
- Per-IP traffic shaper on page 940

Traffic shaping profiles

As mentioned in Traffic shaping on page 918, the three main methods of configuring traffic shaping are:
- Traffic shaping profiles
- Traffic shapers
- Global traffic prioritization

A traffic shaping profile allows traffic shaping to be configured with policing or queuing. Up to 30 classes can be defined, with prioritization and bandwidth limits configured for each class. When queuing is enabled, metrics can be configured for traffic queuing in each class.
Traffic shaping with policing

At the most basic level, policing involves traffic prioritization and bandwidth limits. Traffic prioritization helps categorize traffic into different priority levels: low, medium, high, critical, and top. When bandwidth is limited, traffic with higher priority levels will take precedence over lower priority traffic. Traffic with lower priority levels that exceeds available bandwidth will be dropped. These levels are only applicable in the context of traffic shaping profiles and should not be confused with global traffic prioritization levels.

Bandwidth limits define the guaranteed and maximum bandwidth allotted to each traffic class. These limits are configured as a percentage of the outbound bandwidth, which is the outbound bandwidth configured on an interface.

Guaranteed bandwidth limits guarantee the minimum bandwidth that is allotted to a given class of traffic. The sum of all guaranteed bandwidth of all classes within a traffic shaping profile cannot exceed 100%. However, the sum of all guaranteed bandwidth does not need to add up to 100%. The guaranteed bandwidth is always respected, even if one class has lower priority than another.

Maximum bandwidth limits define the maximum percentage of the outbound bandwidth that a traffic class can use up. This value often will be 100%, given that when there is no other traffic going through other classes, you would want to fully utilize the bandwidth of the outbound link. Traffic throughput exceeding the maximum bandwidth will be dropped.

The following diagram illustrates ingress traffic and how the FortiGate assigns classes and bandwidth to each class.

When comparing traffic shaping profiles and traffic shapers, it is important to remember that guaranteed and maximum bandwidth in a traffic shaping profile is a percentage of the outbound bandwidth, while guaranteed and maximum bandwidth in a traffic shaper is a rate (Kbps, Mbps, and so on). As long as the outbound bandwidth is true to its measurement, the bandwidth usage should not exceed the available bandwidth of a link when using a traffic shaping profile.

Congestion occurs when actual traffic surpasses the outbound bandwidth limit. At this point, traffic prioritization helps determine which traffic will be prioritized over others. First, the guaranteed bandwidth limit is allocated for each class. The left over bandwidth is allocated to traffic classes based on priority. The traffic classes with the highest priority can use as much of the remaining bandwidth as needed. Then, the remaining bandwidth can be allocated to classes at the next priority level, and so forth.

To see examples of applied traffic prioritization and bandwidth limits, see the debugs in Verifying that the traffic is being shaped on page 930.
**Traffic shaping with queuing**

When traffic congestion occurs and if there is no queuing, then the excess packets are dropped. With queuing, when traffic exceeds the configured bandwidth limits, the traffic is delayed for transport until bandwidth frees up. Traffic may still be dropped if the queues are full.

In queuing, before a packet egresses an interface, it is first enqueued using an algorithm, such as random early detection (RED) or first in, first out (FIFO). The kernel then dequeues the packet based on the HTB algorithm before sending it out. Queuing can be configured per shaping profile, and it can be customized per class.

The following diagram shows how traffic policing differs from traffic queuing by comparing the bandwidth limit, projected bandwidth utilization, and actual bandwidth utilization.

![Traffic shaping with policing](image1)

![Traffic shaping with queuing](image2)

For more information about traffic shaping with queuing, see Traffic shaping with queuing using a traffic shaping profile on page 931.

**Configuring traffic shaping profiles**

The main steps to configure traffic shaping are:

1. Configure the traffic shaping policy, and assign matched traffic to a class (see Traffic shaping policies on page 921).
2. Configure the traffic shaping profile and apply traffic bandwidth, prioritization and/or queuing per class.
3. Configure the interface outbandwidth and apply an egress shaping profile to the interface.

**Configuring the traffic shaping profile**

A traffic shaping profile consists of the class ID and the settings per class ID. It also defines the type of traffic shaping to apply (policing or queuing) and the default class ID for traffic that does not match any traffic shaping policies.

A class can be configured in the GUI as part of a traffic shaping profile or policy. In the CLI, a traffic class must be defined before it can be assigned within a traffic shaping profile. Class IDs range from 2 - 31, and they can be reused between different traffic shaping profiles.

When configuring a traffic shaping profile, the settings can be defined per class.

The following options can be configured for traffic shaping classes:

<table>
<thead>
<tr>
<th>GUI option</th>
<th>CLI option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>set default-class-id &lt;class-id&gt;</td>
<td>Set the default class ID. Each profile must have one default class ID. The default class ID can be changed at any time.</td>
</tr>
</tbody>
</table>
## Policy and Objects

<table>
<thead>
<tr>
<th>GUI option</th>
<th>CLI option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic shaping class ID</td>
<td>set class-id &lt;integer&gt;</td>
<td>Set the class ID (2 - 31).</td>
</tr>
<tr>
<td>Guaranteed bandwidth</td>
<td>set guaranteed-bandwidth-percentage &lt;integer&gt;</td>
<td>Set the percentage of the outbandwidth that will be guaranteed for the class ID.</td>
</tr>
<tr>
<td>Maximum bandwidth</td>
<td>set maximum-bandwidth-percentage &lt;integer&gt;</td>
<td>Set the percentage of the outbandwidth that will be the maximum bandwidth for the class ID.</td>
</tr>
<tr>
<td>Priority</td>
<td>set priority {top</td>
<td>critical</td>
</tr>
</tbody>
</table>

### To configure a traffic shaping profile in the GUI:

1. Go to **Policy & Objects > Traffic Shaping**, select the **Traffic Shaping Profiles** tab, and click **Create New**.
2. Enter the profile name, and optionally enter a comment.
3. In the **Traffic Shaping Classes** section, click **Create New**.
4. Configure the traffic shaping class ID settings (**Traffic shaping class ID, Guaranteed bandwidth, Maximum bandwidth, and Priority**).
5. Click **OK**.
6. Create more shaping classes as needed (the total guaranteed bandwidth of all classes cannot exceed 100%).
7. Click **OK**.

### To configure a traffic shaping profile in the CLI:

1. Configure the shaping class:
   ```
 config firewall traffic-class
 edit <integer>
 set class-name <string>
 next
 end
   ```

2. Configure the shaping profile:
   ```
 config firewall shaping-profile
 edit <name>
 set type {policing | queuing}
 set default-class-id <class-id>
 config shaping-entries
 edit <id>
 set class-id <integer>
 set priority {top | critical | high | medium | low}
 set guaranteed-bandwidth-percentage <integer>
 set maximum-bandwidth-percentage <integer>
 next
 end
   ```
Configuring the interface outbandwidth

There are two settings that must be configured on an interface that has traffic shaping applied to egressing traffic: a traffic shaping profile must be assigned, and the outbound bandwidth must be configured.

Since traffic shaping is often configured on the WAN interface for egressing traffic, the outbound bandwidth is effectively the upstream bandwidth allowed by your ISP. On the FortiGate, it is possible to perform a speed test on interfaces are assigned a WAN role assigned (see Manual interface speedtest on page 527). The speed test performs measurements against public cloud servers, and provides an accurate measurement of the upstream bandwidth. After the test is complete, the results can be used to populate the Outbound bandwidth field.

To configure traffic shaping on an interface:

1. Go to Network > Interfaces and double-click an interface to edit it.
2. For interfaces assigned a WAN role, in the right-side of the screen, click Execute speed test.
3. When the test completes, click OK in the Confirm pane to apply the results to the estimated bandwidth. The speed test results are populated in the Estimated bandwidth fields for kbps Upstream and kbps Downstream.
4. In the Traffic Shaping section, enable Outbound shaping profile and select a profile.
5. Enable Outbound bandwidth and copy the kbps Upstream value from the speed test, or enter a custom value.
6. Click OK.
Verifying that the traffic is being shaped

In this example, three traffic classes are defined in the traffic shaping profile assigned to port1. The outbandwidth configured on port1 is 1000 Kbps. Each class has an allocated-bandwidth, guaranteed-bandwidth, max-bandwidth, and current-bandwidth value.

- The guaranteed-bandwidth and max-bandwidth are rates that are converted from the percentage of outbandwidth configured for each class. For example, class-id 2 has 10% guaranteed-bandwidth, equivalent to 100 Kbps, and 100% max-bandwidth equivalent to 1000 Kbps.
- The allocated-bandwidth displays the real-time bandwidth allocation for the traffic class based on all available factors. This value changes as traffic demand changes.
- The current-bandwidth displays the real-time bandwidth usage detected for the traffic class.

To verify that traffic is being shaped by the traffic shaping profile:

1. Enable debug flow to view the live traffic as it matches a traffic shaping policy:

   ```
 # diagnose debug flow show function-name enable
 # diagnose debug flow show iprope enable
 # diagnose debug flow filter <filters>
 # diagnose debug flow trace start <repeat_number>
 # diagnose debug enable
   ```

   The `iprope_shaping_check` function outputs the shaping policy matched for any given traffic:

   ```
 ...
 id=20085 trace_id=21 func=iprope_shaping_check line=934 msg="in-[port3], out-[port1], skb_flags=02000000, vid-0"
 id=20085 trace_id=21 func=__iprope_check line=2277 msg="gnum-100015, check-fffffffffa002a8fe"
 id=20085 trace_id=21 func=__iprope_check_one_policy line=2029 msg="checked gnum-100015 policy-3, ret-matched, act-accept"
 id=20085 trace_id=21 func=__iprope_check_one_policy line=2247 msg="policy-3 is matched, act-accept"
 id=20085 trace_id=21 func=__iprope_check_one_policy line=2294 msg="gnum-100015 check result: ret-matched, act-accept, flag-00000000, flag2-00000000"
   ```

2. Display the session list:

   ```
 # diagnose sys session filter <filters>
 # diagnose sys session list
   ```

   Sessions that match a shaping policy will display `class_id` and `shaping_policy_id` fields:

   ```
 ...
 session info: proto=6 proto_state=05 duration=32 expire=0 timeout=3600 flags=00000000 socktype=0 sockport=0 av_idx=0 use=4
 origin-shaper= reply-shaper= per_ip_shaper=
 class_id=4 shaping_policy_id=3 ha_id=0 policy_dir=0 tunnel=/ vlan_cos=0/255
   ```

3. Display the interface statistics:

   ```
 # diagnose netlink interface list port1
 if=port1 family=00 type=1 index=3 mtu=1500 link=0 master=0
 ref=95 state=start present fw_flags=2001b800 flags=up broadcast run allmulti multicast Qdisc=pfifo_fast hw_addr=52:54:00:7e:a6 broadcast_addr=ff:ff:ff:ff:ff:ff
 inbandwidth=10000 (kbps) total_bytes=2098887K drop_bytes=7854K
   ```
egress traffic control:

- **class-id=2**
  - bandwidth=1000 (kbps)
  - lock_hit=241
  - default_class=3
  - n_active_class=3
  - allocated_bandwidth=140 (kbps)
  - guaranteed_bandwidth=100 (kbps)
  - max_bandwidth=1000 (kbps)
  - current_bandwidth=147 (kbps)
  - priority=low
  - forwarded_bytes=8161K
  - dropped_packets=2032
  - dropped_bytes=3074K
  - n_active_class=3
  - class_id=2
  - allocated_bandwidth=140 (kbps)
  - guaranteed_bandwidth=100 (kbps)
  - max_bandwidth=1000 (kbps)
  - current_bandwidth=147 (kbps)
  - priority=low
  - forwarded_bytes=8161K
  - dropped_packets=2032
  - dropped_bytes=3074K

- **class-id=3**
  - bandwidth=1000 (kbps)
  - lock_hit=241
  - default_class=3
  - n_active_class=3
  - allocated_bandwidth=30 (kbps)
  - guaranteed_bandwidth=300 (kbps)
  - max_bandwidth=1000 (kbps)
  - current_bandwidth=10 (kbps)
  - priority=medium
  - forwarded_bytes=501K
  - dropped_packets=1
  - dropped_bytes=1195

- **class-id=4**
  - bandwidth=1000 (kbps)
  - lock_hit=241
  - default_class=3
  - n_active_class=3
  - allocated_bandwidth=830 (kbps)
  - guaranteed_bandwidth=500 (kbps)
  - max_bandwidth=1000 (kbps)
  - current_bandwidth=810 (kbps)
  - priority=high
  - forwarded_bytes=1393K
  - dropped_packets=379
  - dropped_bytes=572K

**stat:**
- rxp=8349728
- txp=11101735
- rxb=1394077978
- txb=1394077978
- rxe=0
- txe=0
- rxd=0
- txd=0
- mc=0
- collision=0
- @ time=1654202868
- re: rxl=0
- rxo=0
- rxc=0
- rxfi=0
- rxm=0
- te: txa=0
- txc=0
- txfi=0
- txh=0
- txw=0
- misc: rxc=0
- txc=0
- input_type=0
- state=3
- arp_entry=0
- refcnt=95

If the debug output does not display egress traffic control by class and displays them by priority, it is likely that global traffic prioritization is configured. The global traffic prioritization settings must be disabled to view the preceding debug output (see Global traffic prioritization on page 947).

**Traffic shaping with queuing using a traffic shaping profile**

You can use the weighted random early detection (WRED) queuing function within traffic shaping.

This topic includes two parts:

- Traffic shaping with queuing on page 931
- Burst control in queuing mode on page 932

You cannot configure or view WRED in the GUI; you must use the CLI.

**WRED is not supported when traffic is offloaded to an NPU.**

**Traffic shaping with queuing**

Traffic shaping has a queuing option. Use this option to fine-tune the queue by setting the profile queue size or performing random early drop (RED) according to queue usage.

This example shows setting the profile queue size limit to 5 so that the queue can contain a maximum of five packets and more packets are dropped.

**To set the profile queue size limit:**

```
config firewall shaping-profile
edit "profile"
```
This example shows performing RED according to queue usage by setting `red-probability`, `min`, and `max`. Setting `red-probability` to 10 means start to drop packets when queue usage reaches the `min` setting. When queue usage reaches the `max` setting, drop 10% of the packets.

- Level 1: when queue is less than `min` packets, drop 0% of packets.
- Level 2: when queue reaches `min` packets, start to drop packets.
- Level 3: when queue usage is between `min` and `max` packets, drop 0–10% of packets by proportion.
- Level 4: when queue (average queue size) is more than `max` packets, drop 100% of packets.

To set RED according to queue usage:

```
config firewall shaping-profile
 edit "profile"
 set type queuing
 set default-class-id 31
 config shaping-entries
 edit 31
 set class-id 31
 set guaranteed-bandwidth-percentage 5
 set maximum-bandwidth-percentage 10
 set red-probability 10 <range from 0 to 20; default: 0 no drop>
 set min 100 <range from 3 to 3000>
 set max 300 <range from 3 to 3000>
 next
 next
next
end
```

To troubleshoot this function, use the following diagnose commands:

```
diagnose netlink intf-class list <intf>
diagnose netlink intf-qdisc list <intf>
```

**Burst control in queuing mode**

In a hierarchical token bucket (HTB) algorithm, each traffic class has buckets to allow a burst of traffic. The maximum burst is determined by the bucket size `burst` (for guaranteed bandwidth) and `cburst` (for maximum bandwidth). The shaping profile has `burst-in-msec` and `cburst-in-msec` parameters for each shaping entry (`class id`) to control the bucket size.

This example uses the outbandwidth of the interface as 1 Mbps and the maximum bandwidth of class is 50%.

\[
\text{burst} = \text{burst-in-msec} \times \text{guaranteed bandwidth} = 100 \text{ ms} \times 1 \text{ Mbps} \times 50\% = 50000 \text{ b} = 6250 \text{ B}
\]
Policy and Objects

cburst = cburst-in-msec \times \text{maximum bandwidth} = 200 \text{ ms} \times 1 \text{ Mbps} \times 50\% = 100000 \text{ b} = 12500 \text{ B}

The following example sets burst-in-msec to 100 and cburst-in-msec to 200.

**To set burst control in queuing mode:**

```
config firewall shaping-profile
edit "profile"
 set type queuing
 set default-class-id 31
config shaping-entries
edit 31
 set class-id 31
 set guaranteed-bandwidth-percentage 5
 set maximum-bandwidth-percentage 50
 set burst-in-msec 100 <range from 0 to 2000>
 set cburst-in-msec 200 <range from 0 to 2000>
next
end
next
end
```

**Example**

**Enabling RED for FTP traffic from QA**

This example shows how to enable RED for FTP traffic from QA. This example sets a maximum of 10% of the packets to be dropped when queue usage reaches the maximum value.

**To configure the firewall address:**

```
config firewall address
edit QA_team
 set subnet 10.1.100.0/24
next
end
```

**To set the shaping policy to classify traffic into different class IDs:**

```
config firewall shaping-policy
edit 1
 set service HTTPS HTTP
 set dstintf port1
 set srcaddr QA_team
 set dstaddr all
 set class-id 10
next
edit 2
 set service FTP
 set dstintf port1
 set srcaddr QA_team
 set dstaddr all
 set class-id 20
next
end
```
To set the shaping policy to define the speed of each class ID:

```
config firewall shaping-profile
edit QA_team_profile
 set type queuing
 set default-class-id 30
 config shaping-entries
 edit 1
 set class-id 10
 set guaranteed-bandwidth-percentage 50
 set maximum-bandwidth-percentage 100
 next
 edit 2
 set class-id 20
 set guaranteed-bandwidth-percentage 30
 set maximum-bandwidth-percentage 60
 set red-probability 10
 next
 edit 3
 set class-id 30
 set guaranteed-bandwidth-percentage 20
 set maximum-bandwidth-percentage 50
 next
 end
end
```

To apply the shaping policy to the interface:

```
config sys interface
edit port1
 set outbandwidth 10000
 set egress-shaping-profile QA_team_profile
next
end
```

To use diagnose commands to troubleshoot:

```
diagnose netlink intf-class list port1
class htb 1:1 root rate 1250000Bps ceil 1250000Bps burst 1600B/8 mpu 0B overhead 0B cburst 1600B/8 mpu 0B overhead 0B level 7 buffer [00004e20] cbuffer [00004e20]
 Sent 11709 bytes 69 pkt (dropped 0, overlimits 0 requeues 0)
 rate 226Bps 2pps backlog 0B 0p
 lended: 0 borrowed: 0 giants: 0
tokens: 18500 ctokens: 18500
class htb 1:10 parent 1:1 leaf 10: prio 1 quantum 62500 rate 625000Bps ceil 1250000Bps burst 1600B/8 mpu 0B overhead 0B cburst 1600B/8 mpu 0B overhead 0B level 0 buffer [00009c40] cbuffer [00004e20]
 Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0)
 rate 0Bps 0pps backlog 0B 0p
 lended: 0 borrowed: 0 giants: 0
tokens: 40000 ctokens: 20000
class htb 1:20 parent 1:1 leaf 20: prio 1 quantum 37500 rate 375000Bps ceil 750000Bps burst 1599B/8 mpu 0B overhead 0B cburst 1599B/8 mpu 0B overhead 0B level 0 buffer [0001046a] cbuffer [00008235]
 Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0)
```
rate 0Bps 0pps backlog 0B 0p
lended: 0 borrowed: 0 giants: 0
tokens: 66666 ctokens: 33333
class htb 1:30 parent 1:1 leaf 30: prio 1 quantum 25000 rate 250000Bps ceil 625000Bps burst
1600B/8 mpu 0B overhead 0B cburst 1600B/8 mpu 0B overhead 0B level 0 buffer [000186a0]
cbuffer [00009c40]
  Sent 11709 bytes 69 pkt (dropped 0, overlimits 0 requeues 0)
rate 226Bps 2pps backlog 0B 0p
lended: 66 borrowed: 3 giants: 0
tokens: 92500 ctokens: 37000
class red 20:1 parent 20:0
  # diagnose netlink intf-qdisc list port1
qdsc htb 1: root refcnt 5 r2q 10 default 30 direct_packets_stat 0 ver 3.17
  Sent 18874 bytes 109 pkt (dropped 0, overlimits 5 requeues 0)
backlog 0B 0p
qdsc pfifo 10: parent 1:10 refcnt 1 limit 1000p
  Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0)
backlog 0B 0p
qdsc red 20: parent 1:20 refcnt 1 limit 4000000B min 300000B max 1000000B ewma 9 Plog 23
Scell_log 20 flags 0
  Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0)
backlog 0B 0p
  marked 0 early 0 pdrop 0 other 0
qdsc pfifo 30: parent 1:30 refcnt 1 limit 1000p
  Sent 18874 bytes 109 pkt (dropped 0, overlimits 0 requeues 0)
backlog 0B 0p

Traffic shapers

The following topics provide more information about traffic shapers:

- Shared traffic shaper on page 935
- Per-IP traffic shaper on page 940
- Changing traffic shaper bandwidth unit of measurement on page 943
- Multi-stage DSCP marking and class ID in traffic shapers on page 943
- Adding traffic shapers to multicast policies on page 945

Shared traffic shaper

Shared traffic shaper is used in a firewall shaping policy to indicate the priority and guaranteed and maximum bandwidth for a specified type of traffic use.

The maximum bandwidth indicates the largest amount of traffic allowed when using the policy. You can set the maximum bandwidth to a value between 1 and 16776000 Kbps. The GUI displays an error if any value outside this range is used. If you want to allow unlimited bandwidth, use the CLI to enter a value of 0.

The guaranteed bandwidth ensures that there is a consistent reserved bandwidth available. When setting the guaranteed bandwidth, ensure that the value is significantly less than the interface's bandwidth capacity. Otherwise, the interface will allow very little or no other traffic to pass through, potentially causing unwanted latency.

In a shared traffic shaper, the administrator can prioritize certain traffic as high, medium, or low. FortiOS provides bandwidth to low priority connections only when high priority connections do not need the bandwidth. For example, you
should assign a high traffic priority to a policy for connecting a secure web server that needs to support e-commerce traffic. You should assign less important services a low priority.

When you configure a shared traffic shaper, you can apply bandwidth shaping per policy or for all policies. By default, a shared traffic shaper applies traffic shaping evenly to all policies that use the shared traffic shaper.

When configuring a per-policy traffic shaper, FortiOS applies the traffic shaping rules defined for each security policy individually. For example, if a per-policy traffic shaper is configured with a maximum bandwidth of 1000 Kbps, any security policies that have that traffic shaper enabled get 1000 Kbps of bandwidth each.

If a traffic shaper for all policies is configured with a maximum bandwidth of 1000 Kbps, all policies share the 1000 Kbps on a first-come, first-served basis.

The configuration is as follows:

```
config firewall shaper traffic-shaper
 edit "traffic_shaper_name"
 set per-policy enable
 next
end
```

The shared traffic shaper selected in the traffic shaping policy affects traffic in the direction defined in the policy. For example, if the source port is LAN and the destination is WAN1, the traffic shaping affects the flow in this direction only, affecting the outbound traffic's upload speed. You can define the traffic shaper for the policy in the opposite direction (reverse shaper) to affect the inbound traffic's download speed. In this example, that would be from WAN1 to LAN.

Only traffic through forward traffic shapers will be included in FortiView; reverse and per-IP shapers are not included.

Traffic shapers can be added to a multicast policy when multicast routing is enabled.

The following example shows how to apply different speeds to different types of service. The example configures two shared traffic shapers to use in two firewall shaping policies. One policy guarantees a speed of 10 Mbps for VoIP traffic. The other policy guarantees a speed of 1 Mbps for other traffic. In the example, FortiOS communicates with a PC using port10 and the Internet using port9.

To configure shared traffic shapers in the GUI:

1. Create a firewall policy:
   a. Go to Policy & Objects > Firewall Policy and click Create New.
   b. Set the Name to Internet Access.
   c. Set the Incoming Interface to port10.
   d. Set the Outgoing Interface to port9.
   e. Set the Source and Destination to all.
   f. Set the Schedule to always.
   g. Set the Service to ALL.
   h. Click OK.

2. Create the shared traffic shapers:
   a. Go to Policy & Objects > Traffic Shaping, select the Traffic Shapers tab, and click Create New.
   b. Set the Name to 10Mbps. This shaper is for VoIP traffic.
   c. Set the Traffic Priority to High.
   d. Enable Max Bandwidth and enter 20000.
Policy and Objects

e. Enable Guaranteed Bandwidth and enter 10000.

f. Click OK.

g. Repeat the above steps to create another traffic shaper named 1Mbps with the Traffic Priority set to Low, the Max Bandwidth set to 10000, and the Guaranteed Bandwidth set to 1000.

3. Create a firewall shaping policy:
   b. Set the Name to VoIP_10Mbps_High. This policy is for VoIP traffic.
   c. Set the Source and Destination to all.
   d. Set the Service to all VoIP services.
   e. Set the Outgoing Interface to port9.
   f. Enable Shared shaper and select 10Mbps.
   g. Enable Reverse shaper and select 10Mbps.
   h. Click OK.
   i. Repeat the above steps to create another firewall shaping policy named Other_1Mbps_Low for other traffic, with the Source and Destination set to all, Service set to ALL, Outgoing Interface set to port9, and Shared shaper and Reverse shaper set to 1Mbps.

To configure shared traffic shapers in the CLI:

1. Create a firewall policy:
   ```plaintext
 config firewall policy
 edit 1
 set name "Internet Access"
 set srcintf "port10"
 set dstintf "port9"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set fsso disable
 set nat enable
 next
 end
   ```

2. Create the shared traffic shapers:
   ```plaintext
 config firewall shaper traffic-shaper
   ```

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
Policy and Objects

edit "10Mbps"
    set guaranteed-bandwidth 10000
    set maximum-bandwidth 20000
next
edit "1Mbps"
    set guaranteed-bandwidth 1000
    set maximum-bandwidth 10000
    set priority low
next
end

3. Create a firewall shaping policy:
config firewall shaping-policy
edit 1
    set name "VOIP_10Mbps_High"
    set service "H323" "IRC" "MS-SQL" "MYSQL" "RTSP" "SCCP" "SIP" "SIP-MSNmessenger"
    set dstintf "port9"
    set traffic-shaper "10Mbps"
    set traffic-shaper-reverse "10Mbps"
    set srcaddr "all"
    set dstaddr "all"
next
edit 2
    set name "Other_1Mbps_Low"
    set service "ALL"
    set dstintf "port9"
    set traffic-shaper "1Mbps"
    set traffic-shaper-reverse "1Mbps"
    set srcaddr "all"
    set dstaddr "all"
next
end

To troubleshoot shared traffic shapers:

1. Check if specific traffic is attached to the correct traffic shaper. The example output shows the traffic attached to the 10Mbps and 1Mbps shapers:

   # diagnose firewall iprope list 100015
   policy index=1 uuid_idx=0 action=accept
   flag (0):
   shapers: orig=10Mbps (2/1280000/2560000)
   cos_fwd=0 cos_rev=0
   group=00100015 av=00000000 au=00000000 split=00000000
   host=4 chk_client_info=0x0 app_list=0 ips_view=0
   misc=0 dd_type=0 dd_mode=0
   zone(1): 0 -> zone(1): 38
   source(1): 0.0.0.0-255.255.255.255, uuid_idx=0,
   dest(1): 0.0.0.0-255.255.255.255, uuid_idx=0,
   service(15):
   [6:0x0:0/(1,65535)->(1720,1720)] helper:auto
   [6:0x0:0/(1,65535)->(1503,1503)] helper:auto
   [17:0x0:0/(1,65535)->(1719,1719)] helper:auto
   [6:0x0:0/(1,65535)->(6660,6669)] helper:auto
   [6:0x0:0/(1,65535)->(1433,1433)] helper:auto
   [6:0x0:0/(1,65535)->(1434,1434)] helper:auto
   [6:0x0:0/(1,65535)->(3306,3306)] helper:auto
   [6:0x0:0/(1,65535)->(554,554)] helper:auto
2. Check if the correct traffic shaper is applied to the session. The example output shows that the 1Mbps shaper is applied to the session:

```
diagnose sys session list
```

```
name 10Mbps
maximum-bandwidth 2500 KB/sec
guaranteed-bandwidth 1250 KB/sec
```

```
total session 1
```

```
```

3. Check the statuses of shared traffic shapers:

```
diagnose firewall shaper traffic-shaper list
```

```
name 10Mbps
maximum-bandwidth 2500 KB/sec
```

```
guaranteed-bandwidth 1250 KB/sec
```

```
current-bandwidth 0 B/sec
priority 2
tos ff
```

```
packets dropped 0
```
Policy and Objects

bytes dropped 0

name 1Mbps
maximum-bandwidth 1250 KB/sec
guaranteed-bandwidth 125 KB/sec
current-bandwidth 0 B/sec
priority 4
tos ff
packets dropped 0
bytes dropped 0

**Per-IP traffic shaper**

With per-IP traffic shaping, you can limit each IP address's behavior to avoid a situation where one user uses all of the available bandwidth. In addition to controlling the maximum bandwidth used per IP address, you can also define the maximum number of concurrent sessions for an IP address. For example, if you apply a per-IP shaper of 1 Mbps to your entire network, FortiOS allocates each user/IP address 1 Mbps of bandwidth. Even if the network consists of a single user, FortiOS allocates them 1 Mbps. If there are ten users, each user gets 1 Mbps of bandwidth, totaling 10 Mbps of outgoing traffic.

For shared shapers, all users share the set guaranteed and maximum bandwidths. For example, if you set a shared shaper for all PCs using an FTP service to 10 Mbps, all users uploading to the FTP server share the 10 Mbps.

Shared shapers affect upload speed. If you want to limit the download speed from the FTP server in the example, you must configure the shared shaper as a reverse shaper. Per-IP shapers apply the speed limit on both upload and download operations. Only traffic through forward traffic shapers will be included in FortiView; reverse and per-IP shapers are not included.

The following example shows how to apply a per-IP shaper to a traffic shaping policy. This shaper assigns each user a maximum bandwidth of 1 Mbps and allows each user to have a maximum of ten concurrent connections to the FTP server. In the example, FortiOS communicates with users using port10 and the FTP server using port9.

**To configure a per-IP traffic shaper in the GUI:**

1. Create a firewall policy:
   a. Go to **Policy & Objects > IPv4 Policy** and click **Create New**.
   b. Set the **Name** to **FTP Access**.
   c. Set the **Incoming Interface** to **port10**.
   d. Set the **Outgoing Interface** to **port9**.
   e. Set the **Source** to **all**.
   f. Set the **Destination** to **FTP_Server**.
   g. Set the **Schedule** to **always**.
   h. Set the **Service** to **ALL**.
   i. Click **OK**.

2. Create the per-IP traffic shaper:
   a. Go to **Policy & Objects > Traffic Shaping**, select the **Traffic Shapers** tab, and click **Create New**.
   b. Set **Type** to **Per IP Shaper**.
   c. Enter the **Name (FTP_Max_1M)**. This shaper is for VoIP traffic.
   d. Enable **Max Bandwidth** and enter **1000**.
   e. Enable **Max Concurrent Connections** and enter **10**. This means that each user can have up to ten concurrent connections to the FTP server.
f. Click OK.

3. Create a firewall shaping policy:
   b. Enter the Name (FTP speed 1M).
   c. Set the Source to the addresses and users that require access to the FTP server.
   d. Set the Destination to FTP_Server.
   e. Set the Service to ALL.
   f. Set the Outgoing Interface to port9.
   g. Enable Per-IP shaper and select FTP_Max_1M.
   h. Click OK.

To configure a per-IP traffic shaper in the CLI:

1. Create a firewall policy:
   ```
 config firewall policy
 edit 1
 set name "FTP Access"
 set srcintf "port10"
 set dstintf "port9"
 set srcaddr "all"
 set dstaddr "FTP_Server"
 set action accept
 set schedule "always"
 set service "ALL"
 set fsso disable
 set nat enable
 next
 end
   ```

2. Create the per-IP traffic shaper:
   ```
 config firewall shaper per-ip-shaper
 edit "FTP_Max_1M"
 set max-bandwidth 1000
 set max-concurrent-session 10
 next
 end
   ```

3. Create a firewall shaping policy:
   ```
 config firewall shaping-policy
 edit 1
   ```
To troubleshoot per-IP traffic shapers:

1. Check if specific traffic is attached to the correct traffic shaper. The example output shows the traffic attached to the FTP_Max_1M shaper:

   ```
 # diagnose firewall iprope list 100015
 policy index=3 uuid_idx=0 action=accept
 flag (0):
 shapers: per-ip=FTP_Max_1M
 cos_fwd=0 cos_rev=0
 group=00100015 av=00000000 au=00000000 split=00000000
 host=2 chk_client_info=0x0 app_list=0 ips_view=0
 misc=0 dd_type=0 dd_mode=0
 zone(1): 0 -> zone(1): 38
 source(3): 10.1.100.11-10.1.100.11, uuid_idx=30, 10.1.100.143-10.1.100.143, uuid_idx=32,
 10.1.100.22-10.1.100.22, uuid_idx=31,
 dest(1): 172.16.200.55-172.16.200.55, uuid_idx=89,
 service(1):
 [0:0x0:0/(0,65535)->(0,65535)] helper:auto
   ```

2. Check if the correct traffic shaper is applied to the session. The example output shows that the FTP_Max_1M shaper is applied to the session:

   ```
 # diagnose sys session list
 session info: proto=6 proto_state=01 duration=36 expire=3567 timeout=3600 flags=00000000
 sockflag=00000000 sockport=0 av_idx=0 use=4
 origin-shaper=
 reply-shaper=
 per_ip_shaper=FTP_Max_1M
 class_id=0 shaping_policy_id=3 ha_id=0 policy_dir=0 tunnel=/ helper=ftp vlan_cos=0/255
 state=may_dirty ip npu npd mif route_preserve
 statistic(bytes/packets/allow_err): org=506/9/1 reply=416/6/1 tuples=2
 tx speed(Bps/kbps): 0/0 rx speed(Bps/kbps): 0/0
 orgin->sink: org pre->post, reply pre->post dev=39->38/38->39 gwy=172.16.200.55/0.0.0.0
 hook=pre dir=reply act=dnat 172.16.200.55:21->172.16.200.1:58275(10.1.100.11:58275)
 pos/(before,after) 0/(0,0), 0/(0,0)
 misc=0 policy_id=1 auth_info=0 chk_client_info=0 vd=2
 serial=0000211a tos=ff/ff app_list=0 app=0 url_cat=0
 sdwan_mbr_seq=0 sdwan_service_id=0
 rpd_link_id = 00000000
 dd_type=0 dd_mode=0
 npu_info: flag=0x00/0x00, offload=0/0, ips_offload=0/0, epid=0/0, ipid=0/0,
 vlan=0x0000/0x0000
 vlfid=0/0, vtag_in=0x0000/0x0000 in_npu=0/0, out_npu=0/0, fwd_en=0/0, qid=0/0
 no_ofld_reason: offload-denied helper
   ```

3. Check the statuses of per-IP traffic shapers. The output should resemble the following:

   ```
 # diagnose firewall shaper per-ip-shaper list
 name FTP_Max_1M
   ```
Policy and Objects

- maximum-bandwidth 125 KB/sec
- maximum-concurrent-session 10
- tos ff/ff
- packets dropped 0
- bytes dropped 0
- addr=10.1.100.11 status: bps=0 ses=3

Changing traffic shaper bandwidth unit of measurement

Bandwidth speeds are measured in kilobits per second (Kbps), and bytes that are sent and received are measured in megabytes (MB). In some cases, this can cause confusion depending on whether your ISP uses kilobits per second (Kbps), kilobytes per second (KBps), megabits per second (Mbps), or gigabits per second (Gbps).

You can change the unit of measurement for traffic shapers in the CLI.

To change the bandwidth unit of measurement for a shared traffic shaper:

```
config firewall shaper traffic-shaper
 edit <traffic_shaper_name>
 set bandwidth-unit {kbps | mbps | gbps}
 next
end
```

To change the bandwidth unit of measurement for a per-IP traffic shaper:

```
config firewall shaper per-ip-shaper
 edit <traffic_shaper_name>
 set bandwidth-unit {kbps | mbps | gbps}
 next
end
```

Multi-stage DSCP marking and class ID in traffic shapers

Traffic shapers have a multi-stage method so that packets are marked with a different differentiated services code point (DSCP) and class id at different traffic speeds. Marking packets with a different DSCP code is for the next hop to classify the packets. The FortiGate benefits by marking packets with a different class id. Combined with the egress interface shaping profile, the FortiGate can handle the traffic differently according to its class id.

<table>
<thead>
<tr>
<th>Rule</th>
<th>DSCP code</th>
<th>Class ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>speed &lt; guarantee bandwidth</td>
<td>differcode</td>
<td>class id in shaping policy</td>
</tr>
<tr>
<td>guarantee bandwidth &lt; speed &lt; exceed bandwidth</td>
<td>exceed-dscp</td>
<td>exceed-class-id</td>
</tr>
<tr>
<td>exceed bandwidth &lt; speed</td>
<td>maximum-dscp</td>
<td>exceed-class-id</td>
</tr>
</tbody>
</table>

This example sets the following parameters:

- When the current bandwidth is less than 50 Kbps, mark packets with differcode 100000 and set class id to 10.
- When the current bandwidth is between 50 Kbps and 100 Kbps, mark packets with exceed-dscp 111000 and set exceed-class-id to 20.
Policy and Objects

- When the current bandwidth is more than 100 Kbps, mark packets with maximum-dscp 111111 and set exceed-class-id to 20.

To set multi-stage DSCP marking and class ID in a traffic shaper:

```plaintext
config firewall shaper traffic-shaper
 edit "50k-100k-150k"
 set guaranteed-bandwidth 50
 set maximum-bandwidth 150
 set diffserv enable
 set dscp-marking-method multi-stage
 set exceed-bandwidth 100
 set exceed-dscp 110000
 set exceed-class-id 20
 set maximum-dscp 111111
 set diffservcode 100000
 next
end

config firewall shaping-policy
 edit 1
 set service "ALL"
 set dstintf PORT2
 set srcaddr "all"
 set dstaddr "all"
 set class-id 10
 next
end
```

Traffic shapers also have an overhead option that defines the per-packet size overhead used in rate computation.

To set the traffic shaper overhead option:

```plaintext
config firewall shaper traffic-shaper
 edit "testing"
 set guaranteed-bandwidth 50
 set maximum-bandwidth 150
 set overhead 14 <range from 0 to 100>
 next
end
```

Example

This example shows how to mark QA traffic with a different DSCP according to real-time traffic speed.

To configure the firewall address:

```plaintext
config firewall address
 edit QA_team
 set subnet 10.1.100.0/24
 next
end
```
To configure the firewall shaper traffic shaper:

```sh
config firewall shaper traffic-shaper
edit "500k-1000k-1500k"
 set guaranteed-bandwidth 500
 set maximum-bandwidth 1500
 set diffserv enable
 set dscp-marking-method multi-stage
 set exceed-bandwidth 1000
 set exceed-dscp 111000
 set maximum-dscp 111111
 set diffservcode 100000
next
end

config firewall shaping-policy
edit QA_team
 set service "ALL"
 set dstintf port1
 set traffic-shaper "500k-1000k-1500k"
 set traffic-shaper-reverse "500k-1000k-1500k"
 set srcaddr "QA_team"
 set dstaddr "all"
next
end
```

Adding traffic shapers to multicast policies

When multicast routing is enabled, a traffic shaper can be added to a multicast policy.

*Only a shared traffic shaper with the per-policy option disabled can be used. This is the default state of the per-policy option. The auto-asic-offload option must also be disabled on the multicast policy.*

---

Example

In this example, a traffic shaper is applied to the multicast policy. A multicast flow sender sends the multicast data stream. The shaper attached to the multicast session is checked, and the shaping of the data stream is confirmed in the multicast session.
To apply traffic shaping to a multicast policy:

1. Enable multicast routing on the VDOM:

   ```
 config router multicast
 set multicast-routing enable
 config pim-sm-global
 config rp-address
 edit 1
 set ip-address 10.1.100.10
 next
 end
 config interface
 edit "wan2"
 set pim-mode sparse-mode
 next
 edit "wan1"
 set pim-mode sparse-mode
 next
 end
   ```

2. Create a traffic shaper:

   ```
 config firewall shaper traffic-shaper
 edit "shaper128kbps-high"
 set guaranteed-bandwidth 128
 set maximum-bandwidth 128
 set per-policy disable
 set diffserv enable
 set diffservcode 010101
 next
 end
   ```

3. Apply the traffic shaper to the multicast policy and disable NPU offloading:

   ```
 config firewall multicast-policy
 edit 1
 set name "test_multicast-policy"
 set logtraffic enable
 set srcintf "wan2"
 set dstintf "wan1"
 set srcaddr "all"
 set dstaddr "all"
 set snat enable
 set auto-asic-offload disable
 set traffic-shaper "shaper128kbps-high"
 next
 end
   ```

4. Check the shaper and DSCP in the multicast session:

   ```
 # diagnose sys mcast-session list
 session info: id=26 vf=0 proto=17 10.1.100.41.35537->230.0.0.1.7878
 used=2 path=1 duration=118 expire=179 indev=18 pkts=119 bytes=64260
 state=00000000;
 session-npu-info: ipid/vlifid=0/0 vlanid/vtag_in=0/0 in_npuid=0 tae_index=0 qid=0
   ```
Global traffic prioritization

Global traffic prioritization allows your traffic to be prioritized as high (2), medium (3), or low (4) based on ToS (type of service) or DSCP. When using ToS-based priority, integers 0 to 15 can be used, which correspond to the definitions of the ToS field values in RFC 1349. When using DSCP, values 0 to 63 can be used, which correspond to the six bits in the DSCP value.

The outbandwidth must be defined in order for global prioritization to take effect. When the outbandwidth is defined on an interface without an applied egress-shaping-profile, the interface has a total of five priority levels:

<table>
<thead>
<tr>
<th>Priority level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Top</td>
</tr>
<tr>
<td>1</td>
<td>Critical</td>
</tr>
<tr>
<td>2</td>
<td>High</td>
</tr>
<tr>
<td>3</td>
<td>Medium</td>
</tr>
<tr>
<td>4</td>
<td>Low</td>
</tr>
</tbody>
</table>

Priority level 0 is reserved for administrative and local out traffic. Priority level 1 is used for traffic that is below guaranteed bandwidth when using a traffic shaper.

Traffic shaper and traffic shaping profile configurations take precedence over global traffic prioritization.

CLI commands

The following commands are used to configure the prioritization either by ToS or DSCP.

To configure the traffic prioritization type and level:

```conf
config system global
 set traffic-priority {tos | dscp}
 set traffic-priority-level {high | medium | low}
end
```

To configure the ToS-based priority table:

```conf
config system tos-based-priority
 edit <id>
 set tos <0-15>
 set priority {high | medium | low}
```
To configure the DSCP-based priority table:

    config system dscp-based-priority
    edit <id>
        set ds <0-63>
        set priority (high | medium | low)
    next
end

To configure the interface outbandwidth:

    config system interface
    edit <name>
        set outbandwidth <bandwidth in kbps>
    next
end

Example

In the following configuration, packets with DSCP markings of 1 are prioritized as high, and packets with DSCP markings of 2 are prioritized as medium. All the other traffic is prioritized as low. The outbandwidth on interface port3 is set to 1000 kbps.

To configure DSCP-based traffic prioritization:

1. Configure DSCP-based prioritization in the global settings:

    config system global
        set traffic-priority dscp
        set traffic-priority-level low
    end

2. Configure the DSCP-based priority table:

    config system dscp-based-priority
    edit 1
        set ds 1
        set priority high
    next
    edit 2
        set ds 2
        set priority medium
    next
end

3. Configure the outbandwidth on port3:

    config system interface
    edit "port3"
        set outbandwidth 1000
    next
end
Verifying the traffic prioritization

When traffic exceeds the outbandwidth of 1000 kbps, traffic prioritization will take effect. Since the form of traffic shaping applied here is policing, excess packets above the outbandwidth are dropped.

In scenario 1, approximately 300 kbps of high priority traffic and 300 kbps of medium priority traffic passes through the FortiGate on port3.

To debug the bandwidth allocation:

```
diagnose netlink interface list port3
if=port3 family=00 type=1 index=5 mtu=1500 link=0 master=0
ref=35 state=start present fw_flags=3800 flags=up broadcast run allmulti multicast
Qdisc=pfifo_fast hw_addr=52:54:00:fb:81:0c broadcast_addr=ff:ff:ff:ff:ff:
outbandwidth=1000 (kbps)
 priority=0 allocated-bandwidth=0(kbps) total_bytes=9311K drop_
bytes=197K
 priority=1 allocated-bandwidth=0(kbps) total_bytes=0 drop_bytes=0
priority=2 allocated-bandwidth=354(kbps) total_bytes=20407K drop_
bytes=48K
 priority=3 allocated-bandwidth=354(kbps) total_bytes=7093K drop_
bytes=1262K
 priority=4 allocated-bandwidth=290(kbps) total_bytes=266018K drop_
bytes=7743K
stat: rxp=15450901 txp=25933756 rxb=5456860515 txb=17257309292 rxe=0 txe=0 rxd=0 txd=0 mc=0
collision=0 @ time=1629439926
re: rxl=0 rxo=0 rxc=0 rxf=0 rxfi=0 rxm=0
te: txa=0 txc=0 txfi=0 txh=0 txw=0
misc rxc=0 txc=0
input_type=0 state=3 arp_entry=0 refcnt=35
```

High priority (2) traffic is allocated 354 kbps of bandwidth. Medium priority (3) traffic is also allocated 354 kbps of bandwidth. The remaining bandwidth is allocated to low priority (4) traffic.

In scenario 2, approximately 400 kbps of high priority traffic and 800 kbps of medium priority traffic passes through the FortiGate on port3.

To debug the bandwidth allocation:

```
diagnose netlink interface list port3
if=port3 family=00 type=1 index=5 mtu=1500 link=0 master=0
ref=36 state=start present fw_flags=3800 flags=up broadcast run allmulti multicast
Qdisc=pfifo_fast hw_addr=52:54:00:fb:81:0c broadcast_addr=ff:ff:ff:ff:ff:
outbandwidth=1000 (kbps)
 priority=0 allocated-bandwidth=7(kbps) total_bytes=9981K drop_
bytes=240K
 priority=1 allocated-bandwidth=0(kbps) total_bytes=0 drop_bytes=0
priority=2 allocated-bandwidth=425(kbps) total_bytes=31478K drop_
bytes=101K
 priority=3 allocated-bandwidth=567(kbps) total_bytes=12056K drop_
bytes=1984K
 priority=4 allocated-bandwidth=290(kbps) total_bytes=266795K drop_
bytes=7771K
stat: rxp=15461740 txp=25950805 rxb=5459688950 txb=17273940560 rxe=0 txe=0 rxd=0 txd=0 mc=0
collision=0 @ time=1629440553
re: rxl=0 rxo=0 rxc=0 rxf=0 rxfi=0 rxm=0
```
Policy and Objects

High priority (2) traffic is allocated 425 kbps of bandwidth. Medium priority (3) traffic is allocated 567 kbps of bandwidth. Since the total bandwidth required exceeds 1000 kbps, the remaining medium priority (3) traffic is dropped. In comparing the successive debug outputs, the drop_bytes counter for medium priority (3) traffic gets bigger.

DSCP matching and DSCP marking

This feature has three parts:
- DSCP matching in firewall policies
- DSCP matching in firewall shaping policies
- DSCP marking in firewall shaping policies

DSCP matching in firewall policies

Traffic is allowed or blocked according to the Differentiated Services Code Point (DSCP) values in the incoming packets. The following CLI variables are available in the config firewall policy command:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tos-mask &lt;mask_value&gt;</td>
<td>Non-zero bit positions are used for comparison. Zero bit positions are ignored (default = 0x00). This variable replaces the dscp-match variable.</td>
</tr>
<tr>
<td>tos &lt;tos_value&gt;</td>
<td>Type of Service (ToC) value that is used for comparison (default = 0x00). This variable is only available when tos-mask is not zero. This variable replaces the dscp-value variable.</td>
</tr>
<tr>
<td>tos-negate {enable</td>
<td>disable}</td>
</tr>
</tbody>
</table>

DSCP matching in firewall shaping policies

Shaping is applied to the session or not according to the DSCP values in the incoming packets. The same logic and commands as in firewall policies are used.

DSCP marking in firewall shaping policies

Traffic is allowed or blocked according to the DSCP values in the incoming packets. DSCP marking in firewall shaping policies uses the same logic and commands as in firewall policy and traffic-shaper.

When DSCP marking on firewall shaper traffic-shaper, firewall shaping-policy, and firewall policy all apply to the same session, shaping-policy overrides policy, and shaper traffic-shaper overrides both shaping-policy and policy.

The following CLI variables in config firewall policy are used to mark the packets:
Policy and Objects

diffserv-forward {enable | disable}  
Enable/disable changing a packet's DiffServ values to the value specified in diffservcode-forward (default = disable).

diffservcode-forward <dscp_value>  
The value that packet's DiffServ is set to (default = 000000). This variable is only available when diffserv-forward is enabled.

diffserv-reverse {enable | disable}  
Enable/disable changing a packet's reverse (reply) DiffServ values to the value specified in diffservcode-rev (default = disable).

diffservcode-rev <dscp_value>  
The value that packet's reverse (reply) DiffServ is set to (default = 000000). This variable is only available when diffserv-rev is enabled.

Examples

Example 1

FortiGate A marks traffic from the sales and QA teams with different DSCP values. FortiGate B does DSCP matching, allowing only the sales team to access the database.

1. Configure FortiGate A:

   config firewall policy
   edit 1
      set srcintf "port2"
      set dstintf "port3"
      set srcaddr "QA"
      set dstaddr "all"
      set action accept
      set schedule "always"
      set service "ALL"
      set diffserv-forward enable
      set diffservcode-forward 110000
      set nat enable
   next
   edit 5
      set srcintf "port2"
      set dstintf "port3"
      set srcaddr "Sales"
      set dstaddr "all"
      set action accept
      set schedule "always"
      set service "ALL"
      set diffserv-forward enable
      set diffservcode-forward 111011
      set nat enable
2. Configure FortiGate B:

```plaintext
config firewall policy
edit 2
 set srcintf "port3"
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "Database"
 set action accept
 set schedule "always"
 set service "ALL"
 set tos-mask 0xf0
 set tos 0xe0
 set fsso disable
 set nat enable
next
end
```

**Example 2**

FortiGate A marks traffic from the sales and QA teams with different DSCP values. FortiGate B uses a firewall shaping policy to do the DSCP matching, limiting the connection speed of the sales team to the database to 10MB/s.

1. Configure FortiGate A:

```plaintext
config firewall policy
edit 1
 set srcintf "port2"
 set dstintf "port3"
 set srcaddr "QA"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set diffserv-forward enable
 set diffservcode-forward 110000
 set nat enable
next
edit 5
 set srcintf "port2"
 set dstintf "port3"
 set srcaddr "Sales"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set diffserv-forward enable
 set diffservcode-forward 111011
 set nat enable
next
end
```
2. Configure FortiGate B:

```plaintext
config firewall policy
 edit 2
 set srcintf "port3"
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set nat enable
next
end
config firewall shaper traffic-shaper
 edit "10MB/s"
 set guaranteed-bandwidth 60000
 set maximum-bandwidth 80000
next
end
config firewall shaping-policy
 edit 1
 set service "ALL"
 set dstintf "port1"
 # set tos-mask 0xf0
 set tos 0xe0
 set traffic-shaper "10MB/s"
 set srcaddr "all"
 set dstaddr "all"
next
end
```

Example 3

FortiGate A has a traffic shaping policy to mark traffic from the QA team with a DSCP value of 100000, while reverse traffic is marked with 000011.

1. Configure FortiGate A:

```plaintext
config firewall shaping-policy
 edit 1
 set name "QA Team 50MB"
 set service "ALL"
 set dstintf "port3"
 set traffic-shaper "50MB/s"
 set traffic-shaper-reverse "50MB/s"
 set diffserv-forward enable
 set diffserv-reverse enable
 set srcaddr "QA"
 set dstaddr "all"
 set diffservcode-forward 100000
 set diffservcode-rev 000011
next
end
```
Examples

This section includes the following traffic shaping configuration examples:

- Interface-based traffic shaping profile on page 954
- Interface-based traffic shaping with NP acceleration on page 962
- QoS assignment and rate limiting for FortiSwitch quarantined VLANs on page 963
- Ingress traffic shaping profile on page 964

Interface-based traffic shaping profile

A traffic shaping policy can be used for interface-based traffic shaping by organizing traffic into 30 class IDs. The shaping profile defines the percentage of the interface bandwidth that is allocated to each class. Each traffic class ID is shaped to the assigned speed according to the outgoing bandwidth limit configured to the interface.

Traffic classification

A shaping policy classifies traffic and organizes it into different class IDs, based on matching criteria. For traffic matching a criterion, you can choose to put it into 30 different shaping classes, identified by class ID 2 to 31.

You must select an outgoing interface for the traffic. The shaping policy is only applied when the traffic goes to one of the selected outgoing interfaces.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>• Address: match the source address of the traffic to the selected address or address group.</td>
</tr>
<tr>
<td></td>
<td>• User: use the user credentials of the traffic to match the selected user or user group. At least one address, address group, or internet service must also be selected.</td>
</tr>
<tr>
<td></td>
<td>• Internet service: match the traffic to the selected internet service. Internet services cannot be used if addresses or address or groups are used.</td>
</tr>
<tr>
<td>Destination</td>
<td>• Address: match the destination address of the traffic to the selected address or address group.</td>
</tr>
<tr>
<td></td>
<td>• Internet service: match the traffic to the selected internet service. Internet services cannot be used if addresses or address or groups are used.</td>
</tr>
<tr>
<td>Schedule</td>
<td>Match the current date and time to the selected schedule. You can select a one-time schedule, recurring schedule, or schedule group. This setting is optional.</td>
</tr>
<tr>
<td>Service</td>
<td>Match the service of the traffic to the selected service or service group.</td>
</tr>
<tr>
<td>Application</td>
<td>Match the application of the traffic to the selected application, application category, or application group.</td>
</tr>
<tr>
<td></td>
<td>Application control must be enabled in the related firewall policy to know the application of the traffic. See Application control on page 1182 for more information.</td>
</tr>
<tr>
<td>URL category</td>
<td>Match the URL of the traffic to the selected URL category. Web filter must be enabled in the related firewall policy to know the URL of the traffic. See Web filter on page 1124 for more information.</td>
</tr>
</tbody>
</table>
When multiple items are selected in one criterion, it is considered a match when traffic matches any one of them.

Traffic prioritization

Shaping profiles define how different shaping classes of traffic are prioritized. For each class, you can define three prioritization strategies: guaranteed bandwidth, maximum bandwidth, and priority.

For each shaping profile, a default shaping class must be defined. Traffic is prioritized based on the default shaping group in the following two circumstances:

- All traffic to the outgoing interface that does not match to any shaping policy
- Traffic with a shaping group that is not defined in a shaping profile

<table>
<thead>
<tr>
<th>Prioritization strategy</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guaranteed bandwidth</td>
<td>The percentage of the link speed that is reserved for the shaping group. The total guaranteed bandwidth for all shaping groups cannot exceed 100%.</td>
</tr>
<tr>
<td>Maximum bandwidth</td>
<td>The maximum percentage of the link speed that the shaping group can use.</td>
</tr>
<tr>
<td>Priority</td>
<td>The shaping class priority: top, critical, high, medium, or low. When groups are competing for bandwidth on the interface, the group with the higher priority wins.</td>
</tr>
</tbody>
</table>

Applying a shaping profile to an interface

Traffic shaping is accomplished by configuring the outgoing bandwidth and outgoing shaping profile on an interface. The shaping profile uses the outgoing bandwidth of the interface as the maximum link speed, and it only works when the outgoing bandwidth is configured.

This example shows how to apply interface-based traffic shaping to web and file accessing traffic according to a schedule:

- The link speed of the wan1 interface is 10 Mb/s.
- File access can use up to 2 Mb/s from 8:00 AM to 6:00 PM.
- Web access can use 8 Mb/s from 8:00 AM to 6:00 PM.
Putting the traffic into shaping classes

To create a recurring schedule in the GUI:

1. Go to Policy & Objects > Schedules.
2. Click Create New > Schedule.
3. Configure a recurring schedule called Day_Hours for everyday from 8:00 AM to 6:00 PM.
4. Click OK.

To create a traffic shaping policy and class ID for the web accessing traffic in the GUI:

2. Enter a name for the policy, such as web_access_day_hours.
3. Enable Schedule and select the schedule you just created.
4. Set Service to web accessing services, such as HTTP and HTTPS.
5. Set Action to Assign Shaping Class ID, and Outgoing interface to wan1.
6. Click the Traffic shaping class ID drop down then click Create.
7. Enter an integer value for the ID (3) and a description for the Name, such as Web Access.
8. Click OK.
9. Select the class ID you just created for Traffic shaping class ID.

10. Configure the remaining settings as required.
11. Click OK.

To create a traffic shaping policy and class ID for the file accessing traffic in the GUI:

2. Enter a name for the policy, such as file_access_day_hours.
3. Enable Schedule and select the schedule you just created.
4. Set Service to file accessing services, such as ASF3, FTP and SMB.
5. Set Action to Assign Shaping Class ID, and Outgoing interface to wan1.
6. Click the Traffic shaping class ID drop down then click Create.
7. Enter an integer value for the ID (4) and a description for the Name, such as File Access.
8. Click OK.
9. Select the class ID you just created for Traffic shaping class ID.

10. Configure the remaining settings as required.
11. Click OK.

To put the traffic into shaping classes in the CLI:

1. Create a recurring schedule:

   ```
 config firewall schedule recurring
 edit "Day_Hours"
 set start 08:00
 set end 18:00
 set day sunday monday tuesday wednesday thursday friday saturday
 next
 end
   ```

2. Create the traffic class IDs:

   ```
 config firewall traffic-class
 edit 3
 set class-name "Web Access"
   ```
3. Create the web and file accessing traffic shaping policies:

```python
config firewall shaping-policy
 edit 2
 set name "web_access_day_hours"
 set comment "Limit web accessing traffic to 8Mb/s in day time"
 set service "HTTP" "HTTPS"
 set schedule "Day_Hours"
 set dstintf "wan1"
 set class-id 3
 set srcaddr "all"
 set dstaddr "all"
 next
 edit 3
 set name "file_access_day_hours"
 set comment "Limit file accessing traffic to 2Mb/s during the day"
 set service "AFS3" "FTP" "FTP_GET" "FTP_PUT" "NFS" "SAMBA" "SMB" "TFTP"
 set schedule "Day_Hours"
 set dstintf "wan1"
 set class-id 4
 set srcaddr "all"
 set dstaddr "all"
 next
end
```

**Allocating bandwidth to the shaping classes**

A traffic shaping profile defines the guaranteed and maximum bandwidths each class receives. In this example, file access can use up to 2 Mb/s and web access can use 8 Mb/s from 8:00 AM to 6:00 PM.

**To create a traffic shaping profile using the GUI:**

1. Go to Policy & Objects > Traffic Shaping, select the Traffic Shaping Profiles tab, and click Create New.
2. Enter a name for the profile, such as Day_Hours_Profile.
3. Configure a default traffic shaping class:
   - This class has a high priority, meaning that when the other classes have reached their guaranteed bandwidths, this default class will use the rest of the available bandwidth.
   a. In the Traffic Shaping Classes table click Create New.
   b. Click the Traffic shaping class ID drop down then click Create.
   c. Enter a name for the class, such as Default Access.
   d. Click OK.
   e. Select the class ID you just created for Traffic shaping class ID.
Policy and Objects

f. Configure the following settings, then click OK:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Guaranteed bandwidth</td>
<td>30</td>
</tr>
<tr>
<td>Maximum bandwidth</td>
<td>100</td>
</tr>
<tr>
<td>Priority</td>
<td>High</td>
</tr>
</tbody>
</table>

4. Configure a web accessing traffic shaping class:
When other types of traffic are competing for bandwidth, this class is guaranteed to 6 Mb/s, or 60% of the bandwidth.

a. In the Traffic Shaping Classes table click Create New.
b. Configure the following settings, then click OK:

<table>
<thead>
<tr>
<th>Traffic shaping class ID</th>
<th>Web Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guaranteed bandwidth</td>
<td>60</td>
</tr>
<tr>
<td>Maximum bandwidth</td>
<td>80</td>
</tr>
<tr>
<td>Priority</td>
<td>Medium</td>
</tr>
</tbody>
</table>

5. Configure a file accessing traffic shaping class:
When other types of traffic are competing for bandwidth, this group is guaranteed to 1 Mb/s, or 10% of the bandwidth.

a. In the Traffic Shaping Classes table click Create New.
b. Configure the following settings, then click OK:

<table>
<thead>
<tr>
<th>Traffic shaping class ID</th>
<th>File Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guaranteed bandwidth</td>
<td>10</td>
</tr>
<tr>
<td>Maximum bandwidth</td>
<td>20</td>
</tr>
<tr>
<td>Priority</td>
<td>Medium</td>
</tr>
</tbody>
</table>
6. Click OK.

To create a traffic shaping profile using the CLI:

```
config firewall shaping-profile
edit "Day_Hours_Profile"
 set default-class-id 2
config shaping-entries
 edit 1
 set class-id 2
 set guaranteed-bandwidth-percentage 30
 set maximum-bandwidth-percentage 100
 next
 edit 2
 set class-id 3
 set priority medium
 set guaranteed-bandwidth-percentage 60
 set maximum-bandwidth-percentage 80
 next
 edit 3
 set class-id 4
```
Defining the available bandwidth on an interface

In this example, the link speed of the wan1 interface is 10 Mb/s.

To set the bandwidth of the wan1 interface in the GUI:

1. Go to Network > Interfaces.
2. Edit the wan1 interface.
3. Under Traffic Shaping, enable Outbound shaping profile and select the profile that you just created, Day_Hours_Profile.
4. Enable Outbound Bandwidth and set it to 10000 Kbps.
5. Click OK.

To set the bandwidth of the wan1 interface in the CLI:

```text
config system interface
 edit "wan1"
 set egress-shaping-profile "Day_Hours_Profile"
 set outbandwidth 10000
 end
next
end
```

Diagnose commands

To check that the specific traffic is put into the correct shaping group or class ID:

```
diagnose firewall i propane list 100015
```

```text
 set priority medium
 set guaranteed-bandwidth-percentage 10
 set maximum-bandwidth-percentage 20
 next
 end
 next
 end
```
To check the speed limit for each class ID on an interface:

```
diagnose netlink interface list wan1
```

**Interface-based traffic shaping with NP acceleration**

Interface-based traffic shaping with NP acceleration is supported on some devices.

An administrator configures the WAN interface’s maximum outbound bandwidth and, based on that, creates a traffic shaping profile with a percentage based shaper. This allows for proper QoS and traffic shaping. VLAN interfaces are not supported.

- This feature is supported on FortiGate 600E, 500E, and 300E models.

To configure interface-based traffic shaping:

1. Enable NPU offloading when doing interface-based traffic shaping according to the egress-shaping-profile:

   ```
 config system npu
 set intf-shaping-offload enable
 end
   ```

2. Configure shaping profiles:

   ```
 config firewall shaping-profile
 edit "sdwan"
 set default-class-id 4
 config shaping-entries
 edit 1
 set class-id 4
 set guaranteed-bandwidth-percentage 3
 set maximum-bandwidth-percentage 5
 next
 edit 2
 set class-id 3
 set priority medium
 set guaranteed-bandwidth-percentage 50
 set maximum-bandwidth-percentage 100
 next
 edit 3
 set class-id 2
 set priority low
 set guaranteed-bandwidth-percentage 1
 set maximum-bandwidth-percentage 5
 next
 end
   ```

The class number is limited to 16.
3. Configure a traffic shaper and shaping policy:

```javascript
config firewall shaper traffic-shaper
 edit "Transactional"
 set priority medium
 next
end

config firewall shaping-policy
 edit 1
 set service "ALL"
 set dstintf "any"
 set traffic-shaper "Transactional"
 set class-id 3
 set srcaddr "all"
 set dstaddr "all"
 next
end
```

4. Apply the egress shaping profile on the interface:

```javascript
config system interface
 edit "port2"
 set vdom "root"
 set ip 10.1.100.23 255.255.255.0
 set allowaccess ping
 set type physical
 set outbandwidth 500
 set egress-shaping-profile "sdwan"
 set snmp-index 4
 next
end
```

5. Configure a firewall policy:

```javascript
config firewall policy
 edit 3
 set srcintf "port2"
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set logtraffic all
 set nat enable
 next
end
```

### QoS assignment and rate limiting for FortiSwitch quarantined VLANs

When devices are quarantined, they are isolated from the rest of the network. However, they can still impact the network if not controlled beyond isolation. A quarantined host, which offers heavy traffic, could congest the network and create a DOS-style reduction in service to authorized hosts.

Within the quarantined VLAN, two restrictions are available within the network:
Policy and Objects

- Traffic policing (also known as rate limiting)
- QoS (Quality of Service) assignment (also known as priority assignment)

Each quarantined host's traffic can be subject to rate limiting and priority adjustment. This reduces the impact that any quarantined host can have on authorized traffic on the network.

To configure QoS assignment and rate limiting for quarantined VLANs:

1. Configure a traffic policy, or use the default "quarantine" policy:

   ```
 config switch-controller traffic-policy
 edit "quarantine"
 set description "Rate control for quarantined traffic"
 set guaranteed-bandwidth 163840
 set guaranteed-burst 8192
 set maximum-burst 163840
 set cos-queue 0
 next
 end
   ```

2. Configure an interface:

   ```
 config system interface
 edit "qtn.aggr1"
 set vdom "root"
 set ip 10.254.254.254 255.255.255.0
 set description "Quarantine VLAN"
 set security-mode captive-portal
 set replacemsg-override-group "auth-intf-qtn.aggr1"
 set device-identification enable
 set snmp-index 30
 set switch-controller-access-vlan enable
 set switch-controller-traffic-policy "quarantine"
 set color 6
 set interface "aggr1"
 set vlanid 4093
 next
 end
   ```

   By default, `switch-controller-traffic-policy` is empty. You need to apply the necessary traffic policy (not only limited to "quarantine").

Ingress traffic shaping profile

A traffic shaping profile can be applied to an interface for traffic in the ingress direction. Similar to an egress traffic shaping profile, the guaranteed bandwidth and priority of the profile will be respected when an interface receives inbound traffic. When congestion occurs, any remaining bandwidth will be allotted to classes based on priority.

Ingress traffic shaping does not support NPU offloading.
Example

In this example, the port2 interface has a total inbound bandwidth of 100 Mbps. Traffic from certain clients to certain servers are assigned different classes.

IPv6 traffic from any client PCs to server PCs is assigned class 5.

For each class, the priority, guaranteed bandwidth, and maximum bandwidth are as follows:

<table>
<thead>
<tr>
<th>Class</th>
<th>Priority</th>
<th>Guaranteed bandwidth</th>
<th>Maximum bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Low</td>
<td>10%</td>
<td>60%</td>
</tr>
<tr>
<td>3</td>
<td>High</td>
<td>20%</td>
<td>100%</td>
</tr>
<tr>
<td>4</td>
<td>High</td>
<td>30%</td>
<td>100%</td>
</tr>
<tr>
<td>5</td>
<td>Medium</td>
<td>10%</td>
<td>50%</td>
</tr>
</tbody>
</table>

Bandwidth will first be allotted to each class according to its guaranteed bandwidth. Then remaining available bandwidth will be allotted to class 3 and 4 first based on their priority. The allocation will be proportional to their guaranteed bandwidth ratio.

To configure ingress traffic shaping:

1. Configure the client and server addresses:

```plaintext
config firewall address
 edit "pc1"
 set subnet 10.1.100.11 255.255.255.255
next
edit "pc2"
 set subnet 10.1.100.22 255.255.255.255
next
edit "pc4"
 set subnet 172.16.200.44 255.255.255.255
next
edit "pc5"
 set subnet 172.16.200.55 255.255.255.255
next
end
```
2. Configure the class IDs:

```fortigate-config
config firewall traffic-class
edit 2
 set class-name "class2"
next
edit 3
 set class-name "class3"
next
edit 4
 set class-name "class4"
next
edit 4
 set class-name "class5"
next
end
```

3. Configure traffic shaping policies to assign classes to each group of traffic.

a. Configure a policy to assign traffic from PC1 to PC4 in class 2:

```fortigate-config
config firewall shaping-policy
edit 1
 set name "shaping policy 1"
 set service "ALL"
 set dstintf "wan1"
 set class-id 2
 set srcaddr "pc1"
 set dstaddr "pc4"
next
end
```

b. Configure a policy to assign traffic from PC2 to PC4 in class 3:

```fortigate-config
config firewall shaping-policy
edit 2
 set name "shaping policy 2"
 set service "ALL"
 set dstintf "wan1"
 set class-id 3
 set srcaddr "pc2"
 set dstaddr "pc4"
next
end
```

c. Configure a policy to assign traffic from PC2 to PC5 in class 4:

```fortigate-config
config firewall shaping-policy
edit 3
 set name "shaping policy 3"
 set service "ALL"
 set dstintf "wan1"
 set class-id 4
 set srcaddr "pc2"
 set dstaddr "pc5"
next
end
```
d. Configure a policy to assign all IPv6 traffic to class 5:

```fortigateconfig
config firewall shaping-policy
edit 4
 set name "shaping policy 4"
 set ip-version 6
 set service "ALL"
 set dstintf "wan1"
 set class-id 5
 set srcaddr6 "all"
 set dstaddr6 "all"
next
end
```

4. Configure a shaping profile to set the priority, and the guaranteed and maximum bandwidth percentages for each class:

```fortigateconfig
config firewall shaping-profile
edit "ingShapeProfile"
 set default-class-id 2
config shaping-entries
edit 2
 set class-id 2
 set priority low
 set guaranteed-bandwidth-percentage 10
 set maximum-bandwidth-percentage 60
next
edit 3
 set class-id 3
 set guaranteed-bandwidth-percentage 20
 set maximum-bandwidth-percentage 100
next
edit 4
 set class-id 4
 set guaranteed-bandwidth-percentage 30
 set maximum-bandwidth-percentage 100
next
edit 5
 set class-id 5
 set priority medium
 set guaranteed-bandwidth-percentage 10
 set maximum-bandwidth-percentage 50
next
end
```

5. Configure the inbandwidth and apply the ingress shaping profile on port2:

```fortigateconfig
config system interface
edit "port2"
 set ip 10.1.100.1 255.255.255.0
 set inbandwidth 100000
 set ingress-shaping-profile "ingShapeProfile"
config ipv6
 set ip6-address 2000:10:1:100::1/64
end
```
next
end

Inbandwidth must be configured for traffic shaping to take effect.

6. Configure a firewall policy to allow traffic to go through. Since traffic shaping is for inbound traffic on port2, the policy is defined from port2 to wan1:

```plaintext
cfg firewall policy
ed 2
 set srcintf "port2"
 set dstintf "wan1"
 set action accept
 set srcaddr "all"
 set dstaddr "all"
 set srcaddr6 "all"
 set dstaddr6 "all"
 set schedule "always"
 set service "ALL"
 set logtraffic all
 set auto-asic-offload disable
 set nat enable
next
end
```

NPU must be disabled by configuring `set auto-asic-offload disable`.

**Verifying that the traffic is being shaped**

In each of the following cases, the server PCs (PC4 and PC5) are configured as iPerf servers. The client PCs (PC1 and PC2) are configured as iPerf clients. The client sends traffic to the server from the client to server direction, triggering inbound traffic shaping on the port2 interface. The inbound bandwidth on port2 is 100 Mbps.

**Case 1: single stream, PC1 to PC4**

Traffic is sent from PC1 to PC4. There is no other traffic. Traffic is marked with class ID 2 and allocated the maximum bandwidth 60 Mbps (60%).

```
diagnose netlink interface list port2
if=port2 family=00 type=1 index=20 mtu=1500 link=0 master=0
ref=25 state=start present fw_flags=3800 flags=up broadcast run multicast
Qdisc=mq hw_addr=70:4c:a5:7d:d4:95 broadcast_addr=ff:ff:ff:ff:ff:ff
ingress traffic control:
 class-id=2 allocated-bandwidth=60000 (kbps) guaranteed-bandwidth=10000 (kbps)
 max-bandwidth=60000 (kbps) current-bandwidth=60002 (kbps)
 priority=low forwarded_bytes=58157K
 dropped_packets=94K dropped_bytes=125385K
 class-id=5 allocated-bandwidth=1000 (kbps) guaranteed-bandwidth=1000 (kbps)
 max-bandwidth=50000 (kbps) current-bandwidth=0 (kbps)
 priority=medium forwarded_bytes=0
 dropped_packets=0 dropped_bytes=0
 class-id=3 allocated-bandwidth=15000 (kbps) guaranteed-bandwidth=20000 (kbps)
 max-bandwidth=100000 (kbps) current-bandwidth=0 (kbps)
 priority=high forwarded_bytes=0
```
Policy and Objects

dropped_packets=0  dropped_bytes=0
class-id=4  allocated-bandwidth=24000 (kbps)  guaranteed-bandwidth=30000 (kbps)
max-bandwidth=100000 (kbps)  current-bandwidth=0 (kbps)
priority=high  forwarded_bytes=0
dropped_packets=0  dropped_bytes=0
stat:  rxp=173465879  txp=2430534  rxb=19466548609  txb=2767375732  rxe=0  txe=0  rxd=0  txd=0  mc=0
collision=0  @  time=1628814469
re:  rxl=0  rxo=0  rxc=0  rxf=0  rxfi=0  rxm=0
te:  txa=0  txc=0  txfi=0  txh=0  txw=0
misc  rxc=0  txc=0
input_type=0  state=3  arp_entry=0  refcnt=25

Case 2: dual stream, PC1 to PC4, PC2 to PC4

Traffic is sent from both PC1 and PC2 to PC4. PC1 to PC4 traffic is marked with class ID 2 and low priority, and PC2 to PC4 traffic is marked with class ID 3 and high priority. Both class 2 and 3 will be allocated their guaranteed bandwidth first, using up 10% and 20% respectively. The remaining available bandwidth is used by class 3 since it has a higher priority. Class 2 uses around 10 Mbps, and class 3 uses around 90 Mbps.

*# diagnose netlink interface list port2*
*if=port2  family=00  type=1  index=20  mtu=1500  link=0  master=0*
*ref=36  state=start  present  fw_flags=3800  flags=up  broadcast  run  multicast*
*Qdisc=mq  hw_addr=70:4c:a5:7d:d4:95  broadcast_addr=ff:ff:ff:ff:ff:ff*
*ingress traffic control:*
*bandwidth=100000 (kbps)  lock_hit=181  default_class=2  n_active_class=4*
*class-id=2  allocated-bandwidth=10000 (kbps)  guaranteed-bandwidth=10000 (kbps)*
*max-bandwidth=60000 (kbps)  current-bandwidth=10001 (kbps)*
*priority=low  forwarded_bytes=1799482K*
*dropped_packets=5998K  dropped_bytes=7965553K*
*class-id=5  allocated-bandwidth=1000 (kbps)  guaranteed-bandwidth=10000 (kbps)*
*max-bandwidth=50000 (kbps)  current-bandwidth=0 (kbps)*
*priority=medium  forwarded_bytes=0*
*dropped_packets=0  dropped_bytes=0*
*class-id=3  allocated-bandwidth=88000 (kbps)  guaranteed-bandwidth=20000 (kbps)*
*max-bandwidth=100000 (kbps)  current-bandwidth=88000 (kbps)*
*priority=high  forwarded_bytes=345039K*
*dropped_packets=324K  dropped_bytes=430862K*
*class-id=4  allocated-bandwidth=10000 (kbps)  guaranteed-bandwidth=30000 (kbps)*
*max-bandwidth=100000 (kbps)  current-bandwidth=0 (kbps)*
*priority=high  forwarded_bytes=0*
*dropped_packets=0  dropped_bytes=0*
stat:  rxp=181268981  txp=24383428  rxb=205136511596  txb=2771214402  rxe=0  txe=0  rxd=0  txd=0  mc=0
*collision=0  @  time=1628815849*
*re:  rxl=0  rxo=0  rxc=0  rxf=0  rxfi=0  rxm=0*
*te:  txa=0  txc=0  txfi=0  txh=0  txw=0*
*misc  rxc=0  txc=0*
*input_type=0  state=3  arp_entry=0  refcnt=36*

Case 3: multiple streams

Multiple streams of traffic are sent at the same time:
PC1 to PC4 traffic is assigned class 2 with low priority, and a guaranteed bandwidth of 10 Mbps.
PC2 to PC4 traffic is assigned class 3 with high priority, and a guaranteed bandwidth of 20 Mbps.
PC2 to PC5 traffic is assigned class 4 with high priority, and a guaranteed bandwidth of 30 Mbps.

All classes will be allocated their guaranteed bandwidth first, using up 10 Mbps, 20 Mbps, and 30 Mbps respectively. The remaining available bandwidth (40 Mbps) is shared by class 3 and class 4 based on their guaranteed bandwidth ratio of 20:30.

- Class 3’s share of the remaining 40 Mbps traffic = $40 \times \frac{20}{(20 + 30)} = 16$ Mbps
- Class 4’s share of the remaining 40 Mbps traffic = $40 \times \frac{30}{(20 + 30)} = 24$ Mbps

Each class is allocated roughly the following bandwidth:

- Class 2: 10 Mbps
- Class 3: 20 Mbps + 16 Mbps = 36 Mbps
- Class 4: 30 Mbps + 24 Mbps = 54 Mbps

```
diagnose netlink interface list port2
if=port2 family=00 type=1 index=20 mtu=1500 link=0 master=0
ref=27 state=start present fw_flags=3800 flags=up broadcast run multicast
Qdisc=queue hw_addr=70:4c:a5:7d:d4:95 broadcast_addr=ff:ff:ff:ff:ff:ff
ingress traffic control:
 bandwidth=100000 (kbps) lock_hit=148731 default_class=2 n_active_class=4
class-id=2 allocated-bandwidth=10000 (kbps) guaranteed-bandwidth=10000
(kbps)
 max-bandwidth=60000 (kbps) current-bandwidth=10004 (kbps)
priority=low forwarded_bytes=2267956K dropped_packets=10389K dropped_bytes=1379649K
class-id=5 allocated-bandwidth=1000 (kbps) guaranteed-bandwidth=10000 (kbps)
max-bandwidth=50000 (kbps) current-bandwidth=0 (kbps)
priority=medium forwarded_bytes=0 dropped_packets=0 dropped_bytes=0
class-id=3 allocated-bandwidth=35000 (kbps) guaranteed-bandwidth=20000
(kbps)
max-bandwidth=100000 (kbps) current-bandwidth=35729 (kbps)
priority=high forwarded_bytes=2119502K dropped_packets=6020K dropped_bytes=7994926K
class-id=4 allocated-bandwidth=54000 (kbps) guaranteed-bandwidth=30000
(kbps)
max-bandwidth=100000 (kbps) current-bandwidth=53907 (kbps)
priority=high forwarded_bytes=902415K dropped_packets=4141K dropped_bytes=5499248K
```

Zero Trust Network Access

This section includes information about ZTNA related new features:
Zero Trust Network Access introduction on page 971
Basic ZTNA configuration on page 974
Establish device identity and trust context with FortiClient EMS on page 982
SSL certificate based authentication on page 986
ZTNA configuration examples on page 988
  - ZTNA HTTPS access proxy example on page 989
  - ZTNA HTTPS access proxy with basic authentication example on page 996
  - ZTNA TCP forwarding access proxy example on page 1003
  - ZTNA TCP forwarding access proxy without encryption example on page 1009
  - ZTNA proxy access with SAML authentication example on page 1014
  - ZTNA IP/MAC based access control example on page 1018
  - ZTNA IPv6 examples on page 1024
  - ZTNA SSH access proxy example on page 1030
  - ZTNA access proxy with SAML and MFA using FortiAuthenticator example on page 1037
  - ZTNA access proxy with SSL VPN web portal example on page 1049
  - Posture check verification for active ZTNA proxy session examples on page 1054
  - ZTNA TCP forwarding access proxy with FQDN example on page 1060
  - ZTNA session-based form authentication on page 1063
Migrating from SSL VPN to ZTNA on page 1070
ZTNA scalability support for up to 50 thousand concurrent endpoints on page 1077
ZTNA troubleshooting and debugging on page 1079

Zero Trust Network Access introduction

Zero Trust Network Access (ZTNA) is an access control method that uses client device identification, authentication, and Zero Trust tags to provide role-based application access. It gives administrators the flexibility to manage network access for On-net local users and Off-net remote users. Access to applications is granted only after device verification, authenticating the user’s identity, authorizing the user, and then performing context based posture checks using Zero Trust tags.

Traditionally, a user and a device have different sets of rules for on-net access and off-net VPN access to company resources. With a distributed workforce and access that spans company networks, data centers, and cloud, managing the rules can become complex. User experience is also affected when multiple VPNs are needed to get to various resources. ZTNA can improve this experience.

ZTNA access proxy and IP/MAC based access control

- ZTNA access proxy allows users to securely access resources through an SSL encrypted access proxy. This simplifies remote access by eliminating the use of VPNs.
- IP/MAC based access control combines IP/MAC with uses ZTNA tags for identification and security posture check to implement role-based zero trust access.
ZTNA telemetry, tags, and policy enforcement

When On-net and Off-net FortiClient endpoints register to FortiClient EMS, device information, log on user information, and security posture are all shared over ZTNA telemetry with the EMS server. Clients also make a certificate signing request to obtain a client certificate from the EMS that is acting as the ZTNA Certificate Authority (CA).

Based on the client information, EMS applies matching Zero Trust tagging rules to tag the clients. These tags, and the client certificate information, are synchronized with the FortiGate in real-time. This allows the FortiGate to verify the client's identity using the client certificate, and grant access based on the ZTNA tags applied in the ZTNA rule.

For more information, see Establish device identity and trust context with FortiClient EMS on page 982.

Access proxy

The FortiGate access proxy can proxy HTTP, SSH, RDP, SMB, FTP, and other TCP traffic over secure connections with the client. This enables seamless access from the client to the protected servers, without needing to form IPsec or SSL VPN tunnels.
**HTTPS access proxy**

The FortiGate HTTPS access proxy works as a reverse proxy for the HTTP server. When a client connects to a webpage hosted by the protected server, the address resolves to the FortiGate’s access proxy VIP. The FortiGate proxies the connection and takes steps to authenticate the user. It prompts the user for their certificate on the browser, and verifies this against the ZTNA endpoint record that is synchronized from the EMS. If an authentication scheme, such as SAML authentication, is configured, the client is redirected to a captive portal for sign-on. If this passes, traffic is allowed based on the ZTNA rules, and the FortiGate returns the webpage to the client.

For example configurations, see ZTNA HTTPS access proxy example on page 989, ZTNA HTTPS access proxy with basic authentication example on page 996, and ZTNA proxy access with SAML authentication example on page 1014.

**TCP forwarding access proxy (TFAP)**

The TCP forwarding access proxy works as a special type of HTTPS reverse proxy. Instead of proxying traffic to a web server, TCP traffic is tunneled between the client and the access proxy over HTTPS, and forwarded to the protected resource. The FortiClient endpoint configures the ZTNA connection by pointing to the proxy gateway, and then specifying the destination host that it wants to reach. An HTTPS connection is made to the FortiGate's access proxy VIP, where the client certificate is verified and access is granted based on the ZTNA rules. TCP traffic is forwarded from the FortiGate to the protected resource, and an end to end connection is established. To reduce overhead, you can disable access proxy encryption on the client, as some TCP protocols, like RDP, are already secure. The TCP forwarding access proxy supports UTM scanning and deep inspection for HTTP, HTTPS, SMTP, SMTPS, IMAP, IMAPS, POP3, POP3S, SMB, and CIFS.

For an example configuration, see ZTNA TCP forwarding access proxy example on page 1003.

**SSH access proxy**

The SSH access proxy provides some benefits to proxying SSH connections over TFAP, including allowing SSH deep inspection, performing optional SSH host-key validation, and allowing one time user authentication to authenticate the ZTNA SSH access proxy connection and SSH server connection.

For an example configuration, see ZTNA SSH access proxy example on page 1030.

**Basic ZTNA configuration components**

The basic components that are require to configure ZTNA access proxy the FortiGate are:

1. FortiClient EMS fabric connector and ZTNA tags.
2. FortiClient EMS running version 7.0.0 or later or FortiClient EMS Cloud.
3. FortiClient running 7.0.0 or later.
4. ZTNA server
5. ZTNA rule
6. (Optional) User authentication
7. (Optional) HA configurations

For configuration details, see Basic ZTNA configuration on page 974.
Basic ZTNA configuration

To deploy a ZTNA access proxy, configure the following components on the FortiGate:

1. Configure a FortiClient EMS connector on page 974
2. Configure a ZTNA server on page 976
3. Configure a ZTNA rule on page 979
4. Optional authentication on page 980
5. Optional HA configurations on page 981

To configure ZTNA in the GUI, go to System > Feature Visibility and enable Zero Trust Network Access.

Configure a FortiClient EMS connector

To add an on-premise FortiClient EMS server in the GUI:

2. Click Create New and click FortiClient EMS.
3. Enter a name for the connector and the IP address or FQDN of the EMS.
4. Click OK.
5. A window appears to verify the EMS server certificate. Click Accept.
   See FortiClient EMS for more information.

To add an on-premise FortiClient EMS server in the CLI:

```bash
config endpoint-control fctems
 edit <name>
 set server <server IP or domain>
 next
end
```

To add FortiClient EMS Cloud in the GUI:

2. Double-click FortiClient EMS to open it for editing.
3. Set Type to FortiClient EMS Cloud.
4. Enter a name for the connector.
5. Click OK. A window appears to verify the EMS server certificate.
6. Click Accept.
   See FortiClient EMS for more information.

To add FortiClient EMS Cloud in the CLI:

```bash
config endpoint-control fctems
 edit <name>
```
set fortinetone-cloud-authentication enable
set certificate <string>
next
done

**ZTNA tags**

After the FortiGate connects to the FortiClient EMS, it automatically synchronizes ZTNA tags. ZTNA tags are generated from tagging rules configured on the FortiClient EMS. These tagging rules are based on various posture checks that can be applied on the endpoints. See [Endpoint Posture Check Reference](#).

**To view the synchronized ZTNA tags in the GUI:**

1. Go to *Policy & Objects > ZTNA* and select the *ZTNA Tags* tab.
2. Hover the cursor over a tag name to view more information about the tag, such as its resolved addresses.

![ZTNA Tags GUI](image)

**To create a ZTNA tag group in the GUI:**

1. Go to *Policy & Objects > ZTNA* and select the *ZTNA Tags* tab.
2. Click *Create New Group*.
3. Enter a name for the group and select the group members.

![Create New Group](image)
4. Click OK.

To view the synchronized ZTNA tags in the CLI:

```
diagnose firewall dynamic address
diagnose firewall dynamic list
```

To create a ZTNA tag group in the CLI:

```
config firewall addrgrp
edit <group name>
 set category ztna-ems-tag
 set member <members>
next
end
```

Configure a ZTNA server

To configure a ZTNA server, define the access proxy VIP and the real servers that clients will connect to. The access proxy VIP is the FortiGate ZTNA gateway that clients make HTTPS connections to. The service/server mappings define the virtual host matching rules and the real server mappings of the HTTPS requests.

To create a ZTNA server for HTTPS access proxy in the GUI:

1. Go to Policy & Objects > ZTNA and select the ZTNA Servers tab.
2. Click Create New.
3. Enter a name for the server.
4. Select an external interface, enter the external IP address, and select the external port that the clients will connect to.
5. Select the Default certificate. Clients will be presented with this certificate when they connect to the access proxy VIP.
6. Add server mapping:
   a. In the Service/server mapping table, click Create New.
   b. Set Service to HTTPS.
   c. Set Virtual Host to Any Host or Specify.
      - Any Host: Any request that resolves to the access proxy VIP will be mapped to your real servers. For example, if both www.example1.com and www.example2.com resolve to the VIP, then both requests are mapped to your real servers.
      - Specify: Enter the name or IP address of the host that the request must match. For example, if www.example1.com is entered as the host, then only requests to www.example1.com will match.
   d. Configure the path as needed.
      The path can be matched by substring, wildcard, or regular expression. For example, if the virtual host is specified as www.example1.com, and the path substring is map1, then www.example1/map1 will be matched.
   e. If multiple servers will be configured, enable Load balancing and select an algorithm.
   f. Add a server:
      i. In the Servers table, click Create New.
      ii. Enter the server IP address and port number.
      iii. Set the server status.
iv. Click OK.
v. Add more servers as needed.
g. Click OK.
h. Add more server mappings as needed.

7. Click OK.

To create a ZTNA server and access proxy VIP in the CLI:

1. Configure an access proxy VIP:

```fortigate
config firewall vip
edit <name>
 set type access-proxy
 set extip <external IP>
 set extintf <external interface>
 set server-type { https | ssh }
 set extport <external port>
 set ssl-certificate <certificate>
next
end
```

2. If the virtual host is specified, configure the virtual host:

```fortigate
config firewall access-proxy-virtual-host
edit <auto generated when configured from GUI>
 set ssl-certificate <certificate>
 set host <host name or IP>
 set host-type { sub-string | wildcard }
next
end
```

3. Configure the server and path mapping:

```fortigate
config firewall access-proxy
edit <name>
 set vip <vip name>
 set client-cert { enable | disable }
 set empty-cert-action { accept | block }
 set log-blocked-traffic { enable | disable }
config api-gateway
 edit 1
 set url-map <mapped path>
 set service { http | https | tcp-forwarding | samlsp }
 set virtual-host <name of virtual-host if specified>
 set url-map-type { sub-string | wildcard | regex }
 config realservers
 edit 1
 set addr-type ip
 set ip <ip of real server>
 set port <port>
 set status { active | standby | disable }
 set health-check { enable | disable }
next
end
set ldb-method static
set persistence none
```

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
Configure a ZTNA rule

A ZTNA rule is a proxy policy used to enforce access control. ZTNA tags or tag groups can be defined to enforce zero trust role based access. Security profiles can be configured to protect this traffic.

To configure a ZTNA rule in the GUI:
1. Go to Policy & Objects > ZTNA and select the ZTNA Rules tab.
2. Click Create New.
3. Enter a name for the rule.
4. Select an Incoming Interface and Source.
5. Add the ZTNA tags or tag groups that are allowed access. If multiple tags are included, select the Match ZTNA Tags method, Any or All.
6. Select the ZTNA Server.
7. Select the Destination.
8. Configure the remaining options as needed.
9. Click OK.

To configure a ZTNA rule in the CLI:

```
config firewall proxy-policy
edit 1
 set name <ZTNA rule name>
 set proxy access-proxy
 set access-proxy <access proxy>
```
Policy and Objects

set srcintf <interface>
set srcaddr "all"
set transparent {enable | disable}
set dstaddr "all"
set ztna-ems-tag <ZTNA tag(s)>
set ztna-tags-match-logic {or | and}
set action accept
set schedule "always"
set logtraffic all
set poolname <ip_pool>
set utm-status enable
set ssl-ssh-profile <inspection profile>
next
end

The transparent and poolname settings cannot be enabled at the same time. Use one setting at a time when configuring ZTNA rules.

Optional authentication

To configure authentication to the access proxy, you must configure an authentication scheme and authentication rule in the GUI or CLI. They are used to authenticate proxy-based policies, similar to configuring authentication for explicit and transparent proxy.

The authentication scheme defines the method of authentication that is applied. For ZTNA, basic HTTP and SAML methods are supported. Each method has additional settings to define the data source to check against. For example, with basic HTTP authentication, a user database can reference an LDAP server, RADIUS server, local database, or other supported authentication servers that the user is authenticated against.

The authentication rule defines the proxy sources and destinations that require authentication, and which authentication scheme to apply. For ZTNA, active authentication method is supported. The active authentication method references a scheme where users are actively prompted for authentication, like with basic authentication.

After the authentication rule triggers the method to authenticate the user, a successful authentication returns the groups that the user belongs to. In the ZTNA rule and proxy policy you can define a user or user group as the allowed source. Only users that match that user or group are allowed through the proxy policy.

To configure a basic authentication scheme:

config authentication scheme
   edit <name>
      set method basic
      set user-database <auth server>
   next
end

To configure an authentication rule:

config authentication rule
   edit <name>
      set status enable
      set protocol http
To apply a user group to a ZTNA rule in the GUI:

1. Go to Policy & Objects > ZTNA and select the ZTNA Rules tab.
2. Edit an existing rule, or click Create New to create a new rule.
3. Click in the Source field, select the User tab, and select the users and user groups that will be allowed access.
4. Configure the remaining settings as required.
5. Click OK.

To apply a user group to a ZTNA rule in the CLI:

```fortigateconfig
config firewall proxy-policy
edit <policy ID>
 set name <ZTNA rule name>
 set proxy access-proxy
 set access-proxy <access proxy>
 set srcintf <interface>
 set srcaddr "all"
 set dstaddr "all"
 set ztna-ems-tag <ZTNA tags>
 set ztna-tags-match-logic {or | and}
 set action accept
 set schedule "always"
 set logtraffic all
 set groups <user group>
 set utm-status enable
 set ssl-ssh-profile <inspection profile>
next
end
```

The authentication rule and scheme defines the method used to authenticate users. With basic HTTP authentication, a sign in prompt is shown after the client certificate prompt. After the authentication passes, the returned groups that the user is a member of are checked against the user groups that are defined in the ZTNA rule. If a group matches, then the user is allowed access after passing a posture check.

For basic setup information, see ZTNA HTTPS access proxy with basic authentication example on page 996.

For advanced setup information, see ZTNA proxy access with SAML authentication example on page 1014 and ZTNA access proxy with SAML and MFA using FortiAuthenticator example on page 1037.

Optional HA configurations

User information and TLS sessions are synchronized between HA members for ZTNA proxy sessions. When a failover occurs, the new primary unit will continue allowing sessions from the logged in users without asking for the client certificate and re-authentication again.
There are no special configurations for HA. Refer to HA active-passive cluster setup on page 2037 and HA active-active cluster setup on page 2039 to configure your HA cluster.

Establish device identity and trust context with FortiClient EMS

How device identity is established through client certificates, and how device trust context is established between FortiClient, FortiClient EMS, and the FortiGate, are integral to ZTNA.

Device roles

FortiClient

FortiClient endpoints provide the following information to FortiClient EMS when they register to the EMS:

- Device information (network details, operating system, model, and others)
- Logged on user information
- Security posture (On-net/Off-net, antivirus software, vulnerability status, and others)

It also requests and obtains a client device certificate from the EMS ZTNA Certificate Authority (CA) when it registers to FortiClient EMS. The client uses this certificate to identify itself to the FortiGate.

FortiClient EMS

FortiClient EMS issues and signs the client certificate with the FortiClient UID, certificate serial number, and EMS serial number. The certificate is then synchronized to the FortiGate. EMS also shares its EMS ZTNA CA certificate with the FortiGate, so that the FortiGate can use it to authenticate the clients.

FortiClient EMS uses zero trust tagging rules to tag endpoints based on the information that it has on each endpoint. The tags are also shared with the FortiGate. See Endpoint Posture Check Reference for a list of the endpoint posture checks that EMS can perform.
Each ZTNA tag creates two firewall addresses in all VDOMs on a FortiGate. One firewall address is the IP address, and the other firewall address is the MAC address. Because each FortiGate model has a global limit and a per-VDOM limit for the maximum number of supported firewall addresses, the FortiGate model determines the maximum number of ZTNA tags allowable by that unit, which is the maximum number of firewall address divided by two. For each FortiGate model's limit, see the Maximum Values table.

**FortiGate**

The FortiGate maintains a continuous connection to the EMS server to synchronize endpoint device information, including primarily:

- FortiClient UID
- Client certificate SN
- EMS SN
- Device credentials (user/domain)
- Network details (IP and MAC address and routing to the FortiGate)

When a device's information changes, such as when a client moves from on-net to off-net, or their security posture changes, EMS is updated with the new device information and then updates the FortiGate. The FortiGate's WAD daemon can use this information when processing ZTNA traffic. If an endpoint's security posture change causes it to no longer match the ZTNA rule criteria on an existing session, then the session is terminated.

**Certificate management on FortiClient EMS**

FortiClient EMS has a `default_ZTNARootCA` certificate generated by default that the ZTNA CA uses to sign CSRs from the FortiClient endpoints. Clicking the refresh button revokes and updates the root CA, forcing updates to the FortiGate and FortiClient endpoints by generating new certificates for each client.
Do not confuse the EMS CA certificate (ZTNA) with the SSL certificate. The latter is the server certificate that is used by EMS for HTTPS access and fabric connectivity to the EMS server.

EMS can also manage individual client certificates. To revoke the current client certificate that is used by the endpoint: go to **Endpoint > All Endpoints**, select the client, and click **Action > Revoke Client Certificate**.

---

**Locating and viewing the client certificate on an endpoint**

In Windows, FortiClient automatically installs certificates into the certificate store. The certificate information in the store, such as certificate UID and SN, should match the information on EMS and the FortiGate.

To locate certificates on other operating systems, consult the vendor documentation.

To locate the client certificate and EMS ZTNA CA certificate on a Windows PC:

1. In the Windows search box, enter *user certificate* and click **Manage user certificates** from the results.

2. In the certificate manager, go to **Certificates - Current User > Personal > Certificates** and find the certificate that is issued by the FortiClient EMS.
3. Right-click on it and select Properties.
4. The General tab shows the client certificate UID and the issue and expiry dates. The Details tab show the certificate SN.

5. Go to the Certificate Path tab to see the full certificate chain.
6. Select the root CA and click View Certificate to view the details about the EMS ZTNA CA certificate.

Verifying that the client information is synchronized to the FortiGate

The following diagnose commands help to verify the presence of matching endpoint record, and information such as the client UID, client certificate SN, and EMS certificate SN on the FortiGate. If any of the information is missing or incomplete, client certificate authentication might fail because the corresponding endpoint entry is not found. More in-depth diagnosis would be needed to determine the reason for the missing records.
Policy and Objects

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td># diagnose endpoint record list &lt;ip&gt;</td>
<td>Show the endpoint record list. Optionally, filter by the endpoint IP address.</td>
</tr>
<tr>
<td># diagnose endpoint lls-comm send ztna find-uid &lt;uid&gt;</td>
<td>Query endpoints by client UID.</td>
</tr>
<tr>
<td># diagnose endpoint lls-comm send ztna find-ip-vdom &lt;ip&gt; &lt;vdom&gt;</td>
<td>Query endpoints by the client IP-VDOM pair.</td>
</tr>
<tr>
<td># diagnose wad dev query-by uid &lt;uid&gt;</td>
<td>Query from WAD diagnose command by UID.</td>
</tr>
<tr>
<td># diagnose wad dev query-by ipv4 &lt;ip&gt;</td>
<td>Query from WAD diagnose command by IP address.</td>
</tr>
<tr>
<td># diagnose test application fcnacd 7</td>
<td>Check the FortiClient NAC daemon ZTNA and route cache.</td>
</tr>
<tr>
<td># diagnose test application fcnacd 8</td>
<td></td>
</tr>
</tbody>
</table>

To check the endpoint record list for IP address 10.6.30.214:

```
diagnose endpoint record list 10.6.30.214
Record #1:

 IP Address = 10.6.30.214
 MAC Address = 00:0c:29:ba:1e:61
 MAC list = 00:0c:29:ba:1e:61;00:0c:29:ba:1e:6b;
 VDOM = root (0)
 EMS serial number: FCTEMS8821001322
 Client cert SN: 17FF6595600A1AF53B87627AB4EBE5D032593E64
 Quarantined: no
 Online status: online
 Registration status: registered
 On-net status: on-net
 Gateway Interface: port2
 FortiClient version: 7.0.0
 AVDB version: 84.778
 FortiClient app signature version: 18.43
 FortiClient vulnerability scan engine version: 2.30
 FortiClient UID: 5FCFA3ECD54D78C911D9232EC9299FD
 ...
 Number of Routes: (1)
 Gateway Route #0:
 - IP:10.1.100.214, MAC: 00:0c:29:ba:1e:6b, Indirect: no
 - Interface:port2, VFID:0, SN: FG5H1E5819902474

online records: 1; offline records: 0; quarantined records: 0
```

SSL certificate based authentication

A client certificate is obtained when an endpoint registers to EMS. FortiClient automatically submits a CSR request and the FortiClient EMS signs and returns the client certificate. This certificate is stored in the operating system's certificate store for subsequent connections. The endpoint information is synchronized between the FortiGate and FortiClient EMS.
When an endpoint disconnects or is unregistered from EMS, its certificate is removed from the certificate store and revoked on EMS. The endpoint obtains a certificate again when it reconnected the EMS.

By default, client certificate authentication is enabled on the access proxy, so when the HTTPS request is received the FortiGate’s WAD process challenges the client to identify itself with its certificate. The FortiGate makes a decision based on the following possibilities:

1. If the client responds with the correct certificate that the client UID and certificate SN can be extracted from:
   - If the client UID and certificate SN match the record on the FortiGate, the client is allowed to continue with the ZTNA proxy rule processing.
   - If the client UID and certificate SN do not match the record on the FortiGate, the client is blocked from further ZTNA proxy rule processing.

2. If the client cancels and responds with an empty client certificate:
   - If empty-cert-action is set to accept, the client is allowed to continue with ZTNA proxy rule processing.
   - If empty-cert-action is set to block, the client is blocked from further ZTNA proxy rule processing.

To configure the client certificate actions:

```
config firewall access-proxy
 edit <name>
 set client-cert {enable | disable}
 set empty-cert-action {accept | block}
 next
end
```

**Example**

In this example, a client connects to qa.fortinet.com and is prompted for a client certificate.

- client-cert is set to enable, and empty-cert-action is set to block.
- The ZTNA server is configured, and a ZTNA rule is set to allow this client.
- The domain resolves to the FortiGate access proxy VIP.

**Scenario 1:**

When prompted for the client certificate, the client clicks OK and provides a valid certificate that is verified by the FortiGate.

![Image of client certificate prompt](image-url)
Result:

The client passes SSL certificate authentication and is allowed to access the website.

Scenario 2:

When prompted for the client certificate, the client clicks Cancel, resulting in an empty certificate response to the access proxy.

Result:

Because the certificate response is empty and empty-cert-action is set to block, the WAD daemon blocks the connection.

Currently, the Microsoft Edge, Google Chrome, and Safari browsers are supported by ZTNA.

ZTNA configuration examples

This section includes the following ZTNA configuration examples:

- ZTNA HTTPS access proxy example on page 989
- ZTNA HTTPS access proxy with basic authentication example on page 996
- ZTNA TCP forwarding access proxy example on page 1003
- ZTNA TCP forwarding access proxy without encryption example on page 1009
- ZTNA proxy access with SAML authentication example on page 1014
- ZTNA IP MAC based access control example on page 1018
- ZTNA IPv6 examples on page 1024
- ZTNA SSH access proxy example on page 1030
- ZTNA access proxy with SAML and MFA using FortiAuthenticator example on page 1037
- ZTNA access proxy with SSL VPN web portal example on page 1049
- Posture check verification for active ZTNA proxy session examples on page 1054
- ZTNA TCP forwarding access proxy with FQDN example on page 1060
- ZTNA session-based form authentication on page 1063
ZTNA HTTPS access proxy example

In this example, an HTTPS access proxy is configured to demonstrate its function as a reverse proxy on behalf of the web server it is protecting. It verifies user identity, device identity, and trust context, before granting access to the protected source.

This example shows access control that allows or denies traffic based on ZTNA tags. Traffic is allowed when the FortiClient endpoint is tagged as Low risk, and denied when the endpoint is tagged with Malicious-File-Detected.

This example assumes that the FortiGate EMS fabric connector is already successfully connected.

To configure ZTNA in the GUI, go to System > Feature Visibility and enable Zero Trust Network Access.

To configure a Zero Trust tagging rule on the FortiClient EMS:

1. Log in to the FortiClient EMS.
2. Go to Zero Trust Tags > Zero Trust Tagging Rules, and click Add.
3. In the Name field, enter Malicious-File-Detected.
4. In the Tag Endpoint As dropdown list, select Malicious-File-Detected.
   EMS uses this tag to dynamically group together endpoints that satisfy the rule, as well as any other rules that are configured to use this tag.
5. Click Add Rule then configure the rule:
   a. For OS, select Windows.
   b. From the Rule Type dropdown list, select File and click the + button.
   c. Enter a file name, such as C:\virus.txt.
   d. Click Save.
6. Click Save.
To configure a ZTNA server for HTTPS access proxy in the GUI:

1. Go to Policy & Objects > ZTNA and select the ZTNA Servers tab.
2. Click Create New.
3. Set Name to WIN2K16-P1.
4. Configure the network settings:
   a. Set External interface to port1.
   b. Set External IP to 192.168.2.86.
   c. Set External port to 8443.
5. Select the Default certificate. Clients will be presented with this certificate when they connect to the access proxy VIP.
6. Add server mapping:
   a. In the Service/server mapping table, click Create New.
   b. Set Service to HTTPS.
   c. Set Virtual Host to Any Host.
   d. Configure the path as needed. For example, to map to winserver.fgdocs.com/fortigate, enter /fortigate.
   e. Add a server:
      i. In the Servers table, click Create New.
      ii. Set IP to 192.168.20.6.
      iii. Set Port to 443.
      iv. Click OK.
f. Click OK.

7. Click OK.

To configure ZTNA rules to allow and deny traffic based on ZTNA tags in the GUI:

1. Go to Policy & Objects > ZTNA and select the ZTNA Rules tab.
2. Create a rule to deny traffic:
   a. Click Create New.
   b. Set Name to ZTNA-Deny-malicious.
   c. Set Incoming Interface to port1.
   d. Set Source to all.
   e. Add the ZTNA tag Malicious-File-Detected.
      This tag is dynamically retrieved from EMS when you first created the Zero Trust Tagging Rule.
   f. Select the ZTNA server WIN2K16-P1.
   g. Set Action to DENY.
   h. Enable Log Violation Traffic.
   i. Click OK.

3. Create a rule to allow traffic:
   a. Click Create New.
   b. Set Name to proxy-WIN2K16-P1.
c. Set *Incoming Interface to port1.*

d. Set *Source to all.* This can also be set to specific IP addresses to only allow those addresses to connect to this HTTPS access proxy.

e. Add the ZTNA tag *Low.*

f. Select the ZTNA server *WIN2K16-P1.*

g. Configure the remaining options as needed.

h. Click OK.

4. On the ZTNA rules list, make sure that the deny rule (*ZTNA-Deny-malicious*) is above the allow rule (*proxy-WIN2K16-P1*).

To configure HTTPS access in the CLI:

1. Configure the access proxy VIP:

```plaintext
config firewall vip
 edit "WIN2K16-P1"
 set type access-proxy
 set extip 192.168.2.86
 set extintf "port1"
 set server-type https
 set extport 8443
 set ssl-certificate "Fortinet_SSL"
 next
end
```

2. Configure the server and path mapping:

```plaintext
config firewall access-proxy
 edit "WIN2K16-P1"
 set vip "WIN2K16-P1"
 set client-cert enable
 set log-blocked-traffic enable
 config api-gateway
 edit 1
 config realservers
 edit 1
 set ip 192.168.20.6
 next
 end
 end
 end
end
```

3. Configure ZTNA rules:

```plaintext
config firewall proxy-policy
 edit 3
 set name "ZTNA-Deny-malicious"
 set proxy access-proxy
 set access-proxy "WIN2K16-P1"
 set srcintf "port1"
 set srcaddr "all"
 set dstaddr "all"
 set ztna-ems-tag "FCTEMS000109188_Malicious-File-Detected"
```
set schedule "always"
set logtraffic all
next
edit 2
set name "proxy-WIN2K16-P1"
set proxy access-proxy
set access-proxy "WIN2K16-P1"
set srcintf "port1"
set srcaddr "all"
set dstaddr "all"
set ztna-ems-tag "FCTEMS0000109188_Low"
set action accept
set schedule "always"
set logtraffic all
next
der

Testing the remote access to the HTTPS access proxy

After FortiClient EMS and FortiGate are configured, the HTTPS access proxy remote connection can be tested.

Access allowed:

1. On the remote Windows PC, open FortiClient.
2. On the Zero Trust Telemetry tab, make sure that you are connected to the EMS server.
3. Open a browser and enter the address of the server and the access port. When entering the FQDN, make sure that the DNS can resolve the address to the IP address of the FortiGate. In this example, winserver.fgdocs.com resolves to 192.168.2.86.
4. The browser prompts for the client certificate to use. Select the EMS signed certificate, then click OK.

The certificate is in the User Configuration store, under Personal > Certificates. The details show the SN of the certificate, which matches the record on the FortiClient EMS and the FortiGate.
5. The client is verified by the FortiGate to authenticate your identity.
6. The FortiGate matches your security posture by verifying your ZTNA tag and matching the corresponding ZTNA rule, and you are allowed access to the web server.

**Access denied:**

1. On the remote Windows PC, trigger the Zero Trust Tagging Rule by creating the file in C:\virus.txt.
2. Open a browser and enter the address http://winserver.fgdocs.com:8443.
3. The client is verified by the FortiGate to authenticate your identity.
4. FortiGate checks your security posture. Because EMS has tagged the PC with the *Malicious-File-Detected* tag, it matches the *ZTNA-Deny-malicious* rule.
5. You are denied access to the web server.
Logs and debugging

Access allowed:

# diagnose endpoint record list
Record #1:

IP Address = 10.10.10.20
MAC Address = 9c:b7:0d:2d:5c:d1
MAC list = 24:b6:fd:fa:54:c1;06:15:cd:45:f1:2e;9c:b7:0d:2d:5c:d1;
VDOM = (-1)
EMS serial number: FCTEMS0000109188
Client cert SN: 6A9DCC318F36E82079D5C631EB589A8025DA8E80
Public IP address: 192.157.105.35
Quarantined: no
Online status: online

Registration status: registered
On-net status: on-net
Gateway Interface:
FortiClient version: 7.0.0
AVDB version: 0.0
FortiClient app signature version: 0.0
FortiClient vulnerability scan engine version: 2.30
FortiClient UID: F4F3263AEBE54777A6509A8FCCDF9284
Host Name: Fortinet-KeithL
OS Type: WIN64

... Number of Routes: 0
online records: 1; offline records: 0; quarantined records: 0

# diagnose test application fnacd 7
ZTNA Cache:
-uid F4F3263AEBE54777A6509A8FCCDF9284: { "tags": [ "all_registered_clients", "Low" ], "user_name": "keithli", "client_cert_sn": "6A9DCC318F36E82079D5C631EB589A8025DA8E80", "ems_sn": "FCTEMS0000109188" }

# diagnose endpoint lls-comm send ztna find-uid F4F3263AEBE54777A6509A8FCCDF9284
UID: F4F3263AEBE54777A6509A8FCCDF9284
status code:ok
Domain:
User: keithli
Cert SN:6A9DCC318F36E82079D5C631EB589A8025DA8E80
EMS SN: FCTEMS0000109188
Routes(0):
- tag[0]: name=all_registered_clients
- tag[1]: name=Low

# execute log display
1: date=2021-03-28 time=00:46:39 eventtime=1616917599923614599 tz="-0700" logid="0000000010" type="traffic" subtype="forward" level="notice" vde="root" srcip=10.10.10.20 srcport=60185 srcintf="port1" srcintfrole="wan" dstcountry="Reserved" srccountry="Reserved" dstip=192.168.20.6 dstport=443 dstintf="root" dstintfrole="undefined" sessionid=29515 srcuuid="2d8e1736-8ec6-51eb-885c-009bf9c3ld7" dstuuid="5445be2e-5d7b-51ea-e2c3-ae6b7855c52f" service="HTTPS" wanoptapptype="web-proxy" proto=6 action="accept" policyid=2 policytype="proxy-policy" poluuid="5aba29de-8ec6-51eb-698f-25b59d5bf852" duration=6 wanin=104573 rcvdbyte=104573 wanout=2274 lanin=3370 sentbyte=3370 lanout=104445
Access denied:

# diagnose test application fcnacd 7
ZTNA Cache:
-uid F4F3263AE9E54777A6509A8FC3DF9284: { "user_name": "keithli", "client_cert_sn": "6A9DCC31B682079D5C631EB589A8025DA8E80", "ems_sn": "FCTEMS0000109188", "tags": [ "Malicious-File-Detected", "all_registered_clients", "Low" ] }

# diagnose endpoint 11s-comm send ztna find-uid F4F3263AE9E54777A6509A8FC3DF9284
UID: F4F3263AE9E54777A6509A8FC3DF9284
  status code: ok
  Domain: keithli
  Cert SN: 6A9DCC31B682079D5C631EB589A8025DA8E80
  EMS SN: FCTEMS0000109188
  Routes (0):
  Tags (3):
    - tag[0]: name=Malicious-File-Detected
    - tag[1]: name=all_registered_clients
    - tag[2]: name=Low

# execute log display
1: date=2021-03-28 time=01:21:55 eventtime=1616919715444980633 tz="-0700" logid="0000000013" type=traffic subtype=forward level=notice vd="root" srcip=10.10.10.20 srcport=60784 srcintf=port1 srcintfrole=wan dstip=192.168.20.6 dstport=443 dstintf=wdistntfrole=undefined srcuuid="2d8e173e-8ec6-51eb-885c-009bdf9c31d7" dstuuuid="5445be2e-5d7b-51ea-e2c3-aeb7855c52f" srccountry="Reserved" dstcountry="Reserved" sessionid=33933 proto=6 action=deny policyid=3 policytype=proxy-policy poluuid="762ca074-8f9e-51eb-7614-03a8801c6477" service="HTTPS" trandisp= noop url="https://winserver.fgdocs.com/" agent="Chrome/89.0.4389.90" duration=0 sentbyte=0 rcvbyte=0 sentpkt=0 rcvpkt=0 appcat=unscanned crscore=30 craction=131072 crlevel="high" msg="Traffic denied because of explicit proxy policy"

ZTNA HTTPS access proxy with basic authentication example

This example expands on the previous example (ZTNA HTTPS access proxy example on page 989), adding LDAP authentication to the ZTNA rule. Users are allowed based on passing the client certificate authentication check, user authentication, and security posture check.

Users that are in the AD security group ALLOWED-VPN are allowed access to the access proxy. Users that are not part of this security group are not allowed access.
This example assumes that the FortiGate EMS fabric connector is already successfully connected.

LDAP/Active Directory Users and Groups:

- Domain: KLHOME.local
- Users (Groups):
  - radCurtis (Domain Users, ALLOWED-VPN)
  - radKeith (Domain Users)

To configure a secure connection to the LDAP server in the GUI:

1. Go to User & Authentication > LDAP Servers and click Create New.
2. Configure the following settings:

<table>
<thead>
<tr>
<th>Name</th>
<th>WIN2K16-KLHOME-LDAPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server IP/Name</td>
<td>192.168.20.6</td>
</tr>
<tr>
<td>Server Port</td>
<td>636</td>
</tr>
<tr>
<td>Common Name Identifier</td>
<td>sAMAccountName</td>
</tr>
<tr>
<td>Distinguished Name</td>
<td>dc=KLHOME,dc=local</td>
</tr>
<tr>
<td>Exchange server</td>
<td>Disabled</td>
</tr>
<tr>
<td>Bind Type</td>
<td>Regular</td>
</tr>
<tr>
<td></td>
<td>Enter the Username and Password for LDAP binding and lookup.</td>
</tr>
<tr>
<td>Secure Connection</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td>Set Protocol to LDAPS</td>
</tr>
<tr>
<td></td>
<td>Enable Certificate and select the CA certificate to validate the server certificate.</td>
</tr>
<tr>
<td>Server identity check</td>
<td>Optionally, enable to verify the domain name or IP address against the server certificate.</td>
</tr>
</tbody>
</table>
3. Click Test Connectivity to verify the connection to the server.
4. Click OK.

To configure a secure connection to the LDAP server in the CLI:

```plaintext
config user ldap
 edit "WIN2K16-KLHOME-LDAPS"
 set server "192.168.20.6"
 set cnid "sAMAccountName"
 set dn "dc=KLHOME,dc=local"
 set type regular
 set username "KLHOME\Administrator"
 set password <password>
 set secure ldaps
 set ca-cert "CA_Cert_1"
 set port 636
 next
end
```

To configure a remote user group from the LDAP server in the GUI:

1. Go to User & Authentication > User Groups and click Create New.
2. Set the name to KLHOME-ALLOWED-VPN.
3. Set Type to Firewall.
4. In the Remote Groups table click Add:
   a. Set Remote Server to WIN2K16-KLHOME-LDAPS.
   b. Locate the ALLOWED-VPN group, right-click on it, and click Add Selected.
   c. Click OK.
5. Click OK.

To configure a remote user group from the LDAP server in the CLI:

```bash
config user group
 edit "KLHOME-ALLOWED-VPN"
 set member "WIN2K16-KLHOME-LDAPS"
 config match
 edit 1
 set server-name "WIN2K16-KLHOME-LDAPS"
 set group-name "CN=ALLOWED-VPN,DC=KLHOME,DC=local"
 next
 next
end
```

**Authentication scheme and rules**

After the LDAP server and user group have been configured, an authentication scheme and rule must be configured.

To configure authentication schemes and rules in the GUI, go to System > Feature Visibility and enable Explicit Proxy.

**Authentication scheme**

The authentication scheme defines the method of authentication that is applied. In this example, basic HTTP authentication is used so that users are prompted for a username and password the first time that they connect to a website through the HTTPS access proxy.

**To configure an authentication scheme in the GUI:**

1. Go to Policy & Objects > Authentication Rules and click Create New > Authentication Scheme.
2. Set the name to ZTNA-Auth-scheme.
3. Set Method to Basic.
4. Set User database to Other and select WIN2K16-KLHOME-LDAPS as the LDAP server.
5. Click OK.
To configure an authentication scheme in the CLI:

```plaintext
config authentication scheme
 edit "ZTNA-Auth-scheme"
 set method basic
 set user-database "WIN2K16-KLHOME-LDAPS"
 next
end
```

**Authentication rule**

The authentication rule defines the proxy sources and destination that require authentication, and what authentication scheme is applied. In this example, active authentication through the basic HTTP prompt is used and applied to all sources.

To configure an authentication rule in the GUI:

2. Set the name to ZTNA-Auth-rule.
3. Set Source Address to all.
4. Set Protocol to HTTP.
5. Enable Authentication Scheme and select ZTNA-Auth-scheme.
6. Click OK.

To configure an authentication rule in the CLI:

```plaintext
config authentication rule
 edit "ZTNA-Auth-rule"
 set srcaddr "all"
 set active-auth-method "ZTNA-Auth-scheme"
 next
end
```

**Applying the user group to a ZTNA rule**

A user or user group must be applied to the ZTNA rule that you need to control user access to. The authenticated user from the authentication scheme and rule must match the user or user group in the ZTNA rule.

In this example, the user group is applied to the two ZTNA rules that were configured in ZTNA HTTPS access proxy example on page 989.

To apply a user group to the ZTNA rules in the GUI:

1. Go to Policy & Objects > ZTNA and select the ZTNA Rules tab.
2. Edit the ZTNA-Deny-malicious rule.
3. Click in the Source field, select the User tab, select the KLHOME-ALLOWED-VPN group, then click Close.
4. Click OK.
5. Edit the proxy-WIN2K16-P1 rule.
6. Click in the Source field, select the User tab, select the KLHOME-ALLOWED-VPN group, then click Close.
7. Click OK.
Policy and Objects

To apply a user group to the ZTNA rules in the CLI:

```
config firewall proxy-policy
 edit 3
 set name "ZTNA-Deny-malicious"
 set proxy access-proxy
 set access-proxy "WIN2K16-P1"
 set srcintf "port1"
 set srcaddr "all"
 set dstaddr "all"
 set ztna-ems-tag "FCTEMS0000109188_Malicious-File-Detected"
 set schedule "always"
 set logtraffic all
 set groups "KLHOME-ALLOWED-VPN"
 next
 edit 2
 set name "proxy-WIN2K16-P1"
 set proxy access-proxy
 set access-proxy "WIN2K16-P1"
 set srcintf "port1"
 set srcaddr "all"
 set dstaddr "all"
 set ztna-ems-tag "FCTEMS0000109188_Low"
 set action accept
 set schedule "always"
 set logtraffic all
 set groups "KLHOME-ALLOWED-VPN"
 next
end
```

Testing remote access to the HTTPS access proxy with user authentication

Scenario 1: access allowed - user radCurtis

1. On a remote Windows PC, open the FortiClient app, select the Zero Trust Telemetry tab, and confirm that you are connected to the EMS server.

2. In a browser, enter the address of the server and the access port.
   If entering an FQDN, make sure that DNS can resolve the address to the IP address of the FortiGate. In this example, `winserver.fgdocs.com` resolves to `192.168.2.86`.

3. When the browser asks for the client certificate to use, select the EMS signed certificate, then click OK.
   The client certificate is verified by the FortiGate to authenticate your identity.

4. When prompted, enter the username `radCurtis` and the password, and click Sign in.
   As `radCurtis` is a member of the `ALLOWED-VPN` group in Active Directory, it will match the `KLHOME-ALLOWED-VPN` user group. After the user authentication passes, the FortiGate performs a posture check on the ZTNA group. When that passes, you are allowed access to the website.

Verifying the results

```
diagnose firewall auth list
10.10.10.20, radCurtis
 type: fw, id: 0, duration: 13, idled: 13
```
Policy and Objects

expire: 587, allow-idle: 600
packets: in 0 out 0, bytes: in 0 out 0
group_id: 8 16777220
group_name: KLHOME-ALLOWED-VPN grp_16777220

# diagnose test application fcnacd 7
ZTNA Cache:
-uid P4F3263AE6E54777A6509A8FCCDF9284: { "tags": [ "all_registered_clients", "Low" ], "user_name": "keith", "client_cert_sn": "6C7433E8E2CEDEB49B6C3C3C03677A3521EA4486", "ems_sn": "FCTEMS0000109188" }

The user_name is the windows log in username learned by FortiClient. It might not match the username used in firewall user authentication.

# execute log display

1: date=2021-04-13 time=00:11:56 eventtime=1618297916023667886 tz="-0700" logid="0000000010" type="traffic" subtype="forward" level="notice" vd="root" srcip=10.10.10.20 srcport=51513 srcintf="port1" srcintfrole="wan" dstcountry="Reserved" srccountry="Reserved" dstip=192.168.20.6 dstport=443 dstintfrole="undefined" sessionid=2319197 srcuuid=2d8e1736-8ec6-51eb-885c-009bdf9c31d7 dstuuid=5445be2e-5d7b-51ea-e2c3-ae6b7855c52f service="HTTPS" wanoptapptype="web-proxy" proto=6 action="accept" policyid=2 policytype="proxy-policy" poluuid="5aba29de-8ec6-51eb-698f-25b59d5bf852" duration=10 user="radCurtis" group="KLHOME-ALLOWED-VPN" authserver="WIN2K16-KLHOME-LDAPS" wanin=104573 rcvdbyte=104573 wanout=2364 lanin=3538 sentbyte=3538 lanout=104445 appcat="unscanned"

Scenario 2: access denied – user radKeith

1. If scenario 1 has just been tested, log in to the FortiGate and deauthenticate the user:
   a. Go to Dashboard > Users & Devices and expand the Firewall Users widget.
   b. Right-click on the user radKeith and select deauthenticate.
2. On a remote Windows PC, open the FortiClient app, select the Zero Trust Telemetry tab, and confirm that you are connected to the EMS server.
3. In a browser, enter the address winserver.fgdocs.com.
4. When the browser asks for the client certificate to use, select the EMS signed certificate, then click OK. This option might not appear if you have already selected the certificate when testing scenario 1.
   The client certificate is verified by the FortiGate to authenticate your identity.
5. When prompted, enter the username radKeith and the password, and click Sign in.
   As radKeith is not a member of the ALLOWED-VPN group in Active Directory, it will not match the KLHOME-ALLOWED-VPN user group. Because no other policies are matched, this user is implicitly denied

Verifying the results

Go to Dashboard > Users & Devices, expand the Firewall Users widget, and confirm that user radKeith is listed, but no applicable user group is returned.

# execute log display

1: date=2021-04-13 time=12:29:21 eventtime=161834216182542277 tz="-0700" logid="0000000013" type="traffic" subtype="forward" level="notice" vd="root" srcip=10.10.10.20 srcport=52571
Policy and Objects

```
srcintf="port1" srcintfrole="wan" dstip=192.168.20.6 dstport=443 dstintf="root" dstintfrole="undefined" srcuuid="5445be2e-5d7b-51ea-e2c3-ae6b7855c52f" srccountry="Reserved" dstcountry="Reserved" sessionid=2394329 proto=6 action="deny" policyid=0 policytype="proxy-policy" user="radKeith" authserver="WIN2K16-KLHOME-LDAPS" service="HTTPS" trandisp="noop" url="https://winserver.fgdocs.com/" agent="Chrome/89.0.4389.114" duration=0 sentbyte=0 rcvdbyte=0 sentpkt=0 rcvdpkt=0 appcat="unscanned" crscore=30 craction=131072 crlevel="high" msg="Traffic denied because of explicit proxy policy"
```

**ZTNA TCP forwarding access proxy example**

In this example, a TCP forwarding access proxy (TFAP) is configured to demonstrate an HTTPS reverse proxy that forwards TCP traffic to the designated resource. The access proxy tunnels TCP traffic between the client and the FortiGate over HTTPS, and forwards the TCP traffic to the protected resource. It verifies user identity, device identity, and trust context, before granting access to the protected source.

By default, encryption is disabled on FortiClient ZTNA rules, as this reduces overhead for end to end protocols that are already secure. For insecure end to end protocols, enable encryption.

RDP (Remote Desktop Protocol) and SMB (Server Message Block) protocol access are configured to one server, and SSH access to the other server.

FortiClient (Windows) must be running 7.0.3 or later to detect SMB.

This example assumes that the FortiGate EMS fabric connector is already successfully connected.

**To configure the ZTNA server for TCP access proxy in the GUI:**

1. Go to Policy & Objects > ZTNA and select the ZTNA Servers tab.
2. Click Create New.
3. Set Name to ZTNA-tcp-server.
4. Configure the network settings:
   a. Set External interface to port3.
   b. Set External IP to 10.0.3.11.
   c. Set External port to 8443.

5. Select the Default certificate. Clients will be presented with this certificate when they connect to the access proxy VIP.

6. Add server mapping:
   a. In the Service/server mapping table, click Create New.
   b. Set Service to TCP Forwarding.
   c. Add a server:
      i. In the Servers table, click Create New.
      ii. Create a new address for the FortiAnalyzer server at 10.88.0.2 and use it as the address.
      iii. Set Port to 22.
      iv. Click OK.
   d. Add another server:
      i. In the Servers table, click Create New.
      ii. Create a new address for the winserver at 10.88.0.1 and use it as the address.
      iii. Set Port to 445, 3389 to correspond to SMB and RDP.
      iv. Click OK.
   e. Click OK.

7. Click OK.

To configure the ZTNA rule to allow traffic to the TCP access proxy in the GUI:

1. Go to Policy & Objects > ZTNA, select the ZTNA Rules tab, and click Create New.
2. Set Name to ZTNA_remote.
3. Set Incoming Interface to port3.
4. Set Source to all.
5. Select the ZTNA server ZTNA-tcp-server.
6. Configure the remaining options as needed.
7. Click OK.

To configure the access proxy VIP in the CLI:

```plaintext
config firewall vip
edit "ZTNA-tcp-server"
 set type access-proxy
 set extip 10.0.3.11
 set extintf "port3"
 set server-type https
 set extport 8443
 set ssl-certificate "Fortinet_SSL"
next
end
```
To configure the server addresses in the CLI:

```bash
config firewall address
edit "FAZ"
 set subnet 10.88.0.2 255.255.255.255
next
edit "winserver"
 set subnet 10.88.0.1 255.255.255.255
next
end
```

To configure access proxy server mappings in the CLI:

```bash
config firewall access-proxy
edit "ZTNA-tcp-server"
 set vip "ZTNA-tcp-server"
 set client-cert enable
 config api-gateway
 edit 1
 set service tcp-forwarding
 config realservers
 edit 1
 set address "FAZ"
 set mappedport 22
 next
 edit 2
 set address "winserver"
 set mappedport 445 3389
 next
 next
end
```

The mapped port (mappedport) restricts the mapping to the specified port or port range. If mappedport is not specified, then any port will be matched.

To configure a ZTNA rule (proxy policy) in the CLI:

```bash
config firewall proxy-policy
edit 0
 set name "ZTNA_remote"
 set proxy access-proxy
 set access-proxy "ZTNA-tcp-server"
 set srcintf "port3"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set utm-status enable
 set ssl-ssh-profile "certificate-inspection"
 set logtraffic all
next
end
```
Test the connection to the access proxy

Before connecting, users must have a ZTNA connection rule in FortiClient.

ZTNA TCP forwarding rules can be provisioned from the EMS server. See Provisioning ZTNA TCP forwarding rules via EMS for details.

To create a ZTNA rule in FortiClient:

1. On the ZTNA Connection Rules tab, click Add Rule.
2. Set Rule Name to SSH-FAZ.
3. Set Destination Host to 10.88.0.2:22. This is the real IP address and port of the server.
4. Set Proxy Gateway to 10.0.3.11:8443. This is the access proxy address and port that are configured on the FortiGate.
5. Enable Encryption. This option determines whether or not the Client to FortiGate access proxy connection is encrypted in HTTPS.
6. Click Create.
7. Create a second rule with the following settings:
   - Rule Name: RDP_winserver
   - Destination Host: 10.88.0.1:3389
   - Proxy Gateway: 10.0.3.11:8443
   - Encryption: Enabled
8. Create a third rule with the following settings:

- **Rule Name**: SMB_winserver
- **Destination Host**: 10.88.0.1:445
- **Proxy Gateway**: 10.0.3.11:8443
- **Encryption**: Enabled

After creating the ZTNA connection rules, you can SSH, RDP, and SMB directly to the server IP address and port.
Policy and Objects

Logs

```
exec log filter category 0
exec log filter field subtype ztna
exec log display

SMB:
1: date=2022-05-19 time=23:32:15 eventtime=1653028335085873990 tz=-0700 logid=0005000024
type=traffic subtype=ztna level=notice vd=root srcip=10.0.3.2 srcport=49823
srcintf=port3 srcintfrole=wan dstcountry=Reserved srccountry=Reserved
dstip=10.88.0.1 dstport=445 dstintf=root dstintfrole=undefined sessionid=27520
service=SMB proto=6 action=accept policyid=2 policytype=proxy-policy
poluuid=1c65cda2-d7d4-51ec-271f-deb3263318ad policyname=ZTNA_remote duration=11
gatewayid=1 vip=ZTNA-tcp-server accessproxy=ZTNA-tcp-server
clientdeviceid=9A016B5A6E914B42AD4168C066EB04CA clientdevicetags=MAC_FCTEMS8822001975_Low/FC
FCTEMS8822001975_all_registered_clients/MAC_FCTEMS8822001975_all_registered_clients
wanin=6018 rcvdbyte=6018 wanout=4541 lanin=6840 sentbyte=6840 lanout=10041
fctuid=9A016B5A6E914B42AD4168C066EB04CA appcat=unscanned

SSH:
2: date=2022-05-19 time=17:59:25 eventtime=1653008365264312800 tz=-0700 logid=0005000024
type=traffic subtype=ztna level=notice vd=root srcip=10.0.3.2 srcport=52233
srcintf=port3 srcintfrole=wan dstcountry=Reserved srccountry=Reserved
dstip=10.88.0.1 dstport=22 dstintf=root dstintfrole=undefined sessionid=18022
service=SSH proto=6 action=accept policyid=2 policytype=proxy-policy
poluuid=1c65cda2-d7d4-51ec-271f-deb3263318ad policyname=ZTNA_remote duration=5
gatewayid=1 vip=ZTNA-tcp-server accessproxy=ZTNA-tcp-server
clientdeviceid=9A016B5A6E914B42AD4168C066EB04CA clientdevicetags=MAC_FCTEMS8822001975_Low/FC
FCTEMS8822001975_all_registered_clients/MAC_FCTEMS8822001975_all_registered_clients
wanin=3693 rcvdbyte=3693 wanout=2817 lanin=4915 sentbyte=4915 lanout=7586
fctuid=9A016B5A6E914B42AD4168C066EB04CA appcat=unscanned

RDP:
4: date=2022-05-19 time=17:56:23 eventtime=1653008183694431712 tz=-0700 logid=0005000024
type=traffic subtype=ztna level=notice vd=root srcip=10.0.3.2 srcport=52213
srcintf=port3 srcintfrole=wan dstcountry=Reserved srccountry=Reserved
dstip=10.88.0.1 dstport=3389 dstintf=root dstintfrole=undefined sessionid=17598
```
**ZTNA TCP forwarding access proxy without encryption example**

TCP forwarding access proxy supports communication between the client and the access proxy without SSL/TLS encryption. The connection still begins with a TLS handshake. The client uses the HTTP 101 response to switch protocols and remove the HTTPS stack. Further end to end communication between the client and server are encapsulated in the specified TCP port, but not encrypted by the access proxy. This improves performance by reducing the overhead of encrypting an already secured underlying protocol, such as RDP, SSH, or FTPS. Users should still enable the encryption option for end to end protocols that are insecure.

In this example, the encryption option to access the web server on HTTP/8080 is disabled to show that traffic for an insecure connection protocol can be viewed in plain text in a protocol analyzer (such as Wireshark). In a real life application, the encryption option should be used for an insecure protocol.

![Diagram of ZTNA TCP forwarding access proxy](image)

**To configure the ZTNA server for TCP access proxy in the GUI:**

1. Go to Policy & Objects > ZTNA and select the ZTNA Servers tab.
2. Click Create New.
3. Set Name to ZTNA-tcp-server.
4. Configure the network settings:
   a. Set External interface to port3.
   b. Set External IP to 10.0.3.11.
   c. Set External port to 8443.
5. Select the Default certificate. Clients will be presented with this certificate when they connect to the access proxy VIP.
6. Add server mapping:
   a. In the Service/server mapping table, click Create New.
   b. Set Service to TCP Forwarding.
Policy and Objects

c. Add a server:
   i. In the Servers table, click Create New.
   ii. Create a new address for the winserver at 10.88.0.1 and use it as the address.
   iii. Click OK.
d. Click OK.

7. Click OK.

To configure the ZTNA rule to allow traffic to the TCP access proxy in the GUI:

1. Go to Policy & Objects > ZTNA and select the ZTNA Rules tab.
2. Click Create New.
3. Set Name to ZTNA-TCP.
4. Set Incoming Interface to port3.
5. Set Source to all.
6. Select the ZTNA server ZTNA-tcp-server.
7. Configure the remaining options as needed.
8. Click OK.

To configure the access proxy VIP in the CLI:

```plaintext
config firewall vip
 edit "ZTNA-tcp-proxy"
 set type access-proxy
 set extip 10.0.3.11
 set extintf "port3"
 set server-type https
 set extport 443
 set ssl-certificate "Fortinet_SSL"
next
end
```

To configure the server addresses in the CLI:

```plaintext
config firewall address
 edit "winserver"
 set subnet 10.88.0.1 255.255.255.255
next
end
```

To configure access proxy server mappings in the CLI:

```plaintext
config firewall access-proxy
 edit "ZTNA-tcp-server"
 set vip "ZTNA-tcp-server"
 set client-cert enable
 config api-gateway
 edit 1
 set service tcp-forwarding
 config realservers
 edit 2
 set address "winserver"
```
The mapped port (mappedport) is not specified so that it will map any ports that are defined in FortiClient’s ZTNA connection rule.

To configure a ZTNA rule (proxy policy in the CLI):

```bash
config firewall proxy-policy
edit 0
 set name "ZTNA-TCP"
 set proxy access-proxy
 set access-proxy "ZTNA-tcp-server"
 set srcintf "port3"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set logtraffic all
next
end
```

Test the connection to the access proxy

Before connecting, users must have a ZTNA connection rule in FortiClient.

---

ZTNA TCP forwarding rules can be provisioned from the EMS server. See Provisioning ZTNA TCP forwarding rules via EMS for details.

---

To create a ZTNA rule in FortiOS:

1. Go to the ZTNA Connection Rules tab and click Add Rule.
2. Set Rule Name to Webserver HTTP.
3. Set Destination Host to 10.88.0.1:8080. This is the real IP address and port of the server.
4. Set Proxy Gateway to 10.0.3.11:443. This is the access proxy address and port that are configured on the FortiGate.
5. Disable Encryption. This option determines whether or not the Client to FortiGate access proxy connection is encrypted in HTTPS.
6. Click Create.

After creating the ZTNA connection rule, open a browser and access the web page at http://10.88.0.1:8080.

Logs and debugs

1. The forward traffic log will show a log similar to this:

27: date=2021-07-13 time=13:05:00 eventtime=1626206700290129558 tz=-0700 logid=00000000024 type=traffic subtype=forward level=notice vd=root srcip=10.0.3.2 srcport=61409 srcintf="port3" srcintfrole="wan" dstcountry="Reserved" srccountry="Reserved" dstip=10.88.0.1 dstport=8080 dstintf="root" dstintfrole="undefined" sessionid=46959 service="tcp/8080" proto=6 action="accept" policyid=3 policytype="proxy-policy" poluuid="fe0e1ae8-bdf9-51eb-b86f-c5e2adb934b3" policynname="ZTNA-TCP" duration=114 wanin=38471 rcvddbyte=38471 wanout=775 lanin=2450 sentbyte=2450 lanout=40643 appcat="unscanned"

2. Use the following WAD debugs to can capture the details about the connection as seen by the FortiGate WAD daemon. Notice that the HTTP request has tls=0, indicating that the proxy connection between the client and access proxy is not encrypted.
Policy and Objects

# diagnose wad debug enable category all
# diagnose wad debug enable level verbose
# diagnose debug enable

[I][p:224][s:46086][r:16777237] wad_dump_http_request 2542
hreq=0x7f20bdaf5950 Received request from client: 10.0.3.2:62067

GET /tcp?address=10.88.0.1&port=8080&tls=0 HTTP/1.1
Host: 10.0.3.11:443
User-Agent: Forticlient
Accept: */*
Cookie: Authorization: Basic ...

After reviewing the details, disable or reset the debugs:

# diagnose debug reset

3. On the client PC, perform a packet capture to review the traffic flow between the client (10.0.3.2) and the access proxy (10.0.3.11) in detail. While the traffic is encapsulated in port 443, the underlying HTTP/8080 requests and traffic are decoded as clear text.

Packet capture of traffic between 10.0.3.2:60824<->10.0.3.11:443:

Traffic stream:


ZTNA proxy access with SAML authentication example

In this example, an HTTPS access proxy is configured, and SAML authentication is applied to authenticate the client. The FortiGate acts as the SAML SP and a SAML authenticator serves as the IdP. In addition to verifying the user and device identity with the client certificate, the user is also authorized based on user credentials to establish a trust context before granting access to the protected resource.

This example assumes that the FortiGate EMS fabric connector is already successfully connected.
To configure the access proxy VIP:

```plaintext
config firewall vip
 edit "ZTNA_server01"
 set type access-proxy
 set extip 172.18.62.32
 set extintf "any"
 set server-type https
 set extport 7831
 set ssl-certificate "Fortinet_CA_SSL"
 next
end
```

To configure access proxy server mappings:

```plaintext
config firewall access-proxy
 edit "ZTNA_server01"
 set vip "ZTNA_server01"
 set client-cert enable
 config api-gateway
 edit 1
 set service https
 config realservers
 edit 1
 set ip 172.18.62.25
 set port 443
 next
 end
 next
end
```

To configure a SAML server:

```plaintext
config user saml
 edit "saml_ztna"
 set cert "Fortinet_CA_SSL"
 set entity-id "https://fgt9.myqalab.local:7831/samlap"
 set idp-entity-id "http://MYQALAB.LOCAL/adfs/services/trust"
 set idp-single-sign-on-url "https://myqalab.local/adfs/ls"
 set idp-single-sign-out-url "https://myqalab.local/adfs/is"
 set idp-cert "REMOTE_Cert_4"
 set digest-method sha256
 set adfs-claim enable
 set user-claim-type upn
 set group-claim-type group-sid
 next
end
```
Policy and Objects

To map the SAML server into an access proxy configuration:

```plaintext
cfg firewall access-proxy
 edit "ZTNA_server01"
 config api-gateway
 edit 3
 set service samlsp
 set saml-server "saml_ztna"
 next
 next
 next
end
```

To configure an LDAP server and an LDAP server group to verify user groups:

```plaintext
cfg user ldap
 edit "ldap-10.1.100.198"
 set server "10.1.100.198"
 set cnid "cn"
 set dn "dc=myqalab,dc=local"
 set type regular
 set username "cn=fosqa1,cn=users,dc=myqalab,dc=local"
 set password **********
 set group-search-base "dc=myqalab,dc=local"
 next
end

cfg user group
 edit "ldap-group-saml"
 set member "ldap-10.1.100.198"
 next
end
```

To configure the authentication rule and scheme to match the new SAML server:

```plaintext
cfg authentication rule
 edit "saml_ztna"
 set srcintf "port10"
 set srcaddr "all"
 set ip-based disable
 set active-auth-method "saml_ztna"
 set web-auth-cookie enable
 next
end

cfg authentication scheme
 edit "saml_ztna"
 set method saml
 set saml-server "saml_ztna"
 set saml-timeout 30
 set user-database "ldap-10.1.100.198"
 next
end
```
To enable user group authentication in an access-proxy type firewall proxy-policy:

```bash
config firewall proxy-policy
edit 6
 set name "ZTNA_remote"
 set proxy access-proxy
 set access-proxy "ZTNA_server01"
 set srcintf "any"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set groups "ldap-group-saml"
 set utm-status enable
 set ssl-ssh-profile "certificate-inspection"
next
end
```

**Testing the connection**

**To test the connection:**

1. On a client PC, try to access the webpage through the HTTPS access proxy. For example, go to http://172.18.62.32:7831 in a browser.
2. The client PC is prompted for a client certificate. After the certificate is validated, you are redirected to a SAML login portal.

![SAML login portal](image)

3. Enter your user credentials. The SAML server authenticates and sends a SAML assertion response message to the FortiGate.
4. The FortiGate queries the LDAP server for the user group, and then verifies the user group against the groups or groups defined in the proxy policy.
5. The user is proxied to the webpage on the real web server.
Logs and debugs

Use the following command to check the user information after the user has been authenticated:

```
diagnose wad user list
ID: 7, VDOM: vdom1, IPv4: 10.1.100.143
 user name : test1@MYQALAB.local
 worker : 0
 duration : 124
 auth_type : Session
 auth_method : SAML
 pol_id : 6
 g_id : 13
 user_based : 0
 expire : no
LAN:
 bytes_in=25953 bytes_out=14158
WAN:
 bytes_in=8828 bytes_out=6830
```

Event log:

```
1: date=2021-03-24 time=19:02:21 eventtime=161667742066893182 tz="-0700" logid="0102043025"
type="event" subtype="user" level="notice" vd="vdom1" logdesc="Explicit proxy authentication successful" srcip=10.1.100.143 dstip=172.18.62.32 authid="saml" user="test1@MYQALAB.local" group="N/A" authproto="HTTP(10.1.100.143)" action="authentication" status="success" reason="Authentication succeeded" msg="User test1@MYQALAB.local succeeded in authentication"
```

Traffic log:

```
1: date=2021-03-24 time=19:09:06 eventtime=1616668146541253587 tz="-0700" logid="0000000010"
type="traffic" subtype="forward" level="notice" vd="vdom1" srcip=10.1.100.143 srcport=58084
srcintf="port10" srcintfrole="undefined" dstcountry="Reserved" srccountry="Reserved"
dstip=172.18.62.25 dstport=443 dstintf="vdom1" dstintfrole="undefined" sessionid=8028
service="HTTPS" wanoptapptype="web-proxy" proto=6 action="accept" policyid=6
policytype="proxy-policy" poluuid="8dce7e62-8d0b-51eb-82bf-bfbee5b989f2" duration=8
user="test1@MYQALAB.local" group="ldap-group-saml" authserver="ldap-10.1.100.198"
wanin=10268 rcvdbyte=10268 wanout=6723 lanin=7873 sentbyte=7873 lanout=10555
appcat="unscanned"
```

ZTNA IP MAC based access control example

In this example, firewall policies are configured that use ZTNA tags to control access between on-net devices and an internal web server. This mode does not require the use of the access proxy, and only uses ZTNA tags for access control. Traffic is passed when the FortiClient endpoint is tagged as Low risk only. Traffic is denied when the FortiClient endpoint is tagged with Malicious-File-Detected.
This example assumes that the FortiGate EMS fabric connector is already successfully connected.

To configure ZTNA in the GUI, go to System > Feature Visibility and enable Zero Trust Network Access.

To configure a Zero Trust tagging rule on the FortiClient EMS:

1. Log in to the FortiClient EMS.
2. Go to Zero Trust Tags > Zero Trust Tagging Rules, and click Add.
3. In the Name field, enter Malicious-File-Detected.
4. In the Tag Endpoint As dropdown list, select Malicious-File-Detected.
   EMS uses this tag to dynamically group together endpoints that satisfy the rule, as well as any other rules that are configured to use this tag.
5. Click Add Rule then configure the rule:
   a. For OS, select Windows.
   b. From the Rule Type dropdown list, select File and click the + button.
   c. Enter a file name, such as C:\virus.txt.
   d. Click Save.
6. Click Save.

To configure a firewall policy with IP/MAC based access control to deny traffic in the GUI:

1. Go to Policy & Objects > Firewall Policy and click Create New.
2. Set Name to block-internal-malicious-access.
3. Set Incoming Interface to default.35.
4. Set Outgoing Interface to port3.
5. Set Source to all.
6. Set IP/MAC Based Access Control to the Malicious-File-Detected tag.
7. Set Destination to all.
8. Set Service to ALL.
9. Set Action to DENY.
10. Enable Log Violation Traffic.
11. Configuring the remaining settings as needed.
12. Click OK.

To configure a firewall policy with IP/MAC based access control to allow access in the GUI:

1. Go to Policy & Objects > Firewall Policy and click Create New.
2. Set Name to allow-internal-access.
3. Set Incoming Interface to default.35.
4. Set Outgoing Interface to port3.
5. Set Source to all.
6. Set IP/MAC Based Access Control to the Low tag.
7. Set Destination to all.
8. Set Service to ALL.
9. Set Action to ACCEPT.
10. Enable Log Allowed Traffic and set it to All Sessions.
11. Configuring the remaining settings as needed.
12. Click OK.

To configure firewall policies with IP/MAC based access control to block and allow access in the CLI:

cfg firewall policy
  edit 29
Policy and Objects

set name "block-internal-malicious-access"
set srcintf "default.35"
set dstintf "port3"
set srcaddr "all"
set dstaddr "all"
set ztna-status enable
set ztna-ems-tag "FCTEMS0000109188_Malicious-File-Detected"
set schedule "always"
set service "ALL"
set logtraffic all
next

edit 30
set name "allow-internal-access"
set srcintf "default.35"
set dstintf "port3"
set srcaddr "all"
set dstaddr "all"
set ztna-status enable
set ztna-ems-tag "FCTEMS0000109188_Low"
set action accept
set schedule "always"
set service "ALL"
set inspection-mode proxy
set logtraffic all
set nat enable
next
end

Testing the access to the web server from the on-net client endpoint

Access allowed:

1. On the remote Windows PC, open FortiClient.
2. On the Zero Trust Telemetry tab, make sure that you are connected to the EMS server.
3. Open a browser and enter the address of the server.
4. The FortiGate matches your security posture by verifying your ZTNA tag and matching the corresponding allow-internal-access firewall policy, and you are allowed access to the web server.
Access denied:

1. On the remote Windows PC, trigger the Zero Trust Tagging Rule by creating the file in C:\virus.txt.
2. Open a browser and enter the address of the server.
3. FortiGate checks your security posture. Because EMS has tagged the PC with the *Malicious-File-Detected* tag, it matches the *block-internal-malicious-access* firewall policy.
4. You are denied access to the web server.

Logs and debugs

Access allowed:

```
diagnose endpoint record list
Record #1:
 IP Address = 192.168.40.8
 MAC Address = 24:b6:fd:fa:54:c1
 MAC list = 24:b6:fd:fa:54:c1;54:15:cd:3f:80;9c:b7:0d:2d:5c:d1;
 VDOM = root (0)
 EMS serial number: FCTEMS0000109188
 Client cert SN: 563DA313367608678A3633E93C574F6F8BCB4A95
 Public IP address: 192.157.105.35
 Quarantined: no
 Online status: online
 Registration status: registered
 On-net status: on-net
 Gateway Interface: default.35
 FortiClient version: 7.0.0
 AVDB version: 0.0
 FortiClient app signature version: 0.0
 FortiClient vulnerability scan engine version: 2.30
 FortiClient UID: F4F3263AEBE54777A6509A8FCDDF9284
 ...
 Number of Routes: (1)
 Gateway Route #0:
 - Interface:default.35, VFID:0, SN: FGVM04TM21000144

online records: 1; offline records: 0; quarantined records: 0
```

```
diagnose endpoint lls-comm send ztna find-ip-vdom 192.168.40.8 root
UID: F4F3263AEBE54777A6509A8FCDDF9284
 status code:ok
```
Domain:
User: keithli
Cert SN: 563DA313367608678A3633E93E93C574F6F8BCB4A95
EMS SN: FCTEMS0000109188
Routes(1):
- route[0]: IP=192.168.40.8, VDom=root
Tags(2):
- tag[0]: name=all_registered_clients
- tag[1]: name=Low

# diagnose firewall dynamic list
List all dynamic addresses:
FCTEMS0000109188_all_registered_clients: ID(51)
  ADDR(172.17.194.209)
  ADDR(192.168.40.8)

FCTEMS0000109188_Low: ID(78)
  ADDR(172.17.194.209)
  ADDR(192.168.40.8)

FCTEMS0000109188_Malicious-File-Detected: ID(190)

# diagnose test application fcncad 7
ZTNA Cache:
  -uid F4F3263AEB54777A6509A8FCCDF9284: { "tags": [ "all_registered_clients", "Low" ], "user_name": "keithli", "client_cert_sn": "563DA313367608678A3633E93E93C574F6F8BCB4A95", "gateway_route_list": [ { "gateway_info": { "fgt_sn": "FGVM04TM21000144", "interface": "default.35", "vdom": "root" }, "route_info": [ { "ip": "192.168.40.8", "mac": "24-b6:fa-54-c1", "route_type": "direct" } ] } ], "ems_sn": "FCTEMS0000109188" }

# execute log display
49 logs found.
10 logs returned.
3.5% of logs has been searched.
38: date=2021-03-28 time=23:07:38 eventtime=1616998058790134389 tz="-0700"
logid="0000000013" type="traffic" subtype="forward" level="notice" vd="root"
srcip=192.168.40.8 srcname="Fortinet-KeithL" srcport=51056 srcintf="default.35"
srcintfrrole="undefined" dstip=192.168.20.6 dstport=443 dstintf="port3"
dstintfrrole="undefined" srcuuid="5445be2e-5d7b-51ea-e2c3-ae6b7855c52f" dstuuid="5445be2e-5d7b-51ea-e2c3-ae6b7855c52f" srccountry="Reserved" dstcountry="Reserved" sessionid=161585 proto=6 action="close" policyid=30 policytype="policy" poluuid="8f6ea492-9034-51eb-f197-c00d803b7489" policymainame="allow-internal-access" service="HTTPS" trandisp="snat"
transip=192.168.20.5 transport=51056 duration=2 sentbyte=3374 rcvbyte=107732 sentpkt=50 rcvdpkt=80 fctuuid="F4F3263AEB54777A6509A8FCCDF9284" unauthuser="keithli"
unauthusersource="forticlient" appcat="unscanned" mastersrcmac="24:b6:fd:fa-54:1c"
srcmac="24:b6:fd:fa-54:1c" srccountry="Reserved" dstosname="Windows" dstserver=0
dstmac="52:54:00:e3:4c:1a" dstmac="52:54:00:e3:4c:1a" dstserver=0

Access denied:

# diagnose endpoint lls-comm send ztna find-ip-vdom 192.168.40.8 root
UID: F4F3263AEB54777A6509A8FCCDF9284
  status code: ok
  Domain:
User: keithli
Cert SN: 563DA313367608678A3633E93C574F6F8BCB4A95
EMS SN: FCTEMS0000109188
Routes (1):
  - route[0]: IP=192.168.40.8, VDom=root

Tags (3):
  - tag[0]: name=Malicious-File-Detected
  - tag[1]: name=all_registered_clients
  - tag[2]: name=Low

# diagnose firewall dynamic list
List all dynamic addresses:
FCTEMS0000109188_all_registered_clients: ID(51)
  ADDR(172.17.194.209)
  ADDR(192.168.40.8)
...
FCTEMS0000109188_Low: ID(78)
  ADDR(172.17.194.209)
  ADDR(192.168.40.8)
...
FCTEMS0000109188_Malicious-File-Detected: ID(190)
  ADDR(172.17.194.209)
  ADDR(192.168.40.8)
...

# diagnose test application fcnacd 7
ZTNA Cache:
-uid F4F3263AEBE54777A6509A8FCDDF9284: { "user_name": "keithli", "client_cert_sn": "563DA313367608678A3633E93C574F6F8BCB4A95", "gateway_route_list": [ { "gateway_info": { "fgt_sn": "FGVM04TM21000144", "interface": "default.35", "vdom": "root" }, "route_info": [ { "ip": "192.168.40.8", "mac": "24-b6-fa-54-c1", "route_type": "direct" } ] } ], "ems_sn": "FCTEMS0000109188", "tags": [ "Malicious-File-Detected", "all_registered_clients", "Low" ] }

# execute log display
49 logs found.
10 logs returned.
3.5% of logs has been searched.

11: date=2021-03-28 time=23:14:41 eventtime=1616998481409744928 tz="-0700"
logid="0000000013" type="traffic" subtype="forward" level="notice" vd="root"
srcip=192.168.40.8 srcname="Fortinet-KeithL" srcport=51140 srcintf="default.35"
dstip=192.168.20.6 dstport=443 dstintf="port3"

IPTV6 examples

IPv6 can be configured in ZTNA in several scenarios:

- IPv6 Client — IPv6 Access Proxy — IPv6 Server
- IPv6 Client — IPv6 Access Proxy — IPv4 Server
Policy and Objects

- IPv4 Client — IPv4 Access Proxy — IPv6 Server

These examples show the basic configuration for each scenario. It is assumed that the EMS fabric connector is already successfully connected.

Example 1: IPv6 Client — IPv6 Access Proxy — IPv6 Server

To configure the FortiGate:

1. Configure the IPv6 access proxy VIP:

   ```
 config firewall vip6
 edit "zv6"
 set type access-proxy
 set server-type https
 set extport 6443
 set ssl-certificate "cert"
 next
 end
   ```

2. Configure a virtual host:

   ```
 config firewall access-proxy-virtual-host
 edit "vhost_ipv6"
 set ssl-certificate "cert"
 set host "qa6.test.com"
 next
 end
   ```

   The client uses this address to connect to the access proxy.

3. Configure an IPv6 access proxy and IPv6 api-gateway, apply the VIP6 and virtual host to it, and assign an IPv6 address to the realserver:

   ```
 config firewall access-proxy6
 edit "zs6"
 set vip "zv6"
   ```
To test the configuration:

3. After device certificate verification, the browser will open up the webpage on the IPv6 real server.
4. In the Forward Traffic Log, the following log is available:
Example 2: IPv6 Client — IPv6 Access Proxy — IPv4 Server

To configure the FortiGate:

1. Configure the IPv6 access proxy VIP:

   ```fortigate
 config firewall vip6
 edit "zv6"
 set type access-proxy
 set server-type https
 set extport 6443
 set ssl-certificate "cert"
 next
 end
   ```

2. Configure a virtual host:

   ```fortigate
 config firewall access-proxy-virtual-host
 edit "vhost_ipv6"
 set ssl-certificate "cert"
 set host "qa6.test.com"
 next
 end
   ```

   The client uses this address to connect to the access proxy.

3. Configure an IPv6 access proxy and IPv6 api-gateway, apply the VIP6 and virtual host to it, and assign an IPv4 address to the realserver:

   ```fortigate
 config firewall access-proxy6
 edit "zs6"
 set vip "zv6"
 config api-gateway6
 edit 1
 set virtual-host "vhost_ipv6"
 config realservers
 edit 1
 set ip 172.16.200.209
 next
 next
 next
 end
 end
   ```

4. Apply the IPv6 access proxy to a proxy policy:
To test the configuration:

3. After device certificate verification, the browser will open up the webpage on the IPv4 real server.
4. In the Forward Traffic Log, the following log is available:

```
2: date=2021-06-25 time=13:46:54 eventtime=1624654014129553521 tz="-0700" logid="00000000024" type="traffic" subtype="forward" level="notice" vd="root" srcip=2000:10:1:100::214 srcport=60530 srcintf="port2" srcintfrole="undefined" dstcountry="Reserved" srccountry="Reserved" dstip=172.16.200.209 dstport=443 dstintf="root" dstintfrole="undefined" sessionid=219 service="HTTPS" proto=6 action="accept" policyid=1 policytype="proxy-policy" poluuid="7afdac8c-d5db-51eb-dfc6-67bb8e4bdfc" polycategory="ztna_rule" duration=5 wanin=2028 rcvdbyte=2028 wanout=1321 lanin=1236 sentbyte=1236 lanout=947 appcat="unscanned" utmaaction="allow" countweb=1 utmref=65443-14
```
Example 3: IPv4 Client — IPv4 Access Proxy — IPv6 Server

To configure the FortiGate:

1. Configure the IPv4 access proxy VIP:

   ```
 config firewall vip
 edit "zv4"
 set type access-proxy
 set extip 172.18.62.66
 set extintf "any"
 set server-type https
 set extport 4443
 set ssl-certificate "cert"
 next
 end
   ```

2. Configure a virtual host:

   ```
 config firewall access-proxy-virtual-host
 edit "vhost_ipv4"
 set ssl-certificate "cert"
 set host "qa.test.com"
 next
 end
   ```

   The client uses this address to connect to the access proxy.

3. Configure an IPv4 access proxy and IPv6 api-gateway, apply the VIP and virtual host to it, and assign an IPv6 address to the realserver:

   ```
 config firewall access-proxy
 edit "zs4"
 set vip "zv4"
 config api-gateway6
 edit 1
 set virtual-host "vhost_ipv4"
 config realservers
 edit 1
 next
 next
 next
 end
 end
   ```

4. Apply the IPv4 access proxy to a proxy policy:

   ```
 config firewall proxy-policy
 edit 1
 set name "ztnta_rule"
 set proxy access-proxy
 set access-proxy "zs4"
 set srcintf "port2"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
   ```
set logtraffic all
set srcaddr6 "all"
set dstaddr6 "all"
set utm-status enable
set ssl-ssh-profile "custom-deep-inspection"
set webfilter-profile "monitor-all"
next
end

5. Apply the IPv4 VIP to a firewall policy:

config firewall policy
edit 4
set name "ZTNA"
set srcintf "port2"
set dstintf "any"
set action accept
set srcaddr "all"
set dstaddr "zv4"
set schedule "always"
set service "ALL"
set inspection-mode proxy
set logtraffic all
set nat enable
next
end

To test the configuration:

1. On an IPv4 client, ensure that the address qa6.test.com resolves to the IPv4 VIP address of 172.18.62.66.
3. After device certificate verification, the browser will open up the webpage on the IPv6 real server.
4. In the Forward Traffic Log, the following log is available:

```
1: date=2021-06-25 time=13:52:30 eventtime=1624654350689576485 tz="-0700"
logid="0000000024" type="traffic" subtype="forward" level="notice" vd="root"
srcip=10.1.100.206 srcport=53492 srcintf="port2" srcintfrole="undefined"
dstcountry="Reserved" srccountry="Reserved" dstip=2000:172:16:200::209 dstport=443
dstintf="root" dstintfrole="undefined" sessionid=726 service="HTTPS" proto=6
action="accept" policyid=1 policytype="proxy-policy" poluuid="7afdac8c-d5db-51eb-dfc6-67bb86e4bdcf" policymname="ztna_rule" duration=0 wanin=1901 rcvbyte=1901 wanout=736
lanin=569 sentbyte=569 lanout=3040 appcat="unscanned" utmaction="allow" countweb=1
utmref=65443-28
```

ZTNA SSH access proxy example

ZTNA can be configured with SSH access proxy to provide a seamless SSH connection to the server.

Advantages of using an SSH access proxy instead of a TCP forwarding access proxy include:

- Establishing device trust context with user identity and device identity checks.
- Applying SSH deep inspection to the traffic through the SSH related profile.
- Performing optional SSH host-key validation of the server.
• Using one-time user authentication to authenticate the ZTNA SSH access proxy connection and the SSH server connection.

Perform SSH host-key validation of the server

To act as a reverse proxy for the SSH server, the FortiGate must perform SSH host-key validation to verify the identity of the SSH server. The FortiGate does this by storing the public key of the SSH server in its SSH host-key configurations. When a connection is made to the SSH server, if the public key matches one that is used by the server, then the connection is established. If there is no match, then the connection fails.

One-time user authentication

SSH access proxy allows user authentication to occur between the client and the access proxy, while using the same user credentials to authenticate with the SSH server. The following illustrates how this works:

1. The remote endpoint registers to FortiClient EMS and receives the client certificate.
2. The remote endpoint tries to connect to the SSH access proxy. It must use the same username that is later used for access proxy authentication.
3. The FortiGate challenges the endpoint with device identity validation.
4. The remote endpoint provides the EMS issued certificate for device identification.
5. The FortiGate challenges the endpoint with user authentication. For example, this could be done with basic or SAML authentication.
6. The users enters their credentials on the remote endpoint.
7. The FortiGate authenticates the user and collects the username.
8. Using the FortiGate's CA or the customer's CA certificate, the FortiGate signs an SSH certificate and embeds the username in its principal.
9. The FortiGate attempts to connect to the SSH server using the certificate authentication.
10. The SSH server verifies the authenticity of the certificate, and matches the username principal against its authorized_keys file.
11. If the username matches a record in the file, then the SSH connection is established. If no match is found, then the SSH connection fails.
**Example**

In this example, an SSH connection is established using SSH access proxy with host-key validation and one-time authentication.

- The SSH server is a Linux based server that uses sshd to provide remote access.
- For SSH host-key validation, the public key of the SSH server has been imported into the FortiGate.
- For one-time authentication using certificate authentication:
  - The SSH server must allow certificate authentication.
  - The SSH server must have the proper entry in its authorized_keys file that contains the user principal and the FortiGate CA's public key.
  - The entry is present in the user directory corresponding to the user that is trying to log in.

**To pre-configure the Linux SSH server:**

1. Collect the public key used for host-key validation:
   a. Locate the public key files in the SSH server:

   ```bash
 $ ls -la /etc/ssh/*.pub
 -rw-r--r-- 1 root root 186 Mar 29 2020 /etc/ssh/ssh_host_ecdsa_key.pub
 -rw-r--r-- 1 root root 106 Mar 29 2020 /etc/ssh/ssh_host_ed25519_key.pub
 -rw-r--r-- 1 root 406 Mar 29 2020 /etc/ssh/ssh_host_rsa_key.pub
 ``

 b. Choose the publish key file based on the hash type (in this case, ECDSA), and show it's content:

   ```bash
   $ cat /etc/ssh/ssh_host_ecdsa_key.pub
   ecdsa-sha2-nistp256 AAAAE2*********IpEik=
   ```

 This key will be used when configuring the FortiGate.

2. Retrieve the FortiGate CA’s public key from the FortiGate:

   ```bash
   # show full firewall ssh local-ca Fortinet_SSH_CA
   config firewall ssh local-ca
   edit "Fortinet_SSH_CA"
   set password ENC <hidden password>
   set private-key "------BEGIN OPENSSH PRIVATE KEY------
   <hidden private key>
   ------END OPENSSH PRIVATE KEY------"
   set public-key "ssh-rsa AAAAB3*********JLX1xj3"
   set source built-in
   next
   end
   ``

3. On the Linux server, enable the SSH service to use the authorized_keys file:
   a. Locate and edit the `/etc/ssh/sshd_config` file.
   b. Ensure that the `AuthorizedKeysFile` line is uncommented, for example:

   ```bash
 AuthorizedKeysFile .ssh/authorized_keys .ssh/authorized_keys2
   ```

4. Allow remote SSH log in with certificate authentication and principal name:
   a. Log in to the SSH server using the account that will be granted remote SSH access (in this example: `radCurtis`):
   b. Locate the account’s authorized_keys file in the `~/.ssh` directory:

   ```bash
 $ ls -la ~/.ssh
 total 12
   ```
c. If the directory and file do not exist, create the directory:

```
$ mkdir ~/.ssh
```

d. Create an entry containing the following keywords and add them to the authorized_keys file:

```
echo 'cert-authority,principals="radCurtis" ssh-rsa AAAAB3**********JLXlxj3' >> authorized_keys
```

Where:

- `cert-authority` - indicates that this entry is used in certificate authentication by validating the certificate using the public key provided in this entry.
- `principals="radCurtis"` - indicates the user that must match with the username embedded in the SSH certificate.
- `ssh-rsa AAAAB3**********JLXlxj3` - indicates the FortiGate CA’s public key that is used to validate the SSH certificate.

5. Restart the sshd service:

```
$ sudo systemctl stop sshd
$ sudo systemctl start sshd
```

The SSH server can now accept SSH connection from `radCurtis@<server IP>`, where the SSH certificate used by the FortiGate to log in contains `radCurtis` embedded as a principal.

When a user connects from a SSH client using `<username>@<server IP>`, sshd will locate the `authorized_keys` file in the directory `/home/<username>/.ssh/authorized_keys`. If the `authorized_keys` is not in that directory, authentication will fail on the SSH server side.

If you suspect that authentication is failing on the SSH server, use the following commands to manually start sshd in debug mode to troubleshoot:

```
$ sudo systemctl stop sshd
$ /usr/sbin/sshd -ddd -p 22
```

To configure the FortiGate:

1. Configure a new VIP to allow access to the SSH access proxy over 192.168.2.87:443:

```
config firewall vip
 edit "ZTNA_SSH"
 set type access-proxy
 set extip 192.168.2.87
 set extintf "any"
 set server-type https
 set export 443
 set ssl-certificate "Fortinet_CA_SSL"
 next
end
```

2. Configure the address object for the SSH server:
Policy and Objects

3. Configure the host-key that will be used to authenticate the SSH server. The public-key was retrieved when pre-configure the Linux SSH server (step 1b).

```config firewall address
edit "SSH_server"
 set subnet 192.168.20.1 255.255.255.255
next
end
```

4. Configure the access proxy SSH client certificate:
A CA certificate is assigned to sign the SSH certificate that will be used in the SSH authentication. The SSH certificate will have the username embedded in the certificate principal.

```config firewall ssh host-key
edit "ed25519"
 set type ECDSA
 set usage access-proxy
 set public-key "AAAAE2**********IpEk="
next
end
```

5. Configure the access-proxy server setting:

```config firewall access-proxy
edit "ZTNA_SSH"
 set vip "ZTNA_SSH"
 set client-cert enable
 config api-gateway
 edit 1
 set url-map "tcp"
 set service tcp-forwarding
 config realservers
 edit 1
 set address "SSH_server"
 set type ssh
 set ssh-client-cert "ssh-access-proxy"
 set ssh-host-key-validation enable
 set ssh-host-key "ed25519"
next
next
next
end
```

6. Configure the RADIUS setting, user setting, and user group to apply user authentication to the access proxy connection using RADIUS:

```config user radius
edit "Win2k16-Radius"
 set server "192.168.20.6"
```
set secret ENC <secret>
next
d
c
config user local
dt edit "radCurtis"
set type radius
set radius-server "Win2k16-RADIUS"
next
d
c
config user group
dt edit "radius_group"
set member "radCurtis" "Win2k16-RADIUS"
next
d
7. **Create the authentication scheme and rule to perform the authentication:**

config authentication scheme
dt edit "basic_auth"
set method basic
set user-database "Win2k16-RADIUS"
next
d
c
config authentication rule
dt edit "ztna-basic"
set srcaddr "all"
set ip-based disable
set active-auth-method "basic_auth"
set web-auth-cookie enable
next
d
8. **Configure the ZTNA rule to allow traffic to the SSH server, and apply user authentication, posture check, and a security profile where necessary:**

config firewall proxy-policy
dt edit 5
dt set name "SSH-proxy"
dt set proxy access-proxy
set access-proxy "ZTNA_SSH"
dt set srcintf "port1"
dt set srcaddr "all"
dt set dstaddr "all"
dt set ztma-ems-tag "FC7EMS8821001056_emsl38_av_tag"
dt set action accept
set schedule "always"
set groups "radius_group"
dt set utm-status enable
set ssl-ssh-profile "custom-deep-inspection"
next
d
To check the results:

1. On the remote client, open FortiClient, go to the Zero Trust Telemetry tab, and make sure that it is connected to the EMS server.
2. Go to the ZTNA Connection Rules tab and click Add Rule.
3. Configure the rule, then click Create:

<table>
<thead>
<tr>
<th><strong>Rule Name</strong></th>
<th>SSH-Linux</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Destination Host</strong></td>
<td>192.168.20.1:22</td>
</tr>
<tr>
<td><strong>Proxy Gateway</strong></td>
<td>192.168.2.87:443</td>
</tr>
<tr>
<td><strong>Mode</strong></td>
<td>Transparent</td>
</tr>
<tr>
<td><strong>Encryption</strong></td>
<td>Disabled (recommended)</td>
</tr>
</tbody>
</table>

When Encryption is disabled, the connection between the client and FortiGate access proxy is not encapsulated in HTTPS after the client and FortiGate connection is established. This allows for less overhead, because SSH is already a secure connection. This option is available in FortiClient 7.0.1 and later releases.

4. Open an SSH client, such as PuTTY, and make an SSH connection to radCurtis@192.168.20.1 on port 22.

5. After device authentication is performed and passes in the background, FortiClient prompts the user to sign in. Enter the username, radCurtis, and password, then click Sign in.

After successful user authentication, the SSH connection is established without an additional log in.

6. On the FortiGate, check the logged in user:
   a. Go to Dashboard > Users & Devices and expand the Firewall Users widget.
   b. Check the WAD proxy user list:

```
diagnose wad user list
ID: 2, VDOM: root, IPv4: 10.10.10.25
user name : radCurtis
worker : 0
duration : 614
auth_type : Session
auth_method: Basic
pol_id : 5
```
7. The successful connection is logged in the forward traffic logs after the SSH connection has disconnected:

```bash
execute log display
25 logs found.
10 logs returned.
```

```
l: date=2021-08-11 time=17:59:56 eventtime=162872999610159120 tz="-0700" logid="0000000024" type="traffic" subtype="forward" level="notice" vd="root" srcip=10.10.10.25 srcport=50627 srcintf="port1" srcintfrole="wan" dstcountry="Reserved" srccountry="Reserved" dstip=192.168.20.1 dstport=22 dstintfrole="undefined" sessionid=1926338 srcuuid="5445be2e-5d7b-51ea-e2c3-ae6b7855c52f" service="SSH" proto=6 action="accept" policyid=5 policytype="proxy-policy" policyuid="16fb5550-e976-51eb-e76c-d45e96da5dc" policynname="SSH-proxy" duration=67 user="radCurtis" group="radius_group" authserver="Win2k16-RADIUS" wanin=3681 wanout=3132 lanin=3403 sentbyte=3403 lanout=5699 appcat="unscanned"
```

**ZTNA access proxy with SAML and MFA using FortiAuthenticator example**

ZTNA access proxy supports device verification using device certificates that are issued by EMS. To authenticate users, administrators can use either basic or SAML authentication. An advantage of SAML authentication is that multi-factor authentication (MFA) can be provided by the SAML Identity Provider (IdP).

In these examples, a FortiAuthenticator is used as the IdP, and MFA is applied to user authentication for remote users accessing the web, RDP, and SSH resources over the ZTNA access proxy. It is assumed that the FortiGate EMS fabric connector has already been successfully connected.

- Configuring the FortiAuthenticator on page 1038
- Configuring the FortiGate SAML settings on page 1040
- Example 1 - Applying SAML and MFA to ZTNA HTTPS access proxy on page 1043
- Example 2 - Applying SAML and MFA to a ZTNA TCP forwarding access proxy for RDP connections on page 1045
- Example 3 - Applying SAML and MFA to a ZTNA SSH access proxy on page 1047

DNS resolutions:
The FortiAuthenticator (FAC) integrates with Active Directory (AD) on the Windows Domain Controller, which is also acting as the EMS server. Users are synchronized from the AD to the FAC, and remote users are configured with token-based authentication. SAML authentication is configured on the FortiGate, pointing to the FAC as the SAML IdP. The SAML server is applied to the ZTNA access proxy authentication scheme and rule, to provide the foundation for applying user authentication on individual ZTNA rules.

**Configuring the FortiAuthenticator**

First configure the FortiAuthenticator to synchronize users from AD using LDAP, apply MFA to individual remote users, and be the IdP.

**To create a remote authentication server pointing to the Windows AD:**

1. Go to *Authentication > Remote Auth. Servers > LDAP* and click *Create New.*
2. Configure the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary server name / IP</td>
<td>10.100.88.5</td>
</tr>
<tr>
<td>Port</td>
<td>389 (or another port if using LDAPS)</td>
</tr>
<tr>
<td>Based distinguished name</td>
<td>DC=FORTI-ARBUTUS,DC=LOCAL</td>
</tr>
<tr>
<td>Bind type</td>
<td>Regular</td>
</tr>
<tr>
<td>Username</td>
<td>&lt;user account used for LDAP bind&gt;</td>
</tr>
<tr>
<td>Password</td>
<td>&lt;password of user&gt;</td>
</tr>
<tr>
<td>User object class</td>
<td>person (default)</td>
</tr>
<tr>
<td>Username attribute</td>
<td>sAMAccountName (default)</td>
</tr>
<tr>
<td>Group object class</td>
<td>group (default)</td>
</tr>
<tr>
<td>Obtain group membership</td>
<td>Group attribute</td>
</tr>
<tr>
<td>from</td>
<td></td>
</tr>
<tr>
<td>Group membership attribute</td>
<td>memberOf (default)</td>
</tr>
<tr>
<td>Secure connection</td>
<td>Enable if using LDAPS or STARTTLS</td>
</tr>
</tbody>
</table>

3. Click *OK.*
4. In the *Remote LDAP Users* section click *Go.*
5. Select the users to import then click *OK.*
6. Click *OK.*

For more details, see LDAP in the FortiAuthenticator Administration Guide.
To configure a remote LDAP user to use MFA:

1. Go to Authentication > User Management > Remote Users, and edit a user.
2. Enable Token-based authentication then select the method of token code delivery.
   For this example, select FortiToken > Mobile, select the Token from the drop-down list, and set the Activation delivery method to email.
3. In the User Information section, add the email address that will be used for the FortiToken activation.
4. Click OK.
   An activation email is sent to the user that they can use to install the token to their FortiToken Mobile app.
   For more details, see Remote users in the FortiAuthenticator Administration Guide.

To configure SAML IdP:

1. Go to Authentication > SAML IdP > General and enable Enable SAML Identity Provider portal.
2. The Server address is the device FQDN or IP address (configured in the System Information widget at System > Dashboard > Status). In this example, it is fac.fortidemo.fortinet.com.
3. Set Username input format to username@realm.
4. Click Add a realm in the Realms table:
   a. Set Realm to the just created LDAP realm (AD).
   b. Optionally, enable Filter and select the required users groups. In this example, Customer Support and Marketing are configured.
5. Set Default IdP certificate to the certificate that will be used in the HTTPS connection to the IdP portal.
6. Click OK.
7. Go to Authentication > SAML IdP > Service Providers, and click Create New to create a service provider (SP) for the FortiGate SP.
8. Configure the following, which must match what will be configured on the FortiGate:

<table>
<thead>
<tr>
<th>SP name</th>
<th>Enterprise Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>IdP prefix</td>
<td>ztna</td>
</tr>
<tr>
<td>Server certificate</td>
<td>Same certificate as the default IdP certificate used in SAML IdP &gt; General</td>
</tr>
<tr>
<td>SP entity ID</td>
<td><a href="https://entcore.fortidemo.fortinet.com:20443/ztna/saml/metadata/">https://entcore.fortidemo.fortinet.com:20443/ztna/saml/metadata/</a></td>
</tr>
<tr>
<td>SP ACS (login) URL</td>
<td><a href="https://entcore.fortidemo.fortinet.com:20443/ztna/saml/login/">https://entcore.fortidemo.fortinet.com:20443/ztna/saml/login/</a></td>
</tr>
<tr>
<td>SP SLS (logout) URL</td>
<td><a href="https://entcore.fortidemo.fortinet.com:20443/ztna/saml/logout/">https://entcore.fortidemo.fortinet.com:20443/ztna/saml/logout/</a></td>
</tr>
<tr>
<td>Participate in single logout</td>
<td>Enable</td>
</tr>
</tbody>
</table>

Where the SP entity ID, SP ACS (login) URL, and SP SLS (logout) URL break down as follows:
- `entcore.fortidemo.fortinet.com` - The FQDN that resolves to the FortiGate SP.
- `20443` - The port that is used to map to the FortiGate's SAML SP service.
- `/ztna/saml` - The custom, user defined fields.
- `/metadata, /login, and /logout` - The standard convention used to identify the SP entity, log in portal, and log out portal.
9. Click OK.
10. Edit the just created SP object and, under SAML Attribute, click Create New.
11. Set SAML attribute to the username and set User attribute to Username, then click OK.
12. Click OK.

For more details, see Configuring SAML settings in the SAML Interoperability Guide.

**Configuring the FortiGate SAML settings**

On the FortiGate, a SAML user is used to define the SAML SP and IdP settings. This user is then applied to the ZTNA proxy using an authentication scheme, rule, and settings. A ZTNA server is then created to allow access to the SAML SP server so that end users can reach the FortiGate SP’s captive portal. The SAML user must then be added to a ZTNA rule to trigger authentication when accessing the ZTNA access proxy.

**To create a new SAML user/server:**

1. Create the SAML user object:

```
config user saml
 edit "su-ztna"
 set cert "FortiDemo"
 set entity-id "https://entcore.fortidemo.fortinet.com:20443/ztna/saml/metadata/"
 set single-sign-on-url "https://entcore.fortidemo.fortinet.com:20443/ztna/saml/login/"
 set single-logout-url "https://entcore.fortidemo.fortinet.com:20443/ztna/saml/logout/
 set idp-entity-id "http://fac.fortidemo.fortinet.com/saml-idp/ztna/metadata/"
 set idp-single-sign-on-url "https://fac.fortidemo.fortinet.com/saml-idp/ztna/login/"
 set idp-single-logout-url "https://fac.fortidemo.fortinet.com/saml-idp/ztna/logout/"
 set idp-cert "REMOTE_Cert_1"
 set user-name "username"
 set digest-method sha1
 next
end
```

Where:

- The FortiDemo certificate is a local certificate that is used to sign SAML messages that are exchanged between the client and the FortiGate SP. In this example, it is used to sign *entcore.fortidemo.fortinet.com*.
- The REMOTE_Cert_1 certificate is a remote certificate that is used to identify the IdP. In this example, *fac.fortidemo.fortinet.com*.
- The URLs used in the SAML user settings are the same as the ones defined on the FortiAuthenticator.

2. Add the SAML user object to a new user group:

```
config user group
 edit "ztna-users"
 set member "su-ztna"
 next
end
```
To apply the SAML server to proxy authentication:

1. Apply the SAML server to an authentication scheme:

   config authentication scheme
   edit "saml-scheme"
   set method saml
   set saml-server "su-ztna"
   next
   end

2. Apply the authentication scheme to an authentication rule:

   config authentication rule
   edit "saml-rule"
   set srcintf "any"
   set srcaddr "all"
   set ip-based disable
   set active-auth-method "saml-scheme"
   set web-auth-cookie enable
   next
   end

3. Configure the active authentication scheme, and a captive portal to serve the log in page for the SAML requests:

   config firewall address
   edit "entcore.fortidemo.fortinet.com"
   set type fqdn
   set fqdn "entcore.fortidemo.fortinet.com"
   next
   end

   config authentication setting
   set active-auth-scheme "saml-scheme"
   set captive-portal "entcore.fortidemo.fortinet.com"
   end

To configure a ZTNA access proxy to allow SAML authentication requests to the SP:

1. Configure the ZTNA server:
   a. Go to Policy & Objects > ZTNA, select the ZTNA Servers tab, and click Create New.
   b. Configure the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>ZTNA-access</th>
</tr>
</thead>
<tbody>
<tr>
<td>External interface</td>
<td>Any</td>
</tr>
<tr>
<td>External IP</td>
<td>10.100.64.201</td>
</tr>
<tr>
<td>External port</td>
<td>20443</td>
</tr>
<tr>
<td>SAML</td>
<td>Enabled</td>
</tr>
<tr>
<td>SAML SSO Server</td>
<td>su-ztna</td>
</tr>
<tr>
<td>Default certificate</td>
<td>FortiDemo</td>
</tr>
</tbody>
</table>

   c. Click OK.

2. Define the ZTNA rule to allow access to the ZTNA server:
Policy and Objects

a. Go to Policy & Objects > ZTNA, select the ZTNA Rules tab, and click Create New.
b. Configure the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>ZTNA-Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source (Address)</td>
<td>all</td>
</tr>
<tr>
<td>Source (User)</td>
<td>ztna-users</td>
</tr>
<tr>
<td>ZTNA Server</td>
<td>ZTNA-access</td>
</tr>
<tr>
<td>Action</td>
<td>Accept</td>
</tr>
</tbody>
</table>

c. Click OK.

to configure a VIP and a firewall policy to forward IdP authentication traffic to the FortiAuthenticator:

Remote clients connect to the FortiAuthenticator IdP behind the FortiGate using a VIP. In this example, users connect to the FQDN fac.fortidemo.fortinet.com that resolves to the VIP’s external IP address.

1. Configure the VIP to forward traffic to the FortiAuthenticator:
   a. Go to Policy & Objects > Virtual IPs and click Create New > Virtual IP.
   b. Configure the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>FortiAuthenticator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Any</td>
</tr>
<tr>
<td>External IP address</td>
<td>10.100.64.103</td>
</tr>
<tr>
<td>Map to &gt; IPv4 address/range</td>
<td>10.100.88.9</td>
</tr>
<tr>
<td>Port Forwarding</td>
<td>Enabled</td>
</tr>
<tr>
<td>Protocol</td>
<td>TCP</td>
</tr>
<tr>
<td>External service port</td>
<td>443</td>
</tr>
<tr>
<td>Map to IPv4 port</td>
<td>443</td>
</tr>
</tbody>
</table>

c. Click OK.

2. Configure a firewall policy to allow VIP:
   a. Go to Policy & Objects > Firewall Policy and click Create New.
b. Configure the following:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>WAN to FAC</td>
</tr>
<tr>
<td>ZTNA</td>
<td>Disabled</td>
</tr>
<tr>
<td>Incoming Interface</td>
<td>Any</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>Any</td>
</tr>
<tr>
<td>Source</td>
<td>All</td>
</tr>
<tr>
<td>ZTNA Server</td>
<td>FortiAuthenticator</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>ALL</td>
</tr>
<tr>
<td>Action</td>
<td>Accept</td>
</tr>
<tr>
<td>NAT</td>
<td>disabled</td>
</tr>
</tbody>
</table>

c. Click OK.

Example 1 - Applying SAML and MFA to ZTNA HTTPS access proxy

In this HTTPS access proxy example, two real servers are implemented with round robin load balancing performed between them. The HTTPS access proxy is configured on the same ZTNA server as was configured in the authentication step. The same ZTNA rule and firewall policy also apply.

To configure the ZTNA server for HTTPS access proxy with load balancing:

1. Go to Policy & Objects > ZTNA and select the ZTNA Servers tab.
2. Edit the ZTNA-access server.
3. In the Service/server mapping table, click Create New:
   a. Set Service to HTTPS.
   b. Set Virtual Host to Any Host.
   c. In the Servers table click Create New:
      i. Set IP to 10.100.77.200
      ii. Set Port to 443
      iii. Set Status to Active.
      iv. Click OK.
   d. Create a second server with IP 10.100.77.202.
   e. Click OK.
4. Enable Load balancing, and select the Round Robin algorithm.
5. Click OK.

Testing and verification:

From the remote endpoint, user John Locus attempts to connect to the Finance server over ZTNA:

1. On the remote Windows computer, open FortiClient and register to the EMS server.
2. Open a browser and attempt to connect to the web server at https://ztna.fortidemo.fortinet.com:20443.
3. Device authentication prompts the user for their device certificate. Select the certificate issued by EMS and click OK.

4. FortiGate receives the SAML request and redirects the user to the IdP login screen. Enter the username and password for John Locus and click Login.

5. A second prompt opens asking for the Token Code. Enter the code then click Verify.

6. The FortiAuthenticator IdP verifies the login, then sends the SAML assertion back to the user.

7. The browser redirects the assertion to the FortiGate SP, which decides if the user is allowed access.

8. On a successful log in, FortiGate redirects the user to the web page that they are trying to access.

Logs and debugs:

On the FortiGate, a successful connection can be seen in Log & Report > Forward Traffic log, or by using the CLI:

```
execute log filter category 0
execute log filter field srcip 10.100.66.103
execute log display ...
1: date=2021-08-25 time=23:34:15 eventtime=1629959656098675227 tz="-0700" logid="0000000024"
type="traffic" subtype="forward" level="notice" vd="root" srcip=10.100.66.103 srcport=51341
srcintf="port1" srcintfrole="wan" dstcountry="Reserved" srccountry="Reserved"
dstip=10.100.77.202 dstport=443 dstintf="root" dstintfrole="undefined" sessionid=3396047
srcuid="d8dd134a-0517-51ec-2ff0-3032b84564e7" service="HTTPS" proto=6 action="accept"
policyid=1 policytype="proxy-policy" poluuid="256bb090-0518-51ec-f431-5dcc0baa725b"
policyname="ZTNA-Rule" duration=16 user="johnlocus" group="ztna-users" wanin=2837
rcvbyte=2837 wanout=1495 lanin=2581 sentbyte=2581 lanout=5505 appcat="unscanned"

2: date=2021-08-25 time=23:34:04 eventtime=1629959645171823879 tz="-0700" logid="0000000024"
type="traffic" subtype="forward" level="notice" vd="root" srcip=10.100.66.103 srcport=62691
srcintf="port1" srcintfrole="wan" dstcountry="Reserved" srccountry="Reserved"
dstip=10.100.77.200 dstport=443 dstintf="root" dstintfrole="undefined" sessionid=3396036
srcuid="d8dd134a-0517-51ec-2ff0-3032b84564e7" service="HTTPS" proto=6 action="accept"
policyid=1 policytype="proxy-policy" poluuid="256bb090-0518-51ec-f431-5dcc0baa725b"
policyname="ZTNA-Rule" duration=5 user="johnlocus" group="ztna-users" wanin=2837
rcvbyte=2837 wanout=1546 lanin=1576 sentbyte=1576 lanout=1033 appcat="unscanned"
...
```
Log number four shows that the session was first allowed through the ZTNA firewall policy. Log numbers one and two show the traffic allowed through the ZTNA proxy-policy over two successive sessions. Note that they have different destination IP addresses (dstip), indicating that ZTNA was performing server load balancing.

Use the following command to show if the FortiGate's WAD process has an active record of the SAML user login:

```
diagnose wad user list
```

```
ID: 6, VDOM: root, IPv4: 10.100.66.103
 user name : johnlocus
 worker : 0
 duration : 611
 auth_type : Session
 auth_method: SAML
 pol_id : 1
 g_id : 3
 user_based : 0
 expire : 283
LAN:
 bytes_in=38016 bytes_out=16166
WAN:
 bytes_in=12422 bytes_out=7217
```

**Example 2 - Applying SAML and MFA to a ZTNA TCP forwarding access proxy for RDP connections**

In this TCP forwarding access proxy example, RDP connections are allowed to be forwarded to the Windows/EMS server. Traffic to TCP/3389 is allowed through the ZTNA proxy.

**To configure the ZTNA server for TCP forwarding on TCP/3389:**

1. Create a firewall address for the Windows/EMS server:
   a. Go to **Policy & Objects > Addresses and click Create New > Address**.
   b. Configure the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>EMS-Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Subnet</td>
</tr>
<tr>
<td>IP/Netmask</td>
<td>10.100.88.5/32</td>
</tr>
<tr>
<td>Interface</td>
<td>any</td>
</tr>
</tbody>
</table>

   c. Click OK.

2. Go to **Policy & Objects > ZTNA and select the ZTNA Servers tab**.
3. Edit the ZTNA-access server.
4. In the **Service/server mapping** table, click **Create New**:
   a. Set **Service** to **TCP Forwarding**.
   b. In the **Servers** table click **Create New**:
Policy and Objects

i. Set Address to EMS-Server.
ii. Set Ports to 3389.
iii. Click OK.
c. Click OK.

5. Click OK.

Testing and verification:

On the remote endpoint, manually configure ZTNA connection rules to forward RDP traffic to the ZTNA access proxy. The rules can also be pushed from the EMS server; for details see Provisioning ZTNA TCP forwarding rules via EMS.

Configure the ZTNA connection rule:
1. On the remote Windows computer, open FortiClient.
2. Register to the EMS server.
3. On the ZTNA Connection Rules tab, click Add Rule to add a TCP forwarding rule.
4. Configure the following:

<table>
<thead>
<tr>
<th>Rule Name</th>
<th>RDP-server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination Host</td>
<td>10.100.88.5:3389</td>
</tr>
<tr>
<td>Proxy Gateway</td>
<td>ztna.fortidemo.fortinet.com:20443</td>
</tr>
<tr>
<td>Mode</td>
<td>Transparent</td>
</tr>
<tr>
<td>Encryption</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

*Encryption can be enabled or disabled. When it is disabled, the client to access proxy connection is not encrypted in HTTPS. Because RDP is encrypted by default, disabling Encryption does not reduce security.*

5. Click Create.

Connect over RDP:
1. On the remote PC, open a new RDP connection.
2. Enter the IP address 10.100.588.5. By default, RDP session use port 3389.
   When the connection to the ZTNA access proxy is established, FortiGate will redirect the SAML login request to the FortiAuthenticator IdP.
   A FortiClient prompt will open with the FortiAuthenticator login screen.
3. Enter the username and password then click Login.
4. A second prompt opens asking for the Token Code. Enter the code from your FortiToken app, then click Verify.
5. FortiAuthenticator verifies the token code, determines if the login is successful, then sends the SAML assertion back to the client.
6. The client redirects the response back to the FortiGate SP.
7. If the log in was successful, the user can now log on to the RDP session.

Logs and debugs:

On the FortiGate, a successful connection can be seen in Log & Report > Forward Traffic log, or by using the CLI:
Policy and Objects

# execute log filter category 0
# execute log filter field srcip 10.100.66.103
# execute log display
...
3: date=2021-08-25 time=23:05:52 eventtime=162995792227222222 tz="-0700" logid="0000000024" type="traffic" subtype="forward" level="notice" vd="root" srcip=10.100.66.103 srcport=59980 srcintf="port1" srcintfrole="wan" dstcountry="Reserved" dstcountry="Defined" dstip=3389 dstport=3389 dstintfrole="undefined" sessionid=3349083 srcuuid="d8dd134a-0517-51ec-2ff0-3032b84564e7" service="RDP" proto=6 action="accept" policyid=1 policytype="proxy-policy" poluuid="256bb090-0518-51ec-431-5d3cc0baa72b" policymname="ZTNA-Rule" duration=8 user="johnlocus" group="ztna-users" wanin=0 rcvdbyte=0 wanout=0 lanin=1444 sentbyte=1444 lanout=665 appcat="unscanned"

4: date=2021-08-25 time=23:05:49 eventtime=162995792227222222 tz="-0700" logid="0000000024" type="traffic" subtype="forward" level="notice" vd="root" srcip=10.100.66.103 srcport=59982 srcintf="port1" srcintfrole="wan" dstcountry="Reserved" dstcountry="Defined" dstip=443 dstport=20443 dstintfrole="undefined" sessionid=3349102 srcuuid="d8dd134a-0517-51ec-2ff0-3032b84564e7" service="tcp/20443" proto=6 action="accept" policyid=41 policytype="policy" poluuid="256db090-0518-51ec-76a-18df00b82d3" policymname="ZTNA Policy" duration=5 user="johnlocus" authserver="su-ztna" wanin=0 rcvdbyte=0 wanout=0 lanin=14237 sentbyte=14237 lanout=1032 appcat="unscanned"

Use the following command to show if the FortiGate's WAD process has an active record of the SAML user login:

# diagnose wad user list

ID: 6, VDOM: root, IPv4: 10.100.66.103
user name : johnlocus
worker : 0
duration : 611
auth_type : Session
auth_method : SAML
pol_id : 1
poluuid : "256db090-0518-51ec-76a-18df00b82d3"
g_id : 3
user_based : 0
expire : no
LAN:
  bytes_in=51471 bytes_out=233862
WAN:
  bytes_in=211247 bytes_out=24410

Example 3 - Applying SAML and MFA to a ZTNA SSH access proxy

In this SSH access proxy example, SSH connections can be forwarded to the web server.

To configure the ZTNA server for SSH access proxy:

1. Create a firewall address for the web server:
   a. Go to Policy & Objects > Addresses and click Create New > Address.
   b. Configure the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>Web-Server1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Subnet</td>
</tr>
</tbody>
</table>

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
**Policy and Objects**

<table>
<thead>
<tr>
<th>IP/Netmask</th>
<th>10.100.77.101/32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>any</td>
</tr>
</tbody>
</table>

c. Click OK.

2. Go to *Policy & Objects > ZTNA* and select the *ZTNA Servers* tab.
3. Edit the ZTNA-access server.
4. In the *Service/server mapping* table, edit the *TCP Forwarding* entry:
   a. In the *Servers* table click *Create New*:
      i. Set *Address* to *Web-Server1*.
      ii. Set *Ports* to 22.
      iii. Optionally, enable *Additional SSH Options* to configure other SSH options as needed.
      iv. Click OK.
   b. Click OK.
5. Click OK.

**Testing and verification:**

On the remote endpoint, manually configure ZTNA connection rules to forward SSH traffic to the ZTNA access proxy. The rules can also be pushed from the EMS server; for details see Provisioning ZTNA TCP forwarding rules via EMS.

**Configure the ZTNA connection rule:**

1. On the remote Windows computer, open FortiClient.
2. Register to the EMS server.
3. On the *ZTNA Connection Rules* tab, click *Add Rule* to add a TCP forwarding rule.
4. Configure the following:

<table>
<thead>
<tr>
<th>Rule Name</th>
<th>SSH-webserver</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Destination Host</strong></td>
<td>10.100.77.101:22</td>
</tr>
<tr>
<td><strong>Proxy Gateway</strong></td>
<td>ztna.fortidemo.fortinet.com:20443</td>
</tr>
<tr>
<td><strong>Mode</strong></td>
<td>Transparent</td>
</tr>
<tr>
<td><strong>Encryption</strong></td>
<td>Disabled</td>
</tr>
</tbody>
</table>

5. Click *Create*.

**Connect over SSH:**

1. On the remote PC, open a new SSH connection.
2. Enter the host root@10.100.77.101 on port 22.
   - When the connection to the ZTNA access proxy is established, FortiGate will redirect the SAML login request to the FortiAuthenticator IdP.
   - A FortiClient prompt will open with the FortiAuthenticator login screen.
3. Enter the username and password then click *Login*.
4. A second prompt opens asking for the *Token Code*. Enter the code from your FortiToken app, then click *Verify*.
5. FortiAuthenticator verifies the token code, determines if the login is successful, then sends the SAML assertion back to the client.
6. The client redirects the response back to the FortiGate SP.
7. If the log in was successful, the user can now log on to the SSH session.

Logs and debugs:

On the FortiGate, a successful connection can be seen in Log & Report > Forward Traffic log, or by using the CLI:

```
execute log filter category 0
execute log filter field srcip 10.100.66.103
execute log display
...
2: date=2021-08-25 time=23:20:03 eventtime=1629958804116962686 tz="-0700" logid="0000000024" type="traffic" subtype="forward" level="notice" vd="root" srcintf="port1" srcintfrole="wan" dstcountry="Reserved" srccountry="Reserved" dstip="10.100.77.101" dstport=22 dstintf="root" dstintfrole="undefined" sessionid=3372964 srcuid=d8dd134a-0517-51ec-2ff0-3032b84564e7 service="SSH" proto=6 action="accept" policyid=1 policytype="proxy-policy" poluuid="256bb090-0518-51ec-f431-5dccc0baa725b" policyname="ZTNA-Rule" duration=1 user="johnlocus" group="ztna-users" wanin=39 rcvdbyte=39 wanout=0 lanin=1444 sentbyte=1444 lanout=726 appcat="unscanned"
```

Use the following command to show if the FortiGate's WAD process has an active record of the SAML user login:

```
diagnose wad user list

ID: 6, VDOM: root, IPv4: 10.100.66.103
 user name : johnlocus
 worker : 0
 duration : 192
 auth_type : Session
 auth_method : SAML
 pol_id : 1
 g_id : 3
 user_based : 0
 expire : 475
LAN:
 bytes_in=19647 bytes_out=10063
WAN:
 bytes_in=2886 bytes_out=1860
```

### ZTNA access proxy with SSL VPN web portal example

SSL VPN web portals can be defined in ZTNA access proxy settings. The ZTNA access proxy handles the access control processes (client certificate authentication, posture check, user authentication and authorization), and establishes the HTTPS connection between the end user and the access proxy. Then, it forwards the user to the web portal where they can use predefined bookmarks to access TCP based services like HTTPS, RDP, VNC, FTP, SFTP, SSH, Telnet, and SMB. Existing SSL VPN portal configurations can be used.
Policy and Objects

The web portal service can only be configured in the CLI.

Example

In this example, a remote client connects to the ZTNA access proxy and completes the client certificate check. If successful, the remaining access control procedures are automatically completed, and the user is forwarded to the web portal. The web portal is configured with predefined bookmarks that connect to internal servers and external websites. The user can access any resource that is defined in the bookmarks to create an end-to-end connection.

To configure the SSL VPN web portal:

1. Go to VPN > SSL-VPN Portals and click Create New.
2. Enter the name, test_ssl.
3. Disable Tunnel Mode.
4. Enable Web Mode.
5. Create the bookmarks:
   a. Under Predefined Bookmarks, click Create New.
   b. Enter the name of the service.
   c. Select the service Type.
   d. Enter the URL to access the service.
   e. Click OK.
   f. Repeat these steps to create other bookmarks.
6. Click OK.

To configure the ZTNA access proxy:

1. Configure a VIP for the ZTNA access proxy. The ssl-certificate can be replaced with a server certificate:

   ```
 config firewall vip
 edit "ztna_webportal"
 set type access-proxy
 set extip 172.18.62.68
 set extintf "any"
   ```
Policy and Objects

```
set server-type https
set extport 4443
set ssl-certificate "*.test.com"
next
end

2. Configure the virtual host to be used to connect to the ZTNA access proxy. The host should resolve to the VIP’s address:

```
config firewall access-proxy-virtual-host
edit "webportal"
set ssl-certificate "*.test.com"
set host "web.test.com"
next
end
```

3. Configure the ZTNA access proxy to be in web portal mode:

```
config firewall access-proxy
edit "ztna_webportal"
set vip "ztna_webportal"
set client-cert enable
config api-gateway
edit 1
set url-map "/webportal"
set service web-portal
set virtual-host "webportal"
set ssl-vpn-web-portal "test_ssl"
next
next
end
```

4. Apply the access proxy to a proxy policy (specify the ZTNA tags as needed):

```
config firewall proxy-policy
edit 1
set name "ztna_rule"
set proxy access-proxy
set access-proxy "ztna_webportal"
set srcintf "any"
set srcaddr "all"
set dstaddr "all"
set ztna-ems-tag "FCTEMS8821000000_High"
set action accept
set schedule "always"
set logtraffic all
set srcaddr6 "all"
set dstaddr6 "all"
set utm-status enable
set profile-type group
set profile-group "profile group1"
set logtraffic-start enable
next
end
```

The SSL VPN bookmarks are learned by the WAD daemon and are ready to use.
5. Verify the bookmarks:

```plaintext
# diagnose test app wad 351
[bookmark: (portal/group/name=test_ssl/gui-bookmarks/2nd HTTP)]:
  type :1
  url  :http://httpbin.org
  host :
  folder:
  domain:
  port :0

[bookmark: (portal/group/name=test_ssl/gui-bookmarks/FTP)]:
  type :4
  url :
  host :
  folder:172.16.200.215
  domain:
  port :0

[bookmark: (portal/group/name=test_ssl/gui-bookmarks/HTTPS-fortinet)]:
  type :1
  url  :https://www.fortinet.com
  host :
  folder:
  domain:
  port :0

[bookmark: (portal/group/name=test_ssl/gui-bookmarks/RDP)]:
  type :9
  url :
  host :172.18.62.213
  folder:
  domain:
  port :3389
```

To test the connection:

1. From the client browser, go to https://web.test.com:4443/webportal to access the ZTNA access proxy web portal.
2. Once the client passes the certificate check, posture check, and access is granted, the user is redirected to the web portal. The list of predefined bookmarks appears.

3. Click a bookmark, such as HTTPS-fortinet. The website opens.

4. From the web portal, click another bookmark, such as SSH. The page opens with the credential login screen to access the server.
Posture check verification for active ZTNA proxy session examples

Endpoint posture changes trigger active ZTNA proxy sessions to be re-verified and terminated if the endpoint is no longer compliant with the ZTNA policy.

The FortiGate monitors changes to the endpoint tags that are updated by EMS with the fnacd process. When a change is detected, the endpoint's active ZTNA sessions must match the ZTNA policy again before data can pass.

Changes to the ZTNA policy, such as changing the ZTNA tag matching logic, will also trigger re-verification of the client device against the policy.

The remote endpoint accesses the RDP server through the TCP forwarding access proxy. The proxy is managed by the FortiClient EMS server, which has a ZTNA tagging rule that assigns the AV-enabled tag to endpoints that have Windows antivirus enabled, and the Low risk host tag to endpoints that are low risk.

These examples assume that the FortiGate EMS fabric connector has already connected successfully, and a ZTNA server named WIN2K16-P1-RDP that forwards traffic to the RDP server has been configured.

Example 1 - The ZTNA tag status changes on the endpoint

In this example, a ZTNA rule is configured to allow access for endpoints that have the AV-enabled tag. After an RDP session is established, Windows antivirus is disabled on the remote endpoint. The FortiGate re-verifies the session and the active RDP session is removed from the FortiGate session table, causing the RDP session to be disconnected.
To configure the ZTNA rule in the GUI:

1. Go to Policy & Objects > ZTNA, select the ZTNA Rules tab, and click Create New.
2. Set Name to TCP-forward-WIN2K16.
3. Set Incoming Interface to port1.
4. Set Source to all.
5. In ZTNA Tag add AV-enabled
6. In ZTNA Server add WIN2K16-P1-RDP.
7. Set Destination to all.
8. Set Action to ACCEPT.
9. Configure the remaining options as needed.
10. Click OK.

To configure the ZTNA rule in the CLI:

cfg Firewall proxy-policy
 edit 4
 set name "TCP-forward-WIN2K16"
 set proxy access-proxy
 set access-proxy "WIN2K16-P1-RDP"
 set srcintf "port1"
 set srcaddr "all"
 set dstaddr "all"
 set ztna-ems-tag "FCTEMS0000109188_AV-enabled"
 set action accept
 set schedule "always"
 set logtraffic all
 next
end

To test the example:

1. On the remote endpoint, open FortiClient.
2. On the Zero Trust Telemetry tab, make sure that you are connected to the EMS server.
3. Add a ZTNA rule:
 a. On the ZTNA Connection Rules tab, click Add Rule.
 b. Configure the ZTNA rule:

<table>
<thead>
<tr>
<th>Rule Name</th>
<th>RDP-WIN2K16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination Host</td>
<td>192.168.20.6:3389</td>
</tr>
<tr>
<td>Proxy Gateway</td>
<td>192.168.2.86:443</td>
</tr>
<tr>
<td>Encryption</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

c. Click Create.
4. Ensure that the endpoint has Windows antivirus enabled.
5. Open an RDP session to connect to the RDP server at 192.168.20.6.
6. After a successful connection, on the FortiGate:
a. The endpoint is detected and marked with the AV-enabled tag:

```
# diagnose test application fcnacd 7
```

ZTNA Cache V2:
Entry #1:
- UID: F4F3263AE54777A6509A8FCCDF9284
- Domain:
- User: keithli
- Owner:
- Certificate SN: 1626C2C10E6AD97D71FA9E2D9C314C1F5C03D68B
- EMS SN: FC TEMS 0000109188
- online: true
- Tags (3):
 -- Tag (#0): AV-enabled
 -- Tag (#1): all_registered_clients
 -- Tag (#2): Low
lls_idx_mask = 0x00000001,

b. A session is created:

```
# diagnose sys session filter dst 192.168.2.86
# diagnose sys session filter src 10.10.10.25
# diagnose sys session list
```

```
session info: proto=6 proto_state=01 duration=191 expire=3599 timeout=3600 flags=00000000 socktype=0 sockport=1012 av_idx=0 use=3
origin-shaper=
reply-shaper=
per_ip_shaper=
class_id=0 ha_id=0 policy_dir=0 tunnel=/ vlan_cos=0/0
state=log local may_dirty f24
statistic(bytes/packets/allow_err): org=58031/376/1 reply=66864/351/1 tuples=2
tx speed(Bps/kbps): 303/2 rx speed(Bps/kbps): 349/2
orgin->sink: org pre->in, reply out->post dev=3->7/7->3 gwy=192.168.2.86/0.0.0.0
hook=pre dir=org act=noop 10.10.10.25:60668->192.168.2.86:443(0.0.0.0:0)
hook=post dir=reply act=noop 192.168.2.86:443->10.10.10.25:60668(0.0.0.0:0)
pos/(before,after) 0/(0,0), 0/(0,0)
src_mac=08:5B:0E:EA:7F:D4
misc=7 policy_id=4 pol_uuid_idx=14853 auth_info=0 chk_client_info=0 vd=0
serial=00000c0b tos=0/00 app_list=0 app url_cat=0
sdwan_mbr_seq=0 sdwan_service_id=0
rpdb_link_id=000000000 rpdsvc_idx=0 ngfwid=n/a
npu_state=00000000
total session 1
```

c. The forward traffic log indicates that traffic is allowed:

```
# execute log filter category 0
# execute log filter field dstip 192.168.20.6
# execute log display ...
```

```
11: date=2021-10-18 time=11:22:16 eventtime=1634581336644493852 tz="-0700"
logid="00000000024" type="traffic" subtype="forward" level="notice" vd="root"
srcip=10.10.10.25 srccport=60660 srccintf="port1" srccintfrole="wan"
dstcountry="Reserved" srccountry="Reserved" dstip=192.168.20.6 dstport=3389
dstintf="root" dstintfrole="undefined" sessionid=2550 srcuuid="5445be2e-5d7b-51ea-
```
7. On the remote endpoint, disable Windows antivirus.
 FortiClient EMS detects a change in, and removes the AV-enabled tag on the FortiClient endpoint.

8. Due to the change in posture, the RDP session is disconnected:
 a. The endpoint is no longer marked with the AV-enabled tag:
      ```
      # diagnose test application fcnacd 7
      ZTNA Cache V2:
      Entry #1:
      - UID: F4F3263AE54777A6509A8FCCDF9284
      - Domain:
      - User: keithli
      - Owner:
      - Certificate SN: 1626C2C10E6AD97D1FA9E2D9C314C1F5C03D68B
      - EMS SN: FCTEMS0000109188
      - online: true
      - Tags (2):
        -- Tag (#0): all_registered_clients
        -- Tag (#1): Low
        lls_idx_mask = 0x00000001,
      ```
 b. The previous session is removed:
      ```
      # diagnose sys session filter dst 192.168.2.86
      # diagnose sys session filter src 10.10.10.25
      # diagnose sys session list
      total session 0
      ```
 c. The forward traffic log indicates that traffic is denied:
      ```
      # execute log display
      7: date=2021-10-18 time=11:31:45 eventtime=1634581905530844852 tz="-0700"
      logid="0000000013" type="traffic" subtype="forward" level="notice" vd="root"
      srcip=10.10.10.25 srcport=60668 srclintf="port1" srclntfrole="wan" dstip=192.168.20.6
dstport=3389 dstlntf="root" dstlntfrole="undefined" srcuuid="5445be2e-5d7b-51ea-e2c3-ae6b7855c52f"
dstuuid="5445be2e-5d7b-51ea-e2c3-ae6b7855c52f" srcccountry="Reserved" dstccountry="Reserved"
sessionid=3083 proto=6 action="deny" policyid=4
policyname="TCP-forward-WIN2K16" poluuid="ce8f82d0-8fb3-51eb-0a17-5e6a6a51ff27"
```
 d. The ZTNA log indicates that traffic is denied:
      ```
      # execute log filter category 21
      # execute log display
      6: date=2021-10-18 time=11:31:45 eventtime=1634581905530840484 tz="-0700"
      logid="2101060510" type="utm" subtype="ztna" eventtype="ztna-policy-match"
      level="warning" vd="root" msg="Connection is blocked due to unable to match a proxy-policy"
policyid=4 sessionid=3083 srcip=10.10.10.25 dstip=192.168.20.6 srcport=60668
Example 2 - The ZTNA rule tag checking logic changes

In this example, a ZTNA rule is configured to allow access to endpoints that have at least one of the AV-enabled or Low ZTNA tags. A remote user who has Windows antivirus disabled, but is low risk, successfully establishes an RDP session over the ZTNA access proxy. An administrator changes the ZTNA rule’s tag matching logic from Any to All, causing the RDP session to be disconnected.

To configure the ZTNA rule in the GUI:

1. Go to Policy & Objects > ZTNA, select the ZTNA Rules tab.
2. Edit the TCP-forward-WIN2K16 rule.
3. In ZTNA Tag, add Low.
4. Ensure that Match ZTNA Tags is set to Any.
5. Click OK.

To configure the ZTNA rule in the CLI:

```bash
config firewall proxy-policy
edit 4
 set name "TCP-forward-WIN2K16"
 set proxy access-proxy
 set access-proxy "WIN2K16-P1-RDP"
 set srcintf "port1"
 set srcaddr "all"
 set dstaddr "all"
 set ztna-ems-tag "FCTEMS0000109188_AV-enabled" "FCTEMS0000109188_Low"
 set ztna-tags-match-logic or
 set action accept
 set schedule "always"
 set logtraffic all
next
end
```

To test the example:

1. On the remote Windows PC, disable antivirus protection.
2. Open an RDP session to connect to the RDP server at 192.168.20.6.
3. After a successful connection, on the FortiGate:
   a. The endpoint is detected and marked with the Low tag, but not the AV-enabled tag:

   ```bash
 #诊断测试应用 fcnacd 7
 ZTNA Cache V2:
 Entry #1:
 - UID: F4F3263AE8E54777A6509A8FCCDF9284
   ```
Policy and Objects

- Domain: 
- User: keithli
- Owner: 
- Certificate SN: 1626C2C10E6AD97D71FA9E2D9C314C1F5C03D68B 
- EMS SN: FCTEMS0000109188 
- online: true 
- Tags (2): 
  -- Tag (#0): all_registered_clients 
  -- Tag (#1): Low 
  lls_idx_mask = 0x00000001, 

b. A session is created:

# diagnose sys session filter dst 192.168.2.86 
# diagnose sys session filter src 10.10.10.25 
# diagnose sys session list

session info: proto=6 proto_state=01 duration=29 expire=3598 timeout=3600 
flags=00000000 socktype=0 sockport=1012 av_idx=0 use=3 
origin-shaper= 
reply-shaper= 
per_ip_shaper= 
class_id=0 ha_id=0 policy_dir=0 tunnel=/ vlan_cos=0/0 
state=log local may_dirty f24 
statistic(bytes/packets/allow_err): org=54763/299/1 reply=90223/313/1 tuples=2 
origin->sink: org pre->in, reply out->post dev=3->7/7->3 gwy=192.168.2.86/0.0.0.0 
hook=pre dir=org act=noop 10.10.10.25:255147->192.168.2.86:443(0.0.0.0:0) 
hook=post dir=reply act=noop 192.168.2.86:443->10.10.10.25:255147(0.0.0.0:0) 
pos/(before,after) 0/(0,0), 0/(0,0) 
src_mac=08:5b:0e:ea:7f:d4 
misc=7 policy_id=4 pol_uuid_idx=14853 auth_info=0 chk_client_info=0 vd=0 
serial=00003255 tos=0/0 app_list=0 app=0 url_cat=0 
dswan_mbr_seq=0 sdwan_service_id=0 
rpdb_link_id=00000000 rpdb_svc_id=0 ngfwid=n/a

c. The forward traffic log indicates that traffic is allowed:

# execute log filter category 0 
# execute log display 

... 
1: date=2021-10-18 time=12:46:01 eventtime=1634586361077487880 tz="-0700" 
logid="0000000024" type="traffic" subtype="forward" level="notice" notice="vd" root= 
srcip=10.10.10.25 srcport=55140 srcintf="port1" srcintfrole="wan" 
dstcountry="Reserved" srccountry="Reserved" dstip=192.168.20.6 dstport=3389 
dstintf="root" dstintfrole="undefined" sessionid=12542 srcuuid="5445be2e-5d7b-51ea-e2c3-ae6b7855c52f" service="RDP" proto=6 action="accept" policyid=4 
policytype="proxy-policy" poluuid="ce8f82d0-8fb3-51eb-0a17-5e6a6a51ff27" 
policyname="TCP-forward-WIN2K16" duration=138 wanin=140349 rcvdbyte=140349 
wanout=47118 lanin=48799 sentbyte=48799 lanout=142521 appcat="unscanned"

4. On the FortiGate, edit the ZTNA rule TCP-forward-WIN2K16:
   • In the GUI, set Match ZTNA Tags to All.
   • In the CLI, set ztna-tags-match-logic to and.

5. Due to the ZTNA rule update, the FortiGate re-verifies the session, and the RDP session is disconnected:
a. The previous session is removed:

```
diagnose sys session filter dst 192.168.2.86
diagnose sys session filter src 10.10.10.25
diagnose sys session list
total session 0
```

b. The ZTNA log indicates that traffic is denied:

```
execute log filter category 21
execute log display
1: date=2021-10-18 time=12:53:57 eventtime=1634586837921889075 tz="-0700"
logid="2101060510" type="utm" subtype="ztna" eventtype="ztna-policy-match"
level="warning" vd="root" msg="Connection is blocked due to unable to match a proxy-policy" policyid=0 sessionid=13865 srcip=10.10.10.25 dstip=192.168.2.86 srcport=55162 dstport=443 srcintf="port1" srcintfrole="wan" dstintf="root" dstintfrole="undefined"
proto=6 action="blocked" service="HTTPS" gatewayid=1 vip="WIN2K16-F1-RDP"
accessproxy="WIN2K16-F1-RDP" clientdevicetags="MAC_FCTEMS0000109188_Low/FCTEMS0000109188_all_registered_clients/MAC_FCTEMS0000109188_all_registered_clients/FCTEMS0000109188_Low"
```

**ZTNA TCP forwarding access proxy with FQDN example**

When defining ZTNA connection rules on FortiClient for TCP forwarding, it is sometimes desirable to configure the destination host address as an FQDN address instead of an IP address. Since the real servers are often servers in the corporate network, this layer of obfuscation prevents internal IPs from easily leaking to the public, and also makes the destination more easily recognizable by the end users.

One obstacle to overcome is getting remote hosts to resolve an internal FQDN that is typically only resolvable by an internal DNS in the corporate network. This can be solved with the following:

1. When an FQDN address is added as a destination host in a ZTNA connection rule, FortiClient creates a virtual IP for this FQDN address and adds this to the computer’s host file (Windows). The same is true when a ZTNA connection rule entry is pushed from EMS.
2. The virtual IP mapped to the FQDN address is not the real address of the server. It allows applications to resolve the FQDN address to this virtual IP. FortiClient listens to any traffic destined for it and forwards the traffic using the TCP forwarding URL with FQDN to the ZTNA access proxy.
3. The FortiGate access proxy will resolve the FQDN using the internal DNS on the corporate network, matching the traffic to the ZTNA real server configuration with the same domain and address.
4. If a valid ZTNA real server entry is found, traffic is forwarded to the real server.

**Example**

In this example, two servers in the internal network are added to the FortiGate access proxy for TCP forwarding. The remote client configures two ZTNA connection rules, with the destination host field pointing to the FQDN addresses of the internal servers. These FQDN addresses are configured in the FortiGate’s DNS database so they can be resolved by the FortiGate. It is recommended to use an internal DNS server for production environments.
This example assumes that the FortiGate EMS Fabric connector is already successfully connected.

This feature requires a minimum FortiClient and FortiClient EMS version of 7.0.3.

To configure the TCP forwarding access proxy:

1. Go to Policy & Objects > ZTNA and select the ZTNA Servers tab.
2. Click Create New.
3. Set Name to ZTNA_S1.
4. Configure the network settings:
   a. Set External interface to any.
   b. Set External IP to 172.18.62.32.
   c. Set External port to 443.
5. Select the Default certificate. Clients will be presented with this certificate when they connect to the access proxy VIP.
6. Add server mapping:
   a. In the Service/server mapping table, click Create New.
   b. For Service, select TCP Forwarding.
   c. Add a server:
      i. In the Servers table, click Create New.
      ii. Create a new FQDN address for the HTTPS server at s27.qa.fortinet.com, then click OK.
      iii. Apply the new address object as the address for the new server.
      iv. Click OK.
   d. Add another server using the same steps for s29.qa.fortinet.com.
7. Click OK. Now that the ZTNA server is complete, the domain settings must be configured in the CLI to map domains to the real servers.

To map domains to the real servers:

```
config firewall access-proxy
edit "ZTNA_S1"
 set vip "ZTNA_S1"
 set client-cert enable
 config api-gateway
```
To configure the ZTNA rule:

1. Go to Policy & Objects > ZTNA and select the ZTNA Rules tab.
2. Click Create New.
3. Set Name to ZTNA_TCP.
4. Set Incoming Interface to port2.
5. Set Source to all.
6. Select the ZTNA server ZTNA_S1.
7. Configure the remaining options as needed.
8. Click OK.

To configure the DNS entries for each server:

1. Enable the DNS database visibility:
   a. Go to System > Feature Visibility.
   b. Enable DNS Database.
   c. Click Apply.
2. Go to Network > DNS Servers. Under DNS Database, click Create New.
3. Set DNS Zone to ZTNA.
4. Set Domain Name to qa.fortinet.com.
5. Add the DNS entries:
   a. Under DNS Entries, click Create New.
   b. Set Hostname to s27.
   c. Set IP Address to the HTTPS server address.
   d. Click OK.
   e. Add another DNS entry using the same steps for the s29.qa.fortinet.com HTTP server.
6. Click OK.

Testing the connection to the access proxy

Before connecting, users must have a ZTNA connection rule in FortiClient.
To create the ZTNA rules in FortiClient and connect:

1. From the ZTNA Connection Rules tab, click Add Rule.
2. Create a rule for the HTTPS server:
   a. Set Rule Name to server27.
   b. Set Destination Host to s27.qa.fortinet.com:443.
   c. Set Proxy Gateway to 172.18.62.32:443.
   d. Disable Encryption.
   e. Click Create.
3. Create a rule for the HTTP server:
   a. Set Rule Name to server29.
   b. Set Destination Host to s29.qa.fortinet.com:80.
   c. Set Proxy Gateway to 172.18.62.32:443.
   d. Disable Encryption.
   e. Click Create.
4. Upon creating the ZTNA rules, two new entries are added to the Windows PC’s host file in folder C:\Windows\System32\drivers\etc. View the file, and observe the new entries for the virtual IP and FQDN pairing for each ZTNA connection rule.

   # ----- FORTICLIENT ZTNA VIP START -----  
   10.235.0.1 s27.qa.fortinet.com  
   10.235.0.2 s29.qa.fortinet.com  
   # ----- FORTICLIENT ZTNA VIP END -----  

5. The Windows PC now resolves the FQDNs to the virtual IPs, and FortiClient will listen to the traffic to these IPs and forward them to the TCP access proxy.
6. Have the remote user connect to the HTTPS and HTTP servers on a browser. After device verification, the user is able to successfully connect to the remote servers.

**ZTNA session-based form authentication**

Session-based form authentication for ZTNA allows users to log in through an authentication portal with support for multi-factor authentication (MFA). This added advantage over the basic type authentication method allows FortiToken MFA to be applied directly to FortiGate users. FortiToken MFA can be applied to local users or remote users. Session-based form authentication can also be applied to explicit and transparent web proxies.

**Example**

In this example, the FortiGate is configured with a ZTNA HTTPS access proxy to protect access to the web server. It uses session-based form authentication with cookies and auth-portal enabled. It connects to the internal Windows Active Directory using LDAPS for user authentication, and assigns FortiToken MFA to individual users.
Policy and Objects

This example assumes that the FortiGate EMS Fabric connector is already successfully connected.

**To configure the LDAP server:**

1. Go to *User & Authentication > LDAP Servers* and click *Create New*.
2. Configure the following settings:

<table>
<thead>
<tr>
<th>Name</th>
<th>LDAP-fortiad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server IP/Name</td>
<td>10.88.0.1</td>
</tr>
<tr>
<td>Server Port</td>
<td>389</td>
</tr>
<tr>
<td>Common Name Identifier</td>
<td>sAMAccountName</td>
</tr>
<tr>
<td>Distinguished Name</td>
<td>dc=fortiad,dc=info</td>
</tr>
<tr>
<td>Exchange server</td>
<td>Disable this setting.</td>
</tr>
<tr>
<td>Bind Type</td>
<td>Regular</td>
</tr>
<tr>
<td></td>
<td>Enter the Username and Password for LDAP binding and lookup.</td>
</tr>
<tr>
<td>Secure Connection</td>
<td>Enable and set the Protocol to LDAPS.</td>
</tr>
<tr>
<td>Certificate</td>
<td>Enable and select the CA certificate to validate the server certificate.</td>
</tr>
<tr>
<td>Server identity check</td>
<td>Optionally, enable to verify the domain name or IP address against the server certificate.</td>
</tr>
</tbody>
</table>

3. Click *Test Connectivity* to verify the connection to the server.
4. Click *OK*.

**To configure a user with FortiToken MFA:**

1. Go to *User & Authentication > User Definition* and click *Create New*.
2. Set *User Type* to *Remote LDAP User* and click *Next*.
3. Set *LDAP Server* to *LDAP-fortiad* and click *Next*.
4. For *Remote Users*, right-click on a user from the list under the corresponding OU and click *Add Selected*. In this example, the user *tsmith* under the *Marketing OU* is selected.
5. Click *Submit*. 
6. Double-click the new user, *tsmith*, to edit the settings.
7. Enable Two-factor Authentication. Select either FortiToken Cloud or FortiToken. In this example, FortiToken is selected with a mobile FortiToken available on this FortiGate.
8. Enter an *Email Address* for the user to get a token activation notification.
9. Click OK.

**To configure a user group:**

1. Go to *User & Authentication > User Groups* and click *Create New*.
2. Enter the name of the group, *FortiAD-MFA-group*.
3. Set *Type* to *Firewall*.
4. Click the + in the *Members* field and add the user, *tsmith*.
5. Click OK.

**To configure the authentication scheme:**

1. Go to *Policy & Objects > Authentication Rules* and click *Create New > Authentication Scheme*.
2. Enter the name, *ZTNA-Auth-scheme*.
3. Set *Method* to *Form-based*.
4. Set *User database* to *Other* and select the *LDAP-fortiad* LDAP server.
5. Enable Two-factor authentication.
6. Click OK.

**To configure the authentication rule:**

```
config authentication rule
 edit "ztna_form_rule"
 set srcaddr "all"
 set ip-based disable
 set active-auth-method "ZTNA-Auth-scheme"
 set web-auth-cookie enable
next
end
```

*By disabling ip-based, the rule is session-based, so web authentication cookies must be enabled.*

**To configure the ZTNA basic server settings in the GUI:**

Configuring the ZTNA server requires some settings that can only be configured in the CLI. The basic settings are configured in the GUI first, then the advanced CLI-only configurations are added after.

1. Go to *Policy & Objects > ZTNA* and select the ZTNA Servers tab.
2. Click *Create New*.
3. Enter the server name, *ZTNA_S1*.
4. Configure the network settings:
Policy and Objects

5. Select the Default certificate. Clients will be presented with this certificate when they connect to the access proxy VIP. In this example, the custom certificate, `ztna-wildcard` is selected.

6. Add server mapping:
   a. In the Service/server mapping table, click Create New.
   b. Set Service to HTTPS.
   c. Set Virtual Host to Any Host.
   d. Configure the path as needed.
   e. Add a server:
      i. In the Servers table, click Create New.
      ii. Set IP to 10.88.0.3.
      iii. Set Port to 9443.
      iv. Click OK to complete the server settings.
   f. Click OK to complete the HTTPS service mapping.

7. Click OK.

To configure the advanced authentication settings in the CLI:

The following steps are required to create a virtual host and to enable the authentication portal.

1. Create an access proxy virtual host that points to the ZTNA access proxy. The FQDN of the host must be able to resolve to the external address 10.0.3.10. The client will be redirected to this page for form authentication:

   ```
 config firewall access-proxy-virtual-host
 edit "auth-portal-vhost"
 set ssl-certificate "ztna-wildcard"
 set host "authportal.ztnademo.com"
 next
 end
   ```

2. Enable auth-portal on the access proxy and point it to the virtual host:

   ```
 config firewall access-proxy
 edit "ZTNA_S1"
 set auth-portal enable
 set auth-virtual-host "auth-portal-vhost"
 next
   ```

When `auth-virtual-host` is configured in the access proxy, it acts as a single sign-on (SSO) point. This means users will be authenticated once when accessing any domains or services in ZTNA_S1.

When `auth-virtual-host` is not configured, users will be re-authenticated for each domain or service in ZTNA_S1.
To apply the authentication to the ZTNA rule:

1. Go to Policy & Objects > ZTNA and select the ZTNA Rules tab.
2. Click Create New.
3. Enter the name, ZTNA_R1.
4. Set Incoming Interface to port3.
5. Set Source to all. This can also be set to specific IP addresses to only allow those addresses to connect to this HTTPS access proxy.
6. Click the + in the Source and from the User tab, select the FortiAD-MFA-group user group.
7. Click the + in the ZTNA Tag field and select the Low tag.
8. Set ZTNA Server to ZTNA_S1.
9. Set Destination to Webserver1, which is an address object for 10.88.0.3/32.
10. Configure the remaining options as needed.
11. Click OK.

Testing the connection

To test the remote access to the HTTPS access proxy with user authentication:

1. On the remote Windows PC, open FortiClient.
2. From the Zero Trust Telemetry tab, make sure that you are connected to the EMS server.
3. Open a browser and enter the address or FQDN of the server and the access port. In this example, https://webserver.ztnademo.com:9443 resolves to https://10.0.3.10:9443.
4. The browser prompts for the client certificate to use. Select the EMS signed certificate, then click OK.
5. The client is verified by the FortiGate to authenticate your identity.
6. Form authentication redirects you to the captive portal defined by the auth-virtual-host, authportal.ztnademo.com:9443. Enter your user credentials and FortiToken code.
7. After the user authentication passes, the FortiGate performs a posture check on the endpoint. When the posture check passes, you are allowed access to the website.

To verify the logs:

1. Verify the logged in users in the WAD daemon:

   ```
 # diagnose wad user list
 ID: 2, VDOM: root, IPv4: 10.0.3.2
 user name : tsmith
 worker : 1
 duration : 42
 auth_type : Session
 auth_method : Form
 pol_id : 1
 g_id : 4
 user_based : 0
 expire : no
 LAN:
 bytes_in=5117 bytes_out=302717
 WAN:
 bytes_in=304915 bytes_out=4407
   ```

2. Verify the endpoint information:

   ```
 # diagnose endpoint record list
 Record #1:
 IP Address = 10.0.3.2
 MAC Address = 02:09:0f:00:03:03
 MAC list = 02:09:0f:00:04:03;02:09:0f:00:03:03;
 VDOM = (-1)
 EMS serial number: FCTEMS8822000000
 Client cert SN: 5BDEE2D7B7FCA460D9CEC67B6F4D1FA33E3D281A
   ```
Public IP address: 67.249.72.215
Quarantined: no
Online status: online
Registration status: registered
On-net status: on-net
Gateway Interface:
FortiClient version: 7.0.2
AVDB version: 1.0
FortiClient app signature version: 13.364
FortiClient vulnerability scan engine version: 2.31
FortiClient UID: 9A016B5A6E914B42AD4168C066EB04CA
Host Name: WIN10-01
OS Type: WIN64
Host Description:
Domain: fortiad.info
Last Login User: tsmith

Number of Routes: (0)
online records: 1; offline records: 0; quarantined records: 0

3. Verify the detected tags on the endpoint:

    # diagnose test app fcnacd 7
    ZTNA Cache V2:
    Entry #1:
    - UID: 9A016B5A6E914B42AD4168C066EB04CA
    - EMS SN: FCCTEMS88020010000
    - Domain: fortiad.info
    - User: tsmith
    - Owner:
    - Certificate SN: 5BDEE2D7FCA46D9CEC67BBBFA33E3D281A
    - online: true
    - Tags (2):
      -- Tag (#0): all_registered_clients
      -- Tag (#1): Low
    "ls_idx_mask = 0x00000001,

4. Verify the ZTNA logs.
   - In the GUI, go to Log & Report > ZTNA Traffic.
   - In the CLI:

    # execute log filter category 0
    # execute log filter field subtype ztna
    # execute log display
    17 logs found.
    10 logs returned.

    1: date=2022-05-19 time=13:04:41 eventtime=1652990680922903215 tz="-0700"
    logid=0005000024 type="traffic" subtype="ztna" level="notice" vde="root"
    srcip=10.0.3.2 srcport=63111 srcintf="port3" srcintfrole="wan" dstcountry="Reserved"
    srccountry="Reserved" dstip=9.88.0.3 dstport=9443 dstintfrole="undefined"
    dstintfrole="undefined" sessionid=8313 service="tcp/9443" proto=6 action="accept"
    policyid=1 policymtype="proxy-policy" poluuid=b513a216-d7a9-51ec-7965-6ba166e99004"
    polycname="ZTNA_R1" duration=66 user="tsmith" group="FortiAD-MFA-group"
gatewayid=1
    vip="ZTNA_S1" accessproxy="ZTNA_S1" clientdeviceid=9A016B5A6E914B42AD4168C066EB04CA"
Migrating from SSL VPN to ZTNA

ZTNA can be used to replace VPN-based teleworking solutions to enhance the user experience and to increase security. A typical teleworking configuration may utilize SSL VPN tunnel or web portal mode with LDAP user authentication. Common objects defined for this setup can be reused when migrating to ZTNA, such as the remote LDAP server, user group, and address objects.

SSL VPN teleworking scenarios

SSL VPN tunnel mode access with LDAP user authentication

Remote users that are in the ALLOWED-VPN active directory group have access to a specific web server when they connect through the SSL VPN tunnel. The FortiGate enables split tunneling to the web server so that only traffic to that destination is routed through the tunnel. The web server hosts internal websites that are only accessible by employees.

SSL VPN web mode access with LDAP user authentication

Remote users that are in the ALLOWED-VPN active directory group have access to a specific web server when they connect through the SSL VPN web portal. The web server hosts internal websites that are only accessible by employees. The pre-defined bookmark to the internal website is the only site that allows remote access.

Common configurations

This section includes configurations for common objects used in the SSL VPN configuration that can be reused in the ZTNA deployment:

- LDAP server
- User group
- Firewall address for protected server
LDAP server

To configure an LDAP server:

```fortigate
config user ldap
 edit "WIN2K16-KLHOME-LDAPS"
 set server "192.168.20.6"
 set server-identity-check disable
 set cnid "sAMAccountName"
 set dn "dc=KLHOME,dc=local"
 set type regular
 set username "KLHOME\\Administrator"
 set password **********
 set secure ldaps
 set ca-cert "CA_Cert_1"
 set port 636
 next
end
```

User group

To configure the user group:

```fortigate
config user group
 edit "KLHOME-ALLOWED-VPN"
 set member "WIN2K16-KLHOME-LDAPS"
 config match
 edit 1
 set server-name "WIN2K16-KLHOME-LDAPS"
 set group-name "CN=ALLOWED-VPN,DC=KLHOME,DC=local"
 next
 next
next
end
```

Firewall address for protected server

Firewall addresses can be reused in the server settings for TCP forwarding configurations.

To configure the firewall address:

```fortigate
config firewall address
 edit "winserver"
 set subnet 192.168.20.6 255.255.255.255
 next
end
```

Migrating to ZTNA

The preceding simple SSL VPN tunnel and web mode teleworking solutions can be migrated to ZTNA configurations, providing device authentication using client certificates and additional security posture checks.
Instead of connecting to the SSL VPN tunnel or web portal, the remote user connects to the HTTPS access proxy that forwards traffic to the web server after authentication and security posture checks are completed. This provides granular control over who can access the web resource using role-based access control. It also gives the user transparent access to the website using only their browser.

Migrating to ZTNA includes the following steps:

1. Connecting to FortiClient EMS
2. Configuring ZTNA tags on FortiClient EMS
3. Configuring a VIP to allow remote users access to FortiClient EMS
4. Configuring the ZTNA server
5. Configuring the authentication scheme and rule
6. Configuring the ZTNA rules

**Connecting to FortiClient EMS**

The first step to configure ZTNA is to connect to and authorize a FortiClient EMS using the EMS connector. There are different ways to connect to an on-premise FortiClient EMS server and a FortiClient EMS Cloud. Refer to the first step of Configure a FortiClient EMS connector on page 974 for instructions.

**Configuring ZTNA tags on FortiClient EMS**

ZTNA tags and tagging rules define security posture checks that connecting devices must pass before they are allowed to access protected resources and applications. In the following example, a Zero Trust tagging rule is configured to detect if a virus file exists on an endpoint.

**To configure a Zero Trust tagging rule on the FortiClient EMS:**

1. Log in to the FortiClient EMS.
2. Go to Zero Trust Tags > Zero Trust Tagging Rules, and click Add.
3. In the Name field, enter Malicious-File-Detected.
4. In the Tag Endpoint As dropdown list, select Malicious-File-Detected.
   EMS uses this tag to dynamically group together endpoints that satisfy the rule, as well as any other rules that are configured to use this tag.
5. Click Add Rule then configure the rule:
   a. For OS, select Windows.
   b. From the Rule Type dropdown list, select *File* and click the + button.
   c. Enter a file name, such as C:\virus.txt.
   d. Click Save.
6. Click Save.

Configuring a VIP to allow remote users access to FortiClient EMS

A ZTNA solution requires users to be registered and connected to the FortiClient EMS server. When an EMS server is behind the FortiGate, a VIP needs to be defined to allow remote users access to register to the FortiClient EMS. The only port required to be forwarded is TCP/8013. This VIP also needs to be applied in a firewall policy to allow this traffic.

To configure a VIP to allow traffic to the EMS server:

1. Go to Policy & Objects > Virtual IPs and click Create New > Virtual IP.
2. Set Name to VIP-EMS.
3. Configure the VIP settings:
   a. Set Interface to port1.
   b. Set External IP address/range to 192.168.2.5.
   c. Set Map to to 192.168.20.10.
   d. Enable Port Forwarding.
   e. Set External service port to 8013.
   f. Set Map to IPv4 port to 8013.
4. Click OK.

To configure the firewall policy:

1. Go to Policy & Objects > Firewall Policy and click Create New.
2. Set Name to ZTNA-VIP.
3. Configure the policy settings:
   a. Set Incoming Interface to port1.
   b. Set Outgoing Interface to port3.
   c. Set Source to all.
   d. Set Destination to VIP-EMS.
   e. For Service, select an option that is for TCP/8013.
   f. Disable NAT.
   g. Configure the remaining options as needed.
4. Click OK.
Configuring the ZTNA server

The ZTNA server defines the external IP and port used for the FortiGate access proxy. It also defines the protected resources that can be accessed through the HTTPS access proxy or TCP forwarding access proxy. The following configuration defines a HTTPS access proxy for accessing the web server on 192.168.20.6.

To configure a ZTNA server for HTTPS access proxy:

1. Go to Policy & Objects > ZTNA and select the ZTNA Servers tab.
2. Click Create New.
3. Set Name to WIN2K16-P1.
4. Configure the network settings:
   a. Set External interface to port1.
   b. Set External IP to 192.168.2.86.
   c. Set External port to 8443.
5. Select the Default certificate. Clients will be presented with this certificate when they connect to the access proxy VIP.
6. Add server mapping:
   a. In the Service/server mapping table, click Create New.
   b. Set Service to HTTPS.
   c. Set Virtual Host to Any Host.
   d. Configure the path as needed. For example, to map to winserver.fgdocs.com/fortigate, enter /fortigate.
   e. Add a server:
      i. In the Servers table, click Create New.
      ii. Set IP to 192.168.20.6.
      iii. Set Port to 443.
      iv. Click OK.
f. Click OK.

7. Click OK.

**Configuring the authentication scheme and rule**

The authentication scheme defines the authentication method that is applied. In this example, basic HTTP authentication is used so that users are prompted for a username and password the first time that they connect to a website through the HTTPS access proxy. The LDAP server defined for the SSL VPN configurations can be reused here.

**To configure an authentication scheme:**

1. Go to Policy & Objects > Authentication Rules and click Create New > Authentication Scheme.
2. Set the name to ZTNA-Auth-scheme.
3. Set Method to Basic.
4. Set User database to Other and select WIN2K16-KLHOME-LDAPS as the LDAP server.
5. Click OK.

The authentication rule defines the proxy sources and destination that require authentication, and what authentication scheme is applied. In this example, active authentication through the basic HTTP prompt is used and applied to all sources.

**To configure an authentication rule:**

2. Set the name to ZTNA-Auth-rule.
3. Set Source Address to all.
4. Set Protocol to HTTP.
5. Enable Authentication Scheme and select ZTNA-Auth-scheme.
6. Click OK.

**Configuring the ZTNA rules**

A user or user group must be applied to the ZTNA rule used to control user access. The authenticated user from the authentication scheme and rule must match the user or user group in the ZTNA rule. The user group, KLHOME-
ALLOWED-VPN, defined in the SSL VPN configurations is reused in this example. The ZTNA tag, Malicious-File-Detected, is used to define a rule to deny access when the connecting device has the malicious file detected.

To configure ZTNA rules to allow and deny traffic based on ZTNA tags:

1. Go to Policy & Objects > ZTNA and select the ZTNA Rules tab.
2. Create a rule to deny traffic:
   a. Click Create New.
   b. Set Name to ZTNA-Deny-malicious.
   c. Set Incoming Interface to port1.
   d. Set Source to all, then click the + and from the User tab, select the KLHOME-ALLOWED-VPN group.
   e. Add the ZTNA tag Malicious-File-Detected. This tag is dynamically retrieved from EMS when the Zero Trust tagging rule is first created.
   f. Select the ZTNA server WIN2K16-P1.
   g. Set Action to DENY.
   h. Enable Log Violation Traffic.
   i. Click OK.
3. Create a rule to allow traffic:
   a. Click Create New.
   b. Set Name to proxy-WIN2K16-P1.
   c. Set Incoming Interface to port1.
   d. Set Source to all, then click the + and from the User tab, select the KLHOME-ALLOWED-VPN group. The Source can also be set to specific IP addresses to only allow those addresses to connect to this HTTPS access proxy.
   e. Add the ZTNA tag Low.
   f. Select the ZTNA server WIN2K16-P1.
   g. Set Action to ACCEPT.
   h. Configure the remaining options as needed.
   i. Click OK.
4. In the ZTNA Rules list, make sure that the deny rule (ZTNA-Deny-malicious) is above the allow rule (proxy-WIN2K16-P1).
Testing the connection

Once ZTNA is configured, connect to the FortiGate access proxy using an endpoint that is registered to EMS. The user should be prompted for their device certificate, username, and password the first time they connect. Once they have authenticated and they pass the security posture checks, they will be allowed to access the website.

See ZTNA HTTPS access proxy example on page 989 and ZTNA HTTPS access proxy with basic authentication example on page 996 for sample verifications and results.

Disabling the SSL VPN

Once testing is complete and the ZTNA servers and policies are configured, the users can be migrated to using ZTNA. Use the following checklist to verify if the remote users are ready to migrate:

1. The users have installed a supported FortiClient version and have installed the ZTNA module.
2. The endpoints can register to FortiClient EMS.
3. If using a TCP forwarding access proxy, ensure that ZTNA rules are either pushed from FortiClient EMS, or the users know how to configure them manually.

Next, SSL VPN access can be disabled in a phased approach by disabling SSL VPN firewall policies that allow access to resources that are accessible using ZTNA.

Once all applications and resources have been migrated, the SSL VPN can be disabled entirely by going to VPN > SSL-VPN Settings, and deselecting the Enable SSL-VPN toggle.

ZTNA scalability support for up to 50 thousand concurrent endpoints

ZTNA scalability supports up to 50 thousand concurrent endpoints. Communication between FortiOS and FortiClient EMS has efficient queries that request incremental updates. Retrieved device information can be written to the FortiClient NAC daemon cache.

FortiOS can receive tag information from the EMS common tags API. This feature requires FortiClient EMS 7.0.3 or later.


To use the common tags API capability:

1. Enable the common tags API when connecting the EMS:

   ```
 config endpoint-control fctems
 edit "local.ems"
 set server "10.6.30.213"
 set capabilities fabric-auth silent-approval websocket websocket-malware push-ca-certs common-tags-api
 next
 end
   ```

2. The FortiGate uses the new APIs to obtain device information from the EMS:

   ```
 [ec_ems_context_submit_work:414] Call submitted successfully.
 obj-id: 11, desc: REST API to get updates of tag endpoints., entry:
   ```
api/v1/report/fct/tags.
[ec_ems_context_submit_work:414] Call submitted successfully.
  obj-id: 12, desc: REST API to get updates of tags associated with FCT UID., entry:
api/v1/report/fct/uid_tags.
[ec_ez_worker_process:334] Processing call for obj-id: 11, entry:
"api/v1/report/fct/tags"
[ec_ez_worker_process:441] Call completed successfully.
  obj-id: 11, desc: "REST API to get updates of tag endpoints.", entry:
"api/v1/report/fct/uid_tags".
[ec_ez_worker_process:334] Processing call for obj-id: 12, entry:
"api/v1/report/fct/uid_tags"
[ec_ez_worker_process:441] Call completed successfully.
  obj-id: 12, desc: "REST API to get updates of tags associated with FCT UID.", entry:
"api/v1/report/fct/uid_tags".

3. Confirm that the device information from the EMS is written to the FortiClient NAC daemon cache:

   # diagnose endpoint record list

   ...
     Avatar source: OS
     Phone number:
     Number of Routes: (1)
     Gateway Route #0:
       - IP:10.1.91.6, MAC: 4f:8d:c2:73:dd:fe, Indirect: no
       - Interface:port2, VFID:1, SN: FG5H1E599999999
     online records: 37174; offline records: 0; quarantined records: 0; out-of-sync records: 0

4. Use the tags that are pulled from the EMS in a firewall address:

   config firewall address
     edit "FCTEMS8888888888_ZT_AD_MGMT"
     set type dynamic
     set sub-type ems-tag
     set obj-tag "ZT_AD_MGMT"
     set tag-type "zero_trust"
next
end

5. **Check the tags' resolved IP and MAC addresses:**

```
diagnose firewall fqdn getinfo-ip FCTEMS8888888888_ZT_AD_MGMT
getinfo FCTEMS8888888888_ZT_AD_MGMT id:114 generation:106 count:187 data_len:6160 flag 0
diagnose firewall fqdn getinfo-mac MAC_FCTEMS8888888888_ZT_AD_MGMT
getinfo MAC_FCTEMS8888888888_ZT_AD_MGMT id:163 generation:105 count:371 data_len:2226 flag 0
diagnose firewall dynamic address FCTEMS8888888888_ZT_AD_MGMT
CMDB name: FCTEMS8888888888_ZT_AD_MGMT
TAG name: ZT_AD_MGMT
FCTEMS8888888888_ZT_AD_MGMT: ID(114)
 ADDR(10.1.10.4)
 ADDR(10.1.99.195)
Total IP dynamic range blocks: 190.
Total IP dynamic addresses: 281.
diagnose firewall dynamic address MAC_FCTEMS8888888888_ZT_AD_MGMT
CMDB name: MAC_FCTEMS8888888888_ZT_AD_MGMT
TAG name: ZT_AD_MGMT
MAC_FCTEMS8888888888_ZT_AD_MGMT: ID(163)
 MAC(52:f1:9d:06:1c:db)
 MAC(4b:77:2b:db:82:15)
 MAC(df:6e:9e:d9:04:1e)
Total MAC dynamic addresses: 393.
```

**ZTNA troubleshooting and debugging**

The following debug commands can be used to troubleshoot ZTNA issues:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td># diagnose endpoint fctems test-connectivity &lt;EMS&gt;</td>
<td>Verify FortiGate to FortiClient EMS connectivity.</td>
</tr>
<tr>
<td># execute fctems verify &lt;EMS&gt;</td>
<td>Verify the FortiClient EMS's certificate.</td>
</tr>
<tr>
<td># diagnose test application fcnacd 2</td>
<td>Dump the EMS connectivity information.</td>
</tr>
<tr>
<td># diagnose debug app fcnacd -1</td>
<td>Run real-time FortiClient NAC daemon debugs.</td>
</tr>
<tr>
<td># diagnose debug enable</td>
<td>Run real-time FortiClient NAC daemon debugs.</td>
</tr>
<tr>
<td># diagnose endpoint record list &lt;ip&gt;</td>
<td>Show the endpoint record list. Optionally, filter by the endpoint IP address.</td>
</tr>
<tr>
<td># diagnose endpoint lls-comm send ztna find-uid &lt;uid&gt;</td>
<td>Query endpoints by client UID.</td>
</tr>
<tr>
<td># diagnose endpoint lls-comm send ztna find-ip-vdom &lt;ip&gt; &lt;vdom&gt;</td>
<td>Query endpoints by the client IP-VDOM pair.</td>
</tr>
<tr>
<td># diagnose wad dev query-by uid &lt;uid&gt;</td>
<td>Query from WAD diagnose command by UID.</td>
</tr>
</tbody>
</table>
## Command Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td># diagnose wad dev query-by ipv4 &lt;ip&gt;</td>
<td>Query from WAD diagnose command by IP address.</td>
</tr>
<tr>
<td># diagnose firewall dynamic list</td>
<td>List EMS ZTNA tags and all dynamic IP and MAC addresses.</td>
</tr>
<tr>
<td># diagnose test application fcnacd 7</td>
<td>Check the FortiClient NAC daemon ZTNA and route cache.</td>
</tr>
<tr>
<td># diagnose test application fcnacd 8</td>
<td></td>
</tr>
<tr>
<td># diagnose wad worker policy list</td>
<td>Display statistics associated with access proxy rules.</td>
</tr>
<tr>
<td># diagnose wad debug enable category all</td>
<td>Run real-time WAD debugs.</td>
</tr>
<tr>
<td># diagnose wad debug enable level verbose</td>
<td></td>
</tr>
<tr>
<td># diagnose debug enable</td>
<td></td>
</tr>
<tr>
<td># diagnose debug reset</td>
<td>Reset debugs when completed</td>
</tr>
</tbody>
</table>

The WAD daemon handles proxy related processing. The FortiClient NAC daemon (fcnacd) handles FortiGate to EMS connectivity.

### Troubleshooting usage and output

1. Verify the FortiGate to EMS connectivity and EMS certificate:
   ```
 # diagnose endpoint fctems test-connectivity WIN10-EMS
 Connection test was successful:
 # execute fctems verify WIN10-EMS
 Server certificate already verified.
 # diagnose test application fcnacd 2
 EMS context status:
 FortiClient EMS number 1:
 name: WIN10-EMS confirmed: yes
 fetched-serial-number: FCTEMS0000109188
 Websocket status: connected
   ```

2. If fcnacd does not report the proper status, run real-time fcnacd debugs:
   ```
 # diagnose debug app fcnacd -l
 # diagnose debug enable
   ```

3. Verify the following information about an endpoint:
   - Network information
   - Registration information
   - Client certificate information
   - Device information
   - Vulnerability status
   - Relative position with the FortiGate
# diagnose endpoint record list 10.6.30.214
Record #1:

- **IP Address**: 10.6.30.214
- **MAC Address**: 00:0c:29:ba:1e:61
- **MAC list**: 00:0c:29:ba:1e:61;00:0c:29:ba:1e:6b
- **VDOM**: root (0)
- **EMS serial number**: FCTEMS8821001322
- **Client cert SN**: 17FF6595600A1AF53B87627AB4EBEDD032593E64
- **Quarantined**: no
- **Online status**: online
- **Registration status**: registered
- **Gateway Interface**: port2
- **FortiClient version**: 7.0.0
- **AVDB version**: 84.778
- **FortiClient app signature version**: 18.43
- **FortiClient vulnerability scan engine version**: 2.30
- **FortiClient UID**: 5FCFA3ECDE4D478C911D9232EC9299FD
- **Host Name**: ADPC

```
Number of Routes: (1)
 Gateway Route #0:
 - IP:10.1.100.214, MAC: 00:0c:29:ba:1e:6b, Indirect: no
 - Interface:port2, VFID:0, SN: FG5H1E5819902474
```

4. **Query the endpoint information, include ZTNA tags, by UID or IP address:***

```
diagnose endpoint lls-comm send ztna find-uid 5FCFA3ECDE4D478C911D9232EC9299FD
UID: 5FCFA3ECDE4D478C911D9232EC9299FD
 status code:ok
 Domain: qa.wangd.com
 User: user1
 Cert SN:17FF6595600A1AF53B87627AB4EBEDD032593E64
 EMS SN: FCTEMS8821001322
 Routes(1):
 - route[0]: IP=10.1.100.214, VDom=root
 Tags(3):
 - tag[0]: name=ZT_OS_WIN
 - tag[1]: name=all_registered_clients
 - tag[2]: name=Medium

diagnose endpoint lls-comm send ztna find-ip-vdom 10.1.100.214 root
UID: 5FCFA3ECDE4D478C911D9232EC9299FD
 status code:ok
 Domain: qa.wangd.com
 User: user1
 Cert SN:17FF6595600A1AF53B87627AB4EBEDD032593E64
 EMS SN: FCTEMS8821001322
 Routes(1):
 - route[0]: IP=10.1.100.214, VDom=root
 Tags(3):
 - tag[0]: name=ZT_OS_WIN
 - tag[1]: name=all_registered_clients
 - tag[2]: name=Medium
```

5. **Query endpoint information from WAD by UID or IP address:**
Policy and Objects

# diagnose wad dev query-by uid 5FCFA3ECE4D478C911D9232EC9299FD
Attr of type=0, length=32, value(ascii)=5FCFA3ECE4D478C911D9232EC9299FD
Attr of type=4, length=30, value(ascii)=MAC_FCTEMS821001322_ZT_OS_WIN
Attr of type=4, length=26, value(ascii)=MAC_FCTEMS821001322_ZT_OS_WIN
Attr of type=4, length=43, value(ascii)=MAC_FCTEMS821001322_all_registered_clients
Attr of type=4, length=39, value(ascii)=FCTEMS821001322_all_registered_clients
Attr of type=4, length=27, value(ascii)=MAC_FCTEMS821001322_Medium
Attr of type=4, length=23, value(ascii)=FCTEMS821001322_Medium
Attr of type=5, length=18, value(ascii)=FOSQA@qa.wangd.com
Attr of type=6, length=40, value(ascii)=17FF6595600A1AF53B87627AB4EBEDD032593E64

# diagnose wad dev query-by ipv4 10.1.100.214
Attr of type=0, length=32, value(ascii)=5FCFA3ECE4D478C911D9232EC9299FD
Attr of type=4, length=30, value(ascii)=MAC_FCTEMS821001322_ZT_OS_WIN
Attr of type=4, length=26, value(ascii)=MAC_FCTEMS821001322_ZT_OS_WIN
Attr of type=4, length=43, value(ascii)=MAC_FCTEMS821001322_all_registered_clients
Attr of type=4, length=39, value(ascii)=FCTEMS821001322_all_registered_clients
Attr of type=4, length=27, value(ascii)=MAC_FCTEMS821001322_Medium
Attr of type=4, length=23, value(ascii)=FCTEMS821001322_Medium
Attr of type=5, length=18, value(ascii)=FOSQA@qa.wangd.com
Attr of type=6, length=40, value(ascii)=17FF6595600A1AF53B87627AB4EBEDD032593E64

6. List all the dynamic ZTNA IP and MAC addresses learned from EMS:

    # diagnose firewall dynamic list
List all dynamic addresses:
FCTEMS0000109188_all_registered_clients: ID(51)
   ADDR(172.17.194.209)
   ADDR(192.168.40.8)
...
FCTEMS0000109188_Low: ID(78)
   ADDR(172.17.194.209)
   ADDR(192.168.40.8)
...
FCTEMS0000109188_Malicious-File-Detected: ID(190)
   ADDR(172.17.194.209)
   ADDR(192.168.40.8)
...

7. Check the FortiClient NAC daemon ZTNA and route cache:

    # diagnose test application daemon fcnacd 7
ZTNA Cache:
-uid 5FCFA3ECE4D478C911D9232EC9299FD: { "tags": [ "ZT_OS_WIN", "all_registered_clients", "Medium" ], "domain": "qa.wangd.com", "user_name": "user1", "client_cert_sn": "17FF6595600A1AF53B87627AB4EBEDD032593E64", "owner": "FOSQA@qa.wangd.com", "gateway_route_list": [ { "gateway_info": [ "fgt_sn": "FG5H1E5819902474", "interface": "port2", "vdom": "root" ], "route_info": [ { "ip": "10.1.100.214", "mac": "00-0c-29-ba-1e-6b", "route_type": "direct" } ] } ], "ems_sn": "FCTEMS821001322" }

    # diagnose test application daemon fcnacd 8
IP-VFID Cache:
IP: 10.1.100.206, vfid: 0, uid: 3DED29B5438641E9888F2DCBD29BD21
IP: 10.1.100.214, vfid: 0, uid: 5FCFA3ECE4D478C911D9232EC9299FD

8. Troubleshoot WAD with real-time debugs to understand how the proxy handled a client request:

    # diagnose wad debug enable category all
    # diagnose wad debug enable level verbose
# diagnose debug enable

[0x7fd7a46bb60] Received request from client: 10.10.10.20:56312
GET / HTTP/1.1 Host: 192.168.2.86:8443 Connection: keep-alive Cache-Control: max-age=0 Upgrade-Insecure-Requests: 1 User-Agent: Mozilla/5.0 (Windows NT 10.02 Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36 Edg/89.0.774.57 Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,/*;q=0.8,application/signed-exchange;v=b3;q=0.9 Sec-Fetch-Site: none Sec-Fetch-Mode: navigate Sec-Fetch-User: ?1 Sec-Fetch-Dest: document Accept-Encoding: gzip, deflate, br Accept-Language: en-US,en;q=0.9

[p:29957][s:458767][r:1] wad_http_marker_uri(1269): path=/ len=1
[p:29957][s:458767][r:1] wad_http_parse_host(1641): host_len=17
[p:29957][s:458767][r:1] wad_http_parse_host(1677): len=12
[p:29957][s:458767][r:1] wad_http_parse_host(1868): len=4
[p:29957][s:458767][r:1] wad_http_str_canonicalize(2180): path=/ len=1 changes=0
[p:29957][s:458767][r:1] wad_http_str_canonicalize(2189): path=/ len=1 changes=0
[p:29957][s:458767][r:1] wad_http_normalize_uri(2232): host_len=12 path_len=1 query_len=0
[p:29957][s:458767][r:1] wad_vs_matcher_map_find(477): Empty matcher!
[p:29957][s:458767][r:1] wad_pattern_matcher_search(1210): pattern-match success:
[p:29957][s:458767][r:1] wad_http_req_exec_act(9296): dst_addr_type=3 wc_nontp=0 sec_web=1 web_cache=0 req_bypass=0
[p:29957][s:458767][r:1] wad_http_req_policy_set(6811): match pid=29957 policy-id=2 vd=0 in_if=3, out_if=7 10.10.10.20:56312 -> 192.168.20.6:443
[p:29957][s:458767][r:1] wad_cifs_profile_init(93): CIFS Profile 0x7fd7a5bf200 [] of type 0 created
[p:29957][s:458767][r:1] wad_auth_inc_user_count(1668): increased user count, quota:128000, n_shared_user:2, vd_used: 2, vd_max: 0, vd_guarantee: 0
[p:29957][s:458767][r:1] _wad_fmem_open(563): fmem=0xaabe3e8, fmem_name='cmem 336 bucket', elm_sz=336, block_sz=73728, overhead=20, type=advanced
[p:29957][s:458767][r:1] wad_hauth_user_node_hold(2107): wad_hauth_user_node_alloc (1568): holding node 0x7fd76d48060
mapping user node: 0x7fd76d48060, user_ip:0x7fd7a57b408(0), user:0x7fd7a5cf420(0)
[p:29957][s:458767][r:1] wad_hauth_user_node_hold(2107): wad_user_node_stats_hold (483): holding node 0x7fd76d48060
Always reset the debugs after using them:

```bash
diagnose debug reset
```
Security Profiles

This section contains information about configuring FortiGate security features, including:

- Inspection modes on page 1085
- Antivirus on page 1090
- Web filter on page 1124
- Filtering based on YouTube channel on page 1163
- DNS filter on page 1166
- Application control on page 1192
- Intrusion prevention on page 1205
- File filter on page 1227
- Email filter on page 1234
- Data leak prevention on page 1248
- VoIP solutions on page 1261
- ICAP on page 1284
- Web application firewall on page 1293
- SSL & SSH Inspection on page 1296
- Custom signatures on page 1310
- Overrides on page 1319

If you are unable to view a security profile feature, go to System > Feature Visibility to enable it.

Inspection modes

FortiOS supports flow-based and proxy-based inspection in firewall policies. You can select the inspection mode when configuring a policy.

Flow-based inspection takes a snapshot of content packets and uses pattern matching to identify security threats in the content.

Proxy-based inspection reconstructs content that passes through the FortiGate and inspects the content for security threats.

Certain security profiles allows users to display flow-based or proxy-based feature sets.

This following topics provide information about inspection modes for various security profile features:

- Flow mode inspection (default mode) on page 1086
- Proxy mode inspection on page 1086
- Inspection mode feature comparison on page 1088
Flow mode inspection (default mode)

When a firewall policy's inspection mode is set to flow, traffic flowing through the policy will not be buffered by the FortiGate. Unlike proxy mode, the content payload passing through the policy will be inspected on a packet by packet basis with the very last packet held by the FortiGate until the scan returns a verdict. If a violation is detected in the traffic, a reset packet is issued to the receiver, which terminates the connection, and prevents the payload from being sent successfully.

Flow-based inspection identifies and blocks security threats in real time as they are identified. All applicable flow-based security modules are applied simultaneously in one single pass, using Direct Filter Approach (DFA) pattern matching to identify possible attacks or threats. Pattern matching is offloaded and accelerated by CP8 or CP9 processors.

Flow-based inspection typically requires lower processing resources than proxy-based inspection and does not change packets, unless a threat is found and packets are blocked.

Use case

It is recommended to apply flow inspection to policies that prioritize traffic throughput, such as allowing connections to a streaming or file server.

For example, you have an application server that accepts connections from users for a daily quiz show app, HQ. Each HQ session sees 500,000+ participants, and speed is very important because participants have less than 10 seconds to answer the quiz show questions.

Proxy mode inspection

When a firewall policy's inspection mode is set to proxy, traffic flowing through the policy will be buffered by the FortiGate for inspection. This means that the packets for a file, email message, or web page will be held by the FortiGate until the entire payload is inspected for violations (virus, spam, or malicious web links). After FortiOS finishes the inspection, the payload is either released to the destination (if the traffic is clean) or dropped and replaced with a replacement message (if the traffic contains violations).

To optimize inspection, the policy can be configured to block or ignore files or messages that exceed a certain size. To prevent the receiving end user from timing out, you can apply client comforting. This allows small portions of the payload to be sent while it is undergoing inspection.

Proxy mode provides the most thorough inspection of the traffic; however, its thoroughness sacrifices performance, making its throughput slower than that of a flow mode policy. Under normal traffic circumstances, the throughput difference between a proxy-based and flow-based policy is not significant.
**Use case 1**

Your organization deals with sensitive data on a regular basis and a data leak would significantly harm your business. At the same time, you wish to protect your employees from malicious content, such as viruses and phishing emails, which could be used to gain access to your network and the sensitive data on your systems.

In this scenario, a proxy inspection policy is recommended to prioritize network security. You want traffic inspection to be as thorough as possible to avoid any data leaks from exiting the LAN and any malicious content from entering it. The policy would include antivirus, DLP, web, and email filters all operating in proxy mode.

**Use case 2**

You have a corporate mail server in your domain that is used by your employees for everyday business activities. You want to protect your employees from phishing emails and viruses. At the same time, you want to also protect your web servers from external attacks.

In this scenario, a proxy inspection policy is recommended to prioritize the safety of employee emails. Applying the antivirus and email filter in this mode allows you to filter out any malware and spam emails received by the mail servers via SMTP or MAPI. An IPS sensor would be used to prevent DOS attacks on the mail servers.
Inspection mode feature comparison

The following table shows which UTM profile can be configured on a flow mode or proxy mode inspection policy.

Some UTM profiles are hidden in the GUI and can only be configured using the CLI. To configure profiles in a firewall policy in CLI, enable the `utm-status` setting.

Some profiles might have feature differences between flow-based and proxy-based Inspection. From the GUI and CLI, you can set the Feature set option to be Flow-based or Proxy-based to display only the settings for that mode.

<table>
<thead>
<tr>
<th>UTM Profile</th>
<th>Flow Mode Inspection Policy</th>
<th>Proxy Mode Inspection Policy</th>
<th>Feature set option</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GUI</td>
<td>CLI</td>
<td>GUI</td>
</tr>
<tr>
<td>AntiVirus</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Web Filter</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DNS Filter</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Application Control</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Intrusion Prevention System</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>File Filter</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Email Filter</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Data Leak Prevention</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>VoIP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>ICAP</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Web Application Firewall</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>SSL/SSH Inspection</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The following sections outline differences between flow-based and proxy-based inspection for a security profile.

Feature comparison between Antivirus inspection modes

The following table indicates which Antivirus features are supported by their designated scan modes.

<table>
<thead>
<tr>
<th>Part 1</th>
<th>Replacement Message</th>
<th>Content Disarm</th>
<th>Mobile Malware</th>
<th>Virus Outbreak</th>
<th>Sandbox Post-Transfer Scanning</th>
<th>Sandbox Inline Scanning</th>
<th>NAC Quarantine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proxy</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Flow</td>
<td>Yes*</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

*IPS Engine caches the URL and a replacement message is presented after the second attempt.
### Feature comparison between Web Filter inspection modes

The following table indicates which Web Filter features are supported by their designated inspection modes.

<table>
<thead>
<tr>
<th></th>
<th>FortiGuard Category-Based Filter</th>
<th>Category Usage Quota</th>
<th>Override Blocked Categories</th>
<th>Search Engines</th>
<th>Static URL Filter</th>
<th>Rating Option</th>
<th>Proxy Option</th>
<th>Web Profile Override</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proxy</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Flow</td>
<td>Yes (1)</td>
<td>No</td>
<td>Yes (2)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Limited</td>
<td>No</td>
</tr>
</tbody>
</table>

1. Local Category and Remote Category filters do not support the warning and authenticate actions.
2. Local Category and Remote Category filters cannot be overridden.
3. Only HTTP POST Action is supported.

### Feature comparison between Email Filter inspection modes

The following tables indicate which Email Filters are supported by the specified inspection modes for local filtering and FortiGuard-assisted filtering.

<table>
<thead>
<tr>
<th>Local Filtering</th>
<th>Banned Word Check</th>
<th>Block/Allow List</th>
<th>HELO/ EHLO DNS Check</th>
<th>Return Address DNS Check</th>
<th>DNSBL/ORBL Check</th>
<th>MIME Header Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proxy</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Flow</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Feature comparison between DLP inspection modes

The following table indicates which DLP filters are supported by their designated inspection modes.

<table>
<thead>
<tr>
<th>Credit Card Filter</th>
<th>SSN Filter</th>
<th>Regex Filter</th>
<th>File-Type Filter</th>
<th>File-Pattern Filter</th>
<th>Fingerprint Filter</th>
<th>Watermark Filter</th>
<th>Encrypted Filter</th>
<th>File-Size Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proxy</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Flow</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

*File-size filtering only works if file size is present in the protocol exchange.

Antivirus

FortiOS offers the unique ability to implement both flow-based and proxy-based antivirus concurrently, depending on the traffic type, users, and locations. Flow-based antivirus offers higher throughput performance.

FortiOS includes two preloaded antivirus profiles:
- `default`
- `wifi-default`

You can customize these profiles, or you can create your own to inspect certain protocols, remove viruses, analyze suspicious files with FortiSandbox, and apply botnet protection to network traffic. Once configured, you can add the antivirus profile to a firewall policy.

This functionality requires a subscription to FortiGuard Antivirus.

The following topics provide information about antivirus profiles:
- Proxy mode stream-based scanning on page 1092
- Databases on page 1095
- Content disarm and reconstruction on page 1096
- FortiGuard outbreak prevention on page 1098
- External malware block list on page 1100
- Malware threat feed from EMS on page 1103
- Checking flow antivirus statistics on page 1106
- CIFS support on page 1108
- Using FortiSandbox post-transfer scanning with antivirus on page 1113
- Using FortiSandbox inline scanning with antivirus on page 1115
- Using FortiENDR inline scanning with antivirus on page 1121

**Protocol comparison between antivirus inspection modes**

The following table indicates which protocols can be inspected by the designated antivirus scan modes.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>HTTP</th>
<th>FTP</th>
<th>IMAP</th>
<th>POP3</th>
<th>SMTP</th>
<th>NNTP</th>
<th>MAPI</th>
<th>CIFS</th>
<th>SSH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proxy</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Flow</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

* Proxy mode antivirus inspection on CIFS protocol has the following limitations:
  - Cannot detect infections within some archive files.
  - Cannot detect oversized files.

**Other antivirus differences between inspection modes**

Starting from 6.4.0, the scan mode option is no longer available for flow-based AV.

This means that AV no longer exclusively uses the default or legacy scan modes when handling traffic on flow-based firewall policies. Instead, AV in flow-based policies uses a hybrid of the two scan modes. Flow AV may use a pre-filtering database for malware detection in some circumstances as opposed to the full AV signature database in others. The scan method is determined by the IPS engine algorithm that is based on the type of file being scanned. When handling oversized files in flow-based AV, the action can either be pass (default) or block. When the action is pass, IPS appends to-be-scan data into the AV scan buffer. If the appended file size exceeds the oversize-limit that is defined in the protocol option profile, then the AV session is cleared and the file is bypassed from AV scanning.

In contrast, proxy mode maintains the scan mode option, which can be toggled between default or legacy mode. In default mode, the WAD daemon receives the file and then decides if it can do an in-process scan of the file in simple AV configuration scenarios. If the file is in an oversized archive that is supported by the stream-based decompressor, then it is sent to stream-based scan for best effort inspection. Stream-based scan decompresses and scans the entire archive without archiving the file. If the file is not supported by stream-based scan, then it is buffered and then sent to the scanunit daemon for inspection on content that is under the oversize limit.

In legacy mode, stream-based scanning is disabled, so oversized archive files and files that cannot be handled by WAD in-process scan are buffered and sent to the scanunit daemon for processing.

**AI-based malware detection**

The AV Engine AI malware detection model integrates into regular AV scanning to help detect potentially malicious Windows Portable Executables (PEs) in order to mitigate zero-day attacks. Previously, this type of detection was handled by heuristics that analyzed file behavior. With AV Engine AI, the module is trained by FortiGuard AV against many malware samples to identify file features that make up the malware. The AV Engine AI package can be downloaded by FortiOS via FortiGuard on devices with an active AV subscription. The machine-learning-
Security Profiles

detection setting is enabled by default at a per-VDOM level. Files detected by the AV Engine AI are identified with the W32/Al.Pallas.Suspicious virus signature.

To configure machine learning-based malware detection:

```plaintext
config antivirus settings
 set machine-learning-detection {enable | monitor | disable}
end
```

Proxy mode stream-based scanning

In proxy mode, AV scanning is processed as follows:

1. File arrives in WAD for processing
2. Can the file be scanned by in-process scan?
   - Yes: default
   - No: Scan mode?
     - Legacy
     - Is AV engine AI scan enabled?
       - Yes: Is the file type supported?
         - Yes: Stream-based scan
         - No: Is the file supported by stream-based scan?
           - Yes: Is the file an oversized archive file?
             - Yes: Scanunit scan
             - No: WAD in-process scan
           - No: WAD in-process scan
     - No: WAD in-process scan
Can the file be scanned by in-process scan?

- This is determined by the WAD daemon.
- In-process scan can be used for simple AV configurations to quickly scan a file without handing it off to another process.
- The following, more complex feature sets cannot be processed by in-process scan:
  - AV engine AI scan
  - DLP
  - Quarantine
  - FortiGuard outbreak prevention and external block list
  - Content disarm

Scan mode?

- To configure the scan mode:
  
  ```batch
 config antivirus profile
 edit <name>
 set feature-set proxy
 set scan-mode {default | legacy}
 next
 end
  ```

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>Enable stream-based scanning (default).</td>
</tr>
<tr>
<td>legacy</td>
<td>Disable stream-based scanning.</td>
</tr>
</tbody>
</table>

Is AV engine AI scan enabled?

- When enabled, supported files (such as EXE, PDF, and MS Office) are forwarded to the scanunit scan.
- AV engine AI scan is enabled by default. To disable it:
  
  ```batch
 config antivirus settings
 set machine-learning-detection disable
 end
  ```

Is the file supported by stream-based scan?

- Stream-based scan supports the following archive file types: ZIP, GZIP, BZIP2, TAR, and ISO (ISO 9660).
- In FortiOS 7.0, stream-based scan is supported in HTTP(S), FTP(S), and SCP/SFTP.
- In FortiOS 6.4 and 6.2, stream-based scan is only supported in HTTP(S).
- Stream-based scan does not support HTTP POST.
- Stream-based scan is not supported when the following features are enabled:
  - DLP
  - Quarantine
  - FortiGuard outbreak prevention and external block list
  - Content Disarm
- If a file is not supported, it is buffered and sent to scanunit for scanning.
Is the file an oversized archive file?

- An oversized archive file is a compressed file that is oversized according to the following setting:

```plaintext
config firewall profile-protocol-options
edit <profile>
 config <protocol>
 set oversize-limit <size>
 end
next
end
```

- If the file is not oversized, it is buffered and sent to scanunit for scanning.

Notes

Stream-based scans:

- Are performed with no oversize limits on a best effort basis.
- Can inspect the contents of large archive files without buffering the entire file.
- Decompress and scan the entire archive.

Legacy scan mode:

- Used to disable stream-based scanning for troubleshooting purposes.
- Limited by the oversize and uncompressed-oversize limits:

```plaintext
config firewall profile-protocol-options
edit <profile>
 config <protocol>
 set oversize-limit <size>
 set uncompressed-oversize-limit <size>
 end
next
end
```

TCP windows

Some file transfer applications can negotiate large TCP windows. For example, WinSCP can negotiate an initial TCP window size of about 2 GB.

The TCP window options can be used to prevent overly large initial TCP window sizes, helping avoid channel flow control issues. It allows stream-based scan's flow control to limit peers from sending data that exceeds a policy's configured oversize limit.

To configure TCP window size options:

```plaintext
config firewall profile-protocol-options
edit <string>
 config {ftp | ssh}
 set stream-based-uncompressed-limit <integer>
 set tcp-window-type {system | static | dynamic}
 set tcp-window-size <integer>
 set tcp-window-minimum <integer>
 set tcp-window-maximum <integer>
```
Security Profiles

end
next
eend

| (ftp | ssh) | • ftp: Configure FTP protocol options.  
• ssh: Configure SFTP and SCP protocol options. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>stream-based-uncompressed-limit &lt;integer&gt;</td>
<td>The maximum stream-based uncompressed data size that will be scanned, in MB (default = 0 (unlimited)). Stream-based uncompression used only under certain conditions.).</td>
</tr>
</tbody>
</table>
| tcp-window-type {system | static | dynamic} | The TCP window type to use for this protocol.  
• system: Use the system default TCP window size for this protocol (default).  
• static: Manually specify the TCP window size.  
• dynamic: Vary the TCP window size based on available memory within the limits configured in tcp-window-minimum and tcp-window-maximum. |
| tcp-window-size <integer> | The TCP static window size (65536 - 33554432, default = 262144). This option is only available when tcp-window-type is static. |
| tcp-window-minimum <integer> | The minimum TCP dynamic window size (65536 - 1048576, default = 131072). This option is only available when tcp-window-type is dynamic. |
| tcp-window-maximum <integer> | The maximum TCP dynamic window size (1048576 - 33554432, default = 8388608). This option is only available when tcp-window-type is dynamic. |

Databases

The antivirus scanning engine uses a virus signatures database to record the unique attributes of each infection. The antivirus scan searches for these signatures and when one is discovered, the FortiGate determines if the file is infected and takes action.

All FortiGates have the normal antivirus signature database. Some models have additional databases that you can use. The database you use depends on your network and security needs, and on your FortiGate model.

The extended virus definitions database is the default setting and provides comprehensive antivirus protection. Low-end FortiGate models cannot support the extreme database. The FortiGate 300D is the lowest model that supports the extreme database. All VMs support the extreme database. The use-extreme-db setting is only available on models that support the extreme database.

**Extended**

This is the default setting. This database includes currently spreading viruses, as determined by the FortiGuard Global Security Research Team, plus recent viruses that are no longer active. These viruses may have been spreading within the last year but have since nearly or completely disappeared.

**Extreme**

This includes the extended database, plus a large collection of zoo viruses. These are viruses that have not spread in a long time and are largely dormant. Some zoo viruses might rely on operating systems and hardware that are no longer widely used.
To change the antivirus database:

config antivirus settings
  set use-extreme-db {enable | disable}
end

Content disarm and reconstruction

Content disarm and reconstruction (CDR) allows the FortiGate to sanitize Microsoft Office documents and PDF files (including those that are in ZIP archives) by removing active content, such as hyperlinks, embedded media, JavaScript, macros, and so on from the files (disarm) without affecting the integrity of its textual content (reconstruction). It allows network administrators to protect their users from malicious document files.

Files processed by CDR can be stored locally for quarantine on FortiAnalyzer, FortiSandbox, or FortiGate models with a hard disk. The original copies can also be obtained in the event of a false positive.

CDR is supported on HTTP, SMTP, POP3, and IMAP. Note that SMTP splice and client-comfort mode are not supported. CDR does not support flow-based inspection modes.

Sample topology

In this example, the a Microsoft Office document with an embedded hyperlink (that redirects to an external website) is sent to the receiver. When the user receives the file, the hyperlink in the document is deactivated.

To configure CDR:

1. Go to Security Profiles > AntiVirus.
2. Edit an antivirus profile, or create a new one.
3. Under APT Protection Options, enable Content Disarm and Reconstruction.

![Image of APT Protection Options]

4. Select a quarantine location from the available options:

<table>
<thead>
<tr>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FortiSandbox</td>
<td>Saves the original document file to a connected FortiSandbox.</td>
</tr>
<tr>
<td>File Quarantine</td>
<td>Saves the original document file to disk (if possible) or a connected FortiAnalyzer based on the FortiGate log settings (config log fortianalyzer setting).</td>
</tr>
<tr>
<td>Discard</td>
<td>The default setting, which discards the original document file.</td>
</tr>
</tbody>
</table>

5. Click OK.

To edit the CDR detection parameters:

By default, stripping of all active Microsoft Office and PDF content types are enabled. In this example, stripping macros in Microsoft Office documents will be disabled.

```bash
config antivirus profile
edit av
 config content-disarm
 set office-macro disable
 set detect-only {enable | disable}
 set cover-page {enable | disable}
 end
next
end
```

Where:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>detect-only</td>
<td>Only detect disarmable files, do not alter content. Disabled by default.</td>
</tr>
<tr>
<td>cover-page</td>
<td>Attach a cover page to the file's content when the file has been processed by CDR. Enabled by default.</td>
</tr>
</tbody>
</table>
FortiGuard outbreak prevention

FortiGuard Virus Outbreak Protection Service (VOS) allows the FortiGate antivirus database to be subsidized with third-party malware hash signatures curated by FortiGuard. The hash signatures are obtained from FortiGuard's Global Threat Intelligence database. The antivirus database queries FortiGuard with the hash of a scanned file. If FortiGuard returns a match, the scanned file is deemed to be malicious. Enabling the AV engine scan is not required to use this feature.

FortiGuard VOS can be used in both proxy-based and flow-based policy inspections across all supported protocols.

The FortiGate must be registered with a valid FortiGuard outbreak prevention license.

To verify FortiGuard antivirus license information:

1. Go to System > FortiGuard and locate the Outbreak Prevention section in the table.

2. See the instructions in the video, How to Purchase or Renew FortiGuard Services, if required.

To enable FortiGuard outbreak prevention:

1. Go to Security Profiles > AntiVirus.
2. Edit an antivirus profile, or create a new one.
4. Click OK.

To verify FortiGuard antivirus license information:

```
diagnose debug rating
Locale : english

Service : Web-filter
Status : Enable
License : Contract

Service : Antispam
Status : Disable
License : Contract
```

--- Server List (Tue Feb 19 16:36:15 2019) ---

<table>
<thead>
<tr>
<th>IP</th>
<th>Weight</th>
<th>RTT Flags</th>
<th>TZ</th>
<th>Packets</th>
<th>Curr Lost</th>
<th>Total Lost</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.100.185</td>
<td>-218</td>
<td>2 DI</td>
<td>-8</td>
<td>113</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19 16:35:55 2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To enable all scanunit debug categories:

```
diagnose sys scanunit debug all
Set meta-category: all(0xffffffff)
Enabled categories(0xffffffff): daemon job quarantine analytics outbreak-prevention dlp antispam file-filter

diagnose debug enable
su 4739 open
su 4739 req vfid 1 id 1 ep 0 new request, size 313, policy id 1, policy type 0
su 4739 req vfid 1 id 1 ep 0 received; ack 1, data type: 0
su 4739 job 1 request info:
su 4739 job 1 client 10.1.100.11:39412 server 172.16.200.44:80
su 4739 job 1 object_name 'zhvo_test.com'
su 4739 file-typing NOT WANTED options 0x0 file_filter no
su 4739 enable databases 0b (core mmdb extended)
su 4739 job 1 begin http scan
su 4739 scan file 'zhvo_test.com' bytes 68
su 4739 job 1 outbreak-prevention scan, level 0, filename 'zhvo_test.com'
su 4739 scan result 0
su 4739 job 1 end http scan
su 4739 job 1 inc pending tasks (1)
su 4739 not wanted for analytics: analytics submission is disabled (m 0 r 0)
su 4739 job 1 suspend
su 4739 outbreak-prevention recv error
su 4739 ftgd avquery id 0 status 1
su 4739 job 1 outbreak-prevention infected entryid=0
su 4739 report AVQUERY infection priority 1
su 4739 insert infection AVQUERY SUCCEEDED loc (nil) off 0 sz 0 at index 0 total infections 1 error 0
```
External malware block list

The external malware block list allows users to add their own malware signatures in the form of MD5, SHA1, and SHA256 hashes. The FortiGate's antivirus database retrieves an external malware hash list from a remote server and polls the hash list every n minutes for updates. Enabling the AV engine scan is not required to use this feature.

The external malware block list can be used in both proxy-based and flow-based policy inspections, but it is not supported in AV quick scan mode.

Note that using different types of hashes simultaneously may slow down the performance of malware scanning. It is recommended to use one type of hash.

To create the external block list:

1. Create the malware hash list.
   The malware hash list follows a strict format in order for its contents to be valid. Malware hash signature entries must be separated into each line. A valid signature needs to follow this format:

   # MD5 Entry with hash description
   aa67243f746e5d76f68ec809355ec234  md5_sample1

   # SHA1 Entry with hash description
   a57983cb39e25ab80d7d3dc05695dd0ee0e49766  sha1_sample2

   # SHA256 Entry with hash description
   ae9bc04c5639d977d720e4271da06b50f7c60d1e2070e9c75cc59ab30e49379  sha256_sample1

   # Entry without hash description
   0289b0d967cb7b1fb1451339c7b9818a621903090e0020366ab415c549212521

   # Invalid entries
   7688499dc71b932feb126347289c0b8a_md5_sample2
   7614e98badca10b5e2d08f8664c519b7a906fbd5180ea5d04a82fce9796a4b87sha256_sample3

2. Configure the external malware block list source:
   a. Go to Security Fabric > External Connectors and click Create New.
   b. Click Malware Hash.
   c. Configure the settings as needed. The URI must point to the malware hash list on the remote server.
   d. Click OK.
3. To view entries inside the malware block list on the External Connectors page, hover over the malware hash card and click View Entries.

To configure antivirus to use an external block list in the GUI:

1. Go to Security Profiles > AntiVirus and edit the antivirus profile.
2. In the Virus Outbreak Prevention section, enable Use external malware block list and click Specify.
3. Click the + in the field and select a threat feed.
4. Optionally, enable Quarantine.

5. Configure the other settings as needed.

6. Click OK.

To configure antivirus to use an external block list in the CLI:

```
config antivirus profile
 edit "Demo"
 set feature-set proxy
 set mobile-malware-db enable
 config http
 set av-scan disable
 set outbreak-prevention block
 set external-blocklist block
 set quarantine enable
 set emulator enable
 set content-disarm disable
 end
 config ftp
 set av-scan disable
 set outbreak-prevention block
 set external-blocklist block
 set quarantine enable
 set emulator enable
 end
 config imap
 set av-scan monitor
 set outbreak-prevention block
 set external-blocklist block
 set quarantine enable
 set emulator enable
 set executables default
end
```
Security Profiles

```plaintext
set content-disarm disable
end
config pop3
 set av-scan monitor
 set outbreak-prevention block
 set external-blocklist block
 set quarantine enable
 set emulator enable
 set executables default
 set content-disarm disable
end
config smtp
 set av-scan monitor
 set outbreak-prevention block
 set external-blocklist block
 set quarantine enable
 set emulator enable
 set executables default
 set content-disarm disable
end
config mapi
 set av-scan monitor
 set outbreak-prevention block
 set external-blocklist block
 set quarantine enable
 set emulator enable
 set executables default
end
config nntp
 set av-scan disable
 set outbreak-prevention disable
 set external-blocklist disable
 set quarantine disable
 set emulator enable
end
config cifs
 set av-scan monitor
 set outbreak-prevention block
 set external-blocklist block
 set quarantine enable
 set emulator enable
end
config ssh
 set av-scan disable
 set outbreak-prevention disable
 set external-blocklist disable
 set quarantine disable
 set emulator enable
end
set outbreak-prevention-archive-scan enable
set external-blocklist-enable-all disable
set external-blocklist "malhash1"
set av-virus-log enable
set av-block-log enable
set extended-log disable
set scan-mode default
```
Security Profiles

next
end

The quarantine setting is configured in each protocol (set quarantine). The malware threat feed is also specified (set external-blocklist-enable-all disable) to the threat connector, malhash1(set external-blocklist "malhash1").

To verify the scanunit daemon updated itself with the external hashes:

```
diagnose sys scanunit malware-list list
md5 'aa67243f746e5d76f68ec809355ec24' profile 'malhash1' description 'md5_sample1'
sha1 'a57983cb39e25ab80d7d3dc05695dd0ee0e49766' profile 'malhash1' description 'sha1_sample2'
sha256 '0289b0d967cb7b1fbl451339c7b9818a621903090e020366ab415c549212521' profile 'malhash1'
sha256 'ae9bc0b4c5639d977d720e4271da06b50f7c60d1e2070e9c75cc59ab30e49379' profile 'malhash1'
```

Malware threat feed from EMS

A FortiGate can pull malware threat feeds from FortiClient EMS, which in turn receives malware hashes detected by FortiClients. The malware hash can be used in an antivirus profile when AV scanning is enabled with block or monitor actions. This feature is supported in proxy and flow mode.

If an external malware blocklist and the FortiGuard outbreak prevention database are also enabled in the antivirus profile, the checking order is: AV local database, EMS threat feed, external malware blocklist, FortiGuard outbreak prevention database. If the EMS threat feed and external malware blocklist contain the same hash value, then the EMS infection will be reported if both of them are blocked.

To configure an EMS threat feed in an antivirus profile in the GUI:

1. Enable the EMS threat feed:
   a. Go to Security Fabric > Fabric Connectors and double-click the FortiClient EMS card.
   b. Enable EMS Threat Feed.
c. Configure the other settings if needed (see Configuring FortiClient EMS on page 2236 for more details).

d. Click OK.

2. Create the antivirus profile:
   a. Go to Security Profiles > AntiVirus and click Create New.
   b. In the Virus Outbreak Prevention section, enable Use EMS threat feed.
   c. Configure the other settings as needed.

d. Click OK.
To configure an EMS threat feed in an antivirus profile in the CLI:

1. Enable the EMS threat feed:

   ```
 config endpoint-control fctems
 edit "WIN10-EMS"
 set fortinetone-cloud-authentication disable
 set server "192.168.20.10"
 set https-port 443
 set source-ip 0.0.0.0
 set pull-sysinfo enable
 set pull-vulnerabilities enable
 set pull-avatars enable
 set pull-tags enable
 set pull-malware-hash enable
 unset capabilities
 set call-timeout 30
 set websocket-override disable
 next
 end
   ```

2. Create the antivirus profile:

   ```
 config antivirus profile
 edit "av"
 config http
 set av-scan block
 end
 config ftp
 set av-scan block
 end
 config imap
 set av-scan block
 end
 config pop3
 set av-scan block
 end
 config smtp
 set av-scan block
 end
 config cifs
 set av-scan block
 end
 set external-blocklist-enable-all enable
 set ems-threat-feed enable
 next
 end
   ```

Sample log

```
execute log filter category utm-virus
execute log display

1: date=2021-03-19 time=16:06:46 eventtime=1616195207055607417 tz="-0700" logid="0208008217" type="utm" subtype="virus" eventtype="ems-threat-feed" level="notice" vd="vd1" policyid=1 msg="Detected by EMS threat feed." action="monitored" service="HTTPS" sessionid=1005 srcip=10.1.100.24 dstip=172.16.200.214 srcport=54674 dstport=443 srcintf="port2" srcintfrole="undefined" dstintf="port1" dstintfrole="undefined" proto=6 direction="incoming"
```
Checking flow antivirus statistics

Two CLI commands are used for the antivirus statistics:

- diagnose ips av stats show
- diagnose ips av stats clear

SNMP uses an API to get the antivirus statistics.

To check flow antivirus statistics:

1. Create an antivirus profile:

   ```
 config antivirus profile
 edit "av-test"
 config http
 set av-scan monitor
 end
 config ftp
 set av-scan block
 set quarantine enable
 end
 next
 end
   ```

2. Enable the profile in a firewall policy:

   ```
 config firewall policy
 edit 1
 set name "policy1"
 set srcintf "port2"
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set utm-status enable
 set fsso disable
 set av-profile "av-test"
 set ssl-ssh-profile "custom-deep-inspection"
   ```
3. On the client PC, download the EICAR Standard Anti-Virus Test File via HTTP.

4. Check the antivirus statistics on the FortiGate. Since the action is set to monitor for HTTP, HTTP virus detected increases by 1:

```
diagnose ips av stats show
AV stats:
HTTP virus detected: 1
HTTP virus blocked: 0
SMTP virus detected: 0
SMTP virus blocked: 0
POP3 virus detected: 0
POP3 virus blocked: 0
IMAP virus detected: 0
IMAP virus blocked: 0
NNTP virus detected: 0
NNTP virus blocked: 0
FTP virus detected: 0
FTP virus blocked: 0
SMB virus detected: 0
SMB virus blocked: 0
```

5. On the client PC, download the EICAR file via FTP.

6. Check the antivirus statistics on the FortiGate. Since quarantine is enabled for FTP, FTP virus detected and FTP virus blocked increase by 1:

```
diagnose ips av stats show
AV stats:
HTTP virus detected: 1
HTTP virus blocked: 0
SMTP virus detected: 0
SMTP virus blocked: 0
POP3 virus detected: 0
POP3 virus blocked: 0
IMAP virus detected: 0
IMAP virus blocked: 0
NNTP virus detected: 0
NNTP virus blocked: 0
FTP virus detected: 1
FTP virus blocked: 1
SMB virus detected: 0
SMB virus blocked: 0
```

7. Check the antivirus statistics using an SNMP walk:

```
root:~# snmpwalk -c public -v 1 10.1.100.6 1.3.6.1.4.1.12356.101.8.2.1.1
iso.3.6.1.4.1.12356.101.8.2.1.1.1.1.1 = Counter32: 2 (fgAvVirusDetected)
iso.3.6.1.4.1.12356.101.8.2.1.1.1.2.1 = Counter32: 1 (fgAvVirusBlocked)
iso.3.6.1.4.1.12356.101.8.2.1.1.1.3.1 = Counter32: 1 (fgAvHTTPVirusDetected)
iso.3.6.1.4.1.12356.101.8.2.1.1.1.4.1 = Counter32: 0
iso.3.6.1.4.1.12356.101.8.2.1.1.5.1 = Counter32: 0
iso.3.6.1.4.1.12356.101.8.2.1.1.6.1 = Counter32: 0
iso.3.6.1.4.1.12356.101.8.2.1.1.7.1 = Counter32: 0
iso.3.6.1.4.1.12356.101.8.2.1.1.8.1 = Counter32: 0
```
Configure diagonal (fgAvFTPVirusBlocked)
Configure diagonal (fgAvFTPVirusDetected)

Optionally, set the antivirus statistics to zero:

# diagnose ips av stats clear

**CIFS support**

Antivirus scanning on Common Internet File System (CIFS) traffic is supported in flow-based and proxy-based inspection. The file filter profile handles the configuration of file filtering on CIFS. The antivirus profile handles the antivirus configuration for CIFS scanning.

File filtering for CIFS is performed by inspecting the first 4 KB of the file to identify the file’s magic number. If a match occurs, CIFS file filtering prevents the CIFS command that contains that file from running. The file filter functions differently for un-encrypted and encrypted CIFS traffic:

- For un-encrypted CIFS traffic, the standalone file filter works in flow and proxy mode.
- For encrypted CIFS traffic, the CIFS profile must be enabled in the firewall policy because the SMB server’s credential settings are still be configured in CIFS profile. Using the standalone file filter only works in proxy mode.

For a CIFS profile to be available for assignment in a policy, the policy must use proxy inspection mode. See Proxy mode inspection on page 1086 for details. Note that in proxy inspection mode, special condition archive files (encrypted, corrupted, mailbomb, and so on) marked by the antivirus engine are blocked automatically.

Messages that are compressed with LZNT1, LZ77, and LZ77+Huffman algorithms can be scanned in proxy mode.

**Configure file-type filtering and antivirus scanning on CIFS traffic**

To configure file-type filtering and antivirus scanning on CIFS traffic:

1. Configure a CIFS domain controller on page 1108
2. Configure a CIFS profile on page 1109
3. Configure an antivirus profile on page 1111

**Configure a CIFS domain controller**

The domain controller must be configured when CIFS traffic is encrypted. The configuration tells the FortiGate the network location of the domain controller and the superuser credentials.
To configure the CIFS domain controller:

```fortigate
config user domain-controller
 edit "SERVER_NAME"
 set hostname "host"
 set domain-name "EXAMPLE.COM"
 set username "admin-super"
 set password ********
 set ip 172.16.201.40
 next
end
```

**Configure a CIFS profile**

To create a CIFS profile, configure the server credential type and create a file filter profile.

**Set the CIFS server credential type**

The CIFS server credential type can be `none`, `credential-replication`, or `credential-keytab`.

- **none**
  
  The CIFS profile assumes the CIFS traffic is unencrypted. This is the default value.
  ```fortigate
 config firewall profile-protocol-options
 edit "cifs"
 config cifs
 set server-credential-type none
 end
 next
end
```

- **credential-replication**
  
  To decrypt CIFS traffic, FortiOS obtains the session key from the domain controller by logging in to the superuser account. The domain controller must be configured.
  ```fortigate
 config firewall profile-protocol-options
 edit "cifs"
 config cifs
 set server-credential-type credential-replication
 set domain-controller "SERVER_NAME"
 end
 next
end
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain-controller</td>
<td>The previously configured domain to decrypt CIFS traffic for.</td>
</tr>
<tr>
<td>credential-keytab</td>
<td>To decrypt CIFS traffic, FortiOS uses a series of keytab values. This method is used when the SMB connection is authenticated by Kerberos. Keytab entries must be configured, and are stored in FortiOS in plaintext.</td>
</tr>
</tbody>
</table>
Security Profiles

```
config firewall profile-protocol-options
 edit "cifs"
 config cifs
 set server-credential-type credential-keytab
 config server-keytab
 edit "keytab1"
 set keytab
 "BQIAABFAAEC0VYQU1QTEUuQ09NAAdleGFtcGxlAAAAAVUmAlwBABIAILdV5P6NXT8RrTvapcMJQxDYCjRQiD0Bzxh
wS9h0VgyM"
 next
 end
 end
end
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>keytab &lt;keytab&gt;</td>
<td>Base64 encoded keytab file containing the credentials of the server.</td>
</tr>
</tbody>
</table>

Configure CIFS file filtering

Multiple rules can be added to a file filter profile. See File filter on page 1227.

To configure a file filter for CIFS traffic:

```
config file-filter profile
 edit "cifs"
 set comment "block zip files on unencrypted cifs traffic"
 set feature-set flow
 set replacemsg-group ''
 set log enable
 config rules
 edit "rule1"
 set protocol cifs
 set action block
 set direction any
 set password-protected any
 set file-type zip
 next
 end
 end
end
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>comment &lt;string&gt;</td>
<td>A brief comment describing the entry.</td>
</tr>
<tr>
<td>feature-set {flow</td>
<td>proxy}</td>
</tr>
<tr>
<td>replacemsg-group &lt;string&gt;</td>
<td>Replacement message group.</td>
</tr>
<tr>
<td>log {enable</td>
<td>disable}</td>
</tr>
<tr>
<td>scan-archive-contents [enable</td>
<td>disable]</td>
</tr>
</tbody>
</table>
### Variable Description

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>protocol {http ftp smtp imap pop3 mapi cifs ssh}</td>
<td>Filter based on the specified protocol(s).</td>
</tr>
<tr>
<td>action {log-only</td>
<td>block}</td>
</tr>
<tr>
<td></td>
<td>* log-only: Allow the content and write a log message (default).</td>
</tr>
<tr>
<td></td>
<td>* block: Block the content and write a log message.</td>
</tr>
<tr>
<td>direction {incoming</td>
<td>outgoing</td>
</tr>
<tr>
<td>password-protected [yes</td>
<td>any]</td>
</tr>
<tr>
<td>file-type &lt;file_type&gt;</td>
<td>The file types to be matched. See Supported file types on page 1232 for details.</td>
</tr>
</tbody>
</table>

### Configure an antivirus profile

The antivirus profile handles the antivirus configuration for CIFS scanning.

**To configure an antivirus profile:**

```
config antivirus profile
 edit "av"
 ...
 config cifs
 set av-scan {disable | block | monitor}
 set outbreak-prevention {disable | block | monitor}
 set external-blocklist {disable | block | monitor}
 set quarantine {enable | disable}
 set archive-block {encrypted corrupted partiallycorrupted multipart nested mailbomb fileslimit timeout unhandled}
 set archive-log {encrypted corrupted partiallycorrupted multipart nested mailbomb fileslimit timeout unhandled}
 set emulator {enable | disable}
 end
 next
end
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>av-scan</td>
<td>Enable antivirus scan service:</td>
</tr>
<tr>
<td></td>
<td>* disable: Disable (default).</td>
</tr>
<tr>
<td></td>
<td>* block: Block the virus infected files.</td>
</tr>
<tr>
<td></td>
<td>* monitor: Log the virus infected files.</td>
</tr>
<tr>
<td>outbreak-prevention {disable</td>
<td>block</td>
</tr>
<tr>
<td></td>
<td>* disable: Disable (default).</td>
</tr>
<tr>
<td></td>
<td>* block: Block the matched files.</td>
</tr>
<tr>
<td></td>
<td>* monitor: Log the matched files.</td>
</tr>
<tr>
<td>external-blocklist {disable</td>
<td>block</td>
</tr>
<tr>
<td></td>
<td>* disable: Disable (default).</td>
</tr>
<tr>
<td></td>
<td>* block: Block the matched files.</td>
</tr>
</tbody>
</table>
### Security Profiles

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>Log the matched files.</td>
</tr>
<tr>
<td><strong>quarantine</strong> (enable</td>
<td>Enable/disable quarantine for infected files (default = disable).</td>
</tr>
<tr>
<td><strong>archive-block</strong> {encrypted corrupted partiallycorrupted multipart nested mailbomb fileslimit timeout unhandled}</td>
<td>Select the archive types to block:</td>
</tr>
<tr>
<td></td>
<td>- encrypted: Block encrypted archives.</td>
</tr>
<tr>
<td></td>
<td>- corrupted: Block corrupted archives.</td>
</tr>
<tr>
<td></td>
<td>- partiallycorrupted: Block partially corrupted archives.</td>
</tr>
<tr>
<td></td>
<td>- multipart: Block multipart archives.</td>
</tr>
<tr>
<td></td>
<td>- nested: Block nested archives.</td>
</tr>
<tr>
<td></td>
<td>- mailbomb: Block mail bomb archives.</td>
</tr>
<tr>
<td></td>
<td>- fileslimit: Block exceeded archive files limit.</td>
</tr>
<tr>
<td></td>
<td>- timeout: Block scan timeout.</td>
</tr>
<tr>
<td></td>
<td>- unhandled: Block archives that FortiOS cannot open.</td>
</tr>
<tr>
<td><strong>archive-log</strong> {encrypted corrupted partiallycorrupted multipart nested mailbomb fileslimit timeout unhandled}</td>
<td>Select the archive types to log:</td>
</tr>
<tr>
<td></td>
<td>- encrypted: Log encrypted archives.</td>
</tr>
<tr>
<td></td>
<td>- corrupted: Log corrupted archives.</td>
</tr>
<tr>
<td></td>
<td>- partiallycorrupted: Log partially corrupted archives.</td>
</tr>
<tr>
<td></td>
<td>- multipart: Log multipart archives.</td>
</tr>
<tr>
<td></td>
<td>- nested: Log nested archives.</td>
</tr>
<tr>
<td></td>
<td>- mailbomb: Log mail bomb archives.</td>
</tr>
<tr>
<td></td>
<td>- fileslimit: Log exceeded archive files limit.</td>
</tr>
<tr>
<td></td>
<td>- timeout: Log scan timeout.</td>
</tr>
<tr>
<td></td>
<td>- unhandled: Log archives that FortiOS cannot open.</td>
</tr>
<tr>
<td><strong>emulator</strong> (enable</td>
<td>Enable/disable the virus emulator (default = enable).</td>
</tr>
</tbody>
</table>

### Log samples

File-type detection events generated by CIFS profiles are logged in the `utm-cifs` log category. Antivirus detection over the CIFS protocol generates logs in the `utm-virus` category. See the FortiOS Log Message Reference for more information.

#### Logs generated by CIFS profile file filter:

```
date=2019-03-28 time=10:39:19 logid="1800063001" type="utm" subtype="cifs" eventtype="cifs-filefilter" level="notice" vd="vdom1" eventtime=1553794757 msg="File was detected by file filter." direction="incoming" action="passthrough" service="CIFS" srcip=10.1.100.11 dstip=172.16.200.44 srcport=33372 dstport=445 srcintf="wan2" srcintfrole="wan" dstintf="wan1" dstintfrole="wan" policyid=1 proto=16 profile="cifs" filesize="1154" filename="virus\test.png" filtername="2" filetype="png"
```

```
date=2019-03-28 time=10:39:12 logid="1800063001" type="utm" subtype="cifs" eventtype="cifs-filefilter" level="notice" vd="vdom1" eventtime=1553794751 msg="File was detected by file filter." direction="incoming" action="passthrough" service="CIFS" srcip=10.1.100.11 dstip=172.16.200.44 srcport=33370 dstport=445 srcintf="wan2" srcintfrole="wan" dstintf="wan1" dstintfrole="wan" policyid=1 proto=16 profile="cifs" filesize="81975" filename="virus\screen.png" filtername="2" filetype="png"
```
Logs generated by AV profile for infections detected over CIFS:

date=2019-04-09 time=15:19:02 logid=0204008202 type=utm subtype=virus eventtype=outbreak-prevention level=warning vd=vdom1 eventtime=1554848342519005401 msg="Blocked by Virus Outbreak Prevention service." action="blocked" service="SMB" sessionid=177 srcip=10.1.100.11 dstip=172.16.200.44 srcport=37444 dstport=445 srcintf="wan2" dstintf="wan" policyid=1 proto=6 direction="incoming" filename="outbreak\zhvo_test.com" quarskip="File-was-not-quarantined." virus="EICAR_TEST_FILE" filehash="503e99fe40e120c45bc9a30835e7256fff3e46a" dtype="File Hash" analyticssubmit="false" crscore=50 craction=2 crlevel="critical"

date=2019-04-09 time=15:18:59 logid=0211008192 type=utm subtype=virus eventtype=injected level=warning vd=vdom1 eventtime=1554848339909808987 msg="File is infected." action="blocked" service="SMB" sessionid=174 srcip=10.1.100.11 dstip=172.16.200.44 srcport=37444 dstport=445 srcintf="wan2" dstintf="wan" policyid=1 proto=6 direction="incoming" filename="sample\elicar.com" quarskip="File-was-not-quarantined." virus="EICAR_TEST_FILE" dtype="Virus" ref="http://www.fortinet.com/ve?vn=EICAR_TEST_FILE" virusid=2172 profile="av" analyticssubmit="false" crscore=50 craction=2 crlevel="critical"

Using FortiSandbox post-transfer scanning with antivirus

Antivirus profiles can submit potential zero-day viruses to FortiSandbox for inspection. Based on FortiSandbox's analysis, the FortiGate can supplement its own antivirus database with FortiSandbox's threat intelligence to detect files determined as malicious or suspicious. This augments the FortiGate antivirus with zero-day detection.

FortiSandbox can be used with antivirus in both proxy-based and flow-based inspection modes. The FortiGate first examines the file for any known viruses. When a match is found, the file is tagged as known malware. If no match is found, the files are forwarded to FortiSandbox using the following options:

- **All Supported Files**: all files matching the file types defined in the scan profile of the FortiSandbox are forwarded.
- **Suspicious Files Only**: files classified by the antivirus as having any possibility of active content are forwarded to FortiSandbox. When using FortiGate Cloud Sandbox, we recommend selecting this option due to its submission limits.
- **None**: files are not forwarded to FortiSandbox.

For more information, see Configuring Sandboxing on page 2230.
To enable FortiSandbox inspection in an antivirus profile:

1. Go to Security Profiles > AntiVirus.
2. Create, edit, or clone an antivirus profile.
3. In the APT Protection Options section, set Send Files to FortiSandbox for Inspection to either Suspicious Files Only or All Supported Files.
4. Optionally, for Do not submit files matching types, click the + to exclude certain file types from being sent to FortiSandbox.
5. Optionally, for Do not submit files matching file name patterns, click the + to enter a wildcard pattern to exclude files from being sent to FortiSandbox.

6. Enable Use FortiSandbox Database.
7. Click OK.

FortiGate diagnostics

To view the detection count:

```bash
diagnose test application quarantined 7
Total: 0
Statistics:
 vfid: 0, detected: 2, clean: 1252, risk_low: 6, risk_med: 2, risk_high: 1, limit_reached:0
```

To verify the address is configured correctly:

```bash
diagnose test application quarantined 1
...
fortisandbox-fsb1 is enabled: analytics, realtime=yes, taskfull=no
addr=172.18.52.154/514, source-ip=0.0.0.0, keep-alive=no. ssl_opt=3, hmac_alg=0
...
```
To run the diagnostics for real-time debugging:

```
diagnose debug application quarantined -1
diagnose debug enable
```

To check the FortiGate Cloud server status:

```
diagnose test application forticldd 3
...
 Active APTSrvr status: up
```

To view FortiGate Cloud Sandbox submission statistics for advanced debugging:

```
diagnose test application quarantined 2
```

**FortiSandbox diagnostics**

To run the OFTP debug for advanced debugging:

```
diagnose-debug device <client serial number>
```

**Using FortiSandbox inline scanning with antivirus**

FortiSandbox inline scanning can be used in proxy inspection mode. When inline scanning is enabled, the client’s file is held while it is sent to FortiSandbox for inspection. During this time, the FortiGate may apply client comforting (see Protocol options on page 916). For example, leaking a certain amount of bytes at a certain time interval to the client. Once a verdict is returned, the appropriate action (allow or block) is performed on the held file. If there is an error connecting to the FortiSandbox or a timeout on the FortiSandbox scanning the file within the default 50 seconds, the file can be passed, logged, or blocked based on FortiGate’s configuration.

Inline scanning requires a FortiSandbox appliance running version 4.2 or later, and the FortiSandbox must be reachable by port 4443. This feature is not supported on FortiSandbox Cloud or FortiGate Cloud Sandbox. See Understanding Inline Block feature in the FortiSandbox Best Practices for more information.

---

FortiSandbox inline scanning is disabled by default. FortiSandbox inline scanning is best used in conjunction with AV engine scanning since there is a higher rate of detection by using both at the same time.

---

To enable FortiSandbox inline scanning:

```
config system fortisandbox
 set status enable
 set inline-scan {enable | disable}
 set server <fortisandbox_server_ip>
end

To configure the FortiSandbox scanning options in an antivirus profile:

```
config antivirus profile
  edit <name>
```
set fortisandbox-mode {inline | analytics-suspicious | analytics-everything}
set fortisandbox-error-action {ignore | log-only | block}
set fortisandbox-timeout-action {ignore | log-only | block}
set fortisandbox-max-upload <integer>
config {http | ftp | imap | pop3 | smtp | mapi | cifs | ssh}
 set av-scan {disable | block | monitor}
 set fortisandbox {disable | block | monitor}
end
next
end

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fortisandbox-mode</td>
<td>Set the FortiSandbox scan mode:</td>
</tr>
<tr>
<td>inline</td>
<td>inline: FortiSandbox inline scanning</td>
</tr>
<tr>
<td>analytics-suspicious</td>
<td>analytics-suspicious: FortiSandbox post-transfer scanning; submit supported files if heuristics or other methods determine they are suspicious</td>
</tr>
<tr>
<td>analytics-everything</td>
<td>analytics-everything: FortiSandbox post-transfer scanning; submit supported files and known infected files (default)</td>
</tr>
<tr>
<td>fortisandbox-error-action</td>
<td>Set the action to take if FortiSandbox inline scanning encounters an error reaching the FortiSandbox:</td>
</tr>
<tr>
<td>ignore</td>
<td>ignore: take no action</td>
</tr>
<tr>
<td>log-only</td>
<td>log-only: log the FortiSandbox inline scan error, but allow the file (default)</td>
</tr>
<tr>
<td>block</td>
<td>block: block the file upon FortiSandbox inline scan error</td>
</tr>
<tr>
<td>fortisandbox-timeout-action</td>
<td>Set the action to take if FortiSandbox inline scanning encounters a scan timeout:</td>
</tr>
<tr>
<td>ignore</td>
<td>ignore: take no action</td>
</tr>
<tr>
<td>log-only</td>
<td>log-only: log the FortiSandbox inline scan timeout, but allow the file (default)</td>
</tr>
<tr>
<td>block</td>
<td>block: block the file upon FortiSandbox inline scan timeout</td>
</tr>
<tr>
<td>fortisandbox-max-upload</td>
<td>Set the maximum size of files that can be uploaded to FortiSandbox (1 - 396, default = 10).</td>
</tr>
<tr>
<td>av-scan {disable</td>
<td>block</td>
</tr>
</tbody>
</table>

Basic configuration

This example assumes that Inline Block Policy is already enabled in FortiSandbox for the FortiGate with selected risk levels (see FortiGate devices in the FortiSandbox Administration Guide for more information). The inline block policy in this example blocks all risk levels: malicious, high risk, medium risk, and low risk.
To configure FortiSandbox inline scanning in the GUI:

1. Enable FortiSandbox inline scanning globally:

   ```bash
   config system fortisandbox
   set status enable
   set inline-scan enable
   set server "172.18.70.76"
   end
   ```

2. Configure the antivirus profile:
 a. Go to Security Profiles > AntiVirus and click Create New.
 b. Set the Feature set to Proxy-based.
 c. Enable the protocols to inspect.
 d. Enable AntiVirus scan and set it to Block.
 e. Enable Send files to FortiSandbox for inspection and set the Action to Block. The Scan strategy appears as Inline because it was configured in the CLI.
f. Click OK.

To configure FortiSandbox inline scanning in the CLI:

1. Enable FortiSandbox inline scanning globally:

   ```
   config system fortisandbox
   set status enable
   set inline-scan enable
   set server "172.18.70.76"
   end
   ```

2. Configure the antivirus profile:

   ```
   config antivirus profile
   edit "Inline_scan_demo"
   set feature-set proxy
   set fortisandbox-mode inline
   config http
   set av-scan block
   set fortisandbox block
   end
   config ftp
   set av-scan block
   set fortisandbox block
   end
   config imap
   set av-scan block
   set fortisandbox block
   ```
Security Profiles

end
config pop3
 set av-scan block
 set fortisandbox block
end
config smtp
 set av-scan block
 set fortisandbox block
end
config mapi
 set av-scan block
 set fortisandbox block
end
config cifs
 set av-scan block
 set fortisandbox block
end
config ssh
 set av-scan block
 set fortisandbox block
end
next
end

To verify that infected files are blocked inline:

1. On a client, open a web browser and download an infected file.
2. The file is held while being scanned by FortiSandbox. Once FortiSandbox determines that file’s risk level is not tolerated by the inline block policy, the FortiGate drops the connection and displays a replacement message that the file cannot be downloaded.

![High Security Alert]

3. In FortiOS, view the antivirus log.
 - In the GUI, go to Log & Report > Security Events and click the AntiVirus card.
 - In the CLI:

```
  # execute log filter category 2
  # execute log display
  1 logs found.
  1 logs returned.

  1: date=2022-03-23 time=16:19:37 eventtime=1648077577156255080 tz="-0700"
```
logid="0210008232" type="utm" subtype="virus" eventtype="fortisandbox" level="warning" vd="vdom1" policyid=1 poluuuid="9170ca3e-aade-51ec-772b-1d31f135fe26" policytype="policy" msg="Blocked by FortiSandbox." action="blocked" service="HTTP" sessionid=10545 srcip=10.1.100.181 dstip=172.16.200.184 srcport=37046 dstport=80 srccountry="Reserved" dstcountry="Reserved" srcintf="port1" srcintfrole="undefined" dstintf="port9" dstintfrole="undefined" srcuuid="5b426c60-aade-51ec-f020-b3d334ba18d3" dstuuid="5b426c60-aade-51ec-f020-b3d334ba18d3" proto=6 direction="incoming" filename="skip_vm.vXE" quarskip="File-was-not-quarantined" virus="Trojan" viruscat="Unknown" dtype="fortisandbox" ref="http://www.fortinet.com/ve?vn=Trojan" virusid=0 url="http://172.16.200.184/sandbox/inline/skip_vm.vXE" profile="Inline_scan_demo" agent="curl/7.68.0" httpmethod="GET" analyticssubmit="false" fsaaction="deny" fsaseverity="high-risk" fsaverdict="block" fsafileid=0 fsafiletype="exe" crscore=50 craction=2 crlevel="critical"

Configuration with FortiSandbox scanning error and timeout actions

In this example, the HTTP protocol settings for av-scan and fortisandbox in the AV profile are both set to block. All files traversing HTTP in this configuration are scanned by the AV engine first, and then by FortiSandbox inline scanning for further file analysis. Based on the FortiSandbox results, FortiOS will take the appropriate action.

Files can be blocked if they contain a scan error or timeout. The scan timeout is configured in FortiSandbox and set to 50 seconds. If the file scan takes longer than 50 seconds, FortiSandbox returns a timeout to the FortiGate, and file is dropped with the current configuration. If a user tries to download the same file again, the cached result is provided by FortiSandbox to the FortiGate based on the previous file scan.

This example assumes FortiSandbox inline scanning has been configured globally. The FortiGate will block the file if there is an inline scanning error or timeout.

To configure the antivirus profile to block files if there is an inline scanning error or timeout:

```plaintext
config antivirus profile
  edit "av"
    set feature-set proxy
    set fortisandbox-mode inline
  config http
    set av-scan block
    set fortisandbox block
  end
  set fortisandbox-error-action block
  set fortisandbox-timeout-action block
next
end
```

If the administrator decides to take more risk and scan all files traversing HTTP, but log or ignore an inline scanning error or timeout, the profile is modified as follows:

```plaintext
config antivirus profile
  edit "av"
    set fortisandbox-error-action {log-only | ignore}
    set fortisandbox-timeout-action {log-only | ignore}
next
end
```
The AV engine is still used first, followed by FortiSandbox inline scanning. The FortiGate will log or ignore the file if there is an inline scanning error or timeout, and the file is allowed to pass through.

Using FortiNDR inline scanning with antivirus

FortiNDR (formerly FortiAI) can be used with antivirus profiles in proxy inspection mode (flow mode is currently not supported). FortiNDR inspects high-risk files and issues a verdict to the firewall based on how close the file features match those of malware. When enabled, FortiNDR can log, block, ignore, or monitor (allow) the file based on the verdict.

Traffic is blocked when verdict is infected/risky
Traffic containing an unidentified file passes through FortiGate
Traffic is passed when verdict is clean

A licensed FortiNDR appliance with version 1.5.1 or later is required to use this feature.

To configure FortiNDR inline inspection with an AV profile:

1. Configure FortiNDR to join a Security Fabric in FortiOS (see Configuring FortiNDR on page 2257).
2. In the FortiNDR CLI, enable inline inspection:
   ```
   config system fortindr
   set status enable
   end
   ```
3. Configure an AV profile in FortiOS to use inline inspection and block detected infections:
   ```
   config antivirus profile
   edit "av"
   set feature-set proxy
   config http
   ```
Security Profiles

```fortran
set fortindr block
end
config ftp
  set fortindr block
end
config imap
  set fortindr block
end
config pop3
  set fortindr block
end
config smtp
  set fortindr block
end
config mapi
  set fortindr block
end
config nntp
  set fortindr block
end
config cifs
  set fortindr block
end
config ssh
  set fortindr block
end
next
end
```

4. Add the AV profile to a firewall policy. When potential infections are blocked by FortiNDR inline inspection, a replacement message appears (see Replacement messages on page 2136 for more information). An infection blocked over HTTP looks similar to the following:

![Sample log](http://www.fortinet.com/ve?utm_medium%3Demail&utm_source=FortiNDR&utm_campaign=FortiNDR-
"action="monitored" service="HTTP" sessionid=13312 srcip=10.1.100.221 dstip=172.16.200.224 srcport=50792 dstport=80 srcintf="wan2" srcintfrole="wan" dstintfrole="wan" proto=6 direction="incoming"

Sample log

```
date=2021-04-29 time=15:12:07 eventtime=16197327633022960 tz="-0700" logid=0209008221 type="utm" subtype="virus" eventtype="fortindr" level="notice" vd="vd01" policyid=1 msg="Detected by FortiNDR." action="monitored" service="HTTP" sessionid=13312 srcip=10.1.100.221 dstip=172.16.200.224 srcport=50792 dstport=80 srcintf="wan2" srcintfrole="wan" dstintfrole="wan" proto=6 direction="incoming"
```
FortiNDR inline inspection with other AV inspection methods

The following inspection logic applies when FortiNDR inline inspection is enabled simultaneously with other AV inspection methods. The AV engine inspection and its verdict always takes precedence because of performance. The actual behavior depends on which inspected protocol is used.

HTTP, FTP, SSH, and CIFS protocols:

1. AV engine scan; AV database and FortiSandbox database (if applicable).
 a. FortiNDR inline inspection occurs simultaneously.
2. AV engine machine learning detection for WinPE PUPs (potentially unwanted programs).
 a. FortiNDR inline inspection occurs simultaneously.
3. Outbreak prevention and external hash list resources.
 a. FortiNDR inline inspection occurs simultaneously.

If any AV inspection method returns an infected verdict, the FortiNDR inspection is aborted.

POP3, IMAP, SMTP, NNTP, and MAPI protocols:

1. AV engine scan; AV database and FortiSandbox database (if applicable).
2. AV engine machine learning detection for WinPE PUPs (potentially unwanted programs).
 a. FortiNDR inline inspection occurs simultaneously.
3. Outbreak prevention and external hash list resources.
 a. FortiNDR inline inspection occurs simultaneously.

In an AV profile, use `set fortindr-error-action {log-only | block | ignore}` to configure the action to take if FortiNDR encounters an error.

Accepted file types

The following file types are sent to FortiNDR for inline inspection:

<table>
<thead>
<tr>
<th>File Type</th>
<th>File Type</th>
<th>File Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>7Z</td>
<td>HTML</td>
<td>RTF</td>
</tr>
<tr>
<td>ARJ</td>
<td>JS</td>
<td>TAR</td>
</tr>
<tr>
<td>BZIP</td>
<td>LZH</td>
<td>VBA</td>
</tr>
<tr>
<td>BZIP2</td>
<td>LZW</td>
<td>VBS</td>
</tr>
<tr>
<td>CAB</td>
<td></td>
<td>WinPE (EXE)</td>
</tr>
</tbody>
</table>
Web filter

Web filtering restricts or controls user access to web resources and can be applied to firewall policies using either policy-based or profile-based NGFW mode.

In FortiOS, there are three main components of web filtering:

- Web content filter: blocks web pages containing words or patterns that you specify.
- URL filter: uses URLs and URL patterns to block or exempt web pages from specific sources, or block malicious URLs discovered by FortiSandbox.
- FortiGuard Web Filtering service: provides many additional categories you can use to filter web traffic.

These components interact with each other to provide maximum control over what users on your network can view and protect your network from many internet content threats.

Web filters are applied in the following order:

1. URL filter
2. FortiGuard Web Filtering
3. Web content filter
4. Web script filter
5. Antivirus scanning

FortiOS includes three preloaded web filter profiles:

- **default**
- **monitor-all** (monitors and logs all URLs visited, flow-based)
- **wifi-default** (default configuration for offloading WiFi traffic)

You can customize these profiles, or you can create your own to manage network user access.

Some features of this functionality require a subscription to FortiGuard Web Filtering.

The following topics provide information about web filters:

- URL filter on page 1125
- FortiGuard filter on page 1130
- Credential phishing prevention on page 1136
- Additional antiphishing settings on page 1139
- Usage quota on page 1142
- Web content filter on page 1144
- Advanced filters 1 on page 1147

<table>
<thead>
<tr>
<th>ELF</th>
<th>MS Office documents (XML and non-XML)</th>
<th>XZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>GZIP</td>
<td>PDF</td>
<td>ZIP</td>
</tr>
</tbody>
</table>
URL filter

The URL filter uses specific URLs with patterns containing text and regular expressions so the FortiGate can process the traffic based on the filter action (exempt, block, allow, monitor) and web pages that match the criteria. Once a URL filter is configured, it can be applied to a firewall policy.

The following filter types are available:

<table>
<thead>
<tr>
<th>URL filter type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple</td>
<td>The FortiGate tries to strictly match the full context. For example, if you enter www.facebook.com in the URL field, it only matches traffic with www.facebook.com. It won't match facebook.com or message.facebook.com. When the FortiGate finds a match, it performs the selected URL action.</td>
</tr>
<tr>
<td>Regular expression/wildcard</td>
<td>The FortiGate tries to match the pattern based on the rules of regular expressions or wildcards. For example, if you enter fa in the URL field, it matches all the content that has fa such as www.facebook.com, message.facebook.com, fast.com, and so on. When the FortiGate finds a match, it performs the selected URL action.</td>
</tr>
</tbody>
</table>

For more information, see the URL Filter expressions technical note in the Knowledge Base.

The following actions are available:

<table>
<thead>
<tr>
<th>URL filter action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exempt</td>
<td>The traffic is allowed to bypass the remaining FortiGuard web filters, web content filters, web script filters, antivirus scanning, and DLP proxy operations.</td>
</tr>
<tr>
<td>Block</td>
<td>The FortiGate denies or blocks attempts to access any URL that matches the URL pattern. A replacement message is displayed.</td>
</tr>
<tr>
<td>Allow</td>
<td>The traffic is passed to the remaining FortiGuard web filters, web content filters, web script filters, antivirus proxy operations, and DLP proxy operations. If the URL does not appear in the URL list, the traffic is permitted.</td>
</tr>
<tr>
<td>Monitor</td>
<td>The traffic is processed the same way as the Allow action. For the Monitor action, a log message is generated each time a matching traffic pattern is established.</td>
</tr>
</tbody>
</table>

In the following example, a URL filter will be created to block the facebook.com URL using a wildcard.
Configuring a URL filter in the GUI

To create a URL filter for Facebook:

1. Go to Security Profiles > Web Filter and click Create New, or edit an existing profile.
2. In the Static URL Filter section, enable URL Filter.
4. For URL, enter *facebook.com, for Type, select Wildcard, and for Action, select Block.

5. Click OK. The entry appears in the table.

6. Configure the other settings as needed.
7. Click OK.

To apply the web filter profile to a firewall policy:

1. Go to Policy & Objects > Firewall Policy.
2. Edit a policy, or create a new one.
3. In the Security Profiles section, enable Web Filter and select the profile you created.
4. Configure the other settings as needed.
5. Click OK.
Configuring a URL filter in the CLI

To create a URL filter for Facebook:

```
config webfilter urlfilter
   edit 1
      set name "webfilter"
      config entries
         edit 1
            set url "*facebook.com"
            set type wildcard
            set action block
         next
      next
end
```

To apply the URL filter to a web filter profile:

```
config webfilter profile
   edit "webfilter"
      config web
         set urlfilter-table 1
      end
      config ftgd-wf
         ...
      end
next
end
```

To apply the web filter profile to a firewall policy:

```
config firewall policy
   edit 1
      set name "WF"
      set srcintf "wan2"
      set dstintf "wan1"
      set srcaddr "all"
      set dstaddr "all"
      set action accept
      set schedule "always"
      set service "ALL"
      set utm-status enable
      set inspection-mode proxy
      set logtraffic all
      set webfilter-profile "webfilter"
      set profile-protocol-options "protocol"
      set ssl-ssh-profile "protocols"
      set nat enable
   next
end
```
Verifying the URL filter results

Verify the URL filter results by going to a blocked website. For example, when you go to the Facebook website, the replacement message appears:

FortiGuard Intrusion Prevention - Access Blocked

Web Page Blocked

The page you have requested has been blocked because the URL is banned.

<table>
<thead>
<tr>
<th>URL</th>
<th>https://www.facebook.com</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Request Blocked</td>
</tr>
<tr>
<td>Username</td>
<td>[redacted]</td>
</tr>
<tr>
<td>Group Name</td>
<td>[redacted]</td>
</tr>
<tr>
<td>URL Source</td>
<td>Local URLfilter Block</td>
</tr>
</tbody>
</table>

To customize the URL web page blocked message:

1. Go to System > Replacement Messages.
2. In the HTTP section, select URL Block Page and click Edit.
3. Edit the HTML to customize the message.

To check web filter logs in the GUI:

2. Click the Web Filter card name.
3. If there are a lot of log entries, click Add Filter and select Event Type > urlfilter to display logs generated by the URL filter.
To check web filter logs in the CLI:

```bash
# execute log filter utm-webfilter
# execute log display
```

```
1: date=2019-04-22 time=11:48:43 logid=0315012544 type=utm subtype=webfilter
eventtype=urlfilter level=warning vd=vdom1 eventtime=1555958923322174610
urlfilteridx=0 urllsource="Local URLfilter Block" policyid=1 sessionid=649063
srcip=10.1.200.15 srclport=50472 srcintf="wan2" srcintfrole="wan" dstip=157.240.18.35
dstport=443 dstintf="wan1" dstintfrole="wan" proto=6 service="HTTPS"
hostname="www.facebook.com" profile="webfilter" action="blocked" reqtype="direct" url="/"
sentbyte=1171 rcvdbyte=141 direction="outgoing" msg="URL was blocked because it is in the URL filter list" crscore=30
craction=8 crlevel="high"
```

FortiGuard filter

The FortiGuard filter enhances the web filter features by sorting billions of web pages into a wide range of categories that users can allow or block.

The FortiGuard Web Filtering service includes over 45 million individual website ratings that apply to more than two billion pages. When the FortiGuard filter is enabled in a web filter profile and applied to firewall policies, if a request for a web page appears in traffic controlled by one of the firewall policies, the URL is sent to the nearest FortiGuard server. The URL category or rating is returned. If the category is blocked, the FortiGate shows a replacement message in place of the requested page. If the category is not blocked, the page request is sent to the requested URL as normal.

To use this service, you must have a valid FortiGuard license.

The following actions are available:

<table>
<thead>
<tr>
<th>FortiGuard web filter action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow</td>
<td>Permit access to the sites in the category.</td>
</tr>
<tr>
<td>Monitor</td>
<td>Permit and log access to sites in the category. User quotas can be enabled for this option (see Usage quota on page 1142).</td>
</tr>
<tr>
<td>Block</td>
<td>Prevent access to the sites in the category. Users trying to access a blocked site see a replacement message indicating the site is blocked.</td>
</tr>
<tr>
<td>Warning</td>
<td>Display a message to the user allowing them to continue if they choose.</td>
</tr>
<tr>
<td>Authenticate</td>
<td>Require the user to authenticate with the FortiGate before allowing access to the category or category group.</td>
</tr>
<tr>
<td>Disable</td>
<td>Remove the category from the from the web filter profile. This option is only available for local or remote categories from the right-click menu.</td>
</tr>
</tbody>
</table>

FortiGuard web filter categories

FortiGuard has many web filter categories, including two local categories and a special remote category. Refer to the following table for more information:
Security Profiles

FortiGuard web filter category

<table>
<thead>
<tr>
<th>Category</th>
<th>Where to find more information</th>
</tr>
</thead>
<tbody>
<tr>
<td>All URL categories</td>
<td>See Web Filter Categories.</td>
</tr>
<tr>
<td>Local categories</td>
<td>See Web rating override on page 1320.</td>
</tr>
<tr>
<td>Remote category</td>
<td>See Threat feeds on page 2506.</td>
</tr>
</tbody>
</table>

The priority of categories is local category > external category > FortiGuard built-in category. If a URL is configured as a local category, it only follows the behavior of the local category and not the external or FortiGuard built-in category.

Blocking a web category

The following example shows how to block a website based on its category. The information and computer security category (category 52) will be blocked.

To block a category in the GUI:

1. Go to Security Profiles > Web Filter and click Create New, or edit an existing profile.
2. In the FortiGuard category based filter section, select Information and Computer Security, then click Block.

![Web Filter Profile](image)

3. Configure the remaining settings as needed.
4. Click OK.

To block a category in the CLI:

```
config webfilter profile
edit "webfilter"
    config ftgd-wf
        unset options
```
To verify that the category is blocked:

1. Go to a website that belongs to the blocked category, such as www.fortinet.com.
 The page should be blocked and display a replacement message.

To view the log of a blocked website in the GUI:

2. Click the Web Filter card name.
3. Select an entry with blocked in the Action column and click Details.

To view the log of a blocked website in the CLI:

```
# execute log filter category utm-webfilter
# execute log display
```

```
1: date=2019-04-22 time=13:46:25 logid="0316013056" type="utm" subtype="webfilter" eventtype="ftgd_blk" level="warning" vd="vdom1" eventtime=1555965984972459609 policyid=1
```

```
dstip=54.183.57.55 dstport=80 dstintf="wan1" dstintfrole="wan" proto=6 service="HTTP" hostname="www.fortinet.com" profile="webfilter" action="blocked" reqtype="direct" url="/" sentbyte=386 rcvdbyte=0 direction="outgoing" msg="URL belongs to a denied category in policy" method="domain" cat=52 catdesc="Information Technology"

Allowing users to override blocked categories

There is an option to allow users with valid credentials to override blocked categories.

To allow users to override blocked categories in the GUI:

1. Go to Security Profiles > Web Filter and click Create New, or edit an existing profile.
2. Enable Allow users to override blocked categories.
3. Enter information in the following fields:
   - Groups that can override
   - Profile name
   - Switch applies to
   - Switch Duration
4. Configure the other settings as needed.

5. Click OK.

To allow users to override blocked categories in the CLI:

```bash
config webfilter profile
 edit "webfilter"
 set ovrd-perm bannedword-override urlfilter-override fortiguard-wf-override contenttype-check-override
 config override
 set ovrd-user-group "radius_group"
 config webfilter
end
config ftgd-wf
 unset options
end
next
end
```
Issuing a warning on a web category

The following example shows how to issue a warning when a user visits a website in a specific category (information and computer security, category 52).

To configure a warning for a category in the GUI:

1. Go to Security Profiles > Web Filter and click Create New, or edit an existing profile.
2. In the FortiGuard category based filter section, select Information and Computer Security, then click Warning.
3. Set the Warning Interval, then click OK.
   The warning interval is the amount of time until the warning appears again after the user proceeds past it.

4. Configure the remaining settings as needed.
5. Click OK.

To configure a warning for a category in the CLI:

```
config webfilter profile
 edit "webfilter"
 config ftgd-wf
 unset options
 config filters
 edit 1
 set category 52
 set action warning
 next
 end
 end
 next
end
```
To verify that the warning works:

1. Go to a website that belongs to the category, such as www.fortinet.com.
2. On the warning page, click **Proceed or Go Back**.

Authenticate a web category

The following example shows how to authenticate a website based on its category (information and computer security, category 52).

To authenticate a category in the GUI:

1. Go to *Security Profiles* > *Web Filter* and edit or create a new web filter profile.
2. In the FortiGuard category based filter section, select *Information and Computer Security*, then click **Authenticate**.
3. Set the **Warning Interval** and select one or more user groups, then click **OK**.
4. Configure the remaining settings as needed.
5. Click **OK**.

To authenticate a category in the CLI:

```bash
config webfilter profile
 edit "webfilter"
 config ftgd-wf
 unset options
 config filters
 edit 1
 set category 52
 set action authenticate
 set auth-usr-grp "local_group"
 next
 end
 end
 end
 end
end
```
To verify that you have configured authentication:

1. Go to a website that belongs to the category, such as www.fortinet.com.
2. On the warning page, click Proceed.
3. Enter the username and password for the configured user group, then click Continue.

Customizing the replacement message page

When the category action is Block, Warning, or Authenticate, you can customize the replacement message page that a user sees.

To customize the replacement message page:

1. Go to Security Profiles > Web Filter and edit or create a new web filter profile.
2. In the FortiGuard category based filter section, right-click on a category and select Customize.
3. Select a Replacement Message Group. See Replacement message groups on page 2139 for details.
4. Optionally, click Edit FortiGuard Block Page or Edit FortiGuard Warning Page to make modifications.
5. Click Save.
6. Configure the remaining settings as needed.
7. Click OK.

Credential phishing prevention

When credential phishing prevention is enabled, the FortiGate scans for corporate credentials submitted to external websites and compares them to sensitive credentials stored in the corporate domain controller. Based on the configured antiphishing rules in proxy mode web filter profiles, the FortiGate will block the URL or alert the user if the credentials match ones that are stored on the corporate domain controller.

- The corporate domain controller must be configured in the domain controller.
- Credentials can be matched based on sAMAccountName, user principal name (UPN), or down-level logon name.
The antiphishing profile defines the corporate domain controller, antiphishing check option, default action if no rules match, antiphishing status, and so on.

Inspection entries in the profile define what action occurs when the submission request matches the specified FortiGuard categories.

The profile scans for pre-defined and custom username and password fields in the HTTP request, such as username, auth, and password. You can evaluate custom fields by configuring custom patterns.

The URL filter defines individual URLs that the antiphish action (block or log) is applied to when the URL submission request matches.

Web-based URL filter actions and FortiGuard category-based filtering have higher priority than antiphishing URL filter actions and FortiGuard filtering:

- If a request is blocked by the web-based URL filter or FortiGuard filter, there is no further antiphishing scanning. Antiphishing scanning only happens after the web-based URL files and FortiGuard filters allow the traffic.
- If a submission matches an entry in the URL filter table that has an antiphishing action, the defined action is taken. No further FortiGuard category-based rules are applied.
- Like firewall rules, the URL filter table and FortiGuard category-based antiphishing rules use a top-down priority. The rule that matches first is the one that is used.

In this example, URLs that match FortiGuard category 37 (social networking) will be blocked and other categories will be logged.

**To configure credential phishing prevention:**

1. Configure the corporate domain controller:

   ```
 config user domain-controller
 edit "win2016"
 edit win2016
 set hostname "win2016"
 set domain-name "corpserver.local"
 set username "Administrator"
 set password **********
 set ip <server_ip>
 next
 end
   ```

   The hostname and the domain-name are case sensitive.

2. Configure the antiphishing profile, which includes the FortiGuard category rule:

   ```
 config webfilter profile
 edit <profile-name>
 set feature-set proxy
 ...
 config web
 ...
 end
 config antiphish
 set status enable
 set domain-controller "win2016"
   ```
set default-action block
set check-uri enable
set check-basic-auth enable
set max-body-len 65536

config inspection-entries
  edit "inspect-37"
    set fortiguard-category 37
    set action block
  next
  edit "inspect-others"
    set fortiguard-category all
    set action log
  next
end

config custom-patterns
  edit "customer-name"
    set category username
  next
  edit "customer-passwd"
    set category password
  next
end

... 

set web-antiphishing-log enable
next
end

- check-uri enables support for scanning HTTP GET URI parameters.
- check-basic-auth enables support for scanning the HTTP basic authentication field.

3. Configure the URL filter to scan specific URLs. The antiphish action is added to the URL filter table entry, and the URL filter is applied to the web filter profile:

config webfilter urlfilter
  edit 1
    set name "antiphish-table"
  config entries
    edit 1
      set url "www.example.com"
      set type simple
      set antiphish-action block
      set status enable
      set referrer-host ''
    next
  end
next
config webfilter profile
  edit "<profile-name>"
    config web
      set urlfilter-table 1
  end
... 
end
4. Optionally, define custom patterns to scan fields other than the built-in username and password keywords:

```plaintext
config webfilter profile
 edit "<profile-name>"
 config custom-patterns
 edit "customer-name"
 set category username
 next
 edit "customer-passwd"
 set category password
 next
 end
 next
end
```

**Additional antiphishing settings**

The following settings are available for antiphishing:

- **Enable DNS service lookup in the domain controller** so that the domain controller IP does not need to be configured. The DNS server will resolve the domain controller IP.
- **Specify a source IP or port for the fetching domain controller.**
- **Use an LDAP server as a credential source** (only the OpenLDAP server is supported).
- **Block or log valid usernames regardless of password match.**
- **Use literal custom patterns type for username and password.**
- **Active Directory Lightweight Directory Services (AD LDS) support**

**Configuration examples**

To enable DNS service lookup:

```plaintext
config user domain-controller
 edit "win2016"
 set ad-mode ds
 set dns-srv-lookup enable
 set hostname "win2016"
 set username "replicate"
 set password *********
 set domain-name "SMB2016.LAB"
 next
end
```

To specify the source IP and port for the fetching domain controller:

```plaintext
config user domain-controller
 edit "win2016"
 set ad-mode ds
 set hostname "win2016"
 set username "replicate"
 set password *********
 set ip-address 172.18.52.188
 set source-ip-address 172.16.100.1
```
Security Profiles

set source-port 2000
set domain-name "SMB2016.LAB"

next
derm

to use an LDAP server as a credential store:

1. Configure the LDAP server:

   config user ldap
   edit "openldap"
   set server "172.18.60.214"
   set cnid "cn"
   set dn "dc=qafsso,dc=com"
   set type regular
   set username "cn=Manager,dc=qafsso,dc=com"
   set password **********
   set antiphish enable
   set password-attr "userPassword"
   next
derm

tern the web filter profile:

   config webfilter profile
   edit "webfilter"
   set feature-set proxy
   config ftgd-wf
   unset options
   config filters
   edit 1
   set action block
   next
derm
   config antiphish
   set status enable
   config inspection-entries
   edit "cat34"
   set fortiguard-category 34
   set action block
   next
derm
   set authentication ldap
   set ldap "openldap"
derm
   next
derm
   set log-all-url enable
derm

To configure username-only credential matching:

   config webfilter profile
   edit "webfilter"
   set feature-set proxy
   config ftgd-wf
To configure different custom pattern types for usernames and passwords:

```bash
config webfilter profile
 edit "qwer"
 set type literal
 next
 edit "[0-6]Dat*"
 next
 edit "dauw9"
 set category password
 set type literal
 next
 edit "[0-5]foo[1-4]"
 set category password
 next
end
set domain-controller "win2016"
end
set log-all-url enable
next
end
```
In this example, the `qwer` and `dauw9` entries use the literal type, while `[0-6]Dat*` and `[0-5]foo[1-4]` use the default regex type.

**To configure Active Directory in LDS mode:**

```plaintext
config user domain-controller
 edit "win2016adlds"
 set hostname "win2016adlds"
 set username "foo"
 set password **********
 set ip-address 192.168.10.9
 set domain-name "adlds.local"
 set ad-mode lds
 set adlds-dn "CN=adlds1part1,DC=ADLDS,DC=COM"
 set adlds-ip-address 192.168.10.9
 set adlds-port 3890
next
end
```

**Usage quota**

In addition to using category and classification blocks and overrides to limit user access to URLs, you can set a daily quota by category, category group, or classification. Quotas allow access for a specified length of time or a specific bandwidth, and are calculated separately for each user. Quotas are reset daily at midnight.

Quotas can be set for the **Monitor**, **Warning**, or **Authenticate** actions. Once the quota is reached, the traffic is blocked and the replacement message page displays.

---

**Quotas are only available in proxy-based inspection mode.**

---

**Configuring a quota**

The following example shows how to set a time quota for the education category (category 30).

**To configure a quota in the GUI:**

1. Go to **Security Profiles > Web Filter** and click **Create New**, or edit an existing profile.
2. For **Feature set**, select **Proxy-based**.
3. In the **FortiGuard category based filter** section, scroll to the **General Interest - Personal** and click the + to expand the section.
4. Select *Education*, then click *Monitor.*

5. In the *Category Usage Quota* section, click *Create New.* The *New/Edit Quota* pane opens.

6. In the *Category* field, select *Education.*

7. For the *Quota Type*, select *Time* and set the *Total quota* to 5 minutes.

8. Click *OK.* The entry appears in the table.

9. Configure the other settings as needed.

10. Click *OK.*

**To configure a quota in the CLI:**

```bash
config webfilter profile
edit "webfilter"
 config ftgd-wf
 unset options
 config filters
```
edit 1
   set category 30
next
derm quota
   edit 1
   set category 30
   set type time
   set duration 5m
next
derm
\n\nTo verify the quota usage:

1. Go to a website that belongs to the education category, such as https://www.harvard.edu/. You can view websites in that category at the moment.
2. In FortiOS, go to Dashboard > FortiGuard Quota Monitor to check the used and remaining time.

   Category Usage Quota
   \n   | User     | 10.1.100.11 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Filter Profile</td>
<td>webfilter</td>
</tr>
<tr>
<td>Category</td>
<td>Used Quota</td>
</tr>
<tr>
<td>Education</td>
<td>1 second(s)</td>
</tr>
</tbody>
</table>

3. When the quota reaches its limit, traffic is blocked and the replacement page displays.

   Web content filter

   You can control access to web content by blocking webpages containing specific words or patterns. This helps to prevent access to pages with questionable material. You can specify words, phrases, patterns, wildcards, and regular expressions to match content on webpages. You can use multiple web content filter lists and select the best one for each web filter profile. The maximum number of web content patterns in a list is 5000.

   When configuring a web content filter list, the following patterns are available:
Use this setting to block or exempt one word or text strings of up to 80 characters. You can also use wildcard symbols such as ? or * to represent one or more characters. For example, a wildcard expression fort*.com matches fortinet.com and fortiguard.com. The * represents any character appearing any number of times.

<table>
<thead>
<tr>
<th>Web content pattern type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wildcard</td>
<td>Use this setting to block or exempt patterns of regular expressions that use some of the same symbols as wildcard expressions, but for different purposes. In regular expressions, * represents the character before the symbol. For example, forti*.com matches fortii.com but not fortinet.com or fortiiice.com. In this case, the symbol * represents i appearing any number of times.</td>
</tr>
</tbody>
</table>

**Content evaluation**

The web content filter scans the content of every webpage that is accepted by a firewall policy. The system administrator can specify banned words and phrases and attach a numerical value (or score) to the importance of those words and phrases. When the web content filter scan detects banned content, it adds the scores of banned words and phrases found on that page. If the sum is higher than a threshold set in the web filter profile, the FortiGate blocks the page.

The default score for web content filter is 10 and the default threshold is 10. This means that by default, a webpage is blocked by a single match. These settings can only be configured in the CLI.

Banned words or phrases are evaluated according to the following rules:

- The score for each word or phrase is counted only once, even if that word or phrase appears many times in the webpage.
- The score for any word in a phrase without quotation marks is counted.
- The score for a phrase in quotation marks is counted only if it appears exactly as written.

The following table is an example of how rules are applied to the webpage contents. For example, a webpage contains only this sentence:

*The score for each word or phrase is counted only once, even if that word or phrase appears many times in the webpage.*

<table>
<thead>
<tr>
<th>Banned pattern</th>
<th>Assigned score</th>
<th>Score added to the sum for the entire page</th>
<th>Threshold score</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>word</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>Appears twice but is only counted once. The webpage is blocked.</td>
</tr>
<tr>
<td>word phrase</td>
<td>20</td>
<td>40</td>
<td>20</td>
<td>Each word appears twice but is only counted once, giving a total score of 40. The webpage is blocked.</td>
</tr>
<tr>
<td>word sentence</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td><em>word appears twice and sentence does not appear, but since any word in a phrase without quotation marks is counted, the score for this pattern is 20. The webpage is blocked.</em></td>
</tr>
<tr>
<td>Banned pattern</td>
<td>Assigned score</td>
<td>Score added to the sum for the entire page</td>
<td>Threshold score</td>
<td>Comment</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------</td>
<td>--------------------------------------------</td>
<td>----------------</td>
<td>--------------------------------------------------------------------------</td>
</tr>
<tr>
<td>&quot;word sentence&quot;</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>This phrase does not appear exactly as written. The webpage is allowed.</td>
</tr>
<tr>
<td>&quot;word or phrase&quot;</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>This phrase appears twice but is only counted once. The webpage is blocked.</td>
</tr>
</tbody>
</table>

To configure a web content filter in the GUI:

1. Go to Security Profiles > Web Filter and click Create New, or edit an existing profile.
2. In the Static URL Filter section, enable Content Filter.
3. Click Create New. The New Web Content Filter pane opens.
4. Configure the following settings:
   - Pattern Type: Regular Expression
   - Pattern: fortinet
   - Language: Western
   - Action: Block
   - Status: Enable
5. Click OK. The entry appears in the table.
6. Configure the other settings as needed.
7. Click OK.
To configure a web content filter in the CLI:

1. Create the content (banned word) table:

```
config webfilter content
 edit 1
 set name "webfilter"
 config entries
 edit "fortinet"
 set pattern-type regexp
 set status enable
 set lang western
 set score 10
 set action block
 next
 next
end
```

2. Apply the content table to the web filter profile:

```
config webfilter profile
 edit "webfilter"
 config web
 set bword-threshold 10
 set bword-table 1
 end
 config ftgd-wf
 unset options
 end
next
end
```

To verify the content filter:

1. Go to a website with the word fortinet, such as www.fortinet.com.
   The website is blocked and a replacement page displays:

```
The URL you requested has been blocked
```

Advanced filters 1

This topic gives examples of the following advanced filter features:

- Block malicious URLs discovered by FortiSandbox on page 1148
- Allow websites when a rating error occurs on page 1148
- Rate URLs by domain and IP address on page 1149
- Block invalid URLs on page 1149
Security Profiles

Block malicious URLs discovered by FortiSandbox

This setting blocks malicious URLs that FortiSandbox finds. Your FortiGate must be connected to a registered FortiSandbox.

For information on configuring FortiSandbox, see Using FortiSandbox post-transfer scanning with antivirus on page 1113 and Using FortiSandbox inline scanning with antivirus on page 1115.

To block malicious URLs discovered by FortiSandbox in the GUI:

1. Go to Security Profiles > Web Filter and click Create New, or edit an existing profile.
2. In the Static URL Filter section, enable Block malicious URLs discovered by FortiSandbox.
3. Click OK.

To block malicious URLs discovered by FortiSandbox in the CLI:

```fortios
config webfilter profile
 edit "webfilter"
 config web
 set blocklist enable
 end
 next
end
```

Allow websites when a rating error occurs

If you do not have a FortiGuard license, but you have enabled services that need a FortiGuard license (such as FortiGuard filter), then you will get a rating error message.

Use this setting to allow access to websites that return a rating error from the FortiGuard Web Filter service.

To allow websites with rating errors in the GUI:

1. Go to Security Profiles > Web Filter and click Create New, or edit an existing profile.
2. In the Rating Options section, enable Allow websites when a rating error occurs.
3. Click OK.

To allow websites with rating errors in the CLI:

```fortios
config webfilter profile
 edit "webfilter"
 config ftgd-wf
 set options error-allow
 end
 next
end
```
Rate URLs by domain and IP address

If you enable this setting, in addition to only sending domain information to FortiGuard for rating, the FortiGate always sends both the URL domain name and the TCP/IP packet's IP address (except for private IP addresses) to FortiGuard for the rating.

The FortiGuard server might return a different category of IP address and URL domain. If they are different, the FortiGate uses the rating weight of the IP address or domain name to determine the rating result and decision. This rating weight is hard-coded in FortiOS.

For example, if we use a spoof IP of Google as www.irs.gov, the FortiGate will send both the IP address and domain name to FortiGuard to get the rating. We get two different ratings: one is the search engine and portals that belong to the Google IP, the second is the government and legal organizations that belongs to www.irs.gov. Because the search engine and portals rating has a higher weight than government and legal organizations, the traffic is rated as search engine and portals.

To rate URLs by domain and IP address in the GUI:

1. Go to Security Profiles > Web Filter and click Create New, or edit an existing profile.
2. In the Rating Options section, enable Rate URLs by domain and IP address.
3. Click OK.

To rate URLs by domain and IP address in the CLI:

```
config webfilter profile
 edit "webfilter"
 config ftgd-wf
 set options rate-server-ip
 end
 next
end
```

Block invalid URLs

Use this setting to block websites when their SSL certificate CN field does not contain a valid domain name.

This option also blocks URLs that contains spaces. If there is a space in the URL, it must be written as %20 in the URL path.

To block invalid URLs in the GUI:

1. Go to Security Profiles > Web Filter and click Create New, or edit an existing profile.
2. In the Static URL Filter section, enable Block invalid URLs.
3. Click OK.
To block invalid URLs in the CLI:

```
config webfilter profile
 edit "webfilter"
 set options block-invalid-url
 next
end
```

Advanced filters 2

This topic gives examples of the following advanced filter features:

- Safe search on page 1150
- Restrict YouTube access on page 1151
- Log all search keywords on page 1152
- Restrict Google account usage to specific domains on page 1152
- HTTP POST action on page 1153
- Remove Java applets, ActiveX, and cookies on page 1153

These advanced filters are only available in proxy-based inspection mode.

Safe search

This setting applies to popular search sites and prevents explicit websites and images from appearing in search results.

The supported search sites are:

- Google
- Yahoo
- Bing
- Yandex

To enable safe search in the GUI:

1. Go to Security Profiles > Web Filter and click Create New, or edit an existing profile.
2. In the Search Engines section, enable Enforce ‘Safe Search’ on Google, Yahoo!, Bing, Yandex.
3. Click OK.
To enable safe search in the CLI:

```plaintext
config webfilter profile
 edit "webfilter"
 config web
 set safe-search url header
 end
next
end
```

**Restrict YouTube access**

The *Restrict YouTube access* setting in the video filter profile adds the HTTP header `YouTube-Restrict: Strict` or `YouTube-Restrict: Moderate` into the HTTP request when enabled. When YouTube reads this header, it applies the appropriate content restriction based on the selected mode. YouTube Restricted Mode is an optional setting that filters out potentially mature videos while leaving a large number of videos still available (see *Restrict YouTube content available to users* and *Manage your organization's YouTube settings* for more information). Google defines the restricted YouTube access modes as follows:

- **Strict Restricted YouTube access**: this setting is the most restrictive. Strict Restricted Mode does not block all videos, but works as a filter to screen out many videos based on an automated system, while leaving some videos still available for viewing.
- **Moderate Restricted YouTube access**: this setting is similar to Strict Restricted Mode but makes a much larger collection of videos available.

**To restrict YouTube access in the GUI:**

1. Go to *Security Profiles > Web Filter* and click *Create New*, or edit an existing profile.
2. In the *Search Engines* section, enable *Restrict YouTube Access* and select either *Strict* or *Moderate*.

![Web Filter Profile](image)

3. Click *OK*.

**To restrict YouTube access in the CLI:**

```plaintext
config webfilter profile
 edit <name>
 config web
 set youtube-restrict {none | strict | moderate}
 end
next
end
```

**Vimeo access**

The file filter profile includes a setting to restrict Vimeo access, which can only be configured in the CLI.
Security Profiles

To restrict Vimeo access:

```bash
config webfilter profile
 edit <name>
 config web
 set vimeo-restrict {7 | 134}
 end
 next
end
```

| vimeo-restrict {7 | 134} | Set the Vimeo restriction: |
|-------------------------|----------------------------|
| 7:                      | do not show mature content |
| 134:                    | do not show unrated and mature content |

Log all search keywords

Use this setting to log all search phrases.

To enable logging search keywords in the GUI:

1. Go to Security Profiles > Web Filter and click Create New, or edit an existing profile.
2. In the Search Engines section, enable Log all search keywords.
3. Click OK.

To enable logging search keywords in the CLI:

```bash
config webfilter profile
 edit "webfilter"
 config web
 set log-search enable
 end
 next
end
```

Restrict Google account usage to specific domains

Use this setting to block access to certain Google accounts and services, while allowing access to accounts with domains in the exception list.

To enable Google account restriction:

1. Go to Security Profiles > Web Filter and click Create New, or edit an existing profile.
2. In the Proxy Options section, enable Restrict Google account usage to specific domains.
3. Click the + and enter the domains that Google can access, such as www.fortinet.com.

4. Click OK.

When you try to use Google services like Gmail, only traffic from the domain of www.fortinet.com can go through. Traffic from other domains is blocked.

**HTTP POST action**

Use this setting to select the action to take with HTTP POST traffic. HTTP POST is the command used by the browser when you send information, such as a completed form or a file you are uploading to a web server. The action options are allow or block. The default is allow.

**To configure HTTP POST in the GUI:**

1. Go to Security Profiles > Web Filter and click Create New, or edit an existing profile.
2. In the Proxy Options section, for HTTP POST Action, select Allow or Block.
3. Click OK.

**To configure HTTP POST in the CLI:**

```
config webfilter profile
 edit "webfilter"
 set post-action {normal | block}
 config ftgd-wf
 unset options
 end
next
end
```

**Remove Java applets, ActiveX, and cookies**

Web filter profiles have settings to filter Java applets, ActiveX, and cookies from web traffic. Note that if these filters are enabled, websites using Java applets, ActiveX, and cookies might not function properly.

**To enable these filters in the GUI:**

1. Go to Security Profiles > Web Filter and click Create New, or edit an existing profile, and go to the Proxy Options section.
2. In the Proxy Options section, enabled the filters you want to use: Remove Java Applets, Remove ActiveX, or Remove Cookies.

To enable these filters in the CLI:

```bash
config webfilter profile
 edit "webfilter"
 set options {activexfilter cookiefilter javafilter}
 config ftgd-wf
 unset options
 end
 next
end
```

Web filter statistics

FortiOS provides diagnostics commands to view web filter statistics reports, which are either proxy-based or flow-based. The commands are available in both VDOM and global command lines.

Proxy-based web filter statistics report

Use the `diagnose wad filter vd {<VDOM> | global}` command to filter for per-VDOM or global statistics reports.

In the following example, there are two VDOMs (root and vdom1) using proxy-based policies that have web filter profiles enabled.

To view per-VDOM statistics reports:

```
(global) # diagnose wad filter vd root
Drop unknown session is enabled.

(global) # diagnose wad stats filter list
filtering of vdom root
dlp = 0
content-type = 0
urls:
 examined = 6
 allowed = 3
 blocked = 0
 logged = 0
 overridden = 0
```
Flow-based web filter statistics report

Use the `diagnose webfilter stats list {<VDOM> | global}` command to check the flow-based web filter statistics.

In the following example, the VDOM is using flow-based policies that have web filter profiles enabled.

To view web filter statistics:

```bash
diagnose webfilter stats list root
Proxy/flow URL filter stats:
 request: 9474
 blocked: 8606
 allowed: 868
 overridden: 0
 logged: 8606
 pending: 0
```

URL certificate blocklist

As increasing numbers of malware have started to use SSL to attempt to bypass IPS, maintaining a fingerprint-based certificate blocklist is useful to block botnet communication that relies on SSL.

This feature adds a dynamic package that is distributed by FortiGuard and is part of the Web Filtering service. It is enabled by default for SSL/SSH profiles, and can be configured using the following CLI commands:

```bash
config vdom
 edit <vdom>
 config firewall ssl-ssh-profile
 edit "certificate-inspection"
```
Websense Integrated Services Protocol

Websense Integrated Services Protocol (WISP) servers can be used server, which allows the FortiGate to send traffic to the third-party web filtering service for rating and approval checking.

When WISP is enabled, the FortiGate maintains a pool of TCP connections to the WISP server. The TCP connections are used to forward HTTP request information and log information to the WISP server and receive policy decisions.

When a WISP server is used in a web filter profile, in flow or proxy mode, the following web filter scanning priority sequence is used:

1. Local URL filter
2. Websense web filtering service
3. FortiGuard web filtering service

The following example uses a WISP server configured in a flow mode web filter profile.

To use a WISP server in flow mode:

1. Configure the WISP servers:

```plaintext
config web-proxy wisp
edit "wisp1"
set server-ip 10.2.3.4
next
edit "wisp2"
set server-ip 10.2.3.5
next
edit "wisp3"
set server-ip 192.168.1.2
next
edit "wisp4"
set server-ip 192.168.3.4
next
end
```

2. Configure the web filter profile:

```plaintext
config webfilter profile
edit "webfilter_flowbase"
set feature-set flow
config ftgd-wf
unset options
config filters
edit 64
set category 64
set action block
```
Inspecting HTTP3 traffic

HTTP/3 traffic can be inspected on the FortiGate in flow mode inspection.

When using Chrome, the browser may switch the HTTP/3 connection to HTTP/2 when deep inspection is applied, due to its sensitivity to delays caused by deep inspection.

Example

In this example, a web filter profile is created to block the words *Welcome to aioquic*, which appear in a website that uses HTTP/3.

To block content in HTTP/3 traffic:

1. Configure the web filter banned word table:

   ```
 config webfilter content
 edit 1
 set name "aioquic"
 config entries
 edit "Welcome to aioquic"
 set status enable
 next
 end
 end
   ```

2. Apply the banned word table in the web filter profile:
3. Configure the firewall policy:

```plaintext
config firewall policy
edit 1
set utm-status enable
set ssl-ssh-profile "deep-inspection"
set webfilter-profile "flow-webfilter"
set logtraffic all
set nat enable
next
end
```

4. Access the website using a supported HTTP/3 client, such as Chrome or Firefox. The website is blocked by the FortiGate.

---

**Video filter**

With the video filter profile, you can filter YouTube videos based on FortiGuard categories or by channel ID for a more granular override of a single channel, user, or video. The video filter profile is currently supported in proxy-based policies and requires SSL deep inspection. The FortiGuard Video filtering service is based on a valid FortiGuard web filter license.

The following topics provide information about video filters:

- Filtering based on FortiGuard categories on page 1159
- Filtering based on YouTube channel on page 1163
Filtering based on FortiGuard categories

Video filtering is only proxy-based and uses the WAD daemon to inspect the video in four phases:

1. When the WAD receives a video query from a client, it extracts the video ID (vid) and tries to check the category and channel from the local cache.
2. If there is no match from the local cache, it connects to the FortiGuard video rating server to query the video category.
3. If the FortiGuard rating fails, it uses the videofilter.youtube-key to communicate with the Google API server to get its category and channel ID. This is the API query setting and it requires the user’s own YouTube API key string. This configuration is optional.
4. If all steps fail to match the video, the WAD calls on the IPS engine to match the video ID and channel ID from the application signature database.

The FortiGuard anycast service must be enabled to use this feature.

In the following example, a new video filter profile is created to block the Knowledge category.

In the firewall policy settings, the default application control profile is recommended because it blocks QUIC traffic. Many Google services use the QUIC protocol on UDP/443. By blocking QUIC, YouTube will use standard HTTPS TCP/443 connections.

To configure a video filter based on FortiGuard categories in the GUI:

1. Create the video filter profile:
   a. Go to Security Profiles > Video Filter and click Create New.
   b. Enter a name (category_filter).
   c. In the FortiGuard Category Based Filter section, set the Knowledge category Action to Block.
   d. Click OK.
2. Create the firewall policy:
   a. Enter the following:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Incoming Interface</strong></td>
<td>port2</td>
</tr>
<tr>
<td><strong>Outgoing Interface</strong></td>
<td>port1</td>
</tr>
<tr>
<td><strong>Source</strong></td>
<td>All</td>
</tr>
<tr>
<td><strong>Destination</strong></td>
<td>All</td>
</tr>
<tr>
<td><strong>Service</strong></td>
<td>All</td>
</tr>
<tr>
<td><strong>Inspection Mode</strong></td>
<td>Proxy-based</td>
</tr>
<tr>
<td><strong>NAT</strong></td>
<td>Enable</td>
</tr>
<tr>
<td><strong>Video Filter</strong></td>
<td>Enable and select category_filter</td>
</tr>
<tr>
<td><strong>Application Control</strong></td>
<td>Enable and select default</td>
</tr>
<tr>
<td><strong>SSL Inspection</strong></td>
<td>deep-inspection</td>
</tr>
<tr>
<td><strong>Log Allowed Traffic</strong></td>
<td>All Sessions</td>
</tr>
</tbody>
</table>

   b. Configure the other settings as needed and click OK.

To configure a video filter based on FortiGuard categories in the CLI:

1. Create the video filter profile:
   ```
 config videofilter profile
 edit "category_filter"
 config fortiguard-category
 edit 5
 set action block
 set category-id 4
 set log enable
 next
 next
 end
 end
   ```

2. Create the firewall policy:
   ```
 config firewall policy
 edit 10
 set name "client_yt_v4"
 set srcintf "port2"
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set utm-status enable
 set inspection-mode proxy
 set ssl-ssh-profile "deep-inspection"
 set application-list "default"
   ```
set videofilter-profile "category_filter"
  set logtraffic all
  set nat enable
  next
end

To configure the YouTube API key (optional):

cfg videofilter youtube-key
  edit 1
    set key ********
    set status enable
  next
end

Verifying that the video is blocked

When a user browses to YouTube and selects a video based in the Knowledge category, a replacement message will appear. This replacement message says the URL is blocked, and displays the URL of the YouTube video. On the FortiGate, verify the forward traffic and web filter logs.

Sample forward traffic log

2: date=2021-04-27 time=15:27:13 eventtime=16195624334288 tz="-0700" logid="0000000013" type="traffic" subtype="forward" level="notice" vd="vd1" srcip=10.1.100.11 srcport=60628 srcintf="port2" srcintfrole="undefined" dstip=172.217.3.206 dstport=443 dstintf="port1" dstintfrole="undefined" srccountry="Reserved" dstcountry="United States" sessionid=8230 proto=6 action="client-rst" policyid=10 policytype="policy" poluuid="a5e991ba-a799-51eb-4efe-ce32b9f70b75" policymain="client_yt_v4" service="HTTPS" trandisp="snat" transip=172.16.200.1 transport=60628 duration=95 sentbyte=3546 rcvbyte=21653 sentpkt=24 rcvdpkt=34 appcat="unscanned" wanin=2152 wanout=2290 lanin=2000 lanout=2000 utmaction="block" countweb=3 utmref=65532-0

Sample web filter log

1: date=2021-04-27 time=15:25:37 eventtime=1619562338128550236 tz="-0700" logid="0347013664" type="utm" subtype="webfilter" eventtype="videofilter-category" level="warning" vd="vd1" msg="Video category is blocked." policyid=10 sessionid=8230 srcip=10.1.100.11 dstip=172.217.3.206 srcport=60628 dstport=443 srcintf="port2" srcintfrole="undefined" dstintfrole="undefined" proto=6 service="HTTPS" action="block"
  videoinfosource="Cache" profile="category_filter" videoid="EAyo3_zJj5c" videocategoryid=4 hostname="www.youtube.com" url="https://www.youtube.com/watch?v=EAyo3_zJj5c"

Troubleshooting and debugging

To verify if the FortiGuard video filtering license is valid:

# get system fortiguard
  fortiguard-anycast : enable
  fortiguard-anycast-source: debug
  protocol : https
  port : 443
webfilter-license : Contract
webfilter-expiration: Fri Dec 13 2030

videofilter-license : Contract
videofilter-expiration: Fri Dec 13 2030

The videofilter license should be synchronized with the webfilter license.

To verify the WAD worker is running:

```shell
diagnose test app wad 1000
Process [0]: WAD manager type=manager(0) pid=232 diagnosis=yes.
Process [1]: type=worker(2) index=0 pid=294 state=running
diagnosis=no debug=enable valgrind=supported/disabled
```

To display and debug video filter cache:

```shell
diagnose test app wad ?
....
321: Display Video Filter Cache stats.
322: Reset Video Filter Cache stats.
323: Flush Video Filter Cache entries.
324: Display Video Filter module stats.
325: Request category list from Youtube API.
326: Display FTGD agent module stats.
327: Reset FTGD agent module stats.
328: Toggle Video Filter Cache Check.
329: Toggle Video Filter FTGD Query.
330: Toggle Video Filter API Check.
```

To enable real-time WAD debugs:

```shell
diagnose wad debug enable level verbose
diagnose wad debug enable category video
diagnose debug enable
```

Sample output

```
[p:274][s:8754][r:186] wad_http_req_exec_video_filter_check(167): hreq=0x7f1184f288e0, check video filter check videofilter
[p:274][s:8754][r:186] wad_vf_req_submit(1869): node=0x7f1186694640, ctx=0x7f118502d1f8, youtube_channel_filter_id=0
[p:274][s:8754][r:186] wad_vf_match_pattern_cb(1551): ctx=0x7f118502d1f8 matched type video
[p:274][s:8754][r:186] wad_vf_extract_video_id(297): str='v=EAyo3_zJj5c', start='v=', end='
[p:274][s:8754][r:186] wad_vf_extract_video_id(297): str='v=EAyo3_zJj5c', start='v=', end='
[p:274][s:8754][r:186] wad_vf_sync_task_trigger_async_task(1602): extracted vid=EAyo3_zJj5c
ctx=0x7f118502d1f8
```
Filtering based on YouTube channel

Video filtering can be configured to filter specific YouTube channels. When a video matches a YouTube channel, the video will take the corresponding action of allow, monitor, or block. Video filtering is only supported in proxy-based inspection mode, and deep inspection must be enabled in the firewall policy.

By default, when the FortiGuard category-based filter and YouTube channel override are used together, a video will be blocked if it matches either category or YouTube channel and the action is set to block.

Identifying the YouTube channel ID

The following table lists how to identify the YouTube channel ID based on different YouTube video URLs formats:

<table>
<thead>
<tr>
<th>Video URL</th>
<th>Channel ID</th>
</tr>
</thead>
<tbody>
<tr>
<td><a href="http://www.youtube.com/channel/">www.youtube.com/channel/</a>&lt;channel-id&gt;</td>
<td>&lt;channel-id&gt; indicates the ID for the channel.</td>
</tr>
<tr>
<td><a href="http://www.youtube.com/user/">www.youtube.com/user/</a>&lt;user-id&gt;</td>
<td>Open the page source and locate:</td>
</tr>
<tr>
<td></td>
<td>&lt;meta itemprop=&quot;channelId&quot; content=&quot;&lt;channel-id&quot;&gt;&quot;</td>
</tr>
<tr>
<td></td>
<td>&lt;channel-id&gt; indicates the channel ID for the user page.</td>
</tr>
<tr>
<td><a href="http://www.youtube.com/watch?v=">www.youtube.com/watch?v=</a>&lt;string&gt;</td>
<td>Open the page source and locate:</td>
</tr>
<tr>
<td></td>
<td>&lt;meta itemprop=&quot;channelId&quot; content=&quot;&lt;channel-id&quot;&gt;&quot;</td>
</tr>
<tr>
<td></td>
<td>&lt;channel-id&gt; indicates the channel ID for the video.</td>
</tr>
</tbody>
</table>
Security Profiles

In a YouTube channel filter profile, the default action is set to monitor when there is no match. Logging is also disabled by default.

```
config videofilter youtube-channel-filter
 edit <id>
 set default-action {block | monitor | allow}
 set log {enable | disable}
 next
end
```

**Example**

In the following example, the Fortinet YouTube channel ID (UCJHo4AuVomwMRzgkA5DQEOA) is blocked, and the video filter is applied to a policy.

To configure a video filter based on a YouTube channel in the GUI:

1. Go to Security Profiles > Video Filter and click Create New.
2. In the Channel override list section, click Create New. The New Channel Override Entry pane opens.
   a. Enter the Channel ID (UCJHo4AuVomwMRzgkA5DQEOA) and for Action, select Block.

   ![New Channel Override Entry](image)

   b. Click OK.
3. Click OK.
4. Create the firewall policy:
   a. Go to Policy & Objects > Firewall Policy and click Create New.
   b. For Inspection Mode, select Proxy-based.
   c. Enable Video Filter and select the profile you created.
Security Profiles

d. For SSL Inspection, select deep-inspection.

e. Configure the other settings as needed and click OK.

To configure a video filter based on a YouTube channel in the CLI:

1. Create the channel filter:

```bash
config videofilter youtube-channel-filter
 edit 1
 set name "channel_filter"
 set default-action monitor
 set log enable
 config entries
 edit 1
 set action block
 set channel-id "UCJHo4AuVomwMRzgkA5DQEOA"
 next
 next
end
```

2. Create the video filter profile:

```bash
config videofilter profile
 edit "channel_filter"
 set youtube-channel-filter 1
 next
end
```

3. Create the firewall policy:

```bash
config firewall policy
 edit 1
 set name "video-filter"
 set srcintf "port2"
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
```
Security Profiles

set service "ALL"
set utm-status enable
set inspection-mode proxy
set ssl-ssh-profile "deep-inspection"
set videofilter-profile "channel_filter"
set nat disable
next
end

DNS filter

You can apply DNS category filtering to control user access to web resources. You can customize the default profile, or create your own to manage network user access and apply it to a firewall policy, or you can add it to a DNS server on a FortiGate interface. For more information about configuring DNS, see DNS on page 202.

DNS filtering has the following features:

- FortiGuard Filtering: filters the DNS request based on the FortiGuard domain rating.
- Botnet C&C domain blocking: blocks the DNS request for the known botnet C&C domains.
- External dynamic category domain filtering: allows you to define your own domain category.
- DNS safe search: enforces Google, Bing, and YouTube safe addresses for parental controls.
- Local domain filtering: allows you to define your own domain list to block or allow.
- External IP block list: allows you to define an IP block list to block resolved IPs that match this list.
- DNS translation: maps the resolved result to another IP that you define.

Some DNS filter features require a subscription to FortiGuard Web Filtering.

DNS filtering connects to the FortiGuard secure DNS server over anycast by default. For more information about this configuration, see DNS over TLS and HTTPS on page 214.

The IPS engine handles the DNS filter in flow mode policies and queries the FortiGuard web filter server for FortiGuard categories. In proxy mode, the DNS proxy daemon handles the DNS filter and queries the FortiGuard SDNS server for FortiGuard categories. When a DNS filter profile is enabled in `config system dns-server`, the DNS proxy daemon handles the traffic.

DNS filter profiles cannot be used in firewall policies when the FortiGate is in NGFW policy-based mode; see NGFW policy on page 773 for more information. They can be used in the DNS server; see FortiGate DNS server on page 206 for more information.

A DNS filter profile can be applied in a policy to scan DNS traffic traversing the FortiGate (see Configuring a DNS filter profile on page 1168), or applied on the DNS server interface (see Applying DNS filter to FortiGate DNS server on page 1185).
DNS filter behavior in proxy mode

In cases where the DNS proxy daemon handles the DNS filter (described in the preceding section) and if DNS caching is enabled (this is the default setting), then the FortiGate will respond to subsequent DNS queries using the result in the DNS cache and will not forward these queries to a real DNS server.

There are two options to disable this behavior:

- Disable DNS caching globally.
- Remove the DNS filter profile from the proxy mode firewall policy or from the DNS server configured on a FortiGate interface.

To disable DNS caching globally:

```
config system dns
 set dns-cache-limit 0
end
```

There will be a performance impact to DNS queries since each query will not be cached, and will be forwarded to a real DNS server.

FortiGuard DNS rating service

DNS over TLS connections to the FortiGuard secure DNS server is supported. The CLI options are only available when `fortiguard-anycast` is enabled. DNS filtering connects to the FortiGuard secure DNS server over anycast by default.

To configure DoT to the secure DNS server in the CLI:

```
config system fortiguard
 set fortiguard-anycast enable
 set fortiguard-anycast-source fortinet
 set anycast-dns-server-ip 0.0.0.0
 set anycast-dns-server-port 853
end
```

The following topics provide information about DNS filters:

- Configuring a DNS filter profile on page 1168
- FortiGuard category-based DNS domain filtering on page 1170
- Botnet C&C domain blocking on page 1173
- DNS safe search on page 1177
- Local domain filter on page 1179
- DNS translation on page 1182
- Applying DNS filter to FortiGate DNS server on page 1185
- DNS inspection with DoT and DoH on page 1186
- Troubleshooting for DNS filter on page 1190
Configuring a DNS filter profile

Once a DNS filter is configured, it can be applied to a firewall policy. This example scans DNS traffic traversing the FortiGate.

When a FortiGate DNS server has been configured, refer to the steps in Applying DNS filter to FortiGate DNS server on page 1185.

To configure DNS Filter profile in the GUI:

1. Go to Security Profiles > DNS Filter and click Create New, or edit an existing profile.
2. Configure the settings as needed.

3. Click OK.

To create or configure DNS Filter profile in the CLI:

```
config dnsfilter profile
 edit "demo"
 set comment ''
 config domain-filter
 unset domain-filter-table
 end
 config ftgd-dns
 set options error-allow
 config filters
 edit 2
 set category 2
 set action monitor
 next
 edit 7
 set category 7
 set action block
 next
 ...
```
edit 22
    set category 0
    set action monitor
next
end
end
set log-all-domain enable
set sdns-ftgd-err-log enable
set sdns-domain-log enable
set block-action redirect
set block-botnet enable
set safe-search enable
set redirect-portal 93.184.216.34
set youtube-restrict strict
next
end

To apply DNS Filter profile to the policy in the GUI:

1. Go to Policy & Objects > Firewall Policy and click Create New, or edit an existing policy.
2. In the Security Profiles section, enable DNS Filter and select the DNS filter.

3. Configure the other settings as needed.
4. Click OK.

To apply DNS Filter profile to the policy in the CLI:

config firewall policy
    edit 1
        set name "Demo"
        set srcintf "port10"
        set dstintf "port9"
        set srcaddr "all"
        set dstaddr "all"
        set action accept
        set schedule "always"
        set service "ALL"
        set utm-status enable
        set inspection-mode proxy
        set logtraffic all
        set fsso disable
Security Profiles

set dnsfilter-profile "demo"
set profile-protocol-options "default"
set ssl-ssh-profile "deep-inspection"
set nat enable
next
dnsfilter-profile: "demo"
end

DNS filter behavior in proxy mode

In cases where the DNS proxy daemon handles the DNS filter (described in DNS filter on page 1166) and if DNS caching is enabled (this is the default setting), then the FortiGate will respond to subsequent DNS queries using the result in the DNS cache and will not forward these queries to a real DNS server.

There are two options to disable this behavior:

- Disable DNS caching globally.
- Remove the DNS filter profile from the proxy mode firewall policy or from the DNS server configured on a FortiGate interface.

To disable DNS caching globally:

```plaintext
config system dns
set dns-cache-limit 0
end
```

There will be a performance impact to DNS queries since each query will not be cached, and will be forwarded to a real DNS server.

FortiGuard category-based DNS domain filtering

You can use the FortiGuard category-based DNS domain filter to inspect DNS traffic. This makes use of FortiGuard's continuously updated domain rating database for more reliable protection.

A DNS filter profile can be applied in a policy to scan DNS traffic traversing the FortiGate (see Configuring a DNS filter profile on page 1168), or applied on the DNS server interface (see Applying DNS filter to FortiGate DNS server on page 1185).

The FortiGate must have a FortiGuard Web Filter license to use the FortiGuard category-based filter.

To configure FortiGuard category-based DNS domain filtering in the GUI:

1. Go to Security Profiles > DNS Filter and click Create New, or edit an existing profile.
2. Enable FortiGuard Category Based Filter.
3. Select the category and then select Allow, Monitor, or Redirect to Block Portal for that category.
4. In the Options section, select a setting for Redirect Portal IP. Select either Use FortiGuard Default (208.91.112.55) or click Specify and enter another portal IP. The FortiGate will use the portal IP to replace the resolved IP in the DNS
response packet.

5. Click OK.

To configure FortiGuard category-based DNS domain filtering in the CLI:

```
config dnsfilter profile
 edit "demo"
 set comment '
 config domain-filter
 unset domain-filter-table
 end
 config ftgd-dns
 set options error-allow
 config filters
 edit 2
 set category 2
 set action monitor
 next
 edit 7
 set category 7
 set action monitor
 next
 ...
 edit 22
 set category 0
 set action monitor
 set log-all-domain enable
 set sdns-ftgd-err-log enable
 set sdns-domain-log enable
 set block-action {redirect | block}
 set block-botnet enable
```
set safe-search enable
set redirect-portal 93.184.216.34
set youtube-restrict strict
next
end

Verifying the logs

From your internal network PC, use a command line tool, such as dig or nslookup, to do a DNS query for some domains. For example:

#dig www.example.com
;; -->>HEADER<<- opcode: QUERY; status: NOERROR; id: 61252
;; Flags: qr rd ra; QUERY: 1; ANSWER: 1; AUTHORITY: 13; ADDITIONAL: 11

;; QUESTION SECTION:
;; www.example.com. IN A

;; ANSWER SECTION:
www.example.com. 17164 IN A 93.184.216.34

;; AUTHORITY SECTION:
com. 20027 IN NS h.gtld-servers.net.
com. 20027 IN NS i.gtld-servers.net.
com. 20027 IN NS f.gtld-servers.net.
com. 20027 IN NS d.gtld-servers.net.
com. 20027 IN NS j.gtld-servers.net.
com. 20027 IN NS l.gtld-servers.net.
com. 20027 IN NS e.gtld-servers.net.
com. 20027 IN NS a.gtld-servers.net.
com. 20027 IN NS k.gtld-servers.net.
com. 20027 IN NS g.gtld-servers.net.
com. 20027 IN NS m.gtld-servers.net.
com. 20027 IN NS c.gtld-servers.net.
com. 20027 IN NS b.gtld-servers.net.

;; ADDITIONAL SECTION:
a.gtld-servers.net. 21999 IN A 192.5.6.30
a.gtld-servers.net. 21999 IN AAAA 2001:503:a83e::2:30
b.gtld-servers.net. 21997 IN A 192.33.14.30
b.gtld-servers.net. 21997 IN AAAA 2001:503:231d::2:30
c.gtld-servers.net. 21987 IN A 192.26.92.30
c.gtld-servers.net. 21987 IN AAAA 2001:503:73eb::30
d.gtld-servers.net. 3340 IN A 192.31.80.30
d.gtld-servers.net. 3340 IN AAAA 2001:500:856e::30
e.gtld-servers.net. 19334 IN A 192.12.94.30
e.gtld-servers.net. 19334 IN AAAA 2001:502:1ca1::30
f.gtld-servers.net. 3340 IN A 192.35.51.30

;; Received 509 B
;; Time 2019-04-05 09:39:33 PDT
;; From 172.16.95.16@53(UDP) in 3.8 ms
To check the DNS filter log in the GUI:

2. Click the DNS Query card name. There are logs for the DNS traffic that just passed through the FortiGate with the FortiGuard rating for the domain name.

To check the DNS filter log in the CLI:

```
execute log filter category utm-dns

execute log display
2 logs found.
2 logs returned.
```

1: date=2019-04-05 time=09:39:34 logid="1501054802" type="utm" subtype="dns" eventtype="dns-response" level="notice" vd="vdom1" eventtime=1554482373 policyid=1 sessionid=50868 srcip=10.1.100.18 srport=34308 srcintf="port10" srcintfrole="undefined" dstip=172.16.95.16 dstport=53 dstintf="port9" dstintfrole="undefined" proto=17 profile="demo" xid=17647 qname="www.example.com" qtype="A" qtypeval=1 qclass="IN" ipaddr="93.184.216.34" msg="Domain is monitored" action="pass" cat=52 catdesc="Information Technology"

2: date=2019-04-05 time=09:39:34 logid="1500054000" type="utm" subtype="dns" eventtype="dns-query" level="information" vd="vdom1" eventtime=1554482373 policyid=1 sessionid=50868 srcip=10.1.100.18 srport=34308 srcintf="port10" srcintfrole="undefined" dstip=172.16.95.16 dstport=53 dstintf="port9" dstintfrole="undefined" proto=17 profile="demo" xid=17647 qname="www.example.com" qtype="A" qtypeval=1 qclass="IN"

Botnet C&C domain blocking

FortiGuard Service continually updates the botnet C&C domain list. The botnet C&C domain blocking feature can block the botnet website access at the DNS name resolving stage. This provides additional protection for your network.

A DNS filter profile can be applied in a policy to scan DNS traffic traversing the FortiGate (see Configuring a DNS filter profile on page 1168), or applied on the DNS server interface (see Applying DNS filter to FortiGate DNS server on page 1185).

To configure botnet C&C domain blocking in the GUI:

1. Go to Security Profiles > DNS Filter and click Create New, or edit an existing profile.
2. Enable Redirect botnet C&C requests to Block Portal.
3. Optionally, click the botnet package link. The Botnet C&C Domain Definitions pane opens, which displays the latest list.
4. Configure the other settings as needed.
5. Click OK.

To configure botnet C&C domain blocking in the CLI:

```plaintext
config dnsfilter profile
 edit "demo"
 set comment ''
 config domain-filter
 unset domain-filter-table
 end
 config ftgd-dns
 set options error-allow
 config filters
 ...
 end
 end
 set log-all-domain enable
 set sdns-ftgd-err-log enable
 set sdns-domain-log enable
 set block-action block
 set block-botnet enable
 set safe-search enable
 set redirect-portal 208.91.112.55
 set youtube-restrict strict
next
end
```

Verifying the logs

Select a botnet domain from that list. From your internal network PC, use a command line tool, such as `dig` or `nslookup`, to send a DNS query to traverse the FortiGate. For example:
The botnet domain query was blocked and redirected to the portal IP (208.91.112.55).

To check the DNS filter log in the GUI:

2. Click the DNS Query card name to view the DNS query blocked as a botnet domain.

To check the DNS filter log in the CLI:

(vdom1) # execute log filter category utm-dns

(vdom1) # execute log display
2 logs found.
2 logs returned.

1: date=2019-04-04 time=16:43:59 logid="1501054601" type="utm" subtype="dns" eventtype="dns-response" level="warning" vd="vdom1" eventtime=1554421439 policyid=1 sessionid=14135 srcip=10.1.100.18 srcport=57447 srcintf="port10" srcintfrole="undefined" dstip=172.16.95.16 dstport=53 dstintf="port9" dstintfrole="undefined" proto=17 profile="demo" xid=24339 qname="canind.co" qtype="A" qtypeval=1 qclass="IN" msg="Domain was blocked by dns botnet C&C" action="redirect" botnetdomain="canind.co"

2: date=2019-04-04 time=16:43:59 logid="1500054000" type="utm" subtype="dns" eventtype="dns-query" level="information" vd="vdom1" eventtime=1554421439 policyid=1 sessionid=14135 srcip=10.1.100.18 srcport=57447 srcintf="port10" srcintfrole="undefined" dstip=172.16.95.16 dstport=53 dstintf="port9" dstintfrole="undefined" proto=17 profile="demo" xid=24339 qname="canind.co" qtype="A" qtypeval=1 qclass="IN"

Botnet C&C IPDB blocking

FortiOS also maintains a botnet C&C IP address database (IPDB). If a DNS query response IP address (resolved IP address) matches an entry inside the botnet IPDB, this DNS query is blocked by the DNS filter botnet C&C.

To view the botnet IPDB list in the CLI:

(global) # diagnose sys botnet list 9000 10
9000. proto=TCP ip=103.228.28.166, port=80, rule_id=7630075, name_id=3, hits=0
9001. proto=TCP ip=5.9.32.166, port=481, rule_id=4146631, name_id=7, hits=0
9002. proto=TCP ip=91.89.44.166, port=80, rule_id=48, name_id=96, hits=0
9003. proto=TCP ip=46.211.46.166, port=80, rule_id=48, name_id=96, hits=0
9004. proto=TCP ip=77.52.52.166, port=80, rule_id=48, name_id=96, hits=0
9005. proto=TCP ip=98.25.53.166, port=80, rule_id=48, name_id=96, hits=0
9006. proto=TCP ip=70.120.67.166, port=80, rule_id=48, name_id=96, hits=0
9007. proto=TCP ip=85.253.77.166, port=80, rule_id=48, name_id=96, hits=0
9008. proto=TCP ip=193.106.81.166, port=80, rule_id=48, name_id=96, hits=0
9009. proto=TCP ip=58.13.84.166, port=80, rule_id=48, name_id=96, hits=0

Select an IP address from the IPDB list and use a reverse lookup service to find its corresponding domain name. From your internal network PC, use a command line tool, such as `dig` or `nslookup`, to query this domain and verify that it is blocked by the DNS filter botnet C&C. For example:

```
dig cpe-98-25-53-166.sc.res.rr.com
;; ->>HEADER<<- opcode: QUERY; status: NOERROR; id: 35135
;; Flags: qr rd; QUERY: 1; ANSWER: 1; AUTHORITY: 0; ADDITIONAL: 0

;; QUESTION SECTION:
;; cpe-98-25-53-166.sc.res.rr.com. IN A

;; ANSWER SECTION:
cpe-98-25-53-166.sc.res.rr.com. 60 IN A 208.91.112.55
```

Since the resolved IP address matches the botnet IPDB, the query was blocked and redirected to the portal IP (208.91.112.55).

To check the DNS filter log in the GUI:

1. Go to Log & Report > DNS Query to view the DNS query blocked by botnet C&C IPDB.

<table>
<thead>
<tr>
<th>Date/Time</th>
<th>Sub Type</th>
<th>Source</th>
<th>Domain Name</th>
<th>Query Type</th>
<th>Policy</th>
<th>Message</th>
<th>Domain Filter List</th>
<th>Category</th>
<th>Category Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019-04-05 11:06:48</td>
<td>dns</td>
<td>197.110.18</td>
<td>cpe-98-25-53-166.sc.res.rr.com</td>
<td>A</td>
<td>1</td>
<td>Domain was blocked by dns botnet C&amp;C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019-04-05 11:06:48</td>
<td>dns</td>
<td>197.110.18</td>
<td>cpe-98-25-53-166.sc.res.rr.com</td>
<td>A</td>
<td>1</td>
<td>Domain was blocked by dns botnet C&amp;C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To check the DNS filter log in the CLI:

```
(global) # execute log filter category utm-dns
2 logs found.
2 logs returned.

1: date=2019-04-05 time=11:06:48 logid="1501054600" type="utm" subtype="dns" eventtype="dns-response" level="warning" vd="vdom1" eventtime=1554487606 policyid=1 sessionid=55232 srcip=10.1.100.18 srccport=60510 srcintf="port10" srcintfrole="undefined" dstip=172.16.95.16 dstport=53 dstintf="port9" dstintfrole="undefined" proto=17 profile="demo" xid=16265 qname="cpe-98-25-53-166.sc.res.rr.com" qtype="A" qtypeval=1 qclass="IN" ipaddr="93.184.216.34" msg="Domain was blocked by dns botnet C&C" action="redirect" botnetip=98.25.53.166
```

```
2: date=2019-04-05 time=11:06:48 logid="1500054000" type="utm" subtype="dns" eventtype="dns-query" level="information" vd="vdom1" eventtime=1554487606 policyid=1 sessionid=55232
```
To check botnet activity:

1. Go to Dashboard > Status and locate the Botnet Activity widget.

2. If you do not see the widget, click Add Widget, and add the Botnet Activity widget.

DNS safe search

The DNS safe search option helps avoid explicit and inappropriate results in the Google, Bing, and YouTube search engines. The FortiGate responds with content filtered by the search engine.

For individual search engine safe search specifications, refer to the documentation for Google, Bing, and YouTube.

A DNS filter profile can be applied in a policy to scan DNS traffic traversing the FortiGate (see Configuring a DNS filter profile on page 1168), or applied on the DNS server interface (see Applying DNS filter to FortiGate DNS server on page 1185).

To configure safe search in the GUI:

1. Go to Security Profiles > DNS Filter and click Create New, or edit an existing profile.
2. Enable Enforce ‘Safe search’ on Google, Bing, YouTube.
3. For Restrict YouTube Access, click Strict or Moderate.
4. Configure the other settings as needed.
5. Click OK.

To configure safe search in the CLI:

```
config dnsfilter profile
edit "demo"
```
config ftgd-dns
  set options error-allow
  config filters
    edit 2
      set category 2
      next
      ...
    end
  end
  set log-all-domain enable
  set block-botnet enable
  set safe-search enable
  set youtube-restrict strict
  next
end

Verifying the logs

From your internal network PC, use a command line tool, such as dig or nslookup, and perform a DNS query on www.bing.com. For example:

```bash
dig www.bing.com
;; -<<HEADER<<- opcode: QUERY; status: NOERROR; id: 46568
;; Flags: qr rd ra; QUERY: 1; ANSWER: 2; AUTHORITY: 0; ADDITIONAL: 0

;; QUESTION SECTION:

;; ANSWER SECTION:
www.bing.com. 103 IN A
strict.bing.com. 103 IN CNAME strict.bing.com

;; Received 67 B
;; Time 2019-04-05 14:34:52 PDT
;; From 172.16.95.16@53(UDP) in 196.0 ms
```

The DNS query for www.bing.com returns with a CNAME strict.bing.com, and an A record for the CNAME. The user's web browser then connects to this address with the same search engine UI, but any explicit content search is filtered out.

To check the DNS filter log in the GUI:

2. Click the DNS Query card name.

The DNS filter log in FortiOS shows a message of DNS Safe Search enforced.

To check the DNS filter log in the CLI:

```bash
execute log filter category utm-dns
execute log display
2 logs found.
2 logs returned.
```
Local domain filter

In addition to the FortiGuard category-based domain filter, you can define a local static domain filter to allow or block specific domains.

In a DNS filter profile, the local domain filter has a higher priority than FortiGuard category-based domain filter. DNS queries are scanned and matched first with the local domain filter. If an entry matches and the local filter action is set to block, then that DNS query is blocked and redirected.

If the local domain filter list has no match, then the FortiGuard category-based domain filter is used. If a DNS query domain name rating belongs to the block category, the query is blocked and redirected. If the FortiGuard category-based filter has no match, then the original resolved IP address is returned to the client DNS resolver.

If the local domain filter action is set to allow and an entry matches, it will skip the FortiGuard category-based domain filter and directly return to the client DNS resolver. If the local domain filter action is set to monitor and an entry matches, it will go to the FortiGuard category-based domain filter for scanning and matching.

A DNS filter profile can be applied in a policy to scan DNS traffic traversing the FortiGate (see Configuring a DNS filter profile on page 1168), or applied on the DNS server interface (see Applying DNS filter to FortiGate DNS server on page 1185).

To configure the local domain filter in the GUI:

1. Go to Security Profiles > DNS Filter and click Create New, or edit an existing profile.
2. In the Static Domain Filter section, enable Domain Filter.
3. Click Create New. The Create Domain Filter pane opens.
4. Enter a domain, and select a Type and Action. This example has three filters:

<table>
<thead>
<tr>
<th>Domain</th>
<th>Type</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><a href="http://www.fortinet.com">www.fortinet.com</a></td>
<td>Simple</td>
<td>Allow</td>
</tr>
<tr>
<td>*.example.com</td>
<td>Wildcard</td>
<td>Redirect to Block Portal</td>
</tr>
<tr>
<td>google</td>
<td>Reg. Expression</td>
<td>Monitor</td>
</tr>
</tbody>
</table>
5. Click OK. The entry appears in the table.

6. Configure the other settings as needed.

7. Click OK.

**To configure the local domain filter in the CLI:**

```plaintext
config dnsfilter domain-filter
 edit 1
 set name "demo"
 set comment ''
 config entries
 edit 1
 set domain "www.fortinet.com"
 set type simple
 set action allow
 set status enable
 next
 edit 2
 set domain "*.example.com"
 set type wildcard
 set action block
 set status enable
 next
 edit 3
 set domain "google"
 set type regex
 set action monitor
 set status enable
 next
 end
next
end
```
Wildcard entries are converted to regular expressions by FortiOS. As a result, wildcards will match any suffix, as long as there is a word boundary following the search term.

For example:

```
config entries
 edit 1
 set domain "*.host"
 set type wildcard
 next
end
```

Will match `wp36.host` and `wp36.host.pressdns.com`, but not `wp36.host123.pressdns.com`.

To avoid this, use an explicit regular expression search string:

```
config entries
 edit 1
 set domain "^.*\\.host$"
 set type regexp
 next
end
```

To check the DNS filter log in the GUI:

2. Click the DNS Query card name.

<table>
<thead>
<tr>
<th>Date/Time</th>
<th>Sub Type</th>
<th>Source</th>
<th>Domain Name</th>
<th>Query Type</th>
<th>Policy</th>
<th>Message</th>
<th>Domain Filter List</th>
<th>Category</th>
<th>Category Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019/04/05 15:37:06</td>
<td>dns</td>
<td>10.1.100.18</td>
<td><a href="http://www.google.com">www.google.com</a></td>
<td>A</td>
<td>1</td>
<td>Domain belongs to a denied category in policy</td>
<td>41</td>
<td>Search Engines and Portals</td>
<td></td>
</tr>
<tr>
<td>2019/04/05 15:37:06</td>
<td>dns</td>
<td>10.1.100.18</td>
<td><a href="http://www.google.com">www.google.com</a></td>
<td>A</td>
<td>1</td>
<td>Domain was blocked because it is in the domain-filter list: demo</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Since the local domain filter for `google` is set to monitor, it is blocked by the FortiGuard category-based domain filter because the policy action is deny.

To check the DNS filter log in the CLI:

```
execute log filter category utm-dns
execute log display
```

```
7: date=2019-04-05 time=15:37:06 logid="1501054803" type="utm" subtype="dns" eventtype="dns-response" level="warning" vd="vdom1" eventtime=1554503826 policyid=1 sessionid=69132 srcip=10.1.100.18 srcport=49832 srcintf="port10" srcintfrole="undefined" dstip=172.16.95.16 dstport=53 dstintf="port9" dstintfrole="undefined" proto=17 profile="demo" xid=4612 qname="www.google.com" qtype="A" qtypeval=1 qclass="IN" ipaddr="208.91.112.55" msg="Domain belongs to a denied category in policy" action="redirect" cat=41 catdesc="Search Engines and Portals"
```

```
8: date=2019-04-05 time=15:37:06 logid="1500054000" type="utm" subtype="dns" eventtype="dns-query" level="information" vd="vdom1" eventtime=1554503826 policyid=1 sessionid=69132 srcip=10.1.100.18 srcport=49832 srcintf="port10" srcintfrole="undefined" dstip=172.16.95.16```

DNS translation

This setting allows you to translate a DNS resolved IP address to another IP address you specify on a per-policy basis.

For example, website A has a public address of 1.2.3.4. However, when your internal network users visit this website, you want them to connect to the internal host 192.168.3.4. You can use DNS translation to translate the DNS resolved address 1.2.3.4 to 192.168.3.4. Reverse use of DNS translation is also applicable. For example, if you want a public DNS query of your internal server to get a public IP address, then you can translate a DNS resolved private IP to a public IP address.

A DNS filter profile can be applied in a policy to scan DNS traffic traversing the FortiGate (see Configuring a DNS filter profile on page 1168), or applied on the DNS server interface (see Applying DNS filter to FortiGate DNS server on page 1185).

Sample configuration

This configuration forces the DNS filter profile to translate 93.184.216.34 (www.example.com) to 192.168.3.4. When internal network users perform a DNS query for www.example.com, they do not get the original www.example.com IP address of 93.184.216.34. Instead, it is replaced with 192.168.3.4.

To configure DNS translation in the GUI:

1. Go to Security Profiles > DNS Filter and click Create New, or edit an existing profile.
2. In the Static Domain Filter section, enable DNS Translation.
3. Click *Create New*. The *New DNS Translation* pane opens.

4. Enter the *Original Destination* (the domain's original IP address), the *Translated Destination* IP address, and the *Network Mask*.

5. Click *OK*. The entry appears in the table.

6. Configure the other settings as needed.

7. Click *OK*.

To configure DNS translation in the CLI:

```
config dnsfilter profile
  edit "demo"
    set comment ''
    ...  
  config dns-translation
    edit 1
      set src 93.184.216.34
      set dst 192.168.3.4
      set netmask 255.255.255.255
    next
  end
  set redirect-portal 0.0.0.0
  set redirect-portal6 ::
  set youtube-restrict strict
next
end
```
To check DNS translation using a command line tool before DNS translation:

```bash
# dig www.example.com
;; -->>HEADER<<- opcode: QUERY; status: NOERROR; id: 27030
;; Flags: qr rd ra; QUERY: 1; ANSWER: 1; AUTHORITY: 2; ADDITIONAL: 0

;; QUESTION SECTION:
;; www.example.com.

;; ANSWER SECTION:
www.example.com. 33946 IN A 93.184.216.34

;; AUTHORITY SECTION:
example.com. 18578 IN NS b.iana-servers.net.
exmaple.com. 18578 IN NS a.iana-servers.net.
```

;; Received 97 B
;; Time 2019-04-08 10:47:26 PDT
;; From 172.16.95.16@53(UDP) in 0.5 ms

To check DNS translation using a command line tool after DNS translation:

```bash
# dig www.example.com
;; -->>HEADER<<- opcode: QUERY; status: NOERROR; id: 62060
;; Flags: qr rd ra; QUERY: 1; ANSWER: 1; AUTHORITY: 2; ADDITIONAL: 0

;; QUESTION SECTION:
;; www.example.com.

;; ANSWER SECTION:
www.example.com. 32491 IN A 192.168.3.4

;; AUTHORITY SECTION:
example.com. 17123 IN NS b.iana-servers.net.
exmaple.com. 17123 IN NS a.iana-servers.net.
```

;; Received 97 B
;; Time 2019-04-08 11:11:41 PDT
;; From 172.16.95.16@53(UDP) in 0.5 ms

DNS translation network mask

The following is an example of DNS translation that uses a network mask:

To configure DNS translation in the CLI:

```bash
config dns-translation
edit 1
    set src 93.184.216.34
    set dst 1.2.3.4
    set netmask 255.255.224.0
next
end
```
To check DNS translation using a command line tool after DNS translation:

dig www.example.com
;; ->>HEADER<<- opcode: QUERY; status: NOERROR; id: 6736
;; Flags: qr rd ra; QUERY: 1; ANSWER: 1; AUTHORITY: 2; ADDITIONAL: 0

;; QUESTION SECTION:
;; www.example.com.

;; ANSWER SECTION:
www.example.com. 29322 IN A 1.2.24.34

;; AUTHORITY SECTION:
example.com. 13954 IN NS a.iana-servers.net.
example.com. 13954 IN NS b.iana-servers.net.

;; Received 97 B
;; Time 2019-04-08 12:04:30 PDT
;; From 172.16.95.16@53(UDP) in 2.0 ms

The binary arithmetic to convert 93.184.216.34 to 1.2.3.4 with the subnet mask is as follows:

1. AND src(Original IP) with negative netmask (93.184.216.34 & ~255.255.224.0):

 01011101.10111000.11011000.00100010 93.184.216.34
 00000000.00000000.00000000.00000000 ~255.255.224.0
 --- &
 00000000.00000000.00000000.00000000 0.0.24.34

2. AND dst(Translated IP) with netmask:

 00000001.00000010.00000011.00000100 1.2.3.4
 11111111.11111111.11110000.00000000 255.255.224.0
 --- &
 00000001.00000010.00000000.00000000 1.2.0.0

3. Final step 2 bitwise-OR 3:

 00000000.00000000.00011000.00100010 0.0.24.34
 00000001.00000010.00000000.00000000 1.2.0.0
 --- |
 00000001.00000010.00011000.00100010 1.2.24.34

Applying DNS filter to FortiGate DNS server

You can configure a FortiGate as a DNS server in your network. When you enable DNS service on a specific interface, the FortiGate will listen for DNS service on that interface.

Depending on the configuration, DNS service works in three modes: Recursive, Non-Recursive, or Forward to System DNS (server). For details on how to configure the FortiGate as a DNS server and configure the DNS database, see FortiGate DNS server on page 206.

You can apply a DNS filter profile to Recursive and Forward to System DNS mode. This is the same as the FortiGate working as a transparent DNS proxy for DNS relay traffic.
To configure DNS service in the GUI:

1. Go to Network > DNS Servers (if this option is not available, go to System > Feature Visibility and enable DNS Database).
2. In the DNS Service on Interface section, click Create New and select an Interface from the dropdown.
3. For Mode, select Forward to System DNS.
4. Enable DNS Filter and select a profile from the dropdown.
5. Click OK.

To configure DNS service in the CLI:

```
config system dns-server
  edit "port10"
    set mode forward-only
    set dnsfilter-profile "demo"
  next
end
```

To check DNS service with a DNS filter profile using a command line tool:

In this example, port10 is enabled as a DNS service with the DNS filter profile demo. The IP address of port10 is 10.1.100.5, and the DNS filter profile is configured to block category 52 (information technology). From your internal network PC, use a command line tool, such as dig or nslookup, to perform a DNS query. For example:

```
# dig @10.1.100.5 www.fortinet.com
;;; ->>HEADER<<- opcode: QUERY; status: NOERROR; id: 52809
;;; Flags: qr rd; QUERY: 1; ANSWER: 1; AUTHORITY: 0; ADDITIONAL: 0

;; QUESTION SECTION:
;; www.fortinet.com. IN A

;; ANSWER SECTION:
www.fortinet.com. 60 IN A 208.91.112.55

;; Received 50 B
;; Time 2019-04-08 14:36:34 PDT
;; From 10.1.100.5@53(UDP) in 13.6 ms
```

The relay DNS traffic was filtered based on the DNS filter profile configuration. It was blocked and redirected to the portal IP (208.91.112.55).

DNS inspection with DoT and DoH

DNS over TLS (DoT) and DNS over HTTPS (DoH) are supported in DNS inspection. Prior to 7.0, DoT and DoH traffic silently passes through the DNS proxy. In 7.0, the WAD is able to handle DoT and DoH, and redirect DNS queries to the
Security Profiles

DNS proxy for further inspection.

In the following examples, the FortiGate inspects DNS queries made over DoT and DoH to a Cloudflare DNS server. The DNS filter profile blocks the education category.

To configure DNS inspection of DoT and DoH queries in the GUI:

1. Configure the SSL-SSH profile:
 a. Go to Security Profiles > SSL/SSH Inspection and click Create New.
 b. Set Inspection method to Full SSL Inspection. DoT and DoH can only be inspected using doing deep inspection.
 c. In the Protocol Port Mapping section, enable DNS over TLS.
d. Configure the other settings as needed.
e. Click OK.

2. Configure the DNS filter profile:
 a. Go to Security Profiles > DNS Filter and click Create New.
 b. Enable Redirect botnet C&C requests to Block Portal.
 c. Enable FortiGuard Category Based Filter and set the Action for the Education category to Redirect to Block Portal.
 d. Configure the other settings as needed.
 e. Click OK.

3. Configure the firewall policy:
 a. Go to Policy & Objects > Firewall Policy and click Create New.
 b. Enable DNS Filter and select the profile you created.
 c. For SSL Inspection, select the profile you created.
 d. Configure the other settings as needed.
 e. Click OK.

To configure DNS inspection of DoT and DoH queries in the CLI:

1. Configure the SSL-SSH profile:

```bash
config firewall ssl-ssh-profile
edit "ssl"
   config dot
      set status deep-inspection
      set client-certificate bypass
      set unsupported-ssl-cipher allow
      set unsupported-ssl-negotiation allow
      set expired-server-cert block
      set revoked-server-cert block
      set untrusted-server-cert allow
      set cert-validation-timeout allow
      set cert-validation-failure block
   end
next
end
```

2. Configure the DNS filter profile:

```bash
config dnsfilter profile
edit "dnsfilter"
   config ftgd-dns
      config filters
         edit 1
            set category 30
            set action block
         next
      end
   set block-botnet enable
next
end
```
3. Configure the firewall policy:

```plaintext
config firewall policy
edit 1
    set srcintf "port1"
    set dstintf "port3"
    set srcaddr "all"
    set dstaddr "all"
    set action accept
    set schedule "always"
    set service "ALL"
    set utm-status enable
    set inspection-mode proxy
    set profile-protocol-options "protocol"
    set ssl-ssh-profile "ssl"
    set webfilter-profile "webfilter"
    set dnsfilter-profile "dnsfilter"
    set nat enable
next
end
```

Testing the connection

To query DNS over TLS:

1. Send a DNS query over TLS to the Cloudflare server 1.1.1.1 (this example uses `kdig` on an Ubuntu client). The `www.ubc.ca` domain belongs to the education category:

```plaintext
~$ kdig -d @1.1.1.1 +tls-ca +tls-host=cloudflare-dns.com www.ubc.ca
;; DEBUG: Querying for owner(www.ubc.ca.), class(1), type(1), server(1.1.1.1), port (853), protocol(TCP)
;; DEBUG: TLS, imported 128 system certificates
;; DEBUG: TLS, received certificate hierarchy:
;; DEBUG: #1, C=US,ST=California,L=San Francisco,O=Cloudflare, Inc.,CN=cloudflare-dns.com
;; DEBUG: SHA-256 PIN: elpYcnCs9ZtkQBI4+cb2QzZcy015UI9jMkSvVtTad0=
;; DEBUG: #2, C=US,ST=California,L=Sunnyvale,O=Fortinet,OU=Certificate Authority,CN=FG3H1E5818903681,EMAIL=support@fortinet.com
;; DEBUG: SHA-256 PIN: s48VtdOD1NZfAG2g/92hMLhitU51qsP9pkHAUTJE+f4=
;; DEBUG: TLS, skipping certificate PIN check
;; DEBUG: TLS, The certificate is trusted.
;; TLS session (TLS1.3)-(ECDHE-SECP256R1)-(ECDSA-SECP256R1-SHA256)-(AES-256-GCM)
;; ->>HEADER<<- opcode: QUERY; status: NOERROR; id: 56850
;; Flags: qr rd; QUERY: 1; ANSWER: 1; AUTHORITY: 0; ADDITIONAL: 0

;; QUESTION SECTION:
;; www.ubc.ca. IN A

;; ANSWER SECTION:
www.ubc.ca. 60 IN A 208.91.112.55

;; Received 44 B
;; Time 2021-03-12 06:53:37 UTC
;; From 1.1.1.10853(TCP) in 6.0 ms
```
In this query, the FortiGate inspects the DNS query to the Cloudflare DNS server. It replaces the result with the IP of the FortiGuard block page, which successfully blocks the query.

To query DNS over HTTPS:

1. In your browser, enable DNS over HTTPS.
2. Go to www.ubc.ca. The website is redirected to the block page.

Troubleshooting for DNS filter

If you have trouble with the DNS filter profile in your policy, start with the following troubleshooting steps:

- Check the connection between the FortiGate and FortiGuard DNS rating server (SDNS server).
- Check that the FortiGate has a valid FortiGuard web filter license.
- Check the FortiGate DNS filter configuration.

Checking the connection between the FortiGate and FortiGuard SDNS server

You need to ensure the FortiGate can connect to the FortiGuard SDNS server. By default, the FortiGate uses UDP port 53 to connect to the SDNS server.

To check the connection between the FortiGate and SDNS server:

1. Verify the FortiGuard SDNS server information:

   ```
   # diagnose test application dnsproxy 3
   ...
   FDG_SERVER:208.91.112.220:53
   FGD_CATEGORY_VERSION:8
   SERVER_LDB: gid=6f00, tz=-420, error_allow=0
   FGD_REDIR:208.91.112.55
   ```

 The SDNS server IP address might be different depending on location (in this example, it is 208.91.112.220:53).

2. In the management VDOM, check the communication between the FortiGate and the SDNS server:

   ```
   #execute ping 208.91.112.220
   ```

3. Optionally, you can check the communication using a PC on the internal network (this example uses dig).
 a. Disable the DNS filter profile so that it does not affect your connection check.
 b. Ping your ISP or a public DNS service provider's DNS server, for example, Google's public DNS server of 8.8.8.8:

      ```
      #dig @8.8.8.8 www.fortinet.com
      ```

 Or, specify the SDNS server as a DNS server:

      ```
      #dig @208.91.112.220 www.fortinet.com
      ```
c. Verify that you can get a domain www.fortinet.com A record from the DNS server. This shows that the UDP port 53 connection path is not blocked.

```bash
# dig @8.8.8.8 www.fortinet.com
;; -->>HEADER<<-- opcode: QUERY; status: NOERROR; id: 35121
;; Flags: qr rd ra; QUERY: 1; ANSWER: 3; AUTHORITY: 0; ADDITIONAL: 0

;; QUESTION SECTION:
www.fortinet.com. IN A

;; ANSWER SECTION:
fortinet-prod4-858839915.us-west-1.elb.amazonaws.com. 51 IN A 52.8.142.247
fortinet-prod4-858839915.us-west-1.elb.amazonaws.com. 51 IN A 13.56.55.78

;; Received 129 B
;; Time 2019-04-29 14:13:18 PDT
;; From 8.8.8.8@53(UDP) in 13.2 ms
```

Checking the FortiGuard DNS rating service license

The FortiGuard DNS rating service shares the license with the FortiGuard web filter, so you must have a valid web filter license for the DNS rating service to work. While the license is shared, the DNS rating service uses a separate connection mechanism from the web filter rating.

To check the DNS rating service license in the CLI:

1. View the DNS settings:

   ```bash
   # diagnose test application dnsproxy 3
   ```

2. Look for the `FGD_DNS_SERVICE_LICENSE` line and check that the license has not expired:

   ```plaintext
   FGD_DNS_SERVICE_LICENSE:
   server=208.91.112.220:53, expiry=2022-10-03, expired=0, type=2
   ```

3. Check the `sdns-server` lines to show the functioning servers:

   ```plaintext
   sdns-server:208.91.112.220:53 tz=-480 tls=0 req=0 to=0 res=0 rt=4 ready=1 timer=0
   probe=0 failure=0 last_failed=0
   ```

Checking the FortiGate DNS filter profile configuration

To check the DNS filter profile configuration:

1. In FortiOS, create a local domain filter and set the Action to Redirect to Block Portal (see Local domain filter on page 1179).

2. Apply this DNS filter profile to the policy.

3. From the client PC, perform a DNS query on this domain. If you get the profile’s redirected portal address, this means that the DNS filter profile works as expected.
Additional troubleshooting

Use `diagnose test application dnsproxy <test level>` to troubleshoot further DNS proxy information, where:

<table>
<thead>
<tr>
<th>Test level</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Clear DNS cache</td>
</tr>
<tr>
<td>2</td>
<td>Show statistics</td>
</tr>
<tr>
<td>3</td>
<td>Dump DNS setting</td>
</tr>
<tr>
<td>4</td>
<td>Reload FQDN</td>
</tr>
<tr>
<td>5</td>
<td>Requery FQDN</td>
</tr>
<tr>
<td>6</td>
<td>Dump FQDN</td>
</tr>
<tr>
<td>7</td>
<td>Dump DNS cache</td>
</tr>
<tr>
<td>8</td>
<td>Dump DNS database</td>
</tr>
<tr>
<td>9</td>
<td>Reload DNS database</td>
</tr>
<tr>
<td>10</td>
<td>Dump secure DNS policy PROFILE</td>
</tr>
<tr>
<td>11</td>
<td>Dump botnet domain</td>
</tr>
<tr>
<td>12</td>
<td>Reload secure DNS setting</td>
</tr>
<tr>
<td>13</td>
<td>Show hostname cache</td>
</tr>
<tr>
<td>14</td>
<td>Clear hostname cache</td>
</tr>
<tr>
<td>15</td>
<td>Show SDNS rating cache</td>
</tr>
<tr>
<td>16</td>
<td>Clear SDNS rating cache</td>
</tr>
<tr>
<td>17</td>
<td>Show DNS debug bit mask</td>
</tr>
<tr>
<td>18</td>
<td>Show DNS debug object members</td>
</tr>
<tr>
<td>99</td>
<td>Restart the dnsproxy worker</td>
</tr>
</tbody>
</table>

To debug DNS proxy details:

```
#diagnose debug application dnsproxy -1
#diagnose debug {enable | disable}
```

Application control

FortiGates can recognize network traffic generated by a large number of applications. Application control sensors specify what action to take with the application traffic. Application control uses IPS protocol decoders that can analyze network traffic to detect application traffic, even if the traffic uses non-standard ports or protocols. Application control supports traffic detection using the HTTP protocol (versions 1.0, 1.1, and 2.0).
FortiOS includes three preloaded application sensors:

- *default* (monitors all applications)
- *wifi-default* (default configuration for offloading WiFi traffic)
- *block-high-risk*

You can customize these sensors, or you can create your own to log and manage the applications on your network.

Once configured, you can add the application sensor to a firewall policy.

This functionality requires a subscription to FortiGuard Application Control.

The following topics provide information about application control:

- Basic category filters and overrides on page 1193
- Excluding signatures in application control profiles on page 1196
- Port enforcement check on page 1198
- Protocol enforcement on page 1199
- SSL-based application detection over decrypted traffic in a sandwich topology on page 1201
- Matching multiple parameters on application control signatures on page 1202
- Application signature dissector for DNP3 on page 1204

Basic category filters and overrides

Once you have created an application sensor, you can define the applications that you want to control. You can add applications and filters using categories, application overrides, and/or filter overrides with designated actions (monitor, allow, block, or quarantine).

Configuring category filters

Categories allow you to choose groups of signatures based on a category type. Applications belonging to the category trigger the action that is set for the category. For a list of application control categories, refer to the FortiGuard Labs website.
To configure category filters in the GUI:

1. Go to Security Profiles > Application Control and click Create New, or edit an existing sensor.
2. Under Categories, click the icon next to the category name to set the action or view the application signatures.

3. Click OK.

To configure category filters in the CLI:

```bash
config application list
    edit <name>
        config entries
            edit <id>
                set category <id>
                set action {pass | block | reset}
                set log {enable | disable}
            next
        end
    next
end
```

Configuring application and filter overrides

Multiple application signatures can be added for one sensor with a designated action. Filters can be added based on behavior, application category, popularity, protocol, risk, technology, or vendor subtypes.

To configure overrides in the GUI:

1. Go to Security Profiles > Application Control and click Create New, or edit an existing sensor.
2. In the Application and Filter Overrides table, click Create New.
3. Add an application:
 a. For Type, select Application.
 b. Select an Action from the dropdown.
 c. In the Search box, enter an application name and press Enter.
 d. In the search results, select desired the applications (you can select multiple applications) and click Add Selected.
Security Profiles

4. Add a filter:
 a. In the Application and Filter Overrides table, click Create New.
 b. For Type, select Filter.
 c. Select an Action from the dropdown.
 d. In the Filter field, click the +. The Select Entries pane opens, and you can search based on filter subtypes. This example has excessive bandwidth (under behavior) and game (under application category).

5. Click OK.
To configure overrides in the CLI:

```plaintext
config application list
  edit <name>
    config entries
      edit <id>
        set protocols <integer>
        set risk <integer>
        set vendor <id>
        set technology <id>
        set behavior <id>
        set popularity <integer>
        set action {pass | block | reset}
        set log {enable | disable}
      next
    next
  next
end
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>protocols <integer></td>
<td>Application protocol filter (0 - 47, or all).</td>
</tr>
<tr>
<td>risk <integer></td>
<td>Risk or impact of allowing traffic from this application to occur (1 - 5; low (1), elevated (2), medium (3), high (4), and critical (5)).</td>
</tr>
<tr>
<td>vendor <id></td>
<td>Application vendor filter (0 - 25, or all).</td>
</tr>
</tbody>
</table>
| technology <id> | Application technology filter:
 - all
 - 0 (network-protocol)
 - 1 (browser-based)
 - 2 (client-server)
 - 4 (peer-to-peer) |
| behavior <id> | Application behavior filter:
 - all
 - 2 (botnet)
 - 3 (evasive)
 - 5 (excessive bandwidth)
 - 6 (tunneling)
 - 9 (cloud) |
| popularity <integer> | Application popularity filter (1 - 5, from least to most popular). | | |
| action {pass | block | reset} | Pass/block traffic or reset the connection for traffic from this application (default = block). |
| log {enable | disable} | Enable/disable logging for this application list (default = enable). |

Excluding signatures in application control profiles

In an application control list, the exclusion option allows users to specify a list of applications they wish to exclude from an entry filtered by category, technology, or others. By excluding the signature, the application is no longer processed on...
the entry in which it is excluded, but may match subsequent entries that exist.

To configure signature exclusion:

```plaintext
config application list
  edit <name>
    config entries
      edit <id>
        set category <id>
        set exclusion <application id>
        set action {pass | block | reset}
      next
    end
  next
end
```

Sample configurations

In the following example, category 23 (social media) is blocked in the entries, and signature 34527 (Instagram) is excluded from this entry. Traffic to Instagram will pass because the signature is removed from entry 1 and the action of other-application-action is set to pass.

To configure signature exclusion:

```plaintext
config application list
  edit "test"
    set other-application-action pass
    set unknown-application-action pass
    set other-application-log enable
    set unknown-application-log enable
    config entries
      edit 1
        set category 23
        set exclusion 34527
        set action block
      next
    next
end
```

In the following example, entry 1 is configured so that category 23 (social media) is set to pass and signature 34527 (Instagram) is excluded. In entry 2, application 34527 (Instagram) is blocked, so the traffic to Instagram will be blocked, even though it is excluded in entry 1. Traffic to other signatures in category 23, such as Facebook, will still pass.

To configure signature exclusion:

```plaintext
config application list
  edit "test"
    set other-application-action pass
    set unknown-application-action pass
    set other-application-log enable
    set unknown-application-log enable
    config entries
      edit 1
```
Security Profiles

set category 23
set exclusion 34527
set action pass
next
edit 2
set application 34527
set action block
next
next
end
end

In the following example, an explicit proxy is behind the FortiGate with an excluded signature for 107347980 (Proxy.HTTP) and category 6 (proxy) is set to block. The client will allow normal proxy traffic to pass, but it will discard all proxy application traffic (such as KProxy, Tor, and so on).

To configure signature exclusion:

config application list
edit "test"
 set other-application-action pass
 set unknown-application-action pass
 set other-application-log enable
 set unknown-application-log enable
 config entries
 edit 1
 set category 6
 set exclusion 107347980
 set action block
 next
next
end

Port enforcement check

Most networking applications run on specific ports. For example, SSH runs on port 22, and Facebook runs on ports 80 and 443.

If the default network service is enabled in the application control profile, a port enforcement check is done at the application profile level, and any detected application signatures running on the non-standard TCP/IP port are blocked. This means that each allowed application runs on its default port.

To configure port enforcement check:

config application list
edit <name>
 set enforce-default-app-port enable
 config entries
 edit 1
 set application 15896
 set action pass
 next
end
For example, when applying this application control sensor, FTP traffic (application 15896) with the standard port (port 21) is allowed, while the non-standard port (port 2121) is blocked.

Protocol enforcement

Protocol enforcement allows you to configure networking services (e.g. FTP, HTTP, HTTPS) on known ports (e.g. 21, 80, 443). For protocols that are not allowlisted under select ports, the IPS engine performs the violation action to block, allow, or monitor that traffic.

This feature can be used in the following scenarios:

- When one protocol dissector confirms the service of network traffic, protocol enforcement can check whether the confirmed service is allowlisted under the server port. If it is not allowlisted, the traffic is considered a violation and IPS can take the action specified in the configuration (block or monitor it).
- When there is no confirmed service for the network traffic, the traffic is considered a service violation if IPS dissectors rule out all of the services enforced under its server port.

In an applicable profile, a default network service list can be created to associate well known ports with accepted services.

In the following example, an application sensor is configured to enforce HTTP on port 80 (block), and DNS on port 53 (monitor).

To configure protocol enforcement in the GUI:

1. Go to Security Profiles > Application Control.
2. Create a new application sensor or edit an existing one.
 - Enforcement entries can be created, edited, or deleted to configure network services on certain ports and determine the violation action.
5. Configure the entry for HTTP:
 a. For Port, enter 80.
 b. For Enforced protocols, select HTTP.
 c. For Violation action, select Block.
Security Profiles

6. Configure the entry for DNS:
 a. Click Create New, then for Port, enter 53.
 b. For Enforced protocols, select DNS.
 c. For Violation action, select Monitor.
 d. Click OK.

The entries are displayed in the table.

7. Click OK.

To configure protocol enforcement in the CLI:

```
config application list
  edit "protocol-GUI"
    set other-application-log enable
    set control-default-network-services enable
  config default-network-services
    edit 1
```
SSL-based application detection over decrypted traffic in a sandwich topology

When a FortiGate is sandwiched between SSL encryption and decryption devices, the FortiGate can process the decrypted traffic that passes between those devices. This feature adds support for decrypted traffic in application control. In some pre-defined signatures, the signature is pre-marked with the `require_ssl_di` tag. The `force-inclusion-ssl-di-sigs` option under application list allows users to control the inspection of dissected traffic. When this option is enabled, the IPS engine forces the pre-marked SSL-based signatures to be applied to the decrypted traffic of the respective applications. In the following topology, SSL Proxy 1 handles the client connection and SSL Proxy 2 handles the server connection, leaving the content unencrypted as traffic passes through the FortiGate.

To configure SSL-based application detection over decrypted traffic:

```
config application list
  edit "test"
    set force-inclusion-ssl-di-sigs {enable | disable}
  end
end
```

Example pre-marked SSL-based signature:

```
F-SBID(--vuln_id 15722; --attack_id 42985; --name "Facebook_Chat"; --group im; --protocol tcp; --default_action pass; --revision 4446; --app_cat 23; --vendor 3; --technology 1; --behavior 9; --pop 4; --risk 2; --language "Multiple"; --weight 20; --depend-on 15832; --depend-on 38468; --require_ssl_di "Yes"; --casi 1; --casi 8; --parent 15832; --app_port TCP/443; --severity info; --status hidden; --service http; --flow from_client; --pattern "/pull?"; --context uri; --no_case; --pattern ".facebook.com"; --context host; --no_case; --tag set,Tag.Facebook.Pull; --tag quiet; --scan-range 10m,all; --date 20190301; )
```
All signatures that include the require_ssl_di tag are pre-defined and cannot be customized.

Matching multiple parameters on application control signatures

Application control signatures that support parameters (such as SCADA protocols) can have multiple parameters grouped together and matched at the same time. Multiple application parameter groups can be added to an override. Traffic will be flagged if it matches at least one parameter group.

This example uses the Modbus_Func05.Write.Single.Coil.Validation signature. This is an industrial signature, so ensure that no signatures are excluded:

```plaintext
config ips global
    set exclude-signatures none
end
```

To configure an application sensor with multiple parameters in the GUI:

1. Go to Security Profiles > Application Control and click Create New, or edit an existing sensor.
2. In the Application and Filter Overrides table, click Create New.
5. Click the Selected tab. In the Application Parameters section, click Create New.

6. Edit the parameter values as needed.

7. Click OK.

8. Add more signatures if needed.

9. Click OK.

To configure an application sensor with multiple parameters in the CLI:

```
config application list
  edit "test"
    set other-application-log enable
  config entries
    edit 1
```
set application 48885
config parameters
 edit 1
 config members
 edit 1
 set name "UnitID"
 set value "0:255"
 next
 edit 2
 set name "Address"
 set value "0:65535"
 next
 edit 3
 set name "Value"
 set value "0,65280"
 next
 next
 next
next
next
next
end

Application signature dissector for DNP3

The DNP3 application signature dissector supports detecting DNP3 traffic that is encapsulated by the RealPort protocol (Net.CX). DNP3 is used in industrial solutions over serial ports, USB ports, printers, and so on. RealPort encapsulation allows transportation of the underlying protocols over TCP/IP. The FortiGate industrial signatures must be enabled to use RealPort.DNP3 signatures:

 config ips global
 set exclude-signatures none
 end

IPS engine version 7.0015 and later supports RealPort.DNP3 dissectors.

Sample logs

119: date=2021-03-09 time=18:56:35 eventtime=161534995698958507 tz="-0800"
 logid="1059028704" type="utm" subtype="app-ctrl" eventtype="signature" level="information"
 vd="vd1" appid=49890 srcip=10.1.100.191 dstip=172.16.200.159 srcport=43946 dstport=771
 srcintf="port10" srcintfrole="undefined" dstintf="port9" dstintfrole="undefined" proto=6
 service="RLDNP3" direction="incoming" policyid=1 sessionid=1204 aplist="test" action="pass"
 appcat="Industrial" app="RealPort.DNP3" incidentserialno=88083610 msg="Industrial:
 RealPort.DNP3," apprisk="elevated"

1: date=2021-03-09 time=18:56:08 eventtime=16153496881546102 tz="-0800" logid="1059028704"
 type="utm" subtype="app-ctrl" eventtype="signature" level="information" vd="vd1" appid=49899
 srcip=10.1.100.191 dstip=172.16.200.159 srcport=43946 dstport=771 srcintf="port10"
 srcintfrole="undefined" dstintf="port9" dstintfrole="undefined" proto=6 service="RLDNP3"
Intrusion prevention

Intrusion Prevention System (IPS) detects network attacks and prevents threats from compromising the network, including protected devices. IPS can be in the form of a standalone appliance, or part of the feature set of a Next Generation Firewall (NGFW), such as FortiGate. IPS utilizes signatures, protocol decoders, heuristics (or behavioral monitoring), threat intelligence (such as FortiGuard Labs), and advanced threat detection in order to prevent exploitation of known and unknown zero-day threats. FortiGate IPS is even capable of performing deep packet inspection to scan encrypted payloads in order to detect and prevent threats from attackers.

Networks and devices are often exploited through vulnerabilities. Software vulnerabilities are one such example where a bug or inherent weakness in the code provides attackers an opportunity to gain access to the software. More severe vulnerabilities allow unauthorized access, data leakage, and execution of malicious code. Exploitation of these vulnerabilities can cause damage to the machine and infect others. While the best solution is to patch vulnerabilities as soon as patches are available, IPS signatures offer a solution to detect and block exploitation of many vulnerabilities before they enter the network.

IPS signatures

Fortinet’s solution combines industry-leading threat intelligence from FortiGuard Labs with the FortiGate NGFW to identify the latest threats and prevent them from entering your network. IPS signatures are one such method for delivering the latest protection. FortiGuard Labs uses AI and Machine Learning (ML) to analyze billions of events every day. The FortiGuard Labs research team also proactively performs threat research to discover new vulnerabilities and exploitation, and produces signatures to identify such threats. These IPS signatures are delivered to each FortiGate daily, so that the IPS engine is armed with the latest databases to match the latest threats.

IPS sensors

A FortiGate IPS sensor is a collection of IPS signatures and filters that define the scope of what the IPS engine will scan when the IPS sensor is applied. An IPS sensor can have multiple sets of signatures and/or filters. A set of IPS signatures consists of manually selected signatures, while a set of IPS filters consists of filters based on signature attributes like target, severity, protocol, OS, and application. Each signature has predefined attributes and an action, such as block, allow, monitor (pass), quarantine, and reset. It is also possible to create custom IPS signatures to apply to an IPS sensor.

From the Security Profiles > Intrusion Prevention pane, you can create new IPS sensors and view a list of predefined sensors.

FortiOS includes the following predefined IPS sensors with associated predefined signatures:

<table>
<thead>
<tr>
<th>Predefined IPS sensors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all_default</td>
<td>Filters all predefined signatures, and sets action to the signature’s default action.</td>
</tr>
<tr>
<td>all_default_pass</td>
<td>Filters all predefined signatures, and sets action to pass/monitor.</td>
</tr>
</tbody>
</table>
Security Profiles

<table>
<thead>
<tr>
<th>Predefined IPS sensors</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>Filters all predefined signatures with severity of Critical/High/Medium. Sets action to signature’s default action.</td>
</tr>
<tr>
<td>high_security</td>
<td>Filters all predefined signatures with severity of Critical/High/Medium, and sets action to Block. For Low severity signatures, sets action to signature’s default action.</td>
</tr>
<tr>
<td>protect_client</td>
<td>Protects against client-side vulnerabilities by filtering on Target=Client. Sets action to signature’s default action.</td>
</tr>
<tr>
<td>protect_email_server</td>
<td>Protects against email server-side vulnerabilities by filtering on Target=Server and Protocol=IMAP, POP3 or SMTP. Sets action to signature’s default action.</td>
</tr>
<tr>
<td>protect_http_server</td>
<td>Protects against HTTP server-side vulnerabilities by filtering on Target=Server and Protocol=HTTP. Sets action to signature’s default action.</td>
</tr>
<tr>
<td>wifi-default</td>
<td>Filters all predefined signatures with severity of Critical/High/Medium. Sets action to signature’s default action. Used in profile for offloading WiFi traffic.</td>
</tr>
</tbody>
</table>

DDoS attacks

Besides protecting against threats and exploitation of vulnerabilities, the IPS engine is also responsible for mitigating Denial of Service (DoS) attacks where attackers attempt to bring a service down by flooding the target with traffic from distributed systems. Using anomaly-based defense, FortiGate can detect a variety of L3 and L4 anomalies and take action against these attacks. This can be configured under IPv4 and IPv6 DoS Policies, which is discussed in detail under DoS policy on page 791.

This section contains the following topics:

- Signature-based defense on page 1206
- IPS configuration options on page 1210

This section also provides the following examples about IPS sensors:

- IPS signature filter options on page 1214
- IPS with botnet C&C IP blocking on page 1218
- IPS signatures for the industrial security service on page 1222
- IPS sensor for IEC 61850 MMS protocol on page 1223
- SCTP filtering capabilities on page 1225

Signature-based defense

Signature-based defense is used against known attacks or vulnerability exploits. These often involve an attacker attempting to gain access to your network. The attacker must communicate with the host in an attempt to gain access, and this communication includes commands or sequences of commands and variables. The IPS signatures include these command sequences, allowing the FortiGate unit to detect and stop the attack.

This section describes the following components used in signature-based defense:

- IPS signatures on page 1207
- Protocol decoders on page 1207
- IPS engine on page 1207
IPS signatures

IPS signatures are the basis of signature-based intrusion prevention. Every attack can be reduced to a particular string of commands or a sequence of commands and variables. Signatures include this information, and FortiGate uses the information to detect and stop attacks.

Signatures also include characteristics about the attack they describe. These characteristics include the network protocol associated with the attack, the vulnerable operating system, and the vulnerable application.

To view the complete list of signatures, go to Security Profiles > IPS Signatures. The list of signatures includes predefined and custom signatures. You can hover over the name of the IPS signature to display a pop-up window that includes an ID number. You can click the ID number to display the FortiGuard page.

Protocol decoders

Before examining network traffic for attacks, the IPS engine uses protocol decoders to identify each protocol appearing in the traffic. Attacks are protocol-specific, so your FortiGate unit conserves resources by looking for attacks only in the protocols used to transmit them. For example, the FortiGate unit will only examine HTTP traffic for the presence of a signature describing an HTTP attack.

IPS engine

Once the protocol decoders separate the network traffic by protocol, the IPS engine examines the network traffic for the attack signatures by using IPS sensors.

IPS sensors

The IPS engine does not examine network traffic for all signatures. The IPS engine examines network traffic for signatures specified in IPS sensors. You must first create an IPS sensor, and then you can specify what signatures the IPS sensor will use. You can add individual signatures to IPS sensors, or you can add filters to IPS sensors, and the filters automatically include the applicable signatures.

To view IPS sensors, go to Security Profiles > Intrusion Prevention. To create a new sensor, click Create New.
An IPS sensor is composed of IPS signatures and filters. Under IPS Signatures and Filters, click Create New to create a set of IPS signatures or a set of IPS filters.

You can create IPS sensors for specific types of traffic, and then select the IPS sensors in firewall policies designed to handle the same type of traffic. For example, you can specify all of the web-server related signatures in an IPS sensor, and select the IPS sensor in a firewall policy that controls all traffic to and from a web server that is protected by the FortiGate unit.

The FortiGuard Service periodically adds new predefined signatures to counter new threats. New predefined signatures are automatically included in IPS sensors that are configured to use filters when the new signatures match existing filter specifications. For example, if you have an IPS sensor with a filter that includes all signatures for the Windows operating system, your filter will automatically incorporate new Windows signatures that the FortiGuard Service adds to the database.

IPS signature and filter entries are checked from top down. When a signature is found in a set of signatures or filters, the action defined for the signature is taken.

IPS filters

IPS sensors can contain one or more IPS filters. A filter is a collection of signature attributes that you specify. The signatures that have all of the attributes specified in a filter are included in the IPS filter.

Following are the attribute groups:

- Target
- Severity
- Protocol
Security Profiles

- OS
- Application

Starting in FortiOS 6.4.2, you can also filter by CVE ID or CVE pattern by using the CLI. See FortiOS 6.4 New Features > IPS signature filter options.

When selecting multiple attributes within the same group, the selections are combined by using a logical OR. When selecting multiple attributes between attribute groups, each attribute group is combined by using a logical AND.

Once you select filters in the GUI, the filtered list of IPS signatures are displayed. Adjust your filters accordingly to construct a suitable list for your needs.

For example, if your FortiGate unit protects a Linux server running the Apache web server software, you could create a new filter to protect it. By setting OS filter attribute to Linux, and the filter attribute Application to Apache, the filter will include only the signatures that apply to both Linux and Apache. If you wanted to scan for all the Linux signatures and all the Apache signatures, you would create two filters, one for each.

To view the filters in an IPS sensor, go to Security Profiles > Intrusion Prevention, select the IPS sensor, and click Edit.

Custom and predefined signature entries

Signature entries allow you to add individual, custom or predefined IPS signatures to an IPS sensor. If you need only one signature, or you want to manually select multiple signatures that don’t fall into the criteria for an IPS filter, adding a signature entry to an IPS sensor is the easiest way. Signature entries are also the only way to include custom signatures in an IPS sensor.

To select an individual signature, click a signature, and select Add Selected. The signature moves to the Selected list.

To select multiple signatures, use the Search bar to perform a keyword search, and then click Add All Results to move all entries to the Selected list.

Overriding the default action

Each IPS signature comes with a default action such as Block and Pass. In some scenarios, you may want to override this action. You can override a set of IPS filter or signatures. By default, a set of IPS filter or signatures has an action of Default, which applies a signature’s default action when the signature is matched. By changing the action, you can override the setting for all signatures within the filter or signature set.
Security Profiles

Policies

You must select an IPS sensor in a security policy or an interface policy to apply the IPS sensor to traffic. An IPS sensor that it not selected in a policy is not applied to network traffic.

IPS configuration options

Besides configuring an IPS filter or selecting IPS signatures for an IPS sensor, you can configure additional IPS options for each sensor or globally for all sensors. This topic introduces the following available configuration options:

- Malicious URL database for drive-by exploits detection on page 1210
- IPS signature rate count threshold on page 1210
- Botnet C&C on page 1211
- Hardware acceleration for flow-based security profiles (NTurbo and IPSA) on page 1211
- Extended IPS database on page 1212
- IPS engine-count on page 1212
- Industrial signature database on page 1212
- Fail-open on page 1213
- IPS buffer size on page 1213
- Session count accuracy on page 1213
- Protocol decoders on page 1213

Malicious URL database for drive-by exploits detection

This feature uses a local malicious URL database on the FortiGate to assist in detection of drive-by exploits, such as adware that allows automatic downloading of a malicious file when a page loads without the user's detection. The database contains all malicious URLs active in the last one month, and all drive-by exploit URLs active in the last three months. The number of URLs controlled are in the one million range.

This feature can be enabled from a IPS Sensor in the GUI by going to Security Profiles > Intrusion Prevention and editing or creating an IPS Sensor. Then enable Block malicious URLs.

From the CLI:

```
config ips sensor
  edit <profile>
    set block-malicious-url [enable | disable]
  next
end
```

Blocking malicious URLs is not supported on some FortiGate models, such as FortiGate 51E, 50E, or 30E.

IPS signature rate count threshold

You can use the IPS signature rate-based settings to specify a rate count threshold that must be met before the signature is triggered. A rate count threshold provides a more controlled recording of attack activity. For example, if
multiple login attempts produce a failed result over a short period of time, then an alert would be sent and traffic might be blocked, which is a more manageable response than sending an alert every time a login fails.

This can be configured from the GUI by going to Security Profiles > Intrusion Prevention. Create or edit an IPS sensor. Within the sensor, edit the IPS signatures and filters. Only IPS signatures have the rate-based settings option. IPS filters do not.

Some settings are only available from CLI.

The syntax for this configuration is as follows:

```
config ips sensor
    edit default
        config entries
            edit <Filter ID number>
                set rule <*id>
                    set rate-count <integer between 1 - 65535>
                    set rate-duration <integer between 1 - 65535>

The value of the rate-duration is an integer for the time in seconds.

set rate-mode <continuous | periodical>

The rate-mode refers to how the count threshold is met.

If the setting is "continuous", and the action is set to block, the action is engaged as soon as the rate-count is reached. For example, if the count is 10, the traffic would be blocked as soon as the signature is triggered 10 times.

If the setting is "periodical", the FortiGate allows up to the value of the rate-count incidents where the signature is triggered during the rate-duration. For example, if the rate count is 100 and the duration is 60, the signature would need to be triggered 100 times in 60 seconds for the action to be engaged.

set rate-track <dest-ip | dhcp-client-mac | dns-domain | none | src-ip>

This setting allows the tracking of one of the protocol fields within the packet.

**Botnet C&C**

See IPS with botnet C&C IP blocking on page 1218.

**Hardware acceleration for flow-based security profiles (NTurbo and IPSA)**

Some FortiGate models support a feature call NTurbo that can offload flow-based firewall sessions to network processors. See also Hardware Acceleration > NTurbo offloads flow-based processing. For IPSA enhanced pattern matching, see Hardware Acceleration > IPSA offloads flow-based advanced pattern matching.

Some FortiGate models also support offloading enhanced pattern matching for flow-based security profiles to CP8 or CP9 content processors. You can use the following command to configure NTurbo and IPSA:

```
config ips global
 set np-accel-mode {none | basic}
 set cp-accel-mode {none | basic | advanced}
end
```

If the np-accel-mode option is available, your FortiGate supports NTurbo. The none option disables NTurbo, and basic (the default) enables NTurbo.
If the `cp-accel-mode` option is available, your FortiGate supports IPSA. The `none` option disables IPSA, and `basic` enables basic IPSA, and `advanced` enables enhanced IPSA, which can offload more types of pattern matching than basic IPSA. The `advanced` option is only available on FortiGate models with two or more CP8 processors, or one or more CP9 processors.

**Extended IPS database**

Some models have access to an extended IPS Database. Because the extended database may affect FortiGate performance, the extended database package may be disabled by default on some models, such as desktop models. You can only enable the extended IPS database by using the CLI.

```
config ips global
 set database extended
end
```

FortiGate models with the CP9 SPU receive the IPS full extended database, and the other physical FortiGate models receive a slim version of the extended database. The slim-extended database is a smaller version of the full extended database that contains top active IPS signatures. It is designed for customers who prefer performance.

Customers with non-CP9 SPU models need to upgrade to a CP9 SPU model (physical FortiGate) in order to get full IPS signature coverage. All FortiGate models 200 (E and F) and higher have a CP9 SPU.

See [Determining the content processor in your FortiGate unit](#) in the FortiOS Hardware Acceleration Guide to check if your device has a CP9 SPU.

**IPS engine-count**

FortiGate units with multiple processors can run one or more IPS engine concurrently. The engine-count CLI command allows you to specify how many IPS engines to use at the same time:

```
config ips global
 set engine-count <int>
end
```

The recommended and default setting is 0, which allows the FortiGate unit to determine the optimum number of IPS engines.

**Industrial signature database**

Industrial signatures are defined to protect Industrial Control Systems (ICS), Operational Technology (OT) and SCADA systems, which are critical infrastructure used by manufacturing industries. These signatures are enabled by default, but can be configured by using the following CLI:

```
config ips global
 set exclude-signatures {none* | industrial}
end
```
**Fail-open**

A fail-open scenario is triggered when IPS raw socket buffer is full. Therefore IPS engine has no space in memory to create more sessions and needs to decide whether to drop the sessions or bypass the sessions without inspection.

```plaintext
config ips global
 set fail-open {enable | disable}
end
```

The default setting is `disable`, so sessions are dropped by IPS engine when the system enters fail-open mode. When enabled, the IPS engine fails open, and it affects all protocols inspected by FortiOS IPS protocol decoders, including but not limited to HTTP, HTTPS, FTP, SMTP, POP3, IMAP, and so on. When the IPS engine fails open, traffic continues to flow without IPS scanning.

Sessions offloaded to Nturbo do not support fail-open. When Nturbo data path is overloaded, traffic is dropped regardless of fail-open setting.

**IPS buffer size**

If system enters fail-open mode frequently, it is possible to increase the IPS socket buffer size to allow more data buffering, which reduces the chances of overloading the IPS engine. You can set the size of the IPS buffer.

```plaintext
config ips global
 set socket-size <int>
end
```

The default socket size and maximum configurable value varies by model. In short, socket-size determines how much data the kernel passes to the IPS engine each time the engine samples packets.

Take caution when modifying the default value. If the socket-size is too large, the higher memory used by the IPS engine may cause the system to enter conserve mode more frequently. If set too low, the system may enter IPS fail-open mode too frequently.

**Session count accuracy**

The IPS engine can track the number of open session in two ways. An accurate count uses more resources than a less accurate heuristic count.

```plaintext
config ips global
 set session-limit-mode {accurate | heuristic}
end
```

The default is `heuristic`.

**Protocol decoders**

The FortiGate Intrusion Prevention system uses protocol decoders to identify the abnormal traffic patterns that do not meet the protocol requirements and standards. For example, the HTTP decoder monitors traffic to identify any HTTP
Security Profiles

packets that do not meet the HTTP protocol standards.

To change the ports a decoder examines, you must use the CLI. In this example, the ports examined by the DNS decoder are changed from the default 53 to 100, 200, and 300.

```plaintext
config ips decoder dns_decoder
 config parameter "port_list"
 set value "100,200,300"
end
end
```

You cannot assign specific ports to decoders that are set to auto by default. These decoders can detect their traffic on any port. Specifying individual ports is not necessary.

**IPS signature filter options**

IPS signature filter options include hold time, CVE pattern, and IPS sensor attributes.

**Hold time**

The hold time option allows you to set the amount of time that signatures are held after a FortiGuard IPS signature update per VDOM. During the holding period, the signature's mode is monitor. The new signatures are enabled after the hold time to avoid false positives.

The hold time can be from 0 days and 0 hours (default) up to 7 days, in the format ##d##h.

**To configure the amount of time to hold and monitor IPS signatures:**

```plaintext
config system ips
 set signature-hold-time 3d12h
 set override-signature-hold-by-id enable
end
```

When a signature that is on hold is matched, the log will include the message `signature is on hold`.

```plaintext
date=2010-07-06 time=00:00:57 logid="0419016384" type="utm" subtype="ips" severity="info" srcip=10.1.100.22 srcountry="Reserved" dstip=172.16.200.55 srcintf="port13" dstintf="undefined" sessionid=3620 action="detected" proto=6 service="HTTP" policyid=1 attack="Eicar.Virus.Test.File" srcport=52170 dstport=80 hostname="172.16.200.55" url="/virus/eicar" direction="incoming" attackid=29844 profile="test" ref="http://www.fortinet.com/ids/VID29844" incidentserialno=25165825 msg="file_transfer: Eicar.Virus.Test.File, (signature is on hold)"
```

**To view signatures being held by rule ID 29844 on the VDOM:**

```plaintext
diagnose ips signature on-hold vd1 29844
Rule: 29844, attack_id: 58886, last updated: 20170411
Rule: 29844, attack_id: 59517, last updated: 20170411
Rule: 29844, attack_id: 60105, last updated: 20170411
...
To view all help signatures on the VDOM:

```
# diagnose ips on-hold vd1
Rule: 17541, attack_id: 20899, last updated: 20140423
Rule: 17557, attack_id: 20934, last updated: 20140423
Rule: 17559, attack_id: 20932, last updated: 20140423
Rule: 17560, attack_id: 20933, last updated: 20140423
Rule: 17562, attack_id: 20928, last updated: 20170908
Rule: 17677, attack_id: 21187, last updated: 20171106
Rule: 17713, attack_id: 43756, last updated: 20140424
Rule: 17759, attack_id: 21298, last updated: 20140423
...
```

Viewing on hold information in the GUI

On hold signatures are grayed out in the GUI with an hourglass icon beside the signature name. A tooltip displays the on hold expiry and other details.

On the **Security Profiles > IPS Signatures** page, for example, the `Adobe.Reader.Annots.api.setProps.Use.After.Free` signature is on hold. Hover over the grayed-out entry to view the tooltip, which includes the action and hold time expiry.

On this page, all on hold signatures are displayed as on hold regardless of whether `override-signature-hold-by-id` is enabled.

![Screenshot of GUI showing on hold signatures]

The same tooltip is available on the **Edit IPS Sensor (Security Profiles > Intrusion Prevention)** page when creating or editing the IPS signatures. In the **Add Signatures** pane when the **Type** is **Signature**, signatures on hold are only displayed as on hold if `override-signature-hold-by-id` is enabled.

![Screenshot of Edit IPS Sensor page]

You can still use on hold signatures in an IPS sensor profile; however, the profile will not block matching traffic. It will monitor it instead (logging in effect) until the on hold time expires.
CVE pattern

The CVE pattern option allows you to filter IPS signatures based on CVE IDs or with a CVE wildcard, ensuring that any signatures tagged with that CVE are automatically included.

To configure CVE patterns for CVE-2010-0177 and all CVE-2017 CVEs:

```
config ips sensor
    edit "cve"
        set comment "cve"
    config entries
        edit 1
            set cve "cve-2010-0177"
            set status enable
            set log-packet enable
            set action block
        next
        edit 2
            set cve "cve-2017"
            set action reset
        next
    end
next
end
```

For example, the CVE of the IPS signature `Mozilla.Firefox.PluginArray.NsMimeType.Code.Execution` is CVE-2010-0177. This matches the CVE filter in the IPS sensor, so traffic is blocked and logged:

```
date=2020-07-13 time=15:44:56 logid="0419016384" type="utm" subtype="ips"
eventtype="signature" level="alert" vd="vd1" eventtime=1594593896666145871 tz="-0700"
severity="critical" srcip=10.1.100.22 srccountry="Reserved" dstip=172.16.200.55
srcintf="port2" srcintfrole="undefined" dstintf="port1" dstintfrole="undefined"
sessionid=1638 action="dropped" proto=6 service="HTTPS" policyid=1
hostname="172.16.200.55" url="/Mozilla" direction="incoming" attackid=20853 profile="sensor-1"
ref="http://www.fortinet.com/ids/VID20853" incidentserialno=124780667 msg="web_client:
crlevel="critical"
```

IPS sensor attributes

When configuring IPS sensor profiles, IPS signatures can be filtered based on the attributes: default status, default action, vulnerability type, and the last update date. When monitoring the specific, filtered signatures, logs are not generated for other, irrelevant signatures.

This avoids generating a lot of false positives due to many signatures having the pass action, which is never logged.

To configure filters in an IPS sensor profile:

```
config ips sensor
    edit "test_default"
    config entries
        edit 1
            set default-action pass
```
set default-status enable
set vuln-type 12
set last-modified before 2020/02/02
next
end
next
end

| default-action {pass | block | all} | Filter by signatures' default actions (default = all). |
|-------------------|---|
| default-status {enable | disable | all} | Filter by signatures' default statuses (default = all). |
| vuln-type <integer> ... <integer> | Filter by signatures' vulnerability types. |
| last-modified {before | after | between} <date> [end-date] | Filter by signatures' last modified date (default = before 00/00/00). The date format is yyyy/mm/dd. The year range is 2001 - 2050. |

When the IPS profile is used in a firewall profile and then the EICAR virus test file signature is triggered, the signature matches the values set in the filter and logs are generated:

```
1: date=2022-02-15 time=14:07:03 eventtime=1644962823303491048 tz="-0800" logid="0419016384" type="utm" subtype="ips" eventtype="signature" level="alert" vd="vd1" severity="info" srcip=10.1.100.11 srccountry="Reserved" dstip=172.16.200.55 dstcountry="Reserved" srcintf="port38" srcintfrole="undefined" dstintf="port37" dstintfrole="undefined" sessionid=1171 action="detected" proto=6 service="HTTP" policyid=1 ppoluid="623d2d28-8ea7-51ec-00ef-7549685a77c2" policytype="policy" attack="Eicar.Virus.Test.File" srcrevport=47230 dstport=80 hostname="172.16.200.55" url="/virus/eicar" direction="incoming" attackid=29844 profile="test_default" ref="http://www.fortinet.com/ids/VID29844" incidentserialno=103809025 msg="file_transfer: Eicar.Virus.Test.File"

# get ips rule status | grep Eicar.Virus.Test.File -A 18
rule-id: 29844
rule-name: "Eicar.Virus.Test.File"
rev: 10.111
date: 1491926400
action: pass
status: enable
log: disable
log-packet: disable
severity: 0.info
service: TCP, HTTP, FTP, SMTP, POP3, IMAP, NNTP
location: server, client
os: All
application: Other
rate-count: 0
rate-duration: 0
rate-track: none
rate-mode: continuous
vuln_type: Anomaly
```
IPS with botnet C&C IP blocking

The Botnet C&C section consolidates multiple botnet options in the IPS profile. This allows you to enable botnet blocking across all traffic that matches the policy by configuring one setting in the GUI, or by the `scan-botnet-connections` option in the CLI.

To configure botnet C&C IP blocking in the GUI:

1. Go to Security Profiles > Intrusion Prevention, and click Create New to create a new IPS sensor, or double-click an existing IPS sensor to open it for editing.
2. Navigate to the Botnet C&C section.
3. For Scan Outgoing Connections to Botnet Sites, select Block or Monitor.
4. Configure the other settings as needed.
5. Click OK to save the IPS sensor.
6. Add the IPS sensor to a firewall policy. The IPS engine will scan outgoing connections to botnet sites. If you access a botnet IP address, an IPS log is generated for this attack.
7. Go to Log & Report > Security Events and click the Intrusion Prevention card to view the log.

To configure botnet C&C IP blocking in the CLI:

```
config ips sensor
  edit "Demo"
    set scan-botnet-connections {disable | block | monitor}
  next
end
```

The `scan-botnet-connections` option is no longer available in the following CLI commands:

- `config firewall policy`
- `config firewall interface-policy`
- `config firewall proxy-policy`
- `config firewall sniffer`
Sample log

```
# execute log filter category 4
# execute log display
1 logs found.
1 logs returned.
```

```
1: date=2022-04-28 time=16:18:34 eventtime=1651187914585406621 tz="-0700" logid="0422016400" type="utm" subtype="ips" eventtype="botnet" level="warning" vd="vd1" msg="Botnet C&CC Communication." severity="critical" srcip=10.1.100.11 srccountry="Reserved" dstip=2.58.149.169 srcintf="port13" srcintfrole="undefined" dstintfrole="undefined" sessionid=894198 action="dropped" srcport=41798 dstport=80 proto=6 service="HTTP" policyid=1 profile="sensor-1" directions="outgoing" attack="Loki" attackid=7630239 ref="http://www.fortinet.com/be?bid=7630239" crscore=50 craction=4 crlevel="critical"
```

Botnet IPs and domains lists

To view botnet IPs and domains lists:

1. Go to System > FortiGuard.
2. Expand License Information > Intrusion Prevention to view Botnet IPs and Botnet Domains information.
3. Click View List for more details.
Botnet C&C domain blocking

To block connections to botnet domains:

1. Go to Security Profiles > DNS Filter, and click Create New, or double-click an existing filter to open it for editing.
2. Enable Redirect botnet C&C requests to Block Portal.

3. Configure the other settings as needed.
4. Click OK.
5. Add the filter profile to a firewall policy.

Botnet C&C URL blocking

To block malicious URLs:

1. Go to Security Profiles > Intrusion Prevention, and click Create New, or double-click an existing filter to open it for editing.
2. Enable Block malicious URLs.

3. Configure the other settings as needed.
4. Click OK.
5. Add the sensor to a firewall policy.

Botnet C&C signature blocking

To add IPS signatures to a sensor:

1. Go to Security Profiles > Intrusion Prevention, and click Create New, or double-click an existing sensor to open it for editing.
2. In the IPS Signatures and Filters section, click Create New. A list of available signatures appears.
3. For Type, select Signature. Select the signatures you want to include from the list.
4. Configure the other settings as needed.
5. Click *Add Selected*.

6. Click OK to add the IPS signatures to the IPS sensor.

7. Click OK to save the IPS sensor.

8. Add the sensor to a firewall policy to detect or block attacks that match the IPS signatures.

IPS signatures for the industrial security service

The FortiGuard Industrial Security Service (ISS) includes both application control and intrusion prevention signatures for industrial applications and protocols. The industrial database attack definitions are only updated if the FortiGate has a valid ISS license and an IPS security profile is used in a policy.

By default, industrial signatures are excluded from the signature lists in the GUI.

To verify that the FortiGate has a valid ISS license:

1. Go to *System > FortiGuard*.
2. In the *License Information* table, check the license status of *Industrial DB*.
3. Expand the *Industrial DB* entry to see the current *Industrial Attack Definitions* version.

To force the industrial DB attack definitions to update:

1. Optionally, create an IPS profile:
 a. Go to *Security Profiles > Intrusion Prevention* and click *Create New*.
 b. Enter a name for the profile.
 c. In the *IPS Signatures and Filters* table click *Create New*.
 d. Click OK.
 e. Click OK.
2. Use the IPS profile in a policy:
 a. Go to Policy & Objects > Firewall Policy.
 b. Edit an existing policy, or click Create New to create a new policy.
 c. Under Security Profiles, enable IPS and select an IPS profile.
 d. Configure the remaining settings as needed, then click OK.
3. Go to System > FortiGuard and either click Update Licenses & Definitions Now, or wait for the next automatic update. The update could take a few minutes.
4. Refresh the page, then check the Industrial Attack Definitions version to confirm that they have been updated.

To make ISS IPS and application control signatures available in the GUI:

```plaintext
config ips global
   set exclude-signatures none
end
```

To view the signatures in the GUI:

1. Go to Security Profiles > Application Signatures and search for industrial to find signatures that identify industrial protocols.
2. Go to Security Profiles > IPS Signatures to find signatures that detect networks attacks that target industrial assets.

IPS sensor for IEC 61850 MMS protocol

IEC 61850 is a SCADA protocol whose services are mapped to a number of protocols, including MMS services. MMS/ICCP detection is supported in IPS. The purpose of the MMS dissectors is to identify every IEC 61850 service to distinguish different MMS/ICCP messages. IPS engine 6.0.12 and later support MMS dissectors.

The following scenarios are also supported:

- Multiple MMS PDUs are transferred in one TCP payload, and the IPS engine identifies individuals.
- An MMS message is split over multiple TCP segments, where MMS runs over COTP segments.
- ICCP/TASE.2 that also uses MMS transport (ISO transport over TCP for ICCP) is detected.
Security Profiles

Industrial signatures must be enabled in the global IPS settings to receive MMS/ICCP signatures. By default, industrial signatures are excluded.

```
config ips global
    set exclude-signatures none
end
```

Below are some industrial signatures for MMS/ICCP messages that can be detected by the IPS engine. This is not an exhaustive list.

- MMS_GetNameList.Request
- MMS_GetNamedVariableListAttributes.Request
- MMS_GetVariableAccessAttributes.Request
- MMS_Identify.Request
- MMS_Initiate.Request
- MMS_Read.Request
- MMS_Reset.Request
- ICCP_Transfer.Reporting
- ICCP_Create.Dataset
- ICCP_Abort
- ICCP_Start.Transfer.DSTransferSet
- ICCP_Get.Dataset.Element.Values
- ICCP_Get.Next.DSTransfer.Set.Value
- ICCP_Delete.Dataset
- ICCP_Start.Transfer.IMTransferSet

Diagnose command

The COTP dissector adds support for identifying every MMS PDU, and let the IPS engine separate them, like the Modbus and IEC-104 services for example.

```
# diagnose ips debug enable all
# diagnose debug enable
```
Security Profiles

[284@78]ips_l7_dsct_processor: serial=8142 create: cotp
[284@78]ips_l7_dsct_processor: serial=8142 create: iec104
[284@78]ips_l7_dsct_processor: serial=8142 create: modbus

Log samples

MMS dissectors can be triggered, and MMS/ICCP signatures can be monitored and logged.

Log samples:

date=2020-03-26 time=15:51:10 logid="1059028704" type="utm" subtype="app-ctrl"
eventtype="signature" level="information" vd="vd1" eventtime=1585263070836106492 tz="-0700"
appid=43699 srcip=10.1.100.242 dstip=172.16.200.106 srcport=50963 dstport=102
srcintf="port13" srcintfrole="undefined" dstintf="port14" dstintfrole="undefined" proto=6
service="tcp/26112" direction="outgoing" policyid=1 sessionid=2711 applist="test"
action="pass" appcat="Industrial" app="MMS_Read.Request" incidentserialno=376610508
msg="Industrial: MMS_Read.Request," apprisk="elevated"

date=2020-03-26 time=16:15:45 logid="1059028704" type="utm" subtype="app-ctrl"
eventtype="signature" level="information" vd="vd1" eventtime=1585091746264983273 tz="-0700"
appid=44684 srcip=10.1.100.242 dstip=172.16.200.106 srcport=41665 dstport=102
srcintf="port13" srcintfrole="undefined" dstintf="port14" dstintfrole="undefined" proto=6
service="tcp/26112" direction="incoming" policyid=1 sessionid=194463 applist="test"
action="pass" appcat="Industrial" app="ICCP_Transfer.Reporting" incidentserialno=762763993
msg="Industrial: ICCP_Transfer.Reporting," apprisk="elevated"

SCTP filtering capabilities

A Stream Control Transmission Protocol (SCTP) dissector and Payload Protocol Identifier (PPID) filter can be used to either terminate the SCTP session, or replace the offending data chunk with zeros to keep the client and server sequence numbers synchronized. The SCTP filter action can also pass the data chunk.

SCTP client

SCTP server

FortiGate

To configure and test an SCTP filter:

1. Configure an SCTP filter profile that uses the reset action:

 config scpf-filter profile
 edit "sctp"
 set comment "Demo profile"
 config ppid-filters
 edit 1
 set ppid 112233
 set action reset
 set comment "test chunk"
 next
 end
2. Use the SCTP filter profile in a firewall policy:

```config firewall policy
edit 1
    set name "1"
    set srcintf "port38"
    set dstintf "port37"
    set srcaddr "all"
    set dstaddr "all"
    set action accept
    set schedule "always"
    set service "ALL"
    set utm-status enable
    set ssl-ssh-profile "new-deep-inspection"
    set scpt-filter-profile "sctp"
    set logtraffic all
next
end
```

3. On the SCTP client, confirm that the connection works and send a data chunk with PPID 112233.

4. The IPS engine detects the data chunk. The PPID matches the PPID filter, and the filter action is reset, so the data chunk is not received on the server, and the session is terminated.
5. Change the filter action to replace:

```plaintext
config sctp-filter profile
edit "sctp"
config ppid-filters
edit 1
  set action replace
next
end
end
```

6. Resend the data chunk.

7. The IPS engine detects the data chunk. The PPID matches the PPID filter, and the filter action is replace, so the data chunk is replaced with zeros.

File filter

The file filter can be applied directly to firewall policies and supports various traffic protocols in proxy or flow mode.
<table>
<thead>
<tr>
<th>Protocol</th>
<th>Proxy mode</th>
<th>Flow mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIFS</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>FTP</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>HTTP</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IMAP</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MAPI</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>POP3</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SMTP</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SSH</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Prior to FortiOS 6.4.1, file filter was embedded in the web filter, email filter, SSH inspection, and CIFS profiles.

To configure a file filter in the GUI:

1. Configure the filter profile:
 a. Go to Security Profiles > File Filter and click Create New.
 b. Select a Feature set.
 c. In the Rules table, click Create New.
 d. Configure the settings as required.
 e. Click OK to save the rule.
Security Profiles

f. Optionally, create more rules.

g. Click OK to save the filter profile.

2. Apply the filter to a policy:
 a. Go to Policy & Objects > Firewall Policy and edit an existing policy or create a new one.
 b. In the Security Profiles section, enable File Filter.
 c. Select the filter from the dropdown box.

 d. Configure the other settings as needed.
 e. Click OK.

To configure a file filter in the CLI:

1. Configure the file filter profile:

   ```
   config file-filter profile
   edit "test"
      set comment ''
      set feature-set flow
      set replacemsg-group ''
      set log enable
      set scan-archive-contents enable
   config rules
      edit "r2"
         set comment ''
   ```
Security Profiles

set protocol http ftp smtp imap pop3 cifs
set action block
set direction outgoing
set password-protected any
set file-type "sis" "tar" "tiff" "torrent" "upx" "uue" "wav" "wma" "xar" "xz" "zip"

next
edit "r1"
set comment ''
set protocol http ftp smtp imap pop3 cifs
set action log-only
set direction any
set password-protected any
set file-type ".net" "7z" "activemime" "arj" "aspack" "avi" "base64" "bat" "binhex" "bmp" "bzip" "bzip2"
next
edit "r3"
set comment ''
set protocol http ftp smtp imap pop3
set action block
set direction any
set password-protected any
set file-type "binhex"
next
end
end

2. Apply the filter to a policy:

config firewall policy
edit 1
set name "filefilter-policy"
set srcintf "port10"
set dstintf "port9"
set srcaddr "all"
set dstaddr "all"
set srcaddr6 "all"
set dstaddr6 "all"
set action accept
set schedule "always"
set service "ALL"
set utm-status enable
set profile-protocol-options "protocol"
set ssl-ssh-profile "protocols"
set file-filter-profile "test"
set auto-asic-offload disable
set np-acceleration disable
set nat enable
next
end

Logs

Go to Log & Report > Security Events and select the File Filter card to view the file filter logs.
Log samples

date=2020-04-21 time=17:04:02 logid="1900064000" type="utm" subtype="file-filter" eventtype="file-filter" level="warning" vd="root" eventtime=158751384321162684 tz="-0700" policyid=1 sessionid=1575 srcip=10.1.100.22 srcport=57382 srcintfrole="undefined" dstip=172.16.200.44 dstport=445 dstintfrole="undefined" dstintfrole="port23" filename="sample\putty.exe" msg="File was blocked by file filter." eventtype="file-filter" date=2020-

date=2020-04-21 time=17:03:54 logid="1900064000" type="utm" subtype="file-filter" eventtype="file-filter" level="warning" vd="root" eventtime=1587513834376811325 tz="-0700" policyid=1 sessionid=1742 srcip=10.1.100.22 srcport=36754 srcintfrole="undefined" dstintfrole="undefined" dstintfrole="port23" dstintfrole="undefined" dstintfrole="port23" dstintfrole="port23" filetype="jpeg" recipient="pc4user2" msg="File was blocked by file filter." eventtype="file-filter" date=2020-

date=2020-04-21 time=17:00:30 logid="1900064000" type="utm" subtype="file-filter" eventtype="file-filter" level="warning" vd="root" eventtime=1587513630482716465 tz="-0700" policyid=1 sessionid=1684 srcip=10.1.100.22 srcport=58524 srcintfrole="undefined" dstintfrole="undefined" dstintfrole="port23" dstintfrole="undefined" dstintfrole="port23" dstintfrole="port23" filetype="pdf" msg="File was blocked by file filter." eventtype="file-filter" date=2020-

date=2020-04-21 time=16:59:58 logid="1900064000" type="utm" subtype="file-filter" eventtype="file-filter" level="warning" vd="root" eventtime=15875135988666551739 tz="-0700" policyid=1 sessionid=1674 srcip=10.1.100.22 srcport=39854 srcintfrole="undefined" dstintfrole="undefined" dstintfrole="port23" dstintfrole="undefined" dstintfrole="port23" dstintfrole="port23" filetype="jpeg" msg="File was blocked by file filter." eventtype="file-filter" date=2020-

date=2020-04-21 time=16:58:31 logid="1900064000" type="utm" subtype="file-filter" eventtype="file-filter" level="warning" vd="root" eventtime=1587513511516745955 tz="-0700" policyid=1 sessionid=1619 srcip=10.1.100.22 srcport=53144 srcintfrole="undefined" dstintfrole="undefined" dstintfrole="port23" dstintfrole="undefined" dstintfrole="port23" dstintfrole="port23" subtype="file-filter" msg="File was blocked by file filter." eventtype="file-filter" date=2020-

date=2020-04-21 time=16:58:14 logid="1900064000" type="utm" subtype="file-filter" eventtype="file-filter" level="warning" vd="root" eventtime=1587513494608988795 tz="-0700" policyid=1 sessionid=1605 srcip=10.1.100.22 srcport=43186 srcintfrole="undefined" dstintfrole="undefined" dstintfrole="port23" dstintfrole="undefined" dstintfrole="port23" dstintfrole="port23" filetype="html" msg="File was blocked by file filter." eventtype="file-filter" date=2020-04-21 time=16:58:14 logid="1900064000" type="utm" subtype="file-filter" eventtype="file-filter" level="warning" vd="root" eventtime=1587513494608988795 tz="-0700" policyid=1 sessionid=1605 srcip=10.1.100.22 srcport=43186 srcintfrole="undefined" dstintfrole="undefined" dstintfrole="port23" dstintfrole="undefined" dstintfrole="port23" dstintfrole="port23" subtype="file-filter" msg="File was blocked by file filter."
Supported file types

File filter allows the FortiGate to block files passing through based on file type based on the file's meta data only, and not on file size or file content. A DLP profile must be configured to block files based on size or content, such as SSN numbers, credit card numbers, or regexp.

The following file types are supported in file filter and DLP profiles:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>.net</td>
<td>Match .NET files</td>
</tr>
<tr>
<td>7z</td>
<td>Match 7-Zip files</td>
</tr>
<tr>
<td>activemime</td>
<td>Match ActiveMime files</td>
</tr>
<tr>
<td>arj</td>
<td>Match ARJ compressed files</td>
</tr>
<tr>
<td>aspack</td>
<td>Match ASPack files</td>
</tr>
<tr>
<td>avi</td>
<td>Match AVI files</td>
</tr>
<tr>
<td>base64</td>
<td>Match Base64 files</td>
</tr>
<tr>
<td>bat</td>
<td>Match Windows batch files</td>
</tr>
<tr>
<td>binhex</td>
<td>Match BinHex files</td>
</tr>
<tr>
<td>bmp</td>
<td>Match BMP files</td>
</tr>
<tr>
<td>bzip</td>
<td>Match Bzip files</td>
</tr>
<tr>
<td>bzip2</td>
<td>Match Bzip2 files</td>
</tr>
<tr>
<td>cab</td>
<td>Match Windows CAB files</td>
</tr>
<tr>
<td>chm</td>
<td>Match Windows compiled HTML help files</td>
</tr>
<tr>
<td>class</td>
<td>Match CLASS files</td>
</tr>
<tr>
<td>cod</td>
<td>Match COD files</td>
</tr>
<tr>
<td>crx</td>
<td>Match Chrome extension files</td>
</tr>
<tr>
<td>dmg</td>
<td>Match Apple disk image files</td>
</tr>
<tr>
<td>elf</td>
<td>Match ELF files</td>
</tr>
<tr>
<td>exe</td>
<td>Match Windows executable files</td>
</tr>
<tr>
<td>flac</td>
<td>Match FLAC files</td>
</tr>
<tr>
<td>fsg</td>
<td>Match FSG files</td>
</tr>
<tr>
<td>gif</td>
<td>Match GIF files</td>
</tr>
<tr>
<td>gzip</td>
<td>Match Gzip files</td>
</tr>
<tr>
<td>hlp</td>
<td>Match Windows help files</td>
</tr>
<tr>
<td>hta</td>
<td>Match HTA files</td>
</tr>
<tr>
<td>Type</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>html</td>
<td>Match HTML files</td>
</tr>
<tr>
<td>iso</td>
<td>Match ISO archive files</td>
</tr>
<tr>
<td>jad</td>
<td>Match JAD files</td>
</tr>
<tr>
<td>javascript</td>
<td>Match JavaScript files</td>
</tr>
<tr>
<td>jpeg</td>
<td>Match JPEG files</td>
</tr>
<tr>
<td>lzh</td>
<td>Match LZH compressed files</td>
</tr>
<tr>
<td>mach-o</td>
<td>Match Mach object files</td>
</tr>
<tr>
<td>mime</td>
<td>Match MIME files</td>
</tr>
<tr>
<td>mov</td>
<td>Match MOV files</td>
</tr>
<tr>
<td>mp3</td>
<td>Match MP3 files</td>
</tr>
<tr>
<td>mpeg</td>
<td>Match MPEG files</td>
</tr>
<tr>
<td>msi</td>
<td>Match Windows Installer MSI Bzip files</td>
</tr>
<tr>
<td>msoffice</td>
<td>Match MS-Office files. For example, DOC, XLS, PPT, and so on.</td>
</tr>
<tr>
<td>msofficex</td>
<td>Match MS-Office XML files. For example, DOCX, XLSX, PPTX, and so on.</td>
</tr>
<tr>
<td>pdf</td>
<td>Match PDF files</td>
</tr>
<tr>
<td>petite</td>
<td>Match Petite files</td>
</tr>
<tr>
<td>png</td>
<td>Match PNG files</td>
</tr>
<tr>
<td>rar</td>
<td>Match RAR archives</td>
</tr>
<tr>
<td>rm</td>
<td>Match RM files</td>
</tr>
<tr>
<td>sis</td>
<td>Match SIS files</td>
</tr>
<tr>
<td>tar</td>
<td>Match TAR files</td>
</tr>
<tr>
<td>tiff</td>
<td>Match TIFF files</td>
</tr>
<tr>
<td>torrent</td>
<td>Match torrent files</td>
</tr>
<tr>
<td>unknown*</td>
<td>Match unknown files</td>
</tr>
<tr>
<td>upx</td>
<td>Match UPX files</td>
</tr>
<tr>
<td>uue</td>
<td>Match UUE files</td>
</tr>
<tr>
<td>wav</td>
<td>Match WAV files</td>
</tr>
<tr>
<td>wma</td>
<td>Match WMA files</td>
</tr>
<tr>
<td>xar</td>
<td>Match XAR archive files</td>
</tr>
<tr>
<td>xz</td>
<td>Match XZ files</td>
</tr>
<tr>
<td>zip</td>
<td>Match ZIP files</td>
</tr>
</tbody>
</table>

* This file type is only available in DLP profiles.
Email filter

Email filters can be configured to perform spam detection and filtering. You can customize the default profile, or create your own and apply it to a firewall policy.

Two kinds of filtering can be defined in a single profile, and they will act independent of one another.

Filter options can be organized according to the source of the decision:

- **Local options**: the FortiGate qualifies the email based on local conditions, such as block/allowlists, banned words, or DNS checks using FortiGuard Antispam.
- **FortiGuard-based options**: the FortiGate qualifies the email based on the score or verdict returned from FortiGuard Antispam.
- **Third-party options**: the FortiGate qualifies the email based on information from a third-party source (like an ORB list).

Local and FortiGuard block/allowlists can be enabled and combined in a single profile. When combined, the local block/allowlist has a higher priority than the FortiGuard block list during a decision making process. For example, if a client IP address is blocklisted in the FortiGuard server, but you want to override this decision and allow the IP to pass through the filter, you can define the IP address or subnet in a local block/allowlist with the clear action. Because the information coming from the local list has a higher priority than the FortiGuard service, the email will be considered clean.

Some features of this functionality require a subscription to FortiGuard Antispam.

Protocol comparison between email filter inspection modes

The following table indicates which email filters are supported by their designated inspection modes.

<table>
<thead>
<tr>
<th></th>
<th>SMTP</th>
<th>POP3</th>
<th>IMAP</th>
<th>MAPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proxy</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Flow</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

The following topics provide information about email filter profiles:

- Local-based filters on page 1235
- FortiGuard-based filters on page 1242
- Third-party-based filters on page 1244
- Filtering order on page 1244
- Protocols and actions on page 1246
- Configuring webmail filtering on page 1247
Local-based filters

There are six types of local spam filters:

- HELO DNS lookup
- Return email DNS check
- Block/allow list
- Banned words
- Trusted IP addresses
- MIME header

* These filters can only be configured in the CLI.

By default, HELO DNS and return email DNS checks are done before the block/allow list check. In some situations, such as when configuring a block/allow list to clear an email from performing further filtering, configure the following to give precedence to the block/allow list:

```
config emailfilter profile
edit <name>
    config smtp
        set local-override enable
    next
end
end
```

HELO DNS lookup

Whenever a client opens an SMTP session with a server, the client sends a HELO command with the client domain name. The FortiGate takes the domain name specified by the client in the HELO and performs a DNS lookup to determine if the domain exists. If the lookup fails, the FortiGate determines that any emails delivered during the SMTP session are spam. The HELO DNS lookup is only available for SMTP traffic.

Return email DNS check

The FortiGate performs a DNS lookup on the return field. If no such record exists, the email is treated as spam. When return email DNS checking is enabled, the FortiGate takes the domain in the reply-to email address and reply-to domain, and checks the DNS servers to see if there is an A or MX record for the domain. If the domain does not exist, the FortiGate treats the email as spam.

Block/allow list

Block/allow lists can be made from emails or IP subnets to forbid or allow them to send or receive emails. The following table summarizes the configurable options in a block/allow list.
<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Pattern</th>
<th>Action</th>
</tr>
</thead>
</table>
| IP/Netmask and IPv6/Netmask | The FortiGate compares the IP address of the client delivering the email to the addresses in the IP address block/allow list specified in the email filter profile. If a match is found, the FortiGate takes the action configured for the matching block/allow list entry against all delivered email. By default the hdrip setting under config smtp is disabled. If enabled, the FortiGate checks all the IP addresses in the header of SMTP email against the specified IP address block/allow list. | The filter is an IP address with a subnet mask. | • Mark as Reject: the email is dropped before reaching its destination.
• Mark as Spam: the email is allowed through, but it will be tagged with an indicator marking the email as spam.
• Mark as Clear: the email is allowed to go through to its destination on the assumption that it is not spam. |
| Recipient Address | The FortiGate compares the sender email address to the contents of the RCPT TO envelope header and To: mail header to the specified pattern. If a match is found, the FortiGate takes the action configured for the matching block/allow list entry. | | • Wildcard: the filter is an email address with a wildcard symbol in place of the variable characters (such as *:example.com or fred@*.com).
• Regular Expression: the filter is a regular expression. For example, ^\[_.a-z0-9-]+\[_.a-z0-9-]+\]@ (example|xmple|examp). (com|org|net) can be used to filter based on a number of email domain name combinations. |
| Sender Address | The FortiGate compares the sender email address to the contents of the MAIL FROM envelope header, From: mail header, and Sender: mail header to the specified pattern. If a match is found, the FortiGate takes the action configured for the matching block/allow list entry. | | • Mark as Spam: the email is allowed through, but it will be tagged with an indicator marking the email as spam.
• Mark as Clear: the email is allowed to go through to its destination on the assumption that it is not spam. |
| Subject | The FortiGate compares the sender email address to the contents of the Subject: mail header to the specified pattern. If a match is found, the FortiGate takes the action configured for the matching block/allow list entry. | | |

* This type is only supported in proxy mode.
Banned words

When banned word checking is enabled, the FortiGate examines emails for words that appear in the banned word list specified in the email filter profile.

The banned word pattern can be either wildcard or Perl regular expression, which could include part of a word, a whole word, a phrase, multiple words, or multiple phrases.

Each time the banned word filter detects a pattern in an email, it adds the pattern score to the sum of scores for the message. The score is set when creating a new pattern to block content (set score). Higher scores indicate more offensive content. If the total score of the discovered banned words in the email exceeds the threshold value set in the email filter profile, then the FortiGate treats the email as spam. The score for each pattern is counted only once, even if that pattern appears many times in the email. The default score for banned word patterns is 10, and the default threshold in the email filter is 10. This means that by default, an email message is blocked by a single match.

For example, if the FortiGate scans an email containing only this sentence: “The score for each word or phrase is counted only once, even if that word or phrase appears many times in the email message.” and the banned word list contains the following patterns:

<table>
<thead>
<tr>
<th>Banned word pattern</th>
<th>Pattern type</th>
<th>Assigned score</th>
<th>Score added to sum for entire page</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>word</td>
<td>Wildcard</td>
<td>20</td>
<td>20</td>
<td>The pattern appears twice, but it is counted once.</td>
</tr>
<tr>
<td>word phrase</td>
<td>Wildcard</td>
<td>20</td>
<td>0</td>
<td>Both words appear in the email, but they do not appear together as specified in the pattern. There are no matches.</td>
</tr>
<tr>
<td>word*phrase</td>
<td>Wildcard</td>
<td>20</td>
<td>20</td>
<td>A match occurs as long as “word” appears before “phrase” regardless of what is in between them. The pattern appears twice, but it is counted once.</td>
</tr>
<tr>
<td>mail*age</td>
<td>Wildcard</td>
<td>20</td>
<td>20</td>
<td>This pattern is a match because “email message” appears in the email.</td>
</tr>
</tbody>
</table>

The email would be treated as spam if the banned word threshold is set to 60 or less.

To apply a banned word filter to an email filter profile:

1. Configure the banned words list:

   ```
   config emailfilter bword
   edit 1
   set name "banned"
   config entries
   edit 23
   set pattern-type {wildcard | regexp}
   set pattern <string>
   set score <1 - 99999>
   next
   end
   ```
2. Configure the email filter profile:

```fortigate-config
config emailfilter profile
edit "myBannedWordsProfile"
set spam-filtering enable
set options bannedword
set spam-bword-threshold <0 - 2147483647>
set spam-bword-table 23
next
end
```

Once a banned word list is configured in the CLI and applied to an email filter profile, some settings can be edited in the GUI for that particular email filter profile. A banned word profile can be selected, and its Threshold (spam-bword-threshold) can be edited.

Trusted IP addresses

When the FortiGate creates a list of trusted IP addresses, any incoming email traffic from these IP address is exempt from having IP-based checks, such as DNSBL, RBL, FortiGuard Antispam service, or locally-defined IP block lists.

If the FortiGate sits behind a company's mail transfer units, it may be unnecessary to check email IP addresses because they are internal and trusted. In this case, only external IP addresses would be checked. In some cases, external IP addresses may be added to the list if they are known to not be spam sources.

To configure a trusted IP address list:

1. Define the IP address list:

```fortigate-config
config emailfilter iptrust
edit 1
set name "trustedIP"
config entries
edit 33
set addr-type {ipv4 | ipv6}
set ipv4-subnet <IPv4_classnet>
set ipv6-subnet <IPv6_network>
next
end
next
end
```

2. Add the list to the email filter profile:

```fortigate-config
config emailfilter profile
edit "email_filter_profile"
set spam-iptrust-table 1
next
end
```
MIME header

This feature filters by the MIME header.

To configure a MIME header check:

1. Define the header content:

   ```
   config emailfilter mheader
   edit 100
   set name "mheader"
   config entries
   edit 1
   set flagname <string>
   set fieldbody <string>
   set pattern-type {wildcard | regexp}
   set action {spam | clear}
   next
   end
   next
   end
   ``

2. Add the header to the email filter profile:

   ```
 config emailfilter profile
 edit "email_filter_profile"
 set options spamhdrcheck
 set spam-mheader-table 100
 next
 end
 ``

Configuring a local-based email filter

To configure a local-based email filter in the GUI:

1. Configure the email filter profile:
 a. Go to Security Profiles > Email Filter and click Create New, or edit an existing profile.
 b. Select a Feature set (Proxy-based is used in this example) and enable Enable spam detection and filtering.
 c. In the Local Spam Filtering section, enable the desired filters (HELO DNS Lookup, Return Email DNS Check, Block/Allow List).
 d. In the Block/Allow List table, click Create New. The Create Anti-Spam Block/Allow List Entry pane opens.
 e. Set the Type to IP/Netmask and enter an IP/Netmask.
f. Select an Action.

![Create Anti-Spam Block/Allow List Entry](image)

Click OK to save the block/allow list.

![New Email Filter Profile](image)

h. Click OK save the email filter profile.

2. Configure the firewall policy:
 a. Go to Policy & Objects > Firewall Policy and click Create New, or edit an existing policy.
 b. Set the inspection-mode to Proxy-based.
Security Profiles

c. Enable the Email Filter option and select the previously created profile.

d. Set SSL Inspection to a profile that has deep SSL inspection enabled. Deep inspection is required to filter SMTP, POP3, IMAP, or any SSL/TLS encapsulated protocol.

e. Configure the other settings as needed.

f. Click OK.

To configure a local-based email filter in the CLI:

1. Configure a block/allow list:

   ```
   config emailfilter block-allow-list
   edit 1
   set name "myBAL"
   config entries
   edit 1
   set status enable
   set type ip
   set action spam
   set addr-type ipv4
   set ip4-subnet 10.1.100.0 255.255.255.0
   next
   end
   next
   end
   ```

2. Configure an email filter profile:

   ```
   config emailfilter profile
   edit "myLocalEmailFilter"
   set spam-filtering enable
   set options spambal spamhelodns spamraddrdns
   config smtp
   set action tag
   end
   set spam-bal-table 1
   next
   end
   ```
3. Use the profile in a firewall policy:

```plaintext
cfg firewall policy
edit 1
    set inspection-mode proxy
    set ssl-ssh-profile "deep-inspection"
    set emailfilter-profile "myLocalEmailFilter"
next
end
```

FortiGuard-based filters

The FortiGate consults FortiGuard servers to help identify spammer IP address or emails, known phishing URLs, known spam URLs, known spam email checksums, and others. For more information, refer to the [FortiGuard](http://www.fortiguard.com) website.

There are five FortiGuard spam filtering options:

- IP address check
- URL check
- Detect phishing URLs in email (requires URL check to be enabled)
- Email checksum check
- Spam submission

IP address check

The FortiGate queries the FortiGuard Antispam service to determine if the IP address of the client delivering the email is in the block list. If there is a match, the FortiGate treats delivered emails as spam.

URL check

The FortiGate submits all URLs that appear in the email body to the FortiGuard service for checking. If a URL exists in the FortiGuard URL block list, the FortiGate treats the email as spam.

Detect phishing URLs in email

The FortiGate submits all URL hyperlinks that appear in the email body to the FortiGuard service for checking. If a URL exists in the FortiGuard URL phishing list, the FortiGate removes the hyperlink from the message. The URL remains in place, but it is no longer a clickable hyperlink.

Email checksum check

The FortiGate submits a checksum of each email to the FortiGuard service for checking. If a checksum exists in the FortiGuard checksum block list, the FortiGate treats the email as spam.
Spam submission

Spam submission is a way to inform the FortiGuard Antispam service of non-spam messages incorrectly marked as spam. When enabled, the FortiGate adds a link to the end of every email marked as spam. Click the link to notify the FortiGuard Antispam service if an email is marked incorrectly.

Configuring FortiGuard filters

To configure FortiGuard filters in the GUI:

1. Go to Security Profiles > Email Filter and click Create New.
2. Enable Enable spam detection and filtering.
3. In the FortiGuard Spam Filtering Spam Filtering section, enable the following as needed:
 - IP Address Check
 - URL Check
 - Detect Phishing URLs in Email
 - Email Checksum Check
 - Spam Submission
4. Click OK.

To configure FortiGuard filters in the CLI:

```
config emailfilter profile
  edit <name>
    set spam-filtering enable
    set options spamfsip spamfsurl spamfsphish spamfschecksum spamfssubmit
  next
end
```
Security Profiles

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>spamfsip</td>
<td>Check email IP addresses</td>
</tr>
<tr>
<td>spamfsurl</td>
<td>Check email content URLs</td>
</tr>
<tr>
<td>spamfsphish</td>
<td>Check email content phishing URLs</td>
</tr>
<tr>
<td>spamfschksum</td>
<td>Check email checksums</td>
</tr>
<tr>
<td>spamfssubmit</td>
<td>Add FortiGuard Antispam spam submission text</td>
</tr>
</tbody>
</table>

Third-party-based filters

In addition to local and FortiGuard filters, FortiOS can leverage third-party sources, which are known as DNS-based blackhole lists (DNSBL) or Open Relay Behavior-modification Systems (ORBS). These are maintained lists of IP addresses that have been identified as associated with spamming.

The following example demonstrates how to configure a DNSBL. The `config emailfilter dnsbl` command is used to configure either DNSBL or ORBS.

To configure a DNSBL:

1. Define the server to get the DNSBL list from:
   ```
   config emailfilter dnsbl
   edit 100
   set name "dnsbl"
   config entries
     edit 1
     set status enable
     set server <IP address or server name>
     set action {reject | spam}
   next
   next
   end
   ```

2. Add the DNSBL list to an email filter profile:
   ```
   config emailfilter profile
   edit "email_filter_profile"
     set options spamrbl
     set spam-rbl-table 100
   next
   end
   ```

Filtering order

The FortiGate checks for spam using various filtering techniques. The filtering order used by the FortiGate depends on which mail protocol is used.
Filters requiring a query to a server and a reply (FortiGuard Antispam service and DNSBL/ORDBL) are run simultaneously. To avoid delays, queries are sent while other filters are running. The first reply to trigger a spam action takes effect as soon as the reply is received.

Each spam filter passes the email to the next if no matches or problems are found. If the action in the filter is Mark as Spam, the FortiGate tags the email as spam according to the settings in the email filter profile. If the action in the filter is Mark as Reject, the email session is dropped. If the action in the filter is Mark as Clear, the email is exempt from any remaining filters. For SMTP and SMTPS, if the action is Discard, the email is discarded or dropped.

SMTP and SMTPS spam filtering order

The FortiGate scans SMTP and SMTPS email for spam in a specific order, which depends on whether or not the local override feature is enabled. This feature is disabled by default, but enabling it gives priority to local spam filters.

You can enable local override (set local-override) in an email filter profile to override SMTP or SMTPS remote checks, which includes checks for IP RBL, IP FortiGuard AntiSpam, and HELO DNS with the locally defined antispam block and/or allow lists.

SMTPS spam filtering is available on FortiGates that support SSL content scanning and inspection.

To configure local override of an antispam filter:

```plaintext
config emailfilter profile
    edit <name>
        set spam-filtering enable
        set options spambal spamfsip spamfsurl spamhelodns spamfsphish
        config smtp
            set local-override {enable | disable}
        end
    end
next
```

<table>
<thead>
<tr>
<th>Local override disabled</th>
<th>Local override enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. HELO DNS lookup, last hop IP check against ORDBL</td>
<td>1. Last hop IP checks local block/allow list</td>
</tr>
<tr>
<td>2. Return email DNS check, FortiGuard email checksum check, FortiGuard URL check, FortiGuard IP address check, phishing URLs detection</td>
<td>2. Envelope address checks local block/allow list</td>
</tr>
<tr>
<td>3. Last hop IP checks local block/allow list</td>
<td>3. Headers IPs local block/allow list, MIME header checks based on local list of patterns (mheader)</td>
</tr>
<tr>
<td>4. Envelope address checks local block/allow list</td>
<td>4. Headers email address local block/allow list</td>
</tr>
<tr>
<td>5. Headers IPs local block/allow list</td>
<td>5. Banned words (subject first, then body) based on local list of patterns (bword)</td>
</tr>
<tr>
<td>6. Headers email address local block/allow list, MIME header checks based on local list of patterns (mheader)</td>
<td>6. HELO DNS lookup, last hop IP check against ORDBL</td>
</tr>
<tr>
<td>7. Banned words (subject first, then body) based on local block/allow list (bword)</td>
<td>7. Return email DNS check, FortiGuard email checksum check, FortiGuard URL check, FortiGuard IP address check, phishing URLs detection</td>
</tr>
</tbody>
</table>
Security Profiles

IMAP, IMAPS, POP3, and POP3S spam filtering order

The FortiGate scans IMAP, IMAPS, POP3, and POP3S email for spam in the following order:

1. MIME headers check, email address block/allow list check
2. Banned word check on email subject
3. IP block/allow list check
4. Banned word check on email body
5. Return email DNS check, FortiGuard email checksum check, FortiGuard URL check, DNSBL and ORDBL checks

IMAPS and POP3S spam filtering are available on FortiGates that support SSL content scanning and inspection.

Protocols and actions

In an email filter profile, there are options to configure settings for SMTP, POP3, IMAP, and MAPI protocols. For each protocol, you can set an action to either discard (block), tag, or pass the log for that protocol. The action options vary per protocol. For the tag action, the spam email can be tagged with configured text in the subject or header.

MAPI is only configurable in the CLI and with the proxy feature set.

To configure protocols in an email filer:

```plaintext
config emailfilter profile
  edit <name>
    set feature-set {flow | proxy}
    set spam-filtering enable
    set options {bannedword spambal spamfsip spamfssubmit spamfschksum spamfsurl spamhelodns spamraddrdns spamrbl spamhdrcheck spamfsphish}
    config smtp
      set log-all {enable | disable}
      set action {pass | tag | discard}
      set tag-type {subject | header | spaminfo}
      set tag-msg <string>
      set hdrip {enable | disable}
      set local-override {enable | disable}
    end
    config imap
      set log-all {enable | disable}
      set action {pass | tag}
      set tag-type {subject | header | spaminfo}
      set tag-msg <string>
    end
    config pop3
      set log-all {enable | disable}
      set action {pass | tag}
```

Security Profiles

```plaintext
set tag-type {subject | header | spaminfo}
set tag-msg <string>
end
cfg mapi
    set log-all {enable | disable}
    set action {pass | discard}
end
next
```

Configuring webmail filtering

You can configure an email filter to detect and log emails sent by Gmail and Hotmail. These interfaces do not use standard email protocols (SMTP, POP3, or IMAP) and use HTTPS instead. However, you can still configure the email filter to detect emails that pass through the FortiGate.

The FortiGate only detects and logs the emails, it does not discard or tag them.

The following options are available:

- **bannedword**: content block.
- **spambal**: block/allow list.
- **spamfsip**: email IP address FortiGuard antispam block list check.
- **spamfssubmit**: add FortiGuard antispam spam submission text.
- **spamfschksum**: email checksum FortiGuard antispam check.
- **spamfsurl**: email content URL FortiGuard antispam check.
- **spamhelodns**: email HELO/EHLO domain DNS check.
- **spamraddrdns**: email return address DNS check.
- **spamrbl**: email DNSBL and ORBL check.
- **spamhdrcheck**: email MIME header check.
- **spamfsphish**: email content phishing URL FortiGuard antispam check.

The following options are available:

- **lbannedword**: content block.
- **spambal**: block/allow list.
- **spamfsip**: email IP address FortiGuard antispam block list check.
- **spamfssubmit**: add FortiGuard antispam spam submission text.
- **spamfschksum**: email checksum FortiGuard antispam check.
- **spamfsurl**: email content URL FortiGuard antispam check.
- **spamhelodns**: email HELO/EHLO domain DNS check.
- **spamraddrdns**: email return address DNS check.
- **spamrbl**: email DNSBL and ORBL check.
- **spamhdrcheck**: email MIME header check.
- **spamfsphish**: email content phishing URL FortiGuard antispam check.
Security Profiles

To configure webmail filtering:

```bash
cfg emailfilter profile
  edit <name>
    set spam-filtering enable
  end
config msn-hotmail
  set log-all enable
end
config gmail
  set log-all enable
end
```

data leak prevention

The FortiGate data leak prevention (DLP) system prevents sensitive data from leaving or entering your network by archiving some or all of the content that passes through the FortiGate. DLP archiving is configured per filter, which allows a single profile to archive only the required data. There are two forms of DLP archiving:

- **Summary only**: a summary of all the activity detected by the profile is recorded. For example, when an email message is detected, the sender, recipient, message subject, and total size are recorded. When a user accesses a web browser, every URL that they visit is recorded.
- **Full**: detailed records of all the activity detected by the profile is recorded. For example, when an email message is detected, the message itself, including any attachments, is recorded. When a user accesses a web browser, every page that they visit is archived.

You can configure the DLP archiving protocol in the DLP profile (see `config dlp profile`). You can customize the default DLP profile or create your own by adding individual filters based on:

- Data types (keyword, regex, hex, credit card, social security number, or custom)
- Dictionaries
- Sensors
- File patterns
- Known files using DLP fingerprinting
- Known files using DLP watermarking

Once configured, you can apply the DLP profile to a firewall policy. Data matching defined sensitive data patterns is blocked, logged, or allowed when it passes through the FortiGate. DLP can only be configured in the CLI.

Filters are ordered, but there is no precedence between the possible actions.
Protocol comparison between DLP inspection modes

The following table indicates which protocols can be inspected by DLP based on the specified inspection modes.

<table>
<thead>
<tr>
<th></th>
<th>HTTP</th>
<th>FTP</th>
<th>IMAP</th>
<th>POP3</th>
<th>SMTP</th>
<th>NNTP</th>
<th>MAPI</th>
<th>CIFS</th>
<th>SFTP/SCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proxy</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Flow</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Logging and blocking files by file name

Sometimes, file names are not accurately recorded in DLP logs, even though the files are blocked correctly based on the DLP profile. This is particularly apparent on cloud-based services, such as Google Drive or SharePoint.

For HTTP file uploads, some cloud services use proprietary encodings and APIs to transfer files and exchange metadata, instead of standard HTTP mechanisms, requiring custom handling of the proprietary API. If a cloud service changes the API without notice, the custom handling becomes outdated and file names might not be logged properly. Due to this, special consideration must be taken when using DLP to block files by file pattern. To block a specific file type, it is better to block by file type, and not by file name pattern.

The following topics provide information about DLP:

- Basic DLP settings on page 1249
- DLP fingerprinting on page 1256

Basic DLP settings

DLP settings can be configured for data types, dictionaries, sensors, file patterns, and profiles. This topic includes three examples that incorporate several DLP settings.

- Block HTTPS upload traffic that includes credit card or social security number (SSN) information.
- Log FTP upload traffic with a specific pattern.
- Block HTTPS downloads of EXE files and log HTTPS downloads of files larger than 500 KB.

DLP data type

This configuration includes five pre-defined data types to match for keyword, regex, hex, credit card, and social security number (SSN). Custom data types can be added.

```plaintext
config dlp data-type
  edit "keyword"
    set pattern "built-in"
  next
  edit "regex"
    set pattern "built-in"
  next
  edit "hex"
    set pattern "built-in"
  next
  edit "credit-card"
```
Security Profiles

set pattern "\\b([2-6]{1}\d\{3\})[-]?\d\{4\}[-]?\d\{2\}[-]?\d\{2\}[-]?\d\{2,4\}\b"
set verify "built-in"
set look-back 20
set transform "\\b\\1[-]?\\2[-]?\\3[-]?\\4[-]?\\5\b"
next
edit "ssn-us"
set pattern "\\b\\d\{3\}-(\\d\{2\})-(\\d\{4\})\b"
set verify "(?<!-)\\b(?!666|000|9\d\{2\})\\d\{3\}-(?!00)\\d\{2\}-(?!04)\\d\{4\}\\b(?!-)"
set look-back 12
set transform "\\b\\1-\\2-\\3\b"
next
end

To add a custom DLP data type:

config dlp data-type
edit <name>
 set pattern <string>
 set verify <string>
 set transform <string>
next
end

<table>
<thead>
<tr>
<th>pattern <string></th>
<th>Enter a regular expression pattern string without a look around.</th>
</tr>
</thead>
<tbody>
<tr>
<td>verify <string></td>
<td>Enter a regular expression pattern string used to verify the data type.</td>
</tr>
<tr>
<td>transform <string></td>
<td>Enter the template to transform user input to a pattern using the capture group from pattern.</td>
</tr>
</tbody>
</table>

DLP dictionary

A DLP dictionary is a collection of data type entries.

To configure a DLP dictionary:

config dlp dictionary
edit <name>
 config entries
edit 1
 set type {credit-card | hex | keyword | regex | ssn-us}
 set pattern <string>
 set repeat {enable | disable}
 set status {enable | disable}
next
next
end

DLP sensor

A DLP sensor defines which dictionary to check. It counts the number of dictionary matches to trigger the sensor.
To configure a DLP sensor:

```plaintext
cfg dlp sensor
  edit <name>
    set match-type {match-all | match-any | match-eval}
    set eval <string>
  config entries
    edit <id>
      set dictionary <dlp_dictionary>
      set count <integer>
      set status {enable | disable}
    next
  next
end
```

DLP file pattern

A DLP file pattern can block, allow, log, or quarantine a file based on the specified file type in the file filter list (see Supported file types on page 1232).

To configure a DLP file pattern:

```plaintext
cfg dlp filepattern
  edit <id>
    set name <name>
  config entries
    edit <name>
      set filter-type {type | pattern}
      set file-type <file_type>
    next
  next
end
```

DLP profile

A DLP profile allows for filtering by size and file type. DLP profiles can be applied in firewall policies.

To configure a DLP profile:

```plaintext
cfg dlp profile
  edit <name>
    set feature-set {flow | proxy}
  config rule
    edit <id>
      set proto <protocol> <protocol> ...
      set sensor <dlp_sensor>
      set action {allow | log-only | block | quarantine-ip}
    next
  next
end
```
Example 1

This configuration will block HTTPS upload traffic that includes credit card or social security number (SSN) information. The pre-defined data types for credit-card and ssn-us are used in the dictionary.

To block HTTPS upload traffic that includes credit card or SSN information:

1. Configure the DLP dictionary:

```plaintext
config dlp dictionary
edit "dic-case1-cc-ssn"
config entries
edit 1
    set type "credit-card"
next
edit 2
    set type "ssn-us"
next
end
next
end
```

2. Configure the DLP sensor:

```plaintext
config dlp sensor
edit "sensor-case1-cc-ssn"
config entries
edit 1
    set dictionary "dic-case1-cc-ssn"
next
next
end
```

3. Configure the DLP profile:

```plaintext
config dlp profile
edit "profile-case1-cc-ssn"
config rule
edit 1
    set proto http-post
    set sensor "sensor-case1-cc-ssn"
    set action block
next
next
end
```

4. Add the DLP profile to a firewall policy:

```plaintext
config firewall policy
edit 1
    set srcintf "port2"
    set dstintf "port1"
    set action accept
    set srcaddr "all"
    set dstaddr "all"
    set srcaddr6 "all"
```
Security Profiles

```
set dstaddr6 "all"
set schedule "always"
set service "ALL"
set utm-status enable
set inspection-mode proxy
set ssl-ssh-profile "custom-deep-inspection"
set dlp-profile "profile-case1-cc-ssn"
set logtraffic all
set nat enable
```

When a credit card or SSN is included in HTTP POST traffic, a replacement message appears because it is blocked. A DLP log is generated.

Sample log

```
5: date=2022-02-15 time=09:49:04 eventtime=1644947344512841971 tz="-0800" logid="0954024576"
type="utm" subtype="dlp" eventtype="dlp" level="warning" vd="root" filteridx=1
dlpextra="sensor-case1-ssn" filtertype="rule" filtercat="file" severity="medium"
policyid=1 poluuid="905fb604-7ed4-51ec-0853-79e498591bf8" policytype="policy" sessionid=9290
epoch=64494265 eventid=0 srcip=10.1.100.106 srcport=64006 srccountry="Reserved"
srcintf="port2" srcintfrole="undefined" srcuuid="358d0f56-7ed4-51ec-50f7-a5e4525a641d"
dstip=35.209.241.59 dstport=443 dstcountry="United States" dstintf="port1"
dstintfrole="undefined" dstuuid="358d0f56-7ed4-51ec-50f7-a5e4525a641d" proto=6
service="HTTPS" filetype="unknown" direction="outgoing" action="block"
hostname="dlptest.com" url="https://dlptest.com/https-post/" agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) file" filename="item_meta[6]" filesize=19
profile="profile-case1-ssn"
```

Example 2

This configuration will log FTP upload traffic with the following patterns:

- keyword = demo
- regex = demo(regex){1,5}
- hex = e6b58be8af95

The dictionary entries have repeat match enabled. The DLP sensor is set so this is repeated five times.

To log FTP upload traffic that has specific keyword, regex, and hex patterns repeated for five times:

1. Configure the DLP dictionary:

   ```
   config dlp dictionary
   edit "dic-case2-keyword-regex-hex"
   config entries
   edit 1
   set type "keyword"
   set pattern "demo"
   set repeat enable
   next
   edit 2
   set type "regex"
   set pattern "demo(regex){1,5}"
   ```
Security Profiles

set repeat enable
next
edit 3
 set type "hex"
 set pattern "e6b58be8af95"
 set repeat enable
next
end
next
end

2. Configure the DLP sensor:

 config dlp sensor
 edit "sensor-case2-keyword-regex-hex"
 config entries
 edit 1
 set dictionary "dic-case2-keyword-regex-hex"
 set count 5
 next
 next
 end

3. Configure the DLP profile:

 config dlp profile
 edit "profile-case2-keyword-regex-hex"
 config rule
 edit 1
 set proto ftp
 set sensor "sensor-case2-keyword-regex-hex"
 set action log-only
 next
 next
 end

4. Add the DLP profile to a firewall policy:

 config firewall policy
 edit 1
 set srcintf "port2"
 set dstintf "port1"
 set action accept
 set srcaddr "all"
 set dstaddr "all"
 set srcaddr6 "all"
 set dstaddr6 "all"
 set schedule "always"
 set service "ALL"
 set utm-status enable
 set inspection-mode proxy
 set ssl-ssh-profile "custom-deep-inspection"
 set dlp-profile "profile-case2-keyword-regex-hex"
 set logtraffic all
 set nat enable
5. Upload a Word document that contains "demo, demo, demo, demoregexregex," using FTP.

A DLP log is generated after the FTP traffic passes.

Sample log

3: date=2022-02-15 time=10:42:34 eventtime=1644950554735620032 tz="-0800" logid="0954024577" type="utm" subtype="dlp" eventtype="dlp" level="notice" vd="root" filteridx=1 dlprextra="sensor-case2-keyword-regexp-hex " filtertype="rule" filtercat="file" severity="medium" policyid=1 poluuid="905fb604-7ed4-51ec-0853-79e498591bf8" policytype="policy" sessionid=10551 epoch=64494633 eventid=0 srcip=10.1.100.106 srcport=55647 srccountry="Reserved" srcintf="port2" srcintfrole="undefined" srcuuid="358d0f56-7ed4-51ec-50f7-a5e4525a641d" dstip=35.163.228.146 dstport=1048 dstcountry="United States" dstintf="port1" dstintfrole="undefined" dstuuid="358d0f56-7ed4-51ec-50f7-a5e4525a641d" proto=6 service="FTP" filetype="msofficex" direction="outgoing" action="log-only" filename="dlp-test.docx" filesize=11627 infectedfilename="word/document.xml" infectedfilesize=2448 infectedfiletype="html" infectedfilelevel=1

Example 3

This configuration will block HTTPS downloads of EXE files and log HTTPS downloads of files larger than 500 KB.

To block HTTPS download of EXE files and log downloads larger than 500 KB:

1. Configure the DLP file pattern:

```plaintext
config dlp filepattern
edit 3
set name "case3-exe"
config entries
edit "exe"
set filter-type type
set file-type exe
next
next
end
```

2. Configure the DLP profile:

```plaintext
config dlp profile
edit "profile-case3-type-size"
config rule
edit 1
set proto http-get
set filter-by none
set file-type 3
set action block
next
edit 2
set proto http-get
set filter-by none
```
Security Profiles

set file-size 500
set action log-only
next
end
next
end

3. Add the DLP profile to a firewall policy:
config firewall policy
edit 1
set srcintf "port2"
set dstintf "port1"
set action accept
set srcaddr "all"
set dstaddr "all"
set srcaddr6 "all"
set dstaddr6 "all"
set schedule "always"
set service "ALL"
set utm-status enable
set inspection-mode proxy
set ssl-ssh-profile "custom-deep-inspection"
set dlp-profile "profile-case3-type-size"
set logtraffic all
set nat enable
next
end

4. Download an EXE file using HTTPS. The download is blocked, a replacement message appears, and a DLP log is generated.

Sample log

1: date=2022-02-15 time=11:54:29 eventtime=1644954869682887856 tz="-0800" logid="0954024577" type="utm" subtype="dlp" eventtype="dlp" level="notice" vd="root" filteridx=2 dlpxtra="500 kB" filtertype="none" filtercat="file" severity="medium" policyid=1 poluuid="905fb604-7ed4-51ec-0853-79e498591bf8" policytype="policy" sessionid=12082 epoch=901683674 eventid=0 srcip=10.1.100.18 srcport=59520 srccountry="Reserved" srcintf="port2"
srcintfrole="undefined" srcuuid="358d0f56-7ed4-51ec-05f7-a5e4525a641d" dstip=51.81.186.201
dstport=443 dstcountry="United States" dstintf="port1" dstintfrole="undefined"
dstuuid="358d0f56-7ed4-51ec-05f7-a5e4525a641d" proto=6 service="HTTPS" direction="incoming"
action="log-only" hostname="2.na.dl.wireshark.org" url="https://2.na.dl.wireshark.org/win64/Wireshark-win64-3.6.2.exe" agent="curl/7.61.1"
filename="Wireshark-win64-3.6.2.exe" filesize=10502090 profile="profile-case3-type-size"

DLP fingerprinting

DLP fingerprinting can be used to detect sensitive data. The file that the DLP profile filters is uploaded and the FortiGate generates and stores a checksum fingerprint. The FortiGate generates a fingerprint for all the files that are detected in network traffic, and compares all the checksums stored in its database. If a match is found, the configured action is taken. Any type of file can be detected by DLP fingerprinting, and fingerprints can be saved for each revision of a file as it is updated.

Using fingerprinting requires:
1. Selecting the files to be fingerprinted by targeting a document source.
2. Adding fingerprinting filters to DLP profiles.
3. Adding the profiles to firewall policies that accept traffic that the fingerprinting will be applied on.

The document fingerprint feature requires a FortiGate that has internal storage.

To configure a DLP fingerprint document:

```
config dlp fp-doc-source
edit <name>
    set server-type smb
    set server <string>
    set period {none | daily | weekly | monthly}
    set vdom {mgmt | current}
    set scan-subdirectories {enable | disable}
    set remove-deleted {enable | disable}
    set keep-modified {enable | disable}
    set username <string>
    set password <password>
    set file-path <string>
    set file-pattern <string>
    set sensitivity {Critical | Private | Warning}
    set tod-hour <integer>
    set tod-min <integer>
    set weekday {sunday | monday | tuesday | wednesday | thursday | friday | saturday}
    set date <integer>
next
end
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>server-type smb</td>
<td>Set the protocol used to communicate with document server. Only Samba (SMB) servers are supported.</td>
</tr>
<tr>
<td>server <string></td>
<td>Enter the IPv4 or IPv6 address of the server.</td>
</tr>
<tr>
<td>period {none</td>
<td>daily</td>
</tr>
<tr>
<td>vdom {mgmt</td>
<td>current}</td>
</tr>
<tr>
<td>scan-subdirectories {enable</td>
<td>disable}</td>
</tr>
<tr>
<td>remove-deleted {enable</td>
<td>disable}</td>
</tr>
<tr>
<td>keep-modified {enable</td>
<td>disable}</td>
</tr>
<tr>
<td>username <string></td>
<td>Enter the user name required to log into the file server.</td>
</tr>
<tr>
<td>password <password></td>
<td>Enter the password required to log into the file server.</td>
</tr>
</tbody>
</table>
Command | Description
--- | ---
file-path <string> | Enter the path on the server to the fingerprint files.
file-pattern <string> | Enter the pattern for matching files on the server to be fingerprinted.
sensitivity <Critical | Private | Warning> | Set the sensitivity or threat level for matches with this fingerprint database.
tod-hour <integer> | Set the hour of the day. This option is only available when period is not none.
tod-min <integer> | Set the minute of the hour. This option is only available when period is not none.
weekday {sunday | monday | tuesday | wednesday | thursday | friday | saturday} | Set the day of the week. This option is only available when period is weekly.
date <integer> | Set the day of the month. This option is only available when period is monthly.

To configure a DLP fingerprint profile:

```plaintext
config dlp profile
d   edit <name>
   config filter
d     edit <id>
        set proto {smtp | pop3 | imap http-get | http-post | ftp | nntp | mapi}
        set filter-by fingerprint
        set sensitivity {Critical | Private | Warning}
        set match-percentage <integer>
        set action {allow | log-only | block | ban | quarantine-ip}
     next
   end
end
```

### Command	Description
proto {smtp | pop3 | imap http-get | http-post | ftp | nntp | mapi} | Set the protocol to inspect.
filter-by fingerprint | Set to match against a fingerprint sensitivity.
sensitivity {Critical | Private | Warning} | Set the DLP file pattern sensitivity to match.
match-percentage <integer> | Set the percentage of the checksum required to match before the profile is triggered.
action {allow | log-only | block | ban | quarantine-ip} | Set the action to take with content that matches the DLP profile.
View the DLP fingerprint database on the FortiGate

Use `diagnose test application dlpfingerprint <integer>` to display the fingerprint information that is on the FortiGate.

<table>
<thead>
<tr>
<th>Integer</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Show the fingerprint daemon menu</td>
</tr>
<tr>
<td>2</td>
<td>Dump the database</td>
</tr>
<tr>
<td>3</td>
<td>Dump all files</td>
</tr>
<tr>
<td>5</td>
<td>Dump all chunks</td>
</tr>
<tr>
<td>6</td>
<td>Refresh all document sources in all VDOMs</td>
</tr>
<tr>
<td>7</td>
<td>Show the database file size and limit</td>
</tr>
<tr>
<td>9</td>
<td>Display statistics</td>
</tr>
<tr>
<td>10</td>
<td>Clear statistics</td>
</tr>
<tr>
<td>99</td>
<td>Restart this daemon</td>
</tr>
</tbody>
</table>

To dump all fingerprinted files:

```
# diagnose test application dlpfingerprint 3
DLPFP diag_test_handler called
File DB:
-----------------------------------------------
id, filename, vdom, archive, deleted, scanTime, docSourceSrvr,
sensitivity, chunkCnt, reviseCnt,
1, /fingerprint/upload/1.txt, vdom1, 0, 0, 1494868196, 1, 2,
1, 0,
2, /fingerprint/upload/30percentage.xls, vdom1, 0, 0, 1356118250, 1, 2,
13, 0,
3, /fingerprint/upload/50.pdf, vdom1, 0, 0, 1356118250, 1, 2,
122, 0,
4, /fingerprint/upload/50.pdf.tar.gz, vdom1, 0, 0, 1356118250, 1, 2,
114, 0,
5, /fingerprint/upload/check-list_AL-SIP_HA.xls, vdom1, 0, 0, 1356118251, 1,
2, 32, 0,
6, /fingerprint/upload/clean.zip, vdom1, 0, 0, 1356118251, 1, 2,
1, 0,
7, /fingerprint/upload/compare.doc, vdom1, 0, 0, 1522097410, 1, 2,
18, 0,
8, /fingerprint/upload/dlpsensor-watermark.pdf, vdom1, 0, 0, 1356118250, 1,
2, 11, 0,
9, /fingerprint/upload/eicar.com, vdom1, 0, 0, 1356118250, 1, 2,
1, 0,
10, /fingerprint/upload/eicar.zip, vdom1, 0, 0, 1356118250, 1, 2,
1, 0,
11, /fingerprint/upload/EMAIL-CONTENT-ARCHIVE.ppt, vdom1, 0, 0, 1356118250, 1,
2, 11, 0,
12, /fingerprint/upload/encrypt.zip, vdom1, 0, 0, 1356118250, 1, 2,
77, 0,
13, /fingerprint/upload/extension_78_1.crx, vdom1, 0, 0, 1528751781, 1,
2, 2720, 0,
14, /fingerprint/upload/fingerprint.txt, vdom1, 0, 0, 1498582679, 1, 2,
```

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
VoIP solutions

You can configure VoIP profiles to allow SIP and SCCP traffic and to protect your network from SIP- and SCCP-based attacks.

FortiOS includes two preloaded VoIP profiles:

- **default**
- **strict**

You can customize these profiles, or you can create your own and add them to firewall policies that allow VoIP.

VoIP profiles cannot be used NGFW policy-based mode. See NGFW policy on page 773 for more information.

The following topics provide information about VoIP profiles:

- General use cases on page 1261
- NAT46 and NAT64 for SIP ALG on page 1265
- SIP message inspection and filtering on page 1273
- SIP pinholes on page 1275
- SIP over TLS on page 1277
- Voice VLAN auto-assignment on page 1278
- Scanning MSRP traffic on page 1280

General use cases

There are three scenarios in which the FortiOS session initiation protocol (SIP) solution is usually deployed:

1. The SIP server is in a private network that is protected from the internet by a FortiGate.
2. The SIP clients are in a private network that is protected from the internet by a FortiGate.
3. The SIP server is in a private network, such as a corporation's internal network or an ISP’s network, that is protected from the internet by a FortiGate. The SIP clients are in a remote private network, such as a SOHO network, and behind a NAT device that is not aware of SIP applications.

The following VIP, NAT, and HNT examples show configurations for these common scenarios.

VIP

A FortiGate with SIP Application Layer Gateway (ALG) or SIP session helper protects the SIP server from the internet, while SIP phones from the internet need to register to the SIP server and establish calls through it.
A VIP needs to be configured for the SIP server, and the VIP must be applied in a firewall policy for the phones to send REGISTER messages through the FortiGate from port1 to port2.

Only one firewall policy needs to be configured for all SIP phones on both the internet and private network to register to the SIP server through port1 and set up SIP calls. This example assumes either SIP ALG or SIP session helper is enabled.

To configure the VIP for the SIP server:

```plaintext
config firewall vip
  edit "VIP_for_SIP_Server"
    set extip 172.20.120.50
    set extintf "port1"
    set mappedip "10.11.101.50"
  next
end
```

To configure the firewall policy:

```plaintext
config firewall policy
  edit 1
    set srcintf "port1"
    set dstintf "port2"
    set srcaddr "all"
    set dstaddr "VIP_for_SIP_Server"
    set action accept
    set schedule "always"
    set service "SIP"
  next
end
```

Setting service to SIP and not all in the firewall policy can improve protection by restricting the data traffic passing through the FortiGate to the SIP call traffic only.
NAT

A FortiGate with SIP ALG or SIP session helper protects the SIP phones and the internal network from the internet, while SIP phones in the internal network need to register to the SIP server installed on the internet and establish calls through it.

One firewall policy needs to be configured with NAT enabled for SIP phones to send REGISTER messages through the FortiGate from port2 to port1. This example assumes either SIP ALG or SIP session helper is enabled.

To configure the firewall policy:

```plaintext
config firewall policy
edit 1
  set srcintf "port2"
  set dstintf "port1"
  set srcaddr "all"
  set dstaddr "all"
  set action accept
  set schedule "always"
  set service "SIP"
  set nat enable
next
end
```

HNT

A FortiGate with SIP ALG protects the SIP server from the internet, while SIP phones are in remote private networks behind NAT devices that are not aware of the SIP application. This is only supported in proxy mode.

In this example, the SIP server is located in an ISP's service cloud that is protected by the FortiGate SIP ALG, and the SIP phones are installed in the home networks of the ISP's customers.
The SIP messages traversing the remote NAT devices might have their IP addresses translated by the NAT device at the network layer, but untranslated at the SIP application layer because those NAT devices are not aware of the SIP applications. This causes problems in a SIP session initiated process. Special configurations for the hosted NAT traversal (HNT) are required to resolve this issue.

To configure the FortiGate with HNT support for SIP phones A and B to set up calls with each other:

1. Identify port1 as the external interface:

   ```bash
   config system interface
   edit "port1"
   set external enable
   next
   end
   ```

2. Configure the VIP for the SIP server:

   ```bash
   config firewall vip
   edit "VIP_for_SIP_Server"
   set extip 10.21.101.10
   ```
set extintf "port1"
set mappedip "10.30.120.20"
next
end

3. Configure a VoIP profile with HNT enabled:

```plaintext
config voip profile
edit "hnt"
config sip
set hosted-nat-traversal enable
set hnt-restrict-source-ip enable
end
next
end
```

hosted-nat-traversal must be enabled. hnt-restrict-source-ip does not have to be enabled, but can be enabled to restrict the RTP packets’ source IP to be the same as the SIP packets’ source IP.

4. Apply the VoIP profile and VIP in a firewall policy for phone A and B to register and set up SIP calls through the FortiGate and SIP server:

```plaintext
config firewall policy
edit 1
set srcintf "port1"
set dstintf "port2"
set srcaddr "all"
set dstaddr "VIP_for_SIP_Server"
set action accept
set schedule "always"
set service "SIP"
set utm-status enable
set voip-profile "hnt"
set nat enable
next
end
```

nat must be enabled in the firewall policy.

NAT46 and NAT64 for SIP ALG

NAT46 and NAT64 are supported for SIP ALG. A mix of IPv4 and IPv6 networks can use SIP ALG, allowing for proper call handling.

NAT46 example

In this example, SIP phones on the internal network use IPv4, and the SIP server on an external network uses IPv6. NAT46 is used with SIP ALG to allow for seamless communication. A VoIP profile, `sip`, has already been created.
To configure the FortiGate:

1. Configure a firewall VIP with NAT46 enabled:

```fortigate
config firewall vip
edit "vip46_server_asterisk"
   set extip 10.1.100.100
   set nat44 disable
   set nat46 enable
   set extintf "port1"
   set ipv6-mappedip 2000:172:16:200::44
next
end
```

2. Configure an IPv6 pool:

```fortigate
config firewall ippool6
edit "client_server_nat46"
   set startip 2000:172:16:200::200
   set endip 2000:172:16:200::207
   set nat46 enable
next
end
```

3. Configure a firewall policy:

```fortigate
config firewall policy
edit 1
   set name "policy46-1"
   set srcintf "port1"
   set dstintf "port9"
   set action accept
   set nat46 enable
   set srcaddr "all"
   set dstaddr "vip46_server_asterisk"
   set srcaddr6 "all"
   set dstaddr6 "all"
   set schedule "always"
   set service "ALL"
   set utm-status enable
   set inspection-mode proxy
   set voip-profile "sip"
   set logtraffic all
   set auto-asic-offload disable
   set ippool enable
```
set poolname6 "client_server_nat46"
next
end

To check the SIP calls and session lists when the phones are registering to the SIP server:

1. View the SIP proxy SIP calls:

 # diagnose sys sip-proxy calls
 sip calls
 vdom 3 (vdom1) vrf 0 call 7f64bf044b00
call-id: 1513782757
txn 7f64bf048f00 (REGISTER)
cseq 2 dir 0 state 5 status 200 expiry 868 HA 0
 i_session: 7f64bf045e00 r_session: 7f64bf045e00
 register: present
 from: sip:2002@10.1.100.100
to: sip:2002@10.1.100.100
 src: 10.1.100.22:5060
dst: [2000:172:16:200::44]:5060

 vdom 3 (vdom1) vrf 0 call 7f64bf076700
call-id: 1490871789
txn 7f64bf047a00 (REGISTER)
cseq 2 dir 0 state 5 status 200 expiry 861 HA 0
 i_session: 7f64bf045000 r_session: 7f64bf045000
 register: present
 from: sip:2001@10.1.100.100
to: sip:2001@10.1.100.100
 src: 10.1.100.11:5060
dst: [2000:172:16:200::44]:5060

2. View the IPv4 session list:

 # diagnose sys session list
 orgin->sink: org pre->post, reply pre->post dev=9->52/52->9 gwy=10.1.100.100/10.1.100.11
 hook=pre dir=org act=noop 10.1.100.11:5060->10.1.100.100:5060(0.0.0.0:0)
 hook=pre dir=org act=noop 10.1.100.100:5060->10.1.100.11:5060(0.0.0.0:0)

 orgin->sink: org pre->post, reply pre->post dev=9->52/52->9 gwy=10.1.100.100/10.1.100.22
 hook=pre dir=org act=noop 10.1.100.22:5060->10.1.100.100:5060(0.0.0.0:0)
 hook=pre dir=org act=noop 10.1.100.100:5060->10.1.100.22:5060(0.0.0.0:0)

3. View the IPv4 expectation session list:

 # diagnose expectation session list
 orgin->sink: org pre->post, reply pre->post dev=9->0/52->0 gwy=0.0.0.0/0.0.0.0
 hook=pre dir=org act=noop 10.1.100.100:0->10.1.100.11:5060(0.0.0.0:0)
 hook=pre dir=org act=noop 0.0.0.0:0->0.0.0.0:0(0.0.0.0:0)
 peer=::0->::0 naf=2
origin-sink: org pre->post, reply pre->post dev=9->0/52->0 gwY=0.0.0.0/0.0.0.0
hook=pre dir=org act=noop 10.1.100.100:0->10.1.100.22:5060(0.0.0.0:0)
hook=pre dir=org act=noop 0.0.0.0:0->0.0.0.0:0(0.0.0.0:0)
peer=::0->::0 naf=2

4. View the IPv6 session list:

diagnose sys session6 list

peer=10.1.100.100:0->10.1.100.22:5060(0.0.0.0:0)
hook=pre dir=org act=noop 10.1.100.100:100:5060->10.1.100.11:5060(0.0.0.0:0)

peer=10.1.100.100:0->10.1.100.22:5060(0.0.0.0:0)

hook=pre dir=org act=noop 10.1.100.100:100:5060->10.1.100.11:5060(0.0.0.0:0)

5. View the IPv6 expectation session list:

diagnose sys session6 list expectation

origin-sink: org pre->post, reply pre->post dev=17->0/52->0
hook=pre dir=org act=noop 10.1.100.100:0->10.1.100.22:5060(0.0.0.0:0)

origin-sink: org pre->post, reply pre->post dev=17->0/52->0
hook=pre dir=org act=noop 10.1.100.100:0->10.1.100.22:5060(0.0.0.0:0)

To check the SIP calls and session lists when one phone is calling another phone:

1. View the SIP proxy SIP calls:

diagnose sys sip-proxy calls

sip calls
vdom 3 (vdoml) vrf 0 call 7f64bf057a00
call-id: 217ac4733f80ac766c7e0f3a69d317a1@[2000:172:16:200::44]:5060
txn 7f64bf038800 (INVITE)
cseq 103 dir 1 state 11 status 200 expiry 252 HA 0
i_session: 7f64bf036500 r_session: 7f64bf036500
register: not-present
contact[0]: factory 7f64bf057900/4 expectation 7f64bf02c00/2 session
7f64bf036500
contact[1]: factory 7f64bf057700/3 expectation 7f64bf02ca00/3 session
7f64bf036500
to: sip:2002@[2000:172:16:200::200]:65476;o=10.1.100.22;line=28c59e086cac7c9
src: [2000:172:16:200::44]:5060
dst: 10.1.100.22:5060
vdom 3 (vdom1) vrf 0 call 7f64bf057a00
 call-id: 217ac473f80ac766c7e0f3a69d317a1@[2000:172:16:200::44]:5060
 txn 7f64bf038100 (INVITE)
 cseq 102 dir 1 state 11 status 200 expiry 252 HA 0
 i_session: 7f64bf036500 r_session: 7f64bf036500
 register: not-present
 contact[0]: factory 7f64bf057900/4 expectation 7f64bf02cf00/2 session
 7f64bf036500
 contact[1]: factory 7f64bf057700/3 expectation 7f64bf02ca00/3 session
 7f64bf036500
 to: sip:2002@[2000:172:16:200::200]:65476;o=10.1.100.22;line=28c59e086cac7c9
 src: [2000:172:16:200::44]:5060
 dst: 10.1.100.22:5060
vdom 3 (vdom1) vrf 0 call 7f64bf057600
 call-id: 1876706695
 txn 7f64bf037300 (REGISTER)
 cseq 2 dir 0 state 5 status 200 expiry 856 HA 0
 i_session: 7f64bf036500 r_session: 7f64bf036500
 register: present
 from: sip:2002@10.1.100.100
 to: sip:2002@10.1.100.100
 src: 10.1.100.11:5060
 dst: [2000:172:16:200::44]:5060
vdom 3 (vdom1) vrf 0 call 7f64bf057400
 call-id: 1372246794
 txn 7f64bf035e00 (REGISTER)
 cseq 2 dir 0 state 5 status 200 expiry 853 HA 0
 i_session: 7f64bf035000 r_session: 7f64bf035000
 register: present
 from: sip:2001@10.1.100.100
 to: sip:2001@10.1.100.100
 src: 10.1.100.11:5060
 dst: [2000:172:16:200::44]:5060
vdom 3 (vdom1) vrf 0 call 7f64bf057800
 call-id: 16530657
 txn 7f64bf038f00 (INVITE)
 cseq 102 dir 1 state 11 status 200 expiry 252 HA 0
 i_session: 7f64bf035000 r_session: 7f64bf035000
 register: not-present
 contact[0]: factory 7f64bf057900/4 expectation 7f64bf02cc80/2 session
 7f64bf035000
 contact[1]: factory 7f64bf057500/3 expectation 7f64bf02c780/3 session
 7f64bf035000
 src: [2000:172:16:200::44]:5060
 dst: 10.1.100.11:5060
vdom 3 (vdom1) vrf 0 call 7f64bf057800
 call-id: 16530657
 txn 7f64bf037a00 (INVITE)
 cseq 21 dir 0 state 11 status 200 expiry 252 HA 0

FortiOS 7.2.0 Administration Guide 1269
Fortinet Inc.
2. **View the IPv6 session list:**

```bash
# diagnose sys session6 list

peer=10.1.100.100:17090->10.1.100.11:17078 naf=2

peer=10.1.100.100:17082->10.1.100.22:17078 naf=2
hook=pre dir=org act= noop 10.1.100.22:17078->10.1.100.100:17082(0.0.0.0:0)
hook=post dir=reply act=noop 10.1.100.100:17082->10.1.100.22:17078(0.0.0.0:0)

peer=10.1.100.100:5060->10.1.100.11:5060 naf=2
hook=pre dir=org act=noop 10.1.100.11:5060->10.1.100.100:5060(0.0.0.0:0)
hook=post dir=reply act=noop 10.1.100.100:5060->10.1.100.22:5060(0.0.0.0:0)

3. **View the IPv6 expectation session list:**

```bash
diagnose sys session6 list expectation

hook=pre dir=org act= noop :::0->:::0(::::::0)
peer=10.1.100.100:0->10.1.100.11:5060 naf=1

4. **View the IPv4 session list:**

```bash
# diagnose sys session list

orgin->sink: org pre->post, reply pre->post dev=9->52/52->9 gwy=10.1.100.100/10.1.100.22
hook=pre dir=org act=noop 10.1.100.22:17078->10.1.100.100:17082(0.0.0.0:0)
hook=post dir=reply act=noop 10.1.100.100:17082->10.1.100.22:17078(0.0.0.0:0)

orgin->sink: org pre->post, reply pre->post dev=9->52/52->9 gwy=10.1.100.100/10.1.100.22
hook=pre dir=org act=noop 10.1.100.22:5060->10.1.100.100:5060(0.0.0.0:0)
Security Profiles

hook=post dir=reply act=noop 10.1.100.100:5060->10.1.100.22:5060(0.0.0.0:0)

orgin->sink: org pre->post, reply pre->post dev=9->52/52->9 gwy=10.1.100.100/10.1.100.11
hook=pre dir=org act=noop 10.1.100.100:10.1.100.11:5060->10.1.100.11:5060(0.0.0.0:0)

5. View the IPv4 expectation session list:

# diagnose sys session list expectation

logid="0814044032"
type="utm"
subtype="voip"
eventtype="voip"
level="information"
vdom="vdom1"
session_id=924
event_id=9
call_id="1868762230"

Log messages

When the phones are registering to the SIP server:

date=2022-02-17 time=16:44:47 eventtime=164514507805236720 tz="-0800" logid="0814044032"
type="utm" subtype="voip" eventtype="voip" level="information" vd="vdom1" session_id=924
epoch=0 event_id=9 srcip=10.1.100.11 src_port=5060 dstip=2000:172:16:200::44 dst_port=5060
proto=17 src_int="port1" dst_int="port9" policy_id=1 profile="sip" voip_proto="sip"
kind="register" action="permit" status="authentication-required" duration=0 dir="session_origin" call_id="1868762230" from="sip:2001@10.1.100.100" to="sip:2001@10.1.100.100"

When one phone is calling another phone:

date=2022-02-17 time=16:44:53 eventtime=164514507805236720 tz="-0800" logid="0814044032"
type="utm" subtype="voip" eventtype="voip" level="information" vd="vdom1" session_id=924
epoch=0 event_id=11 srcip=10.1.100.11 src_port=5060 dstip=2000:172:16:200::44 dst_port=5060
proto=17 src_int="port1" dst_int="port9" policy_id=1 profile="sip" voip_proto="sip"
kind="call" action="permit" status="start" duration=0 dir="session_origin" call_id="133636365" from="sip:2001@10.1.100.100" to="sip:2001@10.1.100.100"
NAT64 example

In this example, SIP phones on the internal network use IPv6, and the SIP server on an external network uses IPv4. NAT64 is used with SIP ALG to allow for seamless communication. A VoIP profile, sip, has already been created.

To configure the FortiGate:

1. Configure a firewall VIP with NAT64 enabled:

   ```
 config firewall vip
 edit "vip64-1-asterisk"
 set extip 2000:10:1:100::100
 set nat66 disable
 set nat64 enable
 set ipv4-mappedip 172.16.200.44
 next
 end
   ```

2. Configure an IP pool:

   ```
 config firewall ippool
 edit "client_server_nat46"
 set startip 172.16.200.2
 set endip 172.16.200.3
 set nat64 enable
 next
 end
   ```

3. Configure a firewall policy:

   ```
 config firewall policy
 edit 1
 set name "policy64-1"
 set srcintf "port1"
 set dstintf "port9"
 set action accept
 set nat64 enable
 set srcaddr "all"
 set dstaddr "all"
 set srcaddr6 "all"
 set dstaddr6 "vip64-1-asterisk"
 set schedule "always"
 set service "ALL"
 set utm-status enable
 set inspection-mode proxy
   ```
SIP message inspection and filtering

SIP ALG provides users with security features to inspect and control SIP messages that are transported through the FortiGate, including:

- Verifying the SIP message syntax.
- Blocking particular types of SIP requests.
- Restricting the rate of particular SIP requests.

These can be performed in both proxy-based or flow-based firewall policies. In 7.0, flow-based SIP inspection is done by the IPS engine. This optimizes memory and CPU usage when VoIP profiles with SIP inspection are configured with other UTM profiles in a flow-based firewall policy because inspection is done entirely by the IPS engine.

These features are configured in the VoIP profile:

```
config voip profile
edit <name>
 set feature-set {proxy | flow}
 config sip
 set ...
 ...
end
next
del
```

For more information, see `config voip profile` in the FortiOS CLI Reference.

The VoIP profile can then be applied to a firewall policy to process the SIP call traffic. The firewall policy’s inspection mode decides whether inspection happens on the SIP ALG proxy or on the IPS engine.

```
config firewall policy
edit <id>
 set inspection-mode {proxy | flow}
 set voip-profile <name>
next
del
```

SIP message syntax inspection

For syntax verification, the following attributes are available for configuration in the VoIP profile to determine what action is taken when a specific syntax error or attack based on invalid syntax is detected. For example, the action can be set to pass or discard it.
Security Profiles

malformed-request-line
malformed-header-via
malformed-header-from
malformed-header-to
malformed-header-call-id
malformed-header-cseq
malformed-header-rack
malformed-header-rseq
malformed-header-contact
malformed-header-record-route
malformed-header-route
malformed-header-expires
malformed-header-content-type
malformed-header-content-length
malformed-header-max-forwards
malformed-header-allow
malformed-header-p-asserted-identity
malformed-header-sdp-v
malformed-header-sdp-o
malformed-header-sdp-s
malformed-header-sdp-i
malformed-header-sdp-c
malformed-header-sdp-b
malformed-header-sdp-z
malformed-header-sdp-k
malformed-header-sdp-a
malformed-header-sdp-t
malformed-header-sdp-r
malformed-header-sdp-m
malformed-header-no-require*
malformed-header-no-proxy-require*

* = only available in flow mode

SIP message blocking

The following options are available in the VoIP profile to block SIP messages:

block-long-lines
block-unknown
block-ack
block-bye
block-cancel
block-info
block-invite
block-message
block-notify
block-options
block-prack
block-publish
block-refer
block-register
block-subscribe
block-update
block-geo-red-options**

** = only available in proxy mode
**SIP message rate limiting**

The rate of certain types of SIP requests that are passing through the SIP ALG can be restricted:

- register-rate
- invite-rate
- subscribe-rate
- message-rate
- notify-rate
- refer-rate
- update-rate
- options-rate
- ack-rate
- prack-rate
- info-rate
- publish-rate
- bye-rate
- cancel-rate

Additionally, flow-based SIP supports the following rate tracking features:

- register-rate-track none
- invite-rate-track none
- subscribe-rate-track none
- message-rate-track none
- notify-rate-track none
- refer-rate-track none
- update-rate-track none
- options-rate-track none
- ack-rate-track none
- prack-rate-track none
- info-rate-track none
- publish-rate-track none
- bye-rate-track none
- cancel-rate-track none

**SIP pinholes**

When SIP ALG processes a SIP call, it usually opens pinholes for SIP signaling and RTP/RTCP packets. NAT usually takes place during the process at both the network and SIP application layers. SIP ALG ensures that, with NAT happening, corresponding SIP and RTP/RTCP pinholes are created during the process when it is necessary for call sessions to be established through FortiOS devices.

By default, SIP ALG manages pinholes automatically, but some special configurations can be used to restrict the pinholes if required.

**SIP pinhole restriction**

The `strict-register` attribute is enabled by default. When enabled, after a SIP endpoint registers to the SIP server through a firewall policy on the FortiGate, only the SIP messages sent from the same IP address as the SIP server are allowed to pass through the SIP pinhole that is created in the FortiGate to reach the SIP endpoints. If the attribute is disabled, SIP messages from any IP addresses can pass through the pinhole created after the registration.
SIP pinhole restriction is only supported by SIP ALG and in proxy mode.

To configure registrar connection ability:

```
config voip profile
 edit <name>
 config sip
 set strict-register {enable | disable}
 end
 next
end
```

**RTP/RTCP pinhole restriction**

The `nat-port-range` setting is used to specify a port range in the VoIP profile to restrict the NAT port range for Real-time Transport Protocol/Real-time Transport Control Protocol (RTP/RTCP) packets in a Session Initiation Protocol (SIP) call session that is handled by the SIP application layer gateway (ALG) in a FortiGate.

When NAT is enabled, or VIP is used in a firewall policy for SIP ALG to handle a SIP call session established through a FortiGate, the SIP ALG can perform NAT to translate the ports used for the RTP/RTCP packets when they are flowing through the device between the external and internal networks.

To edit the translated port range for RTP/RTCP packets:

```
config voip profile
 edit <name>
 config sip
 set nat-port-range <start_port_number>-<end_port_number>
 end
 next
end
```

Enter the NAT port range (minimum port number = 5117, default = 5117-65535).

**Example**

In this example, Phone 1 is in Subnet 1, and the SIP server and Phone 2 are in Subnet 2. All SIP signaling messages and RTP/RTCP packets go through the SIP server. The RTP/RTCP ports on Phone 1 are configured as 17078/17079.

The FortiGate administrator wants to use NAT for the port 17078/17079 to 30000/30001. If Phone 1 and Phone 2 are registered to the SIP server, and they establish a call session between them through the FortiGate and the SIP server, then the RTP/RTCP ports 17078/17079 of Phone 1 will be translated to ports 30000/30001. All RTP/RTCP packets going out of port2 have source ports of 30000/30001, and all RTP/RTCP packets going into port2 also have destination ports of 30000/30001.
To configure the custom port range:

1. Edit the VoIP profile:
   
   ```
 config voip profile
 edit "natPortRange"
 config sip
 set nat-port-range 30000-30001
 end
 next
 end
   ```
   
   It is best practice to configure the starting port as an even number and the ending port as an odd number.

2. Configure the firewall policy:
   
   ```
 config firewall policy
 edit 1
 set srcintf port1
 set dstintf port2
 set srcaddr all
 set dstaddr all
 set service SIP
 set action accept
 set schedule always
 set voip-profile natPortRange
 set nat enable
 next
 end
   ```

SIP over TLS

Some SIP phones and servers can communicate using TLS to encrypt the SIP signaling traffic. To allow SIP over TLS calls to pass through the FortiGate, the encrypted signaling traffic must be unencrypted and inspected. The FortiGate SIP ALG intercepts, unencrypts, and inspects the SIP packets, which are then re-encrypted and forwarded to their destination.

The SIP ALG only supports full mode TLS. This means that the SIP traffic between SIP phones and the FortiGate, and between the FortiGate and the SIP server, is always encrypted. The highest TLS version supported by SIP ALG is TLS 1.2.
Security Profiles

To enable SIP over TLS support, the SSL mode in the VoIP profile must be set to full. The SSL server and client certificates can be provisioned so that the FortiGate can use them to establish connections to SIP phones and servers, respectively.

This configuration is only supported in proxy mode.

To configure SIP over TLS:

1. Configure a VoIP profile with SSL enabled:

```plaintext
config voip profile
edit "tls"
config sip
 set ssl-mode full
 set ssl-client-certificate "ssl_client_cert"
 set ssl-server-certificate "ssl_server_cert"
end
next
end
```

The `ssl_server_cert`, `ssl_client_cert`, and key files can be generated using a certification tool, such as OpenSSL, and imported to the local certificate store of the FortiGate from System > Certificates in the GUI. Existing local certificates in the certificate store can also be used. As always for TLS connections, the certificates used must be verified and trusted at the other end of the connection when required.

For example, the CA certificate of the SIP server's certificate should be imported to the FortiGate as an external CA certification, so that the FortiGate can use it to verify the SIP server's certificate when setting up the TLS connection. The CA certificate configured as the `ssl_server_cert` should be installed as the trusted certificate on the SIP phones. The deployment of the certificates across the network depends on the SIP client and server devices that are used in the system.

2. Apply the profile to the firewall policy:

```plaintext
config firewall policy
edit 1
 set srcintf "port1"
 set dstintf "port2"
 set srcaddr "all"
 set dstaddr "vip_sip_server"
 set action accept
 set schedule "always"
 set service "SIP"
 set utm-status enable
 set voip-profile "tls"
next
end
```

Voice VLAN auto-assignment

You can leverage LLDP-MED to assign voice traffic to the desired voice VLAN. After detection and setup, the IP phone on the network is segmented to its own VLAN for policy, prioritization, and reporting. The LLDP reception capabilities in
Security Profiles

FortiOS include LLDP-MED assignment for voice, voice signaling, guest, guest voice signaling, softphone, video conferencing, streaming video, and video signaling.

You can configure VLAN auto-assignment using the following steps:

1. **Set up the VLAN for the voice device**
2. **Set up the DHCP server for the voice VLAN**
3. **Set up the LLDP network policy**
4. **Enable LLDP on the physical interface that the VLAN belongs to**
5. **Apply the LLDP network policy on the physical interface**
6. **Confirm that the VLAN was assigned**

**To set up the VLAN for the voice device:**

```bash
config system interface
 edit "vlan_100"
 set vdom "root"
 set ip 192.168.1.99 255.255.255.0
 set alias "voice_vlan"
 set device-identification enable
 set role lan
 set snmp-index 25
 set interface "port10"
 set vlanid 100
next
end
```

**To set up the DHCP server for the voice VLAN:**

```bash
config system dhcp server
 edit 1
 set dns-service default
 set default-gateway 192.168.1.99
 set netmask 255.255.255.0
 set interface "vlan_100"
 config ip-range
 edit 1
 set start-ip 192.168.1.110
 set end-ip 192.168.1.210
 next
next
end
```

**To set up the LLDP network policy:**

```bash
config system lldp network-policy
 edit "1"
 config voice
 set status enable
 set tag dot1q
 set vlan 100
 end
next
end
```
To enable LLDP on the physical interface that the VLAN belongs to:

```bash
config system interface
edit "port10"
 set vdom "root"
 set type physical
 set lldp-reception enable
 set lldp-transmission enable
 set snmp-index 14
next
end
```

To apply the LLDP network policy on the physical interface:

```bash
config system interface
edit "port10"
 set lldp-network-policy "1"
next
end
```

To confirm that the VLAN was assigned as expected:

1. Connect an IP phone to the network.
2. Check the IP address on the phone.
   The IP address should belong to the voice VLAN.
3. Sniff on the FortiGate incoming interface to see if traffic from the IP phone has the desired VLAN tag.
   In this example, the voice traffic from the IP phone should be in VLAN 100.

### Scanning MSRP traffic

An MSRP (Message Session Relay Protocol) decoder in the IPS engine scans for IPS signatures against the application data. Malicious payload in the text message can be blocked. A VoIP profile using flow inspection mode must be configured in the firewall policy. An IPS profile must be configured in the firewall policy to inspect the payload.

```bash
config voip profile
edit <name>
 set feature-set flow
 config msrp
 set status {enable | disable}
 set log-violations {enable | disable}
 set max-msg-size <integer>
 set max-msg-size-action {pass | block | reset | monitor}
 end
next
end
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>status {enable</td>
<td>disable}</td>
</tr>
<tr>
<td>log-violations {enable</td>
<td>disable}</td>
</tr>
<tr>
<td>max-msg-size &lt;integer&gt;</td>
<td>Maximum allowable MSRP message size, in bytes (0 - 65535, default = 0).</td>
</tr>
</tbody>
</table>
max-msg-size-action {pass | block | reset | monitor}  

Action for violating maximum MSRP message size:
- **pass**: pass or allow matching traffic (default)
- **block**: block or drop matching traffic
- **reset**: reset sessions for matching traffic
- **monitor**: pass and log matching traffic

### Examples

![Diagram of a network setup](image)

In this first example, MSRP messages larger than 10 bytes will be blocked. The client sends an oversized MSRP message to the server. Message Automation & Protocol Simulation (MAPSTM) is used, and a client-server model was configured to use the software to send MSRP traffic from vlan843 (client) to vlan844 (server) with plain text placed in the message field. The software uses the content of the MsrpInputMessage.txt file located in the default folder, where anything in that file will be sent by MSRP. The following text is used:

GL's Message Automation & Protocol Simulation (MAPSTM) is a protocol simulation and conformance test tool that supports a variety of protocols such as SIP, MEGACO, MGCP, SS7, ISDN, GSM, MAP, CAS, LTE, UMTS, SS7 SIGTRAN, ISDN SIGTRAN, SIP I, GSM AoIP, Diameter and others. This message automation tool covers solutions for both protocol simulation and protocol analysis. The application includes various test plans and test cases to support the testing of real-time entities. Along with automation capability, the application gives users the unlimited ability to edit messages and control scenarios (message sequences).

### To configure MSRP traffic scanning:

1. **Configure the VoIP profile:**
   ```
 config voip profile
 edit msrp_test
 set feature-set flow
 config mssrp
 set status enable
 set log-violations enable
 set max-msg-size 10
 set max-msg-size-action block
 end
 next
 end
   ```

2. **Configure the firewall policy:**
   ```
 config firewall policy
 edit 1
 set name "vdom3"
 set srcintf "vlan843"
   ```
Security Profiles

set dstintf "vlan844"
set action accept
set srcaddr "all"
set dstaddr "all"
set schedule "always"
set service "ALL"
set utm-status enable
set ssl-ssh-profile "certificate-inspection"
set voip-profile "msrp_test"
set logtraffic all

end

3. Verify the log:

# execute log filter category 4
# execute log display
1 logs found.
1 logs returned.

1: date=2021-06-10 time=17:21:19 eventtime=16237087984028165 tz="-0700"
logid="0419016384" type="utm" subtype="ips" eventtype="signature" level="alert"
v%d="vdom3" severity="info" srcip=192.168.12.212 srccountry="Reserved"
dstip=192.168.12.213 srcintf="vlan843" srcintfrole="lan" dstintf="vlan844"
dstintfrole="lan" sessionid=27700 action="dropped" proto=6 service="MSRP" policyid=1
attack="MSRP.Max.Message.Size.Exceeded" srcport=20036 dstport=20036 direction="outgoing"
attackid=1000000 profile="g-default" ref="http://www.fortinet.com/ids/VID1000000"
incidentserialno=198792275 srcport=0 pdstport=0 msg="msrp_decoder:
MSRP.Max.Message.Size.Exceeded, msg_size=270 exceeds config maximum=10"

4. In MAPS, verify that the call was terminated:

In this second example, malicious files will be blocked. The client sends an EICAR test sample to the server in an MSRP message. Message Automation & Protocol Simulation (MAPSTM) is used, and a client-server model was configured to use the software to send MSRP traffic from vlan843 (client) to vlan844 (server) with a plain text EICAR file containing a virus in the message field. The following text is used:

X5O!P%@AP[4PZX54(P^)7CC)7]$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
To configure MSRP traffic scanning:

1. Configure the VoIP profile:

   ```
 config voip profile
 edit msrp_test
 set feature-set flow
 config msrp
 set status enable
 set log-violations enable
 set max-msg-size 0
 set max-msg-size-action pass
 end
 next
 end
   ```

2. Configure the IPS profile:

   ```
 config ips sensor
 edit "msrp"
 set extended-log enable
 config entries
 edit 1
 set rule 7470 29844
 set status enable
 set action block
 next
 end
 next
 end
   ```

3. Configure the firewall policy:

   ```
 config firewall policy
 edit 1
 set name "vdom3"
 set srcintf "vlan843"
 set dstintf "vlan844"
 set action accept
 set srcaddr "all"
 set dstaddr "all"
 set schedule "always"
 set service "ALL"
 set utm-status enable
 set ssl-ssh-profile "certificate-inspection"
 set ips-sensor "msrp"
 set voip-profile "msrp_test"
 set logtraffic all
 next
 end
   ```

4. Verify the log:

   ```
 # execute log filter category 4
 # execute log display
 1 logs found.
 1 logs returned.

 1: date=2021-09-16 time=11:29:48 eventtime=1631816988947762597 tz="-0700"
   ```
ICAP

Internet Content Adaptation Protocol (ICAP) is an application layer protocol that is used to offload tasks from the firewall to separate, specialized servers. For more information see RFC 3507.

ICAP profiles can only be applied to policies that use proxy-based inspection. If you enable ICAP in a policy, HTTP and HTTPS (if HTTPS inspection is supported) traffic that is intercepted by the policy is transferred to the ICAP server specified by the selected ICAP profile. Responses from the ICAP server are returned to the FortiGate, and then forwarded to their destination.

By default, ICAP is not visible in the GUI. See Feature visibility on page 2165 for instructions on making it visible.

ICAP filter profiles cannot be used in NGFW policy-based mode. See NGFW policy on page 773 for more information.

To configure ICAP:

1. Set up your ICAP server.
2. On the FortiGate, add an ICAP server.
3. Create an ICAP profile.
4. Use the ICAP profile in a firewall policy that covers the traffic that needs to be offloaded to the ICAP server.

The following topics provide information about ICAP:

- ICAP configuration example on page 1285
- ICAP response filtering on page 1287
- Secure ICAP clients on page 1289
- ICAP scanning with SCP and FTP on page 1290

TCP connection pool for connections to ICAP server

A TCP connection pool can maintain local-out TCP connections to the external ICAP server due to a backend update in FortiOS. TCP connections will not be terminated once data has been exchanged with the ICAP server, but instead are reused in the next ICAP session to maximize efficiency.
For example, consider a scenario where an ICAP profile is used as a UTM profile in an explicit web proxy policy, and a client visits web servers through this proxy policy.

Once the WAD is initialized, when a HTTP request is sent from the client to the server through the FortiGate with an ICAP profile applied to the matched proxy policy, a TCP connection is established between the FortiGate and the ICAP server to exchange data.

When an ICAP session is finished, the TCP connection is kept in the WAD connection pool. When another ICAP session needs to be established, the WAD will check if there are any idle connections available in the connection pool. If an idle connection is available, then it will be reused; otherwise, a new TCP connection is established for the ICAP session. This process can be checked in the WAD debug log.

ICAP configuration example

In this example, the ICAP server performs proprietary content filtering on HTTP and HTTPS requests. If the content filter is unable to process a request, then the request is blocked. Streaming media is not considered by the filter, so it is allowed through and is not processed.

To configure the ICAP setup in the GUI:

1. Add the ICAP server:
   a. Go to Security Profiles > ICAP Servers and click Create New.
   b. In the Name field, enter a name for the ICAP server, such as content-filtration-server4.
   c. Select the IP Version.
   d. In the IP Address field, enter the IP address of the ICAP server.
   e. In the Port field, enter a new port number if required. The default value is 1344.
   f. Click OK.

The maximum number of concurrent connections to ICAP server can be configured in the CLI (set max-connections). The default setting is 100 connections.

2. Create the ICAP profile:
   a. Go to Security Profiles > ICAP and click Create New.
   b. In the Name field, enter a name for the ICAP profile, such as Prop-Content-Filtration.
   c. Enable Request Processing and set the following:
      • Server: select the ICAP server (content-filtration-server4).
      • Path: enter the path to the processing component on the server, such as /proprietary_code/content-filter/.
      • On Failure: select Error to block the request. If the message cannot be processed, it will not be blocked.
   d. Enable Response Processing and set the following:
      • Server: select the ICAP server (content-filtration-server4).
      • Path: enter the path to the processing component on the server, such as /proprietary_code/content-filter/.
      • On Failure: select Error to block the request. If the message cannot be processed, it will not be blocked.
Security Profiles

e. Enable *Streaming Media Bypass* to not offload streaming media to the ICAP server.

![ICAP Profile Interface](image)

f. Click OK.

3. Add the ICAP profile to a policy:
   a. Go to *Policy & Objects > Firewall Policy* and click *Create New*.
   b. Set *Inspection Mode* to *Proxy-based*.
   c. Under *Security Profiles*, enable ICAP and select the ICAP server.

![Firewall Policy Interface](image)

d. Configure the other settings as needed.

e. Click OK.

To configure the ICAP setup in the CLI:

1. Add the ICAP server:

```bash
config icap server
 edit "content-filtration-server4"
 set ip-version 4
 set ip-address 172.16.100.55
 set port 1344
 set max-connections 200
 next
end
```

2. Create the ICAP profile:

```bash
config icap profile
 edit "Prop-Content-Filtration"
 set request enable
 set response enable
 set streaming-content-bypass enable
 set request-server "content-filtration-server4"
 set response-server "content-filtration-server4"
```
ICAP response filtering

ICAP HTTP responses can be forwarded or bypassed based on the HTTP header value and status code.

When configuring the ICAP profile, if response is enabled, the `respmod-default-action` option can be configured:

- If `respmod-default-action` is set to forward, FortiGate will treat every HTTP response and send ICAP requests to the ICAP server.
- If `respmod-default-action` is set to bypass, FortiGate will only send ICAP requests if the HTTP response matches the defined rules, and the rule's action is set to forward.

When configuring a response rule:

- The `http-resp-status-code` option is configured to specific HTTP response codes. If the HTTP response has any one of the configured values, then the rule takes effect.
- Multiple header value matching groups can be configured. If the header value matches one of the groups, then the rule takes effect.
- If both status codes and header values are specified in a rule, the response must match at least one of each.

The UTM ICAP log category is used for logging actions when FortiGate encounters errors with the ICAP server, such as no service, unreachable, error response code, or timeout. If an error occurs, a traffic log and an associated UTM ICAP log will be created.
Example

The FortiGate acts as a gateway for the client PC and connects to a reachable ICAP server. The ICAP server can be in NAT, transparent, or proxy mode.

In this example, client request HTTP responses will be forwarded to the ICAP server from all hosts if they have an HTTP status code of 200, 301, or 302, and have `content-type: image/jpeg` in their header.

To configure an ICAP profile with HTTP response rules:

```plaintext
config icap profile
 edit "icap_profile2"
 set request disable
 set response enable
 set streaming-content-bypass disable
 set preview disable
 set response-server "icap_server1"
 set response-failure error
 set response-path ''
 set methods delete get head options post put trace other
 set response-req-hdr disable
 set respmod-default-action bypass
 config respmod-forward-rules
 edit "rule2"
 set host "all"
 set action forward
 set http-resp-status-code 200 301 302
 config header-group
 edit 2
 set header-name "content-type"
 set header "image/jpeg"
 next
 next
next
end
```
To view the logs if an error occurs:

1. View the traffic log:
   
   ```
 # execute log filter category 0
 # execute log display
 1 logs found.
 1 logs returned.
   ```
   
   ```
 1: date=2019-10-25 time=17:43:47 logid="0000000013" type="traffic" subtype="forward"
 level="notice" vd="vdom1" eventtime=1572050627037314464 tz="-0700" srcip=10.1.100.145
 srcport=47968 srctintf="port1" srctintfrole="undefined" dstip=172.16.200.46 dstport=80
 dstintf="port2" dstintfrole="undefined" poluid="a4d5324e-f6c3-51e9-ce2d-f360994fb547"
 sessionid=43549 proto=6 action="close" policyid=1 policytype="policy" service="HTTP"
 dstcountry="Reserved" srccountry="Reserved" trandisp="snat" transip=172.16.200.1
 transport=47968 duration=1 sentbyte=485 rcvdbyte=398 sentpkt=6 rcvdpkt=5
 appcat="unscanned" wanin=478 wanout=165 lanin=165 lanout=165 utmaacton="block"
 counticap=1 crscore=5 craction=262144 crlevel="low" utmref=65532-0
   ```

2. View the UTM ICAP log:
   
   ```
 # execute log filter category 20
 # execute log display
 1 logs found.
 1 logs returned.
   ```
   
   ```
 1: date=2019-10-25 time=17:43:46 logid="2000060000" type="utm" subtype="icap"
 eventtype="icap" level="warning" vd="vdom1" eventtime=1572050626010097145 tz="-0700"
 msg="Request blocked due to ICAP server error" service="HTTP" srcip=10.1.100.145
 dstip=172.16.200.46 srcport=47968 dstport=80 srcintf="port1" srcintfrole="undefined"
 dstintf="port2" dstintfrole="undefined" policyid=1 sessionid=43549 proto=6
 action="blocked" profile="icap_profile1" url="/icap_test/"
   ```
   
   The logs show that the ICAP services stopped before the access. When the client tried to access HTTP and ICAP took effect, the FortiGate sent the ICAP request to the ICAP server and received an error. The client sees a 502 Bad Gateway message, and FortiGate writes the two logs. In the GUI, the logged traffic is displayed as Result: Deny: UTM Blocked.

Secure ICAP clients

A secure SSL connection from the FortiGate to the ICAP server can be configured as follows:

```
config icap server
 edit <name>
 set secure {enable | disable}
 set ssl-cert <certificate>
 next
end
```

To configure a secure ICAP client:

1. Configure the ICAP server:

   ```
 config icap server
 edit "icap_server1"
 set ip-version 4
 set ip-address 192.168.10.2
   ```
Security Profiles

```
set port 11344
set max-connections 100
set secure enable
set ssl-cert "ACCVRAIZ1"
next
end
```

Port 11344 is the standard port for secure ICAP. This must be configured manually if the secure connection is enabled.

2. Configure the ICAP profile:

```
config icap profile
 edit "icap_profile1"
 set request enable
 set response enable
 set streaming-content-bypass enable
 set request-server "icap_server1"
 set response-server "icap_server1"
next
end
```

3. Configure the firewall policy:

```
config firewall policy
 edit 1
 set utm-status enable
 set inspection-mode proxy
 set ssl-ssh-profile "protocols"
 set icap-profile "icap_profile1"
next
end
```

ICAP scanning with SCP and FTP

A FortiGate can forward files transferred by SCP and FTP to an ICAP server for further scanning. Previously, only HTTP and HTTPS were supported for ICAP forwarding.

Example

The FortiGate used in this example is operating in transparent mode. The SSH client, 172.16.200.11, sends a file named `today` to the SSH server at 172.16.200.33 using SCP. Since SCP transfers are encrypted inside an SSH tunnel, for the FortiGate to scan the traffic, deep inspection must be enabled in the SSL SSH profile.
To configure ICAP scanning with SCP:

1. Configure the ICAP server settings:

   ```
 config icap server
 edit "icap_server1"
 set ip-address 172.16.200.44
 next
 end
   ```

2. Configure the ICAP profile for SSH:

   ```
 config icap profile
 edit "icap_profile1"
 set file-transfer ssh
 set file-transfer-server "icap_server1"
 set file-transfer-path "ssh_test"
 next
 end
   ```

   If the file transfer is over FTP, configure the profile as follows:

   ```
 config icap profile
 edit "icap_profile1"
 set file-transfer ftp
 set streaming-content-bypass enable
 set file-transfer-server "icap_server1"
 set file-transfer-path "ftp_test"
 next
 end
   ```

3. Configure the SSL SSH profile:
4. Configure the firewall policy:

```fortigate
config firewall policy
edit 1
 set name "ICAP"
 set srcintf "lan"
 set dstintf "mgmt"
 set action accept
 set srcaddr "all"
 set dstaddr "all"
 set schedule "always"
 set service "ALL"
 set utm-status enable
 set inspection-mode proxy
 set profile-protocol-options "protocol"
 set ssl-ssh-profile "protocols"
 set icap-profile "icap_profile1"
next
end
```

To test the configuration:

1. On a Linux client, copy a file named `today` to the SSH server using SCP:

   ```bash
 scp today fosqa@172.16.200.33:/home/fosqa/ssh_depot/
   ```

2. Capture a sniffer trace between the FortiGate and ICAP server, then verify the output from the ICAP protocol session.

   a. The client request and the file to be inspected:

   ```plaintext
 Icap_client REQMOD:
 172.0.16.200.200.13185-172.0.16.200.044.01344: REQMOD icap://172.16.200.44:1344/ssh_test ICAP/1.0
 Host: 172.16.200.44:1344
 X-Client-IP: 172.16.200.11
 X-Server-IP: 172.16.200.33
 X-Authenticated-User: TG9jYWw6Ly9hbhm9ueW1vdXM=
 X-Authenticated-Groups: TG9jYWw6Ly9sb2NhbGljYXRpb24=
 User-Agent: FortiOS v7.2.0
 Encapsulated: req-hdr=0, req-body=116

 PUT /scp/today HTTP/1.1
 Host: 172.16.200.11
 Content-Type: application/octet-stream
 Transfer-Encoding: chunked

 ad
 Tue Sep 20 04:01:50 UTC 2022
   ```
Where:

- X-Client-IP = the client sending the file
- X-Server-IP = the server receiving the file
- Tue Sep 20 04:01:50 UTC 2022 = the content of the file, which is in clear text after the FortiGate performs deep inspection

b. The ICAP server response that the file is cleared and allowed to pass without modifications:

```
Icap-server reply:
172.0.16.200.0.0.0.0.1344-172.0.16.200.0.0.0.13185: ICAP/1.0 200 OK
ISTag: "GreasySpoon-1.0.7-b03"
Host: 0.0.0.0.0:1344
Encapsulated: req-hdr=0, req-body=136
Connection: keep-alive

PUT /scp/today HTTP/1.1
Host: 172.16.200.11
Content-Type: application/octet-stream
Transfer-Encoding: chunked
Content-Length: 29

1d
Tue Sep 20 04:01:50 UTC 2022
```

3. On a Linux client, copy the file from the server locally using SCP:

```
scp fosqa@172.16.200.33:/home/fosqa/ssh_depot/today2/
```

4. Similar outputs are observed. The ICAP client request indicates that the file is copied from the SSH server:

```
PUT /scp/today2 HTTP/1.1
Host: 172.16.200.33
```

### Web application firewall

Web application firewall (WAF) profiles can detect and block known web application attacks. You can configure WAF profiles to use signatures and constraints to examine web traffic. You can also enforce an HTTP method policy, which controls the HTTP method that matches the specified pattern.

You can customize the default profile, or you can create your own profile to apply access rules and HTTP protocol constraints to traffic. You can apply WAF profiles to firewall policies when the inspection mode is set to proxy-based.

Web application firewall profiles cannot be used NGFW policy-based mode. See NGFW policy on page 773 for more information.

The following topic provides information about WAF profiles:

- Protecting a server running web applications on page 1294
Protecting a server running web applications

You can use a web application firewall profile to protect a server that is running a web application, such as webmail. Web application firewall profiles are created with a variety of options called signatures and constraints. Once these options are enabled, the action can be set to allow, monitor, or block. The severity can be set to high, medium, or low.

In the following example, the default profile will be targeted to block SQL injection attempts and generic attacks.

The web application firewall feature is only available when the policy inspection mode is proxy-based.

To protect a server running web applications:

1. Enable the web application firewall:
   a. Go to System > Feature Visibility.
   c. Click Apply.
2. Edit the default web application firewall profile (Trojans and Known Exploits are blocked by default):
   a. Go to Security Profiles > Web Application Firewall and edit the default profile signature.
   b. Select SQL Injection (Extended) and edit it so that it is enabled, the Action is set to Block, and the Severity is set to High.
   c. Click OK.
   d. Enable Generic Attacks (Extended) and edit it so that it is enabled, the Action is set to Block, and the Severity is set to High.
e. Click OK.

f. Click OK.

3. Apply the profile to a security policy:
   a. Go to Policy & Objects > Firewall Policy and edit the policy that allows access to the web server.
   b. For Firewall / Network Options, select the appropriate Protocol Option.
   c. For Security Profiles, enable Web Application Firewall and set it to use the default profile.
   d. Set the SSL Inspection to use the deep-inspection profile.
   e. Configure the other settings as needed.
   f. Click OK.

4. Verify that the web application firewall blocks traffic:
   a. Use the following URL to simulate an attack on your web server and substitute the IP address of your server:
      \[ http://<server IP>/index.php?username=1'\%20or\'1'\%20=%20\'1\&password=1'\%20or\'1'\%20=%20\'1\]
      An error message appears, stating that the web application firewall has blocked the traffic:

      **Offloading to a FortiWeb**

      If you have a FortiWeb, you may be able to offload the functions of the web application control to your FortiWeb. To find out if this option is available, refer to the FortiOS or FortiWeb Release Notes for information about device compatibility.

      **To offload to a FortiWeb:**

      2. Click Create New, and click Fabric Device.
3. Enter the following for the device:
   a. Name (FortiWeb)
   b. FortiWeb IP address
   c. HTTPS service port
4. Click Generate.
5. Enter your credentials to generate the access token.
6. Click OK.

SSL & SSH Inspection

Secure Sockets Layer (SSL) content scanning and inspection allows you to apply antivirus scanning, web filtering, and email filtering to encrypted traffic. You can apply SSL inspection profiles to firewall policies.

FortiOS includes four preloaded SSL/SSH inspection profiles, three of which are read-only and can be cloned:

- certificate-inspection
- deep-inspection
- no-inspection

The custom-deep-inspection profile can be edited, or you can create your own SSL/SSH inspection profiles.

Deep inspection (also known as SSL/SSH inspection) is typically applied to outbound policies where destinations are unknown. Depending on your policy requirements, you can configure the following:

- Which CA certificate will be used to decrypt the SSL encrypted traffic
- Which SSL protocols will be inspected
- Which ports will be associated with which SSL protocols for inspection
- Whether or not to allow invalid SSL certificates
- Whether or not SSH traffic will be inspected
- Which addresses or web category allowlists can bypass SSL inspection

The following topics provide information about SSL & SSH Inspection:

- Certificate inspection on page 1296
- Deep inspection on page 1298
- Protecting an SSL server on page 1301
- Handling SSL offloaded traffic from an external decryption device on page 1302
- SSH traffic file scanning on page 1304
- Redirect to WAD after handshake completion on page 1305
- HTTP/2 support in proxy mode SSL inspection on page 1306
- Define multiple certificates in an SSL profile in replace mode on page 1307
- Disabling the FortiGuard IP address rating on page 1309

Certificate inspection

FortiGate supports certificate inspection. The default configuration has a built-in certificate-inspection profile which you can use directly. When you use certificate inspection, the FortiGate only inspects the headers up to the SSL/TLS layer.
If you do not want to deep scan for privacy reasons but you want to control web site access, you can use certificate-inspection.

### SSL inspection options

The following options are available when configuring an SSL inspection profile (Security Profiles > SSL/SSH Inspection):

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Enable SSL inspection of</strong></td>
<td>Select <em>Multiple Clients Connecting to Multiple Servers</em>. This is normally used when inspecting outbound internet traffic.</td>
</tr>
<tr>
<td><strong>Inspection method</strong></td>
<td>Select <em>SSL Certificate Inspection</em>.</td>
</tr>
<tr>
<td><strong>CA certificate</strong></td>
<td>Use the default Fortinet_CA_SSL certificate.</td>
</tr>
<tr>
<td><strong>Blocked certificates</strong></td>
<td>The FortiGate receives botnet C&amp;C SSL connections from FortiGuard that contain SHA1 fingerprints of malicious certificates. By default, these certificates are blocked. Click View Blocked Certificates to see a detailed list.</td>
</tr>
<tr>
<td><strong>Untrusted SSL certificates</strong></td>
<td>Configure the action to take when a server certificate is not issued by a trusted CA.</td>
</tr>
<tr>
<td><strong>Server certificate SNI check</strong></td>
<td>Check the SNI in the hello message with the CN or SAN field in the returned server certificate.</td>
</tr>
</tbody>
</table>

#### Inspect non-standard HTTPS ports

The built-in certificate-inspection profile is read-only and only listens on port 443. If you want to make changes, you must create a new certificate inspection profile.

If you know the non-standard port that the web server uses, such as port 8443, you can add this port to the HTTPS field.

**To add a port to the inspection profile in the GUI:**

1. Go to Security Profiles > SSL/SSH Inspection.
2. Create a new profile, or clone the default profile.
3. If you do not know what port is used in the HTTPS web server, under Protocol Port Mapping, enable Inspect All Ports.

If you know the port, such as port 8443, then set HTTPS to 443,8443.
4. Configure the remaining setting as needed.
5. Click OK.

**Common options**

Invalid SSL certificates can be blocked, allowed, or a different actions can be configured for the different invalid certificates types:

<table>
<thead>
<tr>
<th>Invalid certificates</th>
<th>Action to take when the server certificate is expired. The default action is block.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expired certificates</td>
<td>Action to take when the server certificate is expired. The default action is block.</td>
</tr>
<tr>
<td>Revoked certificates</td>
<td>Action to take when the server certificate is revoked. The default action is block.</td>
</tr>
<tr>
<td>Validation timed-out certificates</td>
<td>Action to take when the server certificate validation times out. The default action is allow.</td>
</tr>
<tr>
<td>Validation failed certificates</td>
<td>Action to take when the server certificate validation fails. The default action is block.</td>
</tr>
</tbody>
</table>

By default, SSL anomalies logging is enabled. Logs are generated in the UTM log type under the SSL subtype when invalid certificates are detected.

**Deep inspection**

You can configure address and web category allowlists to bypass SSL deep inspection.

**Reasons for using deep inspection**

While Hypertext Transfer Protocol Secure (HTTPS) offers protection on the Internet by applying Secure Sockets Layer (SSL) encryption to web traffic, encrypted traffic can be used to get around your network's normal defenses.
For example, you might download a file containing a virus during an e-commerce session, or you might receive a phishing email containing a seemingly harmless download that, when launched, creates an encrypted session to a command and control (C&C) server and downloads malware onto your computer. Because the sessions in these attacks are encrypted, they might get past your network’s security measures.

When you use deep inspection, the FortiGate impersonates the recipient of the originating SSL session, then decrypts and inspects the content to find threats and block them. It then re-encrypts the content and sends it to the real recipient.

Deep inspection not only protects you from attacks that use HTTPS, it also protects you from other commonly-used SSL-encrypted protocols such as SMTPS, POP3S, IMAPS, and FTPS.

**Browser messages when using deep inspection**

When the FortiGate re-encrypts the content, it uses a stored certificate, such as *Fortinet_CA_SSL*, *Fortinet_CA_Untrusted*, or your own CA certificate that you uploaded.

Because there is no *Fortinet_CA_SSL* in the browser trusted CA list, the browser displays an untrusted certificate warning when it receives a FortiGate re-signed server certificate. To stop the warning messages, trust the FortiGate-trusted CA *Fortinet_CA_SSL* and import it into your browser.

If you still get messages about untrusted certificates after importing *Fortinet_CA_SSL* into your browser, it is due to *Fortinet_CA_Untrusted*. Never import the *Fortinet_CA_Untrusted* certificate into your browser.

**To import *Fortinet_CA_SSL* into your browser:**

1. On the FortiGate, go to Security Profiles > SSL/SSH Inspection and edit the deep-inspection profile. The default CA Certificate is *Fortinet_CA_SSL*.
2. Click Download and save the certificate to the management computer.
3. On the client PC, use the Certificate Import Wizard to install the certificate into the Trusted Root Certificate Authorities store.
   If a security warning appears, select Yes to install the certificate.
Exempt web sites from deep inspection

If you do not want to apply deep inspection for privacy or other reasons, you can exempt the session by address, category, or allowlist.

If you know the address of the server you want to exempt, you can exempt that address. You can exempt specific address type including IP address, IP address range, IP subnet, FQDN, wildcard-FQDN, and geography.

If you want to exempt all bank web sites, an easy way is to exempt the Finance and Banking category, which includes all finance and bank web sites identified in FortiGuard. For information about creating and using custom local and remote categories, see Web rating override on page 1320 and Threat feeds on page 2506.

SSL version support

There are two ways to limit which SSL versions deep inspection is applied to.

- In the global attributes:

  ```
 config system global
 set strong-crypto enable
 end
  ```

- In the protocol configuration of a deep inspection profile:

  ```
 config firewall ssl-ssh-profile
 edit <name>
 config {ssl | https | ftps}
 set min-allowed-ssl-version {ssl-3.0 | tls-1.0 | tls-1.1 | tls-1.2 | tls-1.3}
 end
 next
 end
  ```

  Enabling strong-crypto in the global attributes sets the min-allowed-ssl-version to tls-1.1 by default.

When a session is attempted using an SSL version below the minimum allowed version, the session can be blocked (default) or allowed.
To configure the action based on the SSL version used being unsupported:

```
config firewall ssl-ssh-profile
 edit <name>
 config {ssl | https | ftps | imaps | pop3s | smtps | dot}
 set unsupported-ssl-version {allow | block}
 next
end
```

Protecting an SSL server

You typically use the FortiGate Protecting SSL Server profile as an inbound policy for clients on the internet that access the server through the internal side of the FortiGate.

Protecting SSL Server uses a server certificate to protect a single server.

You can use Protecting SSL Server if you do not want a client on the internet to directly access your internal server, and you want the FortiGate to simulate your real server.

To upload a server certificate into FortiGate and use that certificate in the SSL/SSH inspection profile:

1. Go to System > Certificates.
2. Select Import > Local Certificate and upload the certificate.
3. Go to Security Profiles > SSL/SSH Inspection and edit or create a new profile.
4. For Enable SSL Inspection of, select Protecting SSL Server.
5. For Server Certificate, click the + and select the local certificate you imported.
6. Click OK.

When you apply the Protecting SSL Server profile in a policy, the FortiGate will send the server certificate to the client as your server does.
Handling SSL offloaded traffic from an external decryption device

In scenarios where the FortiGate is sandwiched between load-balancers and SSL processing is offloaded on the external load-balancers, the FortiGate can perform scanning on the unencrypted traffic by specifying the `ssl-offloaded` option in `firewall profile-protocol-options`. This option is supported in proxy and flow mode (previous versions only supported proxy mode).

If the FortiGate receives an AUTH TLS, PBSZ, or PROT command before receiving plain text traffic from a decrypted device, by default, it will expect encrypted traffic, determine that the traffic belongs to an abnormal protocol, and bypass the traffic.

When the `ssl-offloaded` command is enabled, the AUTH TLS command is ignored, and the traffic is treated as plain text rather than encrypted data. SSL decryption and encryption are performed by the external device.

Sample topology

In this example, the FortiGate is between two FortiADCs and in SSL offload sandwich mode. The FortiGate receives plain text from ADC1 and forwards plain text to ADC2. There is no encrypted traffic passing through the FortiGate.

The client sends HTTPS traffic to ADC1, which then decrypts the traffic and sends HTTP to the FortiGate. The FortiGate forwards HTTP to ADC2, and the ADC2 re-encrypts the traffic to HTTPS.

To configure SSL offloading:

```fortigate
config firewall profile-protocol-options
 edit "default-clone"
 config http
 set ports 80
 unset options
 unset post-lang
 set ssl-offloaded yes
 end
 config ftp
 set ports 21
 set options splice
 end
end
```
Security Profiles

```plaintext
set ssl-offloaded yes
end
config imap
 set ports 143
 set options fragmail
 set ssl-offloaded yes
end
config pop3
 set ports 110
 set options fragmail
 set ssl-offloaded yes
end
config smtp
 set ports 25
 set options fragmail splice
 set ssl-offloaded yes
end

next
end
```

Verifying the packet captures

The ADC1 incoming port capture shows that ADC1 receives HTTPS traffic:

```
<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Length</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>13:10:59</td>
<td>98.1.168.98</td>
<td>172.16.200.97</td>
<td>TCP</td>
<td>1761</td>
<td>3917544053</td>
</tr>
<tr>
<td>21</td>
<td>13:10:59</td>
<td>98.1.168.98</td>
<td>172.16.200.97</td>
<td>TCP</td>
<td>1761</td>
<td>3917544053</td>
</tr>
<tr>
<td>22</td>
<td>13:10:59</td>
<td>98.1.168.98</td>
<td>172.16.200.97</td>
<td>TCP</td>
<td>1761</td>
<td>3917544053</td>
</tr>
<tr>
<td>23</td>
<td>13:10:59</td>
<td>98.1.168.98</td>
<td>172.16.200.97</td>
<td>TCP</td>
<td>1761</td>
<td>3917544053</td>
</tr>
<tr>
<td>24</td>
<td>13:10:59</td>
<td>98.1.168.98</td>
<td>172.16.200.97</td>
<td>TCP</td>
<td>1761</td>
<td>3917544053</td>
</tr>
</tbody>
</table>
```

The ADC1 outgoing port capture shows that ADC1 decrypts traffic and forwards HTTP traffic to the FortiGate:

```
<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Length</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>13:10:59</td>
<td>98.1.168.98</td>
<td>172.16.200.97</td>
<td>TCP</td>
<td>1761</td>
<td>3917544053</td>
</tr>
<tr>
<td>21</td>
<td>13:10:59</td>
<td>98.1.168.98</td>
<td>172.16.200.97</td>
<td>TCP</td>
<td>1761</td>
<td>3917544053</td>
</tr>
<tr>
<td>22</td>
<td>13:10:59</td>
<td>98.1.168.98</td>
<td>172.16.200.97</td>
<td>TCP</td>
<td>1761</td>
<td>3917544053</td>
</tr>
<tr>
<td>23</td>
<td>13:10:59</td>
<td>98.1.168.98</td>
<td>172.16.200.97</td>
<td>TCP</td>
<td>1761</td>
<td>3917544053</td>
</tr>
<tr>
<td>24</td>
<td>13:10:59</td>
<td>98.1.168.98</td>
<td>172.16.200.97</td>
<td>TCP</td>
<td>1761</td>
<td>3917544053</td>
</tr>
</tbody>
</table>
```

The FortiGate’s incoming and outgoing port captures show that HTTP traffic passes through the FortiGate:

```
<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Length</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>13:10:59</td>
<td>98.1.168.98</td>
<td>172.16.200.97</td>
<td>TCP</td>
<td>1761</td>
<td>3917544053</td>
</tr>
<tr>
<td>21</td>
<td>13:10:59</td>
<td>98.1.168.98</td>
<td>172.16.200.97</td>
<td>TCP</td>
<td>1761</td>
<td>3917544053</td>
</tr>
<tr>
<td>22</td>
<td>13:10:59</td>
<td>98.1.168.98</td>
<td>172.16.200.97</td>
<td>TCP</td>
<td>1761</td>
<td>3917544053</td>
</tr>
<tr>
<td>23</td>
<td>13:10:59</td>
<td>98.1.168.98</td>
<td>172.16.200.97</td>
<td>TCP</td>
<td>1761</td>
<td>3917544053</td>
</tr>
<tr>
<td>24</td>
<td>13:10:59</td>
<td>98.1.168.98</td>
<td>172.16.200.97</td>
<td>TCP</td>
<td>1761</td>
<td>3917544053</td>
</tr>
</tbody>
</table>
```

The ADC2 incoming port capture shows that the ADC2 receives HTTP traffic:
Security Profiles

The ADC2 outgoing port capture shows that ADC2 forwards HTTPS traffic to the server:

```
SSH traffic file scanning

FortiGates can buffer, scan, log, or block files sent over SSH traffic (SCP and SFTP) depending on the file size, type, or contents (such as viruses or sensitive content).

This feature is supported in proxy-based inspection mode. It is currently not supported in flow-based inspection mode.

You can configure the following SSH traffic settings in the CLI:

- Protocol options
- DLP profile
- Antivirus (profile and quarantine options)

To configure SSH protocol options:

```
config firewall profile-protocol-options
edit <name>
  config ssh
    set options {oversize clientcomfort servercomfort}
    set comfort-interval <1 - 900>
    set comfort-amount <1 - 65535>
    set oversize-limit <1 - 798>
    set uncompressed-oversize-limit <0 - 798>
    set uncompressed-nest-limit <2 - 100>
    set scan-bzip2 {enable | disable}
  next
end
```

To configure SCP block and log options:

```
config ssh-filter profile
edit <name>
  set block scp
```
set log scp
next
end

To configure the DLP profile:

```plaintext
config dlp profile
edit <name>
  set full-archive-proto ssh
  set summary-proto ssh
  config filter
    edit 1
      set proto ssh
    next
next
end
```

To configure the antivirus profile options:

```plaintext
config antivirus profile
edit <name>
  config ssh
    set av-scan {disable | block | monitor}
    set outbreak-prevention {disable | block | monitor}
    set external-blocklist {disable | block | monitor}
    set fortindr {disable | block | monitor}
    set quarantine {enable | disable}
    set archive-block {encrypted corrupted partiallycorrupted multipart nested mailbomb timeout unhandled}
    set archive-log {encrypted corrupted partiallycorrupted multipart nested mailbomb timeout unhandled}
    set emulator {enable | disable}
  next
next
end
```

To configure the antivirus quarantine options:

```plaintext
config antivirus quarantine
  set drop-infected ssh
  set store-infected ssh
  set drop-blocked ssh
  set store-blocked ssh
  set drop-machine-learning ssh
  set store-machine-learning ssh
end
```

Redirect to WAD after handshake completion

In a proxy-based policy, the TCP connection is proxied by the FortiGate. A TCP three-way handshake can be established with the client even though the server did not complete the handshake.
Security Profiles

This option uses IPS to handle the initial TCP three-way handshake. It rebuilds the sockets and redirects the session back to proxy only when the handshake with the server is established.

To enable proxy after a TCP handshake in an SSL/SSH profile:

```plaintext
config firewall ssl-ssh-profile
edit "test"
  config https
    set ports 443
    set status certificate-inspection
    set proxy-after-tcp-handshake enable
  end
next
end
```

To enable proxy after a TCP handshake in protocol options:

```plaintext
config firewall profile-protocol-options
edit "test"
  config http
    set ports 80
    set proxy-after-tcp-handshake enable
    unset options
    unset post-lang
  end
next
end
```

HTTP/2 support in proxy mode SSL inspection

Security profiles in proxy mode can perform SSL inspection on HTTP/2 traffic that is secured by TLS 1.2 or 1.3 using the Application-Layer Protocol Negotiation (ALPN) extension.

To set the ALPN support:

```plaintext
config firewall ssl-ssh-profile
edit <profile>
  set supported-alpn {all | http1-1 | http2 | none}
next
end
```

<table>
<thead>
<tr>
<th>ALPN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>The FortiGate forwards ALPN extensions that use either HTTP/2 or HTTP/1.1. This is the default value.</td>
</tr>
<tr>
<td>http1-1</td>
<td>The FortiGate only forwards ALPN extensions that use HTTP/1.1. If the ALPN extension uses HTTP/2, then the FortiGate strips the ALPN header from the Client Hello.</td>
</tr>
<tr>
<td>http2</td>
<td>The FortiGate only forwards ALPN extensions that use HTTP/2. If the ALPN extension uses HTTP/1.1, then the FortiGate strips the ALPN header from the Client Hello.</td>
</tr>
<tr>
<td>none</td>
<td>The FortiGate always strips the ALPN header from the Client Hello when forwarding.</td>
</tr>
</tbody>
</table>
Security Profiles

For example, if supported-alpn is set to http2, but the extension uses HTTP/1.1, the ALPN header is stripped from the Client Hello:

- **Incoming packet capture:**

```
<table>
<thead>
<tr>
<th>Protocol</th>
<th>Source Port</th>
<th>Destination Port</th>
<th>Protocol Length</th>
<th>ALPN Headers</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>10.1.2.3</td>
<td>123.4.5.6</td>
<td>2048</td>
<td>http2</td>
</tr>
<tr>
<td>TCP</td>
<td>10.1.2.3</td>
<td>123.4.5.6</td>
<td>2048</td>
<td>http2</td>
</tr>
</tbody>
</table>
```

- **Outgoing packet capture:**

```
<table>
<thead>
<tr>
<th>Protocol</th>
<th>Source Port</th>
<th>Destination Port</th>
<th>Protocol Length</th>
<th>ALPN Headers</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>10.1.2.3</td>
<td>123.4.5.6</td>
<td>2048</td>
<td>http2</td>
</tr>
<tr>
<td>TCP</td>
<td>10.1.2.3</td>
<td>123.4.5.6</td>
<td>2048</td>
<td>http2</td>
</tr>
</tbody>
</table>
```

Define multiple certificates in an SSL profile in replace mode

Multiple certificates can be defined in an SSL inspection profile in replace mode (Protecting SSL Server). This allows multiple sites to be deployed on the same protected server IP address, and inspection based on matching the SNI in the certificate.

When the FortiGate receives the client and server hello messages, it will compare the server name identification (SNI) and the common name (CN) with the certificate list in the SSL profile, and use the matched certificate as a replacement. If there is no matched server certificate in the list, then the first server certificate in the list is used as a replacement.
To configure an SSL profile in replace mode with multiple certificates:

```
config firewall ssl-ssh-profile
  edit "multi-cert"
    set server-cert-mode replace
    set server-cert "bbb" "aaa"
  next
end
```

To configure a policy that uses the SSL profile:

```
config firewall policy
  edit 1
    set name "multi-cert"
    set srcintf "port6"
    set dstintf "port11"
    set srcaddr "all"
    set dstaddr "all"
    set action accept
    set schedule "always"
    set service "ALL"
    set utm-status enable
    set ssl-ssh-profile "multi-cert"
    set av-profile "default"
    set webfilter-profile "default"
    set logtraffic all
    set nat enable
  next
end
```

Results

If the SNI matches the CN in the certificate list in the SSL profile, then the FortiGate uses the matched server certificate. In this example, when the client accesses www.aaa.com, the FortiGate will use the aaa certificate as a replacement.
Security Profiles

If the SNI does not match the CN in the certificate list in the SSL profile, then the FortiGate uses the first server certificate in the list. In this example, when the client accesses www.ccc.com, because there is no certificate for www.ccc.com, the FortiGate will use the bbb certificate as a replacement.

Disabling the FortiGuard IP address rating

The FortiGuard IP address rating for SSL exemptions and proxy addresses can be disabled using the `ssl-exemption-ip-rating` and `address-ip-rating` options.

To disable using the FortiGuard IP address rating for SSL exemptions:

```
config firewall ssl-ssh-profile
  edit <name>
    set ssl-exemption-ip-rating {enable | disable}
  next
end
```
To disable using the FortiGuard IP address rating for proxy addresses:

```plaintext
cfg firewall profile-protocol-options
   edit <name>
       config http
           set address-ip-rating {enable | disable}
   end
next
end
```

The `ssl-exemption-ip-rating` and `address-ip-rating` options are enabled by default, so when both a website domain and its IP address return different categories after being rated by FortiGuard, the IP address category takes precedence when evaluating SSL exemptions associated with the SSL inspection profile and proxy addresses associated with the proxy protocol options profile. SSL exemptions and the `ssl-exemption-ip-rating` option work in both inspection modes (proxy and flow).

When the categories associated with the website domain and IP address are different, disabling the FortiGuard IP rating ensures that the FortiGuard domain category takes precedence when evaluating the preceding objects. For most websites, the domain category is valid when its IP address is unrated by FortiGuard. Since being unrated is considered as not having a category, the FortiGate uses the domain category as the website category.

A website might have an IP category that differs from its domain category. If they are different, the FortiGate uses the rating weight of the IP address or domain name to determine the rating result and decision. The rating weight is hard-coded in the FortiGate and depending on the relative category weights, the FortiGate may use the IP category instead of the website category. If the `ssl-exemption-ip-rating` option is disabled in the SSL inspection profile, then the FortiGate uses the domain category as the website category, which ensures SSL exemption operation as intended.

The `address-ip-rating` option in a proxy protocol options profile functions the same way as the `ssl-exemption-ip-rating` option. If the `address-ip-rating` option is disabled in a profile that is used in an explicit proxy policy that also uses a web filter profile, for HTTP or HTTPS traffic to a website that has different IP and domain categories and that matches the policy, the FortiGate will use the domain category when it evaluates categories for the web filter.

Custom signatures

You can create the following custom signatures and apply them to firewall policies:

- IPS signature
- Application signature
- Application group

The following topic provides information about custom signatures:

- Application groups in traffic shaping policies on page 1310
- Blocking applications with custom signatures on page 1314
- Filters for application control groups on page 1316

Application groups in traffic shaping policies

Application groups can be configured in traffic shaping policies. In this example, there are two traffic shaping policies:
• Policy 1 is for traffic related to cloud applications and has high priority.
• Policy 2 is for other traffic and has low priority.

At least one firewall policy must have application control enabled for the applications to match any policy traffic.

To configure a traffic shaping policy to use an application group in the GUI:

1. Configure an application group for cloud applications:
 a. Go to Security Profiles > Application Signatures.
 c. Enter a name for the group, and for Type, select Application.
 d. Click the + to add the group the members.
 e. Click OK.

2. Create the shaping policy for the high priority cloud application traffic:
 b. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>For Cloud Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>All</td>
</tr>
<tr>
<td>Destination</td>
<td>All</td>
</tr>
<tr>
<td>Service</td>
<td>All</td>
</tr>
<tr>
<td>Application</td>
<td>Add the Cloud.IT category and the cloud app group application group.</td>
</tr>
<tr>
<td>Outgoing interface</td>
<td>port1</td>
</tr>
<tr>
<td>Shared shaper</td>
<td>high-priority</td>
</tr>
<tr>
<td>Reverse shaper</td>
<td>high-priority</td>
</tr>
</tbody>
</table>
c. Click OK.

3. Create the shaping policy for the low priority other traffic:
a. Click Create New and enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>For Other Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>All</td>
</tr>
<tr>
<td>Destination</td>
<td>All</td>
</tr>
<tr>
<td>Service</td>
<td>All</td>
</tr>
<tr>
<td>Outgoing interface</td>
<td>port1</td>
</tr>
<tr>
<td>Shared shaper</td>
<td>low-priority</td>
</tr>
<tr>
<td>Reverse shaper</td>
<td>low-priority</td>
</tr>
</tbody>
</table>

b. Click OK.

To configure a traffic shaping policy to use an application group in the CLI:

1. Configure an application group for cloud applications:

   ```
   config application group
   edit "cloud app group"
   set application 27210 36740 35944 43296 33048
   next
   end
   ```

2. Create the shaping policies for the high priority cloud application traffic and low priority other traffic:

   ```
   config firewall shaping-policy
   edit 1
   set name "For Cloud Traffic"
   set service "ALL"
   set app-category 30
   ```
set app-group "cloud app group"
set dstintf "port1"
set traffic-shaper "high-priority"
set traffic-shaper-reverse "high-priority"
set srcaddr "all"
set dstaddr "all"
next
edit 2
 set name "For Other Traffic"
 set service "ALL"
 set dstintf "port1"
 set traffic-shaper "low-priority"
 set traffic-shaper-reverse "low-priority"
 set srcaddr "all"
 set dstaddr "all"
next
end

Blocking applications with custom signatures

Custom signatures can be used in application control profiles to block web traffic from specific applications, such as out of support operating systems.

In this example, a custom signature is created to detect PCs running Windows NT 6.1 operating systems, including Windows 7 and Windows Server 2008 R2. The signature is added to an application control profile and the action is set to block. The profile is then used in a firewall policy so that web traffic matching the signature is blocked. The logs generated by this example can be used to help identify other computers that need to be blocked.

To make the settings visible in the GUI:

1. Go to System > Feature Visibility
2. In the Security Features section, enable Application Control.
3. Click Apply.

To create the custom application signature:

1. Go to Security Profiles > Application Signatures and click Create New > Custom Application Signature.
2. Enter a name for the custom signature, such as block_nt_6.1.
3. Enter the Signature. In this example:

 F-SBID(--attack_id 6483; --name "Windows.NT.6.1.Web.Surfing"; --default_action drop_session; --service HTTP; --protocol tcp; --app_cat 25; --flow from_client; --pattern !"FCT"; --pattern "Windows NT 6.1"; --no_case; --context header; --weight 40;)

This signature scans HTTP and HTTPS traffic that matches the pattern Windows NT 6.1 in its header. For blocking older versions of Windows, such as Windows XP, you would use the pattern Windows NT 5.1. An attack ID is automatically generated when the signature is created.
4. Click OK.

The signature is included in the Custom Application Signature section of the signature list.

To use the signature in an application control profile:

1. Go to Security Profiles > Application Control.
2. Create a new profile, or edit an existing one.
3. In the Application and Filter Overrides table, click Create New.
4. Set Type to Application and Action to Block.
5. Select the custom signature from the list, using the search feature if required, then click Add Selected.

6. Click OK.

The signature is added to the table.

7. Click OK.

To add the application control profile to a firewall policy:

1. Go to Policy & Objects > Firewall Policy.
2. Edit the policy that currently allows a connection from the internal network to the internet.
3. In the Security Profiles section, enable Application Control and select the profile.

 If deep inspection is not enabled, then only HTTP traffic will be scanned. To scan HTTPS traffic, set SSL Inspection
Security Profiles

to a profile that includes deep inspection. See SSL & SSH Inspection on page 1296 for more information.

4. Click OK.

Results

When a PC running one of the affected operating systems tries to connect to the internet using a web browser, a replacement message is shown. For information on customizing replacement messages, see Replacement messages on page 2136.

Go to Log & Report > Security Events to view the web traffic that is logged for the PC that is blocked by the application signature in the Application Control card.

Filters for application control groups

When defining application groups in NGFW policy or profile mode, the following group filters are available: protocols, risk, vendor, technology, behavior, popularity, and category.
config application group
 edit <name>
 set type filter
 set protocols <integer>
 set risk <integer>
 set vendor <id>
 set technology <id>
 set behavior <id>
 set popularity <integer>
 set category <id>
 next
end

<table>
<thead>
<tr>
<th>protocols <integer></th>
<th>Application protocol filter (0 - 47, or all).</th>
</tr>
</thead>
<tbody>
<tr>
<td>risk <integer></td>
<td>Risk or impact of allowing traffic from this application to occur (1 - 5; low (1), elevated (2), medium (3), high (4), and critical (5)).</td>
</tr>
<tr>
<td>vendor <id></td>
<td>Application vendor filter (0 - 25, or all).</td>
</tr>
<tr>
<td>technology <id></td>
<td>Application technology filter:</td>
</tr>
<tr>
<td></td>
<td>• all</td>
</tr>
<tr>
<td></td>
<td>• 0 (network-protocol)</td>
</tr>
<tr>
<td></td>
<td>• 1 (browser-based)</td>
</tr>
<tr>
<td></td>
<td>• 2 (client-server)</td>
</tr>
<tr>
<td></td>
<td>• 4 (peer-to-peer)</td>
</tr>
<tr>
<td>behavior <id></td>
<td>Application behavior filter:</td>
</tr>
<tr>
<td></td>
<td>• all</td>
</tr>
<tr>
<td></td>
<td>• 2 (botnet)</td>
</tr>
<tr>
<td></td>
<td>• 3 (evasive)</td>
</tr>
<tr>
<td></td>
<td>• 5 (excessive bandwidth)</td>
</tr>
<tr>
<td></td>
<td>• 6 (tunneling)</td>
</tr>
<tr>
<td></td>
<td>• 9 (cloud)</td>
</tr>
<tr>
<td>popularity <integer></td>
<td>Application popularity filter (1 - 5, from least to most popular).</td>
</tr>
<tr>
<td>category <id></td>
<td>Application category filter:</td>
</tr>
<tr>
<td></td>
<td>• 2 (P2P)</td>
</tr>
<tr>
<td></td>
<td>• 3 (VoIP)</td>
</tr>
<tr>
<td></td>
<td>• 5 (video/audio)</td>
</tr>
<tr>
<td></td>
<td>• 6 (proxy)</td>
</tr>
<tr>
<td></td>
<td>• 7 (remote access)</td>
</tr>
<tr>
<td></td>
<td>• 8 (game)</td>
</tr>
<tr>
<td></td>
<td>• 12 (general interest)</td>
</tr>
<tr>
<td></td>
<td>• 15 (network service)</td>
</tr>
<tr>
<td></td>
<td>• 17 (update)</td>
</tr>
<tr>
<td></td>
<td>• 21 (email)</td>
</tr>
<tr>
<td></td>
<td>• 22 (storage backup)</td>
</tr>
<tr>
<td></td>
<td>• 23 (social media)</td>
</tr>
<tr>
<td></td>
<td>• 25 (web client)</td>
</tr>
</tbody>
</table>
Sample configurations

In this example, a single filter (risk level 1) is configured in the application group in NGFW policy mode, so only signatures matching this filter will match the security policy.

To configure the application group:

```plaintext
config application group
  edit "risk_1"
    set type filter
    set risk 1
  next
end
```

To configure the security policy:

```plaintext
config firewall security-policy
  edit 1
    set srcintf "port2"
    set dstintf "port1"
    set srcaddr "all"
    set dstaddr "all"
    set action accept
    set status enable
    set schedule "always"
    set enforce-default-app-port disable
    set service "ALL"
    set app-group risk_1
    set logtraffic all
  next
end
```

In this example, the application group is configured so that only signatures matching both filters, category 5 (video/audio) and technology 1 (browser-based), will match the security policy. The application group can also be configured in a traffic shaping policy.

To configure the application group:

```plaintext
config application group
  edit "two"
    set type filter
    set category 5
    set technology 1
  next
end
```
To configure the security policy:

```plaintext
config firewall security-policy
edit 1
  set srcintf "port2"
  set dstintf "port1"
  set srcaddr "all"
  set dstaddr "all"
  set action accept
  set status enable
  set schedule "always"
  set enforce-default-app-port disable
  set service "ALL"
  set app-group two
  set logtraffic all
next
end
```

To configure the traffic shaping policy:

```plaintext
config firewall shaping-policy
edit 1
  set ip-version 4
  set service "ALL"
  set app-group two
  set dstintf port1
  set traffic-shaper "max-100"
  set traffic-shaper-reverse "max-100"
  set srcaddr "all"
  set dstaddr "all"
next
end
```

Overrides

Web filter configuration can be separated into profile configuration and profile overrides.

You can also override web filter behavior based on the FortiGuard website categorization:

- Use alternate categories (web rating overrides): this method manually assigns a specific website to a different Fortinet category or a locally-created category.
- Use alternate profiles: configured users or IP addresses can use an alternative web filter profile when attempting to access blocked websites.

Some features of this functionality require a subscription to FortiGuard Web Filtering.

The following topics provide information about web overrides:

- Web rating override on page 1320
- Web profile override on page 1325
Web rating override

Web rating overrides allow you to add specific URLs to both FortiGuard and custom web ratings categories.

In a web filter profile, the action for each category can be configured. See FortiGuard filter on page 1130 for details. A web rating override in a custom category will not impact any web filters until the category's action is changed to Allow, Monitor (default), Block, Warning, or Authenticate in the specific web filter profile's settings. If a URL is in multiple enabled categories, the order of precedence is local categories, then remote categories, and then FortiGuard categories.

In SSL/SSH inspection profiles, custom categories must be explicitly selected to be exempt from SSL inspection. In proxy addresses, custom categories must be explicitly selected as URL categories for them to apply. In both settings, if a URL is in multiple selected categories, the order of precedence is local categories, then remote categories, and then FortiGuard categories.

Web rating override requires a FortiGuard license.

Web filter profiles

In this example, www.fortinet.com is added to both a custom, or local, category (Seriously) and an external threat feed, or remote, category (OnAworkComputer). The local category action is set to Monitor, while the remote category action is set to Block. When a user browses to www.fortinet.com, the local category action takes precedence over both the remote category and the FortiGuard category (Information Technology), so the Monitor action is taken.

To create a custom category in the GUI:

2. Click Custom Categories, then click Create New.
3. Enter a name for the category, and ensure the Status is set to Enable.
4. Click OK.

To create a web rating override in the GUI:

1. Go to Security Profiles > Web Rating Overrides and click Create New.
2. Enter the URL to override.
3. Optionally, click Lookup rating to see what its current rating is, if it has one.
4. For Category, select Custom Categories and for Sub-Category select the category previously created.

![Security Profiles](image1)

5. Click OK.

To create a new FortiGuard category threat feed in the GUI:

1. Go to Security Fabric > External Connectors and click Create New.
2. In the Threat Feeds section, click FortiGuard Category.
3. Enter a name for the threat feed, such as OnAworkComputer.
4. Enter the URI of external resource.

![Security Profiles](image2)

5. Configure the remaining settings as needed, then click OK.

To use the new categories in a web filter profile in the GUI:

1. Go to Security Profiles > Web Filter and create or edit a web filter profile. See FortiGuard filter on page 1130 for more information.
2. Enable FortiGuard category based filter
3. Set the action for the Seriously category in the Local Categories group to Monitor.
4. Set the action for the OnAworkComputer category in the Remote Categories group to Block.
Setting the custom category action to *Allow* is equivalent to setting the CLI action variable to *monitor* and log variable to *disable*.

5. Configure the remaining settings are required, then click *OK*.

To use local and remote categories in a web filter profile in the CLI:

1. Create the custom category and add a URL to it:

   ```
   config vdom
e   edit root
   config webfilter ftgd-local-cat
   edit "Seriously"
   set id 140
   next
   end
cfg webfilter ftgd-local-rating
   edit "www.fortinet.com"
   set rating 140
   next
   end
   end
   ```

2. Create a *FortiGuard Category Threat Feed* external connector to import an external blocklist.

   ```
   config global
   config system external-resource
   edit "OnAworkComputer"
   set category 192
   set resource "https://192.168.0.5/lists/blocklist.txt"
   next
   ```
3. Enable the new category in a web filter profile. See FortiGuard filter on page 1130 for details.
Custom local categories have an ID range of 140 to 191. Remote categories have an ID range of 192 to 221.

```
cfg vdom
    edit root
        config webfilter profile
            edit "WebFilter-1"
                set feature-set proxy
                config ftgd-wf
                    unset options
                config filters
                    edit 12
                        set category 12
                        set action warning
                        next
                    ...
                    edit 23
                        set action warning
                        next
                    edit 140
                        set category 140
                        next
                    edit 192
                        set category 192
                        set action block
                        next
                end
            end
        end
    end
end
```

When a filter is added for the local and remote categories (140 and 192 in this example), the default action is monitor with logging enabled.

SSL/SSH inspection profiles

To use local and remote categories in an SSL/SSH inspection profile to exempt them from SSL inspection in the GUI:

1. Go to Security Profiles > SSL/SSH Inspection.
2. Create a new profile or edit an existing one.
3. Ensure that Inspection method is Full SSL Inspection.
4. In the *Exempt from SSL Inspection* section, add the local and remote categories to the *Web categories* list.

![Exempt from SSL Inspection section of Security Profiles](image)

5. Configure the remaining settings as required, then click OK.

To use local and remote categories in an SSL/SSH inspection profile to exempt them from SSL inspection in the CLI:

```plaintext
config vdom
   edit root
      config firewall ssl-ssh-profile
         edit "SSL_Inspection"
            config https
               set ports 443
               set status deep-inspection
            end
            ...
         config ssl-exempt
            edit 1
               set fortiguard-category 140
            next
            edit 2
               set fortiguard-category 192
            next
      end
   end
```

Proxy addresses

To use local and remote categories in a proxy address in the GUI:

1. Go to *Policy & Objects > Addresses* and click *Create New > Address*, or edit an existing proxy address.
2. Set *Category* to *Proxy Address*.
3. Set *Type* to *URL Category*.
4. In the *URL Category*, add the local and remote categories.

![Image of the FortiGate proxy address configuration interface]

5. Configure the remaining settings as required, then click **OK**.

To use local and remote categories in a proxy address in the CLI:

```bash
config vdom
  edit root
    config firewall proxy-address
      edit "proxy_override"
        set type category
        set host "all"
        set category 140 192
        set color 23
      next
    end
  next
end
```

Web profile override

The following profile override methods are available:

- Administrative override
- Allow users to override blocked categories

Administrative override

Administrators can grant temporary access to sites that are otherwise blocked by a web filter profile. You can grant temporary access to a user, user group, or source IP address. You can set the time limit by selecting a date and time. The default is 15 minutes.

When the administrative web profile override is enabled, a blocked access page or replacement message does not appear, and authentication is not required.
Scope range

You can choose one of the following scope ranges:

- **User**: authentication for permission to override is based on whether or not the user is using a specific user account.
- **User group**: authentication for permission to override is based on whether or not the user account supplied as a credential is a member of the specified user group.
- **Source IP**: authentication for permission to override is based on the IP address of the computer that was used to authenticate. This would be used for computers that have multiple users. For example, if a user logs on to the computer, engages the override by using their credentials, and then logs off, anyone who logs on with an account on that computer would be using the alternate override web filter profile.

When you enter an IP address in the administrative override method, only individual IP addresses are allowed.

Differences between IP and identity-based scope

Using the IP scope does not require using an identity-based policy.

When using the administrative override method and IP scope, you might not see a warning message when you change from using the original web filter profile to using the alternate profile. There is no requirement for credentials from the user so, if allowed, the page will just appear in the browser.

Configuring a web profile administrative override

This example describes how to override the `webfilter` profile with the `webfilter_new` profile.

To configure web profile administrative override using the GUI:

1. Go to **Security Profiles > Web Profile Overrides** and click **Create New**.
2. Configure the administrative override:
 a. For **Scope Range**, click **Source IP**.
 b. In the **Source IP** field, enter the IP address for the client computer (10.1.100.11 in this example).
 c. In the **Original profile** dropdown, select **webfilter**.
 d. In the **New profile** dropdown, select **webfilter_new**.
 In the **Expires** field, the default 15 minutes appears, which is the desired duration for this example.
3. Click **OK**.
To configure web profile administrative override using the CLI:

```
config webfilter override
   edit 1
     set status enable
     set scope ip
     set old-profile "webfilter"
     set new-profile "webfilter_new"
     set expires 2021/07/30 10:14:00
     set initiator "admin"
     set ip 10.1.100.11
   next
end
```

Allow users to override blocked categories

For both override methods, the scope ranges (for specified users, user groups, or IP addresses) allow sites blocked by web filtering profiles to be overridden for a specified length of time.

But there is a difference between the override methods when the users or user group scope ranges are selected. In both cases, you would need to apply the user or user group as source in the firewall policy. With administrative override, if you do not apply the source in the firewall policy, the traffic will not match the override and will be blocked by the original profile. With the Allow users to override blocked categories setting, the traffic will also be blocked, but instead of displaying a blocking page, the following message appears:

```
FortiGuard Intrusion Prevention - Access Blocked
Web Filter Block Override
If you have been granted creation privileges by your administrator, you can enter your username and password here to gain immediate access to the blocked webpage. If you do not have these privileges, please contact your administrator to gain access to this webpage.
Only user-based overrides are allowed and you do not appear to be authenticated with the system. Please contact your administrator.

When you choose the user group scope, once one user overrides, it will affect the other users in the group when they attempt to override. For example, user1 and user2 both belong to the local_user group. Once user1 successfully overrides, this will generate an override entry for the local_user group instead of one specific user. This means that if user2 logs in from another PC, they can override transparently.
```

Other features

Besides the scope, there are some other features in Allow users to override blocked categories.
Apply to user groups

Individual users can not be selected. You can select one or more of the user groups recognized by the FortiGate. They can be local to the system or from a third party authentication device, such as an AD server through FSSO.

Switch duration

Administrative override sets a specified time frame that is always used for that override. The available options are:

- **Predefined:** the value entered is the set duration (length of time in days, hours, or minutes) that the override will be in effect. If the duration variable is set to 15 minutes, the length of the override will always be 15 minutes. The option will be visible in the override message page, but the setting will be grayed out.
- **Ask:** the user has the option to set the override duration once it is engaged. The user can set the duration in terms of days, hours, or minutes.

Creating a web profile users override

This example describes how to allow users in the local_group to override the webfilter_new profile.

To allow users to override blocked categories using the GUI:

2. Enter a name for the profile.
3. Enable Allow users to override blocked categories.
4. Configure the web filter profile:
 a. Click the Groups that can override field, and select a group (local_group in this example).
 b. Click the Profile Name field, and select the webfilter_new profile.
 c. For the Switch applies to field, click IP.
 d. For the Switch Duration field, click Predefined. The default 15 minutes appears, which is the desired duration for this example.
 e. Configure the rest of the profile as needed.

5. Click OK.

Using the ask feature

This option is only available in Allow users to override blocked categories is enabled. It configures the message page to have the user choose which scope they want to use. Normally on the message page, the scope options are grayed out.
and not editable. In the following example, the Scope is predefined with IP.

Web Filter Block Override

If you have been granted override creation privileges by your administrator, you can enter your username and password here to gain immediate access to the blocked web-page. If you do not have these privileges, please contact your administrator to gain access to the web-page.

When the ask option is enabled (through the Switch applies to field in the GUI), the Scope dropdown is editable. Users can choose one of the following:

- User
- User group
- IP

User and User Group are only available when there is a user group in the firewall policy. You must specify a user group as a source in the firewall policy so the scope includes User and User Group; otherwise, only the IP option will be available.
Virtual Private Network (VPN) technology lets remote users connect to private computer networks to gain access to their resources in a secure way. For example, an employee traveling or working at home can use a VPN to securely access the office network through the Internet.

Instead of remotely logging into a private network using an unencrypted and unsecured Internet connection, using a VPN ensures that unauthorized parties cannot access the office network and cannot intercept information going between the employee and the office. Another common use of a VPN is to connect the private networks of multiple offices.

Fortinet offers VPN capabilities in the FortiGate Unified Threat Management (UTM) appliance and in the FortiClient Endpoint Security suite of applications. You can install a FortiGate unit on a private network and install FortiClient software on the user’s computer. You can also use a FortiGate unit to connect to the private network instead of using FortiClient software.

The following sections provide information about VPN:

- IPsec VPNs on page 1330
- SSL VPN on page 1619

IPsec VPNs

The following sections provide instructions on configuring IPsec VPN connections in FortiOS 7.2.0.

- General IPsec VPN configuration on page 1330
- Site-to-site VPN on page 1360
- Remote access on page 1413
- Aggregate and redundant VPN on page 1457
- Overlay Controller VPN (OCVPN) on page 1501
- ADVPN on page 1532
- Other VPN topics on page 1566
- VPN IPsec troubleshooting on page 1611

General IPsec VPN configuration

The following sections provide instructions on general IPsec VPN configurations:

- Network topologies on page 1331
- Phase 1 configuration on page 1331
- Phase 2 configuration on page 1345
- VPN security policies on page 1349
- Blocking unwanted IKE negotiations and ESP packets with a local-in policy on page 1353
- Configurable IKE port on page 1354
- IPsec VPN IKE port assignments on page 1357
Network topologies

The topology of your network will determine how remote peers and clients connect to the VPN and how VPN traffic is routed.

<table>
<thead>
<tr>
<th>Topology</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site-to-Site</td>
<td>Standard one-to-one VPN between two FortiGates. See Site-to-site VPN on page 1360.</td>
</tr>
<tr>
<td>Hub and spoke/ADVPN</td>
<td>One central FortiGate (hub) has multiple VPNs to other remote FortiGates (spokes). In ADVPN, shortcuts can be created between spokes for direct communication. See ADVPN on page 1532.</td>
</tr>
<tr>
<td>OCVPN</td>
<td>Fortinet's cloud based solution for automating VPN setup between devices registered to the same account. See Overlay Controller VPN (OCVPN) on page 1501.</td>
</tr>
<tr>
<td>FortiClient dialup</td>
<td>Typically remote FortiClient dialup clients use dynamic IP addresses through NAT devices. The FortiGate acts as a dialup server allowing dialup VPN connections from multiple sources. See FortiClient as dialup client on page 1420.</td>
</tr>
<tr>
<td>FortiGate dialup</td>
<td>Similar to site-to-site except one end is a dialup server and the other end is a dialup client. This facilitates scenarios in which the remote dialup end has a dynamic address, or does not have a public IP, possibly because it is behind NAT. See FortiGate as dialup client on page 1414.</td>
</tr>
<tr>
<td>Aggregate VPN</td>
<td>Natively support aggregating multiple VPN tunnels to increase performance and provide redundancy over multiple links. See Packet distribution and redundancy for aggregate IPsec tunnels on page 1474.</td>
</tr>
<tr>
<td>Redundant VPN</td>
<td>Options for supporting redundant and partially redundant IPsec VPNs, using route-based approaches. See Redundant hub and spoke VPN on page 1495.</td>
</tr>
<tr>
<td>L2TP over IPsec</td>
<td>Configure VPN for Microsoft Windows dialup clients using the built in L2TP software. Users do not have to install any Fortinet software. See L2TP over IPsec on page 1438.</td>
</tr>
<tr>
<td>GRE over IPsec</td>
<td>Legacy support for routers requiring point-to-point GRE over IPsec for tunneling. See GRE over IPsec on page 1376.</td>
</tr>
</tbody>
</table>

Phase 1 configuration

Phase 1 configuration primarily defines the parameters used in IKE (Internet Key Exchange) negotiation between the ends of the IPsec tunnel. The local end is the FortiGate interface that initiates the IKE negotiations. The remote end is the remote gateway that responds and exchanges messages with the initiator. Hence, they are sometimes referred to as the initiator and responder. The purpose of phase 1 is to secure a tunnel with one bi-directional IKE SA (security association) for negotiating IKE phase 2 parameters.

The auto-negotiate and negotiation-timeout commands control how the IKE negotiation is processed when there is no traffic, and the length of time that the FortiGate waits for negotiations to occur.
IPsec tunnels can be configured in the GUI using the **VPN Creation Wizard**. Go to **VPN > IPsec Wizard**. The wizard includes several templates (site-to-site, hub and spoke, remote access), but a custom tunnel can be configured with the following settings.

The IPsec phase 1 interface type cannot be changed after it is configured. This is due to the tunnel ID parameter (`tun_id`), which is used to match routes to IPsec tunnels to forward traffic. If the IPsec phase 1 interface type needs to be changed, a new interface must be configured.

Name
- **Phase 1 definition name.**
- The maximum length is 15 characters for an interface mode VPN and 35 characters for a policy-based VPN.
- For a policy-based VPN, the name normally reflects where the remote connection originates. For a route-based tunnel, the FortiGate also uses the name for the virtual IPsec interface that it creates automatically.

Network

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Version</td>
<td>Protocol, either IPv4 or IPv6.</td>
</tr>
<tr>
<td>Remote Gateway</td>
<td>Category of the remote connection:</td>
</tr>
<tr>
<td></td>
<td>- Static IP Address: the remote peer has a static IP address.</td>
</tr>
<tr>
<td></td>
<td>- Dialup User: one or more FortiClient or FortiGate dialup clients with</td>
</tr>
<tr>
<td></td>
<td>dynamic IP addresses will connect to the FortiGate.</td>
</tr>
<tr>
<td></td>
<td>- Dynamic DNS: a remote peer that has a domain name and subscribes to</td>
</tr>
<tr>
<td></td>
<td>a dynamic DNS service will connect to the FortiGate.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address of the remote peer. This option is only available when the</td>
</tr>
<tr>
<td></td>
<td>Remote Gateway is Static IP Address.</td>
</tr>
<tr>
<td>Dynamic DNS</td>
<td>The domain name of the remote peer. This option is only available when the</td>
</tr>
<tr>
<td></td>
<td>Remote Gateway is Dynamic DNS.</td>
</tr>
<tr>
<td>Interface</td>
<td>The interface through which remote peers or dialup clients connect to the</td>
</tr>
<tr>
<td></td>
<td>FortiGate. This option is only available in NAT mode.</td>
</tr>
<tr>
<td></td>
<td>By default, the local VPN gateway IP address is the IP address of the</td>
</tr>
<tr>
<td></td>
<td>interface that was selected (Primary IP in the Local Gateway field).</td>
</tr>
<tr>
<td>Local Gateway</td>
<td>IP address for the local end of the VPN tunnel (*Primary IP is used by</td>
</tr>
<tr>
<td></td>
<td>default*):</td>
</tr>
<tr>
<td></td>
<td>- Secondary IP: secondary address of the interface selected in the</td>
</tr>
<tr>
<td></td>
<td>Interface field.</td>
</tr>
<tr>
<td></td>
<td>- Specify: manually enter an address.</td>
</tr>
<tr>
<td></td>
<td>Interface mode cannot be configured in a transparent mode VDOM.</td>
</tr>
<tr>
<td>Mode Config</td>
<td>This option is only available when the Remote Gateway is Dialup User.</td>
</tr>
<tr>
<td></td>
<td>Configure the client IP address range, subnet mask/prefix length,</td>
</tr>
<tr>
<td></td>
<td>DNS server, and split tunnel capability to automate remote client</td>
</tr>
<tr>
<td></td>
<td>addressing.</td>
</tr>
<tr>
<td>NAT Traversal</td>
<td>This option is only available when the Remote Gateway is Static IP Address</td>
</tr>
<tr>
<td></td>
<td>or Dynamic DNS.</td>
</tr>
</tbody>
</table>
ESP (encapsulating security payload), the protocol for encrypting data in the VPN session, uses IP protocol 50 by default. However, it does not use any port numbers so when traversing a NAT device, the packets cannot be demultiplexed. Enabling NAT traversal encapsulates the ESP packet inside a UDP packet, thereby adding a unique source port to the packet. This allows the NAT device to map the packets to the correct session.

- **Enable**: a NAT device exists between the local FortiGate and the VPN peer or client. Outbound encrypted packets are wrapped inside a UDP IP header that contains a port number. The local FortiGate and the VPN peer or client must have the same NAT traversal setting (both selected or both cleared) to connect reliably. When in doubt, enable NAT traversal.
- **Disable**: disable the NAT traversal setting.
- **Forced**: the FortiGate will use a port value of zero when constructing the NAT discovery hash for the peer. This causes the peer to think it is behind a NAT device, and it will use UDP encapsulation for IPsec, even if no NAT is present. This approach maintains interoperability with any IPsec implementation that supports the NAT-T RFC.

Keepalive Frequency

Keepalive frequency setting. This option is only available when NAT Traversal is set to Enable or Forced. The NAT device between the VPN peers may remove the session when the VPN connection remains idle for too long.

The value represents an interval in seconds where the connection will be maintained with periodic keepalive packets. The keepalive interval must be smaller than the session lifetime value used by the NAT device.

The keepalive packet is a 138-byte ISAKMP exchange.

Dead Peer Detection

Reestablishes VPN tunnels on idle connections and cleans up dead IKE peers if required. This feature minimizes the traffic required to check if a VPN peer is available or unavailable (dead). The available options are:

- **Disable**: disable dead peer detection (DPD).
- **On Idle**: triggers DPD when IPsec is idle.
- **On Demand**: Passively sends DPD to reduce load on the firewall. Only triggers DPD when IPsec outbound packets are sent, but no reply is received from the peer. When there is no traffic and the last DPD-ACK has been received, IKE will not send DPDs periodically.

Notifications are received whenever a tunnel goes up or down, or to keep the tunnel connection open when no traffic is being generated inside the tunnel. For example, in scenarios where a dialup client or dynamic DNS peer connects from an IP address that changes periodically, traffic may be suspended while the IP address changes.

When Dead Peer Detection is selected, optionally specify a retry count and a retry interval using `dpd-retrycount` and `dpd-retryinterval`. See Dead peer detection on page 1338.

Forward Error Correction

Enable on both ends of the tunnel to correct errors in data transmission by sending redundant data across the VPN.
Device creation
Advanced option. When enabled, a dynamic interface (network device) is created for each dialup tunnel.

Aggregate member
Advanced option. When enabled, the tunnel can be used as an aggregate member candidate.

Authentication

<table>
<thead>
<tr>
<th>Method</th>
<th>Either Pre-shared Key or Signature.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-shared Key</td>
<td>The pre-shared key that the FortiGate will use to authenticate itself to the remote peer or dialup client during phase 1 negotiations. The same key must be defined at the remote peer or client. See Pre-shared key.</td>
</tr>
<tr>
<td>Certificate Name</td>
<td>The server certificate that the FortiGate will use to authenticate itself to the remote peer or dialup client during phase 1 negotiations. See Digital certificates.</td>
</tr>
<tr>
<td>IKE Version</td>
<td>Either 1 or 2. See Choosing IKE version 1 and 2 on page 1339.</td>
</tr>
</tbody>
</table>

| **Mode** | This option is only available when IKEv1 is selected. The two available options are:
- *Aggressive*: the phase 1 parameters are exchanged in a single message with unencrypted authentication information.
- *Main (ID protection)*: the phase 1 parameters are exchanged in multiple rounds with encrypted authentication information.

 When the remote VPN peer has a dynamic IP address and is authenticated by a pre-shared key, you must select *Aggressive* mode if there is more than one dialup phase 1 configuration for the interface IP address.

 When the remote VPN peer has a dynamic IP address and is authenticated by a certificate, you must select *Aggressive* mode if there is more than one phase 1 configuration for the interface IP address and these phase 1 configurations use different proposals. |
| **Peer Options** | Options to authenticate VPN peers or clients depending on the *Remote Gateway* and *Authentication Method* settings. |
| **Any peer ID** | Accepts the local ID of any remote VPN peer or client. The FortiGate does not check identifiers (local IDs). *Mode* can be set to *Aggressive* or *Main*.

 This option can be used with digital certificate authentication, but for higher security, use *Peer certificate*. |
| **Specific peer ID** | This option is only available when *Aggressive Mode* is enabled. Enter the identifier that is used to authenticate the remote peer. The identifier must match the local ID configured by the remote peer’s administrator.

 If the remote peer is a FortiGate, the identifier is specified in the *Local ID* field of the *Phase 1 Proposal* settings.

 If the remote peer is a FortiClient user, the identifier is specified in the *Local ID* field.

 In circumstances where multiple remote dialup VPN tunnels exist, each tunnel must have a peer ID set. |
<table>
<thead>
<tr>
<th>Peer certificate</th>
<th>Define the CA certificate used to authenticate the remote peer when the authentication mode is Signature. If the FortiGate will act as a VPN client, and you are using security certificates for authentication, set the Local ID to the distinguished name (DN) of the local server certificate that the FortiGate unit will use for authentication purposes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peer ID from dialup group</td>
<td>Authenticate multiple FortiGate or FortiClient dialup clients that use unique identifiers and unique pre-shared keys (or unique pre-shared keys only) through the same VPN tunnel. You must create a dialup user group for authentication purposes. Select the group from the list next to the Peer ID from dialup group option. You must set Mode to Aggressive when the dialup clients use unique identifiers and unique pre-shared keys. If the dialup clients use unique pre-shared keys only, you can set Mode to Main if there is only one dialup Phase 1 configuration for this interface IP address.</td>
</tr>
<tr>
<td>Phase 1 Proposal</td>
<td>The encryption and authentication algorithms used to generate keys for the IKE SA. There must be a minimum of one combination. The remote peer or client must be configured to use at least one of the proposals that you define.</td>
</tr>
</tbody>
</table>
| **Encryption** | The following symmetric-key encryption algorithms are available:
 - *DES*: Digital Encryption Standard, a 64-bit block algorithm that uses a 56-bit key.
 - *3DES*: triple-DES; plain text is encrypted three times by three keys.
 - *AES128GCM*: AES in Galois/Counter Mode, a 128-bit block algorithm that uses a 128-bit key. Only available for IKEv2.
 - *AES192*: a 128-bit block algorithm that uses a 192-bit key.
 - *AES256*: a 128-bit block algorithm that uses a 256-bit key.
 - *AES256GCM*: AES in Galois/Counter Mode, a 128-bit block algorithm that uses a 256-bit key. Only available for IKEv2.
 - *CHACHA20POLY1305*: a 128-bit block algorithm that uses a 128-bit key and a symmetric cipher. Only available for IKEv2. See also HMAC settings. |
| **Authentication** | The following message digests that check the message authenticity during an encrypted session are available:
 - *MD5*: message digest 5.
 - *SHA1*: secure hash algorithm 1; a 160-bit message digest.
 - *SHA256*: a 256-bit message digest.
 - *SHA384*: a 384-bit message digest.
 - *SHA512*: a 512-bit message digest. |
In IKEv2, encryption algorithms include authentication, but a PRF (pseudo random function) is still required (PRFSHA1, PRFSHA256, PRFSHA384, PRFSHA512). See also HMAC settings.

<table>
<thead>
<tr>
<th>Diffie-Hellman Groups</th>
<th>Asymmetric key algorithms used for public key cryptography. Select one or more from groups 1, 2, 5, and 14 through 32. At least one of the Diffie-Hellman Groups (DH) settings on the remote peer or client must match one the selections on the FortiGate. Failure to match one or more DH groups will result in failed negotiations.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Lifetime</td>
<td>The time (in seconds) that must pass before the IKE encryption key expires. When the key expires, a new key is generated without interrupting service. The keylife can be from 120 to 172,800 seconds.</td>
</tr>
</tbody>
</table>
| Local ID | Optional setting. This value must match the peer ID value given for the remote VPN peer’s Peer Options.
 - If the FortiGate will act as a VPN client and you are using peer IDs for authentication purposes, enter the identifier that the FortiGate will supply to the VPN server during the phase 1 exchange.
 - If the FortiGate will act as a VPN client and you are using security certificates for authentication, select the distinguished name (DN) of the local server certificate that the FortiGate will use for authentication purposes. |
| XAUTH | This option supports the authentication of dialup clients. It is only available for IKE version 1.
 - Disable: do not use XAuth.
 - Client: available only if the Remote Gateway is set to Static IP Address or Dynamic DNS. If the FortiGate is a dialup client, enter the user name and password for the FortiGate to authenticate itself to the remote XAuth server.
 - PAP Server, CHAP Server, Auto Server: available only if Remote Gateway is set to Dialup User. Dialup clients authenticate as members of a dialup user group. A user group must be created first for the dialup clients that need access to the network behind the FortiGate. The FortiGate must be configured to forward authentication requests to an external RADIUS or LDAP authentication server. Select the server type based on the encryption method used between the FortiGate, the XAuth client, and the external authentication server. Then select the user group (Inherit from policy or Choose). See Using XAuth authentication on page 1343. |
| Username | User name used for authentication. |
| Password | Password used for authentication. |

Additional CLI configurations

The following phase 1 settings can be configured in the CLI:
VXLAN over IPsec

Packets with a VXLAN header are encapsulated within IPsec tunnel mode.

To configure VXLAN over IPsec:

```plaintext
config vpn ipsec phase1-interface/phase1
  edit ipsec
    set interface <name>
    set encapsulation vxlan/gre
    set encapsulation-address ike/ipv4/ipv6
    set encap-local-gw4 xxx.xxx.xxx.xxx
    set encap-remote-gw xxx.xxx.xxx.xxx
  next
end
```

IPsec tunnel idle timer

Define an idle timer for IPsec tunnels. When no traffic has passed through the tunnel for the configured `idle-timeout` value, the IPsec tunnel will be flushed.

To configure IPsec tunnel idle timeout:

```plaintext
config vpn ipsec phase1-interface
  edit pl
    set idle-timeout [enable | disable]
    set idle-timeoutinterval <integer> IPsec tunnel idle
  timeout in minutes (10 - 43200).
  next
end
```

Monitor tunnel for failover

Monitor a site-to-site tunnel to guarantee operational continuity if the primary tunnel fails. Configure the secondary phase 1 interface to monitor the primary interface.

To configure the monitor:

```plaintext
config vpn ipsec phase1-interface
  edit <secondary phase1-interface>
    set monitor <primary phase1-interface>
  next
end
```

Passive mode

Passive mode turns one side of the tunnel to be a responder only. It does not initiate VPN tunnels either by auto-negotiation, rekey, or traffic initiated behind the FortiGate.

To configure passive mode:

```plaintext
config vpn ipsec phase1-interface
  edit <example>
    set rekey {enable | disable}
    set passive-mode {enable | disable}
    set passive-tunnel-interface {enable | disable}
end
```
The network ID is a Fortinet-proprietary attribute that is used to select the correct phase 1 between IPsec peers, so that multiple IKEv2 tunnels can be established between the same local/remote gateway pairs.

In a dial-up VPN, network-id is in the first initiator message of an IKEv2 phase 1 negotiation. The responder (Hub) uses the network-id to match a phase 1 configuration with a matching network-id. The Hub can then differentiate multiple dial-up phase 1s that are bound to the same underlay interface and IP address. Without a network-id, the Hub cannot have multiple phase 1 dialup tunnels on the same interface.

In static phase 1 configurations, network-id is used with the pair of gateway IPs to negotiate the correct tunnel with a matching network-id. This allows IPsec peers to use the same pair of underlay IPs to establish multiple IPsec tunnels. Without it, only a single tunnel can be established over the same pair of underlay IPs.

To configure the network ID:

```
config vpn ipsec phase1-interface
  edit <example>
    set network-id <integer>
  next
end
```

Dead peer detection

By default, dead peer detection (DPD) sends probe messages every five seconds. If you are experiencing high network traffic, you can experiment with increasing the ping interval. However, longer intervals will require more traffic to detect dead peers, which will result in more traffic.

In a dynamic (dialup) connection, the On Idle option encourages dialup server configurations to more proactively delete tunnels if the peer is unavailable.

In the GUI, the dead peer detection option can be configured when defining phase 1 options. The following CLI commands support additional options for specifying a retry count and a retry interval.

For example, enter the following to configure DPD on the existing IPsec phase 1 configuration to use 15-second intervals and to wait for three missed attempts before declaring the peer dead and taking action.

To configure DPD:

```
config vpn ipsec phase1-interface
  edit <value>
    set dpd [disable | on-idle | on-demand]
    set dpd-retryinveral 15
    set dpd-retrycount 3
```
DPD scalability

On a dialup server, if many VPN connections are idle, the increased DPD exchange could negatively impact the performance/load of the daemon. The on-demand option in the CLI triggers DPD when IPsec traffic is sent, but no reply is received from the peer.

When there is no traffic and the last DPD-ACK had been received, IKE will not send DPDs periodically. IKE will only send out DPDs if there are outgoing packets to send, but no inbound packets have since been received.

HMAC settings

The FortiGate uses the HMAC based on the authentication proposal that is chosen in phase 1 or phase 2 of the IPsec configuration. Each proposal consists of the encryption-hash pair (such as 3des-sha256). The FortiGate matches the most secure proposal to negotiate with the peer.

To view the chosen proposal and the HMAC hash used:

```
# diagnose vpn ike gateway list
```

```
vd: root/0
name: MPLS
version: 1
interface: port1 3
addr: 192.168.2.5:500 -> 10.10.1.1:500
tun_id: 10.10.10.1
virtual-interface-addr: 172.31.0.2 -> 172.31.0.1
created: 1015820s ago
IKE SA: created 1/13 established 1/13 time 10/1626/21010 ms
IPsec SA: created 1/24 established 1/24 time 0/11/30 ms

id/spi: 124 43b087daa99f7733/6a8473e58cd8990a
direction: responder
status: established 68693-68693s ago = 10ms
proposal: 3des-sha256
key: e0fa6ab8dc509b33-aa2cc54999b1823-c3cb9c337432646e
lifetime/rekey: 86400/17436
DPD sent/recv: 000001e1/00000000
```

Choosing IKE version 1 and 2

If you create a route-based VPN, you have the option of selecting IKE version 2. Otherwise, IKE version 1 is used.

IKEv2, defined in RFC 4306, simplifies the negotiation process that creates the security association (SA).

If you select IKEv2:
- There is no choice in phase 1 of aggressive or main mode.
- Extended authentication (XAUTH) is not available.
- You can utilize EAP and MOBIKE.
Revised authentication in IKEv2

This feature provides the option to control whether a device requires its peer to re-authenticate or whether re-key is sufficient. It does not influence the re-authentication or re-key behavior of the device itself, which is controlled by the peer (the default being to re-key). This solution is in response to RFC 4478. As described by the IETF, "the purpose of this is to limit the time that security associations (SAs) can be used by a third party who has gained control of the IPsec peer."

To configure IKE SA re-authentication:

```plaintext
config vpn ipsec phase1-interface
  edit pl
    set reauth [enable | disable]
  next
end
```

IKEv2 quick crash detection

There is support for IKEv2 quick crash detection (QCD) as described in RFC 6290.

RFC 6290 describes a method in which an IKE peer can quickly detect that the gateway peer it has and established an IKE session with has rebooted, crashed, or otherwise lost IKE state. When the gateway receives IKE messages or ESP packets with unknown IKE or IPsec SPIs, the IKEv2 protocol allows the gateway to send the peer an unprotected IKE message containing INVALID_IKE_SPI or INVALID_SPI notification payloads.

RFC 6290 introduces the concept of a QCD token, which is generated from the IKE SPIs and a private QCD secret, and exchanged between peers during the protected IKE AUTH exchange.

To configure QCD:

```plaintext
config system settings
  set ike-quick-crash-detect [enable | disable]
end
```

IKEv1 quick crash detection

Based on the IKEv2 QCD feature previously described, IKEv1 QCD is implemented using a new IKE vendor ID (Fortinet Quick Crash Detection) so both endpoints must be FortiGates. The QCD token is sent in the phase 1 exchange and must be encrypted, so this is only implemented for IKEv1 in main mode (aggressive mode is not supported as there is no available AUTH message to include the token). Otherwise, the feature works the same as in IKEv2 (RFC 6290).

IKEv1 fragmentation

UDP fragmentation can cause issues in IPsec when either the ISP or perimeter firewall(s) cannot pass or fragment the oversized UDP packets that occur when using a very large public security key (PSK). The result is that IPsec tunnels do not come up. The solution is IKE fragmentation.

For most configurations, enabling IKE fragmentation allows connections to automatically establish when they otherwise might have failed due to intermediate nodes dropping IKE messages containing large certificates, which typically push the packet size over 1500 bytes.

FortiOS will fragment a packet on sending if only all the following are true:

- Phase 1 contains set fragmentation enable.
- The packet is larger than the minimum MTU (576 for IPv4, 1280 for IPv6).
- The packet is being re-transmitted.
By default, IKE fragmentation is enabled.

To configure IKEv1 fragmentation:

```
config vpn ipsec phasel-interface
   edit 1
   set fragmentation [enable | disable]
next
end
```

IKEv2 fragmentation

RFC 7383 requires each fragment to be individually encrypted and authenticated. With IKEv2, a copy of the unencrypted payloads around for each outgoing packet would need to be kept in case the original single packet was never answered and would retry with fragments. With the following implementation, if the IKE payloads are greater than a configured threshold, the IKE packets are preemptively fragmented and encrypted.

To configure IKEv2 fragmentation:

```
config vpn ipsec phasel-interface
   edit ike
   set ike-version 2
   set fragmentation [enable|disable]
   set fragmentation-mtu <500-16000>
next
end
```

IPsec global IKE embryonic limit

When trying to establish thousands of tunnels simultaneously, a situation can arise where new negotiations starve other SAs from progressing to an established state in IKEv2. The IKE daemon can prioritize established SAs, offload groups 20 and 21 to CP9, and optimize the default embryonic limits for mid- and high-end platforms. The IKE embryonic limit can be configured in the CLI.

```
config system ike
   set embryonic-limit <integer>
end
```

embryonic-limit <integer>
Set the maximum number of IPsec tunnels to negotiate simultaneously (50 - 20000, default = 1000).

To configure an IKE embryonic limit of 50:

```
config system ike
   set embryonic-limit 50
end
```

Pre-shared key vs digital certificates

A FortiGate can authenticate itself to remote peers or dialup clients using either a pre-shared key or a digital certificate.
Pre-shared key

Using a pre-shared key is less secure than using certificates, especially if it is used alone, without requiring peer IDs or extended authentication (XAuth). There also needs to be a secure way to distribute the pre-shared key to the peers.

If you use pre-shared key authentication alone, all remote peers and dialup clients must be configured with the same pre-shared key. Optionally, you can configure remote peers and dialup clients with unique pre-shared keys. On the FortiGate, these are configured in user accounts, not in the phase 1 settings.

The pre-shared key must contain at least six printable characters and should be known by network administrators. For optimum protection against currently known attacks, the key must consist of a minimum of 16 randomly chosen alphanumeric characters. The limit is 128 characters.

If you authenticate the FortiGate using a pre-shared key, you can require remote peers or dialup clients to authenticate using peer IDs, but not client certificates.

To authenticate the FortiGate using a pre-shared key:

1. Go to VPN > IPsec Tunnels and create a new tunnel, or edit an existing one.
2. Configure or edit the Network section as needed.
3. Configure or edit the Authentication settings as follows:

<table>
<thead>
<tr>
<th>Method</th>
<th>Pre-shared Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-shared Key</td>
<td><string></td>
</tr>
<tr>
<td>IKE Version</td>
<td>1 or 2</td>
</tr>
<tr>
<td>Mode</td>
<td>Aggressive or Main</td>
</tr>
<tr>
<td>Peer Options</td>
<td>Select an Accept Type and the corresponding peer. Options vary based on the Remote Gateway and Authentication Method settings in the Network section. Peer Options are only available in Aggressive mode.</td>
</tr>
</tbody>
</table>

4. For the Phase 1 Proposal section, keep the default settings unless changes are needed to meet your requirements.
5. Optionally, for authentication parameters for a dialup user group, define XAUTH parameters.
6. Click OK.

Digital certificates

To authenticate the FortiGate using digital certificates, you must have the required certificates installed on the remote peer and on the FortiGate. The signed server certificate on one peer is validated by the presence of the root certificate installed on the other peer. If you use certificates to authenticate the FortiGate, you can also require the remote peers or dialup clients to authenticate using certificates. See Site-to-site VPN with digital certificate on page 1365 for a detailed example.

To authenticate the FortiGate using a digital certificate:

1. Go to VPN > IPsec Tunnels and create a new tunnel, or edit an existing one.
2. Configure or edit the Network section as needed.
3. Configure or edit the **Authentication** settings as follows:

<table>
<thead>
<tr>
<th>Method</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate Name</td>
<td>Select the certificate used to identify this FortiGate. If there are no imported certificates, use Fortinet_Factory.</td>
</tr>
<tr>
<td>IKE Version</td>
<td>1 or 2</td>
</tr>
<tr>
<td>Mode</td>
<td>Aggressive is recommended.</td>
</tr>
<tr>
<td>Peer Options</td>
<td>For Accept Type, select Peer certificate and select the peer and the CA certificate used to authenticate the peer. If the other end is using the Fortinet_Factory certificate, then use the Fortinet_CA certificate here.</td>
</tr>
</tbody>
</table>

4. For the **Phase 1 Proposal** section, keep the default settings unless changes are needed to meet your requirements.

5. Optionally, for authentication parameters for a dialup user group, define **XAUTH** parameters.

6. Click **OK**.

Using XAuth authentication

Extended authentication (XAuth) increases security by requiring remote dialup client users to authenticate in a separate exchange at the end of phase 1. XAuth draws on existing FortiGate user group definitions and uses established authentication mechanisms such as PAP, CHAP, RADIUS, and LDAP to authenticate dialup clients. You can configure a FortiGate to function either as an XAuth server or client. If the server or client is attempting a connection using XAuth and the other end is not using XAuth, the failed connection attempts that are logged will not specify XAuth as the reason.

XAuth server

A FortiGate can act as an XAuth server for dialup clients. When the phase 1 negotiation completes, the FortiGate challenges the user for a user name and password. It then forwards the user’s credentials to an external RADIUS or LDAP server for verification.

If the user records on the RADIUS server have suitably configured Framed-IP-Address fields, you can assign client virtual IP addresses by XAuth instead of from a DHCP address range.

The authentication protocol you use for XAuth depends on the capabilities of the authentication server and the XAuth client:

- Select **PAP Server** whenever possible.
- You must select **PAP Server** for all implementations of LDAP and some implementations of Microsoft RADIUS.
- Select **Auto Server** when the authentication server supports **CHAP Server** but the XAuth client does not. The FortiGate will use PAP to communicate with the XAuth client and CHAP to communicate with the authentication server. You can also use **Auto Server** to allow multiple source interfaces to be defined in an IPsec/IKE policy.

Before you begin, create user accounts and user groups to identify the dialup clients that need to access the network behind the FortiGate dialup server. If password protection will be provided through an external RADIUS or LDAP server, you must configure the FortiGate dialup server to forward authentication requests to the authentication server.

To configure XAuth to authenticate a dialup user group:

1. On the FortiGate dialup server, go to **VPN > IPsec Tunnels** and create a new tunnel, or edit an existing one.
2. Configure or edit the **Network, Authentication, and Phase 1 Proposal** sections as needed.
3. In the XAUTH section, select the encryption method Type to use between the XAuth client, the FortiGate, and the authentication server.

4. For User Group:
 a. Click Inherit from policy for multiple user groups defined in the IPSec/IKE policy, or
 b. Click Choose and in the dropdown, select the user group that needs to access the private network behind the FortiGate.

 ![Tip]

 Only one user group may be defined for Auto Server.

5. Click OK.
6. Create as many policies as needed, specifying the source user(s) and destination address.

XAuth client

If the FortiGate acts as a dialup client, the remote peer, acting as an XAuth server, might require a username and password. You can configure the FortiGate as an XAuth client with its own username and password, which it provides when challenged.

To configure the FortiGate dialup client as an XAuth client:

1. On the FortiGate dialup client, go to VPN > IPSec Tunnels and create a new tunnel, or edit an existing one.
2. Configure or edit the Network, Authentication, and Phase 1 Proposal sections as needed.
3. In the XAUTH section, for Type, select Client.
4. For Username, enter the FortiGate PAP, CHAP, RADIUS, or LDAP user name that the FortiGate XAuth server will compare to its records when the FortiGate XAuth client attempts to connect.
5. Enter the Password for the user name.
6. Click OK.

Dynamic IPSec route control

You can add a route to a peer destination selector by using the add-route option, which is available for all dynamic IPSec phases 1 and 2, for both policy-based and route-based IPSec VPNs.

The add-route option adds a route to the FortiGate routing information base when the dynamic tunnel is negotiated. You can use the distance and priority options to set the distance and priority of this route. If this results in a route with the lowest distance, it is added to the FortiGate forwarding information base.

You can also enable add-route in any policy-based or route-based phase 2 configuration that is associated with a dynamic (dialup) phase 1. In phase 2, add-route can be enabled, disabled, or set to use the same route as phase 1.

The add-route option is enabled by default.

To configure add-route in phase 1:

```bash
cfg vpn ipsec
   edit <name>
      set type dynamic
      set add-route {enable | disable}
```
To configure add-route in phase 2:

```
config vpn ipsec {phase2 | phase2-interface}
  edit <name>
    set add-route {phase1 | enable | disable}
  next
end
```

Blocking IPsec SA negotiation

For interface-based IPsec, IPsec SA negotiation blocking can only be removed if the peer offers a wildcard selector. If a wildcard selector is offered, then the wildcard route will be added to the routing table with the distance/priority value configured in phase 1. If that is the route with the lowest distance, it will be installed into the forwarding information base. In this scenario, it is important to ensure that the distance value configured for phase 1 is set appropriately.

Phase 2 configuration

After phase 1 negotiations end successfully, phase 2 begins. In Phase 2, the VPN peer or client and the FortiGate exchange keys again to establish a secure communication channel. The phase 2 proposal parameters select the encryption and authentication algorithms needed to generate keys for protecting the implementation details of security associations (SAs). The keys are generated automatically using a Diffie-Hellman algorithm.

The basic phase 2 settings associate IPsec phase 2 parameters with the phase 1 configuration that specifies the remote end point of the VPN tunnel. In most cases, you need to configure only basic Phase 2 settings.

Some settings can be configured in the CLI. The following options are available in the VPN Creation Wizard after the tunnel is created:

<table>
<thead>
<tr>
<th>New Phase 2</th>
<th>Phase 2 definition name.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Local Address</td>
<td>A value of 0.0.0.0/0 means all IP addresses behind the local VPN peer. Add a specific address or range to allow traffic from and to only this local address. See Quick mode selectors on page 1347.</td>
</tr>
<tr>
<td>Remote Address</td>
<td>Enter the destination IP address that corresponds to the recipients or network behind the remote VPN peer. A value of 0.0.0.0/0 means all IP addresses behind the remote VPN peer. See Quick mode selectors on page 1347.</td>
</tr>
<tr>
<td>Advanced</td>
<td>Select the encryption and authentication algorithms that will be proposed to the remote VPN peer. To establish a VPN connection, at least one of the proposals specified must match the configuration on the remote peer.</td>
</tr>
</tbody>
</table>
| **Encryption** | The following symmetric-key encryption algorithms are available:
 - NULL: do not use an encryption algorithm.
 - DES: Digital Encryption Standard, a 64-bit block algorithm that uses a |
56-bit key.

- **3DES**: triple-DES; plain text is encrypted three times by three keys.
- **AES128**: Advanced Encryption Standard, a 128-bit block algorithm that uses a 128-bit key.
- **AES128GCM**: AES in Galois/Counter Mode, a 128-bit block algorithm that uses a 128-bit key. Only available for IKEv2.
- **AES192**: a 128-bit block algorithm that uses a 192-bit key.
- **AES256**: a 128-bit block algorithm that uses a 256-bit key.
- **AES256GCM**: AES in Galois/Counter Mode, a 128-bit block algorithm that uses a 256-bit key. Only available for IKEv2.
- **CHACHA20POLY1305**: a 128-bit block algorithm that uses a 128-bit key and a symmetric cipher. Only available for IKEv2.

See [ChaCha20 and Poly1305 AEAD cipher](#) on page 1349, AES-GCM for IKEv2 phase 1 on page 1349, and HMAC settings.

Authentication

The following message digests that check the message authenticity during an encrypted session are available:

- **NULL**: do not use a message digest.
- **MD5**: message digest 5.
- **SHA1**: secure hash algorithm 1; a 160-bit message digest.
- **SHA256**: a 256-bit message digest.
- **SHA384**: a 384-bit message digest.
- **SHA512**: a 512-bit message digest.

See also [HMAC settings](#).

Enable Replay Detection

Replay attacks occur when an unauthorized party intercepts a series of IPsec packets and replays them back into the tunnel.

Replay detection allows the FortiGate to check all IPsec packets to see if they have been received before. If any encrypted packets arrive out of order, the FortiGate discards them.

Note that 64-bit extended sequence numbers (as described in RFC 4303, RFC 4304 as an addition to IKEv1, and RFC 5996 for IKEv2) are supported for IPsec when replay detection is enabled.

Enable Perfect Forward Secrecy (PFS)

Perfect forward secrecy (PFS) improves security by forcing a new Diffie-Hellman exchange whenever keylife expires.

Diffie-Hellman Group

Asymmetric key algorithms used for public key cryptography. Select one or more from groups 1, 2, 5, and 14 through 32. At least one of the Diffie-Hellman Groups (DH) settings on the remote peer or client must match one the selections on the FortiGate. Failure to match one or more DH groups will result in failed negotiations.

Local Port

Enter the port number that the local VPN peer uses to transport traffic related to the specified service (protocol number). The range is from 0 to 65535. To specify all ports, select **All**, or enter 0.
Remote Port	Enter the port number that the remote VPN peer uses to transport traffic related to the specified service (protocol number). To specify all ports, select All, or enter 0.
Protocol | Enter the IP protocol number of the service. To specify all services, select All, or enter 0.
Auto-negotiate | Select this option for the tunnel to be automatically renegotiated when the it expires. See Auto-negotiate on page 1348.
Autokey Keep Alive | Select this option for the tunnel to remain active when no data is being processed.
Key Lifetime | Select the method for determining when the phase 2 key expires:
• Seconds
• Kilobytes
• Both
Enter a corresponding value for Seconds and/or Kilobytes in the text boxes. If Both is selected, the key expires when either the time has passed or the number of kilobytes have been processed.

Quick mode selectors

Quick mode selectors determine which IP addresses can perform IKE negotiations to establish a tunnel. By only allowing authorized IP addresses access to the VPN tunnel, the network is more secure.

The default settings are as broad as possible: any IP address or configured address object using any protocol on any port.

While the dropdown menus for specifying an address also show address groups, the use of address groups may not be supported on a remote endpoint device that is not a FortiGate.

When configuring a quick mode selector for Local Address and Remote Address, valid options include IPv4 and IPv6 single addresses, subnets, or ranges.

There are some configurations that require specific selectors:
• The VPN peer is a third-party device that uses specific phase2 selectors.
• The FortiGate connects as a dialup client to another FortiGate, in which case (usually) you must specify a local IP address, IP address range, or subnet. However, this is not required if you are using dynamic routing and mode-cfg.

With FortiOS VPNs, your network has multiple layers of security, with quick mode selectors being an important line of defense:
• Routes guide traffic from one IP address to another.
• Phase 1 and phase 2 connection settings ensure there is a valid remote end point for the VPN tunnel that agrees on the encryption and parameters.
• Quick mode selectors allow IKE negotiations only for allowed peers.
• Security policies control which IP addresses can connect to the VPN.
• Security policies also control what protocols are allowed over the VPN along with any bandwidth limiting.
If you are editing an existing phase 2 configuration, the local address and remote address fields are unavailable if the tunnel has been configured to use firewall addresses as selectors. This option exists only in the CLI.

Using the add-route option

Consider using the `add-route` option to add a route to a peer destination selector in phase 2 to automatically match the settings in phase 1.

To configure add-route:

```plaintext
config vpn ipsec (phase2 | phase2-interface)
   edit <name>
      set add-route (phase1 | enable | disable)
   next
end
```

Auto-negotiate

By default, the phase 2 security association (SA) is not negotiated until a peer attempts to send data. The triggering packet and some subsequent packets are dropped until the SA is established. Applications normally resend this data, so there is no loss, but there might be a noticeable delay in response to the user.

If the tunnel goes down, the auto-negotiate feature (when enabled) attempts to re-establish the tunnel. Auto-negotiate initiates the phase 2 SA negotiation automatically, repeating every five seconds until the SA is established.

Automatically establishing the SA can be important for a dialup peer. It ensures that the VPN tunnel is available for peers at the server end to initiate traffic to the dialup peer. Otherwise, the VPN tunnel does not exist until the dialup peer initiates traffic.

To configure auto-negotiate:

```plaintext
config vpn ipsec phase2
   edit <phase2_name>
      set auto-negotiate enable
   next
end
```

Installing dynamic selectors via auto-negotiate

The IPsec SA connect message generated is used to install dynamic selectors. These selectors can be installed via the auto-negotiate mechanism. When phase 2 has `auto-negotiate` enabled, and phase 1 has `mesh-selector-type` set to `subnet`, a new dynamic selector will be installed for each combination of source and destination subnets. Each dynamic selector will inherit the auto-negotiate option from the template selector and begin SA negotiation. Phase 2 selector sources from dialup clients will all establish SAs without traffic being initiated from the client subnets to the hub.

DHCP

The `dhcp-ipsec` option lets the FortiGate assign VIP addresses to FortiClient dialup clients through a DHCP server or relay. This option is only available if the remote gateway in the phase 1 configuration is set to dialup user, and it only works in policy-based VPNs.

With `dhcp-ipsec`, the FortiGate dialup server acts as a proxy for FortiClient dialup clients that have VIP addresses on the subnet of the private network behind the FortiGate. In this case, the FortiGate dialup server acts as a proxy on the
local private network for the FortiClient dialup client. A host on the network behind the dialup server issues an ARP request, corresponding to the device MAC address of the FortiClient host (when a remote server sends an ARP to the local FortiClient dialup client). The FortiGate then answers the ARP request on behalf of the FortiClient host, and then forwards the associated traffic to the FortiClient host through the tunnel.

Acting as a proxy prevents the VIP address assigned to the FortiClient dialup client from causing possible ARP broadcast problems—the normal and VIP addresses can confuse some network switches when two addresses have the same MAC address.

ChaCha20 and Poly1305 AEAD cipher

In IKEv2 to support RFC 7634, the ChaCha20 and Poly1305 crypto algorithms can be used together as a combined mode AEAD cipher (like AES-GCM) in the `crypto_ftnt cipher` in `cipher_chacha20poly1305.c`:

```c
config vpn ipsec phase2-interface
  edit <name>
    set phasename <name>
    set proposal chacha20poly1305
  next
end
```

AES-GCM for IKEv2 phase 1

In IKEv2 to support RFC 5282, the AEAD algorithm AES-GCM supports 128- and 256-bit variants:

```c
config vpn ipsec phase2-interface
  edit <name>
    set phasename <name>
    set proposal [aes128gcm | aes256gcm]
  next
end
```

VPN security policies

This section explains how to specify the source and destination IP addresses of traffic transmitted through an IPsec VPN, and how to define appropriate security policies.
Defining policy addresses

In a gateway-to-gateway, hub-and-spoke, dynamic DNS, redundant tunnel, or transparent configuration, you need to define a policy address for the private IP address of the network behind the remote VPN peer (for example, 192.168.10.0/255.255.255.0 or 192.168.10.0/24).

In a peer-to-peer configuration, you need to define a policy address for the private IP address of a server or host behind the remote VPN peer (for example, 172.16.5.1/255.255.255.255, 172.16.5.1/32, or 172.16.5.1).

For a FortiGate dialup server in a dialup-client or internet-browsing configuration, the source IP should reflect the IP addresses of the dialup clients:

Defining security policies

Policy-based and route-based VPNs require different security policies.
VPN

- A policy-based VPN requires an IPsec policy. You specify the interface to the private network, the interface to the remote peer and the VPN tunnel. A single policy can enable traffic inbound, outbound, or in both directions.
- A route-based VPN requires an accept policy for each direction. For the source and destination interfaces, you specify the interface to the private network and the virtual IPsec interface (phase 1 configuration) of the VPN. The IPsec interface is the destination interface for the outbound policy and the source interface for the inbound policy. One security policy must be configured for each direction of each VPN interface.

Policy-based VPN

An IPsec policy enables the transmission and reception of encrypted packets, specifies the permitted direction of VPN traffic, and selects the VPN tunnel. In most cases, a single policy is needed to control both inbound and outbound IP traffic through a VPN tunnel. For a detailed example, see Policy-based IPsec tunnel on page 1381. Be aware of the following before creating an IPsec policy.

Allow traffic to be initiated from the remote site

Policies specify which IP addresses can initiate a tunnel. By default, traffic from the local private network initiates the tunnel. When the Allow traffic to be initiated from the remote site option is selected, traffic from a dialup client, or a computer on a remote network, initiates the tunnel. Both can be enabled at the same time for bi-directional initiation of the tunnel.

Outbound and inbound NAT

When a FortiGate operates in NAT mode, you can enable inbound or outbound NAT. Outbound NAT may be performed on outbound encrypted packets or IP packets in order to change their source address before they are sent through the tunnel. Inbound NAT is performed to intercept and decrypt emerging IP packets from the tunnel.

By default, these options are not selected in security policies and can only be set through the CLI.

Defining multiple IPsec policies for the same tunnel

You must define at least one IPsec policy for each VPN tunnel. If the same remote server or client requires access to more than one network behind a local FortiGate, the FortiGate must be configured with an IPsec policy for each network. Multiple policies may be required to configure redundant connections to a remote destination or control access to different services at different times.

To ensure a secure connection, the FortiGate must evaluate policies with Action set to IPsec before ACCEPT and DENY. Because the FortiGate unit reads policies starting at the top of the list, you must move all IPsec policies to the top of the list, and be sure to reorder your multiple IPsec policies that apply to the tunnel so that specific constraints can be evaluated before general constraints. If you create two equivalent IPsec policies for two different tunnels, the system will select the correct policy based on the specified source and destination addresses.

If the policy that grants the VPN connection is limited to certain services, DHCP must be included, otherwise the client will not be able to retrieve a lease from the FortiGate’s (IPsec) DHCP server because the DHCP request (coming out of the tunnel) will be blocked.

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
Adding multiple IPsec policies for the same VPN tunnel can cause conflicts if the policies specify similar source and destination addresses, but have different settings for the same service. When policies overlap in this manner, the system may apply the wrong IPsec policy or the tunnel may fail.

Route-based VPN

When you define a route-based VPN, you create a virtual IPsec interface on the physical interface that connects to the remote peer. You create ordinary accept policies to enable traffic between the IPsec interface and the interface that connects to the private network. This makes configuration simpler than for policy-based VPNs.

To configure policies for a route-based VPN:

1. Go to Policy & Objects > Firewall Policy.
2. Click Create New and define an ACCEPT policy to permit communication between the local private network and the private network behind the remote peer and enter these settings in particular:

<table>
<thead>
<tr>
<th>Name</th>
<th>Enter a name for the security policy.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>Select the interface that connects to the private network behind this FortiGate.</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>Select the IPsec interface you configured.</td>
</tr>
<tr>
<td>Source</td>
<td>Select the address name you defined for the private network behind this FortiGate.</td>
</tr>
<tr>
<td>Destination</td>
<td>Select the address name you defined for the private network behind the remote peer.</td>
</tr>
<tr>
<td>Action</td>
<td>Select ACCEPT.</td>
</tr>
<tr>
<td>NAT</td>
<td>Disable NAT.</td>
</tr>
</tbody>
</table>

3. Click OK.

To permit the remote client to initiate communication, you need to define a security policy for communication in that direction.

4. Click Create New and enter these settings in particular:

<table>
<thead>
<tr>
<th>Name</th>
<th>Enter a name for the security policy.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>Select the IPsec interface you configured.</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>Select the interface that connects to the private network behind this FortiGate.</td>
</tr>
<tr>
<td>Source</td>
<td>Select the address name you defined for the private network behind the remote peer.</td>
</tr>
<tr>
<td>Destination</td>
<td>Select the address name you defined for the private network behind this FortiGate.</td>
</tr>
<tr>
<td>Action</td>
<td>Select ACCEPT.</td>
</tr>
<tr>
<td>NAT</td>
<td>Disable NAT.</td>
</tr>
</tbody>
</table>

5. Click OK.
Blocking unwanted IKE negotiations and ESP packets with a local-in policy

It is not unusual to receive IPsec connection attempts or malicious IKE packets from all over the internet. Malicious parties use these probes to try to establish an IPsec tunnel in order to gain access to your private network. A good way to prevent this is to use local-in policies to deny such traffic.

Sometimes there are malicious attempts using crafted invalid ESP packets. These invalid attempts are automatically blocked by the FOS IPsec local-in handler when it checks the SPI value against the SAs of existing tunnels. The IPsec local-in handler processes the packet instead of the firewall's local-in handler. So when these attempts are blocked, you will notice an unknown SPI message in your VPN logs instead of being silently blocked by your local-in policy. These log messages are rate limited.

Sample log and alert email

Message meets Alert condition

date=2020-08-11 time=09:28:40 devname=toSite1 devid=FGT60Fxxxxxxxxxx logid="0101037131" type="event" subtype="vpn" level="error" vd="root" eventtime=1597163320747963100 tz="-0700" logdesc="IPsec ESP" msg="IPsec ESP" action="error" remip=131.62.25.102 locip=192.157.116.88 remport=40601 locport=500 outintf="wan1" cookies="N/A" user="N/A" group="N/A" xauthuser="N/A" xauthgroup="N/A" assignip=N/A vpntunnel="N/A" status="esp_error" error_num="Received ESP packet with unknown SPI." spi="f6c9e2x1" seq="02000400"

Note that invalid SPIS may not always indicate malicious activity. For example, the SPI may not match during rekey, or when one unit flushes its tunnel SAs. Administrators should collect as much information as possible before making a conclusion.

To block undesirable IPsec connection attempts and IKE packets using a local-in policy:

1. Configure an address group that excludes legitimate IPs:

   ```
   config firewall addrgrp
   edit "All_exceptions"
   set member "all"
   set exclude enable
   set exclude-member "remote-vpn"
   next
   end
   ```

2. Create a local-in policy that blocks IKE traffic from the address group:

   ```
   config firewall local-in-policy
   edit 1
   set intf "wan1"
   set srcaddr "All_exceptions"
   set dstaddr "all"
   set service "IKE"
   set schedule "always"
   next
   end
   ```

 The default action is deny.
3. Verify the traffic blocked by the local-in policy:

```
# diagnose debug flow filter dport 500
# diagnose debug flow trace start 10
# diagnose debug enable

id=20085 trace_id=290 func=print_pkt_detail line=5588 msg="vd-root:0 received a packet (proto=17, 10.10.10.13:500->10.10.10.1:500) from wan1."
id=20085 trace_id=290 func=init_ip_session_common line=5760 msg="allocate a new session-003442e7"
id=20085 trace_id=290 func=init_ip_route_input_common line=2598 msg="find a route: flag=84000000 gw=10.10.10.1 via root"
    id=20085 trace_id=290 func=fw_local_in_handler line=430 msg="iprope_in_check() check failed on policy 1, drop"
```

Configurable IKE port

Some ISPs block UDP port 500 or UDP port 4500, preventing an IPsec VPN from being negotiated and established. To accommodate this, the IKE port can be changed.

To set the IKE port:

```
config system settings
    set ike-port <integer>
end
```

| ike-port | UDP port for IKE/IPsec traffic (1024 - 65535, default = 500). |

Example 1: site-to-site VPN without NAT

In this example, the IKE port is set to 6000 on the two site-to-site VPN gateways. There is no NAT between the VPN gateways, but the ISP has blocked UDP port 500. A site-to-site VPN is established using the defined IKE port.

To set the IKE port:

```
config system settings
    set ike-port 6000
end
```

To configure and check the site-to-site VPN:

1. Configure the phase1 and phase2 interfaces:

```
config vpn ipsec phase1-interface
    edit "s2s"
        set interface "port27"
        set ike-version 2
        set peertype any
        set net-device disable
        set proposal aes128-sha256 aes256-sha256 aes128gcm-prfsha256 aes256gcm-prfsha384 chacha20poly1305-prfsha256
        set wizard-type static-fortigate
        set remote-gw 11.101.1.1
```
set psksecret **********
next
end

config vpn ipsec phase2-interface
edit "s2s"
 set phase1name "s2s"
 set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256 aes128gcm
 set src-addr-type name
 set dst-addr-type name
 set src-name "s2s_local"
 set dst-name "s2s_remote"
next
end

2. Check the IKE gateway list and confirm that the specified port is used:

 # diagnose vpn ike gateway list

 vd: root/0
 name: s2s
 version: 2
 interface: port27 17
 addr: 173.1.1.1:6000 -> 11.101.1.1:6000
 tun_id: 11.101.1.1
 remote_location: 0.0.0.0
 created: 194s ago
 PPK: no
 IKE SA: created 1/2 established 1/2 time 0/4500/9000 ms
 IPsec SA: created 1/2 established 1/2 time 0/4500/9000 ms
 ...

3. Check the VPN tunnel list:

 # diagnose vpn tunnel list
 list all ipsec tunnel in vd 0

 name=s2s ver=2 serial=1 173.1.1.1:6000->11.101.1.1:6000 tun_id=11.101.1.1 dst_mtu=1500
dpd-link=on remote_location=0.0.0.0 weight=1
bound_if=17 lgwy=static/1 tun=tunnel/15 mode=auto/1 encap=none/520 options[0208]=npu
frag-rcf run_state=0 accept_traffic=1 overlay_id=0
 ...

Example 2: dialup VPN with NAT

In this example, the IKE port is set to 5000 on the VPN gateway and the dialup peer. The dialup peer is behind NAT, so NAT traversal (NAT-T) is used. The ISP blocks both UDP port 500 and UDP port 4500. The VPN connection is initiated on UDP port 5000 from the dialup VPN client and remains on port 5000 since NAT-T floating to 4500 is only required when the IKE port is 500.

To set the IKE port:

config system settings
 set ike-port 5000
end
To configure and check the dialup VPN with NAT:

1. Configure the phase1 and phase2 interfaces:

```plaintext
config vpn ipsec phase1-interface
edit "server"
   set type dynamic
   set interface "port27"
   set ike-version 2
   set peertype any
   set net-device disable
   set proposal aes128-sha256 aes256-sha256 aes128gcm-prfsha256 aes256gcm-prfsha384
   chacha20poly1305-prfsha256
   set dpd on-idle
   set wizard-type static-fortigate
   set psksecret **********
   set dpd-retryinterval 60
next
end

config vpn ipsec phase2-interface
edit "server"
   set phosphasename "server"
   set proposal aes128-shal aes256-shal aes128-sha256 aes256-sha256 aes128gcm
   aes256gcm chacha20poly1305
   set src-addr-type name
   set dst-addr-type name
   set src-name "server_local"
   set dst-name "server_remote"
next
end
```

2. Check the IKE gateway list and confirm that the specified port is used:

```plaintext
# diagnose vpn ike gateway list

vd: root/0
name: server_0
version: 2
interface: port27 17
addr: 173.1.1.1:5000 -> 173.1.1.2:65416
tun_id: 173.1.1.2
remote_location: 0.0.0.0
created: 90s ago
nat: peer
PPK: no
IKE SA: created 1/1 established 1/1 time 0/0/0 ms
IPsec SA: created 1/1 established 1/1 time 0/0/0 ms
...
```

3. Check the VPN tunnel list:

```plaintext
# diagnose vpn tunnel list
list all ipsec tunnel in vd 0
---------------------------------------------
name=server_0 ver=2 serial=a 173.1.1.1:5000->173.1.1.2:65416 tun_id=173.1.1.2 dst_
mtu=1500 dpd-link=on remote_location=0.0.0.0 weight=1
bound_if=17 lgwy=static/1 tun=tunnel/15 mode=dial_inst/3 encap=none/904 options
```
IPsec VPN IP address assignments

When a user disconnects from a VPN tunnel, it is not always desirable for the released IP address to be used immediately. In IPsec VPN, IP addresses can be held for the specified delay interval before being released back into the pool for assignment. The first-available address assignment method is still used.

Example

In this example, two PCs connect to the VPN. The IP address reuse delay interval is used to prevent a released address from being reused for at least four minutes. After the interval elapses, the IP address becomes available to clients again. Dual stack address assignment (both IPv4 and IPv6) is used.

To configure IPsec VPN with an IP address reuse delay interval:

1. Configure the IPsec phase1 interface, setting the IP address reuse delay interval to 240 seconds:

```fortigate
config vpn ipsec phase1-interface
edit "FCT"
   set type dynamic
   set interface "port27"
   set mode aggressive
   set peertype any
   set net-device disable
   set mode-cfg enable
   set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
   set wizard-type dialup-forticlient
   set xauthtype auto
   set authusgrp "local-group"
   set ipv4-start-ip 10.20.1.1
   set ipv4-end-ip 10.20.1.100
   set dns-mode auto
   set ipv4-split-include "FCT_split"
   set ipv6-start-ip 2001::1
   set ipv6-end-ip 2001::2
   set ip-delay-interval 240
   set save-password enable
   set psksecret **********
next
end
```
2. Configure the IPsec phase2 interface:

```plaintext
config vpn ipsec phase2-interface
edit "FCT"
   set phaselname "FCT"
   set proposal aes256-sha1 aes256-sha1 aes256-sha256 aes256-sha256 aes256gcm
   aes256gcm chacha20poly1305
next
edit "FCT6"
   set phaselname "FCT"
   set proposal aes256-sha1 aes256-sha1 aes256-sha256 aes256-sha256 aes256gcm
   aes256gcm chacha20poly1305
   set src-addr-type subnet6
   set dst-addr-type subnet6
next
end
```

To test the results:

1. Connect to the VPN with FortiClient 1 on PC1 then check the assigned IP address:

   ```plaintext
   # diagnose vpn ike gateway list
   ```

   ```plaintext
   vd: root/0
   name: FCT_0
   version: 1
   interface: port27 17
   addr: 173.1.1.1:4500 -> 173.1.1.2:60417
   tun_id: 173.1.1.2
   remote_location: 0.0.0.0
   virtual-interface-addr: 169.254.1.1 -> 169.254.1.1
   created: 14s ago
   xauth-user: userc
   2FA: no
   FortiClient UID: 7C0897D80C8E4B6DAC775DD6B0F93BAA
   assigned IPv4 address: 10.20.1.1/128
   assigned IPv6 address: 2001::1/128
   nat: peer
   IKE SA: created 1/1 established 1/1 time 100/100/100 ms
   IPsec SA: created 2/2 established 2/2 time 0/5/10 ms
   ```

2. Disconnect FortiClient 1 and connect with FortiClient 2. The IP address assigned to FortiClient 1 is not released to the pool, and a different IP address is assigned to FortiClient 2:

   ```plaintext
   # diagnose vpn ike gateway list
   ```

   ```plaintext
   vd: root/0
   name: FCT_0
   version: 1
   ```
interface: port27 17
addr: 173.1.1.1:4500 -> 173.1.1.2:64916
tun_id: 173.1.1.2
remote_location: 0.0.0.0
virtual-interface-addr: 169.254.1.1 -> 169.254.1.1
created: 6s ago
xauth-user: usera
2FA: no
FortiClient UID: EAF90E297393456AB546A041066C0720
assigned IPv4 address: 10.20.1.2/255.255.255.255
assigned IPv6 address: 2001::2/128
nat: peer
IKE SA: created 1/1 established 1/1 time 110/110/110 ms
IPsec SA: created 2/2 established 2/2 time 0/5/10 ms

id/spi: 3 b25141d5a915e67e/b32decdb8cf98318
direction: responder
status: established 6-6s ago = 110ms
proposal: aes256-sha256
key: 374ab753f3207ea0-83496b5cb24b5a8d-c51da1fd505cf3a4-727884839897808a
lifetime/rekey: 86400/86123
DPD sent/recv: 00000000/00000453

3. Wait for 240 seconds, then disconnect and reconnect FortiClient 2. The IP address previously assigned to FortiClient 1 has been released back to the pool, and is assigned to FortiClient 2:

diagnose vpn ike gateway list

vd: root/0
name: FCT_0
version: 1
interface: port27 17
addr: 173.1.1.1:4500 -> 173.1.1.2:64916
tun_id: 173.1.1.2
remote_location: 0.0.0.0
virtual-interface-addr: 169.254.1.1 -> 169.254.1.1
created: 20s ago
xauth-user: usera
2FA: no
FortiClient UID: EAF90E297393456AB546A041066C0720
assigned IPv4 address: 10.20.1.1/255.255.255.255
assigned IPv6 address: 2001::1/128
nat: peer
IKE SA: created 1/1 established 1/1 time 100/100/100 ms
IPsec SA: created 2/2 established 2/2 time 0/0/0 ms

id/spi: 4 fb1fbd0c12f5476/aa06a2de76964f63
direction: responder
status: established 20-20s ago = 100ms
proposal: aes256-sha256
key: af43f1bb876dc79c-16448592fe608dc3-f251746d71b2c35d-c848e8c03bf738e9
lifetime/rekey: 86400/86109
DPD sent/recv: 00000000/000000a9
Instead of waiting for 240 seconds, you can instead use the `diagnose vpn ike gateway flush` command to release the previously used IP addresses back into the pool.

Site-to-site VPN

A site-to-site VPN connection lets branch offices use the Internet to access the main office's intranet. A site-to-site VPN allows offices in multiple, fixed locations to establish secure connections with each other over a public network such as the Internet.

The following sections provide instructions for configuring site-to-site VPNs:

- FortiGate-to-FortiGate on page 1360
- FortiGate-to-third-party on page 1388

FortiGate-to-FortiGate

This section contains the following topics about FortiGate-to-FortiGate VPN configurations:

- Basic site-to-site VPN with pre-shared key on page 1360
- Site-to-site VPN with digital certificate on page 1365
- Site-to-site VPN with overlapping subnets on page 1372
- GRE over IPsec on page 1376
- Policy-based IPsec tunnel on page 1381

Basic site-to-site VPN with pre-shared key

This is a sample configuration of IPsec VPN authenticating a remote FortiGate peer with a pre-shared key.

To configure IPsec VPN authenticating a remote FortiGate peer with a pre-shared key in the GUI:

1. Configure the HQ1 FortiGate.
 a. Go to `VPN > IPsec Wizard` and configure the following settings for `VPN Setup`:
 i. Enter a VPN name.
 ii. For `Template Type`, select `Site to Site`.
 iii. For `Remote Device Type`, select `FortiGate`.
 iv. For `NAT Configuration`, select `No NAT Between Sites`.
 v. Click `Next`.

b. Configure the following settings for **Authentication**:
 i. For **Remote Device**, select IP Address.
 ii. For the IP address, enter **172.16.202.1**.
 iii. For **Outgoing interface**, enter **port1**.
 iv. For **Authentication Method**, select **Pre-shared Key**.
 v. In the **Pre-shared Key** field, enter **sample** as the key.
 vi. Click **Next**.

c. Configure the following settings for **Policy & Routing**:
 i. From the **Local Interface** dropdown menu, select the local interface.
 ii. Configure the **Local Subnets** as **10.1.100.0**.
 iii. Configure the **Remote Subnets** as **172.16.101.0**.
 iv. Click **Create**.

2. Configure the HQ2 FortiGate.
 a. Go to **VPN > IPsec Wizard** and configure the following settings for **VPN Setup**:
 i. Enter a **VPN name**.
 ii. For **Template Type**, select **Site to Site**.
 iii. For **Remote Device Type**, select **FortiGate**.
 iv. For **NAT Configuration**, select **No NAT Between Sites**.
 v. Click **Next**.
 b. Configure the following settings for **Authentication**:
 i. For **Remote Device**, select IP Address.
 ii. For the IP address, enter **172.16.2001**.
 iii. For **Outgoing interface**, enter **port25**.
 iv. For **Authentication Method**, select **Pre-shared Key**.
 v. In the **Pre-shared Key** field, enter **sample** as the key.
 vi. Click **Next**.
 c. Configure the following settings for **Policy & Routing**:
 i. From the **Local Interface** dropdown menu, select the local interface.
 ii. Configure **Local Subnets** as **172.16.101.0**.
 iii. Configure the **Remote Subnets** as **10.1.100.0**.
 iv. Click **Create**.

To configure IPsec VPN authenticating a remote FortiGate peer with a pre-shared key using the CLI:

1. Configure the WAN interface and default route. The WAN interface is the interface connected to the ISP. The IPsec tunnel is established over the WAN interface.
 a. Configure HQ1.

```bash
config system interface
eedit "port1"
  set vdom "root"
  set ip 172.16.200.1 255.255.255.0
next
end
config router static
eedit 1
  set gateway 172.16.200.3
  set device "port1"
```
b. Configure HQ2.

```fortios```

```fortios```

2. Configure the internal (protected subnet) interface. The internal interface connects to the corporate internal network. Traffic from this interface routes out the IPsec VPN tunnel.

a. Configure HQ1.

```fortios```

```fortios```

b. Configure HQ2.

```fortios```

```fortios```

3. Configure the IPsec phase1-interface.

a. Configure HQ1.

```fortios```

```fortios```

b. Configure HQ2.

```fortios```

```fortios```
4. Configure the IPsec phase2-interface.
 a. Configure HQ1.

```
config vpn ipsec phase2-interface
  edit "to_HQ2"
    set phase1name "to_HQ2"
    set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
    set auto-negotiate enable
  next
end
```

b. Configure HQ2.

```
config vpn ipsec phase2-interface
  edit "to_HQ2"
    set phase1name "to_HQ1"
    set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256 aes128gcm
    aes256gcm chacha20poly1305
    set auto-negotiate enable
  next
end
```

5. Configure the static routes. Two static routes are added to reach the remote protected subnet. The blackhole route is important to ensure that IPsec traffic does not match the default route when the IPsec tunnel is down.
 a. Configure HQ1.

```
config router static
  edit 2
    set dst 172.16.101.0 255.255.255.0
    set device "to_HQ2"
  next
  edit 3
    set dst 172.16.101.0 255.255.255.0
    set blackhole enable
    set distance 254
  next
end
```

b. Configure HQ2.

```
config router static
  edit 2
    set dst 10.1.100.0 255.255.255.0
    set device "to_HQ1"
  next
  edit 3
    set dst 10.1.100.0 255.255.255.0
    set blackhole enable
    set distance 254
  next
end
```
6. Configure two firewall policies to allow bidirectional IPsec traffic flow over the IPsec VPN tunnel.
 a. Configure HQ1.

```plaintext
config firewall policy
  edit 1
  set name "inbound"
  set srcintf "to_HQ2"
  set dstintf "dmz"
  set srcaddr "172.16.101.0"
  set dstaddr "10.1.100.0"
  set action accept
  set schedule "always"
  set service "ALL"
next
edit 2
  set name "outbound"
  set srcintf "dmz"
  set dstintf "to_HQ2"
  set srcaddr "10.1.100.0"
  set dstaddr "172.16.101.0"
  set action accept
  set schedule "always"
  set service "ALL"
next
end
```

b. Configure HQ2.

```plaintext
config firewall policy
  edit 1
  set name "inbound"
  set srcintf "to_HQ1"
  set dstintf "port9"
  set srcaddr "10.1.100.0"
  set dstaddr "172.16.101.0"
  set action accept
  set schedule "always"
  set service "ALL"
next
edit 2
  set name "outbound"
  set srcintf "port9"
  set dstintf "to_HQ1"
  set srcaddr "172.16.101.0"
  set dstaddr "10.1.100.0"
  set action accept
  set schedule "always"
  set service "ALL"
next
end
```

7. Run `diagnose` commands. The `diagnose debug application ike -l` command is the key to troubleshoot why the IPsec tunnel failed to establish. If the PSK failed to match, the following error shows up in the debug output:

```plaintext
ike 0:to_HQ2:15037: parse error
ike 0:to_HQ2:15037: probable pre-shared secret mismatch'
```

The following commands are useful to check IPsec phase1/phase2 interface status.
a. Run the `diagnose vpn ike gateway list` command on HQ1. The system should return the following:

```
vd: root/0
name: to_HQ2
version: 1
interface: port1 11
created: 5s ago
IKE SA: created 1/1 established 1/1 time 0/0/0 ms
IPsec SA: created 2/2 established 2/2 time 0/0/0 ms
id/spi: 12 6e8d0532e7fe8d84/3694ac323138a024
direction: responder
status: established 5-5s ago = 0ms
proposal: aes128-sha256
key: b3eb46dd0d385aff-7bb9ee241362ee8d
lifetime/rekey: 86400/86124
```

b. Run the `diagnose vpn tunnel list` command on HQ1. The system should return the following:

```
list all ipsec tunnel in vd 0
name=to_HQ2 ver=1 serial=1 172.16.200.1:0->172.16.202.1:0
bound_if=11 lgwy=static/1 tun intf/0 mode=auto/1 encap=none/528 options[0210]=create_dev frag-rcfaccept_traffic=1
proxyid_num=1 child_num=0 refcnt=11 ilast=7 olast=87 ad=/0
stat: rxp=0 txp=0 rxb=0 txb=0
dpd: mode=on-demand on=1 idle=20000ms retry=3 count=0 seqno=0
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=to_HQ2 proto=0 sa=1 ref=2 serial=1 auto-negotiate
src: 0:0:0:0/0.0.0.0:0
dst: 0:0:0:0/0.0.0.0:0
SA: ref=3 options=18227 type=00 soft=0 mtu=1438 expire=42927/0B replaywin=2048
seqno=1 esn=0 replaywin_lastseq=00000000 itn=0
life: type=01 bytes=0/0 timeout=42930/43200
dec: spi=ef9ca700 esp=aes key=16 a2c6584bf654d4f956497b3436f1cfc7
ah=sha1 key=20 82c5e734bce81e6f18418328e2a11ae7bba021b
enc: spi=79e89e8 esp=aes key=16 0dbb4588ba2665c6962491e85a4a8d5a
ah=sha1 key=20 205b318d2568a8b12119120f20ecac97ab730b3
dec:pkts/bytes=0/0, enc:pkts/bytes=0/0
```

Site-to-site VPN with digital certificate

This is a sample configuration of IPsec VPN authenticating a remote FortiGate peer with a certificate. The certificate on one peer is validated by the presence of the CA certificate installed on the other peer.
To configure IPsec VPN authenticating a remote FortiGate peer with a digital certificate in the GUI:

1. Import the certificate.
2. Configure user peers.
3. Configure the HQ1 FortiGate.
 a. Go to VPN > IPsec Wizard and configure the following settings for VPN Setup:
 i. Enter a VPN name.
 ii. For Template Type, select Site to Site.
 iii. For Remote Device Type, select FortiGate.
 iv. For NAT Configuration, select No NAT Between Sites.
 v. Click Next.
 b. Configure the following settings for Authentication:
 i. For Remote Device, select IP Address.
 ii. For the IP address, enter 172.16.202.1.
 iii. For Outgoing interface, enter port1.
 iv. For Authentication Method, select Signature.
 v. In the Certificate name field, select the imported certificate.
 vi. From the Peer Certificate CA dropdown list, select the desired peer CA certificate.
 vii. Click Next.
 c. Configure the following settings for Policy & Routing:
 i. From the Local Interface dropdown menu, select the local interface.
 ii. Configure the Local Subnets as 10.1.100.0.
 iii. Configure the Remote Subnets as 172.16.101.0.
 iv. Click Create.
4. Configure the HQ2 FortiGate.
 a. Go to VPN > IPsec Wizard and configure the following settings for VPN Setup:
 i. Enter a VPN name.
 ii. For Template Type, select Site to Site.
 iii. For Remote Device Type, select FortiGate.
 iv. For NAT Configuration, select No NAT Between Sites.
 v. Click Next.
 b. Configure the following settings for Authentication:
 i. For Remote Device, select IP Address.
 ii. For the IP address, enter 172.16.2001.
 iii. For Outgoing interface, enter port25.
 iv. For Authentication Method, select Signature.
 v. In the Certificate name field, select the imported certificate.
 vi. From the Peer Certificate CA dropdown list, select the peer CA certificate.
 vii. Click Next.
 c. Configure the following settings for Policy & Routing:
 i. From the Local Interface dropdown menu, select the local interface.
 ii. Configure Local Subnets as 172.16.101.0.
 iii. Configure the Remote Subnets as 10.1.100.0.
 iv. Click Create.
To configure IPsec VPN authenticating a remote FortiGate peer with a digital certificate using the CLI:

1. Configure the WAN interface and default route. The WAN interface is the interface connected to the ISP. The IPsec tunnel is established over the WAN interface.
 a. Configure HQ1.

      ```
      config system interface
      edit "port1"
      set vdom "root"
      set ip 172.16.200.1 255.255.255.0
      next
      end
      config router static
      edit 1
      set gateway 172.16.200.3
      set device "port1"
      next
      end
      ```
 b. Configure HQ2.

      ```
      config system interface
      edit "port25"
      set vdom "root"
      set ip 172.16.202.1 255.255.255.0
      next
      end
      config router static
      edit 1
      set gateway 172.16.202.2
      set device "port25"
      next
      end
      ```

2. Configure the internal (protected subnet) interface. The internal interface connects to the corporate internal network. Traffic from this interface routes out the IPsec VPN tunnel.
 a. Configure HQ1.

      ```
      config system interface
      edit "dmz"
      set vdom "root"
      set ip 10.1.100.1 255.255.255.0
      next
      end
      ```
 b. Configure HQ2.

      ```
      config system interface
      edit "port9"
      set vdom "root"
      set ip 172.16.101.1 255.255.255.0
      next
      end
      ```

3. Configure the import certificate and its CA certificate information. The certificate and its CA certificate must be imported on the remote peer FortiGate and on the primary FortiGate before configuring IPsec VPN tunnels. If the built-in Fortinet_Factory certificate and the Fortinet_CA CA certificate are used for authentication, you can skip this step.
a. Configure HQ1.

```fortigate-config
config vpn certificate local
   edit "test1"
      ...  
      set range global
   next
end

config vpn certificate ca
   edit "CA_Cert_1"
      ...  
      set range global
   next
end
```

b. Configure HQ2.

```fortigate-config
config vpn certificate local
   edit "test2"
      ...  
      set range global
   next
end

config vpn certificate ca
   edit "CA_Cert_1"
      ...  
      set range global
   next
end
```

4. Configure the peer user. The peer user is used in the IPsec VPN tunnel peer setting to authenticate the remote peer FortiGate.

a. If not using the built-in Fortinet_Factory certificate and Fortinet_CA CA certificate, do the following:

i. Configure HQ1.

```fortigate-config
config user peer
   edit "peer1"
      set ca "CA_Cert_1"
   next
end
```

ii. Configure HQ2.

```fortigate-config
config user peer
   edit "peer2"
      set ca "CA_Cert_1"
   next
end
```

b. If the built-in Fortinet_Factory certificate and Fortinet_CA CA certificate are used for authentication, the peer user must be configured based on Fortinet_CA.

i. Configure HQ1.

```fortigate-config
config user peer
   edit "peer1"
      set ca "Fortinet_CA"
   next
end
```
ii. Configure HQ2.

```fortios```
```
config user peer
edit "peer2"
 set ca "Fortinet_CA"
next
end
```

5. Configure the IPsec phase1-interface.
   a. Configure HQ1.

```fortios```
```
config vpn ipsec phase1-interface
edit "to_HQ2"
  set interface "port1"
  set authmethod signature
  set net-device enable
  set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
  set remote-gw 172.16.202.1
  set certificate "test1"
  set peer "peer1"
next
end
```

b. Configure HQ2.

```fortios```
```
config vpn ipsec phase1-interface
edit "to_HQ1"
 set interface "port25"
 set authmethod signature
 set net-device enable
 set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
 set remote-gw 172.16.200.1
 set certificate "test2"
 set peer "peer2"
next
end
```

6. Configure the IPsec phase2-interface.
   a. Configure HQ1.

```fortios```
```
config vpn ipsec phase2-interface
edit "to_HQ2"
  set phaselname "to_HQ2"
  set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256 aes128gcm
  aes256gcm chacha20poly1305
  set auto-negotiate enable
next
end
```

b. Configure HQ2.

```fortios```
```
config vpn ipsec phase2-interface
edit "to_HQ1"
 set phaselname "to_HQ1"
 set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256 aes128gcm
 aes256gcm chacha20poly1305
 set auto-negotiate enable
next
end
```
7. Configure the static routes. Two static routes are added to reach the remote protected subnet. The blackhole route is important to ensure that IPsec traffic does not match the default route when the IPsec tunnel is down.
   a. Configure HQ1.

   ```
 config router static
 edit 2
 set dst 172.16.101.0 255.255.255.0
 set device "to_HQ2"
 next
 edit 3
 set dst 172.16.101.0 255.255.255.0
 set blackhole enable
 set distance 254
 next
 end
   ```

   b. Configure HQ2.

   ```
 config router static
 edit 2
 set dst 10.1.100.0 255.255.255.0
 set device "to_HQ1"
 next
 edit 3
 set dst 10.1.100.0 255.255.255.0
 set blackhole enable
 set distance 254
 next
 end
   ```

8. Configure two firewall policies to allow bidirectional IPsec traffic flow over the IPsec VPN tunnel.
   a. Configure HQ1.

   ```
 config firewall policy
 edit 1
 set name "inbound"
 set srcintf "to_HQ2"
 set dstintf "dmz"
 set srcaddr "172.16.101.0"
 set dstaddr "10.1.100.0"
 set action accept
 set schedule "always"
 set service "ALL"
 next
 edit 2
 set name "outbound"
 set srcintf "dmz"
 set dstintf "to_HQ2"
 set srcaddr "10.1.100.0"
 set dstaddr "172.16.101.0"
 set action accept
 set schedule "always"
 set service "ALL"
 next
 end
   ```
b. Configure HQ2.

```plaintext
config firewall policy
 edit 1
 set name "inbound"
 set srcintf "to_HQ1"
 set dstintf "port9"
 set srcaddr "10.1.100.0"
 set dstaddr "172.16.101.0"
 set action accept
 set schedule "always"
 set service "ALL"
 next
 edit 2
 set name "outbound"
 set srcintf "port9"
 set dstintf "to_HQ1"
 set srcaddr "172.16.101.0"
 set dstaddr "10.1.100.0"
 set action accept
 set schedule "always"
 set service "ALL"
 next
end
```

9. Run diagnose commands. The `diagnose debug application ike -l` command is the key to troubleshoot why the IPsec tunnel failed to establish. If the remote FortiGate certificate cannot be validated, the following error shows up in the debug output:

```plaintext
ike 0: to_HQ2:15314: certificate validation failed
```

The following commands are useful to check IPsec phase1/phase2 interface status.

a. Run the `diagnose vpn ike gateway list` command on HQ1. The system should return the following:

```plaintext
vd: root/0
name: to_HQ2
version: 1
interface: port1 11
created: 7s ago
peer-id: C = CA, ST = BC, L = Burnaby, O = Fortinet, OU = QA, CN = test2
peer-id-auth: yes
IKE SA: created 1/1 established 1/1 time 70/70/70 ms
IPsec SA: created 1/1 established 1/1 time 80/80/80 ms
id/spi: 15326 295be407fbdf5c13/7a5a52afa56ad34 direction: initiator status:
established 7-7s ago = 70ms proposal: aes128-sha256 key: 4aa06dbee359a4c7-43570710864bcf7b lifetime/rekey: 86400/86092 DPD sent/recv: 00000000/00000000 peer-
id: C = CA, ST = BC, L = Burnaby, O = Fortinet, OU = QA, CN = test2
```

b. Run the `diagnose vpn tunnel list` command on HQ1. The system should return the following:

```plaintext
list all ipsec tunnel in vd 0
name=to_HQ2 ver=1 serial=1 172.16.200.1:0->172.16.202.1:0 tun_id=172.16.200.1
bound_if=11 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/528 options[0210]=create_
dev frag-rfcaccept_traffic=1
proxyid_num=1 child_num=0 refcnt=14 ilast=19 olast=179 ad=/0
stat: rxp=0 txp=0 rxb=0 txb=0
dpd: mode=on-demand on=1 idle=20000ms retry=3 count=0 seqno=0
```
Site-to-site VPN with overlapping subnets

This is a sample configuration of IPsec VPN to allow transparent communication between two overlapping networks that are located behind different FortiGates using a route-based tunnel with source and destination NAT.

In the following topology, both FortiGates (HQ and Branch) use 192.168.1.0/24 as their internal network, but both networks need to be able to communicate to each other through the IPsec tunnel.

New virtual subnets of equal size must be configured and used for all communication between the two overlapping subnets. The devices on both local networks do not need to change their IP addresses. However, the devices and users must use the new subnet range of the remote network to communicate across the tunnel.

Configuring the HQ FortiGate

To configure IPsec VPN:

1. Go to VPN > IPsec Wizard and select the Custom template.
2. Enter the name VPN-to-Branch and click Next.
3. For the IP Address, enter the Branch public IP address (172.25.177.46), and for Interface, select the HQ WAN interface (wan1).
4. For Pre-shared Key, enter a secure key. You will use the same key when configuring IPsec VPN on the Branch FortiGate.
5. In the Phase 2 Selectors section, enter the subnets for the Local Address (10.1.1.0/24) and Remote Address (10.2.2.0/24).
6. Optionally, expand Advanced and enable Auto-negotiate.
7. Click OK.

To configure the static routes:

1. Go to Network > Static Routes and click Create New.
2. In the Destination field, enter the remote address subnet (10.2.2.0/24).
3. For Interface, select the VPN tunnel you just created, VPN-to-Branch.
4. Click OK.
5. Create another route with the same Destination, but change the Administrative Distance to 200 and for Interface, select Blackhole. This is a best practice for route-based IPsec VPN tunnels because it ensures traffic for the remote FortiGate’s subnet is not sent using the default route in the event that the IPsec tunnel goes down.

To configure the address objects:

1. Go to Policy & Objects > Addresses and click Create New > Address.
2. For Name, enter HQ-original.
3. For IP/Netmask, enter the original LAN subnet of HQ (192.168.1.0/24).
4. For Interface, select the LAN-side interface (internal).
5. Click OK.
6. Create another address object named Branch-new, but for IP/Netmask, enter the new LAN subnet of Branch (10.2.2.0/24), and select the VPN interface (VPN-to-Branch).

To configure the IP pool:

1. Go to Policy & Objects > IP Pools and click Create New.
2. For Name, enter HQ-new.
3. For Type, select Fixed Port Range.
4. Enter the External IP address/range (10.1.1.1 – 10.1.1.254, the new HQ subnet) and Internal IP Range (192.168.1.1 – 192.168.1.254, the original HQ subnet).
5. Click OK.

To configure the VIP:

1. Go to Policy & Objects > Virtual IPs and click Create New > Virtual IP.
2. For Name, enter HQ-new-to-original.
3. For Interface, select the VPN interface (VPN-to-Branch).
4. Enter the External IP address/range (10.1.1.1 – 10.1.1.254, the new HQ subnet) and Map to IPv4 address/range (192.168.1.1 – 192.168.1.254, the original HQ subnet).
5. Click OK.

To configure the firewall policy for traffic from HQ to Branch:

1. Go to Policy & Objects > Firewall Policy and click Create New.
2. For Name, enter From-HQ-to-Branch.
3. For Incoming Interface, select the LAN-side interface (internal).
4. For Outgoing Interface, select the VPN tunnel interface (VPN-to-Branch).
For Source, select HQ-original.
6. For Destination, select Branch-new.
7. For Service, select ALL.
8. Enable NAT.
9. Select Use Dynamic IP Pool and select the HQ-new IP pool.
10. Click OK.

To configure the firewall policy for traffic from Branch to HQ:

1. Click Create New and for Name, enter From-Branch-to HQ.
2. For Incoming Interface, select the VPN tunnel interface (VPN-to-Branch).
3. For Outgoing Interface, select the LAN-side interface (internal).
4. For Source, select Branch-new.
5. For Destination, select the HQ-new-to-original VIP.
6. For Service, select ALL.
7. Disable NAT.
8. Click OK.

Configuring the Branch FortiGate

To configure IPsec VPN:

1. Go to VPN > IPsec Wizard and select the Custom template.
2. Enter the name VPN-to-HQ and click Next.
3. For the IP Address, enter the HQ public IP address (172.25.176.142), and for Interface, select the Branch WAN interface (wan1).
4. For Pre-shared Key, enter the matching secure key used in the VPN-to-Branch tunnel.
5. In the Phase 2 Selectors section, enter the subnets for the Local Address (10.2.2.0/24) and Remote Address (10.1.1.0/24).
6. Optionally, expand Advanced and enable Auto-negotiate.
7. Click OK.

To configure the static routes:

1. Go to Network > Static Routes and click Create New.
2. In the Destination field, enter the remote address subnet (10.1.1.0/24).
3. For Interface, select the VPN tunnel you just created, VPN-to-HQ.
4. Click OK.
5. Create another route with the same Destination, but change the Administrative Distance to 200 and for Interface, select Blackhole.

To configure the address objects:

1. Go to Policy & Objects > Addresses and click Create New > Address.
2. For Name, enter Branch-original.
3. For IP/Netmask, enter the original LAN subnet of Branch (192.168.1.0/24).
4. For Interface, select the LAN-side interface (lan).
5. Click OK.
6. Create another address object named HQ-new, but for IP/Netmask, enter the new LAN subnet of HQ (10.1.1.0/24), and select the VPN interface (VPN-to-HQ).

To configure the IP pool:

1. Go to Policy & Objects > IP Pools and click Create New.
2. For Name, enter Branch-new.
3. For Type, select Fixed Port Range.
4. Enter the External IP address/range (10.2.2.1 – 10.2.2.254, the new Branch subnet) and Internal IP Range (192.168.1.1 – 192.168.1.254, the original Branch subnet).
5. Click OK.

To configure the VIP:

1. Go to Policy & Objects > Virtual IPs and click Create New > Virtual IP.
2. For Name, enter Branch-new-to-original.
3. For Interface, select the VPN interface (VPN-to-HQ).
4. Enter the External IP address/range (10.2.2.1 – 10.2.2.254, the new Branch subnet) and Map to IPv4 address/range (192.168.1.1 – 192.168.1.254, the original Branch subnet).
5. Click OK.

To configure the firewall policy for traffic from Branch to HQ:

1. Go to Policy & Objects > Firewall Policy and click Create New.
2. For Name, enter From-Branch-to-HQ.
3. For Incoming Interface, select the LAN-side interface (lan).
4. For Outgoing Interface, select the VPN tunnel interface (VPN-to-HQ).
5. For Source, select Branch-original.
6. For Destination, select HQ-new.
7. For Service, select ALL.
8. Enable NAT.
10. Click OK.

To configure the firewall policy for traffic from HQ to Branch:

1. Click Create New and for Name, enter From-HQ-to-Branch.
2. For Incoming Interface, select the VPN tunnel interface (VPN-to-HQ).
3. For Outgoing Interface, select the LAN-side interface (lan).
4. For Source, select HQ-new.
5. For Destination, select the Branch-new-to-original VIP.
6. For Service, select ALL.
7. Disable NAT.
8. Click OK.
To verify the communication across the tunnel:

1. Go to Dashboard > Network and click the IPsec widget to expand to full screen view. The tunnels should be up on both FortiGates. If you did not enable Auto-negotiate in the IPsec VPN settings, you may have to select the tunnel and click Bring Up.

2. From a PC on the HQ network, ping a PC on the Branch network using the new IP for the Branch PC. The ping should be successful.

```
C:\Users\jheadley> ping 10.2.2.98
Pinging 10.2.2.98 with 32 bytes of data:
 Reply from 10.2.2.98: bytes=32 time=7ms TTL=62
 Reply from 10.2.2.98: bytes=32 time=1ms TTL=62
 Reply from 10.2.2.98: bytes=32 time=1ms TTL=62
 Reply from 10.2.2.98: bytes=32 time=1ms TTL=62
Ping statistics for 10.2.2.98:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
 Approximate round trip times in milli-seconds:
 Minimum = 1ms, Maximum = 7ms, Average = 2ms
```

3. From a PC on the Branch network, ping a PC on the HQ network using the new IP for the HQ PC. The ping should be successful.

```
Johns-MacBook-Air:~ John$ ping 10.1.1.12
PING 10.1.1.12 (10.1.1.12): 56 data bytes
64 bytes from 10.1.1.12: icmp_seq=0 ttl=126 time=1.912 ms
64 bytes from 10.1.1.12: icmp_seq=1 ttl=126 time=1.743 ms
64 bytes from 10.1.1.12: icmp_seq=2 ttl=126 time=1.403 ms
64 bytes from 10.1.1.12: icmp_seq=3 ttl=126 time=1.425 ms
--- 10.1.1.12 ping statistics ---
 4 packets transmitted, 4 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 1.403/1.621/1.912/0.215 ms
```

**GRE over IPsec**

This is an example of GRE over an IPsec tunnel using a static route over GRE tunnel and `tunnel-mode` in the `phase2-interface` settings.
To configure GRE over an IPsec tunnel:

1. Enable subnet overlapping at both HQ1 and HQ2.
   
   ```
 config system settings
 set allow-subnet-overlap enable
 end
   ```

2. Configure the WAN interface and static route.
   
   a. HQ1.

   ```
 config system interface
 edit "port1"
 + set ip 172.16.200.1 255.255.255.0
 next
 edit "dmz"
 + set ip 10.1.100.1 255.255.255.0
 next
 end
 config router static
 edit 1
 + set gateway 172.16.200.3
 set device "port1"
 next
 end
   ```

   b. HQ2.

   ```
 config system interface
 edit "port25"
 + set ip 172.16.202.1 255.255.255.0
 next
 edit "port9"
 + set ip 172.16.101.1 255.255.255.0
 next
 end
 config router static
 edit 1
 + set gateway 172.16.202.2
 set device "port25"
 next
 end
   ```

   
   a. HQ1.

   ```
 config vpn ipsec phase1-interface
 edit "greipsec"
 + set interface "port1"
 set peer-type any
 set proposal aes128-sha256 aes256-sha256 aes128-shal aes256-shal
 set remote-gw 172.16.202.1
 set psksecret sample
 next
 end
 config vpn ipsec phase2-interface
 edit "greipsec"
 + set phase1name "greipsec"
   ```
set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256 aes128gcm
aes256gcm chacha20poly1305
set protocol 47
next
end

b. HQ2.

cfg vpn ipsec phase1-interface
edit "greipsec"
set interface "port25"
set peertype any
set proposal aes128-sha256 aes256-sha256 aes128-sha256 aes256-sha1
set remote-gw 172.16.200.1
set psksecret sample
next
end

config vpn ipsec phase2-interface
edit "greipsec"
set phase1name "greipsec"
set proposal aes128-sha256 aes256-sha256 aes256-sha256 aes256-sha1
aes256gcm chacha20poly1305
set protocol 47
next
end

4. Configure IPsec tunnel interface IP address.
   a. HQ1.

cfg system interface
edit "greipsec"
set ip 10.10.10.1 255.255.255.255
set remote-ip 10.10.10.2 255.255.255.255
next
end

b. HQ2.

cfg system interface
edit "greipsec"
set ip 10.10.10.2 255.255.255.255
set remote-ip 10.10.10.1 255.255.255.255
next
end

5. Configure the GRE tunnel.
   a. HQ1.

cfg system gre-tunnel
edit "gre_to_HQ2"
set interface "greipsec"
set remote-gw 10.10.10.2
set local-gw 10.10.10.1
next
end
b. HQ2.

```plaintext
cfg config system gre-tunnel
 edit "gre_to_HQ1"
 set interface "greipsec"
 set remote-gw 10.10.10.1
 set local-gw 10.10.10.2
 next
end
```

6. Configure the firewall policy.

a. HQ1.

```plaintext
cfg config firewall policy
 edit 1
 set srcintf "dmz"
 set dstintf "gre_to_HQ2"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 next
 edit 2
 set srcintf "gre_to_HQ2"
 set dstintf "dmz"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 next
 edit 3
 set srcintf "greipsec"
 set dstintf "greipsec"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 next
end
```

b. HQ2.

```plaintext
cfg config firewall policy
 edit 1
 set srcintf "port9"
 set dstintf "gre_to_HQ1"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 next
 edit 2
 set srcintf "gre_to_HQ1"
 set dstintf "port9"
```
VPN

set srcaddr "all"
set dstaddr "all"
set action accept
set schedule "always"
set service "ALL"
next
edit 3
    set srcintf "greipsec"
    set dstintf "greipsec"
    set srcaddr "all"
    set dstaddr "all"
    set action accept
    set schedule "always"
    set service "ALL"
next
end

7. Configure the static route.
   a. HQ1.

   config router static
       edit 2
           set dst 172.16.101.0 255.255.255.0
           set device "gre_to_HQ2"
       next
   end

   b. HQ2.

   config router static
       edit 2
           set dst 10.1.100.0 255.255.255.0
           set device "gre_to_HQ1"
       next
   end

To view the VPN tunnel list on HQ1:

diagnose vpn tunnel list
list all ipsec tunnel in vd 0

name=greipsec ver=1 serial=1 172.16.200.1:0->172.16.202.1:0 tun_id=172.16.202.1
bound_if=5 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/16 options[0010]=create_dev
proxyid_num=1 child_num=0 refcnt=12 ilast=19 olast=861 ad=0
stat: rxp=347 txp=476 rxb=58296 txb=51408
dpd: mode=on-demand on=1 idle=20000ms retry=3 count=0 segno=8
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=greipsec proto=47 sa=1 ref=2 serial=2
   src: 47:0.0.0.0/0.0.0.0:0
dst: 47:0.0.0.0/0.0.0.0:0
SA: ref=3 options=10226 type=0 soft=0 mtu=1438 expire=41689/0B replaywin=2048
   segno=15c esn=0 replaywin_lastseq=0000015c itn=0
life: type=01 bytes=0/0 timeout=42898/43200
dec: spi=9897bd09 esp=aes key=16 5a60e67bf68379309715bd83931680bf
   ah=sha1 key=30 ff35a329056d0d506c0bfc17ef269978a4a56d3
dec: spi=3e62f336 esp=aes key=16 5574acd8587c5751a89950e1bf8f8f57

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
Ah=sha1 key=20 d57ec76ac3c543ac89b2e4d0545518aa2d06669b
dec:pkts/bytes=347/37476, enc:pkts/bytes=347/58296

To view the static routing table on HQ1:

get router info routing-table static
Routing table for VRF=0
S* 0.0.0.0/0 [10/0] via 172.16.200.3, port1
S 172.16.101.0/24 [10/0] is directly connected, gre_to_HQ2

Policy-based IPsec tunnel

This is an example of policy-based IPsec tunnel using site-to-site VPN between branch and HQ. HQ is the IPsec concentrator.

Sample topology

![Sample topology diagram]

Sample configuration

To configure a policy-based IPsec tunnel using the GUI:

- Configure the IPsec VPN at HQ.
- Configure the IPsec concentrator at HQ.
- Configure the firewall policy at HQ.
- Configure IPsec VPN at branch 1.
- Configure the firewall policy at branch 1.
- Configure IPsec VPN at branch 2.
- Configure the firewall policy at branch 2.

To configure the IPsec VPN at HQ:

1. Go to VPN > IPsec Wizard to set up branch 1.
   a. Enter a VPN Name. In this example, to_branch1.
   b. For Template Type, click Custom. Click Next.
   c. Uncheck Enable IPsec Interface Mode.
   d. For Remote Gateway, select Static IP Address.
e. Enter IP address, in this example, 15.1.1.2.

f. For Interface, select port9.

g. In the Authentication section, for Method, select Pre-shared Key and enter the Pre-shared Key.

h. Click OK.

2. Go to VPN > IPsec Wizard to set up branch 2.

a. Enter a VPN Name. In this example, to_branch2.

b. For Template Type, click Custom. Click Next.

c. Uncheck Enable IPsec Interface Mode.

d. For Remote Gateway, select Static IP Address.

e. Enter IP address, in this example, 13.1.1.2.

f. For Interface, select port9.

g. In the Authentication section, for Method, select Pre-shared Key and enter the Pre-shared Key.

h. Click OK.

To configure the IPsec concentrator at HQ:

1. Go to VPN > IPsec Concentrator and click Create New.

2. Enter a name. In this example, branch.

3. Add the Members to_branch1 and to_branch2.

4. Click OK.

To configure the firewall policy at HQ:

1. Go to Policy & Objects > Firewall Policy and click Create New.

2. Enter a policy Name.

3. For Incoming Interface, select port10.

4. For Outgoing Interface, select port9.

5. Select the Source, Destination, Schedule, Service, and set Action to IPsec.

6. Select the VPN Tunnel, in this example, Branch1/Branch2.

7. In this example, enable Allow traffic to be initiated from the remote site.

8. Click OK.

To configure IPsec VPN at branch 1:

1. Go to VPN > IPsec Wizard to set up branch 1.

2. Enter a VPN name. In this example, to_HQ.

3. For Template Type, click Custom. Click Next.

4. Uncheck Enable IPsec Interface Mode.

5. For Remote Gateway, select Static IP Address.

6. Enter IP address, in this example, 22.1.1.1.

7. For Interface, select wan1.

8. In the Authentication section, for Method, select Pre-shared Key and enter the Pre-shared Key.

9. Click OK.
To configure the firewall policy at branch 1:

1. Go to Policy & Objects > Firewall Policy and click Create New.
2. Enter a policy Name.
3. Choose the Incoming Interface, in this example, internal.
4. Choose the Outgoing Interface, in this example, wan1.
5. Select the Source, Destination, Schedule, Service, and set Action to IPsec.
6. Select the VPN Tunnel, in this example, Branch1/Branch2.
7. In this example, enable Allow traffic to be initiated from the remote site.
8. Click OK.

To configure IPsec VPN at branch 2:

1. Go to VPN > IPsec Wizard to set up branch 1.
2. Enter a VPN name. In this example, to_HQ.
3. For Template Type, click Custom. Click Next.
4. Uncheck Enable IPsec Interface Mode.
5. For Remote Gateway, select Static IP Address.
6. Enter IP address, in this example, 22.1.1.1.
7. For Interface, select wan1.
8. In the Authentication section, for Method, select Pre-shared Key and enter the Pre-shared Key.
9. Click OK.

To configure the firewall policy at branch 2:

1. Go to Policy & Objects > Firewall Policy and click Create New.
2. Enter a policy Name.
3. Choose the Incoming Interface, in this example, internal.
4. Choose the Outgoing Interface, in this example, wan1.
5. Select the Source, Destination, Schedule, Service, and set Action to IPsec.
6. Select the VPN Tunnel, in this example, to_HQ.
7. In this example, enable Allow traffic to be initiated from the remote site.
8. Click OK.

To configure a policy-based IPsec tunnel using the CLI:

1. Configure the HQ WAN interface and static route.

   ```
 config system interface
 edit "port9"
 set alias "WAN"
 set ip 22.1.1.1 255.255.255.0
 next
 edit "port10"
 set alias "Internal"
 set ip 172.16.101.1 255.255.255.0
 next
 end
 config router static
   ```
edit 1
   set gateway 22.1.1.2
   set device "port9"
next
end

2. Configure the HQ IPsec phase1 and phase2.

config vpn ipsec phase1
   edit "to_branch1"
      set interface "port9"
      set peertype any
      set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
      set remote-gw 15.1.1.2
      set psksecret sample
   next
   edit "to_branch2"
      set interface "port9"
      set peertype any
      set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
      set remote-gw 13.1.1.2
      set psksecret sample
   next
end

config vpn ipsec phase2
   edit "to_branch1"
      set phase1name "to_branch1"
      set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256 aes128gcm aes256gcm chacha20poly1305
   next
   edit "to_branch2"
      set phase1name "to_branch2"
      set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256 aes128gcm
      aes256gcm chacha20poly1305
   next
end

3. Configure the firewall policy at HQ.

config firewall policy
   edit 1
      set srcintf "port10"
      set dstintf "port9"
      set srcaddr "all"
      set dstaddr "10.1.100.0"
      set action ipsec
      set schedule "always"
      set service "ALL"
      set inbound enable
      set vpntunnel "to_branch1"
   next
   edit 2
      set srcintf "port10"
      set dstintf "port9"
      set srcaddr "all"
      set dstaddr "192.168.4.0"
      set action ipsec
set schedule "always"
set service "ALL"
set inbound enable
set vpntunnel "to_branch2"
next
end

4. Configure the IPsec concentrator at HQ.

config vpn ipsec concentrator
   edit "branch"
      set member "to_branch1" "to_branch2"
   next
end

5. Configure the branch WAN interface and static route.

   a. For branch 1.

      config system interface
         edit "wan1"
            set alias "primary_WAN"
            set ip 15.1.1.2 255.255.255.0
         next
         edit "internal"
            set ip 10.1.100.1 255.255.255.0
         next
      end
      config router static
         edit 1
            set gateway 15.1.1.1
            set device "wan1"
         next
      end

   b. For branch 2.

      config system interface
         edit "wan1"
            set alias "primary_WAN"
            set ip 13.1.1.2 255.255.255.0
         next
         edit "internal"
            set ip 192.168.4.1 255.255.255.0
         next
      end
      config router static
         edit 1
            set gateway 13.1.1.1
            set device "wan1"
         next
      end

6. Configure the branch IPsec phase1 and phase2.

   a. For branch 1.

      config vpn ipsec phase1
         edit "to_HQ"
            set interface "wan1"
VPN

set peertype any
set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
set remote-gw 22.1.1.1
set psksecret sample
next
end
config vpn ipsec phase2
edit "to_HQ"
set phaselnname "to_HQ"
set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256 aes128gcm
aes256gcm chacha20poly1305
next
end
b. For branch 2.

config vpn ipsec phase1
edit "to_HQ"
set interface "wan1"
set peertype any
set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
set remote-gw 22.1.1.1
set psksecret sample
next
end
config vpn ipsec phase2
edit "to_HQ"
set phaselnname "to_HQ"
set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256 aes128gcm
aes256gcm chacha20poly1305
next
end

7. Configure the branch firewall policy.
   a. For branch 1.

config firewall policy
edit 1
set srcintf "internal"
set dstintf "wan1"
set srcaddr "10.1.100.0"
set dstaddr "all"
set action ipsec
set schedule "always"
set service "ALL"
set inbound enable
set vpntunnel "to_HQ"
next
end
b. For branch 2.

config firewall policy
edit 1
set srcintf "internal"
set dstintf "wan1"
set srcaddr "192.168.4.0"
set dstaddr "all"
set action ipsec
set schedule "always"
set service "ALL"
set inbound enable
set vpntunnel "to_HQ"

next
eend

To view the IPsec VPN tunnel list at HQ:

# diagnose vpn tunnel list
list all ipsec tunnel in vd 0

name=to_branch1 ver=1 serial=4 22.1.1.1:0->15.1.1.2:0 tun_id=15.1.1.2
bound_if=42 lgwy=static/1 tun=tunnel/1 mode=auto/1 encap=none/8 options[0008]=npu
proxyid_num=1 child_num=0 refcnt=8 ilast=0 olast=0 ad=/0
stat: rxp=305409 txp=41985 rxb=47218630 txb=2130108
dpd: mode=on-demand on=1 idle=20000ms retry=3 count=0 seqno=0
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=to_branch1 proto=0 sa=1 ref=3 serial=1
  src: 0:0.0.0.0/0.0.0.0:0
dst: 0:0.0.0.0/0.0.0.0:0
  SA: ref=6 options=10226 type=0 soft=0 mtu=1438 expire=42604/0B replaywin=2048
     seqno=1 esn=0 replaywin_lastseq=00000680 itn=0
  life: type=01 bytes=0/0 timeout=42932/43200
dec: spi=ca646442 esp=aes key=16 58c91d463968ddcc4fd97de90a4b8
    ah=shal key=20 c9176fe2fbc82ef7e726be9ad4af83eb1b55580a
ecc: spi=747c10c4 esp=aes key=16 7cf0f75b784f697bc7f6d8b4bb8a83c1
    ah=shal key=20 cdddc376a86f5ca0149346604a59a07a33b11c5
dec:regbytes/bytes=1664/16310, enc:regbytes/bytes=0/16354
   npu_flag=03 npu_rgwy=15.1.1.2 npu_lgwy=22.1.1.1 npu_selid=3 dec_npuid=2 enc_npuid=2

name=to_branch2 ver=1 serial=5 22.1.1.1:0->13.1.1.2:0 tun_id=13.1.1.2
bound_if=42 lgwy=static/1 tun=tunnel/1 mode=auto/1 encap=none/8 options[0008]=npu
proxyid_num=1 child_num=0 refcnt=7 ilast=2 olast=43228 ad=/0
stat: rxp=0 txp=0 rxb=0 txb=0
dpd: mode=on-demand on=1 idle=20000ms retry=3 count=0 seqno=0
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=to_branch2 proto=0 sa=1 ref=2 serial=1
  src: 0:0.0.0.0/0.0.0.0:0
dst: 0:0.0.0.0/0.0.0.0:0
  SA: ref=3 options=10226 type=0 soft=0 mtu=1280 expire=40489/0B replaywin=2048
     seqno=1 esn=0 replaywin_lastseq=00000000 itn=0
  life: type=01 bytes=0/0 timeout=42931/43200
dec: spi=ca646441 esp=aes key=16 57ab680d29d4aad4e373579fb50e9909
    ah=shal key=20 12a2bc703d2615d917ff544eaff75a62c17f1fe
ecc: spi=f9cffb61 esp=aes key=16 3d64da9feb893874e007babce0229259
    ah=shal key=20 f92a3ad5e56cb8e89c47af4dac10bf4bebfb16
dec:regbytes/bytes=0/0, enc:regbytes/bytes=0/0
   npu_flag=00 npu_rgwy=13.1.1.2 npu_lgwy=22.1.1.1 npu_selid=4 dec_npuid=0 enc_npuid=0

To view the IPsec VPN concentrator at HQ:

# diagnose vpn concentrator list
list all ipsec concentrator in vd 0
name=branch ref=3 tuns=2 flags=0

FortiGate-to-third-party

This section contains the following topics about FortiGate-to-third-party VPN configurations:
- IKEv2 IPsec site-to-site VPN to an AWS VPN gateway on page 1388
- IPsec VPN to Azure with virtual network gateway on page 1394
- IPsec VPN to an Azure with virtual WAN on page 1403
- IPSec VPN between a FortiGate and a Cisco ASA with multiple subnets on page 1407
- Cisco GRE-over-IPsec VPN on page 1407

IKEv2 IPsec site-to-site VPN to an AWS VPN gateway

This is a sample configuration of an IPsec site-to-site VPN connection between an on-premise FortiGate and an AWS virtual private cloud (VPC).

AWS uses unique identifiers to manipulate a VPN connection's configuration. Each VPN connection is assigned an identifier and is associated with two other identifiers: the customer gateway ID for the FortiGate and virtual private gateway ID.

This example includes the following IDs:
- VPN connection ID: vpn-07e988ccc1d46f749
- Customer gateway ID: cgw-0440c1aebed2f418a
- Virtual private gateway ID

This example assumes that you have configured VPC-related settings in the AWS management portal as described in Create a Secure Connection using AWS VPC.

This example includes creating and configuring two tunnels. You must configure both tunnels on your FortiGate.

To configure IKEv2 IPsec site-to-site VPN to an AWS VPN gateway:

1. Configure the first VPN tunnel:
   a. Configure Internet Key Exchange (IKE).
   b. Configure IPsec.
   c. Configure the tunnel interface.
   d. Configure border gateway protocol (BGP).
   e. Configure firewall policies.
2. Configure the second VPN tunnel:
   a. Configure Internet Key Exchange (IKE).
   b. Configure IPsec.
   c. Configure the tunnel interface.
   d. Configure BGP.
   e. Configure firewall policies.
To configure IKE for the first VPN tunnel:

A policy is established for the supported ISAKMP encryption, authentication, Diffie-Hellman (DH), lifetime, and key parameters. These sample configurations fulfill the minimum requirements for AES128, SHA1, and DH Group 2. Category VPN connections in the GovCloud AWS region have a minimum requirement of AES128, SHA2, and DH Group 14. To take advantage of AES256, SHA256, or other DH groups such as 14-18, 22, 23, and 24, you must modify these sample configuration files. Higher parameters are only available for VPNs of category "VPN", not for "VPN-Classic".

Your FortiGate's external interface's address must be static. Your FortiGate may reside behind a device performing NAT. To ensure NAT traversal can function, you must adjust your firewall rules to unblock UDP port 4500. If not behind NAT, it is recommended to disable NAT traversal.

Begin configuration in the root VDOM. The interface name must be shorter than 15 characters. It is best if the name is shorter than 12 characters. IPsec dead peer detection (DPD) causes periodic messages to be sent to ensure a security association remains operational.

config vpn ipsec phase1-interface
  edit vpn-07e988ccc1d46f749-0
    set interface "wan1"
    set dpd enable
    set local-gw 35.170.66.108
    set dhgrp 2
    set proposal aes128-sha1
    set keylife 28800
    set remote-gw 3.214.239.164
    set psksecret iCelks0Uoob8z4SYIRM6zlx.rU2C3jth
    set dpd-retryinterval 10
  next
end

To configure IPsec for the first VPN tunnel:

The IPsec transform set defines the encryption, authentication, and IPsec mode parameters.

config vpn ipsec phase2-interface
  edit "vpn-07e988ccc1d46f749-0"
    set phasename "vpn-07e988ccc1d46f749-0"
    set proposal aes128-sha1
    set dhgrp 2
    set pfs enable
    set keylifeseconds 3600
  next
end

To configure the tunnel interface for the first VPN tunnel:

You must configure a tunnel interface as the logical interface associated with the tunnel. All traffic routed to the tunnel interface must be encrypted and transmitted to the VPC. Similarly, traffic from the VPC will be logically received on this interface.

You must configure the interface's address with your FortiGate's address. If the address changes, you must recreate the FortiGate and VPN connection with Amazon VPC.

The tcp-mss option causes the router to reduce the TCP packets' maximum segment size to prevent packet fragmentation.
config system interface
edit "vpn-07e988cc1d46ef749-0"
  set vdom "root"
  set ip 169.254.45.90 255.255.255.255
  set allowaccess ping
  set type tunnel
  set tcp-mss 1379
  set remote-ip 169.254.45.89
  set mtu 1427
  set interface "wan1"
next
end

To configure BGP for the first VPN tunnel:

BGP is used within the tunnel to exchange prefixes between the virtual private gateway and your FortiGate. The virtual private gateway announces the prefix according to your VPC.

The local BGP autonomous system number (ASN) (65000) is configured as part of your FortiGate. If you must change the ASN, you must recreate the FortiGate and VPN connection with AWS.

Your FortiGate may announce a default route (0.0.0.0/0) to AWS. This is done using a prefix list and route map in FortiOS.

config router bgp
  set as 65000
config neighbor
  edit 169.254.45.89
    set remote-as 64512
  end
end
config router bgp
  config neighbor
    edit 169.254.45.89
      set capability-default-originate enable
    end
end
config router prefix-list
  edit "default_route"
  config rule
    edit 1
      set prefix 0.0.0.0 0.0.0.0
    next
  end
end
config router route-map
  edit "routemap1"
  config rule
    edit 1
      set match-ip-address "default_route"
    next
next
end
To advertise additional prefixes to the Amazon VPC, add these prefixes to the network statement and identify the prefix you want to advertise. Ensure that the prefix is present in the routing table of the device with a valid next-hop. If you want to advertise 192.168.0.0/16 to Amazon, you would do the following:

```config
config router bgp
config network
 edit 1
 set prefix 192.168.0.0 255.255.0.0
 next
end
```

**To configure firewall policies for the first VPN tunnel:**

Create a firewall policy permitting traffic from your local subnet to the VPC subnet, and vice-versa.

This example policy permits all traffic from the local subnet to the VPC. First, view all existing policies using the `show firewall policy` command. Then, create a new firewall policy starting with the next available policy ID. In this example, running `show firewall policy` displayed policies 1, 2, 3, and 4, so you would proceed to create policy 5.

```config
config firewall policy
 edit 5
 set srcintf "vpn-07e988ccc1d46f749-0"
 set dstintf internal
 set srcaddr all
 set dstaddr all
 set action accept
 set schedule always
 set service ANY
 next
end
config firewall policy
 edit 5
 set srcintf internal
 set dstintf "vpn-07e988ccc1d46f749-0"
 set srcaddr all
 set dstaddr all
 set action accept
 set schedule always
 set service ANY
 next
end
```

**To configure IKE for the second VPN tunnel:**

A policy is established for the supported ISAKMP encryption, authentication, DH, lifetime, and key parameters. These sample configurations fulfill the minimum requirements for AES128, SHA1, and DH Group 2. Category VPN connections in the GovCloud AWS region have a minimum requirement of AES128, SHA2, and DH Group 14. To take advantage of AES256, SHA256, or other DH groups such as 14-18, 22, 23, and 24, you must modify these sample configuration files. Higher parameters are only available for VPNs of category "VPN", not for "VPN-Classic".

Your FortiGate's external interface's address must be static. Your FortiGate may reside behind a device performing NAT. To ensure NAT traversal can function, you must adjust your firewall rules to unblock UDP port 4500. If not behind NAT, it is recommended to disable NAT traversal.
Begin configuration in the root VDOM. The interface name must be shorter than 15 characters. It is best if the name is shorter than 12 characters. IPsec DPD causes periodic messages to be sent to ensure a security association remains operational.

```plaintext
config vpn ipsec phase1-interface
 edit vpn-07e988ccc1d46f749-1
 set interface "wan1"
 set dpd enable
 set local-gw 35.170.66.108
 set dpgrp 2
 set proposal aes128-shal
 set keylife 28800
 set remote-gw 100.25.187.58
 set psksecret IjFzyDneUtDdAT4RNmQ85apUG3y4Akre
 set dpd-retryinterval 10
next
end
```

To configure IPsec for the second VPN tunnel:

The IPsec transform set defines the encryption, authentication, and IPsec mode parameters.

```plaintext
config vpn ipsec phase2-interface
 edit "vpn-07e988ccc1d46f749-1"
 set phasename "vpn-07e988ccc1d46f749-1"
 set proposal aes128-shal
 set dpgrp 2
 set pfs enable
 set keylifeseconds 3600
next
end
```

To configure the tunnel interface for the second VPN tunnel:

You must configure a tunnel interface as the logical interface associated with the tunnel. All traffic routed to the tunnel interface must be encrypted and transmitted to the VPC. Similarly, traffic from the VPC will be logically received on this interface.

You must configure the interface’s address with your FortiGate’s address. If the address changes, you must recreate the FortiGate and VPN connection with Amazon VPC.

The tcp-mss option causes the router to reduce the TCP packets’ maximum segment size to prevent packet fragmentation.

```plaintext
config system interface
 edit "vpn-07e988ccc1d46f749-1"
 set vdom "root"
 set ip 169.254.44.162 255.255.255.255
 set allowaccess ping
 set type tunnel
 set tcp-mss 1379
 set remote-ip 169.254.44.161
 set mtu 1427
 set interface "wan1"
next
end
```
To configure BGP for the second VPN tunnel:

BGP is used within the tunnel to exchange prefixes between the virtual private gateway and your FortiGate. The virtual private gateway announces the prefix according to your VPC.

The local BGP ASN (65000) is configured as part of your FortiGate. If you must change the ASN, you must recreate the FortiGate and VPN connection with AWS.

Your FortiGate may announce a default route (0.0.0.0/0) to AWS. This is done using a prefix list and route map in FortiOS.

```
config router bgp
set as 65000
config neighbor
edit 169.254.44.161
 set remote-as 64512
end
config router bgp
config neighbor
edit 169.254.44.161
 set capability-default-originate enable
end
end
config router prefix-list
edit "default_route"
config rule
edit 1
 set prefix 0.0.0.0 0.0.0.0
 next
end
end
config router route-map
edit "routemap1"
config rule
edit 1
 set match-ip-address "default_route"
 next
next
end
end
```

To advertise additional prefixes to the Amazon VPC, add these prefixes to the network statement and identify the prefix you want to advertise. Ensure that the prefix is present in the routing table of the device with a valid next-hop. If you want to advertise 192.168.0.0/16 to Amazon, you would do the following:

```
config router bgp
config network
 edit 1
 set prefix 192.168.0.0 255.255.0.0
 next
end
```

To configure firewall policies for the second VPN tunnel:

Create a firewall policy permitting traffic from your local subnet to the VPC subnet, and vice-versa.
This example policy permits all traffic from the local subnet to the VPC. First, view all existing policies using the `show firewall policy` command. Then, create a new firewall policy starting with the next available policy ID. In this example, running `show firewall policy` displayed policies 1, 2, 3, 4, and 5, so you would proceed to create policy 6.

```plaintext
config firewall policy
 edit 6
 set srcintf "vpn-07e988cc1d46f749-1"
 set dstintf internal
 set srcaddr all
 set dstaddr all
 set action accept
 set schedule always
 set service ANY
 next
end
config firewall policy
 edit 6
 set srcintf internal
 set dstintf "vpn-07e988cc1d46f749-1"
 set srcaddr all
 set dstaddr all
 set action accept
 set schedule always
 set service ANY
 next
end
```

**IPsec VPN to Azure with virtual network gateway**

This example shows how to configure a site-to-site IPsec VPN tunnel to Microsoft Azure. It shows how to configure a tunnel between each site, avoiding overlapping subnets, so that a secure tunnel can be established.

**Prerequisites**

- A FortiGate with an Internet-facing IP address
- A valid Microsoft Azure account

**Sample topology**
Sample configuration

This sample configuration shows how to:

1. Configure an Azure virtual network
2. Specify the Azure DNS server
3. Configure the Azure virtual network gateway
4. Configure the Azure local network gateway
5. Configure the FortiGate tunnel
6. Create the Azure firewall object
7. Create the FortiGate firewall policies
8. Create the FortiGate static route
9. Create the Azure site-to-site VPN connection
10. Check the results

To configure an Azure virtual network:

1. Log in to Azure and click New.
2. In Search the Marketplace, type Virtual network.
3. Click Virtual network to open the Virtual network pane.
4. At the bottom of the Virtual network pane, click the Select a deployment model dropdown list and select Resource Manager.
5. Click Create.

6. On the Create virtual network pane, enter your virtual network settings, and click Create.
To specify the Azure DNS server:

1. Open the virtual network you just created.
2. Click DNS servers to open the DNS servers pane.
3. Enter the IP address of the DNS server and click Save.

To configure the Azure virtual network gateway:

1. In the portal dashboard, go to New.
2. Search for Virtual Network Gateway and click it to open the Virtual network gateway pane.
3. Click Create Virtual network gateways and enter the settings for your virtual network gateway.
4. If needed, create a Public IP address.

5. Click Create.
Creating the virtual network gateway might take some time. When the provisioning is done, you'll receive a notification.

**Deployment in progress...**
Deployment to resource group 'techdocs' is in progress.

**Saved virtual network**
09:37 AM
Successfully saved DNS settings for virtual network 'klericus, VPN'.

**Deployments succeeded**
09:30 AM
Deployment to resource group 'techdocs' was successful.
To configure the Azure local network gateway:

1. In the portal dashboard, click All resources.
2. Click Add and then click See all.

3. In the Everything pane, search for Local network gateway and then click Create local network gateway.
4. For the IP address, enter the local network gateway IP address, that is, the FortiGate's external IP address.

5. Set the remaining values for your local network gateway and click Create.

To configure the FortiGate tunnel:

1. In the FortiGate, go to VPN > IP Wizard.
2. Enter a Name for the tunnel, click Custom, and then click Next.
3. Configure the Network settings.
   a. For Remote Gateway, select Static IP Address and enter the IP address provided by Azure.
   b. For Interface, select wan1.
   c. For NAT Traversal, select Disable,
   d. For Dead Peer Detection, select On Idle.
   e. In the Authentication section, select
4. Configure the Authentication settings.
   a. For Method, select Pre-shared Key and enter the Pre-shared Key.
   b. For IKE, select 2.
5. Configure the Phase 1 Proposal settings.
   a. Set the Encryption and Authentication combination to the three supported encryption algorithm combinations accepted by Azure.
      - AES256 and SHA1
      - 3DES and SHA1
- AES256 and SHA256
  
  b. For Diffie-Hellman Groups, select 2.
  
  c. Set Key Lifetime (seconds) to 28800.

6. In Phase 2 Selectors, expand the Advanced section to configure the Phase 2 Proposal settings.
   a. Set the Encryption and Authentication combinations:
      - AES256 and SHA1
      - 3DES and SHA1
      - AES256 and SHA256
   b. Uncheck Enable Perfect Forward Secrecy (PFS).
   c. Set Key Lifetime (seconds) to 27000.

7. Click OK.

To create the Azure firewall object:

1. In the FortiGate, go to Policy & Objects > Addresses.
2. Create a firewall object for the Azure VPN tunnel.

To create the FortiGate firewall policies:

1. In the FortiGate, go to Policy & Objects > Firewall Policy.
2. Create a policy for the site-to-site connection that allows outgoing traffic.
   a. Set the Source address and Destination address using the firewall objects you just created.
   b. Disable NAT.
3. Create another policy that allows incoming traffic.
   a. For this policy, reverse the Source address and Destination address.
4. We recommend limiting the TCP maximum segment size (MSS) being sent and received so as to avoid packet drops and fragmentation.
   To do this, use the following CLI commands on both policies.

   ```plaintext
 config firewall policy
 edit <policy-id>
 set tcp-mss-sender 1350
 set tcp-mss-receiver 1350
 next
 end
   ```

To create the FortiGate static route:

1. In the FortiGate, go to Network > Static Routes.
2. Create an IPv4 Static Route that forces outgoing traffic going to Azure to go through the route-based tunnel.
3. Set the Administrative Distance to a value lower than the existing default route value.
To create the Azure site-to-site VPN connection:

1. In the Azure portal, locate and select your virtual network gateway.
2. In the Settings pane, click Connections and then click Add.

![Azure portal screenshot](image)

3. Enter the settings for your connection. Ensure the Shared Key (PSK) matches the Pre-shared Key for the FortiGate tunnel.

To check the results:

1. In the FortiGate, go to Monitor > IPsec Monitor and check that the tunnel is up. If the tunnel is down, right-click the tunnel and select Bring Up.
2. In the FortiGate, go to Log & Report > System Events.
   a. Select an event card to view more information and verify the connection.
3. In the Azure portal dashboard, click All resources and locate your virtual network gateway.
   a. In your virtual network gateway pane, click Connections to see the status of each connection.

   b. Click a connection to open the Essentials pane to view more information about that connection.
      - If the connection is successful, the Status shows Connected.
      - See the ingress and egress bytes to confirm traffic flowing through the tunnel.

IPsec VPN to an Azure with virtual WAN

This is a sample configuration of an IPsec site-to-site VPN connection between an on-premise FortiGate and an Azure virtual network (VNet). This example uses Azure virtual WAN (vWAN) to establish the VPN connection.

- Azure must use IPsec v2 for this configuration.
- Azure uses overlapped subnet IP addresses for the IPsec interfaces.

To configure IKEv2 IPsec site-to-site VPN to an Azure VPN gateway:

1. In the Azure management portal, configure vWAN-related settings as described in Tutorial: Create a Site-to-Site connection using Azure Virtual WAN.
   
   If a custom BGP IP address is configured on Azure’s vWAN, such as 169.254.21.6 and 169.254.21.7, you must configure the FortiGate remote-IP to the corresponding Custom BGP IP Address value. If a custom BGP IP address is not configured, FortiGate remote-IPs should point to the Default BGP IP Address value.

2. Download the VPN configuration. The following shows an example VPN configuration:

   ```json
```
3. Configure the following on the FortiGate. Note for set proposal, you can select from several proposals.

```bash
config vpn ipsec phase1-interface
edit "toazure1"
 set interface "port1"
 set ike-version 2
 set keylife 28800
 set peertype any
 set proposal aes256-shal
 set dhgrp 2
 set remote-gw 52.180.90.47
 set psksecret **********
next
edit "toazure2"
 set interface "port1"
 set ike-version 2
 set keylife 28800
 set peertype any
 set proposal aes256-shal
 set dhgrp 2
 set remote-gw 52.180.89.94
 set psksecret **********
next
end
config vpn ipsec phase2-interface
edit "toazure1"
 set phase1name "toazure1"
 set proposal aes256-shal
 set dhgrp 2
 set keylifeseconds 3600
next
edit "toazure2"
 set phase1name "toazure2"
 set proposal aes256-shal
 set dhgrp 2
 set keylifeseconds 3600
next
end
config system settings
 set allow-subnet-overlap enable
end
config system interface
edit "toazure1"
 set vdom "root"
 set ip 169.254.24.25 255.255.255.255
 set type tunnel
 set remote-ip 10.1.0.7 255.255.255.255
 set snmp-index 4
 set interface "port1"
```
next
edit "toazure2"
    set vdom "root"
    set ip 169.254.24.25 255.255.255.255
    set type tunnel
    set remote-ip 10.1.0.6 255.255.255.255
    set snmp-index 5
    set interface "port1"
next
deroute bgp
    set as 7225
    set router-id 169.254.24.25
config neighbor
    edit "10.1.0.7"
        set remote-as 65515
next
edit "10.1.0.6"
    set remote-as 65515
next
config network
    edit 1
        set prefix 172.30.101.0 255.255.255.0
next
deroute redistribute "connected"
    set status enable
end
deroute redistribute "rip"
end
deroute redistribute "ospf"
end
deroute redistribute "static"
end
deroute redistribute "isis"
end
deroute redistribute6 "connected"
end
deroute redistribute6 "rip"
end
deroute redistribute6 "ospf"
end
deroute redistribute6 "static"
end
deroute redistribute6 "isis"
end
end

4. Run `diagnose vpn tunnel list`. If the configuration was successful, the output should resemble the following:

```
name=toazure1 ver=2 serial=3 172.30.1.83:4500->52.180.90.47:4500 tun_id=52.180.90.47
bound_if=3 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/0
proxyid_num=1 child_num=0 refcnt=15 ilast=16 olast=36 ad=/0
stat: rxp=41 txp=41 rxb=5104 txb=2209
dpd: mode=on-demand on=1 idle=20000ms retry=3 count=0 seqno=1
```
natt: mode=keepalive draft=0 interval=10 remote_port=4500
proxyid=toazure1 proto=0 sa=1 ref=2 serial=4
  src: 0:0:0:0/0/0.0.0.0:0
dst: 0:0:0:0/0/0.0.0.0:0
SA: ref=3 options=10226 type=0 soft=0 mtu=8926 expire=2463/0B replaywin=2048
  seqno=2a esn=0 replaywin_lastseq=00000029 itn=0
life: type=01 bytes=0/0 timeout=3300/3600
dec: spi=c3f7928 esp=aes key=32
  009a86bb0d6f5fee66af7b8232c8c0f22e6ec5c61ba19c93569bd0cd115910a9
  ah=sha1 key=20 f05bfeb0060afa89d4afdfac35960a8a7a4d4856
  enc: spi=b40a6c70 esp=aes key=32
  a1e361075267ba72b39924c5e6c766fd0b08e0548476de2792ee72057fe60d1d
  ah=sha1 key=20 b1d24bedb0eb8fbd26de3e7c0b0a3a799548f52f
  dec: pkts/bytes=41/2186, enc: pkts/bytes=41/5120

Routing table for VRF=0
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
  0 - OSPF, IA - OSPF inter area
  N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
  E1 - OSPF external type 1, E2 - OSPF external type 2
  i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
  * - candidate default

S*  0.0.0.0/0 [5/0] via 172.30.1.1, port1
B  10.1.0.0/16 [20/0] via 10.1.0.6, toazure2, 00:15:01
C  10.1.0.6/32 is directly connected, toazure2
C  10.1.0.7/32 is directly connected, toazure1
B  10.2.0.0/16 [20/0] via 10.1.0.6, toazure2, 00:15:01
C  169.254.24.25/32 is directly connected, toazure1
  is directly connected, toazure2
C  172.30.1.0/24 is directly connected, port1
C  172.30.101.0/24 is directly connected, port2
**IPSec VPN between a FortiGate and a Cisco ASA with multiple subnets**

When a Cisco ASA unit has multiple subnets configured, multiple phase 2 tunnels must be created on the FortiGate to allocate to each subnet (rather than having multiple subnets on one phase 2 tunnel).

The FortiGate uses the same SPI value to bring up the phase 2 negotiation for all of the subnets, while the Cisco ASA expects different SPI values for each of its configured subnets. Using multiple phase 2 tunnels on the FortiGate creates different SPI values for each subnet.

**To configure multiple phase 2 interfaces in route-based mode:**

```shell
config vpn ipsec phase2-interface
 edit "First subnet"
 set phasename "VPN to Cisco"
 set src-subnet 192.168.227.253 255.255.255.255
 set dst-subnet 10.142.0.0 255.255.254.0
 next
 edit "Second subnet"
 set phasename "VPN to Cisco"
 set src-subnet 192.168.227.253 255.255.255.255
 set dst-subnet 10.143.0.0 255.255.254.0
 next
end
```

**To configure multiple phase 2 interfaces in policy-based mode:**

```shell
config vpn ipsec phase2
 edit "First subnet"
 set phasename "VPN to Cisco"
 set src-subnet 192.168.227.253 255.255.255.255
 set dst-subnet 10.142.0.0 255.255.254.0
 next
 edit "Second subnet"
 set phasename "VPN to Cisco"
 set src-subnet 192.168.227.253 255.255.255.255
 set dst-subnet 10.143.0.0 255.255.254.0
 next
end
```

**Cisco GRE-over-IPsec VPN**

This is a sample configuration of a FortiGate VPN that is compatible with Cisco-style VPNs that use GRE in an IPsec tunnel. Cisco products with VPN support often use the GRE protocol tunnel over IPsec encryption. Cisco VPNs can use either transport mode or tunnel mode IPsec.

**Topology**

In this example, LAN1 users are provided with access to LAN2.
Configuring the FortiGate

There are five steps to configure GRE-over-IPsec with a FortiGate and Cisco router:

1. Enable overlapping subnets.
2. Configure a route-based IPsec VPN on the external interface.
3. Configure a GRE tunnel on the virtual IPsec interface.
4. Configure security policies.
5. Configure the static route.

Enabling overlapping subnets

Overlapping subnets are required because the IPsec and GRE tunnels will use the same addresses. By default, each FortiGate network interface must be on a separate network. This configuration assigns an IPsec tunnel endpoint and the external interface to the same network.

To enable overlapping subnets:

```
config system settings
 set allow-subnet-overlap enable
next
end
```
**Configuring a route-based IPsec VPN**

A route-based VPN that use encryption and authentication algorithms compatible with the Cisco router is required. Pre-shared key authentication is used in this configuration.

**To configure route-based IPsec in the GUI:**

1. Go to **VPN > IPsec Wizard** and select the **Custom** template.
2. Enter the tunnel name (**tocisco**) and click Next.
3. Enter the following:

<table>
<thead>
<tr>
<th>Remote Gateway</th>
<th>Static IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>Cisco router public interface (192.168.5.113)</td>
</tr>
<tr>
<td>Interface</td>
<td>FortiGate public interface (172.20.120.141)</td>
</tr>
<tr>
<td>Authentication Method</td>
<td>Pre-shared Key</td>
</tr>
<tr>
<td>Pre-shared Key</td>
<td>Entry must match the pre-shared key on the Cisco router</td>
</tr>
<tr>
<td>Mode</td>
<td>Main (ID Protection)</td>
</tr>
<tr>
<td>Phase 1 Proposal</td>
<td>3DES-SHA1, AES128-SHA1 (at least one proposal must match the settings on the Cisco router)</td>
</tr>
<tr>
<td>Local Address</td>
<td>GRE local tunnel endpoint IP address (172.20.120.141)</td>
</tr>
<tr>
<td>Remote Address</td>
<td>GRE remote tunnel endpoint IP address (192.168.5.113)</td>
</tr>
<tr>
<td>Phase 2 Proposal</td>
<td>3DES-MD5 (at least one proposal must match the settings on the Cisco router)</td>
</tr>
<tr>
<td>Local Port</td>
<td>0</td>
</tr>
<tr>
<td>Remote Port</td>
<td>0</td>
</tr>
<tr>
<td>Protocol</td>
<td>47</td>
</tr>
</tbody>
</table>

4. Click **OK**.
5. If the Cisco router is configured to use transport mode IPsec, configure transport mode on the FortiGate:

   ```
 config vpn phase2-interface
 edit tocisco_p2
 set encapsulation transport-mode
 next
 end
   ```

**To configure route-based IPsec in the CLI:**

```
config vpn ipsec phase1-interface
edit tociaco
 set interface port1
 set proposal 3des-shal aes128-shal
 set remote-gw 192.168.5.113
 set psksecret xxxxxxxxxxxxxxxx
next
end
```
config vpn ipsec phase2-interface
    edit tocisco_p2
        set phase1name tocisco
        set proposal 3des-md5
        set encapsulation [tunnel-mode | transport-mode]
        set protocol 47
        set src-addr-type ip
        set dst-start-ip 192.168.5.113
        set src-start-ip 172.20.120.141
    next
end

To add the IPsec tunnel end addresses:

config system interface
    edit tocisco
        set ip 172.20.120.141 255.255.255.255
        set remote-ip 192.168.5.113
    next
end

Configuring the GRE tunnel

The local gateway and remote gateway addresses must match the local and remote gateways of the IPsec tunnel. The GRE tunnel runs between the virtual IPsec public interface on the FortiGate unit and the Cisco router.

To configure the GRE tunnel:

config system gre-tunnel
    edit gre1
        set interface tocisco
        set local-gw 172.20.120.141
        set remote-gw 192.168.5.113
        set keepalive-interval <integer>
        set keepalive-failtimes <integer>
    next
end

The Cisco router configuration requires an address for its end of the GRE tunnel, so you need to add the tunnel end addresses.

To add the tunnel end addresses:

config system interface
    edit gre1
        set ip 10.0.1.1 255.255.255.255
        set remote-ip 10.0.1.2
    next
end

Configuring the security policies

Two sets of security policies are required:
• Policies to allow traffic to pass in both directions between the GRE virtual interface and the IPsec virtual interface.
• Policies to allow traffic to pass in both directions between the protected network interface and the GRE virtual interface.

To configure security policies in the GUI:

1. Go to Policy & Objects > Firewall Policy and click Create New.
2. Enter the following to allow traffic between the protected network and the GRE tunnel:

<table>
<thead>
<tr>
<th>Name</th>
<th>LANtoGRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>Interface that connects to the private network behind the FortiGate (port2)</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>GRE tunnel virtual interface (gre1)</td>
</tr>
<tr>
<td>Source</td>
<td>All</td>
</tr>
<tr>
<td>Destination</td>
<td>All</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>NAT</td>
<td>Disable</td>
</tr>
</tbody>
</table>

3. Click OK.
4. Create a new policy and enter the following to allow traffic between the GRE tunnel and the protected network:

<table>
<thead>
<tr>
<th>Name</th>
<th>GREtoLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>GRE tunnel virtual interface (gre1)</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>Interface that connects to the private network behind the FortiGate (port2)</td>
</tr>
<tr>
<td>Source</td>
<td>All</td>
</tr>
<tr>
<td>Destination</td>
<td>All</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>NAT</td>
<td>Disable</td>
</tr>
</tbody>
</table>

5. Click OK.
6. Create a new policy and enter the following to allow traffic between the GRE virtual interface and the IPsec virtual interface:

<table>
<thead>
<tr>
<th>Name</th>
<th>GREtoIPsec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>GRE tunnel virtual interface (gre1)</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>Virtual IPsec interface (tocisco)</td>
</tr>
<tr>
<td>Source</td>
<td>All</td>
</tr>
<tr>
<td>Destination</td>
<td>All</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>NAT</td>
<td>Disable</td>
</tr>
</tbody>
</table>

7. Click OK.
8. Create a new policy and enter the following to allow traffic between the IPsec virtual interface and the GRE virtual interface:

<table>
<thead>
<tr>
<th>Name</th>
<th>IPsectoGRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>Virtual IPsec interface (tocisco)</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>GRE tunnel virtual interface (gre1)</td>
</tr>
<tr>
<td>Source</td>
<td>All</td>
</tr>
<tr>
<td>Destination</td>
<td>All</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>NAT</td>
<td>Disable</td>
</tr>
</tbody>
</table>

9. Click OK.

**To configure security policies in the CLI:**

```bash
config firewall policy
define 1
 set name LANtoGRE
 set srcintf port2
define 2
 set dstintf gre1
define 3
 set srcaddr all
define 4
 set dstaddr all
define 5
 set action accept
define 6
 set schedule always
define 7
 set service ALL
next
define 8
 set name GREtoLAN
define 9
 set srcintf gre1
next
define 10
 set dstintf port2
define 11
 set srcaddr all
define 12
 set dstaddr all
next
define 13
 set action accept
define 14
 set schedule always
next
define 15
 set service ALL
next
define 16
 set name GREtoIPsec
next
define 17
 set srcintf gre1
next
define 18
 set dstintf tocisco
define 19
 set srcaddr all
define 20
 set dstaddr all
next
define 21
 set action accept
define 22
 set schedule always
next
define 23
 set service ALL
next
define 24
 set name IPsectoGRE
next
define 25
 set srcintf tocisco
next
define 26
 set dstintf gre1
next
define 27
 set srcaddr all
define 28
 set dstaddr all
next
```
Remote access

Remote access lets users connect to the Internet using a dialup connection over traditional POTS or ISDN telephone lines. Virtual private network (VPN) protocols are used to secure these private connections.

The following topics provide instructions on configuring remote access:

- FortiGate as dialup client on page 1414
- FortiClient as dialup client on page 1420
- Add FortiToken multi-factor authentication on page 1424
- Add LDAP user authentication on page 1425
- iOS device as dialup client on page 1426
- IKE Mode Config clients on page 1430
- IPsec VPN with external DHCP service on page 1435
- L2TP over IPsec on page 1438
- Tunneled Internet browsing on page 1442
- Dialup IPsec VPN with certificate authentication on page 1448
- Restricting VPN access to rogue/non-compliant devices with Security Fabric

**FortiGate as dialup client**

This is a sample configuration of dialup IPsec VPN and the dialup client. In this example, a branch office FortiGate connects via dialup IPsec VPN to the HQ FortiGate.

You can configure dialup IPsec VPN with FortiGate as the dialup client using the **GUI** or **CLI**.

**To configure IPsec VPN with FortiGate as the dialup client in the GUI:**

1. Configure the dialup VPN server FortiGate:
   a. Go to **VPN > IPsec Wizard** and configure the following settings for **VPN Setup**:
      i. Enter a VPN name.
      ii. For **Template Type**, select **Site to Site**.
      iii. For **Remote Device Type**, select **FortiGate**.
      iv. For **NAT Configuration**, select **The remote site is behind NAT**.
      v. Click **Next**.
   b. Configure the following settings for **Authentication**:
      i. For **Incoming Interface**, select the incoming interface.
      ii. For **Authentication Method**, select **Pre-shared Key**.
      iii. In the **Pre-shared Key** field, enter your-psk as the key.
      iv. Click **Next**.
   c. Configure the following settings for **Policy & Routing**:
      i. From the **Local Interface** dropdown menu, select the local interface.
      ii. Configure the **Local Subnets** as 10.1.100.0/24.
      iii. Configure the **Remote Subnets** as 172.16.101.0/24.
      iv. Click **Create**.
2. Configure the dialup VPN client FortiGate:
   a. Go to **VPN > IPsec Wizard** and configure the following settings for **VPN Setup**:
      i. Enter a VPN name.
      ii. For **Template Type**, select **Site to Site**.
      iii. For **Remote Device Type**, select **FortiGate**.
      iv. For **NAT Configuration**, select **This site is behind NAT**.
      v. Click **Next**.
b. Configure the following settings for Authentication:
   i. For IP Address, enter 11.101.1.1.
   ii. For Outgoing Interface, select port13.
   iii. For Authentication Method, select Pre-shared Key.
   iv. In the Pre-shared Key field, enter your-psk as the key.
   v. Click Next.

c. Configure the following settings for Policy & Routing:
   i. From the Local Interface dropdown menu, select the local interface. In this example, it is port9.
   ii. Configure the Local Subnets as 172.16.101.0.
   iii. Configure the Remote Subnets as 10.1.100.0.
   iv. Click Create.

To configure IPsec VPN with FortiGate as the dialup client in the CLI:

1. In the CLI, configure the user, user group, and firewall address. Only the HQ dialup server FortiGate needs this configuration. The address is an IP pool to assign an IP address for the dialup client FortiGate.

   ```
 config user local
 edit "vpnuser1"
 set type password
 set passwd your-password
 next
 end
 config user group
 edit "vpngroup"
 set member "vpnuser1"
 next
 end
 config firewall address
 edit "client_range"
 set type iprange
 set start-ip 10.10.10.1
 set end-ip 10.10.10.200
 next
 end
   ```

2. Configure the WAN interface and default route. The WAN interface is the interface connected to the ISP. It can work in static mode (as shown in this example), DHCP, or PPPoE mode. The IPsec tunnel is established over the WAN interface.

   a. Configure the HQ FortiGate.

      ```
 config system interface
 edit "wan1"
 set vdom "root"
 set ip 11.101.1 255.255.255.0
 next
 end
 config router static
 edit 1
 set gateway 11.101.1.2
 set device "wan1"
 next
 end
      ```
b. Configure the branch office FortiGate.

```fortigate
config system interface
 edit "port13"
 set vdom "root"
 set ip 173.1.1.1 255.255.255.0
 next
end
config router static
 edit 1
 set gateway 173.1.1.2
 set device "port13"
 next
end
```

3. Configure the internal interface and protected subnet. The internal interface connects to the internal network. Traffic from this interface will route out the IPsec VPN tunnel.

a. Configure the HQ FortiGate.

```fortigate
config system interface
 edit "dmz"
 set vdom "root"
 set ip 10.1.100.1 255.255.255.0
 next
end
config firewall address
 edit "10.1.100.0"
 set subnet 10.1.100.0 255.255.255.0
 next
end
```

b. Configure the branch office FortiGate.

```fortigate
config system interface
 edit "port9"
 set vdom "root"
 set ip 172.16.101.1 255.255.255.0
 next
end
config firewall address
 edit "172.16.101.0"
 set subnet 172.16.101.0 255.255.255.0
 next
end
```

4. Configure the IPsec phase1-interface. In this example, PSK is used as the authentication method. Signature authentication is also an option.

a. Configure the HQ FortiGate.

```fortigate
config vpn ipsec phase1-interface
 edit "for_Branch"
 set type dynamic
 set interface "wan1"
 set mode aggressive
 set peertype any
 set mode-cfg enable
 set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
 set add-route disable
```
set dpd on-idle
set xauthtype auto
set authusrgrp "vpngrp"
set net-device enable
set assign-ip-from name
set dns-mode auto
set ipv4-split-include "10.1.100.0"
set ipv4-name "client_range"
set save-password enable
set psksecret sample
set dpd-retryinterval 60
next
end

b. Configure the branch office FortiGate.

config vpn ipsec phase1-interface
edit "to_HQ"
set interface "port13"
set mode aggressive
set peer-type any
set mode-cfg enable
set proposal aes128-sha256 aes256-sha256 aes128-shal aes256-shal
set add-route disable
set xauthtype client
set authusr "vpngrp"
set authpasswd vpngrp-sample
set remote-gw 11.101.1.1
set psksecret sample
next
end

5. Configure the IPsec phase2-interface.

a. Configure the HQ FortiGate:

config vpn ipsec phase2-interface
edit "for_Branch_p2"
set phase1-name "for_Branch"
set proposal aes128-shal aes256-shal
set proposal aes128-sha256 aes256-sha256
aes128gcm chacha20poly1305
next
end

b. Configure the branch office FortiGate.

config vpn ipsec phase2-interface
edit "to_HQ_p2"
set phaselname "to_HQ"
set proposal aes128-shal aes256-shal
set proposal aes128-sha256 aes256-sha256
aes128gcm chacha20poly1305
next
end

6. Configure the static routes on the branch office FortiGate. The blackhole route is important to ensure that IPsec traffic does not match the default route when the IPsec tunnel is down.

config router static
edit 2
7. Configure the firewall policy to allow the branch office to HQ network flow over the IPsec tunnel. This configuration only supports traffic from the branch office FortiGate to the HQ FortiGate. Traffic is dropped from the HQ FortiGate to the branch office FortiGate.

a. Configure the HQ FortiGate.

```fortigate
set dst 10.1.100.0 255.255.255.0
set device "to_QQ"
next
edit 3
set dst 10.1.100.0 255.255.255.0
set blackhole enable
set distance 254
next
end
```

b. Configure the branch office FortiGate.

```fortigate
config firewall policy
edit 1
set name "inbound"
set srcintf "for_Branch"
set dstintf "dmz"
set srcaddr "172.16.101.0"
set dstaddr "10.1.100.0"
set action accept
set schedule "always"
set service "ALL"
next
end
```

8. Run diagnose commands to check the IPsec phase1/phase2 interface status. The `diagnose debug application ike -1` command is the key to troubleshoot why the IPsec tunnel failed to establish.

a. Run the `diagnose vpn ike gateway list` command on the HQ FortiGate. The system should return the following:

```
vd: root/0
name: for_Branch_0
interface: wanl 5
addr: 11.101.1.1:500 -> 173.1.1.1:500
created: 1972s ago
xauth-user: vpnuser1
assigned IPv4 address: 10.10.1.1/255.255.255.252
IKE SA: created 1/1 established 1/1 time 10/10/10 ms
```
VPN

IPsec SA: created 1/1 established 1/1 time 0/0/0 ms
id/spi: 184 5b1c59fab2029e43/bf517e686d3943d2
direction: responder
status: established 1972-1972s ago = 10ms
proposal: aes128-sha256
key: 8046488e92499247-fbbb4f6dfa4952d0
lifetime/rekey: 86400/84157
DPD sent/recv: 00000020/00000000

b. Run the `diagnose vpn tunnel list` command on the HQ FortiGate. The system should return the following:

```
list all ipsec tunnel in vd 0
name=for_Branch_0 ver=1 serial=9 11.101.1.1:0->173.1.1.1:1 tun_id=173.1.1.1
bound_if=5 lgwy=static/1 tun=intf/0 mode=dial_inst/3 encap=none/208 options [00d0]=create_dev no-sysctlrgwy-chg
parent=for_Branch index=0
proxyid_num=1 child_num=0 refcnt=12 ilast=8 olast=8 ad=/0
stat: rxp=8 txp=8 rxb=1216 txb=672
dpd: mode=on-idle on=1 idle=60000ms retry=3 count=0 seqno=31
natt: mode=draft remote_port=
proxyid_for_Branch_p2 proto=0 sa=1 ref=2 serial=1
src: 0:0.0.0.0-255.255.255.255:0
dst: 0:0.0.0.0-255.255.255.255:0
SA: ref=3 options=226 type=00 soft=0 mtu=1438 expire=41297/0B replaywin=2048 seqno=9
esn=0 replaywin_lastsq=00000009 itn=0
life: type=01 bytes=0/0 timeout=43190/43200
dec: spi=747c10c6 esp=aes key=16 278c2430e09e74f1e229108f906603b0
ah=sha1 key=20 21dad76b008d1e8b8e53148a2fcb013a277974a
enc: spi=ca646448 esp=aes key=16 b7801d125804e3610a556da7caef765
ah=sha1 key=20 a70164c3094327058bd84c1a0c954ca439709206
decpkts/bytes=8/672, encpkts/bytes=8/1216
```

c. Run the `diagnose vpn ike gateway list` command on the branch office FortiGate. The system should return the following:

```
vd: root/0
name: to_HQ
version: 1
interface: port13 42
addr: 173.1.1.1:500 -> 11.101.1.1:500
created: 2016s ago
assigned IPv4 address: 10.10.10.1/255.255.255.252
IKE SA: created 1/1 established 1/1 time 0/0/0 ms
IPsec SA: created 1/1 established 1/1 time 0/0/0 ms
id/spi: 93 5b1c59fab2029e43/bf517e686d3943d2
direction: initiator
status: established 2016-2016s ago = 0ms
proposal: aes128-sha256
```
VPN

key: 8046488e92499247-fbbbf6b9a4952d0
lifetime/rekey: 86400/84083
DPD sent/recv: 00000000/00000020

d. Run the `diagnose vpn tunnel list` command on the branch office FortiGate. The system should return the following:

```
list all ipsec tunnel in vd 0
name=to_HQver=1 serial=7 173.1.1.1:0->11.101.1.1:1 tun_id=11.101.1.1
bound_if=42 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/8 options[0008]=npu
proxyid_num=1 child_num=0 refcnt=13 ilast=18 olast=58 ad=/0
stat: rxp=1 txp=2 rxb=152 txb=168
dpd: mode=on-demand on=1 idle=20000ms retry=3 count=0 seqno=0
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=to_HQ proto=0 sa=1 ref=2 serial=1
src: 0:0:0:0/0.0.0.0:0
dst: 0:0:0:0/0.0.0.0:0
SA: ref=6 options=10226 type=00 soft=0 mtu=1438 expire=41015/08 replaywin=2048
seqno=3 esn=0 replaywin_lastseq=00000002 itn=0
life: type=01 bytes=0/0 timeout=42898/43200
dec: spi=ca646448 esp=aes key=16 b7801d25804e3610a556da7caefd765
ah=shal key=20 a70164c3094327058bd84a6a954ca439709206
enc: spi=747c10c6 esp=aes key=16 278c2430e09e74f1e229108f906603b0
ah=shal key=20 21ad76b0008d1e8b8e53148a2fbdb03a277974a
dec=0 fake=0 fdkts=1/84, enc=0 fktbs=2/304
npu_flag=03 npu_rgw=11.101.1.1 npu_lgw=173.1.1.1 npu_selid=5 dec_npuid=2 enc_npuid=2
```

**FortiClient as dialup client**

This is a sample configuration of dialup IPsec VPN with FortiClient as the dialup client.

![Diagram of dialup IPsec VPN with FortiClient as the dialup client](image)

You can configure dialup IPsec VPN with FortiClient as the dialup client using the GUI or CLI.

If multiple dialup IPsec VPNs are defined for the same dialup server interface, each phase1 configuration must define a unique peer ID to distinguish the tunnel that the remote client is connecting to. When a client connects, the first IKE message that is in aggressive mode contains the client's local ID. FortiGate matches the local ID to the dialup tunnel referencing the same Peer ID, and the connection continues with that tunnel.
To configure IPsec VPN with FortiClient as the dialup client on the GUI:

1. Configure a user and user group.
   a. Go to User & Authentication > User Definition to create a local user vpnuser1.
   b. Go to User & Authentication > User Groups to create a group vpngroup with the member vpnuser1.
2. Go to VPN > IPsec Wizard and configure the following settings for VPN Setup:
   a. Enter a VPN name.
   b. For Template Type, select Remote Access.
   c. For Remote Device Type, select Client-based > FortiClient.
   d. Click Next.
3. Configure the following settings for Authentication:
   a. For Incoming Interface, select wan1.
   b. For Authentication Method, select Pre-shared Key.
   c. In the Pre-shared Key field, enter your-psk as the key.
   d. From the User Group dropdown list, select vpngroup.
   e. Click Next.
4. Configure the following settings for Policy & Routing:
   a. From the Local Interface dropdown menu, select lan.
   b. Configure the Local Address as local_network.
   c. Configure the Client Address Range as 10.10.2.1-10.10.2.200.
   d. Keep the default values for the Subnet Mask, DNS Server, Enable IPv4 Split tunnel, and Allow Endpoint Registration.
   e. Click Next.
5. Adjust the Client Options as needed, then click Create.
6. Optionally, define a unique Peer ID in the phase1 configuration:
   a. Go to VPN > IPsec Tunnels and edit the just created tunnel.
   b. Click Convert To Custom Tunnel.
   c. In the Authentication section, click Edit.
   d. Under Peer Options, set Accept Types to Specific peer ID.
   e. In the Peer ID field, enter a unique ID, such as dialup1.
   f. Click OK.

To configure IPsec VPN with FortiClient as the dialup client using the CLI:

1. In the CLI, configure the user and group.
   ```
 config user local
 edit "vpnuser1"
 set type password
 set passwd your-password
 next
 end
 config user group
 edit "vpngroup"
 set member "vpnuser1"
 next
 end
   ```
2. Configure the internal interface. The LAN interface connects to the corporate internal network. Traffic from this interface routes out the IPsec VPN tunnel. Creating an address group for the protected network behind this
FortiGate causes traffic to this network group to go through the IPsec tunnel.

```
config system interface
 edit "lan"
 set vdom "root"
 set ip 10.10.111.1 255.255.255.0
 next
end
config firewall address
 edit "local_subnet_1"
 set subnet 10.10.111.0 255.255.255.0
 next
 edit "local_subnet_2"
 set subnet 10.10.112.0 255.255.255.0
 next
end
config firewall addrgrp
 edit "local_network"
 set member "local_subnet_1" "local_subnet_2"
 next
end
```

3. Configure the WAN interface. The WAN interface is the interface connected to the ISP. It can work in static mode (as shown in this example), DHCP, or PPPoE mode. The IPsec tunnel is established over the WAN interface.

```
config system interface
 edit "wan1"
 set vdom "root"
 set ip 172.20.120.123 255.255.255.0
 next
end
```

4. Configure the client address pool. You must create a firewall address to assign an IP address to a client from the address pool.

```
config firewall address
 edit "client_range"
 set type iprange
 set comment "VPN client range"
 set start-ip 10.10.2.1
 set end-ip 10.10.2.200
 next
end
```

5. Configure the IPsec phase1-interface. In this example, PSK is used as the authentication method. Signature authentication is also an option.

```
config vpn ipsec phase1-interface
 edit "for_client"
 set type dynamic
 set interface "wan1"
 set mode aggressive
 set peertype one
 set peerid "dialup1"
 set net-device enable
 set mode-cfg enable
 set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
 set dpd on-idle
 set xauthtype auto
```
6. **Configure the IPsec phase2-interface.**

```plaintext
cfg vpn ipsec phase2-interface
edit "for_client"
 set phase1name "for_client"
 set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256 aes128gcm
 aes256gcm chacha20poly1305
next
end
```

7. **Configure the firewall policy to allow client traffic flow over the IPsec VPN tunnel.**

```plaintext
cfg firewall policy
edit 1
 set name "inbound"
 set srcintf "for_client"
 set dstintf "lan"
 set srcaddr "client_range"
 set dstaddr "local_network"
 set action accept
 set schedule "always"
 set service "ALL"
next
end
```

---

**To configure FortiClient:**

1. In FortiClient, go to Remote Access and click Add a new connection.
2. Set the VPN to IPsec VPN and the Remote Gateway to the FortiGate IP address.
3. Set the Authentication Method to Pre-Shared Key and enter the key.
4. Expand Advanced Settings > Phase 1 and in the Local ID field, enter dialup1.
5. Configure remaining settings as needed, then click Save.
6. Select the VPN, enter the username and password, then select Connect.

---

**Diagnose the connection**

Run `diagnose commands` to check the IPsec phase1/phase2 interface status. The `diagnose debug application ike -1` command is the key to troubleshoot why the IPsec tunnel failed to establish.

1. Run the `diagnose vpn ike gateway list` command. The system should return the following:

```plaintext
vd: root/0
 name: for_client_0
 version: 1
 interface: port1 15
```
VPN

addr: 172.20.120.123:4500 ->172.20.120.254:64916
created: 37s ago
xauth-user: vpnuser1
assigned IPv4 address: 10.10.1.1/255.255.255.255
nat: me peer
IKE SA: created 1/1 established 1/1 time 10/10/10 ms
IPSec SA: created 1/1 established 1/1 time 0/0/0 ms
id/spi: 1 b40a32d878d5e262/8bba553563a498f4
direction: responder
status: established 37-37s ago = 10ms
proposal: aes256-sha256
key: f4ad7ec3a4fcfd09-787e2e9b7bceeb9a7-0dfa183240d838ba-41539863e5378381
lifetime/rekey: 86400/86092
DPD sent/recv: 00000000/00000a0e

2. Run the diagnose vpn tunnel list command. The system should return the following:

```
list all ipsec tunnel in vd 0 =
 =
 name=for_client_0 ver=1 serial=3 172.20.120.123:4500->172.20.120.254:64916 tun_id=172.20.120.254
 bound_if=15 lgwy=static/1 tun=intf/0 mode=dial_inst/3 encap=none/984 options [03d8]=npucreate_dev no-sysctlrgwy-chgrport-chg frag-rfcaacct_traffic=1
 parent=for_client index=0
 proxyid_num=1 child_num=0 refcnt=12 ilast=3 olast=3 ad=/0
 stat: rxp=1 txp=0 rxb=16402 txb=0
dpd: mode=on-idle on=20000ms retry=3 count=0 seqno=0
 nat: mode=keepalive draft=32 interval=10 remote_port=64916
 proxyid=for_client proto=0 sa=1 ref=2 serial=1 add-route
 src: 0:0.0.0.0-255.255.255.255:0
dst: 0:10.10.1.1-10.10.1.1:0
SA: ref=4 options=2a6 type=00 soft=0 mtu=1422 expire=42867/0B replaywin=2048
 seqno=1 esn=0 replaywin_lastseq=00000001 itn=0
 life: type=01 bytes=0/0 timeout=43189/43200
 dec: spi=36274d14 esp=aes key=16 e518b84b3c3b667b79f2e61c64a225a6
 ah=sha1 key=20 9ccaa54ceed042fda800c4fe5d3fd9d8bb11984a
 enc: spi=8b154deb esp=aes key=16 9d50f004b45c122e4e9fb7af085c457c
 ah=sha1 key=20 f1d90b2a311049e23be34967008239637b50a328
 dec:pks/bytes=1/16330, enc:pks/bytes=0/0
npu_flag=02 npu_rgw=172.20.120.254 npu_lgw=172.20.120.123npu_selid=0 dec_npuid=2 enc_npuid=0
 name=for_clientver=1 serial=2 172.20.120.123:0->0.0.0.0:0
 bound_if=15 lgwy=static/1 tun=intf/0 mode=dialup/2 encap=none/536 options [0218]=npucreate_dev frag-rfcaacct_traffic=1
 proxyid_num=0 child_num=1 refcnt=11 ilast=350 olast=350 ad=/0
 stat: rxp=0 txp=0 rxb=0 txb=0
dpd: mode=on-idle on=20000ms retry=3 count=0 seqno=0
 nat: mode=none draft=0 interval=0 remote_port=0
```

Add FortiToken multi-factor authentication

This configuration adds multi-factor authentication (MFA) to the FortiClient dialup VPN configuration (FortiClient as dialup client on page 1420). It uses one of the two free mobile FortiTokens that is already installed on the FortiGate.
To configure MFA using the GUI:

1. Edit the user:
   a. Go to User & Authentication > User Definition and edit local user vpnuser1.
   b. Enable Two-factor Authentication.
   c. For Authentication Type, click FortiToken and select one mobile Token from the list.
   d. Enter the user's Email Address.
   e. Enable Send Activation Code and select Email.
   f. Click Next and click Submit.

2. Activate the mobile token.
   a. When a FortiToken is added to user vpnuser1, an email is sent to the user's email address. Follow the instructions to install your FortiToken mobile application on your device and activate your token.

To configure MFA using the CLI:

1. Edit the user and user group:
   ```
 config user local
 edit "vpnuser1"
 set type password
 set two-factor fortitoken
 set fortitoken <select mobile token for the option list>
 set email-to <user's email address>
 set passwd <user's password>
 next
 end
   ```

2. Activate the mobile token.
   a. When a FortiToken is added to user vpnuser1, an email is sent to the user's email address. Follow the instructions to install your FortiToken mobile application on your device and activate your token.

Add LDAP user authentication

This configuration adds LDAP user authentication to the FortiClient dialup VPN configuration (FortiClient as dialup client on page 1420). You must have already generated and exported a CA certificate from your AD server.

To configure LDAP user authentication using the GUI:

1. Import the CA certificate into FortiGate:
   a. Go to System > Certificates.
      If the Certificates option is not visible, enable it in Feature Visibility. See Feature visibility on page 2165 for details.
   b. Click Import > CA Certificate.
   c. Set Type to File.
   d. Click Upload then find and select the certificate file.
   e. Click OK.
      The CA certificate now appears in the list of External CA Certificates. In this example, it is called CA_Cert_1.
f. Optionally, rename the system generated CA_Cert_1 to something more descriptive:

```plaintext
config vpn certificate ca
 rename CA_Cert_1 to LDAPS-CA
end
```

2. Configure the LDAP user:
   a. Go to User & Authentication > LDAP Servers and click Create New.
   b. Set Name to ldaps-server and specify Server IP/Name.
   c. Specify Common Name Identifier and Distinguished Name.
   d. Set Bind Type to Regular.
   e. Specify Username and Password.
   f. Enable Secure Connection and set Protocol to LDAPS.
   g. For Certificate, select LDAP server CA LDAPS-CA from the list.
   h. Click OK.

3. Add the LDAP user to the user group:
   a. Go to User & Authentication > User Groups and edit the vpngroup group.
   b. In Remote Groups, click Add to add the ldaps-server remote server.
   c. Click OK.

To configure LDAP user authentication using the CLI:

1. Import the CA certificate using the GUI.

2. Configure the LDAP user:

```plaintext
config user ldap
 edit "ldaps-server"
 set server "172.20.120.161"
 set cnid "cn"
 set dn "cn=Users,dc=qa,dc=fortinet,dc=com"
 set type regular
 set username "CN=Administrator,cn=users,DC=qa,DC=fortinet,DC=com"
 set password **********
 set group-member-check group-object
 set secure ldaps
 set ca-cert "LDAPS-CA"
 set port 636
 next
end
```

3. Add the LDAP user to the user group:

```plaintext
config user group
 edit "vpngroup"
 append member "ldaps-server"
 next
end
```

**iOS device as dialup client**

This is a sample configuration of dialup IPsec VPN with an iPhone or iPad as the dialup client.
You can configure dialup IPsec VPN with an iOS device as the dialup client using the GUI or CLI.

To configure IPsec VPN with an iOS device as the dialup client on the GUI:

1. Go to VPN > IPsec Wizard and configure the following settings for VPN Setup:
   a. Enter a VPN name.
   b. For Template Type, select Remote Access.
   c. For Remote Device Type, select Native > iOS Native.
   d. For NAT Configuration, set No NAT Between Sites.
   e. Click Next.

2. Configure the following settings for Authentication:
   a. For Incoming Interface, select wan1.
   b. For Authentication Method, select Pre-shared Key.
   c. In the Pre-shared Key field, enter your-psk as the key.
   d. From the User Group dropdown list, select vpngroup.
   e. Deselect Require ‘Group Name’ on VPN client.
   f. Click Next.

3. Configure the following settings for Policy & Routing:
   a. From the Local Interface dropdown menu, select lan.
   b. Configure the Local Address as local_network.
   c. Configure the Client Address Range as 10.10.2.1-10.10.2.200.
   d. Keep the default values for the Subnet Mask, DNS Server, and Enable IPv4 Split tunnel.
   e. Click Create.

To configure IPsec VPN with an iOS device as the dialup client using the CLI:

1. In the CLI, configure the user and group.

```bash
config user local
 edit "vpnuser1"
 set type password
 set passwd your-password
 next
end
```
config user group
  edit "vpngroup"
    set member "vpnuser1"
  next
end

2. Configure the internal interface. The LAN interface connects to the corporate internal network. Traffic from this interface routes out the IPsec VPN tunnel. Creating an address group for the protected network behind this FortiGate causes traffic to this network group to go through the IPsec tunnel.

config system interface
  edit "lan"
    set vdom "root"
    set ip 10.10.111.1 255.255.255.0
  next
end

config firewall address
  edit "local_subnet_1"
    set ip 10.10.111.0 255.255.255.0
  next
end

config firewall address
  edit "local_subnet_2"
    set ip 10.10.112.0 255.255.255.0
  next
end

config firewall addrgrp
  edit "local_network"
    set member "local_subnet_1" "local_subnet_2"
  next
end

3. Configure the WAN interface. The WAN interface is the interface connected to the ISP. It can work in static mode (as shown in this example), DHCP, or PPPoE mode. The IPsec tunnel is established over the WAN interface.

config system interface
  edit "wan1"
    set vdom "root"
    set ip 172.20.120.123 255.255.255.0
  next
end

4. Configure the client address pool. You must create a firewall address to assign an IP address to a client from the address pool.

config firewall address
  edit "client_range"
    set type iprange
    set comment "VPN client range"
    set start-ip 10.10.2.1
    set end-ip 10.10.2.200
  next
end

5. Configure the IPsec phase1-interface. In this example, PSK is used as the authentication method. Signature authentication is also an option.
config vpn ipsec phase1-interface
edit "for_ios_p1"
    set type dynamic
    set interface "wan1"
    set peertype any
    set net-device enable
    set mode-cfg enable
    set proposal aes256-sha256 aes256-md5 aes256-sha1
    set dpd on-idle
    set dhgrp 14 5 2
    set xauthtype auto
    set authusrgrp "vpngroup"
    set assign-ip-from name
    set ipv4-name "client_range"
    set dns-mode auto
    set ipv4-split-include "local_network"
    set dpd secret your-psk
    set dpd-retryinterval 60
next
end

6. Configure the IPsec phase2-interface.

config vpn ipsec phase2-interface
edit "for_ios_p2"
    set phasename "for_ios_p1"
    set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256
    aes128gcm aes256gcm chacha20poly1305
    set pfs disable
    set keepalive enable
next
end

7. Configure the firewall policy to allow client traffic flow over the IPsec VPN tunnel.

config firewall policy
edit 1
    set name "ios_vpn"
    set srcintf "for_ios_p1"
    set dstintf "lan"
    set srcaddr "ios_range"
    set dstaddr "local_network"
    set action accept
    set schedule "always"
    set service "ALL"
next
end

8. Configure the iOS device.
   a. In the iOS device, go to Settings > General > VPN and select Add VPN Configuration.
   b. Set the Type to IPsec and enter a Description. Set the Server to the FortiGate's Internet-facing interface, and enter the username in Account. Enter the user password, the preshared IPsec VPN secret, then select Done.
   c. Ensure that the IPsec VPN configuration is highlighted (indicated by a checkmark), and select the Not Connected button. The IPsec VPN connects with the user's credentials and secret. The status changes to Connected, and a VPN icon appears at the top of the screen.

9. Run diagnose commands to check the IPsec phase1/phase2 interface status. The diagnose debug application ike -1 command is the key to troubleshoot why the IPsec tunnel failed to establish.
**a. Run the `diagnose vpn ike gateway list` command. The system should return the following:**

```plaintext
vd: root/0
name: for_ios_pl_0
version: 1
interface: port1 15
addr: 172.20.120.123:4500 -> 172.20.120.254:64916
created: 17s ago
xauth-user: ul
assigned IPV4 address: 10.10.2.1/255.255.255.255
nat: me peer
IKE SA: created 1/1 established 1/1 time 150/150/150 ms
IPsec SA: created 1/1 established 1/1 time 10/10/10 ms
id/sip: 2 3c844e3c75591bf/80c2db92c8d3f6f02 direction: responder status: established
17-17s ago = 150ms proposal: aes256-sha256 key: 0032ea5ee160d775-51f3bf1f9909101b-b89c7b5a77a07784-2c92cf9c921801ac lifetime/rekey: 3600/3312 DPD sent/recv: 00000000/00000000
```

**b. Run the `diagnose vpn tunnel list` command. The system should return the following:**

```plaintext
list all ipsec tunnel in vd 0
name=for_ios_pl_0 ver=1 serial=172.20.120.123:4500->172.20.120.254:64916 tun_id=172.20.120.254
bound_if=15 lgwy=static/1 tun=intf/0 mode=dial_inst/3 encap=none/984 options [03d8]=npu create_dev no-sysctl rgwy-chg rport-chg frag-rfc accept_traffic=1 parent=for_ios_pl_index=0
proxytid_num=1 child_num=0 refcnt=12 ilast=23 olast=23 ad/=0
stat: rtxp=0 txp=0 rxp=0 txb=0
dpd: mode=on-idle on=1 idle=60000ms retry=3 count=0 seqno=0
natt: mode=keepalive draft=32 interval=10 remote_port=64916
proxyid=for_ios_pl_index=0
id/spi=00b0d9ab
npu_ipsec=17s ago=150ms proposal: aes256-sha256 key: 0032ea5ee160d775-51f3bf1f9909101b-b89c7b5a77a07784-2c92cf9c921801ac lifetime/rekey: 3600/3312 DPD sent/recv: 00000000/00000000
```

**IKE Mode Config clients**

IKE Mode Config is an alternative to DHCP over IPsec. It allows dialup VPN clients to obtain virtual IP address, network, and DNS configurations amongst others from the VPN server. A FortiGate can be configured as either an IKE Mode Config server or client.

IKE Mode Config can configure the host IP address, domain, DNS addresses, and WINS addresses. IPsec parameters such as gateway address, encryption, and authentication algorithms must be configured. Several network equipment vendors support IKE Mode Config.
An IKE Mode Config server or client is configured using `config vpn ipsec phasel-interface` and involves the following parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ike-version {1</td>
<td>2}</td>
</tr>
<tr>
<td>mode-cfg {enable</td>
<td>disable}</td>
</tr>
<tr>
<td>type {static</td>
<td>dynamic</td>
</tr>
<tr>
<td>assign-ip {enable</td>
<td>disable}</td>
</tr>
<tr>
<td>interface &lt;interface_name&gt;</td>
<td>Specify the physical, aggregate, or VLAN interface to which the IPsec tunnel will be bound.</td>
</tr>
<tr>
<td>proposal &lt;encryption_combination&gt;</td>
<td>The encryption and authentication settings that the client will accept.</td>
</tr>
<tr>
<td>ip-version {4</td>
<td>6}</td>
</tr>
<tr>
<td>ipv4-split-include &lt;string&gt;</td>
<td>Mode Config server configuration. Applicable to IKEv1 and IKEv2. Specify the firewall address or address group that represents the subnets that the clients will have access to. This information is sent to the clients so that default traffic should not flow over the IPsec tunnel except for the specified subnets.</td>
</tr>
<tr>
<td>ipv6-split-include &lt;string&gt;</td>
<td>Mode Config server configuration. Applicable to IKEv1 and IKEv2. Specify the service or service group that represents the services that the clients will have access to. This information is sent to the clients so that default traffic should not flow over the IPsec tunnel except for the specified services.</td>
</tr>
<tr>
<td>split-include-service &lt;string&gt;</td>
<td>Mode Config server configuration. Applicable to IKEv1 and IKEv2. Specify the service or service group that represents the services that the clients will have access to. This information is sent to the clients so that default traffic should not flow over the IPsec tunnel except for the specified services.</td>
</tr>
<tr>
<td>ipv4-split-exclude &lt;string&gt;</td>
<td>Specify the subnets that should not be accessed over the IPsec tunnel. This information is sent to the clients so that all default traffic should flow over the IPsec tunnel except for the specified subnets.</td>
</tr>
<tr>
<td>ipv6-split-exclude &lt;string&gt;</td>
<td></td>
</tr>
</tbody>
</table>

Creating an IKE Mode Config client

In this example, the FortiGate connects to a VPN gateway with a static IP address that can be reached through port 1. Only the port, gateway, and proposal information needs to be configured. All other configuration information will come from the IKE Mode Config server.

To configure an IKE Mode Config client:

```plaintext
config vpn ipsec phasel-interface
edit vpn1
 set ip-version 4
 set type static
 set remote-gw <gw_address>
 set interface port1
 set proposal 3des-shal aes128-shal
 set mode-cfg enable
```
VPN

```
set assign-ip enable
next
end
```

**Split-exclude in IKEv1**

The split-exclude option specifies that default traffic flows over the IPsec tunnel except for specified subnets. This is the opposite of split-include, which specifies that default traffic should not flow over the IPsec tunnel except for specified subnets. The split-include and split-exclude options can be specified at the same time.

**To configure split-exclude:**

```
config vpn ipsec phasel-interface
 edit <name>
 set ike-version 1
 set type dynamic
 set mode-cfg enable
 set ipv4-split-exclude <string>
 set ipv6-split-exclude <string>
 next
end
```

**Creating an IKE Mode Config server**

**To configure IKE Mode config settings, the following must be configured first:**

```
config vpn ipsec phasel-interface
 edit "vpn-pl"
 set type dynamic
 set interface <interface_name>
 set ike-version < 1 | 2 >
 set mode-cfg enable
 set proposal <encryption_combination>
 set ip-version < 4 | 6 >
 next
end
```

In this example, the FortiGate assigns IKE Mode Config clients addresses in the range of 10.11.101.160 - 10.11.101.180. DNS and WINS server addresses are also provided. The public interface of the FortiGate unit is port1. When IKE Mode-Configuration is enabled, multiple server IPs can be defined in IPsec phase 1.

The ipv4-split-include parameter specifies a firewall address (OfficeLAN), which represents the networks that the clients will have access to. This destination IP address information is sent to the clients.

**To configure an IKE Mode Config server:**

```
config vpn ipsec phasel-interface
 edit "vpn-pl"
 set type dynamic
 set interface "wan1"
 set xauthtype auto
 set mode aggressive
 set mode-cfg enable
```
set proposal 3des-sha1 aes128-sha1
set dpd disable
set dhgrp 2
set authusrgrp "FG-Group1"
set ipv4-start-ip 10.10.10.10
set ipv4-end-ip 10.10.10.20
set ipv4-dns-server1 1.1.1.1
set ipv4-dns-server2 2.2.2.2
set ipv4-dns-server3 3.3.3.3
set ipv4-wins-server1 4.4.4.4
set ipv4-wins-server2 5.5.5.5
set domain "fgt1c-domain"
set banner "fgtl1c-banner"
set backup-gateway "100.100.100.1" "host1.com" "host2"
set ipv4-split-include OfficeLAN

next
end

Assigning IP addresses

Once the basic configuration is enabled, you can configure IP address assignment for clients, as well as DNS and WINS server assignments. Usually you will want to assign IP addresses to clients. The easiest way is to assign addresses from a specific range, similar to a DHCP server.

To assign an IP from an address range:

config vpn ipsec phase1-interface
  edit vpn1
    set ip-version 4
    set assign-ip enable
    set assign-ip-from range
    set ipv4-start-ip <range_start>
    set ipv4-end-ip <range_end>
    set ipv4-netmask <netmask>
  next
end

To assign an IP from a named firewall address or group:

config vpn ipsec phase1-interface
  edit vpn1
    set type dynamic
    set assign-ip-from name
    set ipv4-name <name>
    set ipv6-name <name>
  next
end

RADIUS server

If the client is authenticated by a RADIUS server, you can obtain the user’s IP address assignment from the Framed-IP-Address attribute. The user must be authenticated using XAuth.
The users must be authenticated by a RADIUS server and assigned to the FortiGate user group `<grp_name>`. Since the IP address is not static, type is set to dynamic and `mode-cfg` is enabled. With IKE Mode Config, compatible clients can configure themselves with settings provided by the FortiGate.

**To assign an IP from a RADIUS server:**

```
config vpn ipsec phasel-interface
 edit vpn1
 set type dynamic
 set mode-cfg enable
 set assign-ip enable
 set assign-ip-from usrgrp
 set xauthtype auto
 set authusrgrp <grp_name>
 next
end
```

**DHCP server**

IKE Mode Config can use a remote DHCP server to assign the client IP addresses. Up to eight server addresses can be selected for either IPv4 or IPv6. The DHCP proxy must be enabled first.

**To assign an IP from a DHCP server:**

```
config system settings
 set dhcp-proxy enable
 set dhcp-server-ip <address>
 set dhcp6-server-ip <address>
end

config vpn ipsec phasel-interface
 edit vpn1
 set mode-cfg enable
 set assign-ip-from dhcp
 next
end
```

**Certificate groups**

IKE certificate groups consisting of up to four RSA certificates can be used in IKE phase 1. Since CA and local certificates are global, the IKE daemon loads them once for all VDOMs and indexes them into trees based on subject and public key hash (for CA certificates), or certificate name (for local certificates). Certificates are linked together based on the issuer, and certificate chains are built by traversing these links. This reduces the need to keep multiple copies of certificates that could exist in multiple chains.

**To configure the IKE local ID:**

```
config vpn certificate local
 edit <name>
 set ike-localid <string>
 set ike-localid-type {asn1dn | fqdn}
 next
end
```
**Split-exclude in IKEv1**

The `split-exclude` setting specifies that default traffic flows over the IPsec tunnel except for specified subnets. This is the opposite of `split-include`, which specifies that default traffic should not flow over the IPsec tunnel except for specified subnets. The `split-include` and `split-exclude` settings can be specified at the same time.

**To configure split-exclude:**

```plaintext
config vpn ipsec phasel-interface
 edit <name>
 set ike-version 1
 set type dynamic
 set mode-cfg enable
 set ipv4-split-exclude <string>
 set ipv6-split-exclude <string>
 next
end
```

**IPsec VPN with external DHCP service**

You can use an external DHCP server to assign IP addresses to your IPsec VPN clients. This is a common scenario found in enterprises where all DHCP leases need to be managed centrally.

In this example, the DHCP server assigns IP addresses in the range of 172.16.6.100 to 172.16.6.120. The server is attached to internal2 on the FortiGate and has an IP address of 192.168.3.70.

**To configure a DHCP server to assign IP addresses to IPsec VPN clients:**

1. Create a user group for remote users:
   a. Go to User & Authentication > User Definition and click Create New.
   b. For User Type, select Local User.
   c. Complete the wizard, and click Submit.
   d. Go to User & Authentication > User Groups and click Create New.
   e. Create a Firewall user group for your remote users.
f. For Members, add the user you just created.
g. Click OK.

2. Add a firewall address for the local network and IPsec VPN client range:
   a. Go to Policy & Objects > Addresses.
   b. Create a new Subnet address for the LAN, including the IP mask and local interface (internal2).
   c. Click OK.
   d. Create a new IP Range address for the IPsec VPN client range (172.16.6.100–172.16.6.120).
   e. Click OK.

3. Configure the IPsec VPN using a VPN tunnel in the CLI:
   ```
 config vpn ipsec phase1-interface
 edit "dhcp_vpn"
 set type dynamic
 set interface "wan1"
 set mode aggressive
 set peertype any
 set net-device disable
 set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
 set dpd on-idle
 set dhgrp 5
 set xauthtype auto
 set authusrgrp "ipsecvpn"
 set psksecret ********
 set dpd-retryinterval 60
 next
 end

 config vpn ipsec phase2-interface
 edit "toclient"
 set phasename "dhcp_vpn"
 set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256 aes256gcm chacha20poly1305
 set dhgrp 5
 set dhcp-ipsec enable
 next
 end
   ```

4. Configure the IPsec VPN interface:
   a. Go to Network > Interfaces and edit the newly created IPsec VPN interface.
   b. Enable the DHCP Server.
   c. Expand Advanced and change the Mode to Relay.
   d. Enter the external DHCP server IP address (192.168.3.70).
   e. Change the Type to IPsec.
   f. Click OK.

5. Create a security policy for access to the local network:
   a. Go to Policy & Objects > Firewall Policy and click Create New.
   b. Configure the following parameters:
      i. Set the Incoming Interface to the tunnel interface created in step 3 (dhcp_vpn).
      ii. Set the Outgoing Interface (internal2).
      iii. Set the Source to the IPsec VPN client range defined in step 2 (ipsecvpn_range).
      iv. Set the Destination to the subnet address defined in step 2 (Local LAN).
      v. Set the Service to ALL.
c. Click OK.
6. Configure FortiClient:
   a. In FortiClient, go to REMOTE ACCESS > Add a new connection.
   
   ![Image of FortiClient interface]

   b. Configure the following parameters:
      i. Set the VPN type to IPSec VPN.
      ii. Enter a connection name.
      iii. Set the Remote Gateway to the FortiGate external IP address.
      iv. Set the Authentication Method to Pre-shared key and enter the key below.
      v. Expand the Advanced Settings > VPN Settings and for Options, select DHCP over IPSec.
      vi. Click Save.

   ![Image of FortiClient configuration interface]

   c. Select the new connection, and enter the user name and password.
d. Click Connect.

Once the connection is established, the external DHCP server assigns the user an IP address and FortiClient displays the connection status, including the IP address, connection duration, and bytes sent and received.

Verification

1. In FortiOS, go to Monitor > IPsec Monitor and verify that the tunnel Status is Up.
2. Go to Log & Report > Forward Traffic and verify the Sent / Received column displays the traffic flow through the tunnel.

L2TP over IPsec

This is an example of L2TP over IPsec.

This example uses a locally defined user for authentication, a Windows PC or Android tablet as the client, and net-device is set to enable in the phase1-interface settings. If net-device is set to disable, only one device can establish an L2TP over IPsec tunnel behind the same NAT device.

To configure L2TP over an IPsec tunnel using the GUI:

1. Go to VPN > IPsec Wizard.
2. Enter a VPN Name. In this example, L2tpoIPsec.
3. Configure the following settings for VPN Setup:
   a. For Template Type, select Remote Access.
   b. For Remote Device Type, select Native and Windows Native.
   c. Click Next.
4. Configure the following settings for Authentication:
   a. For Incoming Interface, select port9.
   b. For Authentication Method, select Pre-shared Key.
   c. In the Pre-shared Key field, enter your-psk as the key.
   d. For User Group, select L2tpusergroup
   e. Click Next.
5. Configure the following settings for Policy & Routing:
   a. From the Local Interface dropdown menu, select port10.
   b. Configure the Local Address as 172.16.101.0.
   c. Configure the Client Address Range as 10.10.10.1-10.10.100.
   d. Leave the Subnet Mask at its default value.
   e. Click Create.

To configure L2TP over an IPsec tunnel using the CLI:

1. Configure the WAN interface and static route on HQ.
   ```
 config system interface
 edit "port9"
 set alias "WAN"
 set ip 22.1.1.1 255.255.255.0
 next
 edit "port10"
 set alias "Internal"
 set ip 172.16.101.1 255.255.255.0
 next
 end
 config router static
 edit 1
 set gateway 22.1.1.2
 set device "port9"
 next
 end
   ```
2. Configure IPsec phase1-interface and phase2-interface on HQ.
   ```
 config vpn ipsec phase1-interface
 edit "L2tpoIPsec"
 set type dynamic
 set interface "port9"
 set peertype any
 set proposal aes256-md5 3des-shal aes192-shal
 set dpd on-idle
 set dhgrp 2
 set net-device enable
 set psksecret sample
 set dpd-retryinterval 60
 next
 end
   ```
3. Configure a user and user group on HQ.

```fortigateconf
cfg user local
 edit "usera"
 set type password
 set passwd usera
 next
end

cfg user group
 edit "L2tpusergroup"
 set member "usera"
 next
end
```

4. Configure L2TP on HQ.

```fortigateconf
cfg vpn l2tp
 set status enable
 set eip 10.10.10.100
 set sip 10.10.10.1
 set usgrp "L2tpusergroup"
end
```

5. Configure a firewall address that is applied in L2TP settings to assign IP addresses to clients once the L2TP tunnel is established.

```fortigateconf
cfg firewall address
 edit "L2TPclients"
 set type iprange
 set start-ip 10.10.10.1
 set end-ip 10.10.10.100
 next
end
```

6. Configure a firewall policy.

```fortigateconf
cfg firewall policy
 edit 1
 set name "Bridge_IPsec_port9_for_l2tp_negotiation"
 set srcintf "L2tpoIPsec"
 set dstintf "port9"
 set srcaddr "all"
 set dstaddr "all"
 set schedule "always"
 set action accept
 next
 edit 2
 set srcintf "L2tpoIPsec"
```
set dstintf "port10"
set srcaddr "L2TPclients"
set dstaddr "172.16.101.0"
set action accept
set schedule "always"
set service "ALL"
set nat enable

next
end

To view the VPN tunnel list on HQ:

# diagnose vpn tunnel list

list all ipsec tunnel in vd 0

name=L2tpoIPsec_0 ver=1 serial=8 22.1.1.1:0->10.1.100.15:0 tun_id=10.100.15
bound_if=4 lwg=static/1 tun=intf/0 mode=dial_inst/3 encap=none/216 options[00d8]=npu
create_dev no-sysctl rgyw-chg
parent=L2tpoIPsec index=0
proxyid_num=1 child_num=0 refcnt=13 ilast=0 olast=0 ad/=0
stat: rxp=470 txp=267 rxb=57192 txb=12679
dpd: mode=on-idle on=1 idle=60000ms retry=3 count=0 seqno=0
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=L2tpoIPsec proto=17 sa=1 ref=3 serial=1 transport-mode add-route
  src: 17:22.1.1.1-22.1.1.1:1701
dst: 17:10.1.100.15-10.1.100.15:0
  SA: ref=3 options=1a6 type=0 soft=0 mtu=1470 expire=2339/0B replaywin=2048
     segno=0 c esn=0 replaywin_lastseq=000001d6 itn=0
  life: type=01 bytes=0/0 timeout=3585/3600
  dec: spi=ca646443 esp=3des key=24 af62a0ffe85d3d3bfbba29307aafc8bfda5c3f4650dc
      ah=sha1 key=20 89b4b6768bed9be49fb86449bb83f8c8d8d7432
  enc: spi=700d28a0 esp=3des key=24 5f68906ca8d37d853814188b9e29ac4913420a9c87362c9
      ah=sha1 key=20 d37f901ff0e6e1e4fdeccebc7fdec7ad44f0a0
dec:pkts/bytes=470/31698, enc:pkts/bytes=267/21744
  npu_flag=0 npu_rgw=10.1.100.15 npu_lgw=22.1.1.1 npu_selid=6 dec_npuoid=0 enc_npuoid=0

name=L2tpoIPsec_1 ver=1 serial=a 22.1.1.1:4500->22.1.1.2:64916 tun_id=22.1.1.2
bound_if=4 lwg=static/1 tun=intf/0 mode=dial_inst/3 encap=none/216 options[01d8]=npu
create_dev no-sysctl rgyw-chg rport-chg
parent=L2tpoIPsec index=1
proxyid_num=1 child_num=0 refcnt=17 ilast=2 olast=2 ad/=0
stat: rxp=5 txp=4 rxb=592 txb=249
dpd: mode=on-idle on=1 idle=60000ms retry=3 count=0 seqno=0
natt: mode=keepalive draft=32 interval=10 remote_port=64916
proxyid=L2tpoIPsec proto=17 sa=1 ref=3 serial=1 transport-mode add-route
  src: 17:22.1.1.1-22.1.1.1:1701
dst: 17:22.1.1.2-22.1.1.2:0
  SA: ref=3 options=1a6 type=0 soft=0 mtu=1454 expire=28786/0B replaywin=2048
     segno=5 esn=0 replaywin_lastseq=00000005 itn=0
  life: type=01 bytes=0/0 timeout=28790/28800
  dec: spi=ca646446 esp=aes key=32
ea60dfbad7053c63917c3b729520ff7606765ca15d2eb7cbef349b6562172e
     ah=md5 key=16 2f2ac7ff0b556935d0aab8fc5725c8ec
  enc: spi=0b514df2 esp=aes key=32
a8a92c2ed01fd7b6e405d8a6b9eb3be5eff573d80be3f830ce69417d634196
To view the L2TP VPN status:

```plaintext
diagnose debug enable
diagnose vpn l2tp status

HQ # Num of tunnels: 2

Tunnel ID = 1 (local id), 42 (remote id) to 10.1.100.15:1701
 control_seq_num = 2, control_rec_seq_num = 4,
 last recv pkt = 2
Call ID = 1 (local id), 1 (remote id), serno = 0, dev=ppp1,
 assigned ip = 10.10.10.2
 data_seq_num = 0,
 tx = 152 bytes (2), rx= 21179 bytes (205)
Tunnel ID = 3 (local id), 34183 (remote id) to 22.1.1.2:58825
 control_seq_num = 2, control_rec_seq_num = 4,
 last recv pkt = 2
Call ID = 3 (local id), 18820 (remote id), serno = 2032472593, dev=ppp2,
 assigned ip = 10.10.10.3
 data_seq_num = 0,
 tx = 152 bytes (2), rx= 0 bytes (0)

--VD 0: Startip = 10.10.10.1, Endip = 10.10.10.100
 enforce-ipsec = false

```

**Tunneled Internet browsing**

This is a sample configuration of tunneled internet browsing using a dialup VPN. To centralize network management and control, all branch office traffic is tunneled to HQ, including Internet browsing.
To configure a dialup VPN to tunnel Internet browsing using the GUI:

1. Configure the dialup VPN server FortiGate at HQ:
   a. Go to VPN > IPsec Wizard and configure the following settings for VPN Setup:
      i. Enter a VPN name, in this example, HQ.
      ii. For Template Type, select Site to Site.
      iii. For Remote Device Type, select FortiGate.
      iv. For NAT Configuration, select The remote site is behind NAT.
      v. Click Next.
   b. Configure the following settings for Authentication:
      i. For Incoming Interface, select port9.
      ii. For Authentication Method, select Pre-shared Key.
      iii. In the Pre-shared Key field, enter sample as the key.
      iv. Click Next.
   c. Configure the following settings for Policy & Routing:
      i. From the Local Interface dropdown menu, select port10.
      ii. Configure the Local Subnets as 172.16.101.0.
      iii. Configure the Remote Subnets as 0.0.0.0/0.
      iv. For Internet Access, select Share Local.
      v. For Shared WAN, select port9.
      vi. Click Create.

2. Configure the dialup VPN client FortiGate at a branch:
   a. Go to VPN > IPsec Wizard and configure the following settings for VPN Setup:
      i. Enter a VPN name, in this example, Branch1 or Branch2.
      ii. For Template Type, select Site to Site.
      iii. For Remote Device Type, select FortiGate.
      iv. For NAT Configuration, select The remote site is behind NAT.
      v. Click Next.
   b. Configure the following settings for Authentication:
      i. For IP Address, select Remote Device and enter 22.1.1.1.
      ii. For Outgoing Interface, select wan1.
      iii. For Authentication Method, select Pre-shared Key.
      iv. In the Pre-shared Key field, enter sample as the key.
      v. Click Next.
   c. Configure the following settings for Policy & Routing:
      i. From the Local Interface dropdown menu, select internal.
      ii. Configure the Local Subnets as 10.1.100.0/192.1684.0.
      iii. Configure the Remote Subnets as 0.0.0.0/0.
      iv. For Internet Access, select Use Remote.
      v. Configure the Local Gateway to 15.1.1.1/13.1.1.1.
      vi. Click Create.
To configure a dialup VPN to tunnel Internet browsing using the CLI:

1. Configure the WAN interface and static route on the FortiGate at HQ.

```fortigate
config system interface
 edit "port9"
 set alias "WAN"
 set ip 22.1.1.1 255.255.255.0
 next
 edit "port10"
 set alias "Internal"
 set ip 172.16.101.1 255.255.255.0
 next
end
cfg router static
 edit 1
 set gateway 22.1.1.2
 set device "port9"
 next
end
```

2. Configure IPsec phase1-interface and phase2-interface configuration at HQ.

```fortigate
config vpn ipsec phase1-interface
 edit "HQ"
 set type dynamic
 set interface "port9"
 set peertype any
 set net-device enable
 set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
 set dpd on-idle
 set psksecret sample
 set dpd-retryinterval 60
 next
end
config vpn ipsec phase2-interface
 edit "HQ"
 set phaselnname "HQ"
 set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256 aes128gcm
 aes256gcm chacha20poly1305
 next
end
```

3. Configure the firewall policy at HQ.

```fortigate
config firewall policy
 edit 1
 set srcintf "HQ"
 set dstintf "port9" "port10"
 set srcaddr "10.1.100.0" "192.168.4.0"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set nat enable
 next
end
```
4. Configure the WAN interface and static route on the FortiGate at the branches.
   a. Branch1.

   ```
 config system interface
 edit "wan1"
 set ip 15.1.1.2 255.255.255.0
 next
 edit "internal"
 set ip 10.1.100.1 255.255.255.0
 next
 end
 config router static
 edit 1
 set gateway 15.1.1.1
 set device "wan1"
 next
 end

 b. Branch2.

   ```

   ```
 config system interface
 edit "wan1"
 set ip 13.1.1.2 255.255.255.0
 next
 edit "internal"
 set ip 192.168.4.1 255.255.255.0
 next
 end
 config router static
 edit 1
 set gateway 13.1.1.1
 set device "wan1"
 next
 end

 5. Configure IPsec phase1-interface and phase2-interface configuration at the branches.
 a. Branch1.

   ```
   config vpn ipsec phase1-interface
   edit "branch1"
     set interface "wan1"
     set peertype any
     set net-device enable
     set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
     set dpd on-idle
     set remote-gw 22.1.1.1
     set psksecret sample
     set dpd-retryinterval 5
   next
   end
   config vpn ipsec phase2-interface
   edit "branch1"
     set phase1name "branch1"
     set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256 aes128gcm
     aes256gcm chacha20poly1305
     set auto-negotiate enable
     set src-subnet 10.1.100.0 255.255.255.0
   ```
next
end

b. Branch2.

config vpn ipsec phase1-interface
edit "branch2"
 set interface "wan1"
 set peertype any
 set net-device enable
 set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
 set dpd on-idle
 set remote-gw 22.1.1.1
 set psksecret sample
 set dpd-retryinterval 5
next
end

config vpn ipsec phase2-interface
edit "branch2"
 set phase1name "branch2"
 set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256
 set auto-negotiate enable
 set src-subnet 192.168.4.0 255.255.255.0
next
end

6. Configure the firewall policy at the branches.
 a. Branch1.

config firewall policy
edit 1
 set name "outbound"
 set srcintf "internal"
 set dstintf "branch1"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
next
edit 2
 set name "inbound"
 set srcintf "branch1"
 set dstintf "internal"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
next
end

b. Branch2.

config firewall policy
edit 1
 set name "outbound"
set srcintf "internal"
set dstintf "branch2"
set srcaddr "all"
set dstaddr "all"
set action accept
set schedule "always"
set service "ALL"
next
edit 2
set name "inbound"
set srcintf "branch2"
set dstintf "internal"
set srcaddr "all"
set dstaddr "all"
set action accept
set schedule "always"
set service "ALL"
next
end

7. Configure the static routes at the branches.
 a. Branch1.

 config router static
 edit 2
 set dst 22.1.1.1/32
 set gateway 15.1.1.1
 set device "wan1"
 set distance 1
 next
 edit 3
 set device "branch1"
 set distance 5
 next
 end

 b. Branch2.

 config router static
 edit 2
 set dst 22.1.1.1/32
 set gateway 13.1.1.1
 set device "wan1"
 set distance 1
 next
 edit 3
 set device "branch2"
 set distance 5
 next
 end

8. Optionally, view the VPN tunnel list on a branch with the diagnose vpn tunnel list command:

 list all ipsec tunnel in vd 0

 name=branch1 ver=1 serial=2 15.1.1.2:0->22.1.1.1:0 tun_id=22.1.1.1.1
 bound_if=7 lgwy=static/1 tun=intf/0 mode=auto/1 encap=None/536 options[0218]=npu create_dev frag-rfc accept_traffic=1
9. Optionally, view static routing table on a branch with the `get router info routing-table static` command:

```
Routing table for VRF=0
S*  0.0.0.0/0 [5/0] is directly connected, branch1
S*  22.1.1.1/32 [1/0] via 15.1.1.1, wan1
```

Dialup IPsec VPN with certificate authentication

In a dialup IPsec VPN setup, a company may choose to use X.509 certificates as their authentication solution for remote users. This method includes the option to verify the remote user using a user certificate, instead of a username and password. This method can be simpler for end users.

Administrators need to issue unique user certificates to each user for remote access management. The user certificate can be verified by the subject field, common name, or the principal name in the Subject Alternative Name (SAN) field.

Subject field verification

This is the basic method that verifies the subject string defined in the PKI user setting matches a substring in the subject field of the user certificate. For example:

```
config user peer
e   edit "tgerber"
     set ca "CA_Cert_2"
     set subject "CN=tgerber"
next
end
```

Common name verification

In this method, administrators can define the CN string to match the common name (CN) in the subject field of the certificate. For example:

```
config user peer
e   edit "tgerber"
     set ca "CA_Cert_2"
     set cn "tgerber"
```
The matching certificate looks like the following:

![Certificate](image)

A PKI user must be created on the FortiGate for each remote user that connects to the VPN with a unique user certificate.

Principal name with LDAP integration

In this method, the PKI user setting references an LDAP server. When `ldap-mode` is set to `principal-name`, the UPN in the user certificate's SAN field is used to look up the user in the LDAP directory. If a match is found, then authentication succeeds. For example:

```fortigate
config user peer
  edit "ldap-peer"
    set ca "CA_Cert_2"
    set ldap-server "WIN2K16-KLHOME-LDAPS"
    set ldap-mode principal-name
  next
end
```
The matching certificate looks like the following:

![Certificate](image)

This method is more scalable because only one PKI user needs to be created on the FortiGate. Remote users connect with their unique user certificate that are matched against users in the LDAP server.

Certificate management

Dialup IPsec VPN with certificate authentication requires careful certificate management planning. Assuming that a company’s private certificate authority (CA) is used to generate and sign all the certificates, the following certificates are needed:

<table>
<thead>
<tr>
<th>Certificate type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server certificate</td>
<td>The server certificate is used to identify the FortiGate IPsec dialup gateway. A CSR can be generated on the FortiGate and signed by the CA, or the CA can generate the private and public keys and export the certificate package to the FortiGate.</td>
</tr>
<tr>
<td>Certificate type</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>User certificate</td>
<td>The user certificate is generated and signed by the CA with unique CNs in the subject field and/or unique Principal Names in the SAN field. They are used to identify the user that is connecting to the VPN. User certificates must be installed on client machines.</td>
</tr>
<tr>
<td>CA certificate</td>
<td>The root CA certificate, and any subordinate CA that signed the actual user and server certificates, must be imported into the FortiGate and client machines. The CA certificate is used to verify the certificate chain of the server and user certificates.</td>
</tr>
</tbody>
</table>

Example

In this example, a dialup IPsec VPN tunnel is configured with certificate authentication using the subject field verification method and the LDAP integration method.

![Diagram](image)

The company CA, named root CA, signs all the server and user certificates. The user, tgerber@klhome.local, has a user certificate signed by root CA installed on their endpoint. The corresponding user account is also present under the company’s Active Directory.

There are five major steps to configure this example:

1. Importing the certificates
2. Configuring user authentication
3. Configuring the VPN
4. Configuring FortiClient and the endpoints
5. Testing and verifying the certificate authentication

Importing the certificates

The server certificate and CA certificate need to be imported into the FortiGate.
To import the server certificate:

1. Go to System > Certificates and select Import > Local Certificate.
2. For Type, select PKCS #12 Certificate.
3. Upload the key file exported from the CA and enter the password.
4. Click OK. The certificate now appears in the Local Certificate section.

To import the CA certificate:

1. Go to System > Certificates and select Import > CA Certificate.
2. For Type, select File.
3. Upload the CA certificate (usually a .CRT file). This certificate only contains the public key.
4. Click OK. The certificate now appears in the Remote CA Certificate section.

If any subordinate CA is involved in signing the certificates, you need to import its certificate.

Configuring user authentication

FortiGate PKI users do not appear in the GUI until at least one PKI user has been created in the CLI. The following instructions create the PKI users in the CLI.

To configure PKI users for subject field verification:

1. Create the PKI user and choose the CA certificate that was imported (if the certificate was signed by a subordinate CA, choose the subordinate CA’s certificate):

```fortran
config user peer
  edit "tgerber"
    set ca "CA_Cert_2"
    set subject "CN=tgerber"
  next
end
```

For an example of CN field matching, see Common name verification.

2. Create additional users as needed.
3. Place the users into a peer group:

```fortran
config user peergrp
  edit "pki-users"
    set member "tgerber" ... <user> ... <user>
  next
end
```

To configure PKI users for LDAP integration:

1. Configure the LDAP server that users connect to for authentication:

```fortran
config user ldap
  edit "WIN2K16-KLHOME-LDAPS"
    set server "192.168.20.6"
```
set cnid "sAMAccountName"
set dn "dc=KLHOME,dc=local"
set type regular
set username "KLHOME\Administrator"
set password ************
set secure ldaps
set ca-cert "CA_Cert_1"
set port 636
next
end

2. Configure the PKI user to reference the LDAP server using the CA certificate that was imported:

config user peer
 edit "ldap-peer"
 set ca "CA_Cert_2"
 set ldap-server "WIN2K16-KLHOME-LDAPS"
 set ldap-mode principal-name
 next
end

3. Place the user into a peer group:

config user peergrp
 edit "pki-ldap"
 set member "ldap-peer"
 next
end

Configuring the VPN

To configure the VPN, the address objects must be defined first so they can be used in the VPN and policy configurations. In this example, the VPN is configured in custom mode to define the authentication settings.

To configure the address objects:

1. Create the address range for the dialup clients:
 a. Go to Policy & Objects > Addresses and click Create New > Address.
 b. For Name, enter remote-user-range.
 c. For Type, select IP Range and enter 172.18.200.10-172.18.200.99 in the IP Range field.
 d. Click OK.
2. Create the address subnet for the destination 192.168.20.0/24:
 a. Click Create New > Address.
 b. For Name, enter 192.168.20.0.
 c. For Type, select Subnet and enter 192.168.20.0/24 in the IP/Netmask field.
 d. Click OK.

To configure the IPsec dialup tunnel:

1. Go to VPN > IPsec Tunnels and click Create New > IPsec Tunnel.
2. Enter a name for the tunnel, Dialup-cert_0.
3. For Template type, select Custom then click Next.
4. In the **Network** section, enter the following:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Gateway</td>
<td>Dialup User</td>
</tr>
<tr>
<td>Interface</td>
<td>port1</td>
</tr>
<tr>
<td>Mode Config</td>
<td>Enable</td>
</tr>
<tr>
<td>Assign IP From</td>
<td>Range</td>
</tr>
<tr>
<td>IPv4 mode config > Client Address Range</td>
<td>172.18.200.10-172.18.200.99</td>
</tr>
<tr>
<td>Enable IPv4 Split Tunnel</td>
<td>Enable</td>
</tr>
<tr>
<td>Accessible Networks</td>
<td>192.168.20.0</td>
</tr>
</tbody>
</table>

5. In the **Authentication** section, enter the following:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Signature</td>
</tr>
<tr>
<td>Certificate Name</td>
<td>Select the server certificate that was imported.</td>
</tr>
<tr>
<td>Mode</td>
<td>Aggressive</td>
</tr>
<tr>
<td>Peer Options > Accept Types</td>
<td>Peer certificate group</td>
</tr>
<tr>
<td>Peer Options > Peer certificate group</td>
<td>Select the group based on the preferred method:</td>
</tr>
<tr>
<td></td>
<td>• For subject verification, select pki-users.</td>
</tr>
<tr>
<td></td>
<td>• For LDAP integration, select pki-ldap.</td>
</tr>
</tbody>
</table>

When IKEv1 is used, aggressive mode should be selected so that the connecting endpoint will provide its peer ID in the first message of the IKE exchange. The peer identifier allows the FortiGate to match the correct tunnel when multiple dialup tunnels are defined.

6. For **Phase 2 Selectors**, leave the local and remote selectors as *0.0.0.0/0.0.0.0*.
7. Click **OK**.

To configure the firewall policy:

1. Go to **Policy & Objects > Firewall Policy** and click **Create New**.
2. Configure the following:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Enter a policy name.</td>
</tr>
<tr>
<td>Incoming interface</td>
<td>Dialup-cert_0</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>port3</td>
</tr>
<tr>
<td>Source</td>
<td>remote-user-range</td>
</tr>
<tr>
<td>Destination</td>
<td>192.168.20.0</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>ALL</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
</tbody>
</table>
3. Configure the other settings as needed.
4. Click OK.

Configuring FortiClient and the endpoints

The following example is configured on a Windows PC with FortiClient 7.0.0. Other configurations may differ slightly.

The user certificate and CA certificate must be installed on the endpoint device. They may be pushed by the administrator through group policies or another method. This example assumes that the user certificate and CA certificate are already installed on the endpoint.

To verify the user and CA certificates:

1. Open the Windows certificate manager (certmgr):
 a. In the Control Panel, type Manage user certificate in the search box.
 b. Click the result, Manage user certificates.
2. Go to Personal > Certificate. The user certificate should be listed.

3. Go to Trusted Root Certification Authorities > Certificates. The company CA certificate should be listed.
To configure the FortiClient endpoint settings:

1. In FortiClient, click the Remote Access tab and add a new connection:
 a. If there are no existing connections, click Configure VPN.
 b. If there are existing connections, click the menu icon and select Add a new connection.
2. Configure the following:

<table>
<thead>
<tr>
<th>VPN</th>
<th>IPsec VPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection Name</td>
<td>Dialup-cert_0</td>
</tr>
<tr>
<td>Remote Gateway</td>
<td>192.168.2.5</td>
</tr>
<tr>
<td>Authentication Method</td>
<td>X.509 Certificate</td>
</tr>
<tr>
<td>Authentication (XAuth)</td>
<td>Disable</td>
</tr>
</tbody>
</table>

Select the user certificate, tgerber/root CA, from the dropdown.

3. Click Save.

Testing and verifying the certificate authentication

1. On the client PC, open FortiClient and click the Remote Access tab.
2. Select the VPN tunnel, Dialup-cert_0, and click Connect.
 If the connection is successful, a FortiClient pop-up will appear briefly indicating that the IKE negotiation succeeded.
 The Remote Access window now displays VPN Connected and the associated VPN tunnel details.
3. On the FortiGate, go to Dashboard > Network and locate the IPsec widget to view the VPN tunnel monitor. Click the widget to expand to full view.
 The widget displays tunnel information, including the Peer ID containing the subject field of the user certificate.

4. Go to Log & Report > System Events and select the VPN Events card. Several tunnel related logs are recorded.
5. The same logs can be viewed in the CLI:

```
# execute log filter category 1
# execute log filter field subtype vpn
# execute log display
7: date=2021-08-23 time=15:53:08 eventtime=1629759188862005740 tz="-0700" logid="0101037138" type="event" subtype="vpn" level="notice" vd="root" logdesc="IPsec connection status changed" msg="IPsec connection status change" action="tunnel-up" remip=192.168.2.5 locip=192.168.2.1 remport=64916 locport=4500 outintf="port1" cookies="19f05ebc8c2f7a0d/7716190005538db5" user="C = CA, ST = British Columbia, L = Burnaby, O = FortiKeith, OU = TAC, CN = tgerber" group="pki-ldap" useralt="C = CA, ST = British Columbia, L = Burnaby, O = FortiKeith, OU = TAC, CN = tgerber" xauthuser="N/A" xauthgroup="N/A" assignip=172.18.200.10 vpntunnel="Dialup-cert_0" tunnelip=172.18.200.10 tunnelid=3418215253 tunneltype="ipsec" duration=0 sentbyte=0 rcvdbyte=0 nextstat=0
```
6. If any issues arise during the connection, run the following debug commands to troubleshoot the issue:

```
# diagnose debug application ike -l
# diagnose debug application fnbamd -l
# diagnose debug enable
```

Aggregate and redundant VPN

The following topics provide instructions on configuring aggregate and redundant VPNs:

- Manual redundant VPN configuration on page 1457
- OSPF with IPsec VPN for network redundancy on page 1461
- IPsec VPN in an HA environment on page 1468
- Packet distribution and redundancy for aggregate IPsec tunnels on page 1474
- Packet distribution for aggregate dial-up IPsec tunnels using location ID on page 1485
- Packet distribution for aggregate static IPsec tunnels in SD-WAN on page 1489
- Packet distribution for aggregate IPsec tunnels using weighted round robin on page 1494
- Redundant hub and spoke VPN on page 1495

Manual redundant VPN configuration

A FortiGate with two interfaces connected to the internet can be configured to support redundant VPNs to the same remote peer. Four distinct paths are possible for VPN traffic from end to end. If the primary connection fails, the FortiGate can establish a VPN using the other connection.
The redundant configuration in this example uses route-based VPNs. The FortiGates must operate in NAT mode and use auto-keying.

This example assumes the redundant VPNs are essentially equal in cost and capability. When the original VPN returns to service, traffic continues to use the replacement VPN until the replacement VPN fails. If the redundant VPN uses more expensive facilities, only use it as a backup while the main VPN is down.

A redundant configuration for each VPN peer includes:

- One phase 1 configuration for each path between the two peers with dead peer detection enabled
- One phase 2 definition for each phase 1 configuration
- One static route for each IPsec interface with different distance values to prioritize the routes
- Two firewall policies per IPsec interface, one for each direction of traffic

To configure the phase 1 and phase 2 VPN settings:

1. Go to VPN > IPsec Wizard and select the Custom template.
2. Enter the tunnel name and click Next.
3. Enter the following phase 1 settings for path 1:

<table>
<thead>
<tr>
<th>Remote Gateway</th>
<th>Static IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>Enter the IP address of the primary interface of the remote peer.</td>
</tr>
<tr>
<td>Interface</td>
<td>Select the primary public interface of this peer.</td>
</tr>
<tr>
<td>Dead Peer Detection</td>
<td>On-Demand</td>
</tr>
</tbody>
</table>

4. Configure the remaining phase 1 and phase 2 settings as needed.
5. Click OK.
6. Repeat these steps for the remaining paths.

a. Path 2:

<table>
<thead>
<tr>
<th>Remote Gateway</th>
<th>Static IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>Enter the IP address of the secondary interface of the remote peer.</td>
</tr>
<tr>
<td>Interface</td>
<td>Select the primary public interface of this peer.</td>
</tr>
<tr>
<td>Dead Peer Detection</td>
<td>On-Demand</td>
</tr>
</tbody>
</table>

b. Path 3:

<table>
<thead>
<tr>
<th>Remote Gateway</th>
<th>Static IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>Enter the IP address of the primary interface of the remote peer.</td>
</tr>
<tr>
<td>Interface</td>
<td>Select the secondary public interface of this peer.</td>
</tr>
<tr>
<td>Dead Peer Detection</td>
<td>On-Demand</td>
</tr>
</tbody>
</table>

c. Path 4:

<table>
<thead>
<tr>
<th>Remote Gateway</th>
<th>Static IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>Enter the IP address of the secondary interface of the remote peer.</td>
</tr>
<tr>
<td>Interface</td>
<td>Select the secondary public interface of this peer.</td>
</tr>
<tr>
<td>Dead Peer Detection</td>
<td>On-Demand</td>
</tr>
</tbody>
</table>

To configure the static routes:

1. Go to Network > Static Routes and click Create New.
2. In the Destination field, enter the subnet of the private network.
3. For Interface, select one of the IPsec interfaces on the local peer.
4. Enter a value for Administrative Distance.
5. Click OK.
6. Repeat these steps for the three remaining paths, and enter different values for Administrative Distance to prioritize the paths.
To configure the firewall policies:

1. Create the policies for the local primary interface:
 a. Go to Policy & Objects > Firewall Policy and click Create New.
 b. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>Enter a name for the policy.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>Select the local interface to the internal (private) network.</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>Select one of the virtual IPsec interfaces.</td>
</tr>
<tr>
<td>Source</td>
<td>All</td>
</tr>
<tr>
<td>Destination</td>
<td>All</td>
</tr>
<tr>
<td>Schedule</td>
<td>Always</td>
</tr>
<tr>
<td>Service</td>
<td>All</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
</tbody>
</table>

 c. Click OK.
 d. Click Create New and configure the policy for the other direction of traffic:

<table>
<thead>
<tr>
<th>Name</th>
<th>Enter a name for the policy.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>Select one of the virtual IPsec interfaces.</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>Select the local interface to the internal (private) network.</td>
</tr>
<tr>
<td>Source</td>
<td>All</td>
</tr>
<tr>
<td>Destination</td>
<td>All</td>
</tr>
<tr>
<td>Schedule</td>
<td>Always</td>
</tr>
<tr>
<td>Service</td>
<td>All</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
</tbody>
</table>

 e. In the policy list, drag the VPN policies above any other policies with similar source and destination addresses.

2. Repeat these steps to create the policies for the three remaining paths.

Creating a backup IPsec interface

A route-based VPN can be configured to act as a backup IPsec interface when the main VPN is out of service. This can only be configured in the CLI.

The backup feature works on interfaces with static addresses that have dead peer detection enabled. The `monitor` option creates a backup VPN for the specified phase 1 configuration.

To create a backup IPsec interface:

```
config vpn ipsec phasel-interface
edit main_vpn
   set dpd on-demand
   set interface port1
```
set nattraversal enable
set psksecret ********
set remote-gw 192.168.10.8
set type static
next
dao
edit backup_vpn
 set dpd on-demand
 set interface port2
 set monitor main_vpn
 set nattraversal enable
 set psksecret ********
 set remote-gw 192.168.10.8
 set type static
next
end

OSPF with IPsec VPN for network redundancy

This is a sample configuration of using OSPF with IPsec VPN to set up network redundancy. Route selection is based on OSPF cost calculation. You can configure ECMP or primary/secondary routes by adjusting OSPF path cost.

Because the GUI can only complete part of the configuration, we recommend using the CLI.

To configure OSPF with IPsec VPN to achieve network redundancy using the CLI:

1. Configure the WAN interface and static route.
 Each FortiGate has two WAN interfaces connected to different ISPs. The ISP1 link is for the primary FortiGate and the IPS2 link is for the secondary FortiGate.
 a. Configure HQ1.
      ```
      config system interface
      edit "port1"
        set alias to ISP1
        set ip 172.16.200.1 255.255.255.0
      next
      edit "port2"
        set alias to ISP2
        set ip 172.17.200.1 255.255.255.0
      next
      end
      config router static
      edit 1
      ```
b. Configure HQ2.

 config system interface
 edit "port25"
 set alias to_ISP1
 set ip 172.16.202.1 255.255.255.0
 next
 edit "port26"
 set alias to_ISP2
 set ip 172.17.202.1 255.255.255.0
 next
end

 config router static
 edit 1
 set gateway 172.16.202.2
 set device "port25"
 next
 edit 2
 set gateway 172.17.202.2
 set device "port26"
 set priority 100
 next
end

2. Configure the internal (protected subnet) interface.
 a. Configure HQ1.

 config system interface
 edit "dmz"
 set ip 10.1.100.1 255.255.255.0
 next
end

 b. Configure HQ2.

 config system interface
 edit "port9"
 set ip 172.16.101.1 255.255.255.0
 next
end

3. Configure IPsec phase1-interface and phase-2 interface. On each FortiGate, configure two IPsec tunnels: a primary and a secondary.
 a. Configure HQ1.

 config vpn ipsec phasel-interface
 edit "pri_HQ2"
 set interface "port1"
 set peertype any
 set net-device enable
 set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
 set remote-gw 172.16.202.1
 set psksecret sample1
next
edit "sec_HQ2"
 set interface "port2"
 set peertype any
 set net-device enable
 set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
 set remote-gw 172.17.202.1
 set psksecret sample2
next
dendiff

b. Configure HQ2.
config vpn ipsec phase2-interface
edit "pri_HQ2"
 set phaselname "pri_HQ2"
 set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256
 set auto-negotiate enable
dendiff

edifnext
edit "sec_HQ2"
 set phaselname "sec_HQ2"
 set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256
 set auto-negotiate enable
dendiff

end

config vpn ipsec phase1-interface
edit "pri_HQ1"
 set interface "port25"
 set peertype any
 set net-device enable
 set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
 set remote-gw 172.16.200.1
 set psksecret sample1
next
edit "sec_HQ1"
 set interface "port26"
 set peertype any
 set net-device enable
 set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
 set remote-gw 172.17.200.1
 set psksecret sample2
next
dendiff

config vpn ipsec phase2-interface
edit "pri_HQ1"
 set phaselname "pri_HQ1"
 set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256
 set auto-negotiate enable
dendiff

edifnext
edit "sec_HQ1"
 set phaselname "sec_HQ1"
 set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256
 set auto-negotiate enable
dendiff

end
4. Configure an inbound and outbound firewall policy for each IPsec tunnel.
 a. Configure HQ1.

      ```
      config firewall policy
      edit 1
        set name "pri_inbound"
        set srcintf "pri_HQ2"
        set dstintf "dmz"
        set srcaddr "172.16.101.0"
        set dstaddr "10.1.100.0"
        set action accept
        set schedule "always"
        set service "ALL"
      next
      edit 2
        set name "pri_outbound"
        set srcintf "dmz"
        set dstintf "pri_HQ2"
        set srcaddr "10.1.100.0"
        set dstaddr "172.16.101.0"
        set action accept
        set schedule "always"
        set service "ALL"
      next
      edit 3
        set name "sec_inbound"
        set srcintf "sec_HQ2"
        set dstintf "dmz"
        set srcaddr "172.16.101.0"
        set dstaddr "10.1.100.0"
        set action accept
        set schedule "always"
        set service "ALL"
      next
      edit 4
        set name "sec_outbound"
        set srcintf "dmz"
        set dstintf "sec_HQ2"
        set srcaddr "10.1.100.0"
        set dstaddr "172.16.101.0"
        set action accept
        set schedule "always"
        set service "ALL"
      next
      end
      ```

 b. Configure HQ2.

      ```
      config firewall policy
      edit 1
        set name "pri_inbound"
        set srcintf "pri_HQ1"
        set dstintf "port9"
        set srcaddr "10.1.100.0"
        set dstaddr "172.16.101.0"
        set action accept
        set schedule "always"
        set service "ALL"
      next
      ```
edit 2
 set name "pri_outbound"
 set srcintf "port9"
 set dstintf "pri_HQ1"
 set srcaddr "10.1.100.0"
 set dstaddr "172.16.101.0"
 set action accept
 set schedule "always"
 set service "ALL"
next
edit 3
 set name "sec_inbound"
 set srcintf "sec_HQ1"
 set dstintf "port9"
 set srcaddr "10.1.100.0"
 set dstaddr "172.16.101.0"
 set action accept
 set schedule "always"
 set service "ALL"
next
edit 4
 set name "sec_outbound"
 set srcintf "port9"
 set dstintf "sec_HQ1"
 set srcaddr "172.16.101.0"
 set dstaddr "10.1.100.0"
 set action accept
 set schedule "always"
 set service "ALL"
next
end

5. Assign an IP address to the IPsec tunnel interface.
 a. Configure HQ1.
 config system interface
 edit "pri_HQ2"
 set ip 10.10.10.1 255.255.255.255
 set remote-ip 10.10.10.2 255.255.255.255
 next
 edit "sec_HQ2"
 set ip 10.10.11.1 255.255.255.255
 set remote-ip 10.10.11.2 255.255.255.255
 next
 end
 b. Configure HQ2.
 config system interface
 edit "pri_HQ1"
 set ip 10.10.10.2 255.255.255.255
 set remote-ip 10.10.10.1 255.255.255.255
 next
 edit "sec_HQ1"
 set ip 10.10.11.2 255.255.255.255
 set remote-ip 10.10.11.1 255.255.255.255
 next
 end
6. Configure OSPF.
 a. Configure HQ1.
      ```
      config router ospf
      set router-id 1.1.1.1
      config area
      edit 0.0.0.0
      next
      end
      config ospf-interface
      edit "pri_HQ2"
      set interface "pri_HQ2"
      set cost 10
      set network-type point-to-point
      next
      edit "sec_HQ2"
      set interface "sec_HQ2"
      set cost 20
      set network-type point-to-point
      next
      end
      config network
      edit 1
      set prefix 10.10.10.0 255.255.255.0
      next
      edit 2
      set prefix 10.10.11.0 255.255.255.0
      next
      edit 3
      set prefix 10.1.100.0 255.255.255.0
      next
      end
      end
      ```
 b. Configure HQ2.
      ```
      config router ospf
      set router-id 2.2.2.2
      config area
      edit 0.0.0.0
      next
      end
      config ospf-interface
      edit "pri_HQ1"
      set interface "pri_HQ1"
      set cost 10
      set network-type point-to-point
      next
      edit "sec_HQ1"
      set interface "sec_HQ1"
      set cost 20
      set network-type point-to-point
      next
      end
      config network
      edit 1
      set prefix 10.10.10.0 255.255.255.0
      next
      edit 2
      ```
To check VPN and OSPF states using diagnose and get commands:

1. Run the `HQ1 # diagnose vpn ike gateway list command`. The system should return the following:
   ```
   vd: root/0
   name: pri_HQ2
   version: 1
   interface: port1 11
   virtual-interface-addr: 10.10.10.1 -> 10.10.10.2
   created: 1024s ago
   IKE SA: created 1/1 established 1/1 time 0/0/0 ms
   IPSec SA: created 1/3 established 1/2 time 0/5/10 ms
   id/spi: 45 d184777257b4e692/e2432f834aaf5658 direction: responder status: established
   1024-1024s ago = 0ms proposal: aes128-sha256 key: 9ed41fb06c983344-
   189538046f5ad204 lifetime/rekey: 86400/85105 DPD sent/recv: 00000003/00000000
   vd: root/0
   name: sec_HQ2
   version: 1
   interface: port2 12
   virtual-interface-addr: 10.10.11.1 -> 10.10.11.2
   created: 346s ago
   IKE SA: created 1/1 established 1/1 time 0/0/0 ms
   IPSec SA: created 1/3 established 1/1 time 0/10/15 ms
   id/spi: 48 d909ed683636b1ea5/163015673ea050b0 direction: initiator status: established
   0-0s ago = 0ms proposal: aes128-sha256 key: b9e93c156bdf4562-29db9fbafa256152
   lifetime/rekey: 86400/85105 DPD sent/recv: 00000000/00000000
   vd: root/0
   ```

2. Run the `HQ1 # diagnose vpn tunnel list command`. The system should return the following:
   ```
   list all ipsec tunnel in vd 0
   name=pri_HQ2 ver=1 serial=1 172.16.200.1:0->172.16.202.1:0 tun_id=172.16.202.1
   bound_if=11 lgw=static/1 tun/inf0 mode=auto/1 encaps=none/528 options[0210]=create_dev
   frag-rfc accept_traffic=1
   proxyid_num=1 child_num=0 refcnt=14 ilast=2 olast=2 ad=0
   stat: rxp=102 tcp=0 rxb=1494 txb=7816
dpd: mode=on-demand on=1 idle=2000ms retry=3 count=0 seqno=3
   nat: mode=none draft=0 interval=0 remote_port=0
   proxyid=pri_HQ2 proto=0 sa=1 ref=2 serial=1 auto-negotiate
   src: 0.0.0.0/0.0.0.0/0.0.0.0:0 dst: 0.0.0.0/0.0.0.0/0.0.0.0:0 SA: ref=3 options=18227 type=0
   soft=0 mtu=1438 expire=42254/0B replaywin=2048
   seqno=6a esn=0 replaywin_lastseq=00000067 in=0
   life: type=1 bytes=0/0 timeout=42932/43200 dec: spi=1071b4ee esp=aes key=16
   032036b24a4ec88da63896b86f3a01db
   ah=sha1 key=20 3962933e24c8da21c65c13b2c6345d643199cdf
   enc: spi=c89b7e3 esp=aes key=16 92b1d85ef91af695fca05843dd91626
   ah=sha1 key=20 2de99d1376506313d9f32df6873902cf6c08454
   dec/pkts/bytes=102/7164, enc/pkts/bytes=105/14936
   name=sec_HQ2 ver=1 serial=2 172.17.200.1:0->172.17.202.1:0 tun_id=172.17.202.1
   bound_if=12 lgw=static/1 tun/inf0 mode=auto/1 encaps=none/528 options[0210]=create_dev
   frag-rfc accept_traffic=1
   ```
proxyid_num=1 child_num=0 reffcnt=14 ilast=3 olast=0 ad=/0
stat: rxp=110 txp=114 rxb=15152 txb=8428
dpd: mode=on-demand on=1 idle=2000ms retry=3 count=0 seqno=3
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=sec_HQ2 proto=0 sa=1 ref=2 serial=1 auto-negotiate
src: 0.0.0.0/0.0.0.0:0 dst: 0.0.0.0.0/0.0.0.0:0 SA: ref=3 options=18227 type=0
soft=0 mtu=1438 expir=42927/0B replaywin=2048
seqno=2 eax=0 replaywin_lastseq=00000002 itn=0
life: type=01 bytes=0/0 timeout=42931/43200 dec: spi=1071b4ef esp=aes key=16
bcdcabdb7d1c7c695d1f2e0f5441700a
ah=sha1 key=20 e7a0034589f82eb1af41efd59d0b2565fef8d5da
enc: spi=ec89b7e4 esp=aes key=16 234240b69e61f6bdee2b4cdec0f33bea
ah=sha1 key=20 f9d4744a84d91e5ce05f5984737c2a691a3627e8
dec: pkts/bytes=1/68, enc: pkts/bytes=1/136

3. Run the `HQ1 # get router info ospf neighbor` command. The system should return the following:
 OSPF process 0, VRF 0:
 Neighbor ID Pri State Dead Time Address Interface
 2.2.2.2 1. Full/ 00:00:37 10.10.10.2 pri_HQ2
 2.2.2.2 1. Full/ 00:00:32 10.10.11.2 sec_HQ2

4. Run the `HQ1 # get router info routing-table ospf` command. The system should return the following:
 Routing table for VRF=0
 O 172.16.101.0/24 [110/20] via 10.10.10.2, pri_HQ2 , 00:03:21
 In case the primary tunnel is down after route convergence.

5. Run the `HQ1 # get router info routing-table ospf` command. The system should return the following:
 Routing table for VRF=0
 O 172.16.101.0/24 [110/110] via 10.10.11.2, sec_HQ2 , 00:00:01

IPsec VPN in an HA environment

This is a sample configuration of site-to-site IPsec VPN in an HA environment.

For this example, set up HA as described in the HA topics. When setting up HA, enable the following options to ensure IPsec VPN traffic is not interrupted during an HA failover:

- `session-pickup` under HA settings.
- `ha-sync-esp-seqno` under IPsec phase1-interface settings.

You can configure IPsec VPN in an HA environment using the **GUI** or **CLI**.

In this example, the VPN name for HQ1 is "to_HQ2", and the VPN name for HQ2 is "to_HQ1".
To configure IPsec VPN in an HA environment in the GUI:

1. Set up IPsec VPN on HQ1 (the HA cluster):
 a. Go to VPN > IPsec Wizard and configure the following settings for VPN Setup:
 i. Enter a VPN name.
 ii. For Template Type, select Site to Site.
 iii. For Remote Device Type, select FortiGate.
 iv. For NAT Configuration, set No NAT between sites.
 v. Click Next.
 b. Configure the following settings for Authentication:
 i. For Remote Device, select IP Address.
 ii. In the IP address field, enter 172.16.202.1.
 iii. For Outgoing Interface, select port1.
 iv. For Authentication Method, select Pre-shared Key.
 v. In the Pre-shared Key field, enter an example key.
 vi. Click Next.
 c. Configure the following settings for Policy & Routing:
 i. From the Local Interface dropdown menu, select the local interface.
 ii. Configure the Local Subnets as 10.1.100.0/24.
 iii. Configure the Remote Subnets as 172.16.101.0/24.
 iv. Click Create.
2. Set up IPsec VPN on HQ2:
 a. Go to VPN > IPsec Wizard and configure the following settings for VPN Setup:
 i. Enter a VPN name.
 ii. For Template Type, select Site to Site.
 iii. For Remote Device Type, select FortiGate.
 iv. For NAT Configuration, set No NAT between sites.
 v. Click Next.
 b. Configure the following settings for Authentication:
 i. For Remote Device, select IP Address.
 ii. In the IP address field, enter 172.16.200.1.
 iii. For Outgoing Interface, select port13.
 iv. For Authentication Method, select Pre-shared Key.
 v. In the Pre-shared Key field, enter an example key.
 vi. Click Next.
 c. Configure the following settings for Policy & Routing:
 i. From the Local Interface dropdown menu, select the desired local interface. In this example, it is port9.
 ii. Configure the Local Subnets as 172.16.101.0.
 iii. Configure the Remote Subnets as 10.1.100.0
 iv. Click Create.

To configure IPsec VPN in an HA environment using the CLI:

1. Configure HA. In this example, two FortiGates work in active-passive mode. The HA heartbeat interfaces are WAN1 and WAN2:
   ```
   config system ha
   ```
VPN

set group-name "FGT-HA"
set mode a-p
set password sample
set hbdev "wan1" 50 "wan2" 50
set session-pickup enable
set priority 200
set override-wait-time 10
end

2. Configure the WAN interface and default route. The WAN interface is the interface connected to the ISP. It can work in static mode (as shown in this example), DHCP, or PPPoE mode. The IPsec tunnel is established over the WAN interface.
 a. Configure HQ1:
 config system interface
 edit "port1"
 set vdom "root"
 set ip 172.16.200.1 255.255.255.0
 next
 end
 config router static
 edit 1
 set gateway 172.16.200.3
 set device "port1"
 next
 end
 b. Configure HQ2:
 config system interface
 edit "port25"
 set vdom "root"
 set ip 172.16.202.1 255.255.255.0
 next
 end
 config router static
 edit 1
 set gateway 172.16.202.2
 set device "port25"
 next
 end

3. Configure the internal (protected subnet) interface. The internal interface connects to the corporate internal network. Traffic from this interface routes out the IPsec VPN tunnel.
 a. Configure HQ1:
 config system interface
 edit "dmz"
 set vdom "root"
 set ip 10.1.100.1 255.255.255.0
 next
 end
 b. Configure HQ2:
 config system interface
 edit "port9"
 set vdom "root"
 set ip 172.16.101.1 255.255.255.0
 next
 end

4. Configure the IPsec phase1-interface. This example uses PSK as the authentication method. You can also use signature authentication.
a. Configure HQ1:

```fortios
config vpn ipsec phase1-interface
edit "to_HQ2"
    set interface "port1"
    set peertype any
    set net-device enable
    set ha-sync-esp-seqno enable
    set proposal aes128-sha256 aes256-sha256 aes128-shal aes256-shal
    set remote-gw 172.16.202.1
    set psksecret sample
next
end
```

b. Configure HQ2:

```fortios
config vpn ipsec phase1-interface
edit "to_HQ1"
    set interface "port25"
    set peertype any
    set net-device enable
    set ha-sync-esp-seqno enable
    set proposal aes128-sha256 aes256-sha256 aes128-shal aes256-shal
    set remote-gw 172.16.200.1
    set psksecret sample
next
end
```

5. Configure the IPsec phase2-interface:

a. Configure HQ1:

```fortios
config vpn ipsec phase2-interface
edit "to_HQ2"
    set phasename "to_HQ2"
    set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256 aes128gcm
    aes256gcm chacha20poly1305
    set auto-negotiate enable
next
end
```

b. Configure HQ2:

```fortios
config vpn ipsec phase2-interface
edit "to_HQ1"
    set phasename "to_HQ1"
    set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256 aes128gcm
    aes256gcm chacha20poly1305
    set auto-negotiate enable
next
end
```

6. Configure static routes. Two static routes are added to reach the remote protected subnet. The blackhole route is important to ensure IPsec traffic does not match the default route when the IPsec tunnel is down.

a. Configure HQ1:

```fortios
config router static
edit 2
    set dst 172.16.101.0 255.255.255.0
    set device "to_HQ2"
next
edit 3
    set dst 172.16.101.0 255.255.255.0
    set blackhole enable
    set distance 254
next
```
b. Configure HQ2:

```fortigate-config
config router static
edit 2
    set dst 10.1.100.0 255.255.255.0
    set device "to_HQ1"
next
edit 3
    set dst 10.1.100.0 255.255.255.0
    set blackhole enable
    set distance 254
next
end
```

7. Configure two firewall policies to allow bi-directional IPsec traffic flow over the IPsec tunnel:

a. Configure HQ1:

```fortigate-config
config firewall policy
edit 1
    set name "inbound"
    set srcintf "to_HQ2"
    set dstintf "dmz"
    set srcaddr "172.16.101.0"
    set dstaddr "10.1.100.0"
    set action accept
    set schedule "always"
    set service "ALL"
next
edit 2
    set name "outbound"
    set srcintf "dmz"
    set dstintf "to_HQ2"
    set srcaddr "10.1.100.0"
    set dstaddr "172.16.101.0"
    set action accept
    set schedule "always"
    set service "ALL"
next
end
```

b. Configure HQ2:

```fortigate-config
config firewall policy
edit 1
    set name "inbound"
    set srcintf "to_HQ1"
    set dstintf "port9"
    set srcaddr "10.1.100.0"
    set dstaddr "172.16.101.0"
    set action accept
    set schedule "always"
    set service "ALL"
next
edit 2
    set name "outbound"
    set srcintf "port9"
    set dstintf "to_HQ1"
    set srcaddr "172.16.101.0"
    set dstaddr "10.1.100.0"
    set action accept
```
8. Use the following \texttt{diagnose} commands to check IPsec phase1/phase2 interface status including the sequence number on the secondary FortiGate. The \texttt{diagnose debug application ike -1} command is the key to troubleshoot why the IPsec tunnel failed to establish.

a. Run the \texttt{HQ1 \# diagnose vpn ike gateway list} command. The system should return the following:

- \texttt{vd: root/0}
- \texttt{name: to_HQ2}
- \texttt{version: 1}
- \texttt{interface: port1 11}
- \texttt{created: 5s ago}
- \texttt{IKE SA: created 1/1 established 1/1 time 0/0/0 ms}
- \texttt{IPsec SA: created 2/2 established 2/2 time 0/0/0 ms}

b. Run the \texttt{HQ1 \# diagnose vpn tunnel list} command. The system should return the following:

- \texttt{list all ipsec tunnel in vd 0}
- \texttt{name=to_HQ2 ver=1 serial=1 172.16.200.1:0->172.16.202.1:0 tun_id=172.16.202.1}
- \texttt{bound_if=11 lgw=static/1 tun=intf/0 mode=auto/1 encap=none/528 options[0210]=create_
 dev frag/rfc accept_traffic=1}
- \texttt{proxyid_num=1 child_num=0 refcnt=11 ilast=13 olast=274 ad=/0}
- \texttt{stat: rxp=0 txp=0 rxb=0 txb=0}
- \texttt{dpd: mode=on-demand on=1 idle=20000ms retry=3 count=0 seqno=0}
- \texttt{natt: mode=none draft=0 interval=0 remote_port=0}
- \texttt{proxyid=to_HQ2 proto=0 sa=1 ref=2 serial=1 auto-negotiate}

ESP seqno synced to primary FortiGate every five minutes, and big gap between primary and secondary to ensure that no packet is dropped after HA failover caused by tcp-replay. Check ESP sequence number synced on secondary FortiGate.

c. Run the \texttt{HQ1 \# execute ha manage 0 admin command}.

d. Run the \texttt{HQ1-Sec \# diagnose vpn tunnel list} command. The system should return the following:

- \texttt{list all ipsec tunnel in vd 0}
- \texttt{name=to_HQ2 ver=1 serial=1 172.16.200.1:0->172.16.202.1:0 tun_id=172.16.202.1}
- \texttt{bound_if=11 lgw=static/1 tun=intf/0 mode=auto/1 encap=none/528 options[0210]=create_
 dev frag/rfc accept_traffic=1}
- \texttt{proxyid_num=1 child_num=0 refcnt=11 ilast=13 olast=274 ad=/0}
- \texttt{stat: rxp=0 txp=0 rxb=0 txb=0}
- \texttt{dpd: mode=on-demand on=1 idle=20000ms retry=3 count=0 seqno=0}
- \texttt{natt: mode=none draft=0 interval=0 remote_port=0}
- \texttt{proxyid=to_HQ2 proto=0 sa=1 ref=2 serial=1 auto-negotiate}
Packet distribution and redundancy for aggregate IPsec tunnels

This is a sample configuration of a multiple site-to-site IPsec VPN that uses an IPsec aggregate interface to set up redundancy and traffic load-balancing. The VPN tunnel interfaces must have net-device disabled in order to be members of the IPsec aggregate.

Each FortiGate has two WAN interfaces connected to different ISPs. OSPF runs over the IPsec aggregate in this configuration.

The supported load balancing algorithms are: L3, L4, round-robin (default), weighted round-robin, and redundant. The first four options allow traffic to be load-balanced, while the last option (redundant) uses the first tunnel that is up for all traffic.

Dynamic routing can run on the aggregate interface, and it can be a member interface in SD-WAN (not shown in this configuration).

Configuring the HQ1 FortiGate in the GUI

There are five steps to configure the FortiGate:

1. Create the IPsec tunnels.
2. Create the IPsec aggregate.
3. Configure the firewall policies.
4. Configure the aggregate VPN interface IPs.
5. Configure OSPF.

To create the IPsec tunnels:

1. Go to VPN > IPsec Wizard and select the Custom template.
2. For Name, enter pri_HQ2 and click Next.
3. Enter the following:
Phase 1
<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>172.16.202.1</td>
</tr>
<tr>
<td>Interface</td>
<td>port1</td>
</tr>
<tr>
<td>Device creation</td>
<td>Disabled</td>
</tr>
<tr>
<td>Aggregate member</td>
<td>Enabled</td>
</tr>
<tr>
<td>Authentication Method</td>
<td>Pre-shared Key</td>
</tr>
<tr>
<td>Pre-shared Key</td>
<td>Enter the secure key</td>
</tr>
<tr>
<td>IKE Mode</td>
<td>Aggressive</td>
</tr>
<tr>
<td>Peer Options Accept Types</td>
<td>Any peer ID</td>
</tr>
</tbody>
</table>

Phase 2
- Auto-negotiate: Enable

4. Configure the other settings as needed.
5. Click OK.
6. Create another tunnel named sec_HQ2 with the following settings:

Phase 1
<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>172.17.202.1</td>
</tr>
<tr>
<td>Interface</td>
<td>port2</td>
</tr>
<tr>
<td>Device creation</td>
<td>Disabled</td>
</tr>
<tr>
<td>Aggregate member</td>
<td>Enabled</td>
</tr>
<tr>
<td>Authentication Method</td>
<td>Pre-shared Key</td>
</tr>
<tr>
<td>Pre-shared Key</td>
<td>Enter the secure key</td>
</tr>
<tr>
<td>IKE Mode</td>
<td>Aggressive</td>
</tr>
<tr>
<td>Peer Options Accept Types</td>
<td>Any peer ID</td>
</tr>
</tbody>
</table>

Phase 2
- Auto-negotiate: Enable

To create the IPsec aggregate:

1. Go to VPN > IPsec Tunnels and click Create New > IPsec Aggregate.
2. For Name, enter agg_HQ2.
3. Select a load balancing algorithm.
4. From the Tunnel dropdown, select the tunnels that you created previously (pri_HQ2 and sec_HQ2). If required, enter weights for each tunnel.
5. Click OK.
To configure the firewall policies:

1. Go to Policy & Objects > Firewall Policy.
2. Create an inbound traffic policy with the following settings:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>inbound</td>
</tr>
<tr>
<td>Incoming Interface</td>
<td>agg_HQ2</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>dmz</td>
</tr>
<tr>
<td>Source</td>
<td>172.16.101.0</td>
</tr>
<tr>
<td>Destination</td>
<td>10.1.100.0</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>Service</td>
<td>ALL</td>
</tr>
</tbody>
</table>

3. Click OK.
4. Create an outbound traffic policy with the following settings:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>outbound</td>
</tr>
<tr>
<td>Incoming Interface</td>
<td>dmz</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>agg_HQ2</td>
</tr>
<tr>
<td>Source</td>
<td>10.1.100.0</td>
</tr>
<tr>
<td>Destination</td>
<td>172.16.101.0</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>Service</td>
<td>ALL</td>
</tr>
</tbody>
</table>

To configure the aggregate VPN interface IPs:

1. Go to Network > Interfaces and edit agg_HQ2.
2. For IP, enter 10.10.10.1.
3. For Remote IP/Netmask, enter 10.10.10.2 255.255.255.255.
4. Click OK.

To configure OSPF:

1. Go to Network > OSPF.
2. For Router ID, enter 1.1.1.1.
3. In the Areas table, click Create New.
 a. For Area ID, enter 0.0.0.0.
 b. Click OK.
4. In the Networks table, click Create New.
 a. Set the Area to 0.0.0.0.
 b. For IP/Netmask, enter 10.1.100.0/24.
 c. Click OK.
 d. Click Create New.
 e. For IP/Netmask, enter 10.10.10.0/24.
 f. Click OK.
5. Click Apply.

Configuring the HQ2 FortiGate in the GUI

There are five steps to configure the FortiGate:

1. Create the IPsec tunnels.
2. Create the IPsec aggregate.
3. Configure the firewall policies.
4. Configure the aggregate VPN interface IPs.
5. Configure OSPF.

To create the IPsec tunnels:

1. Go to VPN > IPsec Wizard and select the Custom template.
2. For Name, enter pri_HQ1 and click Next.
3. Enter the following:

<table>
<thead>
<tr>
<th>Phase 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>172.16.200.1</td>
</tr>
<tr>
<td>Interface</td>
<td>port25</td>
</tr>
<tr>
<td>Device creation</td>
<td>Disabled</td>
</tr>
<tr>
<td>Aggregate member</td>
<td>Enabled</td>
</tr>
<tr>
<td>Authentication Method</td>
<td>Pre-shared Key</td>
</tr>
<tr>
<td>Pre-shared Key</td>
<td>Enter the secure key</td>
</tr>
<tr>
<td>IKE Mode</td>
<td>Aggressive</td>
</tr>
<tr>
<td>Peer Options Accept Types</td>
<td>Any peer ID</td>
</tr>
</tbody>
</table>

4. Configure the other settings as needed.
5. Click OK.
6. Create another tunnel named sec_HQ1 with the following settings:

<table>
<thead>
<tr>
<th>Phase 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto-negotiate</td>
<td>Enable</td>
</tr>
</tbody>
</table>
To create the IPsec aggregate:

1. Go to VPN > IPsec Tunnels and click Create New > IPsec Aggregate.
2. For Name, enter agg_HQ1.
3. Select a load balancing algorithm.
4. From the Tunnel dropdown, select the tunnels that you created previously (pri_HQ1 and sec_HQ1). If required, enter weights for each tunnel.
5. Click OK.

To configure the firewall policies:

1. Go to Policy & Objects > Firewall Policy.
2. Create an inbound traffic policy with the following settings:

<table>
<thead>
<tr>
<th>Name</th>
<th>inbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>agg_HQ1</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>port9</td>
</tr>
<tr>
<td>Source</td>
<td>10.1.100.0</td>
</tr>
<tr>
<td>Destination</td>
<td>172.16.101.0</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>Service</td>
<td>ALL</td>
</tr>
</tbody>
</table>

3. Click OK.
4. Create an outbound traffic policy with the following settings:

<table>
<thead>
<tr>
<th>Name</th>
<th>outbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>port9</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>agg_HQ1</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Source</td>
<td>172.16.101.0</td>
</tr>
<tr>
<td>Destination</td>
<td>10.1.100.0</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>Service</td>
<td>ALL</td>
</tr>
</tbody>
</table>

To configure the aggregate VPN interface IPs:

1. Go to Network > Interfaces and edit agg_HQ1.
2. For IP, enter 10.10.10.2.
3. For Remote IP/Netmask, enter 10.10.10.1 255.255.255.255.
4. Click OK.

To configure OSPF:

1. Go to Network > OSPF.
2. For Router ID, enter 2.2.2.2.
3. In the Areas table, click Create New.
 a. For Area ID, enter 0.0.0.0.
 b. Click OK.
4. In the Networks table, click Create New.
 a. Set the Area to 0.0.0.0.
 b. For IP/Netmask, enter 172.16.101.0/24.
 c. Click OK.
 d. Click Create New.
 e. For IP/Netmask, enter 10.10.0.0/24.
 f. Click OK.
5. Click Apply.

Monitoring the traffic in the GUI

To monitor the traffic:

1. Go to Dashboard > Network, hover over the IPsec widget, then click Expand to Full Screen.
2. Expand the aggregate tunnel in the table to view statistics for each aggregate member.

Configuring the HQ1 FortiGate in the CLI

There are six steps to configure the FortiGate:

1. Configure the interfaces.
2. Configure two IPsec phase 1 and phase 2 interfaces.
3. Configure the IPsec aggregate.
4. Configure the firewall policies.
5. Configure the aggregate VPN interface IPs.
6. Configure OSPF.

To configure the interfaces:

1. Configure port1, port2, and dmz as shown in the topology diagram.

To configure two IPsec phase 1 and phase 2 interfaces:

```plaintext
config vpn ipsec phase1-interface
  edit "pri_HQ2"
    set interface "port1"
    set peertype any
    set net-device disable
    set aggregate-member enable
    set proposal aes128-sha256 aes256-sha256 aes128-shal aes256-shal
    set remote-gw 172.16.202.1
    set psksecret sample1
  next
  edit "sec_HQ2"
    set interface "port2"
    set peertype any
    set net-device disable
    set aggregate-member enable
    set proposal aes128-sha256 aes256-sha256 aes128-shal aes256-shal
    set remote-gw 172.17.202.1
    set psksecret sample2
next
end
config vpn ipsec phase2-interface
  edit "pri_HQ2"
    set phasename "pri_HQ2"
    set proposal aes128-shal aes256-shal aes128-sha256 aes256-sha256 aes128gcm aes256gcm
      chacha20poly1305
    set auto-negotiate enable
next
  edit "sec_HQ2"
    set phasename "sec_HQ2"
    set proposal aes128-shal aes256-shal aes128-sha256 aes256-sha256 aos128gcm aos256gcm
      chacha20poly1305
    set auto-negotiate enable
next
end

To configure the IPsec aggregate:

```plaintext
config system ipsec-aggregate
 edit "agg_HQ2"
 set member "pri_HQ2" "sec_HQ2"
next
end
```

To configure the firewall policies:

```plaintext
config firewall policy
 edit 1
```
VPN

    set name "inbound"
    set srcintf "agg_HQ2"
    set dstintf "dmz"
    set srcaddr "172.16.101.0"
    set dstaddr "10.1.100.0"
    set action accept
    set schedule "always"
    set service "ALL"
next
edit 2
    set name "outbound"
    set srcintf "dmz"
    set dstintf "agg_HQ2"
    set srcaddr "10.1.100.0"
    set dstaddr "172.16.101.0"
    set action accept
    set schedule "always"
    set service "ALL"
next
end

To configure the aggregate VPN interface IPs:

    config system interface
      edit "agg_HQ2"
        set ip 10.10.10.1 255.255.255.255
        set remote-ip 10.10.10.2 255.255.255.255
    next
end

To configure OSPF:

    config router ospf
      set router-id 1.1.1.1
    config area
      edit 0.0.0.0
    next
end
    config network
      edit 1
        set prefix 10.1.100.0 255.255.255.0
        next
      edit 2
        set prefix 10.10.10.0 255.255.255.0
        next
    end
end

Configuring the HQ2 FortiGate in the CLI

There are six steps to configure the FortiGate:

1. Configure the interfaces.
2. Configure two IPsec phase 1 and phase 2 interfaces.
3. Configure the IPsec aggregate.
4. Configure the firewall policies.
5. Configure the aggregate VPN interface IPs.
6. Configure OSPF.

To configure the interfaces:

1. Configure port25, port26, and port9 as shown in the topology diagram.

To configure two IPsec phase 1 and phase 2 interfaces:

```plaintext
config vpn ipsec phase1-interface
edit "pri_HQ1"
 set interface "port25"
 set peertype any
 set net-device disable
 set aggregate-member enable
 set proposal aes128-sha256 aes256-sha256 aes128-shal aes256-shal
 set remote-gw 172.16.200.1
 set psksecret sample1
next
edit "sec_HQ1"
 set interface "port26"
 set peertype any
 set net-device disable
 set aggregate-member enable
 set proposal aes128-sha256 aes256-sha256 aes128-shal aes256-shal
 set remote-gw 172.17.200.1
 set psksecret sample2
next
end
config vpn ipsec phase2-interface
edit "pri_HQ1"
 set phase1name "pri_HQ1"
 set proposal aes128-shal aes256-shal aes128-sha256 aes256-sha256 aes128gcm aes256gcm chacha20poly1305
 set auto-negotiate enable
next
edit "sec_HQ1"
 set phase1name "sec_HQ1"
 set proposal aes128-shal aes256-shal aes128-sha256 aes256-sha256 aes128gcm aes256gcm chacha20poly1305
 set auto-negotiate enable
next
end

To configure the IPsec aggregate:

```plaintext
config system ipsec-aggregate
edit "agg_HQ1"
  set member "pri_HQ1" "sec_HQ1"
next
end

To configure the firewall policies:

```plaintext
config firewall policy
edit 1
```
set name "inbound"
set srcintf "agg_HQ1"
set dstintf "port9"
set srcaddr "10.1.100.0"
set dstaddr "172.16.101.0"
set action accept
set schedule "always"
set service "ALL"
next
edit 2
set name "outbound"
set srcintf "port9"
set dstintf "agg_HQ1"
set srcaddr "172.16.101.0"
set dstaddr "10.1.100.0"
set action accept
set schedule "always"
set service "ALL"
next
end

To configure the aggregate VPN interface IPs:

config system interface
edit "agg_HQ1"
set ip 10.10.10.2 255.255.255.255
set remote-ip 10.10.10.1 255.255.255.255
next
end

To configure OSPF:

config router ospf
set router-id 2.2.2.2
config area
edit 0.0.0.0
next
end
config network
edit 1
set prefix 172.16.101.0 255.255.255.0
next
edite 2
set prefix 10.10.10.0 255.255.255.0
next
end
end

Monitoring the traffic in the CLI

To view debugging information:

1. Verify the status of the phase 1 IKE SAs:
   # diagnose vpn ike gateway list
   vd: root/0
name: pri_HQ2
version: 1
interface: port1 11
tun_id: 172.16.202.1
created: 1520s ago
IKE SA: created 1/2 established 1/1 time 10/10/10 ms
IPSec SA: created 2/2 established 1/1 time 0/0/0 ms

id/spi: 173 dcede154681579b/e32f4c48c6349f0c0 direction: responder status: established
1498-1498s ago = 10ms proposal: aes128-sha256 key: d7230a68d7b83def-588b94495c9f4d38 lifetime/rekey: 86400/8631 DPD sent/recv: 0000000d/00000006

vd: root/0
name: sec_HQ2
version: 1
interface: port2 12
created: 1520s ago
IKE SA: created 1/2 established 1/1 time 10/10/10 ms
IPSec SA: created 2/2 established 1/1 time 0/0/0 ms

id/spi: 174 a567bd7bf02a04b5/4251b6254660aee2 direction: responder status: established
1498-1498s ago = 10ms proposal: aes128-sha256 key: 9f44f500c28d8de6-febaae9d1e6a164c lifetime/rekey: 86400/8631 DPD sent/recv: 00000008/0000000c

2. Verify the phase 2 IPSec tunnel SAs:

# diagnose vpn tunnel list
list all ipsec tunnel in vd 0
name=sec_HQ2 ver=1 serial=2 172.17.200.1:0-172.17.202.1:0
tun_id=172.17.202.1
bound_if=5 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/512 options[0200]=frag-rfc
run_state=1 accept_traffic=1
proxyid_num=1 child_num=0 refcnt=7 ilast=5 olast=5 ad/=0
stat: rxp=39 txp=40 rxb=5448 txb=2732
dpd: mode=on-demand on=1 idle=2000ms retry=3 count=0 seqno=15
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=sec_HQ2 proto=0 sa=1 ref=2 serial=2 auto-negotiate
src: 0:0:0:0/0.0.0.0:0 dst: 0:0:0:0/0.0.0.0:0 SA: ref=3 options=18227 type=00
soft=0 mtu=1438 expire=41230/0B replaywin=2048
seqno=29 esn=0 replaywin_lastseq=00000028 itn=0
life: type=01 bytes=0/0 timeout=42899/42200 dec: spi=1071b4f8 esp=aes key=16
1f4dbb78bea897650b52d8170b5ece7 ah=sha1 key=20 cd9b2f2de0f49296cf499dd9157baf68bc8f12
c enc: spi=ec89b7ee esp=aes key=16 0546efecd0d1b9ba5944f635896e4404
ah=sha1 key=20 34599bc7dc25e1ce63ac9651bd50928ce0667dc8
dec:spi=39/2796, enc:spi=40/5456

name=pri_HQ2 ver=1 serial=1 172.16.200.1:0-172.16.202.1:0
tun_id=172.16.202.1
bound_if=11 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/512 options[0200]=frag-rfc
run_state=1 accept_traffic=1
proxyid_num=1 child_num=0 refcnt=5 ilast=15 olast=15 ad/=0
stat: rxp=38 txp=39 rxb=5152 txb=2768
dpd: mode=on-demand on=1 idle=2000ms retry=3 count=0 seqno=20
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=pri_HQ2 proto=0 sa=1 ref=2 serial=2 auto-negotiate
src: 0:0:0:0/0.0.0.0:0 dst: 0:0:0:0/0.0.0.0:0 SA: ref=3 options=18227 type=00
soft=0 mtu=1438 expire=41231/0B replaywin=2048
seqno=28 esn=0 replaywin_lastseq=00000027 itn=0
life: type=01 bytes=0/0 timeout=42200/42000 dec: spi=1071b4f8 esp=aes key=16
142ccf377b3432ba41e64128ade68f8c ah=sha1 key=20 20e64947ea2397123f561584321adc0e7aa0c342d
c enc: spi=ec89b7ee esp=aes key=16 2ec13622fd60dacce3d28ebe5f7ab14
3. Debug the IPsec aggregation list:
   # diagnose sys ipsec-aggregate list
   agg_HQ2 algo=RR member=2 run_tally=2
   members:
     pri_HQ2
     sec_HQ2

4. Verify the OSPF neighbor information:
   # get router info ospf neighbor
   OSPF process 0, VRF 0:
   Neighbor ID Pri State Dead Time Address Interface
   2.2.2.2 1. Full/ - 00:00:34 10.10.10.2 agg1_HQ2

5. Verify the OSPF routing table:
   # get router info routing-table ospf
   Routing table for VRF=0
   O 172.16.101.0/24 [110/20] via 10.10.10.2, agg1_HQ2 , 00:18:43

Packet distribution for aggregate dial-up IPsec tunnels using location ID

To support per-packet load balancing on aggregate dial-up IPsec tunnels between sites, each spoke must be configured with a location ID. On the hub, per-packet load balancing is performed on the tunnels in the IPsec aggregate that have the same location ID.

Multiple dial-up VPN tunnels from the same location can be aggregated on the VPN hub and load balanced based on the configured load balance algorithm.

IPsec traffic cannot be offloaded to the NPU.

Example

In this example, an IPsec aggregate tunnel is formed between two dial-up IPsec tunnels in order to support per-packet load balancing.
To configure the client FortiGate (FGT-A):

1. Configure the IPsec tunnels:

```plaintext
config vpn ipsec phase1-interface
 edit "client1"
 set interface "port1"
 set peertype any
 set net-device disable
 set aggregate-member enable
 set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
 set remote-gw 172.16.200.4
 set psksecret **********
 next

 edit "client2"
 set interface "wan1"
 set peertype any
 set net-device disable
 set aggregate-member enable
 set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
 set remote-gw 173.1.1.1
 set psksecret **********
 next
end

2. Configure an aggregate of the IPsec tunnels:

```plaintext
config system ipsec-aggregate
   edit "agg1"
      set member "client1" "client2"
   next
end
```

3. Configure the location ID:

```plaintext
config system settings
   set location-id 1.1.1.1
end
```

To configure the server FortiGate (FGT-B):

1. Configure the IPsec tunnels:

```plaintext
config vpn ipsec phase1-interface
   edit "server1"
      set type dynamic
      set interface "mgmt1"
      set peertype any
      set net-device disable
      set aggregate-member enable
      set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
      set dpd on-idle
      set psksecret **********
      set dpd-retryinterval 60
   next

   edit "server2"
      set type dynamic
      set interface "port27"
end
```
set peertype any
set net-device disable
set aggregate-member enable
set proposal aes128-sha256 aes256-sha256 aes128-shal aes256-shal
set dpd on-idle
set psksecret **********
set dpd-retryinterval 60
next
end
config vpn ipsec phase2-interface
edit "server1"
 set phasename "server1"
 set proposal aes128-shal aes256-shal aes128-sha256 aes256-sha256 aes128gcm
 aes256gcm chacha20poly1305
next
edit "server2"
 set phasename "server2"
 set proposal aes128-shal aes256-shal aes128-sha256 aes256-sha256 aes128gcm
 aes256gcm chacha20poly1305
next
end

2. Configure an aggregate of the IPsec tunnels:

config system ipsec-aggregate
edit "server"
 set member "server1" "server2"
next
end

3. Configure a firewall policy:

config firewall policy
edit 1
 set srcintf "server"
 set dstintf "port9"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
next
end

To check the IPsec tunnel and aggregate state:

1. List all of the VPN tunnels:

 FGDocs # diagnose vpn tunnel list
 list all ipsec tunnel in vd 0

 name=server1 ver=1 serial=1 172.16.200.4:500->>0.0.0.0:500 tun_id=1.0.0.0 dst_mtu=0 dpd-
 link=on remote_location=0.0.0.0 weight=1
 bound_if=4 lgw=static/1 tun=tunnel/15 mode=dialup/2 encap=none/4616 options[1208]=npu
 frag-rfc accept_traffic=1 overlay_id=0
 proxyid_num=0 child_num=2 refcnt=4 ilast=14210 olast=14210 ad=/0
 stat: rxp=798921 txp=819074 rxb=121435992 txb=68802216
dpd: mode=on-idle on=0 idle=60000ms retry=3 count=0 seqno=0
natt: mode=none draft=0 interval=0 remote_port=0
run_tally=0

nname=server2 ver=1 serial=2 173.1.1.1:500->0.0.0.0:500 tun_id=2.0.0.0 dst_mtu=0 dpd-link=on remote_location=0.0.0.0 weight=1
bound_if=17 lgw=static/1 tun=tunnel/15 mode=dial/2 encap=none/4616 options[1208]=npu frag=rfc accept_traffic=1 overlay_id=0
proxyid_num=0 child_num=1 refcnt=3 ilast=14177 olast=14177 ad=/0
stat: rxp=836484 txp=819111 rxb=137429352 txb=80046050
dpd: mode=on-idle on=0 idle=60000ms retry=3 count=0 seqno=0
natt: mode=none draft=0 interval=0 remote_port=0
run_tally=0

nname=server1_0 ver=1 serial=8 172.16.200.4:500->172.16.200.1:500 tun_id=172.16.200.1
dst_mtu=1500 dpd-link=on remote_location=1.1.1.1 weight=1
bound_if=4 lgw=static/1 tun=tunnel/15 mode=dial_inst/3 encap=none/4744 options[1288]=npu rgwy-chg frag=rfc run_state=0 accept_traffic=1 overlay_id=0
parent=server1 index=0
proxyid_num=1 child_num=0 refcnt=5 ilast=45 olast=45 ad=/0
stat: rxp=17176 txp=17176 rxb=2610752 txb=1442784
dpd: mode=on-idle on=0 idle=60000ms retry=3 count=0 seqno=0
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=server1 proto=0 sa=1 ref=2 serial=1 add-route
src: 0.0.0.0.0-255.255.255.255:0
dst: 0:10.1.100.0-10.1.100.255:0
SA: ref=3 options=2a6 type=0 soft=0 mtu=1438 expire=42342/0B replaywin=2048
 seqno=4319 esn=0 replaywin_lastseq=00004319 itn=0 qat=0 hash_search_len=10
 life: type=01 bytes=0/0 timeout=43186/43200
 dec: spi=0aef2a07 esp=aes key=16 12738c8a1db02c23bfed73eb3615a5a1
 ah=shal key=20 0f3edd28e3165d184292b4cd397a6edeef9d20dc
 enc: spi=2cb75665 esp=aes key=16 982b418e40f0bb18b899168d92270c0
 ah=shal key=20 08bcf9bf78a968af5cd7647dafa2a0db66389929
 dec:pkts/bytes=17176/1442784, enc:pkts/bytes=17176/2610752
 npu_flag=00 npu_rgwy=172.16.200.1 npu_lgw=172.16.200.4 npu_selector=6 dec_npuid=0 enc_npuid=0

nname=server1_1 ver=1 serial=1 172.16.200.4:500->172.16.200.3:500 tun_id=172.16.200.3
dst_mtu=0 dpd-link=on remote_location=2.2.2.2 weight=1
bound_if=4 lgw=static/1 tun=tunnel/15 mode=dial_inst/3 encap=none/4744 options[1288]=npu rgwy-chg frag=rfc run_state=0 accept_traffic=1 overlay_id=0
parent=server1 index=1
proxyid_num=1 child_num=0 refcnt=5 ilast=27 olast=27 ad=/0
stat: rxp=0 txp=0 rxb=0 txb=0
dpd: mode=on-idle on=0 idle=60000ms retry=3 count=0 seqno=0
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=server1 proto=0 sa=1 ref=2 serial=1 add-route
src: 0:0.0.0.0-255.255.255.255:0
dst: 0:0.0.0.0-255.255.255.255:0
SA: ref=3 options=2a6 type=0 soft=0 mtu=1280 expire=43167/0B replaywin=2048
 seqno=1 esn=0 replaywin_lastseq=00000000 itn=0 qat=0 hash_search_len=10
 life: type=01 bytes=0/0 timeout=43187/43200
 dec: spi=0aef2a0a esp=aes key=16 4b7a17ba9d239e4ae5fe95ec100fca8b
2. List the IPsec aggregate members:

```bash
# diagnose sys ipsec-aggregate list
server
members(3):
server1_1
server1_0
server2_0
```

3. In the GUI, go to Dashboard > Network and expand the IPsec widget to review the traffic distributed over the aggregate members:

![IPsec Aggregate Dashboard](image)

Packet distribution for aggregate static IPsec tunnels in SD-WAN

This is a sample configuration of aggregating IPsec tunnels by using per-packet load-balancing.

For example, a customer has two ISP connections, wan1 and wan2. On each FortiGate, two IPsec VPN interfaces are created. Next, an ipsec-aggregate interface is created and added as an SD-WAN member.
Configuring FortiGate 1

To create two IPsec VPN interfaces:

```plaintext
config vpn ipsec phase1-interface
  edit "vd1-p1"
    set interface "wan1"
    set peertype any
    set net-device disable
    set aggregate-member enable
    set proposal aes256-sha256
    set dhgrp 14
    set remote-gw 172.16.201.2
    set psksecret ftnt1234
  next
  edit "vd1-p2"
    set interface "wan2"
    set peertype any
    set net-device disable
    set aggregate-member enable
    set proposal aes256-sha256
    set dhgrp 14
    set remote-gw 172.16.202.2
    set psksecret ftnt1234
  next
end
config vpn ipsec phase2-interface
  edit "vd1-p1"
    set phasename "vd1-p1"
  next
  edit "vd1-p2"
    set phasename "vd1-p2"
  next
end

To create an IPsec aggregate interface:

config system ipsec-aggregate
  edit "agg1"
    set member "vd1-p1" "vd1-p2"
```

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
set algorithm L3
next
end

cfg system interface
edit "agg1"
 set vdom "root"
 set ip 172.16.11.1 255.255.255.255
 set allowaccess ping
 set remote-ip 172.16.11.2 255.255.255.255
end

To configure the firewall policy:

cfg firewall policy
edit 1
 set name "1"
 set srcintf "dmz"
 set dstintf "virtual-wan-link"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set nat enable
next
end

To configure SD-WAN:

cfg system sdwan
 set status enable
 cfg members
 edit 1
 set interface "agg1"
 set gateway 172.16.11.2
 next
 end

Configuring FortiGate 2

To create two IPsec VPN interfaces:

cfg vpn ipsec phase1-interface
edit "vd2-p1"
 set interface "wan1"
 set peertype any
 set net-device disable
 set proposal aes256-sha256
 set dhgrp 14
 set remote-gw 172.16.200.1
 set psksecret ftnt1234
next
edit "vd2-p2"
set interface "wan2"
set peertype any
set net-device disable
set proposal aes256-sha256
set dhgrp 14
set remote-gw 172.16.203.1
set psksecret ftnt1234
next
end

config vpn ipsec phase2-interface
edit "vd2-p1"
 set phase1name "vd2-p1"
next
edit "vd2-p2"
 set phase1name "vd2-p2"
next
end

To create an IPsec aggregate interface:

config system ipsec-aggregate
edit "agg2"
 set member "vd2-p1" "vd2-p2"
 set algorithm L3
next
end

config system interface
edit "agg2"
 set vdom "root"
 set ip 172.16.11.2 255.255.255.255
 set allowaccess ping
 set remote-ip 172.16.11.1 255.255.255.255
next
end

To configure the firewall policy:

config firewall policy
edit 1
 set name "1"
 set srcintf "dmz"
 set dstintf ""virtual-wan-link"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set nat enable
next
end
To configure SD-WAN:

```fortigate
config system sdwan
    set status enable
config members
    edit 1
        set interface "agg2"
        set gateway 172.16.11.1
    next
end
end
```

Related diagnose commands

To display aggregate IPsec members:

```bash
# diagnose sys ipsec-aggregate list
agg1 algo=L3 member=2 run_tally=2
members:
    vd1-p1
    vd1-p2
```

To check the VPN status:

```bash
# diagnose vpn tunnel list
list all ipsec tunnel in vd 0

---
name=vd1-p1 ver=1 serial=2 172.16.200.1:0->172.16.201.2:0 tun_id=172.16.201.2 dst_mtu=0
bound_if=10 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/520 options[0208]=npu frag-rfc
run_state=1 accept_traffic=0
proxyid_num=1 child_num=0 refcnt=5 ilast=15 olast=676 ad=/0
stat: rxp=0 txp=0 rxb=0 txb=0
dpd: mode=on-demand on=1 idle=20000ms retry=3 count=0 seqno=0
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=vd1-p1 proto=0 sa=0 ref=1 serial=1
    src: 0:0.0.0.0/0.0.0.0:0
dst: 0:0.0.0.0/0.0.0.0:0

---
name=vd1-p2 ver=1 serial=3 172.16.203.1:0->172.16.202.2:0 tun_id=172.16.202.2 dst_mtu=1500
bound_if=28 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/520 options[0208]=npu frag-rfc
run_state=1 accept_traffic=1
proxyid_num=1 child_num=0 refcnt=12 ilast=1 olast=1 ad=/0
stat: rxp=1 txp=1686 rxb=16602 txb=111717
dpd: mode=on-demand on=1 idle=20000ms retry=3 count=0 seqno=0
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=vd1-p2 proto=0 sa=1 ref=9 serial=1
    src: 0:0.0.0.0/0.0.0.0:0
dst: 0:0.0.0.0/0.0.0.0:0
SA: ref=4 options=10226 type=00 soft=0 mtu=1438 expire=42164/0B replaywin=2048
    seqno=697 esn=0 replaywin_lastseq=00000002 itn=0 qat=0
life: type=01 bytes=0/0 timeout=42902/43200
dec: spi=f6a9f83 esp=aes key=16 f6855c72295e3c5c49646530e6b96002
    ah=sha1 key=20 f983430d6c161d0a4cd9007c7ae057f1ff011334
```

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
Packet distribution for aggregate IPsec tunnels using weighted round robin

A weighted round robin algorithm can be used for IPsec aggregate tunnels to distribute traffic by the weight of each member tunnel.

In this example, the FortiGate has two IPsec tunnels put into IPsec aggregate. Traffic is distributed among the members, with one third over tunnel1, and two thirds over tunnel2. To achieve this, the weighted round robin algorithm is selected, tunnel1 is assigned a weight of 10, and tunnel2 is assigned a weight of 20.

To create the IPsec aggregate in the GUI:

1. Go to VPN > IPsec Tunnels and click Create New > IPsec Tunnel.
2. Complete the wizard to create the tunnel1 and tunnel2 custom IPsec tunnels. Ensure that Aggregate member is Enabled for each tunnel under the Network > Advanced section.
3. Go to VPN > IPsec Tunnels and click Create New > IPsec Aggregate.
4. Enter a name for the aggregate, such as agg1, and ensure that Algorithm is Weighted Round Robin.
5. Add tunnel1 as an aggregate members, and set Weight to 10.
6. Add tunnel2 as a second aggregate members, and set its Weight to 20.
7. Click OK.
8. To view and monitor the aggregate tunnel statistics, go to the **IPsec** widget on the *Network* dashboard.

![VPN](image)

To create the IPsec aggregate in the CLI:

1. Create the *tunnel1* and *tunnel2* custom IPsec tunnels with aggregate-member enabled and aggregate-weight set for both tunnels:

   ```bash
   config vpn ipsec phase1-interface
   edit "tunnel1"
   ...  
   set aggregate-member enable
   set aggregate-weight 10  
   ...  
   next
   edit "tunnel2"
   ...  
   set aggregate-member enable
   set aggregate-weight 20  
   ...  
   next
   end
   ```

2. Create the IPsec aggregate:

   ```bash
   config system ipsec-aggregate
   edit "agg1"
   set member "tunnel1" "tunnel2"
   set algorithm weighted-round-robin
   next
   end
   ```

Redundant hub and spoke VPN

A redundant hub and spoke configuration allows VPN connections to radiate from a central FortiGate unit (the hub) to multiple remote peers (the spokes). Traffic can pass between private networks behind the hub and private networks behind the remote peers. Traffic can also pass between remote peer private networks through the hub.

This is a sample configuration of hub and spoke IPsec VPN. The following applies for this scenario:

- The spokes have two WAN interfaces and two IPsec VPN tunnels for redundancy.
- The secondary VPN tunnel is up only when the primary tunnel is down by dead peer detection.
Because the GUI can only complete part of the configuration, we recommend using the CLI.

To configure redundant hub and spoke VPN using the FortiOS CLI:

1. Configure the hub.
 a. Configure the WAN, internal interface, and static route.
      ```
      config system interface
      edit "port13"
      set alias "WAN"
      set ip 172.16.202.1 255.255.255.0
      next
      edit "port9"
      set alias "Internal"
      set ip 172.16.101.1 255.255.255.0
      next
      end
      config router static
      edit 1
      set gateway 172.16.202.2
      set device "port13"
      next
      end
      ```
 b. Configure the IPsec phase1-interface and phase2-interface.
      ```
      config vpn ipsec phase1-interface
      edit "hub"
      set type dynamic
      set interface "port13"
      set peertype any
      set net-device enable
      set proposal aes128-sha256 aes256-sha256 aes128-shal aes256-shal
      set dpd on-idle
      set psksecret sample
      set dpd-retryinterval 60
      next
      end
      config vpn ipsec phase2-interface
      edit "hub"
      set phasename "hub"
      ```
set proposal aes128-shal aes256-shal aes128-sha256 aes256-sha256 aes128gcm aes256gcm chacha20poly1305

next
end

c. Configure the firewall policy.
config firewall policy
edit 1
set name "spoke-hub"
set srcintf "hub"
set dstintf "port9"
set srcaddr "all"
set dstaddr "172.16.101.0"
set action accept
set schedule "always"
set service "ALL"
next
edit 2
set name "spoke-spoke"
set srcintf "hub"
set dstintf "hub"
set srcaddr "all"
set dstaddr "all"
set action accept
set schedule "always"
set service "ALL"
next
end

2. Configure the spokes.
a. Configure the WAN, internal interface, and static route.
 i. Configure Spoke1.
 config system interface
 edit "port1"
 set ip 172.16.200.1 255.255.255.0
next
 edit "wan1"
 set mode dhcp
 set distance 10
 set priority 100
next
 edit "dmz"
 set ip 10.1.100.1 255.255.255.0
next
end
config router static
edit 1
set gateway 172.16.200.2
set device "port1"
next
end

ii. Configure Spoke2.
 config system interface
 edit "wan1"
 set ip 172.16.200.3 255.255.255.0
next
 edit "wan2"
 set mode dhcp
VPN

set distance 10
set priority 100
next
edit "lan1"
 set ip 192.168.4.1 255.255.255.0
next
cfg router static
edit 1
 set gateway 172.16.200.2
 set device "wan1"
next
cfg

b. Configure IPsec phase1-interface and phase2-interface.

i. Configure Spoke1.

cfg vpn ipsec phase1-interface
edit "primary"
 set interface "port1"
 set peertype any
 set net-device enable
 set proposal aes128-sha256 aes256-sha256 aes128-shal aes256-shal
 set remote-gw 172.16.202.1
 set psksecret sample
next
edit "secondary"
 set interface "wan1"
 set peertype any
 set net-device enable
 set proposal aes128-sha256 aes256-sha256 aes128-shal aes256-shal
 set remote-gw 172.16.202.1
 set monitor "primary"
 set psksecret sample
next
cfg vpn ipsec phase2-interface
edit "primary"
 set phasename "primary"
 set proposal aes128-shal aes256-shal aes128-sha256 aes256-sha256 aes128gcm
 aes256gcm chacha20poly1305
 set auto-negotiate enable
 set src-subnet 10.1.100.0 255.255.255.0
next
edit "secondary"
 set phasename "secondary"
 set proposal aes128-shal aes256-shal aes128-sha256 aes256-sha256 aes128gcm
 aes256gcm chacha20poly1305
 set auto-negotiate enable
 set src-subnet 10.1.100.0 255.255.255.0
next

ii. Configure Spoke2.

cfg vpn ipsec phase1-interface
edit "primary"
 set interface "wan1"
 set peertype any
 set net-device enable

VPN

set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
set remote-gw 172.16.202.1
set psksecret sample
next
edit "secondary"
set interface "wan2"
set peertype any
set net-device enable
set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
set remote-gw 172.16.202.1
set monitor "primary"
set psksecret sample
next
end

config vpn ipsec phase2-interface
edit "primary"
set phasename "primary"
set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256 aes128gcm
aes256gcm chacha20poly1305
set auto-negotiate enable
set src-subnet 192.168.4.0 255.255.255.0
next
edit "secondary"
set phasename "secondary"
set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256 aes128gcm
aes256gcm chacha20poly1305
set auto-negotiate enable
set src-subnet 192.168.4.0 255.255.255.0
next
end

c. Configure the firewall policy.

i. Configure Spoke1.

config firewall policy
edit 1
set srcintf "dmz"
set dstintf "primary" "secondary"
set srcaddr "10.1.100.0"
set dstaddr "172.16.101.0"
set action accept
set schedule "always"
set service "ALL"
next
end

ii. Configure Spoke2.

config firewall policy
edit 1
set srcintf "lan1"
set dstintf "primary" "secondary"
set srcaddr "192.168.4.0"
set dstaddr "172.16.101.0"
set action accept
set schedule "always"
set service "ALL"
next
end
d. Configure the static route.

i. Configure Spoke1.

```bash
config router static
edit 3
   set dst 172.16.101.0 255.255.255.0
   set distance 1
   set device "primary"
next
edit 4
   set dst 172.16.101.0 255.255.255.0
   set distance 3
   set device "secondary"
next
end
```

ii. Configure Spoke2.

```bash
config router static
edit 3
   set dst 172.16.101.0 255.255.255.0
   set distance 1
   set device "primary"
next
edit 4
   set dst 172.16.101.0 255.255.255.0
   set distance 3
   set device "secondary"
next
end
```

3. Run `diagnose and get commands`.

a. Run the `Spoke1 # diagnose vpn tunnel list` command. The system should return the following:

```
name=primary ver=1 serial=1 172.16.200.1:0->172.16.202.1:0 tun_id=172.16.202.1
bound_if=11 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/528 options[0210]=create_dev frag/rfc accept_traffic=1
proxyid_num=1 child_num=0 refcnt=15 ilast=0 olast=0 ad=/0
stat: rxp=1979 tcp=1681 rxb=225480 txb=112860
dpd: mode=on-demand on=1 idle=20000ms retry=3 count=0 seqno=1
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=primary proto=0 sa=1 ref=2 serial=2 auto-negotiate
src: 0:10.1.100.0/255.255.255.0:0 dst: 0:0.0.0.0/0.0.0.0:0 SA: ref=3 options=18227
   type=0 soft=0 mtu=1438 expire=41002/0B replaywin=2048
   seqno=758 esn=0 replaywin_lastseq=00000758 itn=0
life: type=01 bytes=0/0 timeout=42901/43200 dec: spi=0908732f esp=aes key=16
   20770dfe67ea22dd8ec32c44d84ef4d5
   ah=sha1 key=20 edc89fc2ec06309ba13de995e7e486f9b795b8707
   enc: spi=0f35eaf8882b6a90463154e9f751793b3f411f5
   dec:pkt/esbytes=1879/112740, enc:pkt/bytes=01879/225480
bound_if=5 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/528 options[0210]=create_dev frag/rfc accept_traffic=0
proxyid_num=1 child_num=0 refcnt=10 ilast=1892 olast=1892 ad=/0
stat: rxp=0 tcp=0 rxb=0 txb=0
dpd: mode=on-demand on=0 idle=20000ms retry=3 count=0 seqno=0
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=secondary proto=0 sa=0 ref=2 serial=2 auto-negotiate
src: 0:10.1.100.0/255.255.255.0:0 dst: 0:0.0.0.0/0.0.0.0:0
```

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
b. Run the Spoke1 # get router info routing-table static command. The system should return the following:
Routing table for VRF=0
................
S 172.16.101.0/24 [1/0] is directly connected, primary

Overlay Controller VPN (OCVPN)

Overlay Controller VPN (OCVPN) is a cloud based solution to simplify IPsec VPN setup. When OCVPN is enabled, IPsec phase1-interfaces, phase2-interfaces, static routes, and firewall policies are generated automatically on all FortiGates that belong to the same community network. A community network is defined as all FortiGates registered to FortiCare using the same FortiCare account.

If the network topology changes on any FortiGates in the community (such as changing a public IP address in DHCP mode, adding or removing protected subnets, failing over in dual WAN), the IPsec-related configuration for all devices is updated with Cloud assistance in self-learning mode. No intervention is required.

The following topics provide instructions on configuring OCVPN:

- Full mesh OCVPN on page 1501
- Hub-spoke OCVPN with ADVPN shortcut on page 1506
- Hub-spoke OCVPN with inter-overlay source NAT on page 1510
- OCVPN portal on page 1514
- SD-WAN integration with OCVPN on page 649
- Allow FortiClient to join OCVPN on page 1515
- Troubleshooting OCVPN on page 1519

Full mesh OCVPN

This example shows how to configure a full mesh Overlay Controller VPN (OCVPN), establishing full mesh IPsec tunnels between all of the FortiGates.

License

- Free license: Three devices full mesh, 10 overlays, 16 subnets per overlay.
- Full License: Maximum of 16 devices, 10 overlays, 16 subnets per overlay.

Prerequisites

- All FortiGates must be running FortiOS 6.2.0 or later.
- All FortiGates must have Internet access.
- All FortiGates must be registered on FortiCare using the same FortiCare account.

Restrictions

- Non-root VDOMs do not support OCVPN.
- FortiOS 6.2.x is not compatible with FortiOS 6.0.x.
Terminology

<table>
<thead>
<tr>
<th>Poll-interval</th>
<th>How often FortiGate tries to fetch OCVPN-related data from OCVPN Cloud.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Role</td>
<td>The device OCVPN role of spoke, primary-hub, or secondary-hub.</td>
</tr>
<tr>
<td>Overlay</td>
<td>Defines network overlays and bind to subnets.</td>
</tr>
<tr>
<td>Subnet</td>
<td>Internal network subnet (IPsec protected subnet). Traffic to or from this subnet enters the IPsec tunnel encrypted by IPsec SA.</td>
</tr>
</tbody>
</table>

Sample topology

The following example shows three FortiGate units registered on FortiCare using the same FortiCare account. Each FortiGate unit has one internal subnet, and no NAT exists between the units.

![Sample topology diagram](image)

Sample configuration

The following overlays and subnets are used:

- **Branch1:**
 - Overlay name: QA. Local subnets: 10.1.100.0/24
 - Overlay name: PM. Local subnets: 10.2.100.0/24

- **Branch2:**
 - Overlay name: QA. Local interfaces: lan1
 - Overlay name: PM. Local interfaces: lan2

- **Branch3:**
 - Overlay name: QA. Local subnets: 172.16.101.0/24
 - Overlay name: PM. Local subnets: 172.16.102.0/24

The overlay names on each device must be the same for local and remote selector pairs to be negotiated.
To register FortiGates on FortiCare:

1. Go to System > FortiGuard.
2. In the License Information section, click Login to FortiCare. The registration pane opens.
3. Enter the required information (email address, password, country/region, reseller).
4. Optionally, enable Sign in to FortiGate Cloud using the same account.
5. Click OK.

To enable OCVPN in the GUI:

1. Go to VPN > Overlay Controller VPN.
2. Create the first overlay by setting the following options:
 a. For Status, click Enabled.
 b. For Role, click Spoke.
 c. In the Overlays section, click Create New to create a network overlay.

3. Specify the Name, Local subnets, and/or Local interfaces.
 The local subnet must be routable and interfaces must have IP addresses.
4. Click OK.

5. Click Apply to commit the configuration.

6. Repeat this procedure to create all the overlays.

To enable OCVPN in the CLI:

1. Configure Branch1:

```plaintext
config vpn ocvpn
    set status enable
    set multipath disable
config overlays
    edit 1
        set name "QA"
        config subnets
            edit 1
                set subnet 10.1.100.0 255.255.255.0
            next
        next
    next
    edit 2
        set name "PM"
        config subnets
            edit 1
                set subnet 10.2.100.0 255.255.255.0
            next
        end
```
2. **Configure Branch2:**

```plaintext
config vpn ovpn
    set status enable
    set multipath disable
    config overlays
        edit 1
            set name "QA"
            config subnets
                edit 1
                    set type interface
                    set interface "lan1"
                next
            next
        next
        edit 2
            set name "PM"
            config subnets
                edit 1
                    set type interface
                    set interface "lan2"
                next
            next
        next
end
end
```

3. **Configure Branch3:**

```plaintext
config vpn ovpn
    set status enable
    set multipath disable
    config overlays
        edit 1
            set name "QA"
            config subnets
                edit 1
                    set subnet 172.16.101.0 255.255.255.0
                next
            next
        next
        edit 1
            set name "PM"
            config subnets
                edit 1
                    set subnet 172.16.102.0 255.255.255.0
                next
            next
        next
end
end
```
Hub-spoke OCVPN with ADVPN shortcut

This topic shows a sample configuration of a hub-spoke One-Click VPN (OCVPN) with an Auto Discovery VPN (ADVPN) shortcut. OCVPN automatically detects the network topology based on members' information. To form a hub-spoke OCVPN, at least one device must announce its role as the primary hub, another device can work as the secondary hub (for redundancy), while others function as spokes.

License

- Free license: Hub-spoke network topology not supported.
- Full license: Maximum of 2 hubs, 10 overlays, 64 subnets per overlay; 1024 spokes, 10 overlays, 16 subnets per overlay.

Prerequisites

- All FortiGates must be running FortiOS 6.2.0 or later.
- All FortiGates must have Internet access.
- All FortiGates must be registered on FortiCare using the same FortiCare account.

Restrictions

- Non-root VDOMs do not support OCVPN.
- FortiOS 6.2.x is not compatible with FortiOS 6.0.x.

OCVPN device roles

- Primary hub.
- Secondary hub.
- Spoke (OCVPN default role).

Sample topology
Sample configuration

The steps below use the following overlays and subnets for the sample configuration:

- **Primary hub:**
 - Overlay name: QA. Local subnets: 172.16.101.0/24
 - Overlay name: PM. Local subnets: 172.16.102.0/24

- **Secondary hub:**
 - Overlays are synced from primary hub.

- **Spoke1:**
 - Overlay name: QA. Local subnets: 10.1.100.0/24
 - Overlay name: PM. Local subnets: 10.2.100.0/24

- **Spoke2:**
 - Overlay name: QA. Local interfaces: lan1
 - Overlay name: PM. Local interfaces: lan2

The overlay names on each device must be the same for local and remote selector pairs to be negotiated.

To register FortiGates on FortiCare:

1. Go to System > FortiGuard.
2. In the License Information section, click Login to FortiCare. The registration pane opens.
3. Enter the required information (email address, password, country/region, reseller).
4. Optionally, enable Sign in to FortiGate Cloud using the same account.
5. Click OK.

To enable hub-spoke OCVPN in the GUI:

1. Go to VPN > Overlay Controller VPN.
2. Configure the OCVPN primary hub by setting the following options:
 a. For Status, click Enabled.
 b. For Role, click Primary Hub.
 c. In the Overlays section, click Create New to create a network overlay.
d. Specify the Name, Local subnets, and/or Local interfaces. Then click OK.

e. Click Apply to commit the configuration.

3. Configure the OCVPN secondary hub:
 Overlays are synced from the primary hub and cannot be defined in the secondary hub.
 a. In the Overlay Controller VPN pane, select Secondary Hub for the Role.
 b. Select Apply to commit the configuration.

4. Configure the OCVPN spokes:
 a. In the Overlay Controller VPN pane, select Spoke for the Role.
 b. In the Overlays section, click Create New to create a network overlay.
 c. Specify the Name, Local subnets, and/or Local interfaces.
 The local subnet must be routable and interfaces must have IP addresses.
d. Click OK and then click Apply to commit the configuration.

To enable hub-spoke OCVPN in the CLI:

1. Configure the OCVPN primary hub:
   ```
   config vpn ocvpn
   set status enable
   set role primary-hub
   config overlays
   edit 1
       set name "QA"
   config subnets
   edit 1
       set subnet 172.16.101.0 255.255.255.0
   next
   next
   edit 2
   set name "PM"
   config subnets
   edit 1
       set subnet 172.16.102.0 255.255.255.0
   next
   next
   end
   end
   end
   ```

2. Configure the OCVPN secondary hub:
   ```
   config vpn ocvpn
   set status enable
   set role secondary-hub
   end
   ```

3. Configure the OCVPN spoke1:
   ```
   config vpn ocvpn
   set status enable
   config overlays
   ```
edit 1
 set name "QA"
 config subnets
 edit 1
 set subnet 10.1.100.0 255.255.255.0
 next
 end
next
edit 2
 set name "PM"
 config subnets
 edit 1
 set subnet 10.2.100.0 255.255.255.0
 next
 end
next
end
end

4. Configure the OCVPN spoke 2:

 config vpn ocvpn
 set status enable
 config overlays
 edit 1
 set name "QA"
 config subnets
 edit 1
 set subnet 192.168.4.0 255.255.255.0
 next
 end
 end
 edit 2
 set name "PM"
 config subnets
 edit 1
 set subnet 192.168.5.0 255.255.255.0
 next
 end
 end
end

Hub-spoke OCVPN with inter-overlay source NAT

This topic shows a sample configuration of hub-spoke OCVPN with inter-overlay source NAT. OCVPN isolates traffic between overlays by default. With NAT enabled on spokes and assign-ip enabled on hub, you can have inter-overlay communication.

Inter-overlay communication means devices from any source addresses and any source interfaces can communicate with any devices in overlays' subnets when the overlay option assign-ip is enabled.

You must first disable auto-discovery before you can enable NAT.
License

- Free license: Hub-spoke network topology not supported.
- Full License: Maximum of 2 hubs, 10 overlays, 64 subnets per overlay; 1024 spokes, 10 overlays, 16 subnets per overlay.

Prerequisites

- All FortiGates must be running FortiOS 6.2.0 or later.
- All FortiGates must have Internet access.
- All FortiGates must be registered on FortiCare using the same FortiCare account.

Restrictions

- Non-root VDOMs do not support OCVPN.
- FortiOS 6.2.x is not compatible with FortiOS 6.0.x.

OCVPN device roles

- Primary hub.
- Secondary hub.
- Spoke (OCVPN default role).

Sample topology

You can only configure this feature using the CLI.

The overlay names on each device must be the same for local and remote selector pairs to be negotiated.
To enable inter-overlay source NAT in the CLI:

1. Configure the primary hub, enable overlay QA, and configure assign-ip and IP range:

   ```
   config vpn ocvpn
   set status enable
   set role primary-hub
   config overlays
   edit 1
   set name "QA"
   set assign-ip enable
   set ipv4-start-ip 172.16.101.100
   set ipv4-end-ip 172.16.101.200
   config subnets
   edit 1
   set subnet 172.16.101.0 255.255.255.0
   next
   next
   edit 2
   set name "PM"
   set assign-ip enable
   config subnets
   edit 1
   set subnet 172.16.102.0 255.255.255.0
   next
   next
   end
   end
   ```

2. Configure the secondary hub:

   ```
   config vpn ocvpn
   set status enable
   set role secondary-hub
   end
   ```

3. Configure spoke1 and enable NAT on the spoke:

   ```
   config vpn ocvpn
   set status enable
   set auto-discovery disable
   set nat enable
   config overlays
   edit 1
   set name "QA"
   config subnets
   edit 1
   set subnet 10.1.100.0 255.255.255.0
   next
   next
   edit 2
   set name "PM"
   config subnets
   edit 1
   set subnet 10.2.100.0 255.255.255.0
   ```
next
end
next
end
end

4. Configure spoke2 and enable NAT on the spoke:

```fortigate-config
config vpn ovpn
  set status enable
  set auto-discovery disable
  set nat enable
  config overlays
    edit 1
      set name "QA"
      config subnets
        edit 1
          set subnet 192.168.4.0 255.255.255.0
        next
      end
    next
  end
  edit 2
    set name "PM"
    config subnets
      edit 1
        set subnet 192.168.5.0 255.255.255.0
      next
    end
  end
end

A firewall policy with NAT is generated on the spoke:

```fortigate-config
edit 9
 set name "_OCVPN2-1.1_nat"
 set uuid 3f7a84b8-3d36-51e9-ee97-8f418c91e666
 set srcintf "any"
 set dstintf "_OCVPN2-1.1"
 set srcaddr "all"
 set dstaddr "_OCVPN2-1.1_remote_networks"
 set action accept
 set schedule "always"
 set service "ALL"
 set comments "Generated by OVPN Cloud Service."
 set nat enable
next
```
OCVPN portal

When you log into the OCVPN portal, the OCVPN license type and device information display. The device information includes the device serial number, OCVPN role, hostname, public IP address, port number, and overlays.

You can unregister an OCVPN device from the OCVPN portal under Device on the right pane.
Use the OCVN Diagram to show the OCVN network topology.

Allow FortiClient to join OCVN

Administrators can configure remote access for FortiClient within an OCVN hub. This provides simple configurations to allow a user group access to an overlay network.
To configure remote FortiClient access to an OCVPN hub in the GUI:

1. On the primary hub, configure the users and user groups required for the FortiClient dialup user authentication and authorization. In this example, there are two user groups (dev_grp and qa_grp).
2. Go to VPN > Overlay Controller VPN and in the Overlays section, click Create New.
3. Enter a name and the local subnet (174.16.101.0/24 for dev and 22.202.2.0/24 for qa).
4. Enable FortiClient Access.
5. In the Access Rules section, click Create New.
6. Enter a name, and select the authentication groups and overlays. The authentication groups will be used by the IPSec phase 1 interface for authentication, and by firewall policies for authorization. The overlay allows access to the resource.
7. Click OK.
8. Create more rules if needed.
9. Click Apply.

To view the tunnel status and activity in the GUI:

1. Go to Dashboard > Network.
2. Click the IPSec widget to expand to full screen view.

To configure remote FortiClient access to an OCVPN hub in the CLI:

```
config vpn ovpn
 set status enable
 set role primary-hub
 set wan-interface "mgmt1"
 set ip-allocation-block 10.254.0.0 255.255.0.0
config overlays
 edit "dev"
 config subnets
 edit 1
 set subnet 174.16.101.0 255.255.255.0
 next
 end
next
```
edit "qa"
  config subnets
  edit 1
    set subnet 22.202.2.0 255.255.255.0
  next
  next
end

config forticlient-access
set status enable
set psksecret xxxxxxxx
config auth-groups
  edit "dev"
    set auth-group "dev_grp"
    set overlays "dev"
  next
  edit "qa"
    set auth-group "qa_grp"
    set overlays "qa"
  next
end
end

To view the tunnel status and activity in the CLI:

```
diagnose vpn ike gateway list
```

vd: root/0
name: _OCVPN_FCT0_0
version: 1
interface: mgmt1 4
addr: 172.16.200.4:4500 -> 172.16.200.15:64916
tun_id: 172.16.200.15
created: 110s ago
xauth-user: usera
groups:
  dev_grp 1
assigned IPv4 address: 10.254.128.1/255.255.255.255
nat: peer
IKE SA: created 1/1 established 1/1 time 20/20/20 ms
IPsec SA: created 1/1 established 1/1 time 0/0/0 ms

id/spi: 72 1cc2d8df2d981123/fd8da107f9e4d312
direction: responder
status: established 110-110s ago = 20ms
proposal: aes256-sha256
key: 105a0291b0c5219-3decd78938a7bea-78943651e1720536-625114d66e46f668
lifetime/rekey: 86400/86019
DPD sent/recv: 00000000/00000af3

To view data on the PC running FortiClient:

```
C:\ route print
```
IPv4 Route Table
===========================================================================
Active Routes:
<table>
<thead>
<tr>
<th>Network</th>
<th>Destination</th>
<th>Netmask</th>
<th>Gateway</th>
<th>Interface</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td></td>
<td>10.1.100.5</td>
<td>10.1.100.13</td>
<td>281</td>
</tr>
<tr>
<td>10.1.100.0</td>
<td>255.255.255.0</td>
<td>10.254.128.2</td>
<td>10.254.128.1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10.1.100.13</td>
<td>255.255.255.255</td>
<td>On-link</td>
<td>10.1.100.13</td>
<td>281</td>
<td></td>
</tr>
<tr>
<td>10.1.101.0</td>
<td>255.255.255.0</td>
<td>10.254.128.2</td>
<td>10.254.128.1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10.6.30.0</td>
<td>255.255.255.0</td>
<td>On-link</td>
<td>10.6.30.13</td>
<td>281</td>
<td></td>
</tr>
<tr>
<td>10.6.30.13</td>
<td>255.255.255.255</td>
<td>On-link</td>
<td>10.6.30.13</td>
<td>281</td>
<td></td>
</tr>
<tr>
<td>10.6.30.255</td>
<td>255.255.255.255</td>
<td>On-link</td>
<td>10.6.30.13</td>
<td>281</td>
<td></td>
</tr>
<tr>
<td>10.254.0.0</td>
<td>255.255.0.0</td>
<td>10.254.128.2</td>
<td>10.254.128.1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10.254.128.1</td>
<td>255.255.255.255</td>
<td>On-link</td>
<td>10.254.128.1</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>22.202.2.0</td>
<td>255.255.255.0</td>
<td>10.254.128.2</td>
<td>10.254.128.1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>127.0.0.0</td>
<td>255.0.0.0</td>
<td>On-link</td>
<td>127.0.0.1</td>
<td>331</td>
<td></td>
</tr>
<tr>
<td>127.0.0.1</td>
<td>255.255.255.255</td>
<td>On-link</td>
<td>127.0.0.1</td>
<td>331</td>
<td></td>
</tr>
<tr>
<td>127.255.255.255</td>
<td>255.255.255.255</td>
<td>On-link</td>
<td>127.0.0.1</td>
<td>331</td>
<td></td>
</tr>
<tr>
<td>174.16.101.0</td>
<td>255.255.255.0</td>
<td>10.254.128.2</td>
<td>10.254.128.1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>224.0.0.0</td>
<td>240.0.0.0</td>
<td>On-link</td>
<td>127.0.0.1</td>
<td>331</td>
<td></td>
</tr>
<tr>
<td>224.0.0.1</td>
<td>240.0.0.0</td>
<td>On-link</td>
<td>10.254.128.1</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>224.0.0.0</td>
<td>240.0.0.0</td>
<td>On-link</td>
<td>10.6.30.13</td>
<td>281</td>
<td></td>
</tr>
<tr>
<td>224.0.0.0</td>
<td>240.0.0.0</td>
<td>On-link</td>
<td>10.1.100.13</td>
<td>281</td>
<td></td>
</tr>
<tr>
<td>255.255.255.255</td>
<td>255.255.255.255</td>
<td>On-link</td>
<td>127.0.0.1</td>
<td>331</td>
<td></td>
</tr>
<tr>
<td>255.255.255.255</td>
<td>255.255.255.255</td>
<td>On-link</td>
<td>10.254.128.1</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>255.255.255.255</td>
<td>255.255.255.255</td>
<td>On-link</td>
<td>10.6.30.13</td>
<td>281</td>
<td></td>
</tr>
<tr>
<td>255.255.255.255</td>
<td>255.255.255.255</td>
<td>On-link</td>
<td>10.1.100.13</td>
<td>281</td>
<td></td>
</tr>
</tbody>
</table>

===========================================================================
Persistent Routes:
<table>
<thead>
<tr>
<th>Network Address</th>
<th>Netmask</th>
<th>Gateway Address</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>10.1.100.5</td>
<td>Default</td>
</tr>
</tbody>
</table>

The PC can access the dev resource overlay, but not qa:

C:\Users\tester>ping 174.16.101.44

Pinging 174.16.101.44 with 32 bytes of data:
Reply from 174.16.101.44: bytes=32 time=1ms TTL=63

Ping statistics for 174.16.101.44:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 1ms, Maximum = 1ms, Average = 1ms

C:\Users\tester>ping 22.202.2.2

Pinging 22.202.2.2 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.

Ping statistics for 22.202.2.2:
   Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
Troubleshooting OCCVPN

This document includes troubleshooting steps for the following OCCVPN network topologies:

- Full mesh OCCVPN.
- Hub-spoke OCCVPN with ADVPN shortcut.
- Hub-spoke OCCVPN with inter-overlay source NAT.

For OCCVPN configurations in other network topologies, see the other OCCVPN topics.

Troubleshooting full mesh network topology

- Branch_1# diagnose vpn occvpn status
  
  | Current State | : Registered |
  | Topology      | : Full-Mesh  |
  | Role          | : Spoke      |
  | Server Status | : Up         |
  | Registration time | : Thu Feb 28 18:42:25 2019 |
  | Update time   | : Thu Feb 28 15:57:18 2019 |
  | Poll time     | : Fri Mar 1 15:02:28 2019 |

- Branch_1# diagnose vpn occvpn show-meta
  
  Topology :: auto
  License :: full
  Members :: 3
  Max-free :: 3

- Branch_1# diagnose vpn occvpn show-overlays
  
  QA
  PM

- Branch_1# diagnose vpn occvpn show-members
  
  Member: { "SN": "FG100D3G15801621", "IPv4": "172.16.200.1", "port": "500", "slot": 1000, "overlay": [ { "id": 0, "name": "QA", "subnets": [ "10.1.100.0/255.255.255.0" ], "ip_range": "0.0.0.0-0.0.0.0" }, { "id": 1, "name": "PM", "subnets": [ "10.2.100.0/255.255.255.0" ], "ip_range": "0.0.0.0-0.0.0.0" } ], "Name": "FortiGate-100D", "topology_role": "spoke" }
  
  Member: { "SN": "FG900D3915800083", "IPv4": "172.16.200.4", "port": "500", "slot": 1001, "overlay": [ { "id": 0, "name": "QA", "subnets": [ "172.16.101.0/255.255.255.0" ], "ip_range": "0.0.0.0-0.0.0.0" }, { "id": 1, "name": "PM", "subnets": [ "172.16.102.0/255.255.255.0" ], "ip_range": "0.0.0.0-0.0.0.0" } ], "Name": "Branch3", "topology_role": "spoke" }
  
  Member: { "SN": "FGT51E3U16001314", "IPv4": "172.16.200.199", "port": "500", "slot": 1002, "overlay": [ { "id": 0, "name": "QA", "subnets": [ "192.168.4.0/255.255.255.0" ], "ip_range": "0.0.0.0-0.0.0.0" }, { "id": 1, "name": "PM", "subnets": [ "192.168.5.0/255.255.255.0" ], "ip_range": "0.0.0.0-0.0.0.0" } ], "Name": "Branch2", "topology_role": "spoke" }

- Branch_1# diagnose vpn tunnel list
  
  list all ipsec tunnel in vd 0
  ------------------------------------------
  name=OCCVPN2-3.1 ver=2 serial=4 172.16.200.1:0->172.16.200.199:0 tun_id=172.16.200.199
dst_nw=1500
  bound_if=11 lgw=static/1 tun=intf/0 mode=auto/1 encap=none/528 options[0210]=create_dev
frag/rfc accept_traffic=1

proxyid_num=2 child_num=0 refcnt=13 ilast=7 olast=0 ad=/0
stat: rxp=0 txp=0 txb=0 timeout=588
dpd: mode=on-demand on=1 idle=20000ms retry=3 count=0 seqno=6
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=OCVPN2-3.1 proto=0 sa=1 ref=2 serial=8 auto-negotiate
src: 0:10.1.100.0-10.1.100.255:0
dst: 0:192.168.4.0-192.168.4.255:0
SA: ref=3 options=18627 type=00 soft=0 mtu=1438 expire=42923/0B replaywin=2048
     seqno=8 esn=0 replaywin_lastseq=00000000 itn=0 qat=0
     life: type=01 bytes=0/0 timeout=42931/43200
dec: spi=c34bb752 esp=aes key=16 3c5ceeff3cacleaa2702b5cc8713ab9b
     ah:shal key=20 5903e358b3d938ee64f0412887a0fe741cc6105
enc: spi=b5bd4fe1 esp=aes key=16 8ae97a8abe24daed725d6142a66fdec0
     ah:shal key=20 9ec200d90cf9e1b7cf76e05df344c70f53214
dec:pktst=bytes=0/0, enc:pktst=bytes=7/1064
proxyid=OCVPN2-3.1 proto=0 sa=0 ref=2 serial=1 auto-negotiate
src: 0:10.1.100.0/255.255.255.0:0
dst: 0:0.0.0.0/0.0.0.0:0
-----------------------------------------------
name=OCVPN2-4.1 ver=2 serial=6 172.16.200.1:0->172.16.200.4:0 tun_id=172.16.200.4 dst_mtu=1500
bound_if=11 lgw=static/1 tun=intf/0 mode=auto/1 encap=none/528 options[0210]=create_dev
frag/rfc accept_traffic=1

proxyid_num=2 child_num=0 refcnt=11 ilast=19 olast=19 ad=/0
stat: rxp=0 txp=0 txb=0
dpd: mode=on-demand on=1 idle=20000ms retry=3 count=0 seqno=0
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=OCVPN2-4.1 proto=0 sa=1 ref=2 serial=7 auto-negotiate
src: 0:10.1.100.0-10.1.100.255:0
dst: 0:172.16.101.0-172.16.101.255:0
SA: ref=3 options=18627 type=00 soft=0 mtu=1438 expire=42911/0B replaywin=2048
     seqno=1 esn=0 replaywin_lastseq=00000000 itn=0 qat=0
     life: type=01 bytes=0/0 timeout=42931/43200
dec: spi=c34bb750 esp=aes key=16 8c9844a8b6cd3fd6c7bd8a4f2ec81ef1
     ah:shal key=20 680c7144346f5b126cbad9f325821b048c7192
enc: spi=b5bd4fe0 esp=aes key=16 f9625fc8590152829eb39eecab3a3999
     ah:shal key=20 5903e358b3d938ee64f0412887a0fe741cc6105
     expir=42911/0B
     qat=0
     id=172.16.200.4
     replaywin=2048
dec:pktst=bytes=0/0, enc:pktst=bytes=0/0
proxyid=OCVPN2-4.1 proto=0 sa=0 ref=2 serial=1 auto-negotiate
src: 0:0.0.0.0/0.0.0.0:0
dst: 0:0.0.0.0/0.0.0.0:0
-----------------------------------------------
name=OCVPN2-3.2 ver=2 serial=3 172.16.200.1:0->172.16.200.199:0 tun_id=172.16.200.199 dst_mtu=1500
bound_if=11 lgw=static/1 tun=intf/0 mode=auto/1 encap=none/528 options[0210]=create_dev
frag/rfc accept_traffic=1

proxyid_num=2 child_num=0 refcnt=11 ilast=6 olast=6 ad=/0
stat: rxp=0 txp=0 txb=0
dpd: mode=on-demand on=1 idle=20000ms retry=3 count=0 seqno=0
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=OCVPN2-3.2 proto=0 sa=1 ref=2 serial=8 auto-negotiate
src: 0:10.2.100.0-10.2.100.255:0
dst: 0:192.168.5.0-192.168.5.255:0
SA: ref=3 options=18627 type=00 soft=0 mtu=1438 expire=42905/0B replaywin=2048
  seqno=1 esn=0 replaywin_lastseq=00000000 itn=0 qat=0
life: type=01 bytes=0/0 timeout=42927/43200
dec: spi=c34bb753 esp=aes key=16 58ddfada93699f1c49f3a9f369145c28
  ah=shal key=20 e749c7e6a7aaff119707c792e873c975127873b
enc: spi=b5bd4fe2 esp=aes key=16 8f2366e53f5f9ad587be1ce1905764
  ah=shal key=20 5347bf24e51219d483c0f7b058e8ce62b02026204
dec:pkts/bytes=0/0, enc:pkts/bytes=0/0
proxyid=OCVPN2-3.2 proto=0 sa=0 ref=2 serial=1 auto-negotiate
src: 0:10.2.100.0/255.255.255.0:0
dst: 0:0.0.0.0/0.0.0.0:0

---

name=OCVPN2-4.2 ver=2 serial=5 172.16.200.1:0-->172.16.200.4:0 tun_id=172.16.200.4 dst_mtu=1500
bound_if=11 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/528 options[0210]=create_dev
frag=rfc accept_traffic=1
proxyid_num=2 child_num=0 refcnt=11 ilast=17 olast=17 ad=/0
stat: rxp=0 txp=0 rxb=0 txb=0
dpd: mode=on-demand on=1 idle=20000ms retry=3 count=0 seqno=0
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=OCVPN2-4.2 proto=0 sa=1 ref=2 serial=7 auto-negotiate
src: 0:10.2.100.0-10.2.100.255:0
dst: 0:172.16.102.0-172.16.102.255:0
SA: ref=3 options=18627 type=00 soft=0 mtu=1438 expire=42905/0B replaywin=2048
  seqno=1 esn=0 replaywin_lastseq=00000000 itn=0 qat=0
life: type=01 bytes=0/0 timeout=42927/43200
dec: spi=c34bb753 esp=aes key=16 41449ee5ea43d3e1f80df05fc632cd44
  ah=shal key=20 3ca2aee1c8764f35ccf987cdec7cf6eb54331fb
enc: spi=f2df2d6d esp=aes key=16 90110dd57e502c6296b27a4649a45a6ba
  ah=shal key=20 caf86a176ce04464221543f15fc3c63fc573b8ee
dec:pkts/bytes=0/0, enc:pkts/bytes=0/0
proxyid=OCVPN2-4.2 proto=0 sa=0 ref=2 serial=1 auto-negotiate
src: 0:10.2.100.0/255.255.255.0:0
dst: 0:0.0.0.0/0.0.0.0:0

\* Branch_1# get router info routing-table all

Routing table for VRF=0

Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default

S* 0.0.0.0/0 [10/0] via 172.16.200.254, port1
C 10.1.100.0/24 is directly connected, dmz
C 10.2.100.0/24 is directly connected, loop
C 11.101.1.0/24 is directly connected, wan1
C 11.102.1.0/24 is directly connected, wan2
S 192.168.5.0/24 [20/0] is directly connected, _OCVPN2-3.2
C 172.16.200.0/24 is directly connected, port1
S 172.16.101.0/24 [20/0] is directly connected, _OCVPN2-4.1
S 172.16.102.0/24 [20/0] is directly connected, _OCVPN2-4.2
S 192.168.4.0/24 [20/0] is directly connected, _OCVPN2-3.1
Troubleshooting hub-spoke with ADVVPN shortcut

- **Primary-Hub** # diagnose vpn ocvpn status
  
  | Current State | : Registered |
  | Topology      | : Dual-Hub-Spoke |
  | Role          | : Primary-Hub |
  | Server Status | : Up |
  | Registration time | : Sat Mar 2 11:31:54 2019 |
  | Poll time     | : Sat Mar 2 11:46:02 2019 |

- **Spoke1** # diagnose vpn ocvpn status
  
  | Current State | : Registered |
  | Topology      | : Dual-Hub-Spoke |
  | Role          | : Spoke |
  | Server Status | : Up |
  | Registration time | : Sat Mar 2 11:41:22 2019 |
  | Poll time     | : Sat Mar 2 11:46:44 2019 |

- **Primary-Hub** # diagnose vpn ocvpn show-members

  ```
 Member: { "sn": "FG00D3G15800083", "ip_v4": "172.16.200.4", "port": 500, "slot": 0, "overlay": [{ "id": 0, "name": "QA", "subnets": ["172.16.101.0/255.255.255.0"], "ip_range": "0.0.0.0-0.0.0.0.0" }, { "id": 1, "name": "PM", "subnets": ["172.16.102.0/255.255.255.0"], "ip_range": "0.0.0.0-0.0.0.0.0" }], "name": "Primary-Hub", "topology_role": "primary_hub", "eap": "disable", "auto_discovery": "enable" }
 Member: { "sn": "FG100D3G15828488", "ip_v4": "172.16.200.2", "port": 500, "slot": 1, "overlay": [{ "id": 0, "name": "QA", "subnets": ["172.16.101.0/255.255.255.0"], "ip_range": "0.0.0.0-0.0.0.0.0" }, { "id": 1, "name": "PM", "subnets": ["172.16.102.0/255.255.255.0"], "ip_range": "0.0.0.0-0.0.0.0.0" }], "name": "Secondary-Hub", "topology_role": "secondary_hub", "eap": "disable", "auto_discovery": "enable" }
 Member: { "sn": "FG100D3G15801621", "ip_v4": "172.16.200.1", "port": 500, "slot": 0, "overlay": [{ "id": 0, "name": "QA", "subnets": ["10.1.100.0/255.255.255.0"], "ip_range": "0.0.0.0-0.0.0.0.0" }, { "id": 1, "name": "PM", "subnets": ["172.16.101.0/255.255.255.0"], "ip_range": "0.0.0.0-0.0.0.0.0" }], "name": "Spoke1", "topology_role": "spoke" }
 Member: { "sn": "FGT51E3U16001314", "ip_v4": "172.16.200.3", "port": 500, "slot": 1001, "overlay": [{ "id": 0, "name": "QA", "subnets": ["192.168.4.0/255.255.255.0"], "ip_range": "0.0.0.0-0.0.0.0.0" }, { "id": 1, "name": "PM", "subnets": ["192.168.5.0/255.255.255.0"], "ip_range": "0.0.0.0-0.0.0.0.0" }], "name": "Spoke2", "topology_role": "spoke" }
  ```

- **Primary-Hub** # diagnose vpn ocvpn show-meta

  ```
 Topology :: auto
 License :: full
 Members :: 4
 Max-free :: 3
  ```

- **Primary-Hub** # diagnose vpn ocvpn show-overlays

  ```
 QA
 PM
  ```

- **Spoke1** # diagnose vpn tunnel list

  ```
 list all ipsec tunnel in vd 0

 name=_OCVPN2-0.0 ver=2 serial=6 172.16.200.1:0->172.16.200.4:0 tun_id=172.16.200.4 dst_
  ```
mtu=1500
bound_if=11 lgw=static/1 tun=intf/0 mode=auto/1 encap=none/528 options[0210]=create_dev
frag=rfc accept_traffic=1

proxyid_num=1 child_num=0 refcnt=11 ilast=0 olast=0 ad=r/2
stat: rxp=1 txp=34 rxb=152 txb=2856
dpd: mode=on-idle on=1 idle=20000ms retry=3 count=0 seqno=46
natt: mode=None draft=0 interval=0 remote_port=0
proxyid: OCVPN2-0.0 proto=0 sa=1 ref=2 serial=1 auto-negotiate addr
src: 0:10.1.100.0/255.255.255.0:0
dst: 0:0.0.0.0/0.0.0.0:0
SA: ref=3 options=la227 type=00 soft=0 mtu=1438 expire=42895/0B replaywin=2048
   seqno=1 esn=0 replaywin_lastseq=00000000 itn=0 qat=0
life: type=01 bytes=0/0 timeout=42901/43200
dec: spi=048477c7 esp=aes key=16 240e064c0f1c980ac31980b9e7605c9d
   ah=shal key=20 6ff022cbebcaff4c5de62efeb2e6180c40a3ad2h
enc: spi=dfcfa86 esp=aes key=16 862208de164a02af377756c2bcabd58
   ah=shal key=20 af6e54781fd42d7a2ba119ec956d0f95629c8448
dec: pkts/bytes=0/0, enc: pkts/bytes=0/0
------------------------------------------------------------------------------------
name=OCVPN2-1.0 ver=2 serial=8 172.16.200.1:0->172.16.200.2:0 tun_id=172.16.200.2 dst_mtu=1500
bound_if=11 lgw=static/1 tun=intf/0 mode=auto/1 encap=none/528 options[0210]=create_dev
frag=rfc accept_traffic=0

proxyid_num=1 child_num=0 refcnt=10 ilast=934 olast=934 ad=/0
stat: rxp=0 txp=0 rxb=0 txb=0
dpd: mode=on-idle on=1 idle=20000ms retry=3 count=0 seqno=1
natt: mode=None draft=0 interval=0 remote_port=0
proxyid: OCVPN2-1.0 proto=0 sa=0 ref=2 serial=1 auto-negotiate addr
src: 0:10.1.100.0/255.255.255.0:0
dst: 0:0.0.0.0/0.0.0.0:0
------------------------------------------------------------------------------------
name=OCVPN2-0.1 ver=2 serial=5 172.16.200.1:0->172.16.200.4:0 tun_id=172.16.200.4 dst_mtu=1500
bound_if=11 lgw=static/1 tun=intf/0 mode=auto/1 encap=none/528 options[0210]=create_dev
frag=rfc accept_traffic=1

proxyid_num=1 child_num=0 refcnt=11 ilast=12 olast=12 ad=r/2
stat: rxp=0 txp=0 rxb=0 txb=0
dpd: mode=on-idle on=1 idle=20000ms retry=3 count=0 seqno=46
natt: mode=None draft=0 interval=0 remote_port=0
proxyid: OCVPN2-0.1 proto=0 sa=1 ref=2 serial=1 auto-negotiate addr
src: 0:10.2.100.0/255.255.255.0:0
dst: 0:0.0.0.0/0.0.0.0:0
SA: ref=3 options=la227 type=00 soft=0 mtu=1438 expire=42895/0B replaywin=2048
   seqno=1 esn=0 replaywin_lastseq=00000000 itn=0 qat=0
life: type=01 bytes=0/0 timeout=42901/43200
dec: spi=048477c8 esp=aes key=16 701ec608767f4988b76c2f662464e654
   ah=shal key=20 93c65d106dc610d7ee3f04487f08601a9e00ffdd
enc: spi=dffca86 esp=aes key=16 02b2d04dce3d81ebab69e128d45cb7ca
   ah=shal key=20 02b2d04dce3d81ebab69e128d45cb7ca
dec: pkts/bytes=0/0, enc: pkts/bytes=0/0
------------------------------------------------------------------------------------
name=OCVPN2-1.1 ver=2 serial=7 172.16.200.1:0->172.16.200.2:0 tun_id=172.16.200.2 dst_mtu=1500
bound_if=11 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/528 options[0210]=create_dev frag-rfc accept_traffic=0
proxyid_num=1 child_num=0 refcnt=10 ilast=934 olast=934 ad=/0
stat: rxp=0 txp=0 rxb=0 txb=0
dpd: mode=on-idle on=0 idle=2000ms retry=3 count=0 seqno=1
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=_OCVPN2-1.1 proto=0 sa=0 ref=2 serial=1 auto-negotiate addr
src: 0:10.2.100.0/255.255.255.0:0
dst: 0:0.0.0.0/0.0.0.0:0

Spoke1
get router info routing-table all
Routing table for VRF=0
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
0 - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default

S* 0.0.0.0/0 [10/0] via 172.16.200.254, port1
C 10.1.100.0/24 is directly connected, dmz
C 10.2.100.0/24 is directly connected, loop
C 11.101.1.0/24 is directly connected, wan1
C 11.102.1.0/24 is directly connected, wan2
S 172.16.102.0/24 [20/0] is directly connected, _OCVPN2-0.1
C 172.16.200.0/24 is directly connected, port1
S 172.16.101.0/24 [20/0] is directly connected, _OCVPN2-0.0
S 192.168.4.0/24 [20/0] is directly connected, _OCVPN2-0.0
S 192.168.5.0/24 [20/0] is directly connected, _OCVPN2-0.1

Generate traffic from spoke1 to spoke2 to trigger the ADVPN shortcut and check the VPN tunnel and routing-table again on spoke1.

branch1 # diagnose vpn tunnel list
list all ipsec tunnel in vd 0
-------------------------------------------------------------------------
name=_OCVPN2-0.0_0 ver=2 serial=a 172.16.200.1:0->172.16.200.3:0 tun_id=172.16.200.3
dst_mtu=1500
bound_if=11 lgwy=static/1 tun=intf/0 mode=dial_inst/3 encap=none/720 options [02d0]=create_dev no-sysctl rgwy-chg frag-rfc accept_traffic=1
parent=_OCVPN2-0.0 index=0
proxyid_num=1 child_num=0 refcnt=14 ilast=0 olast=0 ad=r/2
stat: rxp=7 txp=7 rxb=1064 txb=588
dpd: mode=on-idle on=1 idle=2000ms retry=3 count=0 seqno=0
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=_OCVPN2-0.0 proto=0 sa=1 ref=2 serial=1 auto-negotiate add-route addr
src: 0:10.1.100.0/10.1.100.255:0
dst: 0:192.168.4.0/192.168.4.255:0
SA: ref=3 options=1a227 type=00 soft=0 mtu=1438 expire=43180/0B replaywin=2048
seqno=8 esn=0 replaywin_lastseq=00000008 itn=0 qat=0
life: type=01 bytes=0/0 timeout=43187/43200
dec: spi=048477c9 esp=aes key=16 27c35d53793013ef24cf887561e9f313
ah=sha1 key=20 2c8cf3d28c3b29104db0ca74a00c6063f46cafe4
enc: spi=fb9e13fd esp=aes key=16 9d0d3bf6c84b7ddaf9d9196fe74002ed
Fortinet

VPN

...
dec: pkts/bytes=0/0, enc: pkts/bytes=0/0

name=OCVPN2-1.1 ver=2 serial=7 172.16.200.1:0->172.16.200.2:0 tun_id=172.16.200.2 dst_mtu=1500
bound_if=11 lgw=static/1 tun=intf/0 mode=auto/1 encap=none/528 options[0210]=create_dev
frag-rfc accept_traffic=0
proxyid_num=1 child_num=0 refcnt=10 ilast=1328 olast=1328 ad=/0
stat: rxp=0 txp=0 rxb=0 txb=0
dpd: mode=on-idle on=0 idle=20000ms retry=3 count=0 seqno=1
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=OCVPN2-1.1 proto=0 sa=0 ref=2 serial=1 auto-negotiate adr
src: 0:10.2.100.0/255.255.255.0:0
dst: 0:0.0.0.0/0.0.0.0:0:

Routing table for VRF=0
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default

S* 0.0.0.0/0 [10/0] via 172.16.200.254, port1
C 10.1.100.0/24 is directly connected, dmz
C 10.2.100.0/24 is directly connected, loop
C 11.101.1.0/24 is directly connected, wan1
C 11.102.1.0/24 is directly connected, wan2
S 172.16.102.0/24 [20/0] is directly connected, _OCVPN2-0.1
C 172.16.200.0/24 is directly connected, port1
S 172.16.101.0/24 [20/0] is directly connected, _OCVPN2-0.0
S 192.168.4.0/24 [15/0] via 172.16.200.3, _OCVPN2-0.0_0
S 192.168.5.0/24 [20/0] is directly connected, _OCVPN2-0.1

- Simulate the primary hub being unavailable where all spokes' dialup VPN tunnels will switch to the secondary hub, to check VPN tunnel status and routing-table.

list all ipsec tunnel in vd 0

name=OCVPN2-0.0 ver=2 serial=6 172.16.200.1:0->172.16.200.4:0 tun_id=172.16.200.4 dst_mtu=1500
bound_if=11 lgw=static/1 tun=intf/0 mode=auto/1 encap=none/528 options[0210]=create_dev
frag-rfc accept_traffic=0
proxyid_num=1 child_num=0 refcnt=10 ilast=25 olast=25 ad=/0
stat: rxp=0 txp=0 rxb=0 txb=0
dpd: mode=on-idle on=0 idle=20000ms retry=3 count=0 seqno=82
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=OCVPN2-0.0 proto=0 sa=0 ref=2 serial=1 auto-negotiate adr
src: 0:10.1.100.0/255.255.255.0:0
dst: 0:0.0.0.0/0.0.0.0:0:

name=OCVPN2-1.0 ver=2 serial=8 172.16.200.1:0->172.16.200.2:0 tun_id=172.16.200.2 dst_mtu=1500
bound_if=11 lgw=static/1 tun=intf/0 mode=auto/1 encap=none/528 options[0210]=create_dev
frag-rfc accept_traffic=1
proxyid_num=1 child_num=0 refcnt=11 ilast=14 olast=14 ad=r/2
stat: rxp=0 txp=0 rxb=0 txb=0

dpd: mode=on-idle on=1 idle=20000ms retry=3 count=0 seqno=9
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=OCVPN2-1.0 proto=0 sa=1 ref=2 serial=1 auto-negotiate addr
src: 0:10.1.100.0/255.255.255.0:0
dst: 0:0.0.0.0/0.0.0.0:0
SA: ref=3 options=la227 type=00 soft=0 mtu=1438 expire=42723/0B replaywin=2048
seqno=1 esn=0 replaywin_lastseq=00000000 itn=0 gat=0
life: type=01 bytes=0/0 timeout=42898/43200
dec: spi=048477cd esp=aes key=16 9bb363a32378b589cd42890c9df811
ah=sha1 key=20 2ed40583b9544e37867349b4adc7c013024d7e17
enc: spi=f345fb42 esp=aes key=16 3ea31df3310b245700a131db4565851
ah=sha1 key=20 522862dfb232514b845e436133b148da0e67b7c4
dec:pkts/bytes=0/0, enc:pkts/bytes=0/0

name=OCVPN2-0.1 ver=2 serial=5 172.16.200.1:0->172.16.200.4:0 tun_id=172.16.200.4 dst_mtu=1500
bound_if=11 lgw=static/1 tun=intf/0 mode=auto/1 encap=none/528 options[0210]=create_dev
frag=rfc accept_traffic=0

proxyid_num=1 child_num=0 refcnt=10 ilast=19 olast=19 ad=/0
stat: rxp=0 txp=0 rxb=0 txb=0

dpd: mode=on-idle on=0 idle=20000ms retry=3 count=0 seqno=83
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=OCVPN2-0.1 proto=0 sa=0 ref=2 serial=1 auto-negotiate addr
src: 0:10.2.100.0/255.255.255.0:0
dst: 0:0.0.0.0/0.0.0.0:0

name=OCVPN2-1.1 ver=2 serial=7 172.16.200.1:0->172.16.200.2:0 tun_id=172.16.200.2 dst_mtu=1500
bound_if=11 lgw=static/1 tun=intf/0 mode=auto/1 encap=none/528 options[0210]=create_dev
frag=rfc accept_traffic=1

proxyid_num=1 child_num=0 refcnt=11 ilast=12 olast=12 ad=r/2
stat: rxp=0 txp=0 rxb=0 txb=0

dpd: mode=on-idle on=1 idle=20000ms retry=3 count=0 seqno=9
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=OCVPN2-1.1 proto=0 sa=1 ref=2 serial=1 auto-negotiate addr
src: 0:10.2.100.0/255.255.255.0:0
dst: 0:0.0.0.0/0.0.0.0:0
SA: ref=3 options=la227 type=00 soft=0 mtu=1438 expire=42728/0B replaywin=2048
seqno=1 esn=0 replaywin_lastseq=00000000 itn=0 gat=0
life: type=01 bytes=0/0 timeout=42902/43200
dec: spi=048477cd esp=aes key=16 b6f0ca7564abc85b50eb3ad04c1
ah=sha1 key=20 413d040554b39daca72adac7583b9cc3ce3c8
enc: spi=f345fb43 esp=aes key=16 727582f20fcedef884ba693ed2164bcd
ah=sha1 key=20 b0a625803fde701ed9d28d256079e908954b7fc8
dec:pkts/bytes=0/0, enc:pkts/bytes=0/0

Routing table for VRF=0
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
OSPF

Spoke1:
Primary-Up 172.16.102.0/24:
Primary-Registered
Primary-Dual-Registered
Spoke2:
14:04:22]
14:03:31
11.102.1.0/24
11:31:54
0.0.0.0/0
10.1.100.0/24

VPN

Member: { "sn": "FG900D3915B00083", "ip_v4": "172.16.200.4", "port": 500, "slot": 0, "overlay": [ { "id": 0, "name": "QA", "subnets": [ "172.16.101.0/255.255.255.0" ], "ip_range": "172.16.100.100-172.16.101.200" }, { "id": 1, "name": "PM", "subnets": [ "172.16.102.0/255.255.255.0" ], "ip_range": "172.16.102.100-172.16.102.200" } ], "name": "Primary-Hub", "topology_role": "primary_hub", "eap": "disable", "auto_discovery": "enable" }
Member: { "sn": "FG100D3G15282088", "ip_v4": "172.16.200.2", "port": 500, "slot": 1, "overlay": [ { "id": 0, "name": "QA", "subnets": [ "172.16.101.0/255.255.255.0" ], "ip_range": "0.0.0.0-0.0.0.0" }, { "id": 1, "name": "PM", "subnets": [ "172.16.102.0/255.255.255.0" ], "ip_range": "0.0.0.0-0.0.0.0" } ], "name": "Secondary-Hub", "topology_role": "secondary_hub", "eap": "disable", "auto_discovery": "enable" }
Member: { "sn": "FGT6E3U60011314", "ip_v4": "172.16.200.3", "port": 500, "slot": 1001, "overlay": [ { "id": 0, "name": "QA", "subnets": [ "192.168.4.0/255.255.255.0" ], "ip_range": "0.0.0.0-0.0.0.0" }, { "id": 1, "name": "PM", "subnets": [ "192.168.5.0/255.255.255.0" ], "ip_range": "0.0.0.0-0.0.0.0" } ], "name": "Spoke2", "topology_role": "spoke" }
Member: { "sn": "FG100D3G158011621", "ip_v4": "172.16.200.1", "port": 500, "slot": 1000, "overlay": [ { "id": 0, "name": "QA", "subnets": [ "10.1.100.0/255.255.255.0" ], "ip_range": "0.0.0.0-0.0.0.0" } ], "id": 1, "name": "PM", "subnets": [ "0.0.0.0-0.0.0.0" ] }

Troubleshooting hub-spoke with inter-overlay source NAT

- **Primary-Hub** # diagnose vpn ocvpn status

  Current State: Registered
  Topology: Dual-Hub-Spoke
  Role: Primary-Hub
  Server Status: Up
  Registration time: Sat Mar 2 11:31:54 2019
  Update time: Sat Mar 2 13:57:05 2019
  Poll time: Sat Mar 2 14:03:31 2019

- **Spoke1** # diagnose vpn ocvpn status

  Current State: Registered
  Topology: Dual-Hub-Spoke
  Role: Spoke
  Server Status: Up
  Registration time: Sat Mar 2 13:58:01 2019
  Poll time: Sat Mar 2 14:04:22 2019

- **Primary-Hub** # diagnose vpn ocvpn show-members

  Member: { "sn": "FG900D3915B00083", "ip_v4": "172.16.200.4", "port": 500, "slot": 0, "overlay": [ { "id": 0, "name": "QA", "subnets": [ "172.16.101.0/255.255.255.0" ], "ip_range": "172.16.100.100-172.16.101.200" }, { "id": 1, "name": "PM", "subnets": [ "172.16.102.0/255.255.255.0" ], "ip_range": "172.16.102.100-172.16.102.200" } ], "name": "Primary-Hub", "topology_role": "primary_hub", "eap": "disable", "auto_discovery": "enable" }

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
"10.2.100.0/255.255.255.0", "ip_range": "0.0.0.0-0.0.0.0" }, "name": "Spoke1", "topology_role": "spoke" }

- **Primary-Hub** # diagnose vpn ocvpn show-meta
  Topology :: auto
  License :: full
  Members :: 4
  Max-free :: 3

- **Primary-Hub** # diagnose vpn ocvpn show-overlays
  QA
  PM

- **Spoke1** # diagnose vpn tunnel list
  list all ipsec tunnel in vd 0

```plaintext
name=OCVPN2-0.0 ver=2 serial=e 172.16.200.1:0->172.16.200.2:0 tun_id=172.16.200.2 dst_mtu=0
bound_if=11 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/528 options[0210]=create_dev frag=rfc accept_traffic=1
proxyid_num=3 child_num=0 refcnt=13 ilast=17 olast=17 ad=/0
stat: rxp=0 txp=0 rxb=0 txb=0
dpd: mode=on-idle onl=1 idle=2000ms retry=3 count=0 seqno=29
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=OCVPN2-0.0 proto=0 sa=1 ref=2 serial=1 auto-negotiate
src: 10.1.100.0/255.255.255.0:0
dst: 0.0.0.0/0.0.0.0:0
SA: ref=3 options=18227 type=0 soft=0 mtu=1438 expire=42299/0B replaywin=2048 seqno=1 esn=0 replaywin_lastseq=00000000 itn=0 qat=0
life: type=01 bytes=0/0 timeout=42899/43200
dec: spi=04847961 esp=aes key=16 ea181036b02e8bc8711fb5e98a6c9e09750876e24476154e
enc: dfcflaac esp=aes key=16 b7e42e9a433698e6b8b32161ace40b9704d98947f69178
seqno=1 esn=0 replaywin_lastseq=00000000 itn=0 qat=0
life: type=01 bytes=0/0 timeout=42899/43200
dec: spi=04847961 esp=aes key=16 ea181036b02e8bc8711fb5e98a6c9e09750876e24476154e
enc: dfcflaac esp=aes key=16 b7e42e9a433698e6b8b32161ace40b9704d98947f69178
```

- **Spoke1** # diagnose vpn tunnel list
  list all ipsec tunnel in vd 0

```plaintext
name=OCVPN2-1.0 ver=2 serial=e 172.16.200.1:0->172.16.200.2:0 tun_id=172.16.200.2 dst_mtu=0
bound_if=11 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/528 options[0210]=create_dev frag=rfc accept_traffic=1
```
proxyid_num=2 child_num=0 refcnt=10 ilast=599 olast=599 ad=/0
stat: rxp=0 txp=0 rxb=0 txb=0
dpd: mode=on-idle on=0 idle=20000ms retry=3 count=0 seqno=0
natt: mode=none draft=0 interval=0 remote_port=0
proxyid_OCVPN2-1.0 proto=0 sa=0 ref=2 serial=1 auto-negotiate
  src: 0:10.1.100.0/255.255.255.0:0
dst: 0:0.0.0.0/0.0.0.0:0
proxyid_OCVPN2-1.0_nat proto=0 sa=0 ref=2 serial=2 auto-negotiate
  src: 0:0.0.0.0/0.0.0.0:0
dst: 0:0.0.0.0/0.0.0.0:0

---

name=OCVPN2-0.1 ver=2 serial=b 172.16.200.1:0->172.16.200.4:0 tun_id=172.16.200.4 dst_mtu=1500

bound_if=11 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/528 options[0210]=create_dev
frag-rfc accept_traffic=1

proxyid_num=3 child_num=0 refcnt=13 ilast=17 olast=17 ad=/0
stat: rxp=0 txp=0 rxb=0 txb=0
dpd: mode=on-idle on=1 idle=20000ms retry=3 count=0 seqno=29
natt: mode=none draft=0 interval=0 remote_port=0
proxyid_OCVPN2-0.1 proto=0 sa=1 ref=2 serial=1 auto-negotiate
  src: 0:10.2.100.0/255.255.255.0:0
dst: 0:0.0.0.0/0.0.0.0:0
SA: ref=3 options=18227 type=00 soft=0 mtu=1438 expire=42297/0B replaywin=2048
    seqno=1 esn=0 replaywin_lastseq=00000000 itn=0 qat=0
life: type=01 bytes=0/0 timeout=42897/43200
dec: spi=0484795e esp=aes key=16 106eaa95a2be64b566e7d1ca0aa88f6a
    ah=sha1 key=20 5dddfba7070b03d5a31931d41db06ff96e7bc542
    enc: dfccfaab esp=aes key=16 29c774dbd7e54464ee298c381e71a94e
    ah=sha1 key=20 c3da7372789c0a53b3752e69baab7a24d798820
    dec:pks/bytes=0/0, enc:pks/bytes=0/0
proxyid_OCVPN2-0.1_nat proto=0 sa=1 ref=2 serial=3 auto-negotiate
  src: 0:172.16.102.101-172.16.102.101:0
dst: 0:0.0.0.0/0.0.0.0:0
SA: ref=3 options=18627 type=00 soft=0 mtu=1438 expire=42307/0B replaywin=2048
    seqno=1 esn=0 replaywin_lastseq=00000000 itn=0 qat=0
life: type=01 bytes=0/0 timeout=42902/43200
dec: spi=04847962 esp=aes key=16 b7daa5807cfa86906592a012a9d2478f
    ah=sha1 key=20 39c8bb4c9e3f1e9e451f22c58a172ff01155055d
    enc: dfccfaad esp=aes key=16 469c6f319e83bd73468f55d430566afcd6215138
    ah=sha1 key=20 2ecc644def4cebe6b0c4b7729da43d8e
    dec:pks/bytes=0/0, enc:pks/bytes=0/0
proxyid_OCVPN2-0.1_nat_proto=0 sa=1 ref=2 serial=2 auto-negotiate
  src: 0:0.0.0.0/0.0.0.0:0
dst: 0:0.0.0.0/0.0.0.0:0

---

name=OCVPN2-1.1 ver=2 serial=d 172.16.200.1:0->172.16.200.2:0 tun_id=172.16.200.2 dst_mtu=0

bound_if=11 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/528 options[0210]=create_dev
frag-rfc accept_traffic=1

proxyid_num=2 child_num=0 refcnt=10 ilast=599 olast=599 ad=/0
stat: rxp=0 txp=0 rxb=0 txb=0
dpd: mode=on-idle on=0 idle=20000ms retry=3 count=0 seqno=0
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=_OCVPN2-1.1 proto=0 sa=0 ref=2 serial=1 auto-negotiate
src: 0:10.2.100.0/255.255.255.0:0
dst: 0:0.0.0.0/0.0.0.0:0
proxyid=_OCVPN2-1.1_nat proto=0 sa=0 ref=2 serial=2 auto-negotiate
src: 0:0.0.0.0/0.0.0.0:0
dst: 0:0.0.0.0/0.0.0.0:0

- **Spoke1**

```
get router info routing-table all
```

Routing table for VRF=0
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default

```
S* 0.0.0.0/0 [10/0] via 172.16.200.254, port1
C 10.1.100.0/24 is directly connected, dmz
C 10.2.100.0/24 is directly connected, loop
C 11.101.1.0/24 is directly connected, wan1
C 11.102.1.0/24 is directly connected, wan2
S 172.16.101.0/24 [20/0] is directly connected, _OCVPN2-0.1
C 172.16.101.101/32 is directly connected, _OCVPN2-0.1
C 172.16.200.0/24 is directly connected, port1
S 172.16.102.0/24 [20/0] is directly connected, _OCVPN2-0.0
C 172.16.102.101/32 is directly connected, _OCVPN2-0.0
S 192.168.4.0/24 [20/0] is directly connected, _OCVPN2-0.0
S 192.168.5.0/24 [20/0] is directly connected, _OCVPN2-0.1
```

- **Spoke1**

```
show firewall policy
```

```
edit 9
set name "_OCVPN2-1.1_nat"
set uuid 3f7a84b8-3d36-51e9-ee97-8f418c91e666
set srcintf "any"
set dstintf "_OCVPN2-1.1"
set srcaddr "all"
set dstaddr "_OCVPN2-1.1_remote_networks"
set action accept
set schedule "always"
set service "ALL"
set comments "Generated by OCVPN Cloud Service."
set nat enable
next
edit 12
set name "_OCVPN2-1.0_nat"
set uuid 3fafec98-3d36-51e9-80c0-5d99325bad83
set srcintf "any"
set dstintf "_OCVPN2-1.0"
set srcaddr "all"
set dstaddr "_OCVPN2-1.0_remote_networks"
set action accept
set schedule "always"
set service "ALL"
```
ADVPN

Auto-Discovery VPN (ADVPN) allows the central hub to dynamically inform spokes about a better path for traffic between two spokes.

The following topics provide instructions on configuring ADVPN:

- IPsec VPN wizard hub-and-spoke ADVPN support on page 1532
- ADVPN with BGP as the routing protocol on page 1536
- ADVPN with OSPF as the routing protocol on page 1545
- ADVPN with RIP as the routing protocol on page 1554
- UDP hole punching for spokes behind NAT on page 1563

IPsec VPN wizard hub-and-spoke ADVPN support

When using the IPsec VPN wizard to create a hub and spoke VPN, multiple local interfaces can be selected. At the end of the wizard, changes can be reviewed, real-time updates can be made to the local address group and tunnel interface, and easy configuration keys can be copied for configuring the spokes.

When editing a VPN tunnel, the Hub & Spoke Topology section provides access to the easy configuration keys for the spokes, and allows you to add more spokes.

This example shows the configuration of a hub with two spokes.
To configure the hub:

1. Go to VPN > IPsec Wizard.
2. Go through the steps of the wizard:
   a. **VPN Setup:**
      
Name	hub
Template Type	Hub-and-Spoke
Role	Hub

   ![VPN Configuration Wizard](image)

   b. **Authentication:**
      
      | Incoming Interface | port1 |
      | Authentication method | Pre-shared Key |
      | Pre-shared key | <key> |

   c. **Tunnel Interface:**
      
      | Tunnel IP | 10.10.1.1 |
      | Remote IP/netmask | 10.10.1.2/24 |

   d. **Policy & Routing:**
      
      Multiple local interfaces and subnets can be configured.
      
      | Local AS | 65400 |
      | Local interface | port3  
      |                  | port4  |
      | Local subnets   | 174.16.101.0/24  
      |                  | 173.1.1.0/24  |
      | Spoke #1 tunnel IP | 10.10.1.3 |
      | Spoke #2 tunnel IP | 10.10.1.4 |
e. **Review Settings:**
   Confirm that the settings look correct, then click *Create*.

3. The summary shows details about the set up hub:
   - The *Local address group* and *Tunnel interface* can be edited directly on this page.
   - Spoke easy configuration keys can be used to quickly configure the spokes.

4. Click *Show Tunnel List* to go to VPN > IPsec Tunnels.
5. Edit the VPN tunnel to add more spokes and to copy the spokes’ easy configuration keys.
To configure the spokes:

1. Go to **VPN > IPsec Wizard**.
2. On the **VPN Setup** page of the wizard, enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>spoke1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Template Type</td>
<td>Hub-and-Spoke</td>
</tr>
<tr>
<td>Role</td>
<td>Spoke</td>
</tr>
</tbody>
</table>

3. In the *Easy configuration key* field, paste the *Spoke #1* key from the hub FortiGate, click *Apply*, then click *Next*.

4. Adjust the *Authentication* settings as required, enter the *Pre-shared key*, then click *Next*.
5. Adjust the *Tunnel Interface* settings as required, then click *Next*.
6. Configure the *Policy & Routing* settings, then click *Next*:

<table>
<thead>
<tr>
<th>Local interface</th>
<th>wan2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local subnets</td>
<td>10.1.100.0/24</td>
</tr>
</tbody>
</table>

7. Review the settings, then click *Create*.
8. The summary shows details about the set up spoke. The *Local address group* and *Tunnel interface* can be edited directly on this page.
9. Follow the same steps to configure the second spoke.

**To check that the tunnels are created and working:**

1. On the hub FortiGate, go to **Dashboard > Network** and expand the IPsec widget. The tunnels to the spokes are established.
2. On a spoke, go to Dashboard > Network and expand the IPsec widget. The tunnel to the hub and the spoke to spoke shortcut are established.

**ADVPN with BGP as the routing protocol**

This is a sample configuration of ADVPN with BGP as the routing protocol. The following options must be enabled for this configuration:

- On the hub FortiGate, IPsec phase1-interface net-device disable must be run.
- IBGP must be used between the hub and spoke FortiGates.
- bgp neighbor-group/neighbor-range must be reused.

To configure ADVPN with BGP as the routing protocol using the CLI:

1. Configure hub FortiGate WAN interface, internal interface, and a static route:

```bash
config system interface
 edit "port9"
 set alias "WAN"
 set ip 22.1.1.1 255.255.255.0
next
 edit "port10"
 set alias "Internal"
 set ip 172.16.101.1 255.255.255.0
```
next
end
config router static
edit 1
    set gateway 22.1.1.2
    set device "port9"
next
end

2. Configure the hub FortiGate:

a. Configure the hub FortiGate IPsec phase1-interface and phase2-interface:

```plaintext
config vpn ipsec phase1-interface
edit "advpn-hub"
 set type dynamic
 set interface "port9"
 set peertype any
 set net-device disable
 set proposal aes128-sha256 aes256-sha256 3des-sha256 aes128-shal aes256-shal
 3des-shal
 set add-route disable
 set dpd on-idle
 set auto-discovery-sender enable
 set psksecret sample
 set dpd-retryinterval 5
next
end
config vpn ipsec phase2-interface
edit "advpn-hub"
 set phase1name "advpn-hub"
 set proposal aes128-sha1 aes256-sha1 3des-sha1 aes128-sha256 aes256-sha256
 3des-sha256
next
end
```

When `net-device` is disabled, a tunnel ID is generated for each dynamic tunnel. This ID, in the form of an IP address, is used as the gateway in the route entry to that tunnel. The `tunnel-search` option is removed in FortiOS 7.0.0 and later.

b. Configure the hub FortiGate firewall policy:

```plaintext
config firewall policy
edit 1
 set name "spoke2hub"
 set srcintf "advpn-hub"
 set dstintf "port10"
 set srcaddr "all"
 set dstaddr "172.16.101.0"
 set action accept
 set schedule "always"
 set service "ALL"
next
edit 2
 set name "spoke2spoke"
 set srcintf "advpn-hub"
```
c. **Configure the hub FortiGate's IPsec tunnel interface IP address:**

```
config system interface
 edit "advpn-hub1"
 set ip 10.10.10.254 255.255.255.255
 set remote-ip 10.10.10.253 255.255.255.0
 next
end
```

d. **Configure the hub FortiGate's BGP:**

```
config router bgp
 set as 65412
 config neighbor-group
 edit "advpn"
 set link-down-failover enable
 set remote-as 65412
 set route-reflector-client enable
 next
 end
 config neighbor-range
 edit 1
 set prefix 10.10.10.0 255.255.255.0
 set neighbor-group "advpn"
 next
 end
 config network
 edit 1
 set prefix 172.16.101.0 255.255.255.0
 next
 end
end
```

3. **Configure the spoke FortiGates:**

   a. **Configure the spoke FortiGates' WAN, internal interfaces, and static routes:**

      i. **Configure Spoke1:**

        ```
 config system interface
 edit "wan1"
 set alias "primary_WAN"
 set ip 15.1.1.2 255.255.255.0
 next
 edit "wan2"
 set alias "secondary_WAN"
 set ip 12.1.1.2 255.255.255.0
 next
 edit "internal"
 set ip 10.1.100.1 255.255.255.0
        ```
VPN

next
end
config router static
edit 1
  set gateway 12.1.1.1
  set device "wan2"
  set distance 15
next
edit 2
  set gateway 15.1.1.1
  set device "wan1"
next
end

ii. Configure the Spoke2:

config system interface
edit "wan1"
  set alias "primary_WAN"
  set ip 13.1.1.2 255.255.255.0
next
edit "wan2"
  set alias "secondary_WAN"
  set ip 17.1.1.2 255.255.255.0
next
edit "internal"
  set ip 192.168.4.1 255.255.255.0
next
end
config router static
edit 1
  set gateway 17.1.1.1
  set device "wan2"
  set distance 15
next
edit 2
  set gateway 13.1.1.1
  set device "wan1"
next
end

b. Configure the spoke FortiGates' IPsec phase1-interface and phase2-interface:

i. Configure Spoke1:

config vpn ipsec phase1-interface
edit "spoke1"
  set interface "wan1"
  set peertype any
  set net-device enable
  set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
  set add-route disable
  set dpd on-idle
  set auto-discovery-receiver enable
  set remote-gw 22.1.1.1
  set psksecret sample
  set dpd-retryinterval 5
next
edit "spoke1_backup"
  set interface "wan2"
  set peertype any
  set net-device enable
  set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
  set add-route disable
  set dpd on-idle
  set auto-discovery-receiver enable
  set remote-gw 22.1.1.1
  set monitor "spoke1"
  set psksecret sample
  set dpd-retryinterval 5
next
end

cfg vpn ipsec phase2-interface
edit "spoke1"
  set phasename "spoke1"
  set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256
  aes128gcm aes256gcm chacha20poly1305
  set auto-negotiate enable
next
edit "spoke1_backup"
  set phasename "spoke1_backup"
  set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256
  aes128gcm aes256gcm chacha20poly1305
  set auto-negotiate enable
next
end

ii. Configure Spoke2:

cfg vpn ipsec phase1-interface
edit "spoke2"
  set interface "wan1"
  set peertype any
  set net-device enable
  set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
  set add-route disable
  set dpd on-idle
  set auto-discovery-receiver enable
  set remote-gw 22.1.1.1
  set psksecret sample
  set dpd-retryinterval 5
next
edit "spoke2_backup"
  set interface "wan2"
  set peertype any
  set net-device enable
  set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
  set add-route disable
  set dpd on-idle
  set auto-discovery-receiver enable
  set remote-gw 22.1.1.1
  set monitor "spoke2"
  set psksecret sample
  set dpd-retryinterval 5
next
end
config vpn ipsec phase2-interface
   edit "spoke2"
      set phasename "spoke2"
      set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256
        aes128gcm aes256gcm chacha20poly1305
      set auto-negotiate enable
   next
   edit "spoke2_backup"
      set phasename "spoke2_backup"
      set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256
        aes128gcm aes256gcm chacha20poly1305
      set auto-negotiate enable
   next
end

c. Configure the spoke FortiGates' firewall policies:
   i. Configure Spoke1:

   config firewall policy
      edit 1
         set name "outbound_advpn"
         set srcintf "internal"
         set dstintf "spoke1" "spoke1_backup"
         set srcaddr "all"
         set dstaddr "all"
         set action accept
         set schedule "always"
         set service "ALL"
      next
      edit 2
         set name "inbound_advpn"
         set srcintf "spoke1" "spoke1_backup"
         set dstintf "internal"
         set srcaddr "all"
         set dstaddr "all"
         set action accept
         set schedule "always"
         set service "ALL"
      next
   end

   ii. Configure Spoke2:

   config firewall policy
      edit 1
         set name "outbound_advpn"
         set srcintf "internal"
         set dstintf "spoke2" "spoke2_backup"
         set srcaddr "all"
         set dstaddr "all"
         set action accept
         set schedule "always"
         set service "ALL"
      next
      edit 2
         set name "inbound_advpn"
set srcintf "spoke2" "spoke2_backup"
set dstintf "internal"
set srcaddr "all"
set dstaddr "all"
set action accept
set schedule "always"
set service "ALL"
next
end

d. Configure the spoke FortiGates' tunnel interface IP addresses:
   i. Configure Spoke1:

```
config system interface
 edit "spoke1"
 set ip 10.10.10.1 255.255.255.255
 set remote-ip 10.10.10.254 255.255.255.0
 next
 edit "spoke1_backup"
 set ip 10.10.10.2 255.255.255.255
 set remote-ip 10.10.10.254 255.255.255.0
 next
end
```

ii. Configure Spoke2:

```
config system interface
 edit "spoke2"
 set ip 10.10.10.3 255.255.255.255
 set remote-ip 10.10.10.254 255.255.255.0
 next
 edit "spoke2_backup"
 set ip 10.10.10.4 255.255.255.255
 set remote-ip 10.10.10.254 255.255.255.0
 next
end
```

e. Configure the spoke FortiGates' BGP:
   i. Configure Spoke1:

```
config router bgp
 set as 65412
 config neighbor
 edit "10.10.10.254"
 set advertisement-interval 1
 set link-down-failover enable
 set remote-as 65412
 next
 end
 config network
 edit 1
 set prefix 10.1.100.0 255.255.255.0
 next
 end
```

ii. Configure Spoke2:
VPN

```
config router bgp
 set as 65412
config neighbor
 edit "10.10.10.254"
 set advertisement-interval 1
 set link-down-failover enable
 set remote-as 65412
next
end
config network
 edit 1
 set prefix 192.168.4.0 255.255.255.0
next
end

4. Run `diagnose` and `get` commands on Spoke1 to check VPN and BGP states:

a. Run the `diagnose vpn tunnel list` command on Spoke1. The system should return the following:

 list all ipsec tunnel in vd 0

 name=spoke1 ver=1 serial=2 15.1.1.2:0->22.1.1.1:0 tun_id=22.1.1.1
 bound_if=7 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/536 options[0218]=npu
 create_dev frag-rfc accept_traffic=1

 proxyid_num=1 child_num=1 refcnt=19 ilast=1 olast=1 ad=r/2
 stat: rxp=1 txp=160 rxb=16428 txb=8969
 dpd: mode=on-idle on=1 idle=5000ms retry=3 count=0 seqno=628
 natt: mode=none draft=0 interval=0 remote_port=0
 proxyid=spoke1 proto=0 sa=1 ref=6 serial=1 auto-negotiate adr
 src: 0:0.0.0.0/0.0.0.0:0
dst: 0:0.0.0.0/0.0.0.0:0

 SA: ref=6 options=1a227 type=00 soft=0 mtu=1438 expire=1225/0B
 replaywin=1024 seqno=al esn=0 replaywin_lastseq=00000002 itn=0
 life: type=01 bytes=0/0 timeout=2369/2400
dec: spi=c53a8f5b esp=aes key=16 cbe88682ad896a69290027b6dd8f7f162
 ah=shal key=20 7bb704b388f83783ac76c2ab06c9f7dfcf78e93b
 enc: spi=6e3633fc esp=aes key=16 la0da3f4deed3d16becc9dda57537355
 ah=shal key=20 368544044bd9b82592d72476ff93d5055056da8d
 dec:spi/bytes=1/16364, enc:spi/bytes=160/19168
 npu_flag=03 npu_rgw=22.1.1.1 npu_lgw=15.1.1.2 npu_selid=1 dec_npid=1 enc_npid=1

 name=spoke1_backup ver=1 serial=1 12.1.1.2:0->22.1.1.1:0 tun_id=22.1.1.1
 bound_if=6 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/536 options[0218]=npu
 create_dev frag-rfc accept_traffic=0

 proxyid_num=1 child_num=0 refcnt=11 ilast=0 olast=0 ad=/0
 stat: rxp=0 txp=0 rxb=0 txb=0
 dpd: mode=on-idle on=0 idle=5000ms retry=3 count=0 seqno=0
 natt: mode=none draft=0 interval=0 remote_port=0
 proxyid=spoke1_backup proto=0 sa=0 ref=2 serial=1 auto-negotiate adr
 src: 0:0.0.0.0/0.0.0.0:0
 dst: 0:0.0.0.0/0.0.0.0:0

b. Run the `get router info bgp summary` command on Spoke1. The system should return the following:
```
BGP router identifier 7.7.7.7, local AS number 65412
BGP table version is 2
1 BGP AS-PATH entries
0 BGP community entries

<table>
<thead>
<tr>
<th>Neighbor</th>
<th>V</th>
<th>AS</th>
<th>[QualityAssurance62/MsgRcvvd]</th>
<th>[QualityAssurance62/MsgSent]</th>
<th>[QualityAssurance62/TblVer]</th>
<th>InQ</th>
<th>OutQ</th>
<th>Up/Down</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10.10.254</td>
<td>1</td>
<td>65412</td>
<td>143</td>
<td>142</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>00:24:45</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total number of neighbors 1

c. Run the `get router info routing-table bgp` command on Spoke1. The system should return the following:

```
Routing table for VRF=0
B 172.16.101.0/24 [200/0] via 10.10.10.254, spoke1, 00:23:57
B 192.168.4.0/24 [200/0] via 10.10.10.254, spoke1, 00:22:03
```

d. Generate traffic between the spokes and check the shortcut tunnel and routing table. Run the `diagnose vpn tunnel list` command on Spoke1. The system should return the following:

```

name=spoke1 ver=1 serial=2 15.1.1.2:0->22.1.1.1:0 tun_id=22.1.1.1
bound_if=7 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/536 options[0218]=npu
create_dev frag-rfc accept_traffic=1

proxyid_num=1 child_num=1 refcnt=19 ilast=2 olast=2 ad=r/2
stat: rxp=1 txp=268 rxb=16428 txb=31243
dpd: mode=on-idle on=1 idle=5000ms retry=3 count=0 seqno=714
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=spoke1 proto=0 sa=1 ref=6 serial=1 auto-negotiate adr
src: 0:0:0:0/0.0.0.0:0
dst: 0:0:0:0/0.0.0.0:0
SA: ref=6 options=la227 type=0 mtu=1438 expire=345/0B replaywin=1024
seqno=10d seqno=0 replay_win_lastseq=00000002 itn=0
life: type=01 bytes=0/0 timeout=2369/2400
dec: spi=c53a8f5b esp=aes key=16 cbe88682ad896a69290027b6dd8f7162
ah=sha1 key=20 7bb704b388f83273ac76c2a0b6c9f7ddf87e93b
enc: spi=6e3633fc esp=aes key=16 1a0da3f4ded3d16becc9da57537355
ah=sha1 key=20 368544044bd9b82592d72476ff93d50550568a8d
dec:pckts/bytes=1/16364, enc:pckts/bytes=268/48320
npu_flag=03 npu_gwry=22.1.1.1 npu_lgwry=15.1.1.2 npu_selid=1 dec_npuid=1 enc_npuid=1

name=spoke1_backup ver=1 serial=1 12.1.1.2:0->22.1.1.1:0 tun_id=22.1.1.1
bound_if=6 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/536 options[0218]=npu
create_dev frag-rfc accept_traffic=0

proxyid_num=1 child_num=0 refcnt=11 ilast=8 olast=8 ad=/0
stat: rxp=0 txp=0 rxb=0 txb=0
dpd: mode=on-idle on=0 idle=5000ms retry=3 count=0 seqno=0
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=spoke1_backup proto=0 sa=0 ref=2 serial=1 auto-negotiate adr
src: 0:0:0:0/0.0.0.0:0
dst: 0:0:0:0/0.0.0.0:0
```
name=spoke1_0
tun_id=13.1.1.2
parent=spoke1
proxyid_num=1
create_dev no-sysctl

Stat:
rxp=1
txp=100
txb=4686
dpd: mode=on-idle

SA: ref=6
options=1a227
type=0
soft=0
mtu=1422
expire=447/0B

Life:
type=01
bytes=0/0
timeout=2368/2400

deckspi=c53a8f5c
esp=aes
key=16
73fd9869547475db78851e6c057ad9b7
ah=sha1
key=20
6ad3a5b1028f6b33c82ba494a370f13c7f462635
encspi=79cb0f2b
esp=aes
key=16
52ab0acc830d58c00e5956a4486464a
ah=sha1
key=20
8ba82aba4106dc60618f6fe95570728656799239

decpkts/bytes=1/46,
encpkts/bytes=100/11568

Routing table for VRF=0:
B 172.16.101.0/24 [200/0] via 10.10.10.254, spoke1, 00:23:57
B 192.168.4.0/24 [200/0] via 10.10.10.3, spoke1_0 , 00:22:03

**ADVPN with OSPF as the routing protocol**

This is a sample configuration of ADVPN with OSPF as the routing protocol. The following options must be enabled for this configuration:

- On the hub FortiGate, IPsec phase1-interface net-device enable must be run.
- OSPF must be used between the hub and spoke FortiGates.
To configure ADVPN with OSPF as the routing protocol using the CLI:

1. Configure hub FortiGate's WAN, internal interface, and static route:

```
config system interface
 edit "port9"
 set alias "WAN"
 set ip 22.1.1.1 255.255.255.0
 next
 edit "port10"
 set alias "Internal"
 set ip 172.16.101.1 255.255.255.0
 next
end
config router static
 edit 1
 set gateway 22.1.1.2
 set device "port9"
 next
end
```

2. Configure the hub FortiGate:

   a. Configure the hub FortiGate IPsec phase1-interface and phase2-interface:

```
config vpn ipsec phasel-interface
 edit "advpn-hub"
 set type dynamic
 set interface "port9"
 set peertype any
 set net-device enable
 set proposal aes128-sha256 aes256-sha256 3des-sha256 aes128-shal aes256-shal
 3des-shal
 set add-route disable
 set dpd on-idle
 set auto-discovery-sender enable
 set psksecret sample
 set dpd-retryinterval 5
 next
end
config vpn ipsec phase2-interface
 edit "advpn-hub"
 set phasename "advpn-hub"
 set proposal aes128-shal aes256-shal 3des-shal aes128-sha256 aes256-sha256
 3des-sha256
 next
end
```

b. Configure the hub FortiGate firewall policy:

```
config firewall policy
 edit 1
 set name "spoke2hub"
```

When net-device is disabled, a tunnel ID is generated for each dynamic tunnel. This ID, in the form of an IP address, is used as the gateway in the route entry to that tunnel. The tunnel-search option is removed in FortiOS 7.0.0 and later.
VPN

set srcintf "advpn-hub"
set dstintf "port10"
set srcaddr "all"
set dstaddr "172.16.101.0"
set action accept
set schedule "always"
set service "ALL"
next
edit 2
set name "spoke2spoke"
set srcintf "advpn-hub"
set dstintf "advpn-hub"
set srcaddr "all"
set dstaddr "all"
set action accept
set schedule "always"
set service "ALL"
next
end

c. Configure the hub FortiGate's IPsec tunnel interface IP address:

config system interface
edit "advpn-hub1"
set ip 10.10.10.254 255.255.255.255
set remote-ip 10.10.10.253 255.255.255.0
next
end

d. Configure the hub FortiGate's OSPF:

config router ospf
set router-id 1.1.1.1
config area
edit 0.0.0.0
next
end
config network
edit 1
set prefix 10.10.10.0 255.255.255.0
next
edit 2
set prefix 172.16.101.0 255.255.255.0
next
end

3. Configure the spoke FortiGates:
   a. Configure the spoke FortiGates' WAN, internal interfaces, and static routes:
      i. Configure Spoke1:

         config system interface
         edit "wan1"
         set alias "primary_WAN"
         set ip 15.1.1.2 255.255.255.0
         next
         edit "wan2"
set alias "secondary_WAN"
set ip 12.1.1.2 255.255.255.0
next
edit "internal"
set ip 10.1.100.1 255.255.255.0
next
drop

ii. Configure the Spoke2:

config system interface
edit "wan1"
    set alias "primary_WAN"
    set ip 13.1.1.2 255.255.255.0
next
edit "wan2"
    set alias "secondary_WAN"
    set ip 17.1.1.2 255.255.255.0
next
edit "internal"
    set ip 192.168.4.1 255.255.255.0
next
drop

config router static
edit 1
    set gateway 12.1.1.1
    set device "wan2"
    set distance 15
next
edit 2
    set gateway 15.1.1.1
    set device "wan1"
next
drop

b. Configure the spoke FortiGates' IPsec phase1-interface and phase2-interface:

i. Configure Spoke1:

config vpn ipsec phase1-interface
edit "spoke1"
    set interface "wan1"
    set peertype any
    set net-device enable
    set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
    set add-route disable
    set dpd on-idle
set auto-discovery-receiver enable
set remote-gw 22.1.1.1
set psksecret sample
set dpd-retryinterval 5

next
edit "spoke1_backup"
set interface "wan2"
set peertype any
set net-device enable
set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
set add-route disable
set dpd on-idle
set auto-discovery-receiver enable
set remote-gw 22.1.1.1
set monitor "spoke1"
set psksecret sample
set dpd-retryinterval 5

next
dao
config vpn ipsec phase2-interface
edit "spoke1"
set phasename "spoke1"
set proposal aes128-sha1 aes256-sha1 aes256-sha256
aes128gcm aes256gcm chacha20poly1305
set auto-negotiate enable

next
edit "spoke1_backup"
set phasename "spoke1_backup"
set proposal aes128-sha1 aes256-sha1 aes256-sha256
aes128gcm aes256gcm chacha20poly1305
set auto-negotiate enable

next
dao
ii. Configure Spoke2:

cconfig vpn ipsec phase1-interface
edit "spoke2"
set interface "wan1"
set peertype any
set net-device enable
set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
set add-route disable
set dpd on-idle
set auto-discovery-receiver enable
set remote-gw 22.1.1.1
set psksecret sample
set dpd-retryinterval 5

next
edit "spoke2_backup"
set interface "wan2"
set peertype any
set net-device enable
set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
set add-route disable
set dpd on-idle
set auto-discovery-receiver enable
VPN

```
set remote-gw 22.1.1.1
set monitor "spoke2"
set psksecret sample
set dpd-retryinterval 5
next
end
config vpn ipsec phase2-interface
edit "spoke2"
 set phasename "spoke2"
 set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256
 aes128gcm aes256gcm chacha20poly1305
 set auto-negotiate enable
next
edit "spoke2_backup"
 set phasename "spoke2_backup"
 set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256
 aes128gcm aes256gcm chacha20poly1305
 set auto-negotiate enable
next
end
c. Configure the spoke FortiGates' firewall policies:
 i. Configure Spoke1:

config firewall policy
edit 1
 set name "outbound_advpn"
 set srcintf "internal"
 set dstintf "spoke1" "spoke1_backup"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
next
edit 2
 set name "inbound_advpn"
 set srcintf "spoke1" "spoke1_backup"
 set dstintf "internal"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
next
end
 ii. Configure Spoke2:

config firewall policy
edit 1
 set name "outbound_advpn"
 set srcintf "internal"
 set dstintf "spoke2" "spoke2_backup"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
```
d. Configure the spoke FortiGates' tunnel interface IP addresses:
   i. Configure Spoke1:

   ```
 config system interface
 edit "spoke1"
 set ip 10.10.10.1 255.255.255.255
 set remote-ip 10.10.10.254 255.255.255.0
 next
 edit "spoke1_backup"
 set ip 10.10.10.2 255.255.255.255
 set remote-ip 10.10.10.254 255.255.255.0
 next
 end
   ```

   ii. Configure Spoke2:

   ```
 config system interface
 edit "spoke2"
 set ip 10.10.10.3 255.255.255.255
 set remote-ip 10.10.10.254 255.255.255.0
 next
 edit "spoke2_backup"
 set ip 10.10.10.4 255.255.255.255
 set remote-ip 10.10.10.254 255.255.255.0
 next
 end
   ```

e. Configure the spoke FortiGates' OSPF:
   i. Configure Spoke1:

   ```
 config router ospf
 set router-id 7.7.7.7
 config area
 edit 0.0.0.0
 next
 end
 config network
 edit 1
 set prefix 10.10.10.0 255.255.255.0
 next
 edit 2
 set prefix 10.1.100.0 255.255.255.0
 next
   ```
VPN

end
end

ii. Configure Spoke2:

```config
router ospf
 set router-id 8.8.8.8
config
 edit 0.0.0.0
 next
end
config network
 edit 1
 set prefix 10.10.10.0 255.255.255.0
 next
 edit 2
 set prefix 192.168.4.0 255.255.255.0
 next
end
```

4. Run `diagnose` and `get` commands on Spoke1 to check VPN and OSPF states:

   a. Run the `diagnose vpn tunnel list` command on Spoke1. The system should return the following:

```plaintext
list all ipsec tunnel in vd 0

name=spoke1 ver=1 serial=2 15.1.1.2:0->22.1.1.1:0 tun_id=22.1.1
bound_if=7 lgw=static/1 tun=intf/0 mode=auto/1 encap=none/536 options[0218]=npu
create_dev frag-rfc accept_traffic=1

proxyid_num=1 child_num=1 refcnt=19 ilast=5 olast=2 ad=r/2
stat: rxp=1 txp=263 rxb=16452 txb=32854
dpd: mode=on-idle on=1 idle=5000ms retry=3 count=0 seqno=2283
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=spoke1 proto=0 sa=1 ref=5 serial=1 auto-negotiate adr
 src: 0:0:0:0/0.0.0.0:0
dst: 0:0:0:0/0.0.0.0:0
SA: ref=6 options=1a227 type=00 soft=0 mtu=1438 expire=1057/0B replaywin=1024
 sequo=108 esn=0 replaywin_lastseq=00000003_itn=0
life: type=01 bytes=0/0 timeout=2371/2400
dec: spi=8643a8f78 esp=aes key=16 7cc50c5c9df1751f6497a4ad76c5e9a
 ah=sha1 key=20 269292dcbf7309a6fc05871e63ed8a5297b5c9a
enc: spi=6e363612 esp=aes key=16 42bd49bced1e85cf74a24d97f10eb601
 ah=sha1 key=20 13964f166a6d48790c2e551d6df165d7489f524b
 dec:pktbytes=1/16394, enc:pktbytes=263/50096
 npu_flag=03 npu_rgw=22.1.1.1 npu_lgw=15.1.1.2 npu_selid=1 dec_npuid=1 enc_npuid=1

name=spoke1_backup ver=1 serial=1 12.1.1.2:0->22.1.1.1:0 tun_id=22.1.1
bound_if=6 lgw=static/1 tun=intf/0 mode=auto/1 encap=none/536 options[0218]=npu
create_dev frag-rfc accept_traffic=0

proxyid_num=1 child_num=0 refcnt=11 ilast=8 olast=8 ad=/0
stat: rxp=0 txp=0 rxb=0 txb=0
dpd: mode=on-idle on=0 idle=5000ms retry=3 count=0 seqno=0
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=spoke1_backup proto=0 sa=0 ref=2 serial=1 auto-negotiate adr
```
b. Run the get router info ospf neighbor command on Spoke1. The system should return the following:

OSPF process 0, VRF 0: Neighbor ID Pri State Dead Time Address Interface 8.8.8.8 1. Full/ - 00:00:35 10.10.10.254 spoke1 1.1.1.1 1. Full/ - 00:00:35 10.10.10.254 spoke1

c. Run the get router info routing-table ospf command on Spoke1. The system should return the following:

Routing table for VRF=0
O 172.16.101.0/24 [110/110] via 10.10.10.254, spoke1, 00:23:23
O 192.168.4.0/24 [110/110] via 10.10.10.254, spoke1, 00:22:35

d. Generate traffic between the spokes, then check the shortcut tunnel and routing table. Run the diagnose vpn tunnel list command on Spoke1. The system should return the following:

list all ipsec tunnel in vd 0
----
----
name=spoke1 ver=1 serial=2 15.1.1.2:0->22.1.1.1:0 tun_id=22.1.1.1
bound_if=7 lgw=static/1 tun=intf/0 mode=auto/1 encap=none/536 options[0218]=npu
create_dev frag-rfc accept_traffic=1
proxyid_num=1 child_num=1 refcnt=19 ilast=2 olast=2 ad=r/2
stat: rxp=1 txp=313 rxb=16452 txb=35912
dpd: mode=on-idle on=1 idle=5000ms retry=3 count=0 seqno=2303
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=spoke1 proto=0 sa=1 ref=3 serial=1 auto-negotiate adr
 src: 0:0.0.0.0/0.0.0.0:0
dst: 0:0.0.0.0/0.0.0.0:0
SA: ref=6 options=1a227 type=00soft=0 mtu=1438 expire=782/0B replaywin=1024
 seqno=13a esn=0 replaywin_lastseq=00000003 itn=0
life: type=01 bytes=0/0 timeout=2371/2400
dec: spi=c53a8f78 esp=aes key=16 7cc50c5c9df1751f6497a4ad764c5e9a
 ah=sha1 key=20 269292ddbf7309a6fc05871e63ed8a5297b5c9a1
enc: spi=6e363612 esp=aes key=16 42bd49bcded1e85cf74a24d97f10eb601
 ah=sha1 key=20 13964f166aad48790c2e551d6df165d7489f524b
dec:pktss/bytes=1/16394, enc:pktss/bytes=333/56432
npu_flag=03 npu_rgwy=22.1.1.1 npu_lgw=15.1.1.1 npu_selid=1 dec_npuid=1 enc_npuid=1
----
name=spoke1_backup ver=1 serial=1 12.1.1.2:0->22.1.1.1:0 tun_id=22.1.1.1
bound_if=6 lgw=static/1 tun=intf/0 mode=auto/1 encap=none/536 options[0218]=npu
create_dev frag-rfc accept_traffic=0
proxyid_num=1 child_num=0 refcnt=11 ilast=13 olast=13 ad=/0
stat: rxp=0 txp=0 rxb=0 txb=0
dpd: mode=on-idle on=0 idle=5000ms retry=3 count=0 seqno=0
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=spoke1_backup proto=0 sa=0 ref=2 serial=1 auto-negotiate adr
 src: 0:0.0.0.0/0.0.0.0:0
dst: 0:0.0.0.0/0.0.0.0:0
----
name=spoke1_0 ver=1 serial=15 13.1.1.2:4500->13.1.1.2:4500 tun_id=13.1.1.2
bound_if=7 lgw=static/1 tun=intf/0 mode=dial_inst/3 encap=none/728 options[02d8]=npu
create_dev no-sysctl rgwy-chg frag-rfc accept_traffic=0
e. Run the `get router info routing-tale ospf` command. The system should return the following:

Routing table for VRF=0
0  172.16.101.0/24 [110/110] via 10.10.10.254, spoke1, 00:27:14
0  192.168.4.0/24 [110/110] via 10.10.10.3, spoke1_0, 00:26:26

**ADVVPN with RIP as the routing protocol**

This is a sample configuration of ADVVPN with RIP as routing protocol. The following options must be enabled for this configuration:

- On the hub FortiGate, IPsec phase1-interface net-device disable must be run.
- RIP must be used between the hub and spoke FortiGates.
- `split-horizon-status enable` must be run on the hub FortiGate.
To configure ADVPN with RIP as the routing protocol using the CLI:

1. In the CLI, configure FortiGate's WAN, internal interface, and static route:

   ```
 config system interface
 edit "port9"
 set alias "WAN"
 set ip 22.1.1.1 255.255.255.0
 next
 edit "port10"
 set alias "Internal"
 set ip 172.16.101.1 255.255.255.0
 next
 end
 config router static
 edit 1
 set gateway 22.1.1.2
 set device "port9"
 next
 end
   ```

2. Configure the hub FortiGate:
   a. Configure the hub FortiGate IPsec phase1-interface and phase2-interface:

   ```
 config vpn ipsec phase1-interface
 edit "advpn-hub"
 set type dynamic
 set interface "port9"
 set peertype any
 set net-device disable
 set proposal aes128-sha256 aes256-sha256 3des-sha256 aes128-shal aes256-shal
 3des-sha1
 set add-route disable
 set dpd on-idle
 set auto-discovery-sender enable
 set psksecret sample
 set dpd-retryinterval 5
 next
 end
 config vpn ipsec phase2-interface
 edit "advpn-hub"
 set phasename "advpn-hub"
 set proposal 3des-sha1 3des-sha256 aes128-sha256 aes256-sha1 3des-sha256
 3des-sha256
 next
 end
   ```

   When net-device is disabled, a tunnel ID is generated for each dynamic tunnel. This ID, in the form of an IP address, is used as the gateway in the route entry to that tunnel. The tunnel-search option is removed in FortiOS 7.0.0 and later.

   b. Configure the hub FortiGate firewall policy:

   ```
 config firewall policy
 edit 1
 set name "spoke2hub"
   ```
set srcintf "advpn-hub"
set dstintf "port10"
set srcaddr "all"
set dstaddr "172.16.101.0"
set action accept
set schedule "always"
set service "ALL"

next
edit 2
set name "spoke2spoke"
set srcintf "advpn-hub"
set dstintf "advpn-hub"
set srcaddr "all"
set dstaddr "all"
set action accept
set schedule "always"
set service "ALL"

next
end

3. Configure the spoke FortiGates:
   a. Configure the spoke FortiGates' WAN, internal interfaces, and static routes:
      i. Configure Spoke1:

         config system interface
         edit "wan1"
         set alias "primary_WAN"
         set ip 15.1.1.2 255.255.255.0
         next
i. Configure the Spoke:

```plaintext
config system interface
edit "wan1"
 set alias "primary_WAN"
 set ip 13.1.1.2 255.255.255.0
next
edit "wan2"
 set alias "secondary_WAN"
 set ip 17.1.1.2 255.255.255.0
next
edit "internal"
 set ip 192.168.4.1 255.255.255.0
next
end
```

```plaintext
config router static
edit 1
 set gateway 17.1.1.1
 set device "wan2"
 set distance 15
next
edit 2
 set gateway 13.1.1.1
 set device "wan1"
next
end
```

b. Configure the spoke FortiGates' IPsec phase1-interface and phase2-interface:

i. Configure Spoke1:

```plaintext
config vpn ipsec phase1-interface
edit "spoke1"
 set interface "wan1"
 set peertype any
 set net-device enable
 set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
 set add-route disable
```
set dpd on-idle
set auto-discovery-receiver enable
set remote-gw 22.1.1.1
set psksecret sample
set dpd-retryinterval 5
next
edit "spoke1_backup"
set interface "wan2"
set peertype any
set net-device enable
set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
set add-route disable
set dpd on-idle
set auto-discovery-receiver enable
set remote-gw 22.1.1.1
set monitor "spoke1"
set psksecret sample
set dpd-retryinterval 5
next
end
config vpn ipsec phase2-interface
edit "spoke1"
set phasename "spoke1"
set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256
aes128gcm aes256gcm chacha20poly1305
set auto-negotiate enable
next
edit "spoke1_backup"
set phasename "spoke1_backup"
set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256
aes128gcm aes256gcm chacha20poly1305
set auto-negotiate enable
next
end

ii. Configure Spoke2:

config vpn ipsec phase1-interface
edit "spoke2"
set interface "wan1"
set peertype any
set net-device enable
set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
set add-route disable
set dpd on-idle
set auto-discovery-receiver enable
set remote-gw 22.1.1.1
set psksecret sample
set dpd-retryinterval 5
next
edit "spoke2_backup"
set interface "wan2"
set peertype any
set net-device enable
set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
set add-route disable
set dpd on-idle
set auto-discovery-receiver enable
set remote-gw 22.1.1.1
set monitor "spoke2"
set psksecret sample
set dpd-retryinterval 5
next
end
config vpn ipsec phase2-interface
edit "spoke2"
set phasename "spoke2"
set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256
aes128gcm aes256gcm chacha20poly1305
set auto-negotiate enable
next
edit "spoke2_backup"
set phasename "spoke2_backup"
set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256
aes128gcm aes256gcm chacha20poly1305
set auto-negotiate enable
next
end
c. Configure the spoke FortiGates' firewall policies:
   i. Configure Spoke1:

   config firewall policy
   edit 1
   set name "outbound_advpn"
   set srcintf "internal"
   set dstintf "spoke1" "spoke1_backup"
   set srcaddr "all"
   set dstaddr "all"
   set action accept
   set schedule "always"
   set service "ALL"
   next
   edit 2
   set name "inbound_advpn"
   set srcintf "spoke1" "spoke1_backup"
   set dstintf "internal"
   set srcaddr "all"
   set dstaddr "all"
   set action accept
   set schedule "always"
   set service "ALL"
   next
   end

   ii. Configure Spoke2:

   config firewall policy
   edit 1
   set name "outbound_advpn"
   set srcintf "internal"
   set dstintf "spoke2" "spoke2_backup"
   set srcaddr "all"
   set dstaddr "all"
set action accept
set schedule "always"
set service "ALL"

next
edit 2
set name "inbound_advpn"
set srcintf "spoke2" "spoke2_backup"
set dstintf "internal"
set srcaddr "all"
set dstaddr "all"
set action accept
set schedule "always"
set service "ALL"

next
end

d. Configure the spoke FortiGates' tunnel interface IP addresses:
   i. Configure Spoke1:

   config system interface
   edit "spoke1"
     set ip 10.10.10.1 255.255.255.255
     set remote-ip 10.10.10.254 255.255.255.0
   next
   edit "spoke1_backup"
     set ip 10.10.10.2 255.255.255.255
     set remote-ip 10.10.10.254 255.255.255.0
   next
   end

   ii. Configure Spoke2:

   config system interface
   edit "spoke2"
     set ip 10.10.10.3 255.255.255.255
     set remote-ip 10.10.10.254 255.255.255.0
   next
   edit "spoke2_backup"
     set ip 10.10.10.4 255.255.255.255
     set remote-ip 10.10.10.254 255.255.255.0
   next
   end

   e. Configure the spoke FortiGates' RIP:
      i. Configure Spoke1:

      config router rip
      config network
      edit 1
        set prefix 10.10.10.0 255.255.255.0
      next
      edit 2
        set prefix 10.1.100.0 255.255.255.0
      next
      end

      ii. Configure Spoke2:
4. Run **diagnose** and **get commands** on Spoke1:
   a. Run the **diagnose vpn tunnel list** command on Spoke1. The system should return the following:

   ```
 list all ipsec tunnel in vd 0

 name=spoke1 ver=1 serial=2 15.1.1.2:0->22.1.1.1:0 tun_id=22.1.1.1
 bound_if=7 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/536 options[0218]=npu
 create_dev frag-rfc accept_traffic=1
 proxyid_num=1 child_num=1 refcnt=17 ilast=2 olast=2 ad=r/2
 stat: rxp=87 rxb=200 txb=6208
 dpd: mode=on-idle on=1 idle=5000ms retry=3 count=0 seqno=1040
 natt: mode=none draft=0 interval=0 remote_port=0
 proxyid=spoke1 proto=0 sa=1 serial=1 auto-negotiate addr
 src: 0:0:0.0/0.0.0.0:0
dst: 0:0:0.0/0.0.0.0:0
 SA: ref=7 options=1a227 type=0 soft=0 mtu=1438 expire=1793/08 replaywin=1024
 seqno=57 esn=0 replay_lastseq=00000002 itn=0
 life: type=01 bytes=0/0 timeout=2370/2400
dec: spi=c53a8f60 esp=aes key=16 6b54e32d54d039196a74d96e96d1cf14
 ah=sha1 key=20 8040eb08342edea2dae5eeye058f054a46688267
 enc: spi=6e36349d esp=aes key=16 914a40a7993eda2f42905f27d
 ah=sha1 key=20 8040eb08342edea2dae5eeye058f054a46688267
 dec: npu_flag=03 npu_rgw=22.1.1.1 npu_lgw=15.1.1.2 npu_selid=1 dec_npuid=1 enc_npuid=1

 name=spoke1_backup ver=1 serial=1 12.1.1.2:0->22.1.1.1:0 tun_id=22.1.1.1
 bound_if=6 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/536 options[0218]=npu
 create_dev frag-rfc accept_traffic=0
 proxyid_num=1 child_num=0 refcnt=11 ilast=0 olast=0 ad=/0
 stat: rxp=0 txp=0 rxb=0 txb=0
 dpd: mode=on-idle on=0 idle=5000ms retry=3 count=0 seqno=0
 natt: mode=none draft=0 interval=0 remote_port=0
 proxyid=spoke1_backup proto=0 sa=0 serial=1 auto-negotiate addr
 src: 0:0:0.0/0.0.0.0:0
dst: 0:0:0.0/0.0.0.0:0
   ```

   b. Run the **get router info rip database** command on Spoke1. The system should return the following:

   ```
 Codes: R - RIP, Rc - RIP connected, Rs - RIP static, K - Kernel,
 C - Connected, S - Static, O - OSPF, I - IS-IS, B - BGP

 Network Next Hop Metric From If Time
 Rc 10.1.100.0/24 1. internal
 Rc 10.10.10.2/32 1. spoke1
   ```
c. Run the `get router info routing-table rip` command on Spoke1. The system should return the following:

```
Routing table for VRF=0
R 172.16.101.0/24 [120/2] via 10.10.10.254, spoke1, 00:08:38
R 192.168.4.0/24 [120/3] via 10.10.10.254, spoke1, 00:08:38
```

d. Generate traffic between the spokes, then check the shortcut tunnel and routing table. Run the `diagnose vpn tunnel list` command on Spoke1. The system should return the following:

```
list all ipsec tunnel in vd 0

name=spoke1 ver=1 serial=2 15.1.1.2:0->22.1.1.1:0 tun_id=22.1.1.1 bound_if=7 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/536 options[0218]=npu create_dev frag-rcf accept_traffic=1
proxyid_num=1 child_num=0 refcnt=19 ilast=3 olast=3 ad=r/2
stat: rxp=1 txp=78 rxb=200 txb=5546
dpd: mode=on-idle on=1 idle=5000ms retry=3 count=0 seqno=1039
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=spoke1 proto=0 sa=1 ref=5 serial=1 auto-negotiate adr
src: 0:0:0:0/0.0.0.0:0
dst: 0:0:0:0/0.0.0.0:0
SA: ref=7 options=1a227 type=0 soft=0 mtu=1438 expire=1807/0B replaywin=1024
seqno=4e esp=0 esp options=1a227
life: type=01 bytes=0/0 timeout=2370/2400
dec: spi=16b54e32d54d039196a74d96d1cf14 esp=aes
enc: spi=6e36349d esp=aes
dec:spi=c53a8f60 esp=aes
enc:spi=6e36349d esp=aes
```

```
e. Run the `get router info routing-tale rip` command. The system should return the following:

```
Routing table for VRF=0
R  172.16.101.0/24 [120/2] via 10.10.10.254, spoke1, 00:09:04
R  192.168.4.0/24 [120/2] via 10.10.10.3, spoke1_0, 00:00:02
```

UDP hole punching for spokes behind NAT

UDP hole punching allows ADVPN shortcuts to be established through a UDP hole on a NAT device. The NAT device must support RFC 4787 Endpoint-Independent Mapping.

In the following example, device 10.1.100.11 behind Spoke1 needs to reach device 192.168.4.33 behind Spoke2. Spoke1 and Spoke2 are behind NAT devices and have established IPsec tunnels to the Hub. The hole punching creates a shortcut between Spoke1 and Spoke2 that bypasses the Hub.

To verify the ADVPN shortcut is established between both spokes behind NAT:

```
# diagnose debug enable
# diagnose debug application ike -1
ike 0: comes 22.1.1.1:4500->12.1.1.2:4500,ifindex=6....
```
ike 0: IKEv1 exchange=Informational id=3c10fb6a76f1e264/6c7b397100dffe63:58ac7c02 len=204
ike 0:toHub1:35: notify msg received: SHORTCUT-OFFER
ike 0:toHub1: shortcut-offer 10.1.100.11->192.168.4.33 psk 64 ppk 0 ver 1 mode 0
ike 0 looking up shortcut by addr 192.168.4.33, name toHub1
ike 0:toHub1: send shortcut-query 1438189781753480593 d3fd1dbfc94caee/0000000000000000
12.1.1.2 10.1.100.11->192.168.4.33 psk 64 ttl 32 nat 1 ver 1 mode 0
ike 0:toHub1:35: sent IKE msg (SHORTCUT-QUERY): 12.1.1.2:4500->22.1.1.1:4500, len=236,
id=3c10fb6a76f1e264/6c7b397100dffe63:12623f7
ike 0: to comes 22.1.1.1:1:4500->12.1.1.2:4500, ifindex=6....
iike 0: IKEv1 exchange=Informational id=3c10fb6a76f1e264/6c7b397100dffe63:49761ac len=236
ike 0:toHub1:35: notify msg received: SHORTCUT-REPLY
ike 0:toHub1: recv shortcut-reply 1438189781753480593 d3fd1dbfc94caee/16a1eb5b0f37ee23
14.1.1.3 to 10.1.100.11 psk 64 ppk 0 ver 1 mode 0 nat 55.1.1.2:64916
ike 0:toHub1: iif 22 192.168.4.33->10.1.100.11 route lookup oif 21
ike 0:toHub1: shortcut-reply received from 55.1.1.2:64916, local-nat=yes, peer-nat=yes
ike 0:toHub1: NAT hole punching to peer at 55.1.1.2:64916
ike 0:toHub1: created connection: 0x5e71f58 6 12.1.1.2->55.1.1.2:64916.
<=55.1.1.2:64916 this is UDP hole of NAT device
ike 0:toHub1: adding new dynamic tunnel for 55.1.1.2:64916
ike 0:toHub1_0: added new dynamic tunnel for 55.1.1.2:64916
ike 0:toHub1_0:48: initiator: main mode is sending 1st message...
ike 0:toHub1_0:48: cookie d3fd1dbfc94caee/16a1eb5b0f37ee23
ike 0:toHub1_0:48: sent IKE msg (ident_i3send): 12.1.1.2:4500->55.1.1.2:64916, len=632,
id=d3fd1dbfc94caee/16a1eb5b0f37ee23
ike 0: comes 55.1.1.2:64916->12.1.1.2:4500, ifindex=6....
iike 0: IKEv1 exchange=Identity Protection id=d3fd1dbfc94caee/16a1eb5b0f37ee23 len=252
ike 0:toHub1_0:48: initiator: main mode get 1st response...
...
iike 0:toHub1_0:48: negotiation result
ike 0:toHub1_0:48: proposal id = 1:
iike 0:toHub1_0:48: protocol id = ISAKMP:
iike 0:toHub1_0:48: trans_id = KEY_IKE.
iike 0:toHub1_0:48: encapsulation = IKE/none
ike 0:toHub1_0:48: type=OAKLEY_CRYPT_ALG, val=AES_CBC, key_len=128
ike 0:toHub1_0:48: type=OAKLEY_HASH_ALG, val=SHA2_256.
iike 0:toHub1_0:48: type=AUTH_METHOD, val=PRESHARED_KEY.
iike 0:toHub1_0:48: type=OAKLEYROUP, val=M0DP2048.
iike 0:toHub1_0:48: ISAKMP SA lifetime=86400
ike 0:toHub1_0:48: sent IKE msg (ident_i3send): 12.1.1.2:4500->55.1.1.2:64916, len=380,
id=d3fd1dbfc94caee/16a1eb5b0f37ee23
ike 0: comes 55.1.1.2:64916->12.1.1.2:4500, ifindex=6....
iike 0: IKEv1 exchange=Identity Protection id=d3fd1dbfc94caee/16a1eb5b0f37ee23 len=380
ike 0:toHub1_0:48: initiator: main mode get 2nd response...
...
iike 0:toHub1_0:48: add INITIAL-CONTACT
ike 0:toHub1_0:48: add INTERFACE-ADDR4 10.10.1.100
ike 0:toHub1_0:48: sent IKE msg (ident_i3send): 12.1.1.2:4500->55.1.1.2:64916, len=140,
id=d3fd1dbfc94caee/16a1eb5b0f37ee23
ike 0: comes 55.1.1.2:64916->12.1.1.2:4500, ifindex=6....
iike 0: IKEv1 exchange=Identity Protection id=d3fd1dbfc94caee/16a1eb5b0f37ee23 len=124
ike 0:toHub1_0:48: initiator: main mode get 3rd response...
iike 0:toHub1_0:48: received pl notify type INTERFACE-ADDR4
ike 0:toHub1_0:48: INTERFACE-ADDR4 10.10.1.102
ike 0:toHub1_0:48: peer identifier IPV4_ADDR 14.1.1.3
ike 0:toHub1_0:48: PSK authentication succeeded
ike 0:toHub1_0:48: authentication OK
ike 0:toHub1_0:48: established IKE SA d3fdd1bfbc94cae/16a1eb5bf37ee23
ike 0:toHub1_0:48: auto-discovery receiver
ike 0:toHub1_0:48: auto-discovery 2
ike 0:toHub1_0: add R/32 route 10.10.1.102 via 10.10.1.102, intf=toHub1(22)
ike 0:toHub1_0: add peer route 10.10.1.102
ike 0:toHub1: schedule auto-negotiate
ike 0:toHub1_0:48: no pending Quick-Mode negotiations
ike 0:toHub1_0:toHub1: IPSec SA connect 6 12.1.1.2-55.1.1.2:64916
ike 0:toHub1_0:toHub1: using existing connection
ike 0:toHub1_0:toHub1: traffic triggered, serial=1 1:10.1.100.11:2048->1:192.168.4.33:0
ike 0:toHub1_0:toHub1: config found
ike 0:toHub1_0:toHub1: IPsec SA connect 6 12.1.1.2-55.1.1.2:64916 negotiating
ike 0:toHub1_0:48: cookie d3fdd1bfbc94cae/16a1eb5bf37ee23:8465e467
ike 0:toHub1_0:48:toHub1:109: natt flags 0x1f, encmode 1->3
ike 0:toHub1_0:48:toHub1:109: initiator selectors 0:0.0.0.0/0.0.0.0-0:0.0.0.0/0.0.0.0-0:0.0.0.0
ike 0:toHub1_0:48:toHub1:109: responder selectors 0:0.0.0.0/0.0.0.0-0:0.0.0.0/0.0.0.0-0:0.0.0.0/0.0.0.0
ike 0:toHub1_0:48:toHub1:109: my proposal:
...
ike 0:toHub1_0:48:toHub1:109: add IPSec SA: SPIs=79654cf1/5e9936a5
ike 0:toHub1_0:48:toHub1:109: IPsec SA dec spi 79654cf1 key
16:5E21180992B892DE5142E1F53ABD29E auth 20:49AA4AE14994A39A138392AC517B6E79D98CA673
ike 0:toHub1_0:48:toHub1:109: IPsec SA enc spi 5e9936a5 key
16:BE16BF4E75F7BC3CF97A1D58D996890 auth 20:2F46B57C6AC6F3185BB182F9280312263325F6BAF
ike 0:toHub1_0:48:toHub1:109: added IPsec SA: SPIs=79654cf1/5e9936a5
ike 0:toHub1_0:48:toHub1:109: sending SNMP tunnel UP trapp

To verify the spoke-to-spoke IPSec phase 1 tunnel shortcut is established:

diagnose vpn ike gateway list
vd: root/0
name: toHub1
version: 1
interface: wan2 6
addr: 12.1.1.2:4500 -> 22.1.1.1:4500
tun_id: 22.1.1.1
created: 503s ago
assigned IPv4 address: 10.10.1.100/255.255.255.0
nat: me
auto-discovery: 2 receiver
IKE SA: created 1/1 established 1/1 time 0/0/0 ms
IPsec SA: created 1/3 established 1/3 time 0/0/0 ms

id/spi: 35 3c10fb6a76f1e264/6c7b397100dfff63
direction: initiator
status: established 503-503s ago = 0ms
proposal: aes128-sha256
key: 7fca86063ea2e72f-4efea6f1bec23948
lifetime/rekey: 86400/85596
VPN

DPD sent/recv: 00000000/00000000

vd: root/0
name: toHub1_0
version: 1
interface: wan2 6
addr: 12.1.1.2:4500 -> 55.1.1.2:64916
created: 208s ago
nat: me peer
auto-discovery: 2 receiver
IKE SA: created 1/1 established 1/1 time 20/20/20 ms
IPsec SA: created 1/1 established 1/1 time 10/10/10 ms

id/spi: 48 d3fdd1bfbc94caee/16a1eb5b0f37ee23
direction: initiator
status: established 208-208s ago = 20ms
proposal: aes128-sha256
key: 9bcac400d8e14e11-fffde33ea3a8263
lifetime/rekey: 86400/85891
DPD sent/recv: 0000000a/00000000

Other VPN topics

The following topics provide instructions on configuring other VPN topics.

- VPN and ASIC offload on page 1566
- Encryption algorithms on page 1576
- Fragmenting IP packets before IPsec encapsulation on page 1583
- Configure DSCP for IPsec tunnels on page 1584
- VXLAN over IPsec tunnel with virtual wire pair on page 1586
- VXLAN over IPsec using a VXLAN tunnel endpoint on page 1589
- Defining gateway IP addresses in IPsec with mode-config and DHCP on page 1594
- FQDN support for remote gateways on page 1596
- Windows IKEv2 native VPN with user certificate on page 1598

VPN and ASIC offload

This topic provides a brief introduction to VPN traffic offloading.

IPsec traffic processed by NPU

1. Check the device ASIC information. For example, a FortiGate 900D has an NP6 and a CP8.

 # get hardware status
 Model name: [[QualityAssurance62/FortiGate]]-900D
 ASIC version: CP8
 ASIC SRAM: 64M
 CPU: Intel(R) Xeon(R) CPU E3-1225 v3 @ 3.20GHz
 Number of CPUs: 4
 RAM: 16065 MB
 Compact Flash: 1925 MB /dev/sda
2. **Check port to NPU mapping.**

```bash
# diagnose npu np6 port-list
```

<table>
<thead>
<tr>
<th>Chip</th>
<th>XAUI Ports</th>
<th>Max Cross-chip Speed</th>
<th>Offloading</th>
</tr>
</thead>
<tbody>
<tr>
<td>np6_0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. port17</td>
<td>1G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1. port18</td>
<td>1G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1. port19</td>
<td>1G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1. port20</td>
<td>1G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1. port21</td>
<td>1G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1. port22</td>
<td>1G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1. port23</td>
<td>1G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1. port24</td>
<td>1G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1. port25</td>
<td>1G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1. port26</td>
<td>1G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1. port27</td>
<td>1G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1. port28</td>
<td>1G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1. port29</td>
<td>1G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1. port30</td>
<td>1G</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>1. portB</td>
<td>10G</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

np6_1			
1. port1	1G	Yes	
1. port2	1G	Yes	
1. port3	1G	Yes	
1. port4	1G	Yes	
1. port5	1G	Yes	
1. port6	1G	Yes	
1. port7	1G	Yes	
1. port8	1G	Yes	
1. port9	1G	Yes	
1. port10	1G	Yes	
1. port11	1G	Yes	
1. port12	1G	Yes	
1. port13	1G	Yes	
1. port14	1G	Yes	
1. portA	10G	Yes	

3. **Configure the option in IPsec phase1 settings to control NPU encrypt/decrypt IPsec packets (enabled by default).**

```bash
config vpn ipsec phase1/phase1-interface
edit "vpn_name"
    set npu-offload enable/disable
```
4. Check NPU offloading. The NPU encrypted/decrypted counter should tick. The \texttt{npu_flag \ 03} flag means that the traffic processed by the NPU is bi-directional.

```bash
# diagnose vpn tunnel list
list all ipsec tunnel in vd 0

name=test ver=2 serial=1 173.1.1.1:0->11.101.1.1:0 tun_id=11.101.1.1
bound_if=42 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/8 options[0008]=npu
proxyid_num=1 child_num=0 refcnt=14 ilast=2 olast=2 ad=/0
stat: rxp=12231 txp=12617 rxb=1316052 txb=674314
dpd: mode=on-demand on=1 idle=20000ms retry=3 count=0 seqno=0
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=test proto=0 sa=1 ref=4 serial=7
src: 0.0.0.0/0.0.0.0:0
dst: 0.0.0.0/0.0.0.0:0
SA: ref=6 options=10626 type=00 soft=0 mtu=1438 expire=42921/0B replaywin=2048
    seqno=802 esn=0 replaywin_lastseq=00000680 itn=0
life: type=01 bytes=0/0 timeout=42930/43200
dec: spi=e31ac46 esp=aes key=16 0dbc52642eed18b852b5c65a7dc62958
    ah=md5 key=16 c61d9fe60242b9a30e60b1d01da77660
dec: spi=706ffe03 esp=aes key=16 6ad98c204fa70545dbf3d2e33fb7b529
    ah=md5 key=16 dcc3b866da155ef73c0aba15ec530e2e
dec:spi/bytes=1665/16352, enc:spi/bytes=2051/16826
npu_flag=03 npu_rgwy=11.101.1.1 npu_lgw=173.1.1.1 npu_selid=6 dec_npid=2 enc_npid=2

FGT_900D # diagnose vpn ipsec st
All ipsec crypto devices in use:
NP6_0:
  Encryption (encrypted/decrypted)
    null : 0 1.
    des : 0 1.
    3des : 0 1.
    aes : 0 1.
    aes-gcm : 0 1.
    ari : 0 1.
    seed : 0 1.
    chacha20poly1305 : 0 1.
  Integrity (generated/validated)
    null : 0 1.
    md5 : 0 1.
    sha1 : 0 1.
    sha256 : 0 1.
    sha384 : 0 1.
    sha512 : 0 1.
NP6_1:
  Encryption (encrypted/decrypted)
    null : 14976 15357
    des : 0 1.
    3des : 0 1.
    aes : 1664 2047
    aes-gcm : 0 1.
    ari : 0 1.
    seed : 0 1.
```
chacha20poly1305 : 0 1.
Integrity (generated/validated)
 null : 0 1.
 md5 : 1664 2047
 sha1 : 14976 15357
 sha256 : 0 1.
 sha384 : 0 1.
 sha512 : 0 1.

NPU Host Offloading:
 Encryption (encrypted/decrypted)
 null : 3 1.
 des : 0 1.
 3des : 0 1.
 aes : 3 1.
 aes-gcm : 0 1.
 aria : 0 1.
 seed : 0 1.
 chacha20poly1305 : 0 1.
 Integrity (generated/validated)
 null : 0 1.
 md5 : 3 1.
 sha1 : 3 1.
 sha256 : 0 1.
 sha384 : 0 1.
 sha512 : 0 1.

CP8:
 Encryption (encrypted/decrypted)
 null : 1 1.
 des : 0 1.
 3des : 0 1.
 aes : 1 1.
 aes-gcm : 0 1.
 aria : 0 1.
 seed : 0 1.
 chacha20poly1305 : 0 1.
 Integrity (generated/validated)
 null : 0 1.
 md5 : 1 1.
 sha1 : 1 1.
 sha256 : 0 1.
 sha384 : 0 1.
 sha512 : 0 1.

SOFTWARE:
 Encryption (encrypted/decrypted)
 null : 0 1.
 des : 0 1.
 3des : 0 1.
 aes : 0 1.
 aes-gcm : 29882 29882
 aria : 21688 21688
 seed : 153774 153774
 chacha20poly1305 : 29521 29521
 Integrity (generated/validated)
null : 59403 59403
md5 : 0 1.
sha1 : 175462 175462
sha256 : 0 1.
sha384 : 0 1.
sha512 : 0 1.

5. If traffic cannot be offloaded by the NPU, the CP will try to encrypt/decrypt the IPsec packets.

IPsec traffic processed by CP

1. Check the NPU flag and CP counter.

```
# diagnose vpn tunnel list
list all ipsec tunnel in vd 0
---
name=test ver=2 serial=1 173.1.1.1:0->11.101.1.1:0 tun_id=11.101.1.1  
bound_if=42 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/0  
proxyid_num=1 child_num=0 refcnt=13 ilast=0 olast=0 ad=/0  
stat: rxp=8418 txp=1251248 txb=685896  
dpd: mode=on-demand on=1 idle=20000ms retry=3 count=0 seqno=0  
natt: mode=none draft=0 interval=0 remote_port=0  
proxyid=test proto=0 sa=1 ref=3 serial=7  
src: 0/0/0.0/0.0/0.0/0  
dst: 0/0/0.0/0.0/0.0/0  
SA: ref=3 options=10226 type=0 soft=0 mtu=1438 expire=42037/0B replaywin=2048  
    seqno=20e3 esn=0 replaywin_lastseq=000020e3 itn=0  
life: type=01 bytes=0/0 timeout=42928/43200  
dec: spi=e313ac48 esp=aes key=16 393770842f926266530db6e43e21c4f8  
    ah=md5 key=16 b2e4e025e8910e95c1745e7855479cca  
enc: spi=706ffe05 esp=aes key=16 7ef749610335f9f50e252023926de29e  
    ah=md5 key=16 0b81e4d835919ab2b8ba8edbd01aace9d  
dec: status=v68418/685896, enc:status=8418/1251248  
npu_flag=00 npu_rgw=11.101.1.1 npu_lgw=173.1.1.1 npu_selid=6 dec_npuid=0 enc_npuid=0
```

FGT-D # diagnose vpn ipsec status
All ipsec crypto devices in use:

NP6_0:

Encryption (encrypted/decrypted)
```
null : 0 1.  
des : 0 1.  
3des : 0 1.  
aes : 0 1.  
aes-gcm : 0 1.  
aria : 0 1.  
seed : 0 1.  
chacha20poly1305 : 0 1.  
```

Integrity (generated/validated)
```
null : 0 1.  
md5 : 0 1.  
sha1 : 0 1.  
sha256 : 0 1.  
sha384 : 0 1.  
sha512 : 0 1.  
```

NP6_1:

Encryption (encrypted/decrypted)
null : 14976 15357
des : 0 1.
3des : 0 1.
aes : 1664 2047
aes-gcm : 0 1.
aria : 0 1.
seed : 0 1.
chacha20poly1305 : 0 1.

Integrity (generated/validated)

null : 0 1.
md5 : 1664 2047
sha1 : 14976 15357
sha256 : 0 1.
sha384 : 0 1.
sha512 : 0 1.

NPU Host Offloading:

Encryption (encrypted/decrypted)

null : 3 1.
des : 0 1.
3des : 0 1.
aes : 3 1.
aes-gcm : 0 1.
aria : 0 1.
seed : 0 1.
chacha20poly1305 : 0 1.

Integrity (generated/validated)

null : 0 1.
md5 : 3 1.
sha1 : 3 1.
sha256 : 0 1.
sha384 : 0 1.
sha512 : 0 1.

CP8:

Encryption (encrypted/decrypted)

null : 1 1.
des : 0 1.
3des : 0 1.
aes : 8499 8499
aes-gcm : 0 1.
aria : 0 1.
seed : 0 1.
chacha20poly1305 : 0 1.

Integrity (generated/validated)

null : 0 1.
md5 : 8499 8499
sha1 : 1 1.
sha256 : 0 1.
sha384 : 0 1.
sha512 : 0 1.

SOFTWARE:

Encryption (encrypted/decrypted)

null : 0 1.
des : 0 1.
2. Two options are used to control if the CP processes packets. If disabled, packets are processed by the CPU.

```
config system global
set ipsec-asic-offload disable
set ipsec-hmac-offload disable
end
```

IPsec traffic processed by CPU

IPsec traffic might be processed by the CPU for the following reasons:

- Some low end models do not have NPUs.
- NPU offloading and CP IPsec traffic processing manually disabled.
- Some types of proposals - SEED, ARIA, chacha20poly1305 - are not supported by the NPU or CP.
- NPU flag set to 00 and software encrypt/decrypt counter ticked.

diagnose vpn tunnel list
list all ipsec tunnel in vd 0

name=test ver=2 serial=1 173.1.1.1:0->11.101.1.1:0 tun_id=11.101.1.1
bound_if=42 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/0
proxyid_num=1 child_num=0 refcnt=14 ilast=0 olast=0 ad=/0
stat: rxp=12162 txp=12162 rxb=1691412 txb=1008216
dpd: mode=on-demand on=1 idle=2000ms retry=3 count=0 seqno=0
natt: mode=non draft=0 interval=0 remote_port=0
proxyid=test proto=0 sa=1 ref=4 serial=8
src: 0:0:0:0/0.0.0.0:0
dst: 0:0:0:0/0.0.0.0:0
Sa: ref=3 options=10602 type=0 soft=0 mtu=1453 expire=42903/0B replaywin=2048
 seqno=2d70 esn=0 replaywin_lastseq=00002d70 itn=0
 life: type=01 bytes=0/0 timeout=42931/43200
dec: spi=e313ac4d esp=chacha20poly1305 key=36
 812d117874c1130d1586606e44e1b9ab157e31a09edbed583be1e9cc82e8c9f2655a2cf
 ah=null key=0
 enc: spi=706ff0e0a esp=chacha20poly1305 key=36
 f272e00e022343549b140f1614ae3df82243adb070e60fc3911f46b389b05a7a642e11a
 ah=null key=0
 dec: ppts/bytes=11631/976356, enc: ppts/bytes=11631/1627692
 npu_flag=0 npu_rgwy=11.101.1.1 npu_lgw=173.1.1.1 npu_selid=7 dec npuid=0 enc npuid=0

FGT_900D # diagnose vpn ipsec status
All ipsec crypto devices in use:
NP6_0:
<table>
<thead>
<tr>
<th></th>
<th>VPN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Encryption (encrypted/decrypted)</td>
</tr>
<tr>
<td></td>
<td>null : 0</td>
</tr>
<tr>
<td></td>
<td>des : 0</td>
</tr>
<tr>
<td></td>
<td>3des : 0</td>
</tr>
<tr>
<td></td>
<td>aes : 0</td>
</tr>
<tr>
<td></td>
<td>aes-gcm : 0</td>
</tr>
<tr>
<td></td>
<td>aria : 0</td>
</tr>
<tr>
<td></td>
<td>seed : 0</td>
</tr>
<tr>
<td></td>
<td>chacha20poly1305 : 0</td>
</tr>
<tr>
<td></td>
<td>Integrity (generated/validated)</td>
</tr>
<tr>
<td></td>
<td>null : 0</td>
</tr>
<tr>
<td></td>
<td>md5 : 0</td>
</tr>
<tr>
<td></td>
<td>shal : 0</td>
</tr>
<tr>
<td></td>
<td>sha256 : 0</td>
</tr>
<tr>
<td></td>
<td>sha384 : 0</td>
</tr>
<tr>
<td></td>
<td>sha512 : 0</td>
</tr>
<tr>
<td></td>
<td>NPU 1:</td>
</tr>
<tr>
<td></td>
<td>Encryption (encrypted/decrypted)</td>
</tr>
<tr>
<td></td>
<td>null : 14976</td>
</tr>
<tr>
<td></td>
<td>des : 0</td>
</tr>
<tr>
<td></td>
<td>3des : 0</td>
</tr>
<tr>
<td></td>
<td>aes : 1664</td>
</tr>
<tr>
<td></td>
<td>aes-gcm : 0</td>
</tr>
<tr>
<td></td>
<td>aria : 0</td>
</tr>
<tr>
<td></td>
<td>seed : 0</td>
</tr>
<tr>
<td></td>
<td>chacha20poly1305 : 0</td>
</tr>
<tr>
<td></td>
<td>Integrity (generated/validated)</td>
</tr>
<tr>
<td></td>
<td>null : 14976</td>
</tr>
<tr>
<td></td>
<td>md5 : 1664</td>
</tr>
<tr>
<td></td>
<td>shal : 14976</td>
</tr>
<tr>
<td></td>
<td>sha256 : 0</td>
</tr>
<tr>
<td></td>
<td>sha384 : 0</td>
</tr>
<tr>
<td></td>
<td>sha512 : 0</td>
</tr>
<tr>
<td></td>
<td>NPU Host Offloading:</td>
</tr>
<tr>
<td></td>
<td>Encryption (encrypted/decrypted)</td>
</tr>
<tr>
<td></td>
<td>null : 3</td>
</tr>
<tr>
<td></td>
<td>des : 0</td>
</tr>
<tr>
<td></td>
<td>3des : 0</td>
</tr>
<tr>
<td></td>
<td>aes : 3</td>
</tr>
<tr>
<td></td>
<td>aes-gcm : 0</td>
</tr>
<tr>
<td></td>
<td>aria : 0</td>
</tr>
<tr>
<td></td>
<td>seed : 0</td>
</tr>
<tr>
<td></td>
<td>chacha20poly1305 : 0</td>
</tr>
<tr>
<td></td>
<td>Integrity (generated/validated)</td>
</tr>
<tr>
<td></td>
<td>null : 0</td>
</tr>
<tr>
<td></td>
<td>md5 : 3</td>
</tr>
<tr>
<td></td>
<td>shal : 3</td>
</tr>
<tr>
<td></td>
<td>sha256 : 0</td>
</tr>
<tr>
<td></td>
<td>sha384 : 0</td>
</tr>
<tr>
<td></td>
<td>sha512 : 0</td>
</tr>
<tr>
<td></td>
<td>CP8:</td>
</tr>
<tr>
<td></td>
<td>Encryption (encrypted/decrypted)</td>
</tr>
<tr>
<td></td>
<td>null : 1</td>
</tr>
</tbody>
</table>
VPN

des : 0 1.
3des : 0 1.
aes : 8865 8865
aes-gcm : 0 1.
aria : 0 1.
seed : 0 1.
chacha20poly1305 : 0 1.

Integrity (generated/validated)
null : 0 1.
md5 : 8865 8865
sha1 : 1 1.
sha256 : 0 1.
sha384 : 0 1.
sha512 : 0 1.

SOFTWARE:
Encryption (encrypted/decrypted)
null : 0 1.
des : 0 1.
3des : 0 1.
aes : 531 531
aes-gcm : 29882 29882
aria : 21688 21688
seed : 153774 153774
chacha20poly1305 : 41156 411156

Integrity (generated/validated)
null : 71038 71038
md5 : 531 531
sha1 : 175462 175462
sha256 : 0 1.
sha384 : 0 1.
sha512 : 0 1.

Disable automatic ASIC offloading

When autoasic-offload is set to disable in the firewall policy, traffic is not offloaded and the NPU hosting counter is ticked.

diagnose vpn ipsec status
All ipsec crypto devices in use:
NP6_0:

Encryption (encrypted/decrypted)
null : 0 1.
des : 0 1.
3des : 0 1.
aes : 0 1.
aes-gcm : 0 1.
aria : 0 1.
seed : 0 1.
chacha20poly1305 : 0 1.

Integrity (generated/validated)
null : 0 1.
md5 : 0 1.
sha1 : 0 1.
sha256 : 0 1.
sha384 : 0 1.
sha512 : 0 1.

NP6_1:
Encryption (encrypted/decrypted)
null : 14976 15357
des : 0 1.
3des : 0 1.
aes : 110080 2175
aes-gcm : 0 1.
arista : 0 1.
seed : 0 1.
chacha20poly1305 : 0 1.
Integrity (generated/validated)
null : 0 1.
md5 : 110080 2175
sha1 : 14976 15357
sha256 : 0 1.
sha384 : 0 1.
sha512 : 0 1.

NPU Host Offloading:
Encryption (encrypted/decrypted)
null : 3 1.
des : 0 1.
3des : 0 1.
aes : 111090 1.
aes-gcm : 0 1.
arista : 0 1.
seed : 0 1.
chacha20poly1305 : 0 1.
Integrity (generated/validated)
null : 0 1.
md5 : 111090 1.
sha1 : 3 1.
sha256 : 0 1.
sha384 : 0 1.
sha512 : 0 1.

CP8:
Encryption (encrypted/decrypted)
null : 1 1.
des : 0 1.
3des : 0 1.
aes : 8865 8865
aes-gcm : 0 1.
arista : 0 1.
seed : 0 1.
chacha20poly1305 : 0 1.
Integrity (generated/validated)
null : 0 1.
md5 : 8865 8865
sha1 : 1 1.
sha256 : 0 1.
sha384 : 0 1.
sha512 : 0 1.
Encryption algorithms

This topic provides a brief introduction to IPsec phase 1 and phase 2 encryption algorithms and includes the following sections:

- IKEv1 phase 1 encryption algorithm
- IKEv1 phase 2 encryption algorithm
- IKEv2 phase 1 encryption algorithm
- IKEv2 phase 2 encryption algorithm
- HMAC settings

IKEv1 phase 1 encryption algorithm

The default encryption algorithm is:

aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1

DES is a symmetric-key algorithm, which means the same key is used for encrypting and decrypting data. FortiOS supports:

- des-md5
- des-sha1
- des-sha256
- des-sha384
- des-sha512

3DES applies the DES algorithm three times to each data. FortiOS supports:

- 3des-md5
- 3des-sha1
- 3des-sha256
- 3des-sha384
- 3des-sha512
VPN

AES is a symmetric-key algorithm with different key lengths (128, 192, and 256 bits). FortiOS supports:

- aes128-md5
- aes128-sha1
- aes128-sha256
- aes128-sha384
- aes128-sha512
- aes192-md5
- aes192-sha1
- aes192-sha256
- aes192-sha384
- aes192-sha512
- aes256-md5
- aes256-sha1
- aes256-sha256
- aes256-sha384
- aes256-sha512

The ARIA algorithm is based on AES with different key lengths (128, 192, and 256 bits). FortiOS supports:

- aria128-md5
- aria128-sha1
- aria128-sha256
- aria128-sha384
- aria128-sha512
- aria192-md5
- aria192-sha1
- aria192-sha256
- aria192-sha384
- aria192-sha512
- aria256-md5
- aria256-sha1
- aria256-sha256
- aria256-sha384
- aria256-sha512

SEED is a symmetric-key algorithm. FortiOS supports:

- seed128-md5
- seed128-sha1
- seed128-sha256
- seed128-sha384
- seed128-sha512

Suite-B is a set of AES encryption with ICV in GCM mode. FortiOS supports Suite-B on new kernel platforms only. IPsec traffic cannot offload to NPU. CP9 supports Suite-B offloading, otherwise packets are encrypted and decrypted by software. FortiOS supports:

- suite-b-gcm-128
- suite-b-gcm-256
The default encryption algorithm is:

aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256 aes128gcm aes256gcm chacha20poly1305

With null encryption, IPsec traffic can offload NPU/CP. FortiOS supports:

- null-md5
- null-sha1
- null-sha256
- null-sha384
- null-sha512

With the DES encryption algorithm, IPsec traffic can offload NPU/CP. FortiOS supports:

- des-null
- des-md5
- des-sha1
- des-sha256
- des-sha384
- des-sha512

With the 3DES encryption algorithm, IPsec traffic can offload NPU/CP. FortiOS supports:

- 3des-null
- 3des-md5
- 3des-sha1
- 3des-sha256
- 3des-sha384
- 3des-sha512

With the AES encryption algorithm, IPsec traffic can offload NPU/CP. FortiOS supports:

- aes128-null
- aes128-md5
- aes128-sha1
- aes128-sha256
- aes128-sha384
- aes128-sha512
- aes192-null
- aes192-md5
- aes192-sha1
- aes192-sha256
- aes192-sha384
- aes192-sha512
- aes256-null
- aes256-md5
- aes256-sha1
- aes256-sha256
- aes256-sha384
- aes256-sha512
With the AESGCM encryption algorithm, IPsec traffic cannot offload NPU/CP. FortiOS supports:

- aes128gcm
- aes256gcm

With the chacha20poly1305 encryption algorithm, IPsec traffic cannot offload NPU/CP. FortiOS supports:

- chacha20poly1305

With the ARIA encryption algorithm, IPsec traffic cannot offload NPU/CP. FortiOS supports:

- aria128-null
- aria128-md5
- aria128-sha1
- aria128-sha256
- aria128-sha384
- aria128-sha512
- aria192-null
- aria192-md5
- aria192-sha1
- aria192-sha256
- aria192-sha384
- aria192-sha512
- aria256-null
- aria256-md5
- aria256-sha1
- aria256-sha256
- aria256-sha384
- aria256-sha512

With the SEED encryption algorithm, IPsec traffic cannot offload NPU/CP. FortiOS supports:

- seed-null
- seed-md5
- seed-sha1
- seed-sha256
- seed-sha384
- seed-sha512

IKEv2 phase 1 encryption algorithm

The default encryption algorithm is:

aes128-sha256 aes256-sha256 aes128gcm-prfsha256 aes256gcm-prfsha384 chacha20poly1305-prfsha256

DES is a symmetric-key algorithm, which means the same key is used for encrypting and decrypting data. FortiOS supports:

- des-md5
- des-sha1
- des-sha256
- des-sha384
- des-sha512

3DES applies the DES algorithm three times to each data. FortiOS supports:
- 3des-md5
- 3des-sha1
- 3des-sha256
- 3des-sha384
- 3des-sha512

AES is a symmetric-key algorithm with different key lengths (128, 192, and 256 bits). FortiOS supports:
- aes128-md5
- aes128-sha1
- aes128-sha256
- aes128-sha384
- aes128-sha512
- aes128gcm-prfsha1
- aes128gcm-prfsha256
- aes128gcm-prfsha384
- aes128gcm-prfsha512
- aes192-md5
- aes192-sha1
- aes192-sha256
- aes192-sha384
- aes192-sha512
- aes256-md5
- aes256-sha1
- aes256-sha256
- aes256-sha384
- aes256-sha512
- aes256gcm-prfsha1
- aes256gcm-prfsha256
- aes256gcm-prfsha384
- aes256gcm-prfsha512

The ARIA algorithm is based on AES with different key lengths (128, 192, and 256 bits). FortiOS supports:
- aria128-md5
- aria128-sha1
- aria128-sha256
- aria128-sha384
- aria128-sha512
- aria192-md5
- aria192-sha1
- aria192-sha256
- aria192-sha384
- aria192-sha512
• aria256-md5
• aria256-sha1
• aria256-sha256
• aria256-sha384
• aria256-sha512

With the chacha20poly1305 encryption algorithm, FortiOS supports:
• chacha20poly1305-prfsha1
• chacha20poly1305-prfsha256
• chacha20poly1305-prfsha384
• chacha20poly1305-prfsha512

SEED is a symmetric-key algorithm. FortiOS supports:
• seed128-md5
• seed128-sha1
• seed128-sha256
• seed128-sha384
• seed128-sha512

Suite-B is a set of AES encryption with ICV in GCM mode. FortiOS supports Suite-B on new kernel platforms only. IPsec traffic cannot offload to NPU. CP9 supports Suite-B offloading, otherwise packets are encrypted and decrypted by software. FortiOS supports:
• suite-b-gcm-128
• suite-b-gcm-256

IKEv2 phase 2 encryption algorithm

The default encryption algorithm is:
aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256 aes128gcm aes256gcm chacha20poly1305

With null encryption, IPsec traffic can offload NPU/CP. FortiOS supports:
• null-md5
• null-sha1
• null-sha256
• null-sha384
• null-sha512

With the DES encryption algorithm, IPsec traffic can offload NPU/CP. FortiOS supports:
• des-null
• des-md5
• des-sha1
• des-sha256
• des-sha384
• des-sha512

With the 3DES encryption algorithm, IPsec traffic can offload NPU/CP. FortiOS supports:
• 3des-null
• 3des-md5
• 3des-sha1
• 3des-sha256
• 3des-sha384
• 3des-sha512

With the AES encryption algorithm, IPsec traffic can offload NPU/CP. FortiOS supports:
 • aes128-null
 • aes128-md5
 • aes128-sha1
 • aes128-sha256
 • aes128-sha384
 • aes128-sha512
 • aes192-null
 • aes192-md5
 • aes192-sha1
 • aes192-sha256
 • aes192-sha384
 • aes192-sha512
 • aes256-null
 • aes256-md5
 • aes256-sha1
 • aes256-sha256
 • aes256-sha384
 • aes256-sha512

With the AESGCM encryption algorithm, IPsec traffic cannot offload NPU. CP9 supports AESGCM offloading. FortiOS supports:
 • aes128gcm
 • aes256gcm

With the chacha20poly1305 encryption algorithm, IPsec traffic cannot offload NPU/CP. FortiOS supports:
 • chacha20poly1305

With the ARIA encryption algorithm, IPsec traffic cannot offload NPU/CP. FortiOS supports:
 • aria128-null
 • aria128-md5
 • aria128-sha1
 • aria128-sha256
 • aria128-sha384
 • aria128-sha512
 • aria192-null
 • aria192-md5
 • aria192-sha1
 • aria192-sha256
 • aria192-sha384
 • aria192-sha512
 • aria256-null
With the SEED encryption algorithm, IPsec traffic cannot offload NPU/CP. FortiOS supports:

- seed-null
- seed-md5
- seed-sha1
- seed-sha256
- seed-sha384
- seed-sha512

HMAC settings

The FortiGate uses the HMAC based on the authentication proposal that is chosen in phase 1 or phase 2 of the IPsec configuration. Each proposal consists of the encryption-hash pair (such as 3des-sha256). The FortiGate matches the most secure proposal to negotiate with the peer.

To view the chosen proposal and the HMAC hash used:

```
# diagnose vpn ike gateway list
```

```
v: root/0
name: MPLS
version: 1
interface: port1 3
addr: 192.168.2.5:500 -> 10.10.10.1:500
tun_id: 10.10.10.1
tunnel-addr: 172.31.0.2 -> 172.31.0.1
created: 1015820s ago
IKE SA: created 1/13 established 1/13 time 10/1626/21010 ms
IPsec SA: created 1/24 established 1/24 time 0/11/30 ms

id/spi: 124 43b087dae99f7733/6a8473e58cd8990a
direction: responder
status: established 68693-68693s ago = 10ms
proposal: 3des-sha256
key: e0fa6ab8dc509b33-aa2cc549999b1823-c3cb9c337432646e
lifetime/rekey: 86400/17436
DPD sent/recv: 000001e1/00000000
```

Fragmenting IP packets before IPsec encapsulation

The `ip-fragmentation` command controls packet fragmentation before IPsec encapsulation, which can benefit packet loss in some environments.

The following options are available for the `ip-fragmentation` variable.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pre-encapsulation</td>
<td>Fragment before IPsec encapsulation.</td>
</tr>
<tr>
<td>post-encapsulation (default value)</td>
<td>Fragment after IPsec encapsulation (RFC compliant).</td>
</tr>
</tbody>
</table>

To configure packet fragmentation using the CLI:

```plaintext
config vpn ipsec phase1-interface
edit "demo"
    set interface "port1"
    set authmethod signature
    set peertype any
    set net-device enable
    set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
    set ip-fragmentation pre-encapsulation
    set remote-gw 172.16.200.4
    set certificate "Fortinet_Factory"
next
end
```

Configure DSCP for IPsec tunnels

Configuring the differentiated services (DiffServ) code in phase2 of an IPsec tunnel allows the tag to be applied to the Encapsulating Security Payload (ESP) packet.

- If `diffserv` is disabled in the IPsec phase2 configuration, then the ESP packets' DSCP value is copied from the inner IP packet DSCP.
- If `diffserv` is enabled in the IPsec phase2 configuration, then ESP packets' DSCP value is set to the configured value.

Offloading traffic to the NPU must be disabled for the tunnel.

In this example, NPU offloading is disabled, `diffserv` is enabled, and the `diffserv` code is set to 000111 on FGT-A. Only one side of the tunnel needs to have `diffserv` enabled.
VPN

To configure IPsec on FGT-A:

1. Configure the phase1-interface:

   ```
   config vpn ipsec phase1-interface
   edit "s2s"
   set interface "wan1"
   set peertype any
   set net-device disable
   set proposal aes128-sha256 aes256-sha256 aes128-sha1 aes256-sha1
   set npu-offload disable
   set dhgrp 14 5
   set wizard-type static-fortigate
   set remote-gw 173.1.1.1
   set psksecret ************
   next
   end
   ```

2. Configure the phase2-interface:

   ```
   config vpn ipsec phase2-interface
   edit "s2s"
   set phase1name "s2s"
   set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256
   aes128gcm chacha20poly1305
   set dhgrp 14 5
   set diffserv enable
   set diffservcode 000111
   set src-addr-type name
   set dst-addr-type name
   set src-name "s2s_local"
   set dst-name "s2s_remote"
   next
   end
   ```

3. Check the state of the IPsec tunnel:

   ```
   FGT-A # diagnose vpn tunnel list
   list all ipsec tunnel in vd 0
   -----------------------------------------------------------------------------
   name=s2s ver=1 serial=1 11.101.1.1:0->173.1.1.1:0 tun_id=173.1.1.1 dst_mtu=1500
   bound_if=17 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/512 options[0200]=frag-rfc
   run_state=0 accept_traffic=1 overlay_id=0
   proxyid_num=1 child_num=0 refcnt=11 ilast=12 olast=2978 ad=/0
   stat: rxp=4 txp=4 rxb=608 txb=336
   dpd: mode=on-demand on=1 idle=2000ms retry=3 count=0 seqno=0
   nat: mode=none draft=0 interval=0 remote_port=0
   proxyid=s2s proto=0 sa=1 ref=2 serial=2 dscp
   src: 0:10.1.100.0/255.255.255.0:0
   dst: 0:174.16.101.0/255.255.255.0:0
   SA: ref=3 options=110226 type=00 soft=0 mtu=1438 expire=39916/0B replaywin=2048
   seqno=5 esp=0 replaywin_lastseq=00000005 itn=0 qat=0 hash_search_len=1
   life: type=01 bytes=0/0 timeout=42899/43200
   dec: spi=43bce1e esp=aes key=16 8a02875b80b884d961af227fe8b5cdee
   ah=sha1 key=20 fc9760b79e79dbbeef630ec0c5dca74777976208
   enc: spi=43bce1e esp=aes key=16 851117af24212da89e466d8bea9632bb
   ah=sha1 key=20 0807cc0af2dc4ea049a6b1a4af410ccc71e2156d
   ```
4. Use a packet analyzer, or sniffer, to check the ESP packets:

```
npu_flag=00 npu_rgwy=173.1.1.1 npu_lgwy=11.101.1.1 npu_selid=1 dec_npid=0 enc_npid=0
run_tally=1
```

VXLAN over IPsec tunnel with virtual wire pair

In this example, a site-to-site VPN tunnel is formed between two FortiGates. Multiple VLANs are configured that match on each FortiGate. Host1 and Host2 are connected to VLAN10 on the switches.

To configure FGT-A in the CLI:

1. Configure the system WAN interface:

   ```
   config system interface
   edit "wan1"
   set vdom "root"
   set ip 11.11.11.11 255.255.255.0
   set allowaccess ping https ssh http fgfm
   set type physical
   set role wan
   set snmp-index 1
   ```
2. Configure a static route to send all traffic out the WAN interface:

```text
config router static
edit 1
   set gateway 11.11.11.1
   set device "wan1"
next
end
```

3. Configure the IPsec tunnel:

```text
config vpn ipsec phase1-interface
edit "ipsec"
   set interface "wan1"
   set peertype any
   set proposal aes256-shal
   set remote-gw 22.22.22.22
   set psksecret **********
next
end
config vpn ipsec phase2-interface
edit "ipsec"
   set phasename "ipsec"
   set proposal aes256-shal
   set auto-negotiate enable
next
end
```

4. Configure the VXLAN interface and bind it to the IPsec interface:

```text
config system vxlan
edit "vxlan"
   set interface "ipsec"
   set vni 10
   set remote-ip "22.22.22.22"
next
end
```

The remote IP address is the peer side WAN IP address.

5. Configure a virtual wire pair with the LAN and VXLAN interfaces as members:

```text
config system virtual-wire-pair
edit "vwp"
   set member "port1" "vxlan"
   set wildcard-vlan enable
next
end
```

The interfaces added to the virtual wire pair cannot be part of a switch, such as the default internal interface. By enabling wildcard VLANs on the virtual wire pair, all VLAN tagged traffic that is allowed by the virtual wire pair firewall policies passes through the pair.

6. Configure a firewall policy to allow traffic between the LAN and VXLAN interfaces:

```text
config firewall policy
edit 4
```
set name "vwp-pol"
set srcintf "port1" "vxlan"
set dstintf "port1" "vxlan"
set srcaddr "all"
set dstaddr "all"
set action accept
set schedule "always"
set service "ALL"

To configure FGT-B in the CLI:

1. Configure the WAN interface:

 config system interface
 edit "wan1"
 set vdom "root"
 set ip 22.22.22.22 255.255.255.0
 set allowaccess ping https ssh http fgfm
 set type physical
 set role wan
 set snmp-index 1
 next
 end

2. Configure a static route to send all traffic out the WAN interface:

 config router static
 edit 1
 set gateway 22.22.22.2
 set device "wan1"
 next
 end

3. Configure the IPsec tunnel:

 config vpn ipsec phase1-interface
 edit "ipsec"
 set interface "wan1"
 set peertype any
 set proposal aes256-sha1
 set remote-gw 11.11.11.11
 set psksecret **********
 next
 end
 config vpn ipsec phase2-interface
 edit "ipsec"
 set phasename "ipsec"
 set proposal aes256-sha1
 set auto-negotiate enable
 next
 end

4. Configure the VXLAN interface and bind it to the IPsec interface:

 config system vxlan
 edit "vxlan"
The remote IP address is the peer side WAN IP address.

5. Configure a virtual wire pair with the LAN and VXLAN interfaces as members:

```plaintext
config system virtual-wire-pair
edit "vwp"
  set member "port1" "vxlan"
  set wildcard-vlan enable
next
end
```

6. Configure a firewall policy to allow traffic between the LAN and VXLAN interfaces:

```plaintext
config firewall policy
edit 4
  set name "vwp-pol"
  set srcintf "port1" "vxlan"
  set dstintf "port1" "vxlan"
  set srcaddr "all"
  set dstaddr "all"
  set action accept
  set schedule "always"
  set service "ALL"
next
end
```

Test the configuration

To test the configuration, ping Host2 (VLAN10: 192.168.10.2/24) from Host1 (VLAN10: 192.168.10.1/24):

```plaintext
C:\>ping 192.168.10.2
```

```
Pinging 192.168.10.2 with 32 bytes of data:
  Reply from 192.168.10.2: bytes=32 time=8ms TTL=56
  Reply from 192.168.10.2: bytes=32 time=8ms TTL=56
  Reply from 192.168.10.2: bytes=32 time=8ms TTL=56
  Reply from 192.168.10.2: bytes=32 time=11ms TTL=56

Ping statistics for 192.168.10.2:
  Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
  Approximate round trip times in milli-seconds:
    Minimum = 8ms, Maximum = 11ms, Average = 8ms
```

VXLAN over IPsec using a VXLAN tunnel endpoint

This example describes how to implement VXLAN over IPsec VPN using a VXLAN tunnel endpoint (VTEP).
This example shows a specific configuration that uses a hub-and-spoke topology. However, the same logic can be applied to a static VPN with or without XAuth. In this hub-and-spoke topology, dialup VPN is convenient because it uses a single phase 1 dialup definition on the hub FortiGate. Additional spoke tunnels are added without any changes to the hub, other than adding a user account for each additional spoke. Spoke-to-spoke communication is established through the hub. This example assumes the authentication users and user groups have already been created.

IPsec tunnel interfaces are used to support VXLAN tunnel termination. An IP address is set for each tunnel interface. Ping access is allowed for troubleshooting purposes.

VTEPs are created on each of the hub and spokes in order to forward VXLAN traffic through the IPsec tunnels. VXLAN encapsulates OSI layer 2 Ethernet frames within layer 3 IP packets. You will need to either combine the internal port and VXLAN interface into a soft switch, or create a virtual wire pair so that devices behind port1 have direct layer 2 access to remote peers over the VXLAN tunnel. This example uses a switch interface on the hub and a virtual wire pair on the spokes to demonstrate the two different methods.

Finally, in order to apply an IPsec VPN interface on the VXLAN interface setting, `net-device` must be disabled in the IPsec VPN phase 1 settings. All VXLAN interfaces in this example share the same VXLAN network ID (`vni`).

To configure the hub FortiGate:

1. Configure the phase 1 and phase 2 interfaces:

   ```bash
   config vpn ipsec phase1-interface
   edit "SPOKES"
       set type dynamic
       set interface "port2"
       set mode aggressive
       set peertype one
   ```
set net-device disable
set proposal aes256-sha256
set xauthtype auto
set authusrgrp "SPOKES"
set peerid "SPOKES"
set psksecret <secret>
next
end
cfg vpn ipsec phase2-interface
edit "SPOKES"
set phasename "SPOKES"
set proposal aes128-sha1 aes128-sha256 aes256-sha256 aes128gcm
aes256gcm chacha20poly1305
next
end

2. Configure the IPsec VPN policy that allows VXLAN traffic between spokes:

config firewall policy
edit 1
set name "VXLAN_SPOKE_to_SPOKE"
set srcintf "SPOKES"
set dstintf "SPOKES"
set srcaddr "NET_192.168.255.0"
set dstaddr "NET_192.168.255.0"
set action accept
set schedule "always"
set service "UDP_4789"
set logtraffic all
set fsso disable
next
end

3. Configure the IPsec tunnel interfaces (the remote IP address is not used, but it is necessary for this configuration):

config system interface
edit "SPOKES"
set vdom "root"
set ip 192.168.255.1 255.255.255.255
set allowaccess ping
set type tunnel
set remote-ip 192.168.255.254 255.255.255.0
set snmp-index 12
set interface "port2"
next
end

4. Configure the VXLAN interface (the remote IP is the tunnel interfaces IPs of the spokes):

config system VXLAN
edit "SPOKES_VXLAN"
set interface "SPOKES"
set vni 1
set remote-ip "192.168.255.2" "192.168.255.3"
next
end
To configure the spoke FortiGates:

1. Configure the phase 1 and phase 2 interfaces:

   ```
   config vpn ipsec phase1-interface
   edit "HUB"
   set interface "port2"
   set mode aggressive
   set peertype any
   set net-device disable
   set proposal aes256-sha256
   set localid "SPOKES"
   set xauthtype client
   set authusr "SPOKE1"
   set authpasswd <secret>
   set remote-gw <hub public IP>
   set psksecret <secret>
   next
   end
   
   config vpn ipsec phase2-interface
   edit "HUB"
   set phasename "HUB"
   set proposal aes128-sha1 aes256-sha1 aes128-sha256 aes256-sha256 aes128gcm
   aes256gcm chacha20poly1305
   set auto-negotiate enable
   set src-subnet 192.168.255.2 255.255.255.255
   next
   end
   
   The hub FortiGate inserts a reverse route pointing to newly established tunnel interfaces for any of the subnets that the spoke FortiGate’s source quick mode selectors provides. This is why you should set the tunnel IP address here.
   ```

2. Configure the IPsec VPN policy:

   ```
   config firewall policy
   edit 1
   set name "VTEP_IPSEC_POLICY"
   set srcintf "HUB"
   set dstintf "HUB"
   set srcaddr "none"
   set dstaddr "none"
   set action accept
   set schedule "always"
   set service "PING"
   set logtraffic disable
   set fsso disable
   next
   end
   ```

3. Configure the IPsec tunnel interfaces:

   ```
   config system interface
   edit "HUB"
   set vdom "root"
   set ip 192.168.255.2 255.255.255.255
   set allowaccess ping
   ```
4. Configure the VXLAN interface (the remote IP is the tunnel interface IP of the hub):

```fortios
config system VXLAN
  edit "HUB_VXLAN"
    set interface "HUB"
    set vni 1
    set remote-ip "192.168.255.1"
  next
end
```

To establish a VXLAN tunnel between spokes, you can add a spoke’s tunnel IP address in `remote-ip`.

To add more remote IP addresses to a VXLAN interface, the interface cannot be in use. You may want to provision future spokes’ remote IP addresses at this point to avoid traffic disruption. Otherwise, you must delete the reference (the policy in this example) before adding remote IP addresses.

To bind the VXLAN interface to the internal interface:

1. Configure a switch interface on the hub:

```fortios
config system switch-interface
  edit "SW"
    set vdom "root"
    set member "port1" "SPOKES_VXLAN"
    set intra-switch-policy {implicit | explicit}
  next
end
```

Allowing intra-switch traffic is implicitly allowed by default. Use `set intra-switch-policy explicit` to require firewall policies to allow traffic between switch interfaces.

2. Configure a virtual wire pair on the spokes:

```fortios
config system virtual-wire-pair
  edit "VWP"
    set member "HUB_VXLAN" "port1"
  next
end
```

The virtual wire pair requires an explicit policy to allow traffic between interfaces.
To test the configuration:

1. Ping the hub FortiGate from the spoke FortiGate:

   ```
   user@pc-spoke1:~$ ping 192.168.1.1 -c 3PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.
   64 bytes from 192.168.1.1: icmp_seq=1 ttl=64 time=1.24 ms
   64 bytes from 192.168.1.1: icmp_seq=2 ttl=64 time=0.672 ms
   64 bytes from 192.168.1.1: icmp_seq=3 ttl=64 time=0.855 ms
   --- 192.168.1.1 ping statistics ---
   3 packets transmitted, 3 received, 0% packet loss, time 2002ms
   rtt min/avg/max/mdev = 0.672/0.923/1.243/0.239 ms
   ```

2. Sniff traffic on the hub FortiGate:

   ```
   # diagnose sniffer packet any 'icmp or (udp and port 4789)' 4 0 ainterfaces=[any] filters=[icmp or (udp and port 4789)]
   15:00:01.438230 SPOKES in 192.168.255.2.4790 -&gt; 192.168.255.1.4789: udp 106 <<<1
   15:00:01.438256 SPOKES_VXLAN in 192.168.1.2 -&gt; 192.168.1.1: icmp: echo request <<<2
   15:00:01.438260 port1 out 192.168.1.2 -&gt; 192.168.1.1: icmp: echo request <<<3
   15:00:01.438532 port1 in 192.168.1.1 -&gt; 192.168.1.2: icmp: echo reply
   15:00:01.438536 SPOKES_VXLAN out 192.168.1.1 -&gt; 192.168.1.2: icmp: echo reply
   15:00:01.438546 SPOKES out 192.168.255.1.4851 -&gt; 192.168.255.2.4789: udp 106
   ```

Defining gateway IP addresses in IPsec with mode-config and DHCP

For an IPsec tunnel, the gateway IP address (giaddr) can be defined on a DHCP relay agent. Both IPv4 and IPv6 addresses are supported. An IPsec tunnel with mode-config and DHCP relay cannot specify a DHCP subnet range to the DHCP server.

The DHCP server assigns an IP address based on the giaddr set on the IPSec phase1 interface and sends an offer to this subnet. The DHCP server must have a route to the specified subnet giaddr.
Example

To define the gateway IP address on the DHCP relay server:

1. Configure the VPN IPsec phase1 interface:
   ```
   config vpn ipsec phase1-interface
   edit "ipv4"
   set type dynamic
   set interface "port2"
   set peertype any
   set net-device disable
   set mode-cfg enable
   set proposal des-md5 des-shal
   set dpd on-idle
   set dhgrp 5
   set assign-ip-from dhcp
   set dhcp-ra-giaddr 11.11.11.1
   set psksecret ***********
   set dpd-retryinterval 60
   next
   end
   ```

 IPv6 could also be configured:
   ```
   config vpn ipsec phase1-interface
   edit "ipv6"
   set type dynamic
   set interface "port2"
   set peertype any
   set net-device disable
   set mode-cfg enable
   set proposal des-md5 des-shal
   set dpd on-idle
   ```
FortiOS 7.2.0 Administration Guide
Fortinet Inc.

VPN

```plaintext
set dhgrp 5
set assign-ip-from dhcp
set dhcp6-ra-linkaddr 2000:11:11:11::1
set psksecret **********
set dpd-retryinterval 60
next end
```

2. Enable DHCP proxy and configure the DHCP server IP address:

```plaintext
config system settings
set dhcp-proxy enable
set dhcp-server-ip "10.1.1.1"
end
```

3. Repeat the above steps for FGT_C and subnet B.

FQDN support for remote gateways

FortiGate supports FQDN when defining an IPsec remote gateway with a dynamically assigned IPv6 address. When FortiGate attempts to connect to the IPv6 device, FQDN will resolve the IPv6 address even when the address changes.

Using FQDN to configure the remote gateway is useful when the remote end has a dynamic IPv6 address assigned by their ISP or DHCPv6 server.

To set the VPN to DDNS and configure FQDN:

```plaintext
config vpn ipsec phase1-interface
edit "ddns6"
    set type ddns
    set interface "agg1"
    set ip-version 6
    set ike-version 2
    set peertype any
    set net-device disable
    set proposal aes128-sha256 aes256-sha256 aes128gcm-prfsha256 aes256gcm-prfsha384
    chacha20poly1305-prfsha256
    set dpd on-idle
    set remotegw-ddns "rgwa61.vpnlab.org"
    set psksecret **********
next end
```

```plaintext
config vpn ipsec phase2-interface
edit "ddns6"
    set phasename "ddns6"
    set proposal aes128-shal aes256-shal aes128-sha256 aes256-sha256 aes128gcm aes256gcm
    chacha20poly1305
    set src-addr-type subnet6
    set dst-addr-type subnet6
    set src-subnet6 2003:1:1:1::/64
next end
```
FQDN resolves the IPv6 address

diagnose test application dnsproxy 7
vfid=0, name=rgwa61.vpnlab.org, ttl=3600:3547:1747
 2003:33:1:1::22 (ttl=3600)

FortiGate uses FQDN to connect to the IPv6 device

diagnose vpn tunnel list name ddns6
list ipsec tunnel by names in vd 0
--
name=ddns6 ver=2 serial=2 2003:33:1:1::0->2003:33:1:1::22:0 dst_mtu=1500
bound_if=32 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/520 options[0208]=npu frag-rfc
run_state=0 accept_traffic=1 overlay_id=0
proxyid_num=1 child_num=0 refcnt=10 ilast=9 olast=9 ad=/0
stat: rxp=0 txp=0 rxb=0 txb=0
dpd: mode=on-idle on=1 idle=20000ms retry=3 count=0 seqno=72340
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=ddns6 proto=0 sa=1 ref=2 serial=1
 src: 0:2003:1:1:1::/64:0
dst: 0::/0:
 SA: ref=1 options=10226 type=0 soft=0 mtu=1422 expire=42680/0B replaywin=2048
 seqno=1 esn=0 replaywin_lastseq=00000000 itn=0 qat=0 hash_search_len=1
 life: type=0 bytes=0/0 timeout=42901/43200
 dec: spi=ac7a5718 esp=aes key=16 9976b66280cc49f500d8edca093e03fb
 ah=sha1 key=20 4d94d76fc18df5a18c5206cd5f430fde48fe8
 enc: spi=7ab888ec esp=aes key=16 8d94d76fc18df5a18c5206cd5f430fde48fe8
 ah=sha1 key=20 ed0b52d27776e30149ee36af4fd4626681c2a3a1
 dec: pkeys/bytes=0/0, enc: pkeys/bytes=0/0
 npu_flag=00 npu_rgwy=2003:33:1:1::22 npu_lgwys=2003:33:1:1::1 npu_selid=0 dec npuid=0 enc npuid=0
run_tally=1

The tunnel can still connect to the FQDN address when the IPv6 address changes

diagnose debug application ike -1
diagnose debug enable
ike 0:ddns6: set oper down
ike 0:ddns6: carrier down
ike shrank heap by 159744 bytes
ike 0: cache rebuild start
ike 0:ddns6: sending DNS request for remote peer rgwa61.vpnlab.org
ike 0: send IPv6 DNS query : rgwa61.vpnlab.org
ike 0: cache rebuild done
ike 0:ddns6: remote IPv6 DDNS gateway is empty, retry to resolve it
ike 0: DNS response received for remote gateway rgwa61.vpnlab.org
ike 0: DNS rgwa61.vpnlab.org --> 2003:33:1:1::33
ike 2:test:4693: could not send IKE Packet(P1_RETRANSMIT):50.1.1.1:500->50.1.1.2:500, len=716: error 101:Network is unreachable
ike 0:ddns6: remote IPv6 DDNS gateway is empty, retry to resolve it
ike 0:ddns6: 'rgwa61.vpnlab.org' resolved to 2003:33:1:1::33
ike 0: cache rebuild start
ike 0:ddns6: cached as static-ddns.
ike 0: cache rebuild done
ike 0:ddns6: auto-negotiate connection
done

Windows IKEv2 native VPN with user certificate

In this example, IKEv2 with Extensible Authentication Protocol – Transport Layer Security (EAP-TLS) using mutual certificate authentication is configured. Mutual certificate authentication means that both the client and server use certificates to identify themselves. EAP uses RADIUS, which is handled by the Network Policy Server (NPS) on the Windows server. Certificates are generated and distributed through Active Directory Certificate Services (AD CS). An additional certificate is used to identify the IPsec gateway.

This example assumes that the following Windows server roles are installed and available:

- NPS (RADIUS)
- AD CS with a generated CA
- Group Policy Management
- DNS server

It is also assumed that a connection is established between the NPS and FortiGate, and a DNS entry exists for the NPS that the FortiGate can resolve.

Certificates

The following certificates are required:
- CA certificate for EAP-TLS to sign the client and server certificates.
 The CA certificate must be able to sign other certificates. It is created after AD CSs CA role installation. It is named lab-local-CA, as lab.local is the domain that is used in this example. The CA certificate is automatically installed on the server that is hosting the AD CS role. In this example, that server is also hosting the NPS and DNS server. The Key Usage specifies Certificate Signing.
- Client certificate for EAP-TLS used by the windows client.
 The client certificate is stored in the personal user certificate store and is used to authenticate the user. The certificate has Client Authentication and a SAN of the user's FQDN, and is signed by the CA. The CA is stored in Current User > Trusted Root Certification Authorities.
- Server certificate for EAP-TLS used by the server providing RADIUS authentication.
 The NPS certificate must be in the hosting server's certificate store so that the NPS can access it. It has Server Authentication and a SAN DNS name to match the server's IP address. The user must use the FQDN to connect to the VPN. If the IP address that the name resolves to is used, the certificate will not be considered valid.
- VPN certificate used to identify the FortiGate dialup gateway.
 The VPN certificate and private key are installed to the FortiGate using a CSR generated by the FortiGate

Configure the Windows server

The Windows server includes AD-CS, a RADIUS server, and a DNS server.

After the AD CS role has been installed and configured, the CA is ready to sign certificates.

Users and groups are defined first. The groups are configured to automatically receive certificates and relay membership to the FortiGate for granular access control through group matching in policies.

RADIUS is used to authorize connecting users. The RADIUS server returns users’ groups with the access-accept response, to indicate to the FortiGate what groups the users belong to.

To create security groups and users:

1. Open Active Directory Users and Computers.
2. Create two groups, Group1 and Group2.
3. Create two users, User1 and User2.
4. Add User1 to Group1 and User2 to Group2.

To create a certificate template to enable automatic enrollment for the user groups:

1. Open Certificate Authority.
2. In the navigation pane, expand the new CA, right-click Certificate Template and click Manage.
3. Configure a new certificate template:
 a. Right-click the User template and click Duplicate Template.
 b. On the General tab, enter a Template display name, such as User Auto Enroll.
 c. Enable Publish certificate in Active Directory and Do not automatically reenroll....
d. Configure the remaining settings as required, then go to the Request Handling tab.
e. Disable Allow private key to be exported and select Enroll subject without requiring any user input.
f. On the Security tab, in Group or user name, click Add.
g. Add Group1 and Group2.
h. Select each group and, under Permissions, enable Read, Enroll, and Autoenroll.
i. On the Extensions tab, click Application Policies then click Edit.
j. Remove all of the policies expect for Client Authentication.
k. Click OK then close the Certificate Templates console.

4. In the navigation pane, right-click Certificate Template and click New > Certificate Template to Issue.
5. Select the new certificate template, User Auto Enroll, then click OK.

To create a group policy to enable automatic enrollment:

1. Open the Group Policy Management console.
2. In the navigation pane, go to Forest:lab.local > Domains > lab.local, and then click Group Policy Objects.
3. Click Action, and then click New.
4. Set a Name for the new GPO then click OK.
5. Right-click the new GPO and click Edit.
6. In the Group Policy Management Editor navigation pane, go to User configuration > Windows Settings > Security Settings > Public Key Policies.
7. In the content pane, double-click Certificate Services Client - Auto-Enrollment.
8. Set Configuration Model to Enabled.
9. Enable Renew expired certificates... and Update certificates....
10. Click OK.

To verify that users are receiving certificates:

1. Log into an endpoint with a domain user.
2. On the server, open Certification Authority.
3. Expand the CA and select Issued Certificates.
4. Verify that the user logged into the endpoint is listed under Requested Name. You can also check the local user certificate store on the endpoint.

To generate and sign a CSR and import the signed certificate to the FortiGate:

1. On the FortiGate and go to System > Certificates and click Create/Import > Generate CSR.
2. Configure the CSR:

<table>
<thead>
<tr>
<th>Certificate Name</th>
<th>vpn.lab.local</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID Type</td>
<td>Domain Name</td>
</tr>
<tr>
<td>Domain Name</td>
<td>vpn.lab.local</td>
</tr>
<tr>
<td>Subject Alternative Name</td>
<td>DNS:vpn.lab.local</td>
</tr>
</tbody>
</table>

3. Configure the remaining settings as required, then click OK.
4. Download the CSR to a location that is accessible to the CA server, in this example: C:\CSR\
5. Sign the CSR with the previously created CA:
 a. Open the command prompt as an administrator and enter the following:

      ```
      certreq -submit -attrib "CertificateTemplate:WebServer" C:\CSR\vpn.lab.local.csr
      ```

 The Certification Authority List window opens.
 b. Select the CA and click OK.
 c. Save the signed certificate with a .cer file extension to a location that is accessible from the FortiGate.
6. Import the signed certificate to the FortiGate:
 a. On the FortiGate, go to System > Certificates and click Create/Import > Certificate.
 b. Click Import Certificate.
 c. Set Type to Local Certificate.
 d. Click Upload and locate and select the signed certificate.
 e. Click Create then click OK.

To configure network policies on the RADIUS server:

1. Open the Network Policy Server and, in the console tree, expand Policies.
2. Right-click on Network Policies and click New.
3. Enter a Policy name, such as VPN-Group1, then click Next.
4. Under Condition description click Add:
 a. Select User Groups, then click Add.
 b. Click Add Groups.
 c. Enter the group name, Group1, click Check Names to confirm the group.
 d. Click OK in both windows.
5. Click Next.
6. Make sure that Access granted is selected, then click Next.
7. On the Configure Authentication Methods page, click Add and add the EAP type Microsoft: Smart Care or other certificate.
8. Edit the EAP type, select the previously generated certificate, then click OK.

9. Deselect all of the Less secure authentication methods then click Next.
10. Configure constraints as needed, then click Next.
11. On the Configure Settings page, under RADIUS Attributes, select Vendor Specific, then click Add:
a. In the Attributes list, select Vendor-Specific, then click Add.

![Vendor-Specific Attribute Information](image)

b. In the Attribute Information window, click Add.

c. In the Vendor-Specific Attribute Information window, enter the Vendor Code, 12356, and select Yes. It conforms.

d. Click Configure Attribute and configure the following:

<table>
<thead>
<tr>
<th>Vendor-assigned attribute number</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute format</td>
<td>String</td>
</tr>
<tr>
<td>Attribute value</td>
<td>Group</td>
</tr>
</tbody>
</table>

![Vendor-assigned attribute number](image)

e. Click OK on all three windows and on the Add Vendor Specific Attribute window click Close.

12. Click Next.
13. On the Completing New Network Policy page, review the configuration, then click Finish.
14. Duplicate the policy for Group2, and call the new policy VPN-Group2.
15. Reorder the policies so that VPN-Group1 and VPN-Group2 are one and two in the processing order.

To add the FortiGate as a RADIUS client:

1. Open the Network Policy Server and, in the console tree, expand RADIUS Clients and Servers.
2. Right-click on RADIUS Clients and click New.
3. Add the FortiGate as a RADIUS client:

| Friendly name | FGT1 |
4. Click OK.

To create a DNS entry for the VPN connection:

1. Open the DNS Manager.
2. Go to DC > Forward Lookup Zones and select lab.local.
3. Right click in the content pane and select *New Host (A or AAAA)*.
4. Enter the VPN name. The FQDN should be auto-filled with *vpn.lab.local*.

5. Enter an IP address.
6. Click *Add Host*.
Configure the FortiGate

An IPsec VPN tunnel is configured to connect to the NPS (RADIUS) server for EAP authentication. For information about IPsec VPN, see IPsec VPNs on page 1330.

A RADIUS server is added to relay VPN authentication requests to the NPS server. For information about RADIUS servers, see RADIUS servers on page 1820.

Three groups are created that point to the RADIUS server for authentication: one group each for user group Group1, user group Group2, and the remote server. For information about groups, see User groups on page 1794.

Three firewall policies are created to test the functionality of the three user groups (see Policies on page 759):

- Policy 1 allows VPN clients to communicate with each other.
- Policy 2 allows VPN clients in the Group1 user group to communicate with Server1 and Server3.
- Policy 3 allows VPN clients in the Group2 user group to communicate with Server1 and Server2.

To configure IPsec VPN in the GUI:

1. Go to VPN > IPsec Wizard.
2. Enter a name for the VPN, such as VPN1.
3. Set Template type to Custom, then click Next.
4. In the Network section, configure the following:

<table>
<thead>
<tr>
<th>Remote Gateway</th>
<th>Dialup User</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>port1</td>
</tr>
<tr>
<td>Mode Config</td>
<td>Enable</td>
</tr>
<tr>
<td>Assign IP From</td>
<td>Range</td>
</tr>
<tr>
<td>Client Address Range</td>
<td>10.58.58.1-10.58.58.10</td>
</tr>
<tr>
<td>DNS Server</td>
<td>192.168.1.100</td>
</tr>
<tr>
<td>Enable IPv4 Split Tunnel</td>
<td>Enable</td>
</tr>
<tr>
<td>Accessible Networks</td>
<td>Select the networks that VPN users will have access to.</td>
</tr>
</tbody>
</table>

5. In the Authentication section, configure the following:

<table>
<thead>
<tr>
<th>Method</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate Name</td>
<td>vpn.lab.local</td>
</tr>
<tr>
<td>Version</td>
<td>2</td>
</tr>
<tr>
<td>Accept Types</td>
<td>Any peer ID</td>
</tr>
</tbody>
</table>

6. In the Phase 1 Proposal section, configure the following:

<table>
<thead>
<tr>
<th>Encryption / Authentication</th>
<th>AES128 / SHA256</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encryption / Authentication</td>
<td>AES256 / SHA256</td>
</tr>
<tr>
<td>Encryption / Authentication</td>
<td>AES128 / SHA1</td>
</tr>
<tr>
<td>Diffie-Hellman Groups</td>
<td>14, 5, 2</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Local ID</td>
<td>vpn.lab.local</td>
</tr>
</tbody>
</table>

7. In the *Phase 2 Selectors* section, configure the following:

<table>
<thead>
<tr>
<th>Local Address</th>
<th>Named Address - all</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Address</td>
<td>Named Address - all</td>
</tr>
<tr>
<td>Encryption / Authentication</td>
<td>AES128 / SHA256</td>
</tr>
<tr>
<td>Encryption / Authentication</td>
<td>AES256 / SHA256</td>
</tr>
<tr>
<td>Encryption / Authentication</td>
<td>AES128 / SHA1</td>
</tr>
<tr>
<td>Enable Perfect Forward Secrecy (PFS)</td>
<td>Disable</td>
</tr>
<tr>
<td>Autokey Keep Alive</td>
<td>Enable</td>
</tr>
</tbody>
</table>

8. Enable EAP settings in the CLI:

```bash
config vpn ipsec phase1-interface
edit VPN1
   set eap enable
   set eap-identity send-request
next
end
```

To configure IPsec VPN in the CLI:

```bash
config vpn ipsec phase1-interface
edit "VPN1"
   set type dynamic
   set interface "port1"
   set ike-version 2
   set authmethod signature
   set peertype any
   set net-device disable
   set mode-cfg enable
   set ipv4-dns-server1 192.168.1.100
   set proposal aes128-sha256 aes256-sha256 aes128-sha1
   set localid "vpn.lab.local"
   set dpd on-idle
   set dhgrp 14 5 2
   set eap enable
   set eap-identity send-request
   set certificate "vpn.lab.local"
   set ipv4-start-ip 10.58.58.1
   set ipv4-end-ip 10.58.58.10
   set ipv4-split-include "10/8_net"
   set dpd-retryinterval 60
next
end
config vpn ipsec phase2-interface
edit "VPN1"
   set phasename "VPN1"
```
set proposal aes128-sha256 aes256-sha256 aes128-sha1
set pfs disable
set keepalive enable
set src-addr-type name
set dst-addr-type name
set src-name "all"
set dst-name "all"

To add the RADIUS server in the GUI:
1. Go to User & Authentication > RADIUS Servers and click Create New.
2. Enter a name for the server, such as NPS.
3. Enter the Primary Server IP/Name and Secret.
 The Test User Credentials option will not work, as it does not use certificates for the test.
4. Click OK.

To add the RADIUS server in the CLI:

config user radius
 edit "NPS"
 set server <ip>
 set secret *********
 end

To configure the user groups in the GUI:
1. Go to User & Authentication > User Groups and click Create New.
2. Enter a name for the group, such as Group1.
3. In the Remote Groups table, click Add:
 a. Set Remote Server to the just created RADIUS server, NPS.
 b. Set Groups to Specify and enter Group1.
 c. Click OK.
4. Click OK.
5. Create a second group called Group2 with the same Remote Server and Group Name set to Group2.
6. Create a third group called RADIUS with the same Remote Server but no Group Name.

To configure the user groups in the CLI:

config user group
 edit "Group1"
 set member "NPS"
 config match
 edit 1
 set server-name "NPS"
 set group-name "Group1"
 next
 end
next
edit "Group2"
 set member "NPS"
 config match
 edit 1
 set server-name "NPS"
 set group-name "Group2"
 next
 end
next
edit "RADIUS"
 set member "NPS"
next
end

To configure the policies in the GUI:

1. Go to Policy & Objects > Firewall Policy and click Create New.
2. Configure policy 1:

<table>
<thead>
<tr>
<th>Name</th>
<th>VPN-VPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>VPN1</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>VPN1</td>
</tr>
<tr>
<td>Source</td>
<td>all, RADIUS</td>
</tr>
<tr>
<td>Destination</td>
<td>all</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>ALL</td>
</tr>
<tr>
<td>NAT</td>
<td>Disable</td>
</tr>
</tbody>
</table>

3. Click OK.
4. Click Create New again and configure policy 2:

<table>
<thead>
<tr>
<th>Name</th>
<th>VPN Group1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>VPN1</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>Server1, Server3</td>
</tr>
<tr>
<td>Source</td>
<td>all, Group1</td>
</tr>
<tr>
<td>Destination</td>
<td>10.10.0.1, 10.10.0.3</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>ALL</td>
</tr>
<tr>
<td>NAT</td>
<td>Disable</td>
</tr>
</tbody>
</table>

5. Click OK.
6. Click Create New again and configure policy 3:

<table>
<thead>
<tr>
<th>Name</th>
<th>VPN Group2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>VPN1</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>Server1, Server2</td>
</tr>
<tr>
<td>Source</td>
<td>all, Group2</td>
</tr>
<tr>
<td>Destination</td>
<td>10.10.0.1, 10.10.0.2</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>ALL</td>
</tr>
<tr>
<td>NAT</td>
<td>Disable</td>
</tr>
</tbody>
</table>

7. Click OK.

To configure the policies in the CLI:

```bash
config firewall policy
edit 1
    set name "VPN-VPN"
    set srcintf "VPN1"
    set dstintf "VPN1"
    set action accept
    set srcaddr "all" "RADIUS"
    set dstaddr "all"
    set schedule "always"
    set service "ALL"
    set nat disable
next
edit 2
    set name "VPN Group1"
    set srcintf "VPN1"
    set dstintf "Server1" "Server3"
    set action accept
    set srcaddr "all" "Group1"
    set dstaddr "10.10.0.1" "10.10.0.3"
    set schedule "always"
    set service "ALL"
    set nat disable
next
edit 3
    set name "VPN Group2"
    set srcintf "VPN1"
    set dstintf "Server1" "Server2"
    set action accept
    set srcaddr "all" "Group2"
    set dstaddr "10.10.0.1" "10.10.0.2"
    set schedule "always"
    set service "ALL"
    set nat disable
next
end
```
Configure the Windows client

The configuration is done on a Windows 10 Enterprise endpoint.

To add VPN connection and configure a VPN interface:

1. Open the *Settings* page and go to *Network & Internet > VPN*.
2. Click *Add a VPN connection*.
3. Configure the following:

<table>
<thead>
<tr>
<th>VPN provider</th>
<th>Windows (built-in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection name</td>
<td>vpn.lab.local</td>
</tr>
<tr>
<td>Server name or address</td>
<td>vpn.lab.local</td>
</tr>
<tr>
<td>VPN type</td>
<td>IKEv2</td>
</tr>
<tr>
<td>Type of sign-in info</td>
<td>Certificate</td>
</tr>
</tbody>
</table>

4. Click *Save*.
5. Go to *Network & Internet > Status* and, under *Advanced network settings*, click *Change adapter options*.
6. Select the VPN connection then click *Change settings of this connection*, or right-click on the connection and select *Properties*:
 a. Go to the *Settings* tab and, in the *Authentication* section, click *Properties*.
 b. Select *Use a certificate on this computer* and enable *Use simple certification selection*.
 c. Enable *Verify the server's identity by validating the certificate*.
 d. Optionally, enable *Connect to these servers* and enter your NPS server's FQDN, in this case *DC.lab.local*.
 e. In the *Trusted Root Certificate Authorities* list, select the CA *lab-local-CA*.
f. Click OK, then click OK again.

To test the connection:

1. Log in to the Windows endpoint as user1.
2. Open the network settings and connect to the vpn.lab.local VPN.
3. Ping each of the three servers to confirm that you can connect to server1 (10.10.0.1) and server3 (10.10.0.3), but not server2 (10.10.0.2).
4. Log out of the Windows endpoint, then log back in as user2.
5. Open the network settings and connect to the vpn.lab.local VPN.
6. Ping each of the three servers to confirm that you can connect to server1 (10.10.0.1) and server2 (10.10.0.2), but not server3 (10.10.0.3).

VPN IPsec troubleshooting

See the following IPsec troubleshooting examples:

- Understanding VPN related logs
- IPsec related diagnose commands on page 1613

Understanding VPN related logs

This section provides some IPsec log samples.

IPsec phase1 negotiating

```log
logid="0101037127" type="event" subtype="vpn" level="notice" vd="root" eventtime=1544132571 logdesc="Progress IPsec phase 1" msg="progress IPsec phase 1" action="negotiate"
```
remip=11.101.1.1
locip=173.1.1.1 remport=500 locport=500 outintf="port13"
cookies="e41eeeb2c92b337/0000000000000000" user="N/A" group="N/A" xauthuser="N/A"
xauthgroup="N/A" assignip=N/A vpntunnel="to_HQ" status="success" init="local"
mode="aggressive" dir="outbound" stage=1 role="initiator" result="OK"

IPsec phase 1 negotiated

logid="0101037127" type="event" subtype="vpn" level="notice" vd="root" eventtime=1544132571
logdesc="Progress IPsec phase 1" msg="progress IPsec phase 1" action="negotiate"
remip=11.101.1.1
locip=173.1.1.1 remport=500 locport=500 outintf="port13"
cookies="e41eeeb2c92b337/1230131a28eb4e73" user="N/A" group="N/A" xauthuser="N/A"
xauthgroup="N/A" assignip=N/A vpntunnel="to_HQ" status="success" init="local"
mode="aggressive" dir="outbound" stage=2 role="initiator" result="DONE"

IPsec phase 1 tunnel up

logid="0101037138" type="event" subtype="vpn" level="notice" vd="root" eventtime=1544132604
logdesc="IPsec connection status changed" msg="IPsec connection status change" action="tunnel-up"
remip=11.101.1.1 locip=173.1.1.1 remport=500 locport=500 outintf="port13"
cookies="5b1c59fab2029e43/bf517e686d3943d2" user="N/A" group="N/A" xauthuser="N/A"
xauthgroup="N/A" assignip=11.11.11.1 vpntunnel="to_HQ" tunnelip=N/A tunnelid=1530910918
tunneltype=ipsec duration=0 sentbyte=0 rcvdbyte=0 nextstat=0

IPsec phase 2 negotiate

logid="0101037129" type="event" subtype="vpn" level="notice" vd="root" eventtime=1544132604
logdesc="Progress IPsec phase 2" msg="progress IPsec phase 2" action="negotiate"
remip=11.101.1.1
locip=173.1.1.1 remport=500 locport=500 outintf="port13"
cookies="5b1c59fab2029e43/bf517e686d3943d2" user="N/A" group="N/A" xauthuser="N/A"
xauthgroup="N/A" assignip=11.11.11.1 vpntunnel="to_HQ" status="success" init="local"
mode="quick" dir="outbound" stage=1 role="initiator" result="OK"

IPsec phase 2 tunnel up

logid="0101037139" type="event" subtype="vpn" level="notice" vd="root" eventtime=1544132604
logdesc="IPsec phase 2 status changed" msg="IPsec phase 2 status change" action="phase2-up"
remip=11.101.1.1 locip=173.1.1.1 remport=500 locport=500 outintf="port13"
cookies="5b1c59fab2029e43/bf517e686d3943d2" user="N/A" group="N/A" xauthuser="N/A"
xauthgroup="N/A" assignip=11.11.11.1 vpntunnel="to_HQ"
phase2_name="to_HQ"

IPsec phase 2 sa install

logid="0101037133" type="event" subtype="vpn" level="notice" vd="root" eventtime=1544132604
logdesc="IPsec SA installed" msg="install IPsec SA" action="install_sa" remip=11.101.1.1
locip=173.1.1.1
VPN

remport=500 locport=500 outintf="port13" cookies="5b1c59fab2029e43/bf517e686d3943d2"
user="N/A" group="N/A" xauthuser="N/A" xauthgroup="N/A" assignip=11.11.11.1
vpntunnel="to_HQ" role="initiator" in_spi="ca646448" out_spi="747c10c6"

IPsec tunnel statistics

logid="0101037141" type="event" subtype="vpn" level="notice" vd="root" eventtime=1544131118
logdesc="IPsec tunnel statistics" msg="IPsec tunnel statistics action="tunnel-stats"
remip=10.1.100.15 locip=172.16.200.4 remport=500 locport=500 outintf="mgmt1"
cookies="3539884dbd8f3567/c32e4c1beca91b36"
user="N/A" group="N/A" xauthuser="N/A" xauthgroup="N/A" assignip=N/A
vpntunnel="L2tpoIPsec_0" tunnelip=10.1.100.15 tunnelid=1530910802 tunneltype="ipsec"
duration=6231 sentbyte=57343 rcvdbyte=142640 nextstat=60

IPsec phase2 tunnel down

logid="0101037138" type="event" subtype="vpn" level="notice" vd="root" eventtime=1544132571
logdesc="IPsec connection status changed" msg="IPsec connection status change"
action="tunnel-down" remip=11.101.1.1 locip=173.1.1.1 remport=500 locport=500
outintf="port13" cookies="30820aa390687e39/886e72bf5461fb8d" user="N/A" group="N/A"
xauthuser="N/A" xauthgroup="N/A" assignip=11.11.11.1 vpntunnel="to_HQ" tunnelip=11.101.1.1
tunnelid=1530910786 tunneltype="ipsec" duration=6425 sentbyte=504 rcvdbyte=152 nextstat=0

IPsec phase1 sa deleted

logid="0101037134" type="event" subtype="vpn" level="notice" vd="root" eventtime=1544132571
logdesc="IPsec phase 1 SA deleted" msg="delete IPsec phase 1 SA" action="delete_phase1_sa"
remip=11.101.1.1 locip=173.1.1.1 remport=500 locport=500 outintf="port13"
cookies="30820aa390687e39/886e72bf5461fb8d" user="N/A" group="N/A"
xauthuser="N/A" xauthgroup="N/A" assignip=11.11.11.1 vpntunnel="to_HQ"

IPsec related diagnose commands

This section provides IPsec related diagnose commands.

- **Daemon IKE summary information list**: `diagnose vpn ike status`

 connection: 2/50
 IKE SA: created 2/51 established 2/9 times 0/13/40 ms
 IPSec SA: created 1/13 established 1/7 times 0/8/30 ms

- **IPsec phase1 interface status**: `diagnose vpn ike gateway list`

 vd: root/0
 name: tofgtc
 version: 1
 interface: port13 42
 addr: 173.1.1.1.500 -> 172.16.200.3:500
 created: 4313s ago
 IKE SA: created 1/1 established 1/1 time 10/10/10 ms
 IPSec SA: created 0/0

 id/spi: 92 5639f7f8a5dc54c0/809a6c9bbd266a4b
direction: initiator
status: established 4313-4313s ago = 10ms
VPN proposal: aes128-sha256
key: 74aa3d63d88e10ea-8a1c73b296b06578
time/rekey: 86400/81786
DPD sent/recv: 00000000/00000000

vd: root/0
name: to_HQ
version: 1
interface: port13 42
addr: 173.1.1.1:500 -> 11.101.1.1:500
created: 1013s ago
assigned IPv4 address: 11.11.1.1/255.255.255.252
IKE SA: created 1/1 established 1/1 time 0/0/0 ms
IPsec SA: created 1/1 established 1/1 time 0/0/0 ms

id/spi: 95 255791bd30c749f4/c2505db65210258b
direction: initiator
status: established 1013-1013s ago = 0ms
proposal: aes128-sha256
key: bb101b9127ed5844-1582fd614d5a8a33
time/rekey: 86400/85086
DPD sent/recv: 00000000/00000010

- IPsec phase2 tunnel status: diagnose vpn tunnel list

list all ipsec tunnel in vd 0

nname=L2tpoIPsec ver=1 serial=6 172.16.200.4:0->0.0.0.0:0 tun_id=0.0.0.0
bound_if=4 lgwy=static/1 tun=intf/0 mode=dialup/2 encap=none/24 options[0018]=npu
create_dev
proxyid_num=0 child_num=0 refcnt=10 ilast=13544 olast=13544 ad=/0
stat: rxp=0 txp=0 rxb=0 txb=0
dpd: mode=on-idle on=0 idle=60000ms retry=3 count=0 seqno=0
natt: mode=none draft=0 interval=0 remote_port=0
run_tally=0

nname=to_HQ ver=1 serial=7 173.1.1.1:0->11.101.1.1:0 tun_id=11.101.1.1
bound_if=42 lgwy=static/1 tun=intf/0 mode=auto/1 encap=none/8 options[0008]=npu
proxyid_num=1 child_num=0 refcnt=13 ilast=10 olast=1112 ad=/0
stat: rxp=1 txp=4 rxb=152 txb=336
dpd: mode=on-demand on=1 idle=20000ms retry=3 count=0 seqno=5
natt: mode=none draft=0 interval=0 remote_port=0
proxyid=to_HQ proto=0 sa=1 ref=2 serial=1
src: 0.0.0.0.0/0.0.0.0.0
dst: 0.0.0.0.0/0.0.0.0.0
SA: ref=6 options=10226 type=00 soft=0 mtu=1438 expire=41773/0B replaywin=2048
 seqno=5 esn=0 replaywin_lastseq=00000002 itn=0
type: 01 bytes=0/0 timeout=42900/43200
dec: spi=ca64644a esp=aes key=16 6cc873fdef91337a6cf9b6948972c90f
 ah=sha1 key=20 e576dbe3ff92605931e5670ad57763c50c7dc73a
dec: spi=747c10c8 esp=aes key=16 5060ad8d6da6824204a3596c0bd762f4
 ah=sha1 key=20 52965cbd56ad95212fc82592d26c0401948abe
dec: pkts/bytes=1/84, enc:pkts/bytes=4/608
npu_flag=03 npu_rgwy=1.101.1.1 npu_lgw=173.1.1.1 npu_selid=5 dec_npuid=2 enc_npuid=2

FortiOS 7.2.0 Administration Guide 1614
Fortinet Inc.
- **Packets encrypted/decrypted counter**: `diagnose vpn ipsec status`

All ipsec crypto devices in use:

NP6_0:

Encryption (encrypted/decrypted)
```
null : 0 1.
des : 0 1.
3des : 0 1.
aes : 0 1.
aes-gcm : 0 1.
aria : 0 1.
seed : 0 1.
chacha20poly1305 : 0 1.
```

Integrity (generated/validated)
```
null : 0 1.
md5 : 0 1.
sha1 : 0 1.
sha256 : 0 1.
sha384 : 0 1.
sha512 : 0 1.
```

NP6_1:

Encryption (encrypted/decrypted)
```
null : 0 1.
des : 0 1.
3des : 0 1.
aes : 337152 46069
aes-gcm : 0 1.
aria : 0 1.
seed : 0 1.
chacha20poly1305 : 0 1.
```

Integrity (generated/validated)
```
null : 0 1.
md5 : 0 1.
sha1 : 337152 46069
sha256 : 0 1.
sha384 : 0 1.
sha512 : 0 1.
```

NPU Host Offloading:

Encryption (encrypted/decrypted)
```
null : 0 1.
des : 0 1.
3des : 0 1.
aes : 38 1.
aes-gcm : 0 1.
aria : 0 1.
seed : 0 1.
chacha20poly1305 : 0 1.
```

Integrity (generated/validated)
```
null : 0 1.
md5 : 0 1.
sha1 : 38 1.
sha256 : 0 1.
sha384 : 0 1.
sha512 : 0 1.
CP8:

Encryption (encrypted/decrypted)
- null : 0 1.
- des : 0 1.
- 3des : 1337 1582
- aes : 71 11426
- aes-gcm : 0 1.
- aria : 0 1.
- seed : 0 1.
- chacha20poly1305 : 0 1.

Integrity (generated/validated)
- null : 0 1.
- md5 : 48 28
- sha1 : 1360 12980
- sha256 : 0 1.
- sha384 : 0 1.
- sha512 : 0 1.

SOFTWARE:

Encryption (encrypted/decrypted)
- null : 0 1.
- des : 0 1.
- 3des : 0 1.
- aes : 0 1.
- aes-gcm : 0 1.
- aria : 0 1.
- seed : 0 1.
- chacha20poly1305 : 0 1.

Integrity (generated/validated)
- null : 0 1.
- md5 : 0 1.
- sha1 : 0 1.
- sha256 : 0 1.
- sha384 : 0 1.
- sha512 : 0 1.

- diagnose debug application ike -1
- diagnose vpn ike log-filter dst-addr4 11.101.1.1
- diagnose vpn ike log-filter src-addr4 173.1.1.1

# ike 0:to_HQ:101: initiator: aggressive mode is sending 1st message...
ike 0:to_HQ:101: cookie dff03f1d4820222a/0000000000000000
ike 0:to_HQ:101: sent IKE msg (agg_ilsend): 173.1.1.1:500->11.101.1.1:500, len=912,
id=ddf03f1d4820222a/0000000000000000
ike 0: comes 11.101.1.1:500->173.1.1.1:500, ifindex=42....
ike 0: IKEv1 exchange=Aggressive id=ddf03f1d4820222a/6c2caf4d5f5bab75 len=624
ike 0:to_HQ:101: initiator: aggressive mode get 1st response...
ike 0:to_HQ:101: VID RFC 3947 4A131C810703580455C5728F20E95452F
ike 0:to_HQ:101: VID DPD APCA71368A1F1966B8696FC77570100
ike 0:to_HQ:101: DPD negotiated
ike 0:to_HQ:101: VID draft-ietf-ipsra-isakmp-xauth-06.txt 09002689DFD6B712
ike 0:to_HQ:101: VID CISCO-UNITY 12F5F28C457168A9702D9FE274CCDO240
ike 0:to_HQ:101: peer supports UNITY
ike 0:to_HQ:101: VID FORTIGATE 8299031757A36082C66A6B21DE0000000
ike 0:to_HQ:101: peer is [[QualityAssurance62/FortiGate]]/FortiOS (v0 b0)
ike 0:to_HQ:101: VID FRAGMENTATION 4048B7D56EBCE888525E7DE7F00D6C2D3
ike 0:to_HQ:101: VID FRAGMENTATION 4048B7D56EBCE88525E7DE7F00D6C2D3C0000000
ike 0:to_HQ:101: peer identifier IPV4_ADDR 11.101.1.1
ike 0:to_HQ:101: negotiation result
ike 0:to_HQ:101: proposal id = 1:
ike 0:to_HQ:101: protocol id = ISAKMP:
ike 0:to_HQ:101: trans_id = KEY_IKE.
ike 0:to_HQ:101: encryption = IKE/none
ike 0:to_HQ:101: type=OAKLEY_ENCRYPT_ALG, val=AES_CBC, key-len=128
ike 0:to_HQ:101: type=OAKLEY_HASH_ALG, val=SHA2_256.
ike 0:to_HQ:101: type=AUTH_METHOD, val=PRE_SHARED_KEY_XAUTH_I.
ike 0:to_HQ:101: type=OAKLEY_GROUP, val=MODP2048.
ike 0:to_HQ:101: ISAKMP SA lifetime=86400
ike 0:to_HQ:101: received NAT-D payload type 20
ike 0:to_HQ:101: received NAT-D payload type 20
ike 0:to_HQ:101: selected NAT-T version: RFC 3947
ike 0:to_HQ:101: NAT not detected
ike 0:to_HQ:101: ISAKMP SA dff03f1d4820222a/6c2caf4df5bab75 key 16:D81CAE6B2500435BFF915491E80146F3
ike 0:to_HQ:101: PSK authentication succeeded
ike 0:to_HQ:101: authentication OK
ike 0:to_HQ:101: add INITIAL-CONTACT
ike 0:to_HQ:101: sent IKE msg (agg_12send): 173.1.1.1:500->11.101.1.1:500, len=172, id=dff03f1d4820222a/6c2caf4df5bab75
ike 0:to_HQ:101: established IKE SA dff03f1d4820222a/6c2caf4df5bab75
ike 0: comes 11.101.1.1:500->173.1.1.1:500, ifindex=42....
ike 0: IKEv1 exchange=Mode config id=diff03f1d4820222a/6c2caf4df5bab75:97d88fb4 len=92
ike 0:to_HQ:101: mode-cfg type 16521 request 0:
ike 0:to_HQ:101: mode-cfg type 16522 request 0:
ike 0:to_HQ:101: sent IKE msg (cfg_send): 173.1.1.1:500->11.101.1.1:500, len=108, id=dff03f1d4820222a/6c2caf4df5bab75:97d88fb4
ike 0: comes 11.101.1.1:500->173.1.1.1:500, ifindex=42....
ike 0: IKEv1 exchange=Mode config id=diff03f1d4820222a/6c2caf4df5bab75:3724f295 len=92
ike 0:to_HQ:101: sent IKE msg (cfg_send): 173.1.1.1:500->11.101.1.1:500, len=92, id=dff03f1d4820222a/6c2caf4df5bab75:3724f295
ike 0:to_HQ:101: initiating mode-cfg pull from peer
ike 0:to_HQ:101: mode-cfg request APPLICATION_VERSION
ike 0:to_HQ:101: mode-cfg request INTERNAL_IP4ADDRESS
ike 0:to_HQ:101: mode-cfg request INTERNAL_IP4_NETMASK
ike 0:to_HQ:101: mode-cfg request UNITY_SPLIT_INCLUDE
ike 0:to_HQ:101: mode-cfg request UNITY_PFS
ike 0:to_HQ:101: sent IKE msg (cfg_send): 173.1.1.1:500->11.101.1.1:500, len=140, id=dff03f1d4820222a/6c2caf4df5bab75:3bca961f
ike 0: comes 11.101.1.1:500->173.1.1.1:500, ifindex=42....
ike 0: IKEv1 exchange=Mode config id=diff03f1d4820222a/6c2caf4df5bab75:3bca961f len=172
ike 0:to_HQ:101: mode-cfg type 1 response 4:0B0B0B0B
ike 0:to_HQ:101: mode-cfg received INTERNAL_IP4ADDRESS 11.11.1.1
ike 0:to_HQ:101: mode-cfg type 2 response 4:FFFFFFFF
ike 0:to_HQ:101: mode-cfg received INTERNAL_IP4_NETMASK 255.255.255.255
ike 0:to_HQ:101: mode-cfg received UNITY_PFS 1
ike 0:to_HQ:101: mode-cfg type 28676 response 28:0A016400FFFFFF0000000000000A02F00000000000000
ike 0:to_HQ:101: mode-cfg received UNITY_SPLIT_INCLUDE 0 10.1.100.0/255.255.255.0:0 local port 0
ike 0:to_HQ:101: mode-cfg received UNITY_SPLIT_INCLUDE 0 10.1.101.0/255.255.255.0:0 local port 0
ike 0:to_HQ:101: mode-cfg received APPLICATION_VERSION 'FortiGate-100D
v6.0.3,build0200,181009 (GA)'
ike 0:to_HQ: mode-cfg add 11.11.11.1/255.255.255.252 to 'to_HQ'/58
ike 0:to_HQ: set oper up
ike 0:to_HQ: schedule auto-negotiate
ike 0:to_HQ:101: no pending Quick-Mode negotiations
ike shrank heap by 159744 bytes
ike 0:to_HQ:to_HQ: IPsec SA connect 42 173.1.1.1->11.101.1.1:0
ike 0:to_HQ:to_HQ: using existing connection
# ike 0:to_HQ:to_HQ: config found
ike 0:to_HQ:to_HQ: IPsec SA connect 42 173.1.1.1->11.101.1.1:500 negotiating
ike 0:to_HQ:101: cookie dff03f1d4820222a/6c2caf4dc5bab75:32f4cc01
ike 0:to_HQ:101:to_HQ:259: initiator selectors 0 0:0.0.0.0/0.0.0.0:0:0-
ike 0:to_HQ:101: sent IKE msg (quick_i1send): 173.1.1.1:500->11.101.1.1:500, len=620,
id=dff03f1d4820222a/6c2caf4dc5bab75:32f4cc01
ike 0: comes 11.101.1.1:500->173.1.1.1:500, ifindex=42....
ie 0: IKEv1 exchange=Quick id=dff03f1d4820222a/6c2caf4dc5bab75:32f4cc01 len=444
ike 0:to_HQ:101:to_HQ:259: responder selectors 0:0.0.0.0/0.0.0.0:0:0:0:0:
ie 0:to_HQ:101:to_HQ:259: my proposal:
ie 0:to_HQ:101:to_HQ:259: proposal id = 1:
ie 0:to_HQ:101:to_HQ:259: protocol id = IPSEC_ESP:
ie 0:to_HQ:101:to_HQ:259: PFS DH group = 14
ike 0:to_HQ:101:to_HQ:259: trans_id = ESP_AES_CBC (key_len = 128)
ie 0:to_HQ:101:to_HQ:259: encapsulation = ENCAPSULATION_MODE_TUNNEL
type = AUTH_ALG, val=SHA1
ike 0:to_HQ:101:to_HQ:259: trans_id = ESP_AES_CBC (key_len = 256)
ie 0:to_HQ:101:to_HQ:259: encapsulation = ENCAPSULATION_MODE_TUNNEL
type = AUTH_ALG, val=SHA1
ike 0:to_HQ:101:to_HQ:259: trans_id = ESP_AES_CBC (key_len = 128)
ie 0:to_HQ:101:to_HQ:259: encapsulation = ENCAPSULATION_MODE_TUNNEL
type = AUTH_ALG, val=SHA2_256
ike 0:to_HQ:101:to_HQ:259: trans_id = ESP_AES_CBC (key_len = 256)
ie 0:to_HQ:101:to_HQ:259: encapsulation = ENCAPSULATION_MODE_TUNNEL
type = AUTH_ALG, val=SHA2_256
ike 0:to_HQ:101:to_HQ:259: trans_id = ESP_AES_CBC (key_len = 128)
ie 0:to_HQ:101:to_HQ:259: encapsulation = ENCAPSULATION_MODE_TUNNEL
type = AUTH_ALG, val=NULL
ike 0:to_HQ:101:to_HQ:259: trans_id = ESP_AES_CBC (key_len = 256)
ie 0:to_HQ:101:to_HQ:259: encapsulation = ENCAPSULATION_MODE_TUNNEL
type = AUTH_ALG, val=NULL
ike 0:to_HQ:101:to_HQ:259: trans_id = ESP_CBC_AES (key_len = 256)
ie 0:to_HQ:101:to_HQ:259: encapsulation = ENCAPSULATION_MODE_TUNNEL
type = AUTH_ALG, val=NULL
ike 0:to_HQ:101:to_HQ:259: trans_id = ESP_CBC_AES (key_len = 128)
ie 0:to_HQ:101:to_HQ:259: encapsulation = ENCAPSULATION_MODE_TUNNEL
type = AUTH_ALG, val=NULL
ike 0:to_HQ:101:to_HQ:259: incoming proposal:
ie 0:to_HQ:101:to_HQ:259: proposal id = 1:
ie 0:to_HQ:101:to_HQ:259: protocol id = IPSEC_ESP:
ie 0:to_HQ:101:to_HQ:259: PFS DH group = 14
ike 0:to_HQ:101:to_HQ:259: trans_id = ESP_AES_CBC (key_len = 128)
ie 0:to_HQ:101:to_HQ:259: encapsulation = ENCAPSULATION_MODE_TUNNEL
type = AUTH_ALG, val=SHA1
ike 0:to_HQ:101:to_HQ:259: schedule auto-negotiate
ike 0:to_HQ:101:to_HQ:259: replay protection enabled
ie 0:to_HQ:101:to_HQ:259: IPsec SA selectors #src=1 #dst=1
SSL VPN

The following topics provide information about SSL VPN in FortiOS 7.2.0.

- SSL VPN best practices on page 1619
- SSL VPN quick start on page 1622
- SSL VPN tunnel mode on page 1629
- SSL VPN web mode for remote user on page 1638
- SSL VPN authentication on page 1648
- SSL VPN to IPsec VPN on page 1738
- SSL VPN protocols on page 1745
- Configuring OS and host check on page 1747
- FortiGate as SSL VPN Client on page 1753
- Dual stack IPv4 and IPv6 support for SSL VPN on page 1762
- Disable the clipboard in SSL VPN web mode RDP connections on page 1773
- SSL VPN IP address assignments on page 1778
- SSL VPN troubleshooting on page 1780
- Restricting SSL VPN access to rogue/non-compliant devices with Security Fabric

SSL VPN best practices

Securing remote access to network resources is a critical part of security operations. SSL VPN allows administrators to configure, administer, and deploy a remote access strategy for their remote workers. When not in use, SSL VPN can be disabled.

Choosing the correct mode of operation and applying the proper levels of security are integral to providing optimal performance and user experience, and keeping your user data safe.

The below guidelines outline selecting the correct SSL VPN mode for your deployment and employing best practices to ensure that your data are protected.

Information about SSL VPN throughput and maximum concurrent users is available on your device's datasheet; see Next-Generation Firewalls Models and Specifications.
**Tunnel mode**

In tunnel mode, the SSL VPN client encrypts all traffic from the remote client computer and sends it to the FortiGate through an SSL VPN tunnel over the HTTPS link between the user and the FortiGate.

The FortiGate establishes a tunnel with the client, and assigns a virtual IP (VIP) address to the client from a range reserved addresses. While the underlying protocols are different, the outcome is very similar to a IPsec VPN tunnel. All client traffic is encrypted, allowing the users and networks to exchange a wide range of traffic, regardless of the application or protocols.

Use this mode if you require:

- A wide range of applications and protocols to be accessed by the remote client.
- No proxying is done by the FortiGate.
- Straightforward configuration and administration, as traffic is controlled by firewall policies.
- A transparent experience for the end user. For example, a user that needs to RDP to their server only requires a tunnel connection; they can then use the usual client application, like Windows Remote Desktop, to connect.

Full tunneling forces all traffic to pass through the FortiGate (see SSL VPN full tunnel for remote user on page 1629). Split tunneling only routes traffic to the designated network through the FortiGate (see SSL VPN split tunnel for remote user on page 1622).

**Limitations**

Tunnel mode requires that the FortiClient VPN client be installed on the remote end. The standalone FortiClient VPN client is free to use, and can accommodate SSL VPN and IPsec VPN tunnels. For supported operating systems, see the FortiClient Technical Specifications.

**Web mode**

Web-only mode provides clientless network access using a web browser with built-in SSL encryption. Users authenticate to FortiGate's SSL VPN Web Portal, which provides access to network services and resources, including HTTP/HTTPS, Telnet, FTP, SMB/CIFS, VNC, RDP, and SSH. When a user starts a connection to a server from the web portal, FortiOS proxies this communication with the server. All communication between the FortiGate and the user continues to be over HTTPS, regardless of the service that is being accessed.

The clipboard can be disabled for SSL VPN web mode RDP/VNC connections, see Disable the clipboard in SSL VPN web mode RDP connections on page 1773.

Use this mode if you require:

- A clientless solution in which all remote services are access through a web portal.
- Tight control over the contents of the web portal.
- Limited services provided to the remote users.

**Limitations**

- Multiple applications and protocols are not supported.
- VNC and RDP access might have limitations, such as certain shortcut keys not being supported.
- In some configurations RDP can consume a significant amount of memory and CPU time.
- Firewall performance might decrease as remote usage increases.
- Highly customized web pages might not render correctly.
**Security best practices**

**Integrate with authentication servers**

For networks with many users, integrate your user configuration with existing authentication servers through LDAP, RADIUS, or FortiAuthenticator.

By integrating with existing authentication servers, such as Windows AD, there is a lower change of making mistakes when configuring local users and user groups. Your administration effort is also reduced.

See SSL VPN with LDAP user authentication on page 1649 for more information.

**Use a non-factory SSL certificate for the SSL VPN portal**

Your certificate should identify your domain so that a remote user can recognize the identity of the server or portal that they are accessing through a trusted CA.

The default Fortinet factory self-signed certificates are provided to simplify initial installation and testing. If you use these certificates you are vulnerable to man-in-the-middle attacks, where an attacker spoofs your certificate, compromises your connection, and steals your personal information. It is highly recommended that you purchase a server certificate from a trusted CA to allow remote users to connect to SSL VPN with confidence. See Procuring and importing a signed SSL certificate on page 2175 for more information.

Enabling the Do not Warn Invalid Server Certificate option on the client disables the certificate warning message, potentially allowing users to accidentally connect to untrusted servers. Disabling invalid server certificate warnings is not recommended.

**Use multi-factor authentication**

Multi-factor authentication (MFA) ensures that the end-user is who they claim to be by requiring at least two factors - a piece of information that the user knows (password), and an asset that the user has (OTP). A third factor, something a user is (fingerprint or face), may be enabled as well. FortiToken Mobile is typically used for MFA.

FortiGate comes with two free FortiTokens, and more can be purchased from the FortiToken Mobile iOS app or through Fortinet partners.

See SSL VPN with FortiToken mobile push authentication on page 1678 for more information.

2FA, a subset of MFA, can also be set up with email tokens. See Email Two-Factor Authentication on FortiGate for information.

**Deploy user certificates for remote SSL VPN users**

This method of 2FA uses a user certificate as the second authentication factor. This is more secure, as it identifies the end user using a certificate. The configuration and administration of this solution is significantly more complicated, and requires administrators with advanced knowledge of the FortiGate and certificate deployment.

See SSL VPN with certificate authentication on page 1660 for more information.

**Define your minimum supported TLS version and cipher suites**

Minimum and maximum supported TLS version can be configured in the FortiGate CLI. The cipher algorithm can also be customized.

See How to control the SSL version and cipher suite for SSL VPN for more information.
**VPN**

**Properly administer firewall policies and profiles against only the access level required for the remote user**

Users do not all require the same access. Access should only be granted after careful considerations. Typically, users are placed in groups, and each group is allowed access to limited resources.

Using SSL VPN realms simplifies defining the control structure for mapping users and groups to the appropriate resources.

See SSL VPN multi-realm on page 1725 for more information.

**Disable SSL VPN**

After the SSL VPN settings have been configured, SSL VPN can be disabled when not in use.

**To disable SSL VPN in the GUI:**

1. Go to **VPN > SSL-VPN Settings**.
2. Disable **Enable SSL-VPN**.
3. Click **Apply**.

**To disable SSL VPN in the CLI:**

```bash
config vpn ssl settings
 set status disable
end
```

**SSL VPN quick start**

The following topics provide introductory instructions on configuring SSL VPN:

- SSL VPN split tunnel for remote user on page 1622
- Connecting from FortiClient VPN client on page 1625
- Set up FortiToken multi-factor authentication on page 1627
- Connecting from FortiClient with FortiToken on page 1628

**SSL VPN split tunnel for remote user**

This is a sample configuration of remote users accessing the corporate network and internet through an SSL VPN by tunnel mode using FortiClient but accessing the Internet without going through the SSL VPN tunnel.
Sample topology

![Sample topology diagram]

Sample configuration

WAN interface is the interface connected to ISP. This example shows static mode. You can also use DHCP or PPPoE mode. The SSL VPN connection is established over the WAN interface.

The split tunneling routing address cannot explicitly use an FQDN or an address group that includes an FQDN. To use an FQDN, leave the routing address blank and apply the FQDN as the destination address of the firewall policy.

To configure SSL VPN using the GUI:

1. Configure the interface and firewall address. The port1 interface connects to the internal network.
   a. Go to Network > Interfaces and edit the wan1 interface.
   b. Set IP/Network Mask to 172.20.120.123/255.255.255.0.
   c. Edit port1 interface and set IP/Network Mask to 192.168.1.99/255.255.255.0.
   d. Click OK.
   e. Go to Policy & Objects > Address and create an address for internal subnet 192.168.1.0.
2. Configure user and user group.
   a. Go to User & Authentication > User Definition to create a local user sslvpnuser1.
   b. Go to User & Authentication > User Groups to create a group sslvpnuser1.
3. Configure SSL VPN web portal.
   a. Go to VPN > SSL-VPN Portals to create a tunnel mode only portal my-split-tunnel-portal.
   b. Enable Split Tunneling.
   c. Select Routing Address to define the destination network that will be routed through the tunnel. Leave undefined to use the destination in the respective firewall policies.
4. Configure SSL VPN settings.
   a. Go to VPN > SSL-VPN Settings.
   b. For Listen on Interface(s), select wan1.
   c. Set Listen on Port to 10443.
   d. Choose a certificate for Server Certificate. The default is Fortinet.Factory.
   e. In Authentication/Portal Mapping All Other Users/Groups, set the Portal to tunnel-access.
5. Configure SSL VPN firewall policy.
   a. Go to Policy & Objects > Firewall Policy.
   b. Fill in the firewall policy name. In this example, sslvpn split tunnel access.
   c. Incoming interface must be SSL-VPN tunnel interface(ssl.root).
   d. Choose an Outgoing Interface. In this example, port1.
   e. Set the Source to all and group to sslvpngroup.
   f. In this example, the Destination is all.
   g. Set Schedule to always, Service to ALL, and Action to Accept.
   h. Click OK.

To configure SSL VPN using the CLI:

1. Configure the interface and firewall address.

   config system interface
   edit "wan1"
     set vdom "root"
     set ip 172.20.120.123 255.255.255.0
   next
end

2. Configure internal interface and protected subnet, then connect the port1 interface to the internal network.

   config system interface
   edit "port1"
     set vdom "root"
     set ip 192.168.1.99 255.255.255.0
   next
end

   config firewall address
   edit "192.168.1.0"
     set subnet 192.168.1.0 255.255.255.0
   next
end

3. Configure user and user group.

   config user local
   edit "sslvpnuser1"
     set type password
     set passwd your-password
   next
end

   config user group
   edit "sslvpngroup"
     set member "sslvpnuser1"
   next
end

4. Configure SSL VPN web portal.

   config vpn ssl web portal
   edit "my-split-tunnel-portal"
     set tunnel-mode enable
     set split-tunneling enable
5. Configure SSL VPN settings.

```conf
config vpn ssl settings
 set servercert "Fortinet_Factory"
 set tunnel-ip-pools "SSLVPN_TUNNEL_ADDR1"
 set tunnel-ipv6-pools "SSLVPN_TUNNEL_IPV6_ADDR1"
 set source-interface "wan1"
 set source-address "all"
 set source-address6 "all"
 set default-portal "full-access"
config authentication-rule
 edit 1
 set groups "sslvpngroup"
 set portal "my-split-tunnel-portal"
next
end
```

6. Configure one SSL VPN firewall policy to allow remote user to access the internal network. Traffic is dropped from internal to remote client.

```conf
config firewall policy
 edit 1
 set name "sslvpn split tunnel access"
 set srcintf "ssl.root"
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "192.168.1.0"
 set groups "sslvpngroup"
 set action accept
 set schedule "always"
 set service "ALL"
next
end
```

**Connecting from FortiClient VPN client**

For FortiGate administrators, a free version of FortiClient VPN is available which supports basic IPsec and SSL VPN and does not require registration with EMS. This version does not include central management, technical support, or some advanced features.

**Downloading and installing the standalone FortiClient VPN client**

You can download the free VPN client from [FNDN](#) or [FortiClient.com](#).

When the free VPN client is run for the first time, it displays a disclaimer. You cannot configure or create a VPN connection until you accept the disclaimer and click *I accept*.
Configuring an SSL VPN connection

To configure an SSL VPN connection:

1. On the Remote Access tab, click on the settings icon and then Add a New Connection.

   ![Add a New Connection](image)

2. Select SSL-VPN, then configure the following settings:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection Name</td>
<td>SSLVPNtoHQ</td>
</tr>
<tr>
<td>Description</td>
<td>(Optional)</td>
</tr>
<tr>
<td>Remote Gateway</td>
<td>172.20.120.123</td>
</tr>
<tr>
<td>Customize port</td>
<td>10443</td>
</tr>
<tr>
<td>Client Certificate</td>
<td>Prompt on connect or the certificate from the dropdown list.</td>
</tr>
<tr>
<td>Authentication</td>
<td>Select Prompt on login for a prompt on the connection screen</td>
</tr>
</tbody>
</table>

3. Click Save to save the VPN connection.
Connecting to SSL VPN

To connect to SSL VPN:

1. On the Remote Access tab, select the VPN connection from the dropdown list. Optionally, you can right-click the FortiTray icon in the system tray and select a VPN configuration to connect.
2. Enter your username and password.
3. Click the Connect button.
4. After connecting, you can now browse your remote network. Traffic to 192.168.1.0 goes through the tunnel, while other traffic goes through the local gateway. FortiClient displays the connection status, duration, and other relevant information.
5. Click the Disconnect button when you are ready to terminate the VPN session.

Checking the SSL VPN connection

To check the SSL VPN connection using the GUI:

1. On the FortiGate, go to VPN > Monitor > SSL-VPN Monitor to verify the list of SSL users.
2. On the FortiGate, go to Log & Report > Forward Traffic to view the details of the SSL entry.

To check the tunnel log in using the CLI:

```
get vpn ssl monitor
SSL VPN Login Users:
Index User Auth Type Timeout From HTTP in/out HTTPS in/out
 0 sslvpnuser1 1(1) 291 10.1.100.254 0/0 0/0

SSL VPN sessions:
Index User Source IP Duration I/O Bytes Tunnel/Dest IP
 0 sslvpnuser1 10.1.100.254 9 22099/43228 10.212.134.200
```

Set up FortiToken multi-factor authentication

This configuration adds multi-factor authentication (MFA) to the split tunnel configuration (SSL VPN split tunnel for remote user on page 1622). It uses one of the two free mobile FortiTokens that is already installed on the FortiGate.

To configure MFA using the GUI:

1. Configure a user and user group:
   a. Go to User & Authentication > User Definition and edit local user sslvpnuser1.
   b. Enable Two-factor Authentication.
   c. For Authentication Type, click FortiToken and select one mobile Token from the list.
   d. Enter the user's Email Address.
   e. Enable Send Activation Code and select Email.
   f. Click Next and click Submit.
2. Activate the mobile token.
   When a FortiToken is added to user sslvpnuser1, an email is sent to the user's email address. Follow the instructions to install your FortiToken mobile application on your device and activate your token.
To configure MFA using the CLI:

1. Configure a user and user group:
   ```
 config user local
 edit "sslvpnuser1"
 set type password
 set two-factor fortitoken
 set fortitoken <select mobile token for the option list>
 set email-to <user's email address>
 set passwd <user's password>
 next
 end
 config user group
 edit "sslvpngroup"
 set member "sslvpnuser1"
 next
 end

 2. Activate the mobile token.
 When a FortiToken is added to user sslvpnuser1, an email is sent to the user's email address. Follow the instructions to install your FortiToken mobile application on your device and activate your token.

Connecting from FortiClient with FortiToken

To activate your FortiToken:

1. On your device, open FortiToken Mobile. If this is your first time opening the application, it may prompt you to create a PIN for secure access to the application and tokens.

2. You should have received your notification via email, select + and use the device camera to scan the token QR code in your email.

3. FortiToken Mobile provisions and activates your token and generates token codes immediately. To view the OTP's digits, select the eye icon. After you open the application, FortiToken Mobile generates a new six-digit OTP every 30 seconds.

264364 🕵️‍♂️
To connect to SSL VPN:

1. On the Remote Access tab, select the VPN connection from the dropdown list. Optionally, you can right-click the FortiTray icon in the system tray and select a VPN configuration to connect.
2. Enter your username and password.
3. Click the Connect button.
4. A Token field will appear, prompting you for the FortiToken code. Enter the FortiToken code from your Mobile device.
5. After connecting, you can now browse your remote network. Traffic to 192.168.1.0 goes through the tunnel, while other traffic goes through the local gateway. FortiClient displays the connection status, duration, and other relevant information.
6. Click the Disconnect button when you are ready to terminate the VPN session.

SSL VPN tunnel mode

The following topics provide instructions on configuring SSL VPN tunnel mode:

- SSL VPN full tunnel for remote user
- SSL VPN tunnel mode host check
- SSL VPN split DNS on page 1635

SSL VPN full tunnel for remote user

This is a sample configuration of remote users accessing the corporate network and internet through an SSL VPN by tunnel mode using FortiClient.

Sample topology

![Sample topology diagram](image)

Sample configuration

WAN interface is the interface connected to ISP. This example shows static mode. You can also use DHCP or PPPoE mode. The SSL VPN connection is established over the WAN interface.

To configure SSL VPN using the GUI:

1. Configure the interface and firewall address:
 a. Go to Network > Interfaces and edit the wan1 interface.
 b. Set IP/Network Mask to 172.20.120.123/255.255.255.0.
 c. Edit port1 interface and set IP/Network Mask to 192.168.1.99/255.255.255.0.
 d. Click OK.
2. Configure user and user group:
 a. Go to User & Authentication > User Definition to create a local user sslvpnuser1.
 b. Go to User & Authentication > User Groups to create a group sslvpnuser1 with the member sslvpnuser1.
3. Configure SSL VPN web portal:
 a. Go to User & Authentication > User Groups to create a group sslvpnuser1.
 b. Disable Split Tunneling.
4. Configure SSL VPN settings:
 a. Go to User & Authentication > User Groups to create a group sslvpnus
 b. For Listen on Interface(s), select wan1.
 c. Set Listen on Port to 10443.
 d. Choose a certificate for Server Certificate. The default is Fortinet_Factory.
 e. In Authentication/Portal Mapping All Other Users/Groups, set the Portal to tunnel-access.
 f. Create new Authentication/Portal Mapping for group sslvpnuser1 mapping portal my-full-tunnel-portal.
5. Configure SSL VPN firewall policies to allow remote user to access the internal network:
 a. Go to Policy & Objects > Firewall Policy and click Create New.
 b. Set Name to sslvpn tunnel mode access.
 c. Set Incoming Interface to SSL-VPN tunnel interface(ssl.root).
 d. Set Outgoing Interface to port1.
 e. Set the Source Address to all and User to sslvpnuser1.
 f. Set Destination to all, Schedule to always, Service to ALL, and Action to Accept.
 g. Click OK.
 h. Click Create New.
 i. Set Name to sslvpn tunnel mode outgoing.
 j. Configure the same settings as the previous policy, except set Outgoing Interface to wan1.
 k. Click OK.

To configure SSL VPN using the CLI:

1. Configure the interface and firewall address.

   ```
   config system interface
   edit "wan1"
   set vdom "root"
   set ip 172.20.120.123 255.255.255.0
   next
   end
   ```

2. Configure the internal interface and protected subnet, then connect the port1 interface to the internal network.

   ```
   config system interface
   edit "port1"
   set vdom "root"
   set ip 192.168.1.99 255.255.255.0
   next
   end
   ```

3. Configure user and user group.

   ```
   config user local
   edit "sslvpnuser1"
   set type password
   ```
set passwd your-password
next
end

config user group
 edit "sslvpngroup"
 set member "sslvpnuser1"
 next
end

4. Configure SSL VPN web portal and predefine RDP bookmark for windows server.

config vpn ssl web portal
 edit "my-full-tunnel-portal"
 set tunnel-mode enable
 set split-tunneling disable
 set ip-pools "SSLVPN_TUNNEL_ADDR1"
 next
end

5. Configure SSL VPN settings.

config vpn ssl settings
 set servercert "Fortinet_Factory"
 set tunnel-ip-pools "SSLVPN_TUNNEL_ADDR1"
 set tunnel-ipv6-pools "SSLVPN_TUNNEL_IPV6_ADDR1"
 set source-interface "wan1"
 set source-address "all"
 set source-address6 "all"
 set default-portal "full-access"
config authentication-rule
 edit 1
 set groups "sslvpngroup"
 set portal "my-full-tunnel-portal"
 next
end
end

6. Configure SSL VPN firewall policies to allow remote user to access the internal network. Traffic is dropped from internal to remote client.

config firewall policy
 edit 1
 set name "sslvpn tunnel mode access"
 set srcintf "ssl.root"
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "all"
 set groups "sslvpngroup"
 set action accept
 set schedule "always"
 set service "ALL"
 next
 edit 2
 set name "sslvpn tunnel mode outgoing"
 set srcintf "ssl.root"
 set dstintf "wan1"
 set srcaddr "all"
To see the results:

2. Open the FortiClient Console and go to Remote Access.
3. Add a new connection:
 - Set VPN Type to SSL VPN.
 - Set Remote Gateway to the IP of the listening FortiGate interface, in this example, 172.20.120.123.
4. Select Customize Port and set it to 10443.
5. Save your settings.
6. Use the credentials you’ve set up to connect to the SSL VPN tunnel.
7. After connection, all traffic except the local subnet will go through the tunnel FGT.
8. Go to VPN > Monitor > SSL-VPN Monitor to verify the list of SSL users.
9. On the FortiGate, go to Log & Report > Forward Traffic and view the details for the SSL entry.

SSL VPN tunnel mode host check

This is a sample configuration of remote users accessing the corporate network through an SSL VPN by tunnel mode using FortiClient with AV host check.

Sample topology

![Sample topology diagram]

Sample configuration

WAN interface is the interface connected to ISP. This example shows static mode. You can also use DHCP or PPPoE mode. The SSL VPN connection is established over the WAN interface.

💡 The split tunneling routing address cannot explicitly use an FQDN or an address group that includes an FQDN. To use an FQDN, leave the routing address blank and apply the FQDN as the destination address of the firewall policy.
To configure SSL VPN using the GUI:

1. Configure the interface and firewall address. The port1 interface connects to the internal network.
 a. Go to Network > Interfaces and edit the wan1 interface.
 b. Set IP/Network Mask to 172.20.120.123/255.255.255.0.
 c. Edit port1 interface and set IP/Network Mask to 192.168.1.99/255.255.255.0.
 d. Click OK.
 e. Go to Policy & Objects > Address and create an address for internet subnet 192.168.1.0.

2. Configure user and user group.
 a. Go to User & Authentication > User Definition to create a local user sslvpnuser1.
 b. Go to User & Authentication > User Groups to create a group sslvpngroup with the member sslvpnuser1.

3. Configure SSL VPN web portal.
 a. Go to VPN > SSL-VPN Portals to create a tunnel mode only portal my-split-tunnel-portal.
 b. Enable Tunnel Mode and Enable Split Tunneling.
 c. Select Routing Address.

4. Configure SSL VPN settings.
 a. Go to VPN > SSL-VPN Settings.
 b. For Listen on Interface(s), select wan1.
 c. Set Listen on Port to 10443.
 d. Choose a certificate for Server Certificate.

 It is **HIGHLY** recommended that you acquire a signed certificate for your installation. Please review the SSL VPN best practices on page 1619 and learn how to Procuring and importing a signed SSL certificate on page 2175.

 e. In Authentication/Portal Mapping All Other Users/Groups, set the Portal to tunnel-access.

5. Configure SSL VPN firewall policy.
 a. Go to Policy & Objects > Firewall Policy.
 b. Fill in the firewall policy name. In this example, sslvpn tunnel access with av check.
 c. Incoming interface must be SSL-VPN tunnel interface(ssl.root).
 d. Choose an Outgoing Interface. In this example, port1.
 e. Set the Source to all and group to sslvpngroup.
 f. In this example, the Destination is all.
 g. Set Schedule to always, Service to ALL, and Action to Accept.
 h. Click OK.

6. Use CLI to configure SSL VPN web portal to enable the host to check for compliant antivirus software on the user’s computer.

   ```
   config vpn ssl web portal
       edit my-split-tunnel-access
           set host-check av
       next
   end
   ```
To configure SSL VPN using the CLI:

1. Configure the interface and firewall address.

   ```
   config system interface
   edit "wan1"
   set vdom "root"
   set ip 172.20.120.123 255.255.255.0
   next
   end
   ```

2. Configure internal interface and protected subnet, then connect the port1 interface to the internal network.

   ```
   config system interface
   edit "port1"
   set vdom "root"
   set ip 192.168.1.99 255.255.255.0
   next
   end
   ```

   ```
   config firewall address
   edit "192.168.1.0"
   set subnet 192.168.1.0 255.255.255.0
   next
   end
   ```

3. Configure user and user group.

   ```
   config user local
   edit "sslvpnuser1"
   set type password
   set passwd your-password
   next
   end
   ```

   ```
   config user group
   edit "sslvpngroup"
   set member "vpnuser1"
   next
   end
   ```

4. Configure SSL VPN web portal.

   ```
   config vpn ssl web portal
   edit "my-split-tunnel-portal"
   set tunnel-mode enable
   set split-tunneling enable
   set split-tunneling-routing-address "192.168.1.0"
   set ip-pools "SSLVPN_TUNNEL_ADDR1"
   next
   end
   ```

5. Configure SSL VPN settings.

   ```
   config vpn ssl settings
   set servercert "Fortinet_Factory"
   set tunnel-ip-pools "SSLVPN_TUNNEL_ADDR1"
   set tunnel-ipv6-pools "SSLVPN_TUNNEL_IPV6_ADDR1"
   set source-interface "wan1"
   set source-address "all"
   ```
set source-address6 "all"
set default-portal "full-access"
config authentication-rule
 edit 1
 set groups "sslvpngroup"
 set portal "my-split-tunnel-portal"
 next
end

6. Configure one SSL VPN firewall policy to allow remote user to access the internal network. Traffic is dropped from internal to remote client.

config firewall policy
 edit 1
 set name "sslvpn web mode access"
 set srcintf "ssl.root"
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "192.168.1.0"
 set groups "sslvpngroup"
 set action accept
 set schedule "always"
 set service "ALL"
 next
end

7. Configure SSL VPN web portal to enable the host to check for compliant antivirus software on the user’s computer:

config vpn ssl web portal
 edit my-split-tunnel-access
 set host-check av
 next
end

To see the results:

2. Open the FortiClient Console and go to Remote Access.
3. Add a new connection:
 - Set VPN Type to SSL VPN.
 - Set Remote Gateway to the IP of the listening FortiGate interface, in this example, 172.20.120.123.
4. Select Customize Port and set it to 10443.
5. Save your settings.
6. Use the credentials you’ve set up to connect to the SSL VPN tunnel.
 If the user’s computer has antivirus software, a connection is established; otherwise FortiClient shows a compliance warning.
7. After connection, traffic to 192.168.1.0 goes through the tunnel. Other traffic goes through local gateway.
8. On the FortiGate, go to VPN > Monitor > SSL-VPN Monitor to verify the list of SSL users.
9. On the FortiGate, go to Log & Report > Forward Traffic and view the details for the SSL entry.

SSL VPN split DNS

SSL VPN clients in tunnel mode can enable the following settings to split DNS traffic:
- Resolve DNS requests for a specific domain, or suffix, using specific DNS servers.
- Resolve all other DNS requests using a DNS server configured in the SSL VPN settings. This DNS server can be the same as the client system DNS server, or another DNS server.

Administrators typically configure SSL VPN clients to use DNS servers that are behind the FortiGate on the internal network. This will require DNS traffic to traverse the SSL VPN tunnel.

Configuring SSL VPN DNS servers to use DNS suffixes

The `dns-suffix` setting under `config vpn ssl settings` is used to specify domains for SSL VPN DNS servers in the tunnel mode configuration. This setting can only be configured in the CLI.

The DNS servers and suffixes configured under `config vpn ssl settings` have a global scope, and apply only to SSL VPN portals that do not have their own DNS server configuration.

To configure DNS servers for all SSL VPN portals:

```plaintext
config vpn ssl settings
   set dns-suffix domain1.com
   set dns-server1 10.10.10.10
   set dns-server2 10.10.10.11
end
```

SSL VPN portals configured with their own DNS servers and suffixes under `config vpn ssl web portal override the settings configured under config vpn ssl settings`.

To configure DNS servers for a specific SSL VPN portal in split tunnel mode:

```plaintext
config vpn ssl web portal
   edit "full-access"
      set dns-suffix domain2.com
      set dns-server1 10.10.10.12
      set dns-server2 10.10.10.13
      set split-tunneling enable
   next
end
```

Only DNS requests that match DNS suffixes use the DNS servers configured in the VPN. Due to iOS limitations, the DNS suffixes are not used for searching as in Windows. Using short (non-FQDN) names may not be possible.

Configuring SSL VPN DNS servers for tunnel mode using DNS split tunneling

The DNS split tunneling setting can be used to configure domains that apply to a specific SSL VPN portal by specifying primary and secondary DNS servers to be used to resolve specific suffixes. This setting can be configured in the GUI and CLI. In the following example, DNS split tunneling is configured on the default tunnel-access portal with two DNS entries.

To configure DNS split tunneling in the GUI:

1. Go to **VPN > SSL-VPN Portals** and double-click **tunnel-access** to edit the portal.
2. In the **Tunnel Mode Client Options** section, enable **DNS Split Tunneling**.
3. In the Split DNS table, click Create New. The New DNS Entry pane opens.

4. Configure the first DNS entry:
 a. For Domains, enter domain1.com.
 b. Set the Primary DNS Server to 10.10.10.10.
 c. Set the Secondary DNS Server to 10.10.10.11.
 d. Click OK.

5. Configure the second DNS entry:
 a. Click Create New.
 b. For Domains, enter domain2.com.
 c. Set the Primary DNS Server to 10.10.10.12.
 d. Set the Secondary DNS Server to 10.10.10.13.
 e. Click OK.

6. Click OK to save the portal settings.
To configure DNS split tunneling in the CLI:

cfg vpn ssl web portal
 edit "tunnel-access"
 set dns-suffix "domain0.com"
 set dns-server1 10.10.10.8
 set dns-server2 10.10.10.9
 set split-tunneling enable
 config split-dns
 edit 1
 set domains "domain1.com"
 set dns-server1 10.10.10.10
 set dns-server2 10.10.10.11
 next
 edit 2
 set domains "domain2.com"
 set dns-server1 10.10.10.12
 set dns-server2 10.10.10.13
 next
 end
end

SSL VPN web mode for remote user

This is a sample configuration of remote users accessing the corporate network through an SSL VPN by web mode using a web browser.

Sample topology

Sample configuration

WAN interface is the interface connected to ISP. This example shows static mode. You can also use DHCP or PPPoE mode. The SSL VPN connection is established over the WAN interface.
To configure SSL VPN using the GUI:

1. Configure the interface and firewall address. The port1 interface connects to the internal network.
 a. Go to Network > Interfaces and edit the wan1 interface.
 b. Set IP/Network Mask to 172.20.120.123/255.255.255.0.
 c. Edit port1 interface and set IP/Network Mask to 192.168.1.99/255.255.255.0.
 d. Click OK.
 e. Go to Policy & Objects > Address and create an address for internet subnet 192.168.1.0.

2. Configure user and user group.
 a. Go to User & Authentication > User Definition to create a local user sslvpnuser1.
 b. Go to User & Authentication > User Groups to create a group sslvpngroup with the member sslvpnuser1.

3. Configure SSL VPN web portal.
 a. Go to VPN > SSL-VPN Portals to create a web mode only portal my-web-portal.
 b. Set Predefined Bookmarks for Windows server to type RDP.

4. Configure SSL VPN settings.
 a. Go to VPN > SSL-VPN Settings.
 b. For Listen on Interface(s), select wan1.
 c. Set Listen on Port to 10443.
 d. Choose a certificate for Server Certificate.

 It is HIGHLY recommended that you acquire a signed certificate for your installation. Please review the SSL VPN best practices on page 1619 and learn how to Procuring and importing a signed SSL certificate on page 2175.

 e. In Authentication/Portal Mapping All Other Users/Groups, set the Portal to web-access.

5. Configure SSL VPN firewall policy.
 a. Go to Policy & Objects > Firewall Policy.
 b. Fill in the firewall policy name. In this example, sslvpn web mode access.
 c. Incoming interface must be SSL-VPN tunnel interface(ssl.root).
 d. Choose an Outgoing Interface. In this example, port1.
 e. Set the Source to all and group to sslvpngroup.
 f. In this example, the Destination is the internal protected subnet 192.168.1.0.
 g. Set Schedule to always, Service to ALL, and Action to Accept.
 h. Click OK.

To configure SSL VPN using the CLI:

1. Configure the interface and firewall address.

```plaintext
config system interface
  edit "wan1"
    set vdom "root"
    set ip 172.20.120.123 255.255.255.0
  next
end
```
2. Configure the internal interface and protected subnet, then connect the port1 interface to the internal network.

```fortigate-config
config system interface
edit "port1"
   set vdom "root"
   set ip 192.168.1.99 255.255.255.0
next
end

config firewall address
edit "192.168.1.0"
   set subnet 192.168.1.0 255.255.255.0
next
end
```

3. Configure user and user group.

```fortigate-config
config user local
   edit "sslvpnuser1"
      set type password
      set passwd your-password
next
end

config user group
   edit "sslvpngroup"
      set member "vpnuser1"
next
end
```

4. Configure SSL VPN web portal and predefined RDP bookmark for windows server.

```fortigate-config
config vpn ssl web portal
   edit "my-web-portal"
      set web-mode enable
      config bookmark-group
         edit "gui-bookmarks"
            config bookmarks
               edit "Windows Server"
                  set apptype rdp
                  set host "192.168.1.114"
                  set port 3389
                  set logon-user "your-windows-server-user-name"
                  set logon-password your-windows-server-password
next
end
next
end
```

5. Configure SSL VPN settings.

```fortigate-config
config vpn ssl settings
   set servercert "Fortinet.Factory"
   set tunnel-ip-pools "SSLVPN_TUNNEL_ADDR1"
   set tunnel-ipv6-pools "SSLVPN_TUNNEL_IPV6_ADDR1"
   set source-interface "wan1"
   set source-address "all"
   set source-address6 "all"
```
set default-portal "full-access"
config authentication-rule
 edit 1
 set groups "sslvpngroup"
 set portal "my-web-portal"
 next
end
end

6. Configure one SSL VPN firewall policy to allow remote user to access the internal network. Traffic is dropped from internal to remote client

config firewall policy
 edit 1
 set name "sslvpn web mode access"
 set srcintf "ssl.root"
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "192.168.1.0"
 set groups "sslvpngroup"
 set action accept
 set schedule "always"
 set service "ALL"
 next
end

To see the results:

1. In a web browser, log into the portal https://172.20.120.123:10443 using the credentials you've set up.
2. In the portal with the predefined bookmark, select the bookmark to begin an RDP session. If there are no predefined bookmarks, the Quick Connection tool can be used; see Quick Connection tool on page 1641 for more information.
3. Go to VPN > Monitor > SSL-VPN Monitor to verify the list of SSL users.
4. Go to Log & Report > Forward Traffic to view the details for the SSL entry.

Quick Connection tool

The Quick Connection tool allows a user to connect to a resource when it is not a predefined bookmark. The tool allows the user to specify the type of server and the URL or IP address of the host.

To connect to a resource:

1. Select the connection type.
2. Enter the required information, such as the IP address or URL of the host.
3. **Click Launch.**

![VPN Interface](image)

In a VNC session, to send Ctrl+Alt+Del, press F8 then select *Send Ctrl-Alt-Delete*.

RDP sessions

Some Windows servers require that a specific security be set for RDP sessions, as opposed to the standard RDP encryption security. For example, Windows 10 requires that TLS be used.

You can specify a location option if the remote computer does not use the same keyboard layout as your computer by appending it to the Host field using the following format: `<IP address> -m <locale>

The available options are:

<table>
<thead>
<tr>
<th></th>
<th>Arabic</th>
<th>fr-be</th>
<th>Belgian French</th>
<th>no</th>
<th>Norwegian</th>
</tr>
</thead>
<tbody>
<tr>
<td>ar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>da</td>
<td>Danish</td>
<td>fr-ca</td>
<td>Canadian French</td>
<td>pl</td>
<td>Polish</td>
</tr>
<tr>
<td>de</td>
<td>German</td>
<td>fr-ch</td>
<td>Swiss French</td>
<td>pt</td>
<td>Portuguese</td>
</tr>
<tr>
<td>de-ch</td>
<td>Swiss German</td>
<td>hr</td>
<td>Croatian</td>
<td>pt-br</td>
<td>Brazilian Portuguese</td>
</tr>
<tr>
<td>en-gb</td>
<td>British English</td>
<td>hu</td>
<td>Hungarian</td>
<td>ru</td>
<td>Russian</td>
</tr>
<tr>
<td>en-uk</td>
<td>UK English</td>
<td>it</td>
<td>Italian</td>
<td>sl</td>
<td>Slovenian</td>
</tr>
<tr>
<td>en-us</td>
<td>US English</td>
<td>ja</td>
<td>Japanese</td>
<td>sv</td>
<td>Sudanese</td>
</tr>
<tr>
<td>es</td>
<td>Spanish</td>
<td>lt</td>
<td>Lithuanian</td>
<td>tk</td>
<td>Turkmen</td>
</tr>
<tr>
<td>fi</td>
<td>Finnish</td>
<td>lv</td>
<td>Latvian</td>
<td>tr</td>
<td>Turkish</td>
</tr>
<tr>
<td>fr</td>
<td>French</td>
<td>mk</td>
<td>Macedonian</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Customizing the RDP display size

The RDP display size (width and height settings) can be customized for SSL VPN web mode when creating a new connection or bookmark. Administrators can also specify the display size when preconfiguring bookmarks.

To configure the default window dimensions in an RDP web portal:

```
config vpn ssl web portal
  edit <name>
    set default-window-width <integer>
    set default-window-height <integer>
  next
end
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>default-window-width</td>
<td>Set the default RDP screen width, in pixels (0 - 65535, default = 1024).</td>
</tr>
<tr>
<td>default-window-height</td>
<td>Set the default RDP screen height, in pixels (0 - 65535, default = 768).</td>
</tr>
</tbody>
</table>

Example

In this example, a user has a monitor with a resolution of 1920 × 1080. The user creates two bookmarks for RDP servers with different resolutions:

- Windows 7: 1360 × 768
- Ubuntu 20.04: 800 × 600

To customize the RDP bookmark display size:

1. Log in to the SSL VPN web portal.
2. Create a new RDP bookmark (+ New Bookmark), or hover over an existing bookmark and click the edit (pencil) icon.
3. Set the Screen Width and Screen Height fields as required.
 a. Windows 7: 1360 width and 768 height.

 ![Edit Bookmark]

 b. Ubuntu 20.04: 800 width and 600 height.

 ![Edit Bookmark]

4. Click Save.

Verification:

When the user connects to the RDP servers using the bookmarks, the customized screen resolutions are applied regardless of the client PC's screen resolution (1920 × 1080).

Windows 7:
VPN

Ubuntu 20.04:

To view the bookmarks created by the user:

```
show vpn ssl web user-bookmark
config vpn ssl web user-bookmark
```
edit "rdp_user#"
config bookmarks
edit "RDP_win7"
 set apptype rdp
 set host "172.18.58.94"
 set port 3389
 set logon-user "fosqa"
 set logon-password ********
 set color-depth 32
 set width 1360
 set height 768
next
edit "RDP_ubuntu"
 set apptype rdp
 set host "172.18.58.109"
 set port 3389
 set logon-user "auto"
 set logon-password ********
 set color-depth 32
 set width 800
 set height 600
next
end

Showing the SSL VPN portal login page in the browser's language

By default, the browser's language preference is automatically detected and used by the SSL VPN portal login page. The system language can still be used by changing the settings on the SSL-VPN Settings page of the GUI, or disabling browser-language-detection in the CLI:

```
config vpn ssl settings
    set browser-language-detection disable
end
```

In this example, the sslvpnadmin user account is used for SSL VPN connections on the testportal1 SSL VPN portal. The account is shared by users from different countries that use different browsers and different languages in their browsers. The user on PC1 uses Chrome in English, and the user on PC2 uses Edge in Simplified Chinese. When a user logs in to the SSL VPN web portal, all of the pages are shown in the same language as their browser.
To configure the SSL VPN portal to use the client's browser language:

1. Configure the SSL VPN portal:
 a. Go to VPN > SSL-VPN Portals and edit the SSL VPN portal.
 For information about configuring SSL VPN portals, see SSL VPN on page 1619.
 b. Enable Web Mode.
 c. Click OK.

2. Set the language preference:
 a. Go to VPN > SSL-VPN Settings.
 c. Click Apply.

3. Add the sslvnpadmin user to the policy used by the SSL VPN portal.

4. Confirm that the configuration works:
 • When the user on PC1 logs in to the SSL VPN portal using Chrome in English, all of the pages are shown in English.
• When the user on PC2 logs in to the SSL VPN portal using Edge in Simplified Chinese, all of the pages are shown in Simplified Chinese.

SSL VPN authentication

The following topics provide instructions on configuring SSL VPN authentication:

- SSL VPN with LDAP user authentication on page 1649
- SSL VPN with LDAP user password renew on page 1654
- SSL VPN with certificate authentication on page 1660
- SSL VPN with LDAP-integrated certificate authentication on page 1665
- SSL VPN for remote users with MFA and user sensitivity on page 1670
- SSL VPN with FortiToken mobile push authentication on page 1678
- SSL VPN with RADIUS on FortiAuthenticator on page 1684
- SSL VPN with RADIUS and FortiToken mobile push on FortiAuthenticator on page 1688
- SSL VPN with RADIUS password renew on FortiAuthenticator on page 1693
- SSL VPN with RADIUS on Windows NPS on page 1697
- SSL VPN with multiple RADIUS servers on page 1702
- SSL VPN with local user password policy on page 1711
- Dynamic address support for SSL VPN policies on page 1716
- SSL VPN multi-realm on page 1725
- NAS-IP support per SSL-VPN realm on page 1730
- SSL VPN with Okta as SAML IdP on page 1732
- SSL VPN with Azure AD SSO integration on page 1738

SSL VPN with LDAP user authentication

This is a sample configuration of SSL VPN for LDAP users. In this example, the LDAP server is a Windows 2012 AD server. A user `lduf1` is configured on Windows 2012 AD server.

You must have generated and exported a CA certificate from the AD server and then have imported it as an external CA certificate into the FortiGate.
Sample topology

Sample configuration

WAN interface is the interface connected to ISP. This example shows static mode. You can also use DHCP or PPPoE mode. The SSL VPN connection is established over the WAN interface.

To configure SSL VPN using the GUI:

1. Configure the interface and firewall address. The port1 interface connects to the internal network:
 a. Go to Network > Interfaces and edit the wan1 interface.
 b. Set IP/Network Mask to 172.20.120.123/255.255.255.0.
 c. Edit port1 interface and set IP/Network Mask to 192.168.1.99/255.255.255.0.
 d. Click OK.
 e. Go to Policy & Objects > Address and create an address for internet subnet 192.168.1.0.

2. Import CA certificate into FortiGate:
 a. Go to System > Features Visibility and ensure Certificates is enabled.
 b. Go to System > Certificates and select Import > CA Certificate.
 c. Select Local PC and then select the certificate file.
 The CA certificate now appears in the list of External CA Certificates. In this example, it is called CA_Cert_1.
 d. If you want, you can use CLI commands to rename the system-generated CA_Cert_1 to be more descriptive:

      ```
      config vpn certificate ca
      rename CA_Cert_1 to LDAPS-CA
      end
      ```
3. Configure the LDAP user:
 a. Go to User & Authentication > LDAP Servers and click Create New.
 b. Specify Name and Server IP/Name.
 c. Specify Common Name Identifier and Distinguished Name.
 d. Set Bind Type to Regular.
 e. Specify Username and Password.
 f. Enable Secure Connection and set Protocol to LDAPS.
 g. For Certificate, select LDAP server CA LDAPS-CA from the list.

4. Configure user group:
 a. Go to User & Authentication > User Groups to create a user group.
 b. Enter a Name.
 c. In Remote Groups, click Add to add ldaps-server.

5. Configure SSL VPN web portal:
 a. Go to VPN > SSL-VPN Portals to edit the full-access portal.
 This portal supports both web and tunnel mode.
 b. Disable Enable Split Tunneling so that all SSL VPN traffic goes through the FortiGate.

6. Configure SSL VPN settings:
 a. Go to VPN > SSL-VPN Settings.
 b. Select the Listen on Interface(s), in this example, wan1.
 c. Set Listen on Port to 10443.
 d. Set Server Certificate to the authentication certificate.
 e. Under Authentication/Portal Mapping, set default Portal web-access for All Other Users/Groups.
 f. Create new Authentication/Portal Mapping for group ldaps-group mapping portal full-access.

7. Configure SSL VPN firewall policy:
 a. Go to Policy & Objects > Firewall Policy.
 b. Fill in the firewall policy name, in this example, sslvpn certificate auth.
 c. Incoming interface must be SSL-VPN tunnel interface(ssl.root).
 d. Set the Source Address to all and Source User to ldaps-group.
 e. Set the Outgoing Interface to the local network interface so that the remote user can access the internal network, in this example, port1.
 f. Set Destination Address to the internal protected subnet 192.168.1.0.
 g. Set Schedule to always, Service to ALL, and Action to Accept.
 h. Enable NAT.
 i. Configure any remaining firewall and security options as desired.
 j. Click OK.

To configure SSL VPN using the CLI:

1. Configure the interface and firewall address:

```
config system interface
edit "wan1"
   set vdom "root"
   set ip 172.20.120.123 255.255.255.0
next
end
```
2. Configure internal interface and protected subnet, then connect the port1 interface to the internal network:

```plaintext
cfg system interface
  edit "port1"
    set vdom "root"
    set ip 192.168.1.99 255.255.255.0
  next
end

cfg firewall address
  edit "192.168.1.0"
    set subnet 192.168.1.0 255.255.255.0
  next
end
```

3. Import CA certificate into FortiGate:
 a. Go to System > Features Visibility and ensure Certificates is enabled.
 b. Go to System > Certificates and select Import > CA Certificate.
 c. Select Local PC and then select the certificate file.
 The CA certificate now appears in the list of External CA Certificates. In the example, it is called CA_Cert_1.
 d. If you want, you can use CLI commands to rename the system-generated CA_Cert_1 to be more descriptive:

```plaintext
cfg vpn certificate ca
  rename CA_Cert_1 to LDAPS-CA
end
```

4. Configure the LDAP server:

```plaintext
cfg user ldap
  edit "ldap-server"
    set server "172.20.120.161"
    set cnid "cn"
    set dn "cn=Users,dc=qa,dc=fortinet,dc=com"
    set type regular
    set username "CN=Administrator,cn=users,DC=qa,DC=fortinet,DC=com"
    set password ************
    set group-member-check group-object
    set secure ldaps
    set ca-cert "LDAPS-CA"
    set port 636
  next
end
```

5. Configure user group:

```plaintext
cfg user group
  edit "ldapgs-group"
    set member "ldap-server"
  next
end
```

6. Configure SSL VPN web portal:

```plaintext
cfg vpn ssl web portal
  edit "full-access"
    set tunnel-mode enable
    set web-mode enable
    set ip-pools "SSLVPN_TUNNEL_ADDR1"
    set split-tunneling disable
```
7. Configure SSL VPN settings:

```fortigate
config vpn ssl settings
set servercert "server_certificate"
set tunnel-ip-pools "SSLVPN_TUNNEL_ADDR1"
set source-interface "wan1"
set source-address "all"
set default-portal "web-access"
config authentication-rule
edit 1
    set groups "ldaps-group"
    set portal "full-access"
next
end
```

8. Configure one SSL VPN firewall policy to allow remote user to access the internal network:

```fortigate
config firewall policy
edit 1
    set name "sslvpn web mode access"
    set srcintf "ssl.root"
    set dstintf "port1"
    set srcaddr "all"
    set dstaddr "192.168.1.0"
    set groups "ldaps-group"
    set action accept
    set schedule "always"
    set service "ALL"
    set nat enable
next
end
```

To see the results of web portal:

1. From a remote device, use a web browser to log into the SSL VPN web portal `http://172.20.120.123:10443`
2. Enter the `ldu1` user credentials, then click Login.
3. Go to Dashboard > Network and expand the SSL-VPN widget to verify the user’s connection.

To see the results of tunnel connection:

1. Download FortiClient from `www.forticlient.com`
2. Open the FortiClient Console and go to Remote Access > Configure VPN.
3. Add a new connection:
 a. Set the connection name.
 b. Set Remote Gateway to the IP of the listening FortiGate interface, in this example, `172.20.120.123`.
 c. Select Customize Port and set it to `10443`.
4. Save your settings.
5. Log in using the `ldu1` credentials.
To check the SSL VPN connection using the GUI:

1. Go to Dashboard > Network and expand the SSL-VPN widget to verify the user’s connection.
2. Go to Log & Report > System Events and select the VPN Events card to view the details of the SSL VPN connection event log.
3. Go to Log & Report > Forward Traffic to view the details of the SSL VPN traffic.

To check the web portal login using the CLI:

```
# get vpn ssl monitor
SSL VPN Login Users:
  Index  User  Auth Type  Timeout  From            HTTP in/out  HTTPS in/out
0      ldu1   1(1)      229       10.1.100.254    0/0            0/0

SSL VPN sessions:
  Index  User  Source IP  Duration  I/O Bytes  Tunnel/Dest IP

# get vpn ssl monitor
SSL VPN Login Users:
  Index  User  Auth Type  Timeout  From            HTTP in/out  HTTPS in/out
0      ldu1   1(1)      291       10.1.100.254    0/0            0/0

SSL VPN sessions:
  Index  User  Source IP  Duration  I/O Bytes  Tunnel/Dest IP
0      ldu1   10.1.100.254  9        22099/43228  10.212.134.200
```

To check the tunnel login using the CLI:

```
# get vpn ssl monitor
SSL VPN Login Users:
  Index  User  Auth Type  Timeout  From            HTTP in/out  HTTPS in/out
0      ldu1   1(1)      229       10.1.100.254    0/0            0/0

SSL VPN sessions:
  Index  User  Source IP  Duration  I/O Bytes  Tunnel/Dest IP
0      ldu1   10.1.100.254  9        22099/43228  10.212.134.200
```

SSL VPN with LDAP user password renew

This is a sample configuration of SSL VPN for LDAP users with *Force Password Change on next logon*. In this example, the LDAP server is a Windows 2012 AD server. A user *ldu1* is configured on Windows 2012 AD server with *Force password change on next logon*.

You must have generated and exported a CA certificate from the AD server and then have imported it as an external CA certificate into the FortiGate.
Sample topology

Sample configuration

WAN interface is the interface connected to ISP. This example shows static mode. You can also use DHCP or PPPoE mode. The SSL VPN connection is established over the WAN interface.

To configure SSL VPN using the GUI:

1. Configure the interface and firewall address. The port1 interface connects to the internal network.
 a. Go to Network > Interfaces and edit the wan1 interface.
 b. Set IP/Network Mask to 172.20.120.123/255.255.255.0.
 c. Edit port1 interface and set IP/Network Mask to 192.168.1.99/255.255.255.0.
 d. Click OK.
 e. Go to Policy & Objects > Address and create an address for internet subnet 192.168.1.0.

2. Import CA certificate into FortiGate:
 a. Go to System > Features Visibility and ensure Certificates is enabled.
 b. Go to System > Certificates and select Import > CA Certificate.
 c. Select Local PC and then select the certificate file.
 The CA certificate now appears in the list of External CA Certificates. In this example, it is called CA_Cert_1.
 d. If you want, you can use CLI commands to rename the system-generated CA_Cert_1 to be more descriptive:
3. **Configure the LDAP user:**

 The LDAP user must either be an administrator, or have the proper permissions delegated to it, to be able to change passwords of other registered users on the LDAP server.

 a. Go to **User & Authentication > LDAP Servers** and click **Create New**.
 b. Specify **Name** and **Server IP/Name**.
 c. Specify **Common Name Identifier** and **Distinguished Name**.
 d. Set **Bind Type** to **Regular**.
 e. Specify **Username** and **Password**.
 f. Enable **Secure Connection** and set **Protocol** to **LDAPS**.
 g. For **Certificate**, select **LDAP server CA LDAPS-CA** from the list.
 h. To enable the **password-renew** option, use these CLI commands.

   ```
   config user ldap
   edit "ldaps-server"
   set password-expiry-warning enable
   set password-renewal enable
   next
   end
   ```

4. **Configure user group:**

 a. Go to **User & Authentication > User Groups** to create a user group.
 b. Enter a **Name**.
 c. In **Remote Groups**, click **Add** to add **ldaps-server**.

5. **Configure SSL VPN web portal:**

 a. Go to **VPN > SSL-VPN Portals** to edit the **full-access** portal.
 b. Disable **Enable Split Tunneling** so that all SSL VPN traffic goes through the FortiGate.

6. **Configure SSL VPN settings:**

 a. Go to **VPN > SSL-VPN Settings**.
 b. Select the **Listen on Interface(s)**, in this example, **wan1**.
 c. Set **Listen on Port** to **10443**.
 d. Set **Server Certificate** to the authentication certificate.
 e. Under **Authentication/Portal Mapping**, set default Portal **web-access** for **All Other Users/Groups**.
 f. Create new **Authentication/Portal Mapping** for group **ldaps-group** mapping portal **full-access**.

7. **Configure SSL VPN firewall policy:**

 a. Go to **Policy & Objects > Firewall Policy**.
 b. Fill in the firewall policy name, in this example, **sslvpn certificate auth**.
 c. Incoming interface must be **SSL-VPN tunnel interface(ssl.root)**.
 d. Set the **Source Address** to **all** and **Source User** to **ldaps-group**.
e. Set the **Outgoing Interface** to the local network interface so that the remote user can access the internal network, in this example, `port1`.

f. Set **Destination Address** to the internal protected subnet `192.168.1.0`.

g. Set **Schedule** to *always*, **Service** to *ALL*, and **Action** to *Accept*.

h. Enable **NAT**.

i. Configure any remaining firewall and security options as desired.

j. Click **OK**.

To configure SSL VPN using the CLI:

1. **Configure the interface and firewall address:**

   ```plaintext
cfg\n    system interface
      edit "wan1"
      set vdom "root"
      set ip 172.20.120.123 255.255.255.0
      next
    end

cfg\n    firewall address
      edit "192.168.1.0"
      set subnet 192.168.1.0 255.255.255.0
      next
    end
```

2. **Configure internal interface and protected subnet, then connect the port1 interface to the internal network:**

   ```plaintext
cfg\n    system interface
      edit "port1"
      set vdom "root"
      set ip 192.168.1.99 255.255.255.0
      next
    end

cfg\n    firewall address
      edit "192.168.1.0"
      set subnet 192.168.1.0 255.255.255.0
      next
    end
```

3. **Import CA certificate into FortiGate:**

 a. Go to **System > Features Visibility** and ensure **Certificates** is enabled.

 b. Go to **System > Certificates** and select **Import > CA Certificate**.

 c. Select **Local PC** and then select the certificate file.

 The CA certificate now appears in the list of **External CA Certificates**. In the example, it is called `CA_Cert_1`.

 d. If you want, you can use CLI commands to rename the system-generated `CA_Cert_1` to be more descriptive:

      ```plaintext
      cfg\n      vpn certificate ca
        rename CA_Cert_1 to LDAPS-CA
      end
      ```

4. **Configure the LDAP server:**

   ```plaintext
   cfg\n   user ldap
     edit "ldaps-server"
     set server "172.20.120.161"
   ```

 The LDAP user must either be an administrator, or have the proper permissions delegated to it, to be able to change passwords of other registered users on the LDAP server.
Configure user group:

```bash
cfg user group
edit "ldaps-group"
    set member "ldaps-server"
next
end
```

Configure SSL VPN web portal:

```bash
cfg vpn ssl web portal
edit "full-access"
    set tunnel-mode enable
    set web-mode enable
    set ip-pools "SSLVPN_TUNNEL_ADDR1"
    set split-tunneling disable
next
end
```

Configure SSL VPN settings:

```bash
cfg vpn ssl settings
    set servercert "server_certificate"
    set tunnel-ip-pools "SSLVPN_TUNNEL_ADDR1"
    set source-interface "wan1"
    set source-address "all"
    set default-portal "web-access"
    cfg authentication-rule
        edit 1
            set groups "ldaps-group"
            set portal "full-access"
next
end
```

Configure one SSL VPN firewall policy to allow remote user to access the internal network:

```bash
cfg firewall policy
edit 1
    set name "sslvpn web mode access"
    set srcintf "ssl.root"
    set dstintf "port1"
    set srcaddr "all"
    set dstaddr "192.168.1.0"
    set groups "ldaps-group"
```
VPN

set action accept
set schedule "always"
set service "ALL"
set nat enable
next
end

To see the results of web portal:

1. From a remote device, use a web browser to log into the SSL VPN web portal http://172.20.120.123:10443.
2. Log in using the ldu1 credentials.
 Use a user that is configured on FortiAuthenticator with Force password change on next logon.
3. Click Login. You are prompted to enter a new password. The prompt will timeout after 90 seconds.
4. Go to Dashboard > Network and expand the SSL-VPN widget to verify the user’s connection.

To see the results of tunnel connection:

2. Open the FortiClient Console and go to Remote Access > Configure VPN.
3. Add a new connection:
 a. Set the connection name.
 b. Set Remote Gateway to the IP of the listening FortiGate interface, in this example, 172.20.120.123.
 c. Select Customize Port and set it to 10443.
4. Save your settings.
5. Log in using the ldu1 credentials.
 You are prompted to enter a new password. The prompt will timeout after 90 seconds.

To check the SSL VPN connection using the GUI:

1. Go to Dashboard > Network and expand the SSL-VPN widget to verify the user’s connection.
2. Go to Log & Report > System Events and select the VPN Events card to view the details of the SSL VPN connection event log.
3. Go to Log & Report > Forward Traffic to view the details of the SSL VPN traffic.

To check the web portal login using the CLI:

```
# get vpn ssl monitor
SSL VPN Login Users:
Index User Auth Type Timeout From HTTP in/out HTTPS in/out
0 ldu1 1(1) 229 10.1.100.254 0/0 0/0
```

To check the tunnel login using the CLI:

```
# get vpn ssl monitor
SSL VPN Login Users:
Index User Auth Type Timeout From HTTP in/out HTTPS in/out
0 ldu1 1(1) 291 10.1.100.254 0/0 0/0
```
SSL VPN with certificate authentication

This is an example configuration of SSL VPN that requires users to authenticate using a client certificate. The client certificate is issued by the company Certificate Authority (CA). Each user is issued a certificate with their username in the subject.

There are two ways to configure certificate authentication:

1. **Using PKI users**
2. **Configuring the SSL VPN settings to require a client certificate**

In this example, the server and client certificates are signed by the same Certificate Authority (CA).

Self-signed certificates are provided by default to simplify initial installation and testing. It is HIGHLY recommended that you acquire a signed certificate for your installation. Continuing to use these certificates can result in your connection being compromised, allowing attackers to steal your information, such as credit card details.

For more information, please review the Use a non-factory SSL certificate for the SSL VPN portal on page 1621 and learn how to Procuring and importing a signed SSL certificate on page 2175.

Using PKI users

When using PKI users, the FortiGate authenticates the user based on there identity in the subject or the common name on the certificate. The certificate must be signed by a CA that is known by the FortiGate, either through the default CA certificates or through importing a CA certificate.

The user can either match a static subject or common name defined in the PKI user settings, or match an LDAP user in the LDAP server defined in the PKI user settings. Multi-factor authentication can also be enabled with the password as the second factor.

Configuring the SSL VPN settings to require a client certificate

Using this method, the user is authenticated based on their regular username and password, but SSL VPN will still require an additional certificate check. The client certificate only needs to be signed by a known CA in order to pass authentication.

This method can be configured by enabling **Require Client Certificate** (reqclientcert) in the SSL-VPN settings.
VPN

Configuration

In the following example, SSL VPN users are authenticated using the first method. A PKI user is configured with multi-factor authentication

Pre-requisites:

- The CA has already issued a client certificate to the user.
- The CA has issued a server certificate for the FortiGate’s SSL VPN portal.
- The CA certificate is available to be imported on the FortiGate.

To configure SSL VPN in the GUI:

1. Install the server certificate. The server certificate allows the clients to authenticate the server and to encrypt the SSL VPN traffic.

 a. Go to System > Feature Visibility and ensure Certificates is enabled.

 b. Go to System > Certificates and select Import > Local Certificate.

 - Set Type to Certificate.
 - Choose the Certificate file and the Key file for your certificate, and enter the Password.
 - If required, you can change the Certificate Name.

 The server certificate now appears in the list of Certificates.

2. Install the CA certificate.

 The CA certificate is the certificate that signed both the server certificate and the user certificate. In this example, it is used to authenticate SSL VPN users.

 a. Go to System > Certificates and select Import > CA Certificate.

 b. Select Local PC and then select the certificate file.

 The CA certificate now appears in the list of External CA Certificates. In this example, it is called CA_Cert_1.

3. Configure PKI users and a user group.

 To use certificate authentication, use the CLI to create PKI users.

   ```
   config user peer
   edit pki01
     set ca CA_Cert_1
     set subject "CN=User01"
   next
   end
   ```

 Ensure that the subject matches the name of the user certificate. In this example, User01.

4. After you have create a PKI user, a new menu is added to the GUI:

 a. Go to User & Authentication > PKI to see the new user.

 b. Edit the user account.

 c. Enable Two-factor authentication and set a password for the account.

 d. Go to User & Authentication > User Groups and create a group called sslvpn group.

 e. Add the PKI user pki01 to the group.

5. Configure SSL VPN web portal.

 a. Go to VPN > SSL-VPN Portals to edit the full-access portal.

 This portal supports both web and tunnel mode.

 b. Disable Enable Split Tunneling so that all SSL VPN traffic goes through the FortiGate.
6. Configure SSL VPN settings.
 a. Go to VPN > SSL-VPN Settings and enable SSL-VPN.
 b. Set the Listen on Interface(s) to wan1.
 c. Set Listen on Port to 10443.
 d. Set Server Certificate to the local certificate that was imported.
 e. Under Authentication/Portal Mapping, set default Portal web-access for All Other Users/Groups.
 f. Create new Authentication/Portal Mapping for group sslvpn_group mapping portal full-access.

7. Configure SSL VPN firewall policy.
 a. Go to Policy & Objects > Firewall Policy.
 b. Fill in the firewall policy name. In this example, sslvpn_certificate_auth.
 c. Incoming interface must be SSL-VPN tunnel interface(ssl.root).
 d. Set the Source Address to all and Source User to sslvpn_group.
 e. Set the Outgoing Interface to the local network interface so that the remote user can access the internal network. In this example, port1.
 f. Set Destination Address to the internal protected subnet 192.168.1.0.
 g. Set Schedule to always, Service to ALL, and Action to Accept.
 h. Enable NAT.
 i. Configure any remaining firewall and security options as needed.
 j. Click OK.

To configure SSL VPN in the CLI:

1. Configure the protected subnet:

   ```
   config firewall address
   edit "192.168.1.0"
     set subnet 192.168.1.0 255.255.255.0
   next
   end
   ```

2. Install the server certificate:

 The server certificate allows the clients to authenticate the server and to encrypt the SSL VPN traffic. While it is easier to install the server certificate in the GUI, the CLI can be used to import a p12 certificate from a TFTP server.

 To import a p12 certificate, put the certificate `server_certificate.p12` on your TFTP server, then run following command on the FortiGate:

   ```
   execute vpn certificate local import tftp server_certificate.p12 <your tftp_server> p12 <your password for PKCS12 file>
   ```

 To check that the server certificate is installed:

   ```
   show vpn certificate local server_certificate
   ```

3. Install the CA certificate:

 The CA certificate is the certificate that signed both the server certificate and the user certificate. In this example, it is used to authenticate SSL VPN users. While it is easier to install the CA certificate from GUI, the CLI can be used to import a CA certificates from a TFTP server.

 To import a CA certificate, put the CA certificate on your TFTP server, then run following command on the FortiGate:

   ```
   execute vpn certificate ca import tftp <your CA certificate name> <your tftp server>
   ```
VPN

To check that a new CA certificate is installed:

show vpn certificate ca

4. **Configure PKI users and a user group:**

 config user peer
 edit pki01
 set ca CA_Cert_1
 set subject "CN=User01"
 set two-factor enable
 set passwd **********
 next
 end

 config user group
 edit "sslvpngroup"
 set member "pki01"
 next
 end

5. **Configure SSL VPN web portal:**

 config vpn ssl web portal
 edit "full-access"
 set tunnel-mode enable
 set web-mode enable
 set ip-pools "SSLVPN_TUNNEL_ADDR1"
 set split-tunneling disable
 next
 end

6. **Configure SSL VPN settings:**

 config vpn ssl settings
 set servercert "server_certificate"
 set tunnel-ip-pools "SSLVPN_TUNNEL_ADDR1"
 set source-interface "wan1"
 set source-address "all"
 set default-portal "web-access"
 config authentication-rule
 edit 1
 set groups "sslvpngroup"
 set portal "full-access"
 next
 end

7. **Configure one SSL VPN firewall policy to allow remote user to access the internal network:**

 config firewall policy
 edit 1
 set name "sslvpn web mode access"
 set srcintf "ssl.root"
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "192.168.1.0"
 set groups "sslvpngroup"
 set action accept
 set schedule "always"
set service "ALL"
set nat enable
next
end

Installation

To use the user certificate, you must first install it on the user’s PC. When the user tries to authenticate, the user certificate is checked against the CA certificate to verify that they match.

Every user should have a unique user certificate. This allows you to distinguish each user and revoke a specific user’s certificate, such as if a user no longer has VPN access.

To install the user certificate on Windows 7, 8, and 10:

1. Double-click the certificate file to open the *Import Wizard*.
2. Use the *Import Wizard* to import the certificate into the *Personal store* of the current user.

To install the user certificate on Mac OS X:

1. Open the certificate file, to open *Keychain Access*.
2. Double-click the certificate.
3. Expand *Trust* and select *Always Trust*.

To see the results of tunnel connection:

1. Download FortiClient from www.forticlient.com.
2. Open the FortiClient Console and go to *Remote Access > Configure VPN*.
3. Add a new connection.
 - Set *VPN Type* to SSL VPN.
 - Set *Remote Gateway* to the IP of the listening FortiGate interface, in this example, *172.20.120.123*.
4. Select *Customize Port* and set it to *10443*.
5. Enable *Client Certificate* and select the authentication certificate.
6. Save your settings.
7. Use the credentials you’ve set up to connect to the SSL VPN tunnel.
 - If the certificate is correct, you can connect.

To see the results of web portal:

1. In a web browser, log into the portal http://172.20.120.123:10443.
 - A message requests a certificate for authentication.
2. Select the user certificate.
3. Enter your user credentials.
 - If the certificate is correct, you can connect to the SSL VPN web portal.

To check the SSL VPN connection using the GUI:

1. Go to *VPN > Monitor > SSL-VPN Monitor* to verify the list of SSL users.
2. Go to *Log & Report > System Events* and select the *VPN Events* card to view the details for the SSL connection log.
To check the SSL VPN connection using the CLI:

```
get vpn ssl monitor
SSL VPN Login Users:
  Index  User      Auth Type  Timeout  From          HTTP in/out  HTTPS in/out
  0      pki01,cn=User01  1(1)         229  10.1.100.254  0/0       0/0
  1      pki01,cn=User01  1(1)         291  10.1.100.254  0/0       0/0

SSL VPN sessions:
  Index  User      Source IP  Duration  I/O Bytes  Tunnel/Dest IP
  0      pki01,cn=User01  10.1.100.254  9          22099/43228  10.212.134.200
```

SSL VPN with LDAP-integrated certificate authentication

This is a sample configuration of SSL VPN that requires users to authenticate using a certificate with LDAP UserPrincipalName checking.

This sample uses Windows 2012R2 Active Directory acting as both the user certificate issuer, the certificate authority, and the LDAP server.

Sample topology

Sample configuration

WAN interface is the interface connected to ISP. This example shows static mode. You can also use DHCP or PPPoE mode. The SSL VPN connection is established over the WAN interface.
In this sample, the *User Principal Name* is included in the subject name of the issued certificate. This is the user field we use to search LDAP in the connection attempt.

To use the user certificate, you must first install it on the user's PC. When the user tries to authenticate, the user certificate is checked against the CA certificate to verify that they match.

Every user should have a unique user certificate. This allows you to distinguish each user and revoke a specific user's certificate, such as if a user no longer has VPN access.

To install the server certificate:

The server certificate is used for authentication and for encrypting SSL VPN traffic.

1. Go to *System > Feature Visibility* and ensure *Certificates* is enabled.
2. Go to *System > Certificates* and select *Import > Local Certificate*.
3. Set Type to *Certificate*.
4. Choose the *Certificate file* and the *Key file* for your certificate, and enter the *Password*.
5. If required, change the *Certificate Name*.
 The server certificate now appears in the list of *Certificates*.

To install the CA certificate:

The CA certificate is the certificate that signed both the server certificate and the user certificate. In this example, it is used to authenticate SSL VPN users.

1. Go to *System > Certificates* and select *Import > CA Certificate*.
2. Select *Local PC* and then select the certificate file.
 The CA certificate now appears in the list of *External CA Certificates*. In this example, it is called *CA_Cert_1*.

To configure SSL VPN using the GUI:

1. Configure the interface and firewall address. The port1 interface connects to the internal network.
 a. Go to *Network > Interfaces* and edit the *wan1* interface.
 b. Set *IP/Network Mask* to 172.20.120.123/255.255.255.0.
 c. Edit *port1* interface and set *IP/Network Mask* to 192.168.1.99/255.255.255.0.
 d. Click OK.
 e. Go to *Policy & Objects > Address* and create an address for internet subnet 192.168.1.0.
2. Configure the LDAP server:
 a. Go to *User & Authentication > LDAP Servers* and click *Create New*.
 b. Specify *Name* and *Server IP/Name*.
 c. Set *Distinguished Name* to *dc=fortinet-fsso,dc=com*.
 d. Set *Bind Type* to *Regular*.
 e. Set *Username* to *cn=admin,ou=testing,dc=fortinet-fsso,dc=com*.
 f. Set *Password*.
 g. Click OK.
3. Configure PKI users and a user group:
 To use certificate authentication, use the CLI to create PKI users.

```bash
config user peer
edit user1
```
set ca CA_Cert_1
set ldap-server "ldap-AD"
set ldap-mode principal-name
next
end

When you have create a PKI user, a new menu is added to the GUI:

a. Go to User & Authentication > PKI to see the new user.
b. Go to User & Authentication > User > User Groups and create a group sslvpn-group.

c. Add the PKI peer object you created as a local member of the group.
d. Add a remote group on the LDAP server and select the group of interest.
 You need these users to be members using the LDAP browser window.

4. Configure SSL VPN web portal:
 a. Go to VPN > SSL-VPN Portals to edit the full-access portal.
 This portal supports both web and tunnel mode.
 b. Disable Enable Split Tunneling so that all SSL VPN traffic goes through the FortiGate.

5. Configure SSL VPN settings:
 a. Go to VPN > SSL-VPN Settings.
 b. Select the Listen on Interface(s), in this example, wan1.
 c. Set Listen on Port to 10443.
 d. Set Server Certificate to the authentication certificate.
 e. Under Authentication/Portal Mapping, set default Portal web-access for All Other Users/Groups.
 f. Create new Authentication/Portal Mapping for group sslvpn-group mapping portal full-access.

6. Configure SSL VPN firewall policy:
 a. Go to Policy & Objects > Firewall Policy.
 b. Fill in the firewall policy name. In this example, sslvpn certificate auth.
 c. Incoming interface must be SSL-VPN tunnel interface(ssl.root).
 d. Set the Source Address to all and Source User to sslvpn-group.
 e. Set the Outgoing Interface to the local network interface so that the remote user can access the internal network. In this example, port1.
 f. Set Destination Address to the internal protected subnet 192.168.1.0.
 g. Set Schedule to always, Service to ALL, and Action to Accept.
 h. Enable NAT.
 i. Configure any remaining firewall and security options as desired.
 j. Click OK.

To configure SSL VPN using the CLI:

1. Configure the interface and firewall address:

 config system interface
 edit "wan1"
 set vdom "root"
 set ip 172.20.120.123 255.255.255.0
 next
 end
2. Configure internal interface and protected subnet, then connect the port1 interface to the internal network:

```fortigate
config system interface
   edit "port1"
      set vdom "root"
      set ip 192.168.1.99 255.255.255.0
   next
end
config firewall address
   edit "192.168.1.0"
      set subnet 192.168.1.0 255.255.255.0
   next
end
```

3. Configure the LDAP server:

```fortigate
config user ldap
   edit "ldap-AD"
      set server "172.18.60.206"
      set cnid "cn"
      set dn "dc=fortinet-fsso,dc=com"
      set type regular
      set username "cn=admin,ou=testing,dc=fortinet-fsso,dc=com"
      set password ldap-server-password
   next
end
```

4. Configure PKI users and a user group:

```fortigate
config user peer
   edit user1
      set ca CA_Cert_1
      set ldap-server "ldap-AD"
      set ldap-mode principal-name
   next
end
config user group
   edit "sslvpn-group"
      set member "ldap-AD" "user1"
   config match
      edit 1
         set server-name "ldap-AD"
         set group-name "CN=group3,OU=Testing,DC=Fortinet-FSSO,DC=COM"
      next
      next
end
```

5. Configure SSL VPN web portal:

```fortigate
config vpn ssl web portal
   edit "full-access"
      set tunnel-mode enable
      set web-mode enable
      set ip-pools "SSLVPN_TUNNEL_ADDR1"
      set split-tunneling disable
   next
end
```
6. Configure SSL VPN settings:

```config
config vpn ssl settings
set servercert "server_certificate"
set tunnel-ip-pools "SSLVPN_TUNNEL_ADDR1"
set source-interface "wan1"
set source-address "all"
set default-portal "web-access"
config authentication-rule
  edit 1
    set groups "sslvpn-group"
    set portal "full-access"
  next
end
end
```

7. Configure one SSL VPN firewall policy to allow remote user to access the internal network:

```config
config firewall policy
  edit 1
    set name "sslvpn web mode access"
    set srcintf "ssl.root"
    set dstintf "port1"
    set srcaddr "all"
    set dstaddr "192.168.1.0"
    set groups "sslvpn-group"
    set action accept
    set schedule "always"
    set service "ALL"
    set nat enable
  next
end
```

To see the results of tunnel connection:

1. Download FortiClient from www.forticlient.com.
2. Open the FortiClient Console and go to Remote Access > Configure VPN.
3. Add a new connection.
 a. Set the connection name.
 b. Set Remote Gateway to the IP of the listening FortiGate interface, in this example, 172.20.120.123.
 c. Select Customize Port and set it to 10443.
 d. Enable Client Certificate and select the authentication certificate.
4. Save your settings.
 Connecting to the VPN only requires the user’s certificate. It does not require username or password.

To see the results of web portal:

1. In a web browser, log into the portal `http://172.20.120.123:10443`.
 A message requests a certificate for authentication.
2. Select the user certificate.
 You can connect to the SSL VPN web portal.
To check the SSL VPN connection using the GUI:

1. Go to Dashboard > Network and expand the SSL-VPN widget to verify the user’s connection.
2. Go to Log & Report > VPN Events to view the details of the SSL VPN connection event log.
3. Go to Log & Report > Forward Traffic to view the details of the SSL VPN traffic.

To check the SSL VPN connection using the CLI:

Below is a sample output of `diagnose debug application fnbamd -1` while the user connects. This is a shortened output sample of a few locations to show the important parts. This sample shows lookups to find the group memberships (three groups total) of the user and that the correct group being found results in a match.

```
[1148] fnbamd_ldap_recv-Response len: 16, svr: 172.18.60.206
[829] fnbamd_ldap_parse_response-Got one MESSAGE. ID:4, type:search-result
[864] fnbamd_ldap_parse_response-ret=0
[1386] fnbamd_ldap_primary_grp_next/Auth accepted
[910] fnbamd_ldap_next-Change state to 'Done'
[843] fnbamd_ldap_next-state 23(Done)
[925] fnbamd_ldap_send-sending 7 bytes to 172.18.60.206
[937] fnbamd_ldap_send-Request is sent. ID 5
[753] fnbamd_ldap_stop-svr 'ldap-AD'
[53] ldap_dn_list_del_all-Del CN=test3,OU=Testing,DC=Fortinet-FSSO,DC=COM
[399] ldap_copy_grp_list-copied CN=group3,OU=Testing,DC=Fortinet-FSSO,DC=COM
[399] ldap_copy_grp_list-copied CN=Domain Users,CN=Users,DC=Fortinet-FSSO,DC=COM
[2088] fnbamd_auth_cert_check-Matching group 'sslvpn-group'
[2007] match_ldap_group-Matching server 'ldap-AD' - 'ldap-AD'
[2015] match_ldap_group-Matching group 'CN=group3,OU=Testing,DC=Fortinet-FSSO,DC=COM' - 'CN=group3,OU=Testing,DC=Fortinet-FSSO,DC=COM'
[2091] fnbamd_auth_cert_check-Group 'sslvpn-group' matched
[2120] fnbamd_auth_cert_result-Result for ldap svr[0] 'ldap-AD' is SUCCESS
[2126] fnbamd_auth_cert_result-matched user 'test3', matched group 'sslvpn-group'
```

You can also use `diagnose firewall auth list` to validate that a firewall user entry exists for the SSL VPN user and is part of the right groups.

SSL VPN for remote users with MFA and user sensitivity

By default, remote LDAP and RADIUS user names are case sensitive. When a remote user object is applied to SSL VPN authentication, the user must type the exact case that is used in the user definition on the FortiGate.

Case sensitivity and accents can be ignored by disabling the `username-sensitivity` CLI command, allowing the remote user object to match any case or accents that the end user types in.

In this example, a remote user is configured with multi-factor authentication (MFA). The user group includes the LDAP user and server, and is applied to SSL VPN authentication and the policy.
Topology

![Topology Diagram]

Example configuration

To configure the LDAP server:

1. Generate and export a CA certificate from the AD server.
2. Import the CA certificate into FortiGate:
 a. Go to System > Features Visibility and ensure Certificates is enabled.
 b. Go to System > Certificates and select Import > CA Certificate.
 c. Select Local PC and then select the certificate file.
 The CA certificate now appears in the list of External CA Certificates. In this example, it is called CA_Cert_1.
 d. If you want, you can use CLI commands to rename the system-generated CA_Cert_1 to be more descriptive:

   ```
   config vpn certificate ca
   rename CA_Cert_1 to LDAPS-CA
   end
   ```

3. Configure the LDAP user:
 a. Go to User & Authentication > LDAP Servers and click Create New.
 b. Configure the following options for this example:

<table>
<thead>
<tr>
<th>Name</th>
<th>WIN2K16-KLHOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server IP/Name</td>
<td>192.168.20.6</td>
</tr>
<tr>
<td>Server Port</td>
<td>636</td>
</tr>
</tbody>
</table>
Common Name Identifier | sAMAccountName
---|---
Distinguished Name | dc=KLHOME,dc=local
Bind Type | Regular
Username | KLHOME\Administrator
Password | *********
Secure Connection | Enable
Protocol | LDAPS
Certificate | CA_Cert_1
This is the CA certificate that you imported in step 2.

c. Click OK.

To configure an LDAP user with MFA:

1. Go to User & Authentication > User Definition and click Create New.
2. Select Remote LDAP User, then click Next.
3. Select the just created LDAP server, then click Next.
4. Right click to add the selected user, then click Submit.
5. Edit the user that you just created.
 The username will be pulled from the LDAP server with the same case as it has on the server.
6. Set the Email Address to the address that FortiGate will send the FortiToken to.
7. Enable Two-factor Authentication.
8. Set Authentication Type to FortiToken.
9. Set **Token** to a FortiToken device. See for more information.

10. Click **OK**.

To disable case and accent sensitivity on the remote user:

This can only be configured in the CLI.

```
config user local
  edit "fgdocs"
    set type ldap
    set two-factor fortitoken
    set fortitoken "FTXMOBxxxxxxxxxx"
    set email-to "fgdocs@fortinet.com"
    set username-sensitivity disable
    set ldap-server "WIN2K16-KLHOME"
next
end
```

To configure a user group with the remote user and the LDAP server:

1. Go to **User & Authentication > User Groups** and click **Create New**.
2. Set the **Name** to **LDAP-USERGRP**.
3. Set **Members** to the just created remote user.
4. In the **Remote Groups** table, click **Add**:
 a. Set **Remote Server** to the LDAP server.
 b. Set the group or groups that apply, and right click to add them.
 c. Click **OK**.
5. Click OK.

To apply the user group to the SSL VPN portal:

1. Go to VPN > SSL-VPN Settings.
2. In the Authentication/Portal Mapping table, click Create New.
 a. Set Users/Groups to the just created user group.
 b. Configure the remaining settings as required.
 c. Click OK.

3. Click Apply.

To apply the user group to a firewall policy:

1. Go to Policy & Objects > Firewall Policy and click Create New.
2. Configure the following:

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>SSLVPNtoInternal</td>
</tr>
<tr>
<td>Incoming Interface</td>
<td>SSL-VPN tunnel interface (ssl.root)</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>port3</td>
</tr>
<tr>
<td>Source</td>
<td>Address - SSLVPN_TUNNEL_ADDR1</td>
</tr>
<tr>
<td></td>
<td>User - LDAP-USERGRP</td>
</tr>
<tr>
<td>Destination</td>
<td>The address of the internal network.</td>
</tr>
<tr>
<td></td>
<td>In this case: 192.168.20.0.</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>ALL</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>NAT</td>
<td>Enabled</td>
</tr>
</tbody>
</table>
3. Configuring the remaining settings as required.
4. Click OK.

To configure this example in the CLI:

1. Configure the LDAP server:

   ```
   config user ldap
   edit "WIN2K16-KLHOME"
   set server "192.168.20.6"
   set cnid "sAMAccountName"
   set dn "dc=KLHOME,dc=local"
   set type regular
   set username "KLHOME\Administrator"
   set password *********
   set secure ldaps
   set ca-cert "CA_Cert_1"
   set port 636
   next
   end
   ```

2. Configure an LDAP user with MFA and disable case and accent sensitivity on the remote user:

   ```
   config user local
   edit "fgdocs"
   set type ldap
   set two-factor fortitoken
   set fortitoken "FTKMOBxxxxxxxxxx"
   set email-to "fgdocs@fortinet.com"
   set username-sensitivity disable
   set ldap-server "WIN2K16-KLHOME"
   next
   end
   ```

3. Configure a user group with the remote user and the LDAP server:

   ```
   config user group
   edit "LDAP-USERGRP"
   set member "fgdocs" "WIN2K16-KLHOME"
   ```
next
end

4. Apply the user group to the SSL VPN portal:

```c
config vpn ssl settings
  set servercert <server_certificate>
  set tunnel-ip-pools "SSLVPN_TUNNEL_ADDR1"
  set source-interface "port1"
  set source-address "all"
  set default-portal "web-access"
config authentication-rule
  edit 1
    set groups "LDAP-USERGRP"
    set portal "full-access"
next
end
```

5. Apply the user group to a firewall policy:

```c
config firewall policy
  edit 5
    set name "SSLVPNtoInternal"
    set srcintf "ssl.root"
    set dstintf "port3"
    set srcaddr "SSLVPN_TUNNEL_ADDR1"
    set dstaddr "192.168.20.0"
    set action accept
    set schedule "always"
    set service "ALL"
    set groups "LDAP-USERGRP"
    set nat enable
next
end
```

Verification

To setup the VPN connection:

2. Open the FortiClient Console and go to Remote Access.
3. Add a new connection:
 a. Set the connection name.
 b. Set Remote Gateway to the IP of the listening FortiGate interface.
 c. If required, set the Customize Port.
4. Save your settings.

To test the connection with case sensitivity disabled:

1. Connect to the VPN:
 a. Log in to the tunnel with the username, using the same case that it is on the FortiGate.
 b. When prompted, enter your FortiToken code.
 You should now be connected.
2. Check the web portal log in using the CLI:

 # get vpn ssl monitor
 SSL VPN Login Users:
 Index User Group Auth Type Timeout From HTTP in/out HTTPS in/out
 0 fgdocs LDAP-USERGRP 16 (1) 289 192.168.2.202 0/0

 SSL VPN sessions:
 Index User Group Source IP Duration I/O Bytes Tunnel/Dest IP
 0 fgdocs LDAP-USERGRP 192.168.2.202 45 99883/5572

3. Disconnect from the VPN connection.

4. Reconnect to the VPN:
 a. Log in to the tunnel with the username, using a different case than on the FortiGate.
 b. When prompted, enter your FortiToken code.
 You should now be connected.

5. Check the web portal log in using the CLI:

 # get vpn ssl monitor
 SSL VPN Login Users:
 Index User Group Auth Type Timeout From HTTP in/out HTTPS in/out
 0 FGDOCS LDAP-USERGRP 16 (1) 289 192.168.2.202 0/0

 SSL VPN sessions:
 Index User Group Source IP Duration I/O Bytes Tunnel/Dest IP
 0 FGDOCS LDAP-USERGRP 192.168.2.202 45 99883/5572

In both cases, the remote user is matched against the remote LDAP user object and prompted for multi-factor authentication.

To test the connection with case and accent sensitivity enabled:

1. Enable case and accent sensitivity for the user:

 config user local
 edit "fgdocs"
 set username-sensitivity enable
 next
 end

2. Connect to the VPN
 a. Log in to the tunnel with the username, using the same case that it is on the FortiGate.
 b. When prompted, enter your FortiToken code.
 You should now be connected.

3. Check the web portal log in using the CLI:

 # get vpn ssl monitor
 SSL VPN Login Users:
 Index User Group Auth Type Timeout From HTTP in/out HTTPS in/out
 0 FGDOCS LDAP-USERGRP 16 (1) 289 192.168.2.202 0/0

 SSL VPN sessions:
 Index User Group Source IP Duration I/O Bytes Tunnel/Dest IP
 0 FGDOCS LDAP-USERGRP 192.168.2.202 45 99883/5572
0 | **fgdocs** | LDAP-USERGRP | 16 (1) | 289 | 192.168.2.202 | 0/0

SSL VPN sessions:

<table>
<thead>
<tr>
<th>Index</th>
<th>User</th>
<th>Group</th>
<th>Source IP</th>
<th>Duration</th>
<th>I/O Bytes</th>
<th>Tunnel/Dest IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>fgdocs</td>
<td>LDAP-USERGRP</td>
<td>192.168.2.202</td>
<td>45</td>
<td>9988/5572</td>
<td></td>
</tr>
<tr>
<td>10.212.134.200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Disconnect from the VPN connection.
2. Reconnect to the VPN:
 a. Log in to the tunnel with the username, using a different case than on the FortiGate.
 You will not be prompted for your FortiToken code. You should now be connected.
3. Check the web portal log in using the CLI:

   ```
   # get vpn ssl monitor
   SSL VPN Login Users:
   Index | User     | Group       | Auth Type | Timeout | From | HTTP in/out | HTTPS in/out |
  -------|----------|-------------|-----------|---------|------|-------------|--------------|
   0     | **FGdocs** | LDAP-USERGRP | 16 (1) | 289 | 192.168.2.202 | 0/0 |
   0/0 |
   ```

 SSL VPN sessions:

<table>
<thead>
<tr>
<th>Index</th>
<th>User</th>
<th>Group</th>
<th>Source IP</th>
<th>Duration</th>
<th>I/O Bytes</th>
<th>Tunnel/Dest IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>FGdocs</td>
<td>LDAP-USERGRP</td>
<td>192.168.2.202</td>
<td>45</td>
<td>9988/5572</td>
<td></td>
</tr>
<tr>
<td>10.212.134.200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In this case, the user is allowed to log in without a FortiToken code because the entered user name did not match the name defined on the remote LDAP user object. Authentication continues to be evaluated against the LDAP server though, which is not case sensitive.

SSL VPN with FortiToken mobile push authentication

This is a sample configuration of SSL VPN that uses FortiToken mobile push two-factor authentication. If you enable push notifications, users can accept or deny the authentication request.
Sample topology

WAN interface is the interface connected to ISP. This example shows static mode. You can also use DHCP or PPPoE mode. The SSL VPN connection is established over the WAN interface.

To configure SSL VPN using the GUI:

1. Configure the interface and firewall address. The port1 interface connects to the internal network.
 a. Go to Network > Interfaces and edit the wan1 interface.
 b. Set IP/Network Mask to 172.20.120.123/255.255.255.0.
 c. Edit port1 interface and set IP/Network Mask to 192.168.1.99/255.255.255.0.
 d. Click OK.
 e. Go to Policy & Objects > Address and create an address for internet subnet 192.168.1.0.

2. Register FortiGate for FortiCare Support:
 To add or download a mobile token on FortiGate, FortiGate must be registered for FortiCare Support. If your FortiGate is registered, skip this step.
 a. Go to Dashboard > Licenses.
 b. Hover the pointer on FortiCare Support to check if FortiCare registered. If not, click it and select Register.

3. Add FortiToken mobile to FortiGate:
 If your FortiGate has FortiToken installed, skip this step.
 a. Go to User & Authentication > FortiTokens and click Create New.
 b. Select Mobile Token and type in Activation Code.
 c. Every FortiGate has two free mobile tokens. Go to User & Authentication > FortiTokens and click Import Free Trial Tokens.

4. Enable FortiToken mobile push:
 To use FTM-push authentication, use CLI to enable FTM-Push on the FortiGate.
a. Ensure server-ip is reachable from the Internet and enter the following CLI commands:

```plaintext
config system ftm-push
  set server-ip 172.20.120.123
  set status enable
end
```

b. Go to Network > Interfaces.

c. Edit the wan1 interface.

d. Under Administrative Access > IPv4, select FTM.

e. Click OK.

5. Configure user and user group:

a. Go to User & Authentication > User Definition to create a local user sslvpnuser1.

b. Enter the user's Email Address.

c. Enable Two-factor Authentication and select one mobile Token from the list,

d. Enable Send Activation Code and select Email.

e. Click Next and click Submit.

f. Go to User & Authentication > User Groups to create a group sslvpnuser1 mapping portal full-access.

6. Activate the mobile token:

a. When the user sslvpnuser1 is created, an email is sent to the user's email address. Follow the instructions to install your FortiToken mobile application on your device and activate your token.

7. Configure SSL VPN settings:

a. Go to Policy & Objects > Firewall Policy.

b. Fill in the firewall policy name. In this example, sslvpn certificate auth.

c. Enable Two-factor Authentication and select one mobile Token from the list,

d. Enable Send Activation Code and select Email.

e. Click Next and click Submit.

f. Go to User & Authentication > User Groups to create a group sslvpnuser1 mapping portal full-access.

9. Configure SSL VPN firewall policy:

a. Go to Policy & Objects > Firewall Policy.

b. Fill in the firewall policy name. In this example, sslvpn certificate auth.

c. Incoming interface must be SSL-VPN tunnel interface(ssl.root).

d. Set the Source Address to all and Source User to sslvpnuser1.

e. Set the Outgoing Interface to the local network interface so that the remote user can access the internal network. In this example, port1.

f. Set Destination Address to the internal protected subnet 192.168.1.0.

g. Set Schedule to always, Service to ALL, and Action to Accept.

h. Enable NAT.

i. Configure any remaining firewall and security options as desired.

j. Click OK.
To configure SSL VPN using the CLI:

1. Configure the interface and firewall address.

   ```
   config system interface
   edit "wan1"
       set vdom "root"
       set ip 172.20.120.123 255.255.255.0
   next
   end
   ```

2. Configure internal interface and protected subnet, then connect the port1 interface to the internal network.

   ```
   config system interface
   edit "port1"
       set vdom "root"
       set ip 192.168.1.99 255.255.255.0
   next
   end
   ```

   ```
   config firewall address
   edit "192.168.1.0"
       set subnet 192.168.1.0 255.255.255.0
   next
   end
   ```

3. Register FortiGate for FortiCare Support.
 To add or download a mobile token on FortiGate, FortiGate must be registered for FortiCare Support. If your FortiGate is registered, skip this step.

   ```
   diagnose forticare direct-registration product-registration -a "your account@xxx.com" -p "your password" -T "Your Country/Region" -R "Your Reseller" -e 1
   ```

4. Add FortiToken mobile to FortiGate:

   ```
   execute fortitoken-mobile import <your FTM code>
   ```

 If your FortiGate has FortiToken installed, skip this step.
 Every FortiGate has two free mobile Tokens. You can download the free token.

   ```
   execute fortitoken-mobile import 0000-0000-0000-0000-0000
   ```

5. Enable FortiToken mobile push:

 a. To use FTM-push authentication, ensure server-ip is reachable from the Internet and enable FTM-push in the FortiGate:

      ```
      config system ftm-push
      set server-ip 172.20.120.123
      set status enable
      end
      ```

 b. Enable FTM service on WAN interface:

      ```
      config system interface
      edit "wan1"
          append allowaccess ftm
      next
      end
      ```
6. Configure user and user group:

```plaintext
config user local
   edit "sslvpnuser1"
      set type password
      set two-factor fortitoken
      set fortitoken "select mobile token for the option list"
      set email-to "user's email address"
      set passwd "user's password"
next
end
config user group
   edit "sslvpngroup"
      set member "sslvpnuser1"
next
end
```

7. Activate the mobile token.
 When the user `sslvpnuser1` is created, an email is sent to the user's email address. Follow the instructions to install your FortiToken mobile application on your device and activate your token.

8. Configure SSL VPN web portal:

```plaintext
config vpn ssl web portal
   edit "full-access"
      set tunnel-mode enable
      set web-mode enable
      set ip-pools "SSLVPN_TUNNEL_ADDR1"
      set split-tunneling disable
next
end
```

9. Configure SSL VPN settings:

```plaintext
config vpn ssl settings
   set servercert "server_certificate"
   set tunnel-ip-pools "SSLVPN_TUNNEL_ADDR1"
   set source-interface "wan1"
   set source-address "all"
   set default-portal "web-access"
config authentication-rule
   edit 1
      set groups "sslvpngroup"
      set portal "full-access"
next
end
```

10. Configure one SSL VPN firewall policy to allow remote user to access the internal network:

```plaintext
config firewall policy
   edit 1
      set name "sslvpn web mode access"
      set srcintf "ssl.root"
      set dstintf "port1"
      set srcaddr "all"
      set dstaddr "192.168.1.0"
      set groups "sslvpngroup"
      set action accept
```
To see the results of web portal:

1. From a remote device, use a web browser to log into the SSL VPN web portal http://172.20.120.123:10443.
2. Log in using the sslvpnuser1 credentials.
 The FortiGate pushes a login request notification through the FortiToken mobile application.
3. Check your mobile device and select Approve.
 When the authentication is approved, sslvpnuser1 is logged into the SSL VPN portal.
4. On the FortiGate, go to Dashboard > Network and expand the SSL-VPN widget to verify the user's connection.

To see the results of tunnel connection:

2. Open the FortiClient Console and go to Remote Access > Configure VPN.
3. Add a new connection:
 a. Set the connection name.
 b. Set Remote Gateway to the IP of the listening FortiGate interface, in this example, 172.20.120.123.
 c. Select Customize Port and set it to 10443.
4. Save your settings.
5. Log in using the sslvpnuser1 credentials and click FTM Push.
 The FortiGate pushes a login request notification through the FortiToken mobile application.
6. Check your mobile device and select Approve.
 When the authentication is approved, sslvpnuser1 is logged into the SSL VPN tunnel.

To check the SSL VPN connection using the GUI:

1. Go to Dashboard > Network and expand the SSL-VPN widget to verify the user's connection.
2. Go to Log & Report > Forward Traffic to view the details of the SSL VPN traffic.

To check the web portal login using the CLI:

```
get vpn ssl monitor
SSL VPN Login Users:
  Index  User     Auth Type  Timeout  From          HTTP in/out HTTPS in/out
  0      sslvpnuser1 1(1)      229  10.1.100.254  0/0          0/0

SSL VPN sessions:
  Index  User  Source IP  Duration  I/O Bytes  Tunnel/Dest IP
```

To check the tunnel login using the CLI:

```
get vpn ssl monitor
SSL VPN Login Users:
  Index  User     Auth Type  Timeout  From          HTTP in/out HTTPS in/out
  0      sslvpnuser1 1(1)      291  10.1.100.254  0/0          0/0
```

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
SSL VPN with RADIUS on FortiAuthenticator

This is a sample configuration of SSL VPN that uses FortiAuthenticator as a RADIUS authentication server.

Sample topology

Sample configuration

WAN interface is the interface connected to ISP. This example shows static mode. You can also use DHCP or PPPoE mode. The SSL VPN connection is established over the WAN interface.

To configure FortiAuthenticator using the GUI:

1. Create a user on the FortiAuthenticator.
 a. On the FortiAuthenticator, go to Authentication > User Management > Local Users to create a user sslvpnuser1.
 b. Enable Allow RADIUS authentication and click OK to access additional settings.
 c. Go to Authentication > User Management > User Groups to create a group sslvpgroup.
 d. Add sslvpnuser1 to the group by moving the user from Available users to Selected users.
2. Create the RADIUS client (FortiGate) on the FortiAuthenticator.
 a. On the FortiAuthenticator, go to Authentication > RADIUS Service > Clients to add the FortiGate as a RADIUS client OfficeServer).
 b. Enter the FortiGate IP address and set a Secret.
 The secret is a pre-shared secure password that the FortiGate uses to authenticate to the FortiAuthenticator.
 c. Set Realms to local | Local users.
To configure SSL VPN using the GUI:

1. Configure the interface and firewall address. The port1 interface connects to the internal network.
 a. Go to Network > Interfaces and edit the wan1 interface.
 b. Set IP/Network Mask to 172.20.120.123/255.255.255.0.
 c. Edit port1 interface and set IP/Network Mask to 192.168.1.99/255.255.255.0.
 d. Click OK.
 e. Go to Policy & Objects > Addresses and create an address for internal subnet 192.168.1.0.

2. Create a RADIUS user and user group.
 a. On the FortiGate, go to User & Authentication > RADIUS Servers to create a user to connect to the RADIUS server (FortiAuthenticator).
 b. For Name, use FAC-RADIUS.
 c. Enter the IP address of the FortiAuthenticator, and enter the Secret created above.
 d. Click Test Connectivity to ensure you can connect to the RADIUS server.
 e. Select Test User Credentials and enter the credentials for ss1vpnuser1.
 The FortiGate can now connect to the FortiAuthenticator as the RADIUS client.
 f. Go to User & Authentication > User Groups and click Create New to map authenticated remote users to a user group on the FortiGate.
 g. For Name, use SSLVPNGroup.
 h. In Remote Groups, click Add.
 i. In the Remote Server dropdown list, select FAC-RADIUS.
 j. Leave the Groups field blank.

3. Configure SSL VPN web portal.
 a. Go to VPN > SSL-VPN Portals to edit the full-access portal.
 This portal supports both web and tunnel mode.
 b. Disable Enable Split Tunneling so that all SSL VPN traffic goes through the FortiGate.

4. Configure SSL VPN settings.
 a. Go to VPN > SSL-VPN Settings.
 b. Select the Listen on Interface(s), in this example, wan1.
 c. Set Listen on Port to 10443.
 d. Set Server Certificate to the authentication certificate.
 e. Under Authentication/Portal Mapping, set default Portal web-access for All Other Users/Groups.
 f. Create new Authentication/Portal Mapping for group sslvpnuser1 mapping portal full-access.

5. Configure SSL VPN firewall policy.
 a. Go to Policy & Objects > Firewall Policy.
 b. Fill in the firewall policy name. In this example, sslvpn certificate auth.
 c. Incoming Interface must be SSL-VPN tunnel interface(ssl.root).
 d. Set the Outgoing Interface to the local network interface so that the remote user can access the internal network. In this example: port1.
 e. Set the Source > Address to all and Source > User to sslvpnuser1.
 f. Set Destination > Address to the internal protected subnet 192.168.1.0.
 g. Set Schedule to always, Service to ALL, and Action to Accept.
 h. Enable NAT.
 i. Configure the remaining options as required.
 j. Click OK.
To configure SSL VPN using the CLI:

1. Configure the interface and firewall address.

   ```
   config system interface
   edit "wan1"
   set vdom "root"
   set ip 172.20.120.123 255.255.255.0
   next
   end
   ```

2. Configure internal interface and protected subnet, then connect the port1 interface to the internal network.

   ```
   config system interface
   edit "port1"
   set vdom "root"
   set ip 192.168.1.99 255.255.255.0
   next
   end
   
   config firewall address
   edit "192.168.1.0"
   set subnet 192.168.1.0 255.255.255.0
   next
   end
   ```

3. Create a RADIUS user and user group.

   ```
   config user radius
   edit "FAC-RADIUS"
   set server "172.20.120.161"
   set secret <FAC client secret>
   next
   end
   
   config user group
   edit "sslvpngrp"
   set member "FAC-RADIUS"
   next
   end
   ```

4. Configure SSL VPN web portal.

   ```
   config vpn ssl web portal
   edit "full-access"
   set tunnel-mode enable
   set web-mode enable
   set ip-pools "SSLVPN_TUNNEL_ADDR1"
   set split-tunneling disable
   next
   end
   ```

5. Configure SSL VPN settings.

   ```
   config vpn ssl settings
   set servercert "server_certificate"
   set tunnel-ip-pools "SSLVPN_TUNNEL_ADDR1"
   set source-interface "wan1"
   set source-address "all"
   set default-portal "web-access"
   ```
config authentication-rule
edit 1
 set groups "sslvpngroup"
 set portal "full-access"
next
end

6. Configure one SSL VPN firewall policy to allow remote user to access the internal network.

config firewall policy
edit 1
 set name "sslvpn web mode access"
 set srcintf "ssl.root"
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "192.168.1.0"
 set groups "sslvpngroup"
 set action accept
 set schedule "always"
 set service "ALL"
 set nat enable
next
end

To see the results of web portal:

1. From a remote device, use a web browser to log into the SSL VPN web portal http://172.20.120.123:10443.
2. Log in using the sslvpnuser1 credentials.
3. On the FortiGate, go to Dashboard > Network and expand the SSL-VPN widget to verify the user's connection.

To see the results of tunnel connection:

2. Open the FortiClient Console and go to Remote Access > Configure VPN.
3. Add a new connection.
 - Set the connection name.
 - Set Remote Gateway to 172.20.120.123.
4. Select Customize Port and set it to 10443.
5. Save your settings.
6. Log in using the sslvpnuser1 credentials and check that you are logged into the SSL VPN tunnel.

To check the SSL VPN connection using the GUI:

1. Go to Dashboard > Network and expand the SSL-VPN widget to verify the user's connection.
2. Go to Log & Report > Forward Traffic to view the details of the SSL VPN traffic.

To check the web portal login using the CLI:

get vpn ssl monitor
SSL VPN Login Users:

<table>
<thead>
<tr>
<th>Index</th>
<th>User</th>
<th>Auth Type</th>
<th>Timeout</th>
<th>From</th>
<th>HTTP in/out</th>
<th>HTTPS in/out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>sslvpnuser1</td>
<td>1(1)</td>
<td>229</td>
<td>10.1.100.254</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>
SSL VPN sessions:

<table>
<thead>
<tr>
<th>Index</th>
<th>User</th>
<th>Source IP</th>
<th>Duration</th>
<th>I/O Bytes</th>
<th>Tunnel/Dest IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>sslvpnuser1</td>
<td>10.1.100.254</td>
<td>9</td>
<td>22099/43228</td>
<td>10.212.134.200</td>
</tr>
</tbody>
</table>

To check the tunnel login using the CLI:

get vpn ssl monitor

SSL VPN Login Users:

<table>
<thead>
<tr>
<th>Index</th>
<th>User</th>
<th>Auth Type</th>
<th>Timeout</th>
<th>From</th>
<th>HTTP in/out</th>
<th>HTTPS in/out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>sslvpnuser1</td>
<td>l(1)</td>
<td>291</td>
<td>10.1.100.254</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

SSL VPN with RADIUS and FortiToken mobile push on FortiAuthenticator

This is a sample configuration of SSL VPN that uses FortiAuthenticator as a RADIUS authentication server and FortiToken mobile push two-factor authentication. If you enable push notifications, users can accept or deny the authentication request.

Sample topology

Sample configuration

WAN interface is the interface connected to ISP. This example shows static mode. You can also use DHCP or PPPoE mode. The SSL VPN connection is established over the WAN interface.
To configure FortiAuthenticator using the GUI:

1. On the FortiAuthenticator, go to System > Administration > System Access and configure a Public IP/FQDN for FortiToken Mobile. If the FortiAuthenticator is behind a firewall, the public IP/FQDN will be an IP/port forwarding rule directed to one of the FortiAuthenticator interfaces. The interface that receives the approve/deny FTM push responses must have the FortiToken Mobile API service enabled.

2. Add a FortiToken mobile license on the FortiAuthenticator:
 a. Go to Authentication > User Management > FortiTokens.
 b. Click Create New.
 c. Set Token type to FortiToken Mobile and enter the FortiToken Activation codes.

3. Create the RADIUS client (FortiGate) on the FortiAuthenticator:
 a. Go to Authentication > RADIUS Service > Clients to add the FortiGate as a RADIUS client OfficeServer).
 b. Enter the FortiGate IP address and set a Secret.
 The secret is a pre-shared secure password that the FortiGate uses to authenticate to the FortiAuthenticator.
 c. Set Authentication method to Enforce two-factor authentication.
 d. Select Enable FortiToken Mobile push notifications authentication.
 e. Set Realms to local | Local users.

4. Create a user and assign FortiToken mobile to the user on the FortiAuthenticator:
 a. Go to Authentication > User Management > Local Users to create a user sslvpnuser1.
 b. Enable Allow RADIUS authentication and click OK to access additional settings.
 c. Enable Token-based authentication and select to deliver the token code by FortiToken.
 d. Select the FortiToken added from the FortiToken Mobile dropdown menu.
 e. Set Delivery method to Email and fill in the User Information section.
 f. Go to Authentication > User Management > User Groups to create a group sslvpnuser1.
 g. Add sslvpnuser1 to the group by moving the user from Available users to Selected users.

5. Install the FortiToken mobile application on your Android or iOS smartphone.
 The FortiAuthenticator sends the FortiToken mobile activation to the user’s email address.

6. Activate the FortiToken mobile through the FortiToken mobile application by entering the activation code or scanning the QR code.

To configure SSL VPN using the GUI:

1. Configure the interface and firewall address. The port1 interface connects to the internal network.
 a. Go to Network > Interfaces and edit the wan1 interface.
 b. Set IP/Network Mask to 172.20.120.123/255.255.255.0.
 c. Edit port1 interface and set IP/Network Mask to 192.168.1.99/255.255.255.0.
 d. Click OK.
 e. Go to Policy & Objects > Address and create an address for internet subnet 192.168.1.0.

2. Create a RADIUS user and user group:
 a. On the FortiGate, go to User & Authentication > RADIUS Servers to create a user to connect to the RADIUS server (FortiAuthenticator).
 b. For Name, use FAC-RADIUS.
 c. Enter the IP address of the FortiAuthenticator, and enter the Secret created above.
 d. Click Test Connectivity to ensure you can connect to the RADIUS server.
 e. Select Test User Credentials and enter the credentials for sslvpnuser1.
 The FortiGate can now connect to the FortiAuthenticator as the RADIUS client.
f. Go to User & Authentication > User Groups and click Create New to map authenticated remote users to a user group on the FortiGate.
g. For Name, use SSLVPNGroup.
h. In Remote Groups, click Add.
i. In the Remote Server dropdown list, select FAC-RADIUS.
j. Leave the Groups field blank.

3. Configure SSL VPN web portal:
a. Go to VPN > SSL-VPN Portals to edit the full-access portal. This portal supports both web and tunnel mode.
b. Disable Enable Split Tunneling so that all SSL VPN traffic goes through the FortiGate.

4. Configure SSL VPN settings:
a. Go to VPN > SSL-VPN Settings.
b. Select the Listen on Interface(s), in this example, wan1.
c. Set Listen on Port to 10443.
d. Set Server Certificate to the authentication certificate.
e. Under Authentication/Portal Mapping, set default Portal web-access for All Other Users/Groups.
f. Create new Authentication/Portal Mapping for group ss lvpngroup mapping portal full-access.

5. Configure SSL VPN firewall policy:
a. Go to Policy & Objects > Firewall Policy.
b. Fill in the firewall policy name. In this example, ss lvpn certificate auth.
c. Incoming interface must be SSL-VPN tunnel interface(ssl.root).
d. Set the Source Address to all and Source User to ss lvpngroup.
e. Set the Outgoing Interface to the local network interface so that the remote user can access the internal network. In this example: port1.
f. Set Destination Address to the internal protected subnet 192.168.1.0.
g. Set Schedule to always, Service to ALL, and Action to Accept.
h. Enable NAT.
i. Configure any remaining firewall and security options as desired.
j. Click OK.

To configure SSL VPN using the CLI:

1. Configure the interface and firewall address:

   ```
   config system interface
   edit "wan1"
      set vdom "root"
      set ip 172.20.120.123 255.255.255.0
   next
   end
   ```

2. Configure internal interface and protected subnet, then connect the port1 interface to the internal network:

   ```
   config system interface
   edit "port1"
      set vdom "root"
      set ip 192.168.1.99 255.255.255.0
   next
   end
   ```
config firewall address
 edit "192.168.1.0"
 set subnet 192.168.1.0 255.255.255.0
 next
end

3. Create a RADIUS user and user group:

config user radius
 edit "FAC-RADIUS"
 set server "172.20.120.161"
 set secret <FAC client secret>
 next
end
config user group
 edit "sslvpngroup"
 set member "FAC-RADIUS"
 next
end

4. Configure SSL VPN web portal:

config vpn ssl web portal
 edit "full-access"
 set tunnel-mode enable
 set web-mode enable
 set ip-pools "SSLVPN_TUNNEL_ADDR1"
 set split-tunneling disable
 next
end

5. Configure SSL VPN settings:

config vpn ssl settings
 set servercert "server_certificate"
 set tunnel-ip-pools "SSLVPN_TUNNEL_ADDR1"
 set source-interface "wan1"
 set source-address "all"
 set default-portal "web-access"
config authentication-rule
 edit 1
 set groups "sslvpngroup"
 set portal "full-access"
 next
end

6. Configure one SSL VPN firewall policy to allow remote user to access the internal network:

config firewall policy
 edit 1
 set name "sslvpn web mode access"
 set srcintf "ssl.root"
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "192.168.1.0"
 set groups "sslvpngroup"
 set action accept
set schedule "always"
set service "ALL"
set nat enable
next
end

To see the results of web portal:
1. From a remote device, use a web browser to log into the SSL VPN web portal http://172.20.120.123:10443.
2. Log in using the sslvpnuser1 credentials.
 The FortiAuthenticator pushes a login request notification through the FortiToken Mobile application.
3. Check your mobile device and select Approve.
 When the authentication is approved, sslvpnuser1 is logged into the SSL VPN portal.
4. On the FortiGate, go to Dashboard > Network and expand the SSL-VPN widget to verify the user's connection.

To see the results of tunnel connection:
2. Open the FortiClient Console and go to Remote Access > Configure VPN.
3. Add a new connection:
 a. Set the connection name.
 b. Set Remote Gateway to the IP of the listening FortiGate interface, in this example: 172.20.120.123.
 c. Select Customize Port and set it to 10443.
4. Save your settings.
5. Log in using the sslvpnuser1 credentials and click FTM Push.
 The FortiAuthenticator pushes a login request notification through the FortiToken Mobile application.
6. Check your mobile device and select Approve.
 When the authentication is approved, sslvpnuser1 is logged into the SSL VPN tunnel.

To check the SSL VPN connection using the GUI:
1. Go to Dashboard > Network and expand the SSL-VPN widget to verify the user’s connection.
2. Go to Log & Report > Forward Traffic to view the details of the SSL VPN traffic.

To check the web portal login using the CLI:

get vpn ssl monitor
SSL VPN Login Users:

<table>
<thead>
<tr>
<th>Index</th>
<th>User</th>
<th>Auth Type</th>
<th>Timeout</th>
<th>From</th>
<th>HTTP in/out</th>
<th>HTTPS in/out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>sslvpnuser1</td>
<td>1(1)</td>
<td>229</td>
<td>10.1.100.254</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

SSL VPN sessions:

<table>
<thead>
<tr>
<th>Index</th>
<th>User</th>
<th>Source IP</th>
<th>Duration</th>
<th>I/O Bytes</th>
<th>Tunnel/Dest IP</th>
</tr>
</thead>
</table>

To check the tunnel login on CLI:

get vpn ssl monitor
SSL VPN Login Users:

<table>
<thead>
<tr>
<th>Index</th>
<th>User</th>
<th>Auth Type</th>
<th>Timeout</th>
<th>From</th>
<th>HTTP in/out</th>
<th>HTTPS in/out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>sslvpnuser1</td>
<td>1(1)</td>
<td>291</td>
<td>10.1.100.254</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>
SSL VPN with RADIUS password renew on FortiAuthenticator

This is a sample configuration of SSL VPN for RADIUS users with *Force Password Change on next logon*. In this example, the RADIUS server is a FortiAuthenticator. A user `test1` is configured on FortiAuthenticator with *Force password change on next logon*.

Sample topology

![SSL VPN topology diagram](image)

Sample configuration

WAN interface is the interface connected to ISP. This example shows static mode. You can also use DHCP or PPPoE mode. The SSL VPN connection is established over the WAN interface.

To configure SSL VPN using the GUI:

1. Configure the interface and firewall address. The port1 interface connects to the internal network.
 a. Go to *Network > Interfaces* and edit the `wan1` interface.
 b. Set *IP/Network Mask* to `172.20.120.123/255.255.255.0`.
 c. Edit `port1` interface and set *IP/Network Mask* to `192.168.1.99/255.255.255.0`.
 d. Click OK.
 e. Go to *Policy & Objects > Address* and create an address for internet subnet `192.168.1.0`.

SSL VPN sessions:

<table>
<thead>
<tr>
<th>Index</th>
<th>User</th>
<th>Source IP</th>
<th>Duration</th>
<th>I/O Bytes</th>
<th>Tunnel/Dest IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>sslvpnuser1</td>
<td>10.1.100.254</td>
<td>9</td>
<td>22099/43228</td>
<td>10.212.134.200</td>
</tr>
</tbody>
</table>
2. Create a RADIUS user.
 a. Go to User & Authentication > RADIUS Servers to create a user.
 b. Set Authentication method to MS-CHAP-v2.
 c. Enter the IP/Name and Secret.
 d. Click Create.

 Password renewal only works with the MS-CHAP-v2 authentication method.

 e. To enable the password-renew option, use these CLI commands.

   ```
   config user radius
   edit "fac"
      set server "172.20.120.161"
      set secret <fac radius password>
      set auth-type ms_chap_v2
      set password-renewal enable
   next
   end
   ```

3. Configure user group.
 a. Go to User & Authentication > User Groups to create a user group.
 b. For the Name, enter fac-group.
 c. In Remote Groups, click Add to add Remote Server you just created.

4. Configure SSL VPN web portal.
 a. Go to VPN > SSL-VPN Portals to edit the full-access portal.
 This portal supports both web and tunnel mode.
 b. Disable Enable Split Tunneling so that all SSL VPN traffic goes through the FortiGate.

5. Configure SSL VPN settings.
 a. Go to VPN > SSL-VPN Settings.
 b. Select the Listen on Interface(s), in this example, wan1.
 c. Set Listen on Port to 10443.
 d. Set Server Certificate to the authentication certificate.
 e. Under Authentication/Portal Mapping, set default Portal web-access for All Other Users/Groups.
 f. Create new Authentication/Portal Mapping for group fac-group mapping portal full-access.

6. Configure SSL VPN firewall policy.
 a. Go to Policy & Objects > Firewall Policy.
 b. Fill in the firewall policy name, in this example, sslvnp certificate auth.
 c. Incoming interface must be SSL-VPN tunnel interface(ssl.root).
 d. Set the Source Address to all and Source User to fac-group.
 e. Set the Outgoing Interface to the local network interface so that the remote user can access the internal network, in this example, port1.
 f. Set Destination Address to the internal protected subnet 192.168.1.0.
 g. Set Schedule to always, Service to ALL, and Action to Accept.
 h. Enable NAT.
 i. Configure any remaining firewall and security options as desired.
 j. Click OK.
To configure SSL VPN using the CLI:

1. Configure the interface and firewall address.

   ```
   config system interface
   edit "wan1"
   set vdom "root"
   set ip 172.20.120.123 255.255.255.0
   next
   end
   ```

2. Configure internal interface and protected subnet, then connect the port1 interface to the internal network.

   ```
   config system interface
   edit "port1"
   set vdom "root"
   set ip 192.168.1.99 255.255.255.0
   next
   end
   ```

   ```
   config firewall address
   edit "192.168.1.0"
   set subnet 192.168.1.0 255.255.255.0
   next
   end
   ```

3. Configure the RADIUS server.

   ```
   config user radius
   edit "fac"
   set server "172.18.58.107"
   set secret <fac radius password>
   set auth-type ms_chap_v2
   set password-renewal enable
   next
   end
   ```

4. Configure user group.

   ```
   config user group
   edit "fac-group"
   set member "fac"
   next
   end
   ```

5. Configure SSL VPN web portal.

   ```
   config vpn ssl web portal
   edit "full-access"
   set tunnel-mode enable
   set web-mode enable
   set ip-pools "SSLVPN_TUNNEL_ADDR1"
   set split-tunneling disable
   next
   end
   ```

6. Configure SSL VPN settings.

   ```
   config vpn ssl settings
   set servercert "server_certificate"
   set tunnel-ip-pools "SSLVPN_TUNNEL_ADDR1"
   ```
7. Configure one SSL VPN firewall policy to allow remote user to access the internal network.

```
config firewall policy
edit 1
    set name "sslvpn web mode access"
    set srcintf "ssl.root"
    set dstintf "port1"
    set srcaddr "all"
    set dstaddr "192.168.1.0"
    set groups "fac-group"
    set action accept
    set schedule "always"
    set service "ALL"
    set nat enable
next
end
```

To see the results of web portal:

1. From a remote device, use a web browser to log into the SSL VPN web portal http://172.20.120.123:10443.
2. Log in using the test1 credentials.
 Use a user which is configured on FortiAuthenticator with Force password change on next logon.
3. Click Login. You are prompted to enter a new password.
4. On the FortiGate, go to Dashboard > Network and expand the SSL-VPN widget to verify the user’s connection.

To see the results of tunnel connection:

2. Open the FortiClient Console and go to Remote Access > Configure VPN.
3. Add a new connection.
 - Set the connection name.
 - Set Remote Gateway to the IP of the listening FortiGate interface, in this example, 172.20.120.123.
4. Select Customize Port and set it to 10443.
5. Save your settings.
6. Log in using the test1 credentials.
 You are prompted to enter a new password.

To check the SSL VPN connection using the GUI:

1. Go to Dashboard > Network and expand the SSL-VPN widget to verify the user’s connection.
2. Go to Log & Report > System Events and select the VPN Events card to view the details of the SSL VPN connection.
To check the web portal login using the CLI:

```
get vpn ssl monitor
SSL VPN Login Users:
Index  User  Auth Type  Timeout  From       HTTP in/out  HTTPS in/out
  0  test1  1(1)       229  10.1.100.254  0/0         0/0
SSL VPN sessions:
Index  User  Source IP  Duration  I/O Bytes  Tunnel/Dest IP
```

To check the tunnel login using the CLI:

```
get vpn ssl monitor
SSL VPN Login Users:
Index  User  Auth Type  Timeout  From       HTTP in/out  HTTPS in/out
  0  test1  1(1)       291  10.1.100.254  0/0         0/0
SSL VPN sessions:
Index  User  Source IP  Duration  I/O Bytes  Tunnel/Dest IP
  0  test1  10.1.100.254  9       22099/43228  10.212.134.200
```

SSL VPN with RADIUS on Windows NPS

This is an example configuration of SSL VPN that uses Windows Network Policy Server (NPS) as a RADIUS authentication server.

The NPS must already be configured to accept the FortiGate as a RADIUS client and the choice of authentication method, such as MS-CHAPv2. A shared key must also have been created.

Example
The user is connecting from their PC to the FortiGate's port1 interface. RADIUS authentication occurs between the FortiGate and the Windows NPS, and the SSL-VPN connection is established once the authentication is successful.

Configure SSL-VPN with RADIUS on Windows NPS in the GUI

To configure the internal and external interfaces:

1. Go to *Network > Interfaces*
2. Edit the *port1* interface and set *IP/Network Mask* to 192.168.2.5/24.
3. Edit the *port2* interface and set *IP/Network Mask* to 192.168.20.5/24.
4. Click OK.

To create a firewall address:

1. Go to *Policy & Objects > Addresses* and click *Create New > Address.*
2. Set *Name* to 192.168.20.0.
3. Leave *Type* as *Subnet*
4. Set *IP/Netmask* to 192.168.20.0/24.
5. Click OK.

To add the RADIUS server:

1. Go to *User & Authentication > RADIUS Servers* and click *Create New.*
2. Set *Name* to *rad-server.*
3. Leave *Authentication method* set to *Default.* The PAP, MS-CHAPv2, and CHAP methods will be tried in order.
4. Under *Primary Server,* set *IP/Name* to 192.168.20.6 and *Secret* to the shared secret configured on the RADIUS server.
5. Click *Test Connectivity* to test the connection to the server, and ensure that *Connection status* is *Successful.*
6. Optionally, click *Test User Credentials* to test user credentials. Testing from the GUI is limited to PAP.
7. Click OK.

To configure a user group:

1. Go to *User & Authentication > User Groups* and click *Create New.*
2. Set *Name* to *rad-group.*
3. Under Remote Groups, click Add and add the rad-server.

4. Click OK.

To configure SSL VPN settings:

1. Go to VPN > SSL-VPN Settings.
2. Select the Listen on Interface(s), in this example, port1.
3. Set Listen on Port to 10443.
4. If you have a server certificate, set Server Certificate to the authentication certificate.
5. Under Authentication/Portal Mapping:
 a. Edit All Other Users/Groups and set Portal to web-access.
 b. Click Create New and create a mapping for the rad-group user group with Portal set to full-access.
 c. Click OK.
6. Click Apply.

To configure an SSL VPN firewall policy:

1. Go to Policy & Objects > Firewall Policy and click Create New.
2. Set the policy name, in this example, ssvpn-radius.
3. Set Incoming Interface to SSL-VPN tunnel interface(ssl.root).
4. Set Outgoing Interface to the local network interface so that the remote user can access the internal network. In this example, port2.
5. Set the Source > Address to all and Source > User to rad-group.
6. Set Destination > Address to the internal protected subnet 192.168.20.0.
7. Set Schedule to always, Service to ALL, and Action to Accept.
8. Enable **NAT**.

9. Configure the remaining options as required.

10. Click **OK**.

Configure SSL-VPN with RADIUS on Windows NPS in the CLI

To configure SSL VPN using the CLI:

1. Configure the internal and external interfaces:

   ```plaintext
   config system interface
   edit "port1"
       set vdom "root"
       set ip 192.168.2.5 255.255.255.0
       set alias internal
   next
   edit "port2"
       set vdom "root"
       set ip 192.168.20.5 255.255.255.0
       set alias external
   next
   end
   ```

2. Configure the firewall address:

   ```plaintext
   config firewall address
   edit "192.168.20.0"
       set subnet 192.168.20.0 255.255.255.0
   next
   end
   ```

3. Add the RADIUS server:

   ```plaintext
   config user radius
   edit "rad-server"
       set server "192.168.20.6"
       set secret ********
   next
   end
   ```

4. Create a user group and add the RADIUS server to it:

   ```plaintext
   config user group
   edit "rad-group"
       set member "rad-server"
   next
   end
   ```
5. Configure SSL VPN settings:

    ```
    config vpn ssl settings
    set servercert "server_certificate"
    set tunnel-ip-pools "SSLVPN_TUNNEL_ADDR1"
    set source-interface "port1"
    set source-address "all"
    set default-portal "web-access"
    config authentication-rule
        edit 1
        set groups "rad-group"
        set portal "full-access"
        next
    end
    end
    ```

6. Configure an SSL VPN firewall policy to allow remote user to access the internal network.

    ```
    config firewall policy
    edit 1
        set name "sslvpn-radius"
        set srcintf "ssl.root"
        set dstintf "port2"
        set srcaddr "all"
        set dstaddr "192.168.20.0"
        set groups "rad-group"
        set action accept
        set schedule "always"
        set service "ALL"
        set nat enable
        next
    end
    ```

Results

To connect with FortiClient in tunnel mode:

1. Download FortiClient from www.forticlient.com.
2. Open the FortiClient Console and go to Remote Access > Configure VPN.
3. Add a new connection:
 a. Set the connection name.
 b. Set Remote Gateway to 192.168.2.5.
 c. Select Customize Port and set it to 10443.
4. Save your settings.
5. Log in using the RADIUS user credentials.

To check the SSL VPN connection using the GUI:

1. Go to Dashboard > Network and expand the SSL-VPN widget to verify the user’s connection.
2. Go to Log & Report > System Events and select the VPN Events card to view the details of the SSL VPN connection event log.
3. Go to Log & Report > Forward Traffic to view the details of the SSL VPN traffic.
To check the login using the CLI:

```bash
# get vpn ssl monitor
SSL VPN Login Users:
Index  User      Group     Auth Type  Timeout  From     HTTP in/out HTTPS in/out
 0  radkeith  rad-group  2(1)        295  192.168.2.202  0/0  0/0

SSL VPN sessions:
Index  User      Group     Source IP  Duration  I/O Bytes  Tunnel/Dest IP
 0  radkeith  rad-group  192.168.2.202  18  28502/4966
      10.212.134.200
```

SSL VPN with multiple RADIUS servers

When configuring two or more RADIUS servers, you can configure a Primary and Secondary server within the same RADIUS server configurations for backup purposes. You can also configure multiple RADIUS servers within the same User Group to service the access request at the same time.

A tertiary server can be configured in the CLI.

Sample topology

Sample configurations

- Configure a Primary and Secondary server for backup on page 1702
- Authenticating to two RADIUS servers concurrently on page 1706

Configure a Primary and Secondary server for backup

When you define a Primary and Secondary RADIUS server, the access request will always be sent to the Primary server first. If the request is denied with an Access-Reject, then the user authentication fails. However, if there is no response from the Primary server after another attempt, the access request will be sent to the Secondary server.
In this example, you will use a Windows NPS server as the Primary server and a FortiAuthenticator as the Secondary server. It is assumed that users are synchronized between the two servers.

To configure the internal and external interfaces:
1. Go to Network > Interfaces.
2. Edit the port1 interface and set IP/Network Mask to 192.168.2.5/24.
3. Edit the port2 interface and set IP/Network Mask to 192.168.20.5/24.
4. Click OK.

To create a firewall address:
1. Go to Policy & Objects > Addresses and click Create New > Address.
2. Set Name to 192.168.20.0.
3. Leave Type as Subnet
4. Set IP/Netmask to 192.168.20.0/24.
5. Click OK.

To add the RADIUS servers:
1. Go to User & Authentication > RADIUS Servers and click Create New.
2. Set Name to PrimarySecondary.
3. Leave Authentication method set to Default. The PAP, MS-CHAPv2, and CHAP methods will be tried in order.
4. Under Primary Server, set IP/Name to 192.168.20.6 and Secret to the shared secret configured on the RADIUS server.
5. Click Test Connectivity to test the connection to the server, and ensure that Connection status is Successful.
6. Under Secondary Server, set IP/Name to 192.168.2.71 and Secret to the shared secret configured on the RADIUS server.
7. Click Test Connectivity to test the connection to the server, and ensure that Connection status is Successful.
8. Click OK.

To configure the user group:
1. Go to User & Authentication > User Groups and click Create New.
2. In the Name field, enter PrimarySecondaryGroup.
3. In the Remote Groups area, click Add, and from the Remote Server dropdown, select PrimarySecondary.
4. Click OK, and then click OK again.

To configure the SSL VPN settings:
1. Go to VPN > SSL-VPN Settings.
2. From the Listen on Interface(s) dropdown select port1.
3. In the Listen on Port field enter 10443.
4. Optionally, from the Server Certificate dropdown, select the authentication certificate if you have one for this SSL VPN portal.
5. Under Authentication/Portal Mapping, set the default portal web-access.
 a. Select All Other Users/Groups and click Edit.
 b. From the Portal dropdown, select web-access.
c. Click OK.

6. Create a web portal for **PrimarySecondaryGroup**.
 a. Under Authentication/Portal Mapping, click **Create New**.
 b. Click **Users/Groups** and select **PrimarySecondaryGroup**.
 c. From the Portal dropdown, select **full-access**.
 d. Click OK.

To configure SSL VPN firewall policy:

1. Go to **Policy & Objects > Firewall Policy**.
2. Click **Create New** to create a new policy, or double-click an existing policy to edit it and configure the following settings:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Enter a name for the policy.</td>
</tr>
<tr>
<td>Incoming Interface</td>
<td>SSL-VPN tunnel interface (ssl.root)</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>Set to the local network interface so that the remote user can access the internal network. For this example, select port3.</td>
</tr>
<tr>
<td>Source</td>
<td>In the Address tab, select SSLVPN_TUNNEL_ADDR1.</td>
</tr>
<tr>
<td>Destination</td>
<td>Select the internal protected subnet 192.168.20.0.</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>All</td>
</tr>
<tr>
<td>Action</td>
<td>Accept</td>
</tr>
<tr>
<td>NAT</td>
<td>Enable</td>
</tr>
</tbody>
</table>

3. Configure any remaining firewall and security options as required.
4. Click OK.

To configure SSL VPN using the CLI:

1. Configure the internal interface and firewall address:
   ```
   config system interface
   edit "port3"
   set vdom "root"
   set ip 192.168.20.5 255.255.255.0
   set alias "internal"
   next
   end
   config firewall address
   edit "192.168.20.0"
   set uuid cc41eec2-9645-51ea-d481-5c5317f865d0
   set subnet 192.168.20.0 255.255.255.0
   next
   end
   ```

2. Configure the RADIUS server:
   ```
   config user radius
   ```
edit "PrimarySecondary"
 set server "192.168.20.6"
 set secret <secret>
 set secondary-server "192.168.2.71"
 set secondary-secret <secret>
next
end

3. Add the RADIUS user to the user group:
 config user group
 edit "PrimarySecondaryGroup"
 set member "PrimarySecondary"
next
end

4. Configure SSL VPN settings:
 config vpn ssl settings
 set servercert "server_certificate"
 set tunnel-ip-pools "SSLVPN_TUNNEL_ADDR1"
 set source-interface "port1"
 set source-address "all"
 set default-portal "web-access"
 config authentication-rule
 edit 1
 set groups "PrimarySecondaryGroup"
 set portal "full-access"
next
end

5. Configure one SSL VPN firewall policy to allow remote users to access the internal network:
 config firewall policy
 edit 1
 set name "sslvpn-radius"
 set srcintf "ssl.root"
 set dstintf "port3"
 set srcaddr "all"
 set dstaddr "192.168.20.0"
 set groups "PrimarySecondaryGroup"
 set action accept
 set schedule "always"
 set service "ALL"
 set nat enable
next
end

To verify the connection:

User radkeith is a member of both the NPS server and the FAC server.

When the Primary server is up, it will connect to the SSL VPN tunnel using FortiClient.

diagnose sniffer packet any 'port 1812' 4 0 1
interfaces=[any]
filters=[port 1812]
The access request is sent to the Primary NPS server 192.168.20.6, and the connection is successful.

```bash
# get vpn ssl monitor
SSL VPN Login Users:
Index User Group Auth Type Timeout From HTTP
in/out HTTPS in/out
0 radkeith PrimarySecondaryGroup 2(1) 285 192.168.2.202
0/0 0/0
SSL VPN sessions:
Index User Group Source IP Duration I/O Bytes
Tunnel/Dest IP
0 radkeith PrimarySecondaryGroup 192.168.2.202 62 132477/4966
10.212.134.200
```

When the Primary server is down, and the Secondary server is up, the connection is made to the SSLVPN tunnel again:

```bash
# diagnose sniffer packet any 'port 1812' 4 0 1
interfaces=[any]
filters=[port 1812]
```

Access request is sent to the Primary NPS server 192.168.20.6, but there was no response. RADIUS authentication falls through to the Secondary FortiAuthenticator 192.168.2.71, and the authentication was accepted. The VPN connection is established.

```bash
# get vpn ssl monitor
SSL VPN Login Users:
Index User Group Auth Type Timeout From HTTP
in/out HTTPS in/out
0 radkeith PrimarySecondaryGroup 2(1) 287 192.168.2.202
0/0 0/0
SSL VPN sessions:
Index User Group Source IP Duration I/O Bytes
Tunnel/Dest IP
0 radkeith PrimarySecondaryGroup 192.168.2.202 48 53544/4966
10.212.134.200
```

Authenticating to two RADIUS servers concurrently

There are times where users are located on separate RADIUS servers. This may be the case when migrating from an old server to a new one for example. In this scenario, a Windows NPS server and a FortiAuthenticator are configured in the same User Group. The access-request is sent to both servers concurrently. If FortiGate receives an access-accept from either server, authentication is successful.

To configure the internal and external interfaces:

1. Go to `Network > Interfaces`.
2. Edit the `port1` interface and set `IP/Network Mask` to `192.168.2.5/24`.
3. Edit the port2 interface and set IP/Network Mask to 192.168.20.5/24.
4. Click OK.

To create a firewall address:

1. Go to Policy & Objects > Addresses and click Create New > Address.
2. Set Name to 192.168.20.0.
3. Leave Type as Subnet
4. Set IP/Netmask to 192.168.20.0/24.
5. Click OK.

To configure the first RADIUS server:

1. Go to User & Authentication > RADIUS Servers and click Create New.
2. Set Name to win2k16.
3. Leave Authentication method set to Default. The PAP, MS-CHAPv2, and CHAP methods will be tried in order.
4. Under Primary Server, set IP/Name to 192.168.20.6 and Secret to the shared secret configured on the RADIUS server.
5. Click Test Connectivity to test the connection to the server, and ensure that Connection status is Successful.
6. Click OK.

To configure the second RADIUS server:

1. Go to User & Authentication > RADIUS Servers and click Create New.
2. Set Name to fac.
3. Leave Authentication method set to Default. The PAP, MS-CHAPv2, and CHAP methods will be tried in order.
4. Under Primary Server, set IP/Name to 192.168.2.71 and Secret to the shared secret configured on the RADIUS server.
5. Click Test Connectivity to test the connection to the server, and ensure that Connection status is Successful.
6. Click OK.

To configure the user group:

1. Go to User & Authentication > User Groups and click Create New.
2. In the Name field, enter dualPrimaryGroup.
3. In the Remote Groups area, click Add, and from the Remote Server dropdown, select fac.
4. Click Add again. From the Remote Server dropdown select win2k16 and click OK.
5. Click OK, and then click OK again.

To configure the SSL VPN settings:

1. Go to VPN > SSL-VPN Settings.
2. From the Listen on Interface(s) dropdown select port1.
3. In the Listen on Port field enter 10443.
4. Optionally, from the Server Certificate dropdown, select the authentication certificate if you have one for this SSL VPN portal.
5. **Under Authentication/Portal Mapping**, set the default portal web-access.
 a. Select **All Other Users/Groups** and click **Edit**.
 b. From the **Portal** dropdown, select **web-access**.
 c. Click **OK**.

6. Create a web portal for **PrimarySecondaryGroup**.
 a. **Under Authentication/Portal Mapping**, click **Create New**.
 b. Click **Users/Groups** and select **dualPrimaryGroup**.
 c. From the **Portal** dropdown, select **full-access**.
 d. Click **OK**.

To configure SSL VPN firewall policy:

1. Go to **Policy & Objects > Firewall Policy**.
2. Click **Create New** to create a new policy, or double-click an existing policy to edit it.

<table>
<thead>
<tr>
<th>Name</th>
<th>Enter a name for the policy.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>SSL-VPN tunnel interface (ssl.root)</td>
</tr>
<tr>
<td>Outgoing interface</td>
<td>Set to the local network interface so that the remote user can access the internal network. For this example, select port3.</td>
</tr>
<tr>
<td>Source</td>
<td>In the Address tab, select SSLVPN_TUNNEL_ADDR1 In the User tab, select dualPrimaryGroup</td>
</tr>
<tr>
<td>Destination</td>
<td>Select the internal protected subnet 192.168.20.0.</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>All</td>
</tr>
<tr>
<td>Action</td>
<td>Accept</td>
</tr>
<tr>
<td>NAT</td>
<td>Enable</td>
</tr>
</tbody>
</table>

3. Configure any remaining firewall and security options as required.
4. Click **OK**.

To configure SSL VPN using the CLI:

1. **Configure the internal interface and firewall address:**
   ```
   config system interface
   edit "port3"
   
   set vdom "root"
   set ip 192.168.20.5 255.255.255.0
   set alias "internal"
   
   next
   end
   config firewall address
   edit "192.168.20.0"
   
   set uuid cc41ec2-9645-51ea-d481-5c5317f865d0
   set subnet 192.168.20.0 255.255.255.0
   
   next
   end
   ```
2. Configure the RADIUS server:
   ```
   config user radius
   edit "win2k16"
   set server "192.168.20.6"
   set secret <secret>
   next
   edit "fac"
   set server "192.168.2.71"
   set secret <secret>
   next
   end
   
   3. Add the RADIUS user to the user group:
   ```
   ```
   config user group
   edit "dualPrimaryGroup"
   set member "win2k16" "fac"
   next
   end
   
   4. Configure SSL VPN settings:
   ```
 config vpn ssl settings
 set servercert "server_certificate"
 set tunnel-ip-pools "SSLVPN_TUNNEL_ADDR1"
 set source-interface "port1"
 set source-address "all"
 set default-portal "web-access"
 config authentication-rule
 edit 1
 set groups "dualPrimaryGroup"
 set portal "full-access"
 next
 end
 end
   ```

   5. Configure one SSL VPN firewall policy to allow remote users to access the internal network:
   ```
 config firewall policy
 edit 1
 set name "sslvpn-radius"
 set srcintf "ssl.root"
 set dstintf "port3"
 set srcaddr "all"
 set dstaddr "192.168.20.0"
 set groups "dualPrimaryGroup"
 set action accept
 set schedule "always"
 set service "ALL"
 set nat enable
 next
 end
   ```

   **To verify the connection:**

   User `fackeith` is a member of the FortiAuthenticator server only.
   User `radkeith` is a member of both the NPS server and the FortiAuthenticator server, but has different passwords on each server.
Case 1: Connect to the SSLVPN tunnel using FortiClient with user FacAdmin:

```bash
diagnose sniffer packet any 'port 1812' 4 0 1
interfaces=[any]
filters=[port 1812]
```

Access is denied by the NPS server because the user does not exist. However, access is accepted by FortiAuthenticator. The end result is the authentication is successful.

```bash
get vpn ssl monitor
SSL VPN Login Users:

<table>
<thead>
<tr>
<th>Index</th>
<th>User</th>
<th>Group</th>
<th>Auth Type</th>
<th>Timeout</th>
<th>From</th>
<th>HTTP in/out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>fackeith</td>
<td>dualPrimaryGroup</td>
<td>2(1)</td>
<td>292</td>
<td>192.168.2.202</td>
<td>0/0</td>
</tr>
</tbody>
</table>

SSL VPN sessions:

<table>
<thead>
<tr>
<th>Index</th>
<th>User</th>
<th>Group</th>
<th>Source IP</th>
<th>Duration</th>
<th>I/O Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>fackeith</td>
<td>dualPrimaryGroup</td>
<td>192.168.2.202</td>
<td>149</td>
<td>70236/4966</td>
</tr>
<tr>
<td>10.212.134.200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Case 2: Connect to the SSLVPN tunnel using FortiClient with user radkeith:

```bash
diagnose sniffer packet any 'port 1812' 4 0 1
interfaces=[any]
filters=[port 1812]
2020-05-15 17:26:07.335791 port1 out 192.168.2.5.17988 -> 192.168.2.71.1812: udp 118
```

There is a password mismatch for this user on the Secondary RADIUS server. However, even though the authentication was rejected by FortiAuthenticator, it was accepted by Windows NPS. Therefore, the end result is authentication successful.

```bash
get vpn ssl monitor
SSL VPN Login Users:

<table>
<thead>
<tr>
<th>Index</th>
<th>User</th>
<th>Group</th>
<th>Auth Type</th>
<th>Timeout</th>
<th>From</th>
<th>HTTP in/out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>radkeith</td>
<td>dualPrimaryGroup</td>
<td>2(1)</td>
<td>290</td>
<td>192.168.2.202</td>
<td>0/0</td>
</tr>
</tbody>
</table>
```

FortiOS 7.2.0 Administration Guide 1710
Fortinet Inc.
SSL VPN with local user password policy

This is a sample configuration of SSL VPN for users with passwords that expire after two days. Users are warned after one day about the password expiring. The password policy can be applied to any local user password. The password policy cannot be applied to a user group or a local remote user such as LDAP/RADIUS/TACACS+.

In FortiOS 6.2, users are warned after one day about the password expiring and have one day to renew it. If the password expires, the user cannot renew the password and must contact the administrator for assistance.

In FortiOS 6.0/5.6, users are warned after one day about the password expiring and have to renew it. If the password expires, the user can still renew the password.

Sample topology
Sample configuration

WAN interface is the interface connected to ISP. This example shows static mode. You can also use DHCP or PPPoE mode. The SSL VPN connection is established over the WAN interface.

To configure SSL VPN using the GUI:

1. Configure the interface and firewall address. The port1 interface connects to the internal network.
   a. Go to Network > Interfaces and edit the wan1 interface.
   b. Set IP/Network Mask to 172.20.120.123/255.255.255.0.
   c. Edit port1 interface and set IP/Network Mask to 192.168.1.99/255.255.255.0.
   d. Click OK.
   e. Go to Policy & Objects > Address and create an address for internet subnet 192.168.1.0.

2. Configure user and user group.
   a. Go to User & Authentication > User Definition to create a local user.
   b. Go to User & Authentication > User Groups to create a user group and add that local user to it.

3. Configure and assign the password policy using the CLI.
   a. Configure a password policy that includes an expiry date and warning time. The default start time for the password is the time the user was created.

   ```
 config user password-policy
 edit "pwpolicy1"
 set expire-days 2
 set warn-days 1
 next
 end
   ```

   b. Assign the password policy to the user you just created.

   ```
 config user local
 edit "sslvpnuser1"
 set type password
 set passwd-policy "pwpolicy1"
 next
 end
   ```

4. Configure SSL VPN web portal.
   a. Go to VPN > SSL-VPN Portals to edit the full-access portal. This portal supports both web and tunnel mode.
   b. Disable Enable Split Tunneling so that all SSL VPN traffic goes through the FortiGate.

5. Configure SSL VPN settings.
   a. Go to VPN > SSL-VPN Settings.
   b. Select the Listen on Interface(s), in this example, wan1.
   c. Set Listen on Port to 10443.
   d. Set Server Certificate to the authentication certificate.
   e. Under Authentication/Portal Mapping, set default Portal web-access for All Other Users/Groups.
   f. Create new Authentication/Portal Mapping for group sslvpngroup mapping portal full-access.

6. Configure SSL VPN firewall policy.
   a. Go to Policy & Objects > Firewall Policy.
   b. Fill in the firewall policy name. In this example, sslvpn certificate auth.
   c. Incoming interface must be SSL-VPN tunnel interface(ssl.root).
d. Set the Source Address to all and Source User to sslvpngroup.
e. Set the Outgoing Interface to the local network interface so that the remote user can access the internal network. In this example, port1.
f. Set Destination Address to the internal protected subnet 192.168.1.0.
g. Set Schedule to always, Service to ALL, and Action to Accept.
h. Enable NAT.
i. Configure any remaining firewall and security options as desired.
j. Click OK.

To configure SSL VPN using the CLI:

1. Configure the interface and firewall address.

   ```
 config system interface
 edit "wan1"
 set vdom "root"
 set ip 172.20.120.123 255.255.255.0
 next
 end
   ```

2. Configure internal interface and protected subnet, then connect the port1 interface to the internal network.

   ```
 config system interface
 edit "port1"
 set vdom "root"
 set ip 192.168.1.99 255.255.255.0
 next
 end
 config firewall address
 edit "192.168.1.0"
 set subnet 192.168.1.0 255.255.255.0
 next
 end
   ```

3. Configure user and user group.

   ```
 config user local
 edit "sslvpngroup"
 set type password
 set passwd your-password
 next
 end
 config user group
 edit "sslvpngroup"
 set member "vpnuser1"
 next
 end
   ```

4. Configure and assign the password policy.
   
a. Configure a password policy that includes an expiry date and warning time. The default start time for the password is the time the user was created.

   ```
 config user password-policy
 edit "pwpolicy1"
 set expire-days 2
 set warn-days 1
   ```
 assigns the password policy to the user you just created.

```plaintext
config user local
edit "sslvpuser1"
 set type password
 set passwd-policy "pwpolicy1"
next
end
```

5. **Configure SSL VPN web portal.**

```plaintext
config vpn ssl web portal
edit "full-access"
 set tunnel-mode enable
 set web-mode enable
 set ip-pools "SSLVPN_TUNNEL_ADDR1"
 set split-tunneling disable
next
end
```

6. **Configure SSL VPN settings.**

```plaintext
config vpn ssl settings
 set servercert "server_certificate"
 set tunnel-ip-pools "SSLVPN_TUNNEL_ADDR1"
 set source-interface "wan1"
 set source-address "all"
 set default-portal "web-access"
config authentication-rule
 edit 1
 set groups "sslvpngroup"
 set portal "full-access"
next
end
```

7. **Configure one SSL VPN firewall policy to allow remote user to access the internal network.**

```plaintext
config firewall policy
edit 1
 set name "sslvpn web mode access"
 set srcintf "ssl.root"
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "192.168.1.0"
 set groups "sslvpngroup"
 set action accept
 set schedule "always"
 set service "ALL"
 set nat enable
next
end
```
To see the results of web portal:
1. From a remote device, use a web browser to log into the SSL VPN web portal http://172.20.120.123:10443.
2. Log in using the sslvpnuser1 credentials.
   When the warning time is reached, the user is prompted to enter a new password.
   In FortiOS 6.2, when the password expires, the user cannot renew the password and must contact the administrator.
   In FortiOS 6.0/5.6, when the password expires, the user can still renew the password.
3. On the FortiGate, go to Dashboard > Network and expand the SSL-VPN widget to verify the user's connection.

To see the results of tunnel connection:
2. Open the FortiClient Console and go to Remote Access > Configure VPN.
3. Add a new connection.
   - Set the connection name.
   - Set Remote Gateway to the IP of the listening FortiGate interface, in this example, 172.20.120.123.
4. Select Customize Port and set it to 10443.
5. Save your settings.
6. Log in using the sslvpnuser1 credentials.
   When the warning time is reached, the user is prompted to enter a new password.

To check the SSL VPN connection using the GUI:
1. Go to Dashboard > Network and expand the SSL-VPN widget to verify the user's connection.
2. Go to Log & Report > Forward Traffic to view the details of the SSL VPN traffic.

To check that login failed due to password expired on GUI:
1. Go to Log & Report > System Events and select the VPN Events card to see the SSL VPN alert labeled ssl-login-fail.
2. Click Details to see the log details about the Reason sslvpn_login_password_expired.

To check the web portal login using the CLI:

```
get vpn ssl monitor
SSL VPN Login Users:
<table>
<thead>
<tr>
<th>Index</th>
<th>User</th>
<th>Auth Type</th>
<th>Timeout</th>
<th>From</th>
<th>HTTP in/out</th>
<th>HTTPS in/out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>sslvpnuser1</td>
<td>1(1)</td>
<td>229</td>
<td>10.1.100.254</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

SSL VPN sessions:
<table>
<thead>
<tr>
<th>Index</th>
<th>User</th>
<th>Source IP</th>
<th>Duration</th>
<th>I/O Bytes</th>
<th>Tunnel/Dest IP</th>
</tr>
</thead>
</table>
```

To check the tunnel login using the CLI:

```
get vpn ssl monitor
SSL VPN Login Users:
<table>
<thead>
<tr>
<th>Index</th>
<th>User</th>
<th>Auth Type</th>
<th>Timeout</th>
<th>From</th>
<th>HTTP in/out</th>
<th>HTTPS in/out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>sslvpnuser1</td>
<td>1(1)</td>
<td>291</td>
<td>10.1.100.254</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>
```
SSL VPN sessions:

<table>
<thead>
<tr>
<th>Index</th>
<th>User</th>
<th>Source IP</th>
<th>Duration</th>
<th>I/O Bytes</th>
<th>Tunnel/Dest IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>sslvpnuser1</td>
<td>10.1.100.254</td>
<td>9</td>
<td>22099/43228</td>
<td>10.212.134.200</td>
</tr>
</tbody>
</table>

To check the FortiOS 6.2 login password expired event log:

FG201E4Q17901354 # execute log filter category event

FG201E4Q17901354 # execute log filter field subtype vpn

FG201E4Q17901354 # execute log filter field action ssl-login-fail

FG201E4Q17901354 # execute log display

1: date=2019-02-15 time=10:57:56 logid="0101039426" type="event" subtype="vpn" level="alert" vd="root" eventtime=1550257076 logdesc="SSL VPN login fail" action="ssl-login-fail" tunneltype="ssl-web" tunnelid=0 remip=10.1.100.254 user="u1" group="g1" dst_host="N/A" reason="sslvpn_login_password_expired" msg="SSL user failed to logged in"

Dynamic address support for SSL VPN policies

Dynamic SSO user groups can be used in place of address objects when configuring SSL VPN policies. This allows dynamic IP addresses to be used in SSL VPN policies. A remote user group can be used for authentication while an FSSO group is separately used for authorization. Using a dummy policy for remote user authentication and a policy for FSSO group authorization, FSSO can be used with SSL VPN tunnels.

This image shows the authentication and authorization flow:
In this example, FortiAuthenticator is used as a RADIUS server. It uses a remote AD/LDAP server for authentication, then returns the authentication results to the FortiGate. This allows the client to have a dynamic IP address after successful authentication.

First, on the LDAP server, create two users each in their own group, user142 in group pc_group1, and user143 in group pc_group2.

**Configure the FortiAuthenticator**

**To add a remote LDAP server and users on the FortiAuthenticator:**

1. Go to Authentication > Remote Auth. Servers > LDAP.
2. Click Create New.
3. Set the following:
   - Name: ad_ladp_60
   - Primary server name/IP: 172.16.200.60
   - Base distinguished name: dc=fsso-qa,dc=com
   - Bind type: Regular
   - Username: cn=administrator,cn=User
   - Password: <enter a password>
4. Click OK.
5. Edit the new LDAP server.
6. Import the remote LDAP users.
7. Edit each user to confirm that they have the RADIUS attribute Acct-Interim-Interval. This attribute is used by
To create a RADIUS client for FortiGate as a remote authentication server:

1. Go to Authentication > RADIUS Service > Clients.
2. Click Create New.
3. Set the following:
   - Name: fsso_ldap
   - Client address: Range 172.16.200.1~172.16.200.10
   - Secret: <enter a password>
4. In the Realms table, set the realm to the LDAP server that was just added: ad_ldap_60.
5. Click OK.
   FortiAuthenticator can now be used as a RADIUS server, and the authentication credentials all come from the DC/LDAP server.

Fortinet Single Sign-On Collector Agent

To configure the Fortinet Single Sign-On Collector Agent:

1. Select Require authenticated connection from FortiGate and enter a Password.
2. Click Advanced Settings.
3. Select the RADIUS Accounting tab.
4. Select *Enable RADIUS accounting server* and set the *Shared secret.*

5. Click *OK,* then click *Save&close.*

   The collector agent can now accept accounting requests from FortiGate, and retrieve the IP addresses and usernames of SSL VPN client from the FortiGate with accounting request messages.

**Configure the FortiGate**

**To configure the FortiGate in the CLI:**

1. Create a Fortinet Single Sign-On Agent fabric connector:
   ```
 config user fso
 edit "AD_CollectAgent"
 set server "172.16.200.60"
 set password 123456
 next
 end
   ```

2. Add the RADIUS server:
   ```
 config user radius
 edit "rad150"
 set server "172.16.200.150"
 set secret 123456
 set acct-interim-interval 600
 config accounting-server
 edit 1
 set status enable
 set server "172.16.200.60"
 set secret 123456
 next
 next
 end
   ```

3. Create a user group for the RADIUS server:
   ```
 config user group
 edit "rad_group"
 set member "rad150"
 next
 end
   ```
4. Create user groups for each of the FSSO groups:

   config user group
   edit "fsso_group1"
       set group-type fsso-service
       set member "CN=PC_GROUP1,OU=TESTING,DC=FSSO-QA,DC=COM"
   next
   edit "fsso_group2"
       set group-type fsso-service
       set member "CN=PC_GROUP2,OU=TESTING,DC=FSSO-QA,DC=COM"
   next
end

5. Create an SSL VPN portal and assign the RADIUS user group to it:

   config vpn ssl web portal
   edit "testportal"
       set tunnel-mode enable
       set ipv6-tunnel-mode enable
       set web-mode enable
   ...
   next
end
config vpn ssl settings
...
set default-portal "full-access"
config authentication-rule
edit 1
  set groups "rad_group"
  set portal "testportal"
next
end

6. Create firewall addresses:

   config firewall address
   edit "none"
       set subnet 0.0.0.0 255.255.255.255
   next
   edit "pc4"
       set subnet 172.16.200.44 255.255.255.255
   next
   edit "pc5"
       set subnet 172.16.200.55 255.255.255.255
   next
end

7. Create one dummy policy for authentication only, and two normal policies for authorization:

   config firewall policy
   edit 1
      set name "sslvpn_authentication"
      set srcintf "ssl.vdom1"
      set dstintf "port1"
      set srcaddr "all"
      set dstaddr "none"
      set action accept
      set schedule "always"
set service "ALL"
set logtraffic all
set groups "rad_group"
set nat enable
next
edit 3
set name "sslvpn_authorization1"
set srcintf "ssl.vdom1"
set dstintf "port1"
set srcaddr "all"
set dstaddr "pc4"
set action accept
set schedule "always"
set service "ALL"
set logtraffic all
set groups "fsso_group1"
set nat enable
next
edit 4
set name "sslvpn_authorization2"
set srcintf "ssl.vdom1"
set dstintf "port1"
set srcaddr "all"
set dstaddr "pc5"
set action accept
set schedule "always"
set service "ALL"
set logtraffic all
set groups "fsso_group2"
set nat enable
next
end

To create an FSSO agent fabric connector in the GUI:

1. Go to Security Fabric > External Connectors.
2. Click Create New.
3. Click FSSO Agent on Windows AD.
4. Enter the name and Primary FSSO agent information.

5. Click Apply & Refresh. The FSSO groups are retrieved from the collector agent.

To add the RADIUS server in the GUI:

2. Click Create New.
3. Enter a name for the server.
4. Enter the IP/Name and Secret for the primary server.
5. Click Test Connectivity to ensure that there is a successful connection.

6. Click OK.
7. Configure an accounting server with the following CLI command:

```
config user radius
 edit rad150
 set acct-interim-interval 600
 config accounting-server
 edit 1
 set status enable
 set server 172.16.200.60
 set secret ********
 next
 end
next
end
```

To create a user group for the RADIUS server in the GUI:

2. Click Create New.
3. Enter a name for the group and set the Type to Firewall.
4. Add the RADIUS server as a remote group.

![User Group Configuration in GUI](image)

5. Click OK.

To create user groups for each of the FSSO groups in the GUI:

2. Click Create New.
3. Enter a name for the group and set the Type to Fortinet Single Sign-On (FSSO).
4. Add PC_GROUP1 as a member:
   `CN=PC_GROUP1,OU=TESTING,DC=FSSO-QA,DC=COM`
5. Click OK.
6. Add a second user group with PC_GROUP2 as a member:
   `CN=PC_GROUP1,OU=TESTING,DC=FSSO-QA,DC=COM`
7. Click OK.
To create an SSL VPN portal and assign the RADIUS user group to it in the GUI:

1. Go to VPN > SSL VPN Portals.
2. Click Create New.
3. Configure the portal, then click OK.
4. Go to VPN > SSL VPN Settings.
5. Configure the required settings.
6. Create an Authentication/Portal Mapping table entry:
   a. Click Create New.
   b. Set User/Groups to rad_group.
   c. Set Portal to testportal.
   d. Click OK.
7. Click OK.

To create policies for authentication and authorization in the GUI:

1. Go to Policy & Objects > Firewall Policy.
2. Configure a dummy policy for authentication. Set the destination to none so that traffic is not allowed through the FortiGate, and add rad_group as a source.
3. Configure two authorization policies, with the FSSO groups as sources.

Confirmation

On Client 1, log in to FortiClient using user142. Traffic can go to pc4 (172.16.200.44), but cannot go to pc5 (172.16.200.55).

On Client 2, log in to FortiClient using user143. Traffic can go to pc5 (172.16.200.55), but cannot go to pc4 (172.16.200.44).

On the FortiGate, check the authenticated users list and the SSL VPN status:

```
diagnose firewall auth list

10.212.134.200, USER142
 type: fssco, id: 0, duration: 173, idled: 173
 server: AD_CollectAgent
 packets: in 0 out 0, bytes: in 0 out 0
 user_id: 16777229
 group_id: 3 33554434
 group_name: fssco_group1 CN=PC_GROUP1,OU=TESTING,DC=FSSO-QA,DC=COM

10.212.134.200, user142
 type: fw, id: 0, duration: 174, idled: 174
 expire: 259026, allow-idle: 259200
 flag(80): sslvpn
 server: rad150
 packets: in 0 out 0, bytes: in 0 out 0
 group_id: 4
 group_name: rad_group

10.212.134.201, USER143
 type: fssco, id: 0, duration: 78, idled: 78
 server: AD_CollectAgent
```
VPN

packets: in 0 out 0, bytes: in 0 out 0
group_id: 1 33554435
group_name: fss0_group2 CN=PC_GROUP2,OU=TESTING,DC=FSSO-QA,DC=COM

10.212.134.201, user143
type: fw, id: 0, duration: 79, idled: 79
expire: 259121, allow-idle: 259200
flag(80): sslvpn
server: rad150
packets: in 0 out 0, bytes: in 0 out 0
group_id: 4
group_name: rad_group

----- 4 listed, 0 filtered ------

# get vpn ssl monitor
SSL VPN Login Users:
<table>
<thead>
<tr>
<th>Index</th>
<th>User</th>
<th>Auth Type</th>
<th>Timeout</th>
<th>From</th>
<th>HTTP in/out</th>
<th>HTTPS in/out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>user142</td>
<td>2(1)</td>
<td>600</td>
<td>10.1.100.145</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>1</td>
<td>user143</td>
<td>2(1)</td>
<td>592</td>
<td>10.1.100.254</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

SSL VPN sessions:
<table>
<thead>
<tr>
<th>Index</th>
<th>User</th>
<th>Source IP</th>
<th>Duration</th>
<th>I/O Bytes</th>
<th>Tunnel/Dest IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>user142</td>
<td>10.1.100.145</td>
<td>104</td>
<td>32190/16480</td>
<td>10.212.134.200</td>
</tr>
<tr>
<td>1</td>
<td>user143</td>
<td>10.1.100.254</td>
<td>11</td>
<td>4007/4966</td>
<td>10.212.134.201</td>
</tr>
</tbody>
</table>

SSL VPN multi-realm

This sample shows how to create a multi-realm SSL VPN that provides different portals for different user groups.

Sample topology

![SSL VPN topology diagram]

Remote user using FortiClient

Remote user

SSL

WAN1 172.20.120.123

Port 1 192.168.199/24

FortiGate

Internal network
Sample configuration

WAN interface is the interface connected to ISP. This example shows static mode. You can also use DHCP or PPPoE mode. The SSL VPN connection is established over the WAN interface.

The split tunneling routing address cannot explicitly use an FQDN or an address group that includes an FQDN. To use an FQDN, leave the routing address blank and apply the FQDN as the destination address of the firewall policy.

To configure SSL VPN using the GUI:

1. Configure the interface and firewall address. The port1 interface connects to the internal network.
   a. Go to Network > Interfaces and edit the wan1 interface.
   b. Set IP/Network Mask to 172.20.120.123/255.255.255.0.
   c. Edit port1 interface and set IP/Network Mask to 192.168.1.99/255.255.255.0.
   d. Click OK.
   e. Go to Policy & Objects > Address and create an address for internet QA_subnet with subnet 192.168.1.0/24 and HR_subnet with subnet 10.1.100.0/24.

2. Configure user and user group.
   a. Go to User & Authentication > User Definition to create local users qa-user1 and hr-user1.
   b. Go to User & Authentication > User Groups to create separate user groups for web-only and full-access portals:
      - QA_group with member qa-user1.
      - HR_group with the member hr-user1.

3. Configure SSL VPN web portal.
   a. Go to VPN > SSL-VPN Portals to create portal qa-tunnel.
   b. Enable Tunnel Mode.
   c. Create a portal hr-web with Web Mode enabled.

4. Configure SSL VPN realms.
   a. Go to System > Feature Visibility to enable SSL-VPN Realms.
   b. Go to VPN > SSL-VPN Realms to create realms for qa and hr.
   c. (Optional) To access each realm with FQDN instead of the default URLs https://172.20.120.123:10443/hr and https://172.20.120.123:10443/qa, you can configure a virtual-host for the realm in the CLI.

```
config vpn ssl web realm
edit hr
 set virtual-host hr.mydomain.com
next
edit qa
 set virtual-host qa.mydomain.com
next
end
```

Where mydomain.com is the name of your domain. Ensure FQDN resolves to the FortiGate wan1 interface and that your certificate is a wildcard certificate.

5. Configure SSL VPN settings.
   a. Go to VPN > SSL-VPN Settings.
   b. For Listen on Interface(s), select wan1.
   c. Set Listen on Port to 10443.
   d. Choose a certificate for Server Certificate. The default is Fortinet_Factory.
e. In Authentication/Portal Mapping All Other Users/Groups, set the Portal to web-access.

f. Create new Authentication/Portal Mapping for group QA_group mapping portal qa-tunnel.

g. Specify the realm qa.

h. Add another entry for group HR_group mapping portal hr-web.

i. Specify the realm hr.

6. Configure SSL VPN firewall policy.

   a. Go to Policy & Objects > Firewall Policy.

   b. Create a firewall policy for QA access.

   c. Fill in the firewall policy name. In this example, QA sslvpn tunnel mode access.

   d. Incoming interface must be SSL-VPN tunnel interface(ssl.root).

   e. Choose an Outgoing Interface. In this example, port1.

   f. Set the Source to all and group to QA_group.

   g. In this example, the Destination is the internal protected subnet QA_subnet.

   h. Set Schedule to always, Service to ALL, and Action to Accept.

   i. Click OK.

   j. Create a firewall policy for HR access.

   k. Fill in the firewall policy name. In this example, HR sslvpn web mode access.

   l. Incoming interface must be SSL-VPN tunnel interface(ssl.root).

   m. Choose an Outgoing Interface. In this example, port1.

   n. Set the Source to all and group to HR_group.

   o. In this example, the Destination is the internal protected subnet HR_subnet.

   p. Set Schedule to always, Service to ALL, and Action to Accept.

   q. Click OK.

To configure SSL VPN using the CLI:

1. Configure the interface and firewall address.

   ```
 config system interface
 edit "wan1"
 set vdom "root"
 set ip 172.20.120.123 255.255.255.0
 next
 end
   ```

2. Configure internal interface and protected subnet, then connect the port1 interface to the internal network.

   ```
 config system interface
 edit "port1"
 set vdom "root"
 set ip 192.168.1.99 255.255.255.0
 next
 end

 config firewall address
 edit "QA_subnet"
 set subnet 192.168.1.0 255.255.255.0
 next
 edit "HR_subnet"
 set subnet 10.1.100.0 255.255.255.0
   ```
3. **Configure user and user group.**

```plaintext
config user local
edit "qa_user1"
 set type password
 set passwd your-password
next
end
config user group
edit "QA_group"
 set member "qa_user1"
next
end
config user local
edit "hr_user1"
 set type password
 set passwd your-password
next
end
config user group
edit "HR_group"
 set member "hr_user1"
next
end
```

4. **Configure SSL VPN web portal.**

```plaintext
config vpn ssl web portal
edit "qa-tunnel"
 set tunnel-mode enable
 set ip-pools "SSLVPN_TUNNEL_ADDR1"
 set split-tunneling enable
 set split-tunneling-routing-address "QA_subnet"
next
end
config vpn ssl web portal
edit "hr-web"
 set web-mode enable
next
end
```

5. **Configure SSL VPN realms.**

```plaintext
config vpn ssl web realm
edit hr
 set virtual-host hr.mydomain.com
next
edit qa
 set virtual-host qa.mydomain.com
next
end
```

The set virtual-host setting is optional. For example:

```plaintext
config vpn ssl web realm
edit hr
next
```
6. Configure SSL VPN settings.

   edit qa
   next
   end

   config vpn ssl settings
   set servercert "Fortinet_Factory"
   set tunnel-ip-pools "SSLVPN_TUNNEL_ADDR1"
   set tunnel-ipv6-pools "SSLVPN_TUNNEL_IPV6_ADDR1"
   set source-interface "wan1"
   set source-address "all"
   set source-address6 "all"
   set default-portal "full-access"
   config authentication-rule
     edit 1
     set groups "QA_group"
     set portal "qa-tunnel"
     set realm qa
     next
     edit 2
     set groups "HR_group"
     set portal "hr-web"
     set realm hr
     next
   end

   7. Configure two SSL VPN firewall policies to allow remote QA user to access internal QA network and HR user to access HR network.

   config firewall policy
   edit 1
     set name "QA sslvpn tunnel access"
     set srcintf "ssl.root"
     set dstintf "port1"
     set srcaddr "all"
     set dstaddr "QA_subnet"
     set groups "QA_group"
     set action accept
     set schedule "always"
     set service "ALL"
     next
   edit 2
     set name "HR sslvpn web access"
     set srcintf "ssl.root"
     set dstintf "port1"
     set srcaddr "all"
     set dstaddr "HR_subnet"
     set groups "HR_group"
     set action accept
     set schedule "always"
     set service "ALL"
     next
   end
To see the results for QA user:

2. Open the FortiClient Console and go to Remote Access.
3. Add a new connection.
   - Set VPN Type to SSL VPN.
   - Set Remote Gateway to https://172.20.120.123:10443/qa..
   - If a virtual-host is specified, use the FQDN defined for the realm (qa.mydomain.com).
4. Select Customize Port and set it to 10443.
5. Save your settings.
6. Use the credentials you've set up to connect to the SSL VPN tunnel.
   - If the user's computer has antivirus software, a connection is established; otherwise FortiClient shows a compliance warning.
7. After connection, traffic to subnet 192.168.1.0 goes through the tunnel.
8. On the FortiGate, go to Dashboard > Network and expand the SSL-VPN widget to verify the list of SSL users.
9. On the FortiGate, go to VPN > Monitor > SSL-VPN Monitor to verify the list of SSL users.
10. On the FortiGate, go to Log & Report > Forward Traffic and view the details of the traffic.

To see the results for HR user:

1. In a web browser, log into the portal https://172.20.120.123:10443/hr using the credentials you've set up.
2. Alternatively, if a virtual-host is specified, use the FQDN defined for the realm (hr.mydomain.com).
3. On the FortiGate, go to Dashboard > Network and expand the SSL-VPN widget to verify the list of SSL users.
4. Go to Log & Report > Forward Traffic and view the details of the traffic.

**NAS-IP support per SSL-VPN realm**

For RADIUS authentication and authorization, the RADIUS client (the FortiGate) passes the username, password, and NAS-IP to the RADIUS server in its access request. The RADIUS server authenticates and authorizes based on this information. Each RADIUS server can be configured with multiple NAS-IPs for authenticating different groups and NAS clients.

On the FortiGate, configuring the NAS-IP in the realm settings overrides the RADIUS server setting, allowing multiple NAS-IPs to be mapped to the same RADIUS server.

![Diagram of SSL-VPN Client, FortiGate, and RADIUS server]

In this example, the user wants to present one FortiGate VDOM with different NAS-IPs to a single RADIUS server based on specific rules.
To configure the SSL-VPN to use the NAS-IP in the realm settings:

1. Configure a RADIUS user and add it to a group:

```
config user radius
edit "fac150"
 set server "172.16.200.150"
 set secret ********
 set nas-ip 172.16.200.2
config accounting-server
 edit 1
 set status enable
 set server "172.16.200.150"
 set secret ********
 next
end
end
config user group
 edit "radgrp"
 set member "fac150"
 next
end
```

2. Configure a realm for the user with a different NAS-IP:

```
config vpn ssl web realm
 edit "realm1"
 set login-page '........'
 set radius-server "fac150"
 set nas-ip 10.1.100.2
 next
end
```

3. Configure SSL-VPN with an authentication rule that includes the user group and the realm:

```
config vpn ssl settings
 ...
 config authentication-rule
 edit 1
 set groupd "radgrp"
 set portal "testportal1"
 set realm "realm1"
 next
end
```

4. Create a firewall policy:

```
config firewall policy
 edit 1
 set name "sslvpn1"
 ...
 set srcintf "ssl.vdom1"
 set groups "radgrp"
 next
end
```

Because the RADIUS server and NAS-IP are specified in realm1, its NAS-IP is used for authentication.
SSL VPN with Okta as SAML IdP

In this configuration, the FortiGate acts as a SAML service provider (SP) requesting authentication from Okta, which acts as a SAML identity provider (IdP). The following shows the topology in this configuration:

The authentication process is as follows in this deployment:

1. The user initiates an SSL VPN request to the FortiGate.
2. The FortiGate sends the browser POST redirect to FortiClient.
3. FortiClient redirects the SAML authentication request to Okta.
4. The user authenticates with Okta using their credentials.
5. Okta sends a SAML assertion that contains the user and group authentication in a POST redirect to the SSL VPN login page.
6. FortiClient sends the redirected Okta request that contains the SAML assertion to the FortiGate.
7. The FortiGate consumes the assertion and provides the user with access to resources based on the defined firewall security policy.
The example assumes that you already have an Okta account. This example uses users locally defined within the Okta directory and does not include LDAP mapping. The instructions describe the steps that you take if using the free Okta developer edition.

To configure Okta for SSL VPN with FortiOS:

1. Log in to the Okta portal as the registered admin user.
2. Add the FortiGate application:
   a. Go to Applications.
   b. Click Applications, then click Create App Integration.
   c. Click SAML 2.0, then Next.
   d. Configure SAML settings:
      i. Proceed through the application creation wizard. In the Single sign on URL field, enter https://<FortiGate IP address>:<port>/remote/saml/login/. In this example, it is https://10.0.3.254:10443/remote/saml/login/.
      ii. Enable Use this for Recipient URL and Destination URL.
      iii. In the Audience URI (SP Entity ID) field, enter the https://<FortiGate IP address>:<port>/remote/saml/metadata/. In this example, it is https://10.0.3.254:10443/remote/saml/metadata/.
     iv. Click Download Okta Certificate to download the Okta certificate to your machine. You provide this certificate to the FortiGate.
     v. Click Show Advanced Settings. From the Response dropdown list, select Signed.
     vi. From the Assertion Signature dropdown list, select Signed.
     vii. In the Single Logout URL field, enter https://<FortiGate IP address>:<port>/remote/saml/logout/. In this example, it is https://10.0.3.254:10443/remote/saml/logout/.
     viii. In the SP Issuer field, enter https://<FortiGate IP address>:<port>/remote/saml/metadata/. In this example, it is https://10.0.3.254:10443/remote/saml/metadata/.
     ix. In the Signature Certificate field, first download the Fortinet.Factory certificate by logging into FortiOS, going to System > Local Certificate, then browsing to and uploading the FortiGate certificate. Okta uses
this to authenticate the SAML SP.

![VPN Configuration](image)

e. Under **ATTRIBUTE STATEMENTS** and **GROUP ATTRIBUTE STATEMENTS**, define attribute mappings for Okta to use in SAML assertion. In this example, the following is entered as a attribute statement and a group attribute statement, respectively:

- **username**, with value `user.login`
- **group**, with **Matches regex filter**

![Attribute Statements](image)

f. On the **Feedback** step, select *I'm an Okta customer adding an internal app.*

g. Select *This is an internal app that we have created.*

h. Click **Finish**.

3. Go to **Directory > People**.
4. Click **Add Person**.
5. Enter the person's details as desired. Click Save.

6. Add a group:
   a. Go to Directory > Groups.
   b. Click Add Group.
   c. Enter the desired name, then click Add Group. In this example, the name is corporate-saml.
   d. Select the newly added group, then click Assign People.
   e. Add the person that you created as a member of the new group. Click Save.

7. Assign the group to the FortiGate application:
   a. Go to Applications > FortiGate application > Assignments.
   b. From the Assign dropdown list, select Assign to Groups.
   c. Assign the group that you created to the FortiGate application.

8. To view the SAML setup instructions, do the following:
   a. Click the newly created application's name.
   b. Click Sign On.

9. Download the Okta certificate and upload it to FortiOS:
   a. From View SAML Setup Instructions, download the certificate.
   b. In FortiOS, go to System > Certificates.
   c. From the Create/Import dropdown list, select Remote Certificate.
   d. Click Upload and upload the downloaded Okta certificate.

To configure the FortiGate:

1. Configure the FortiGate SP to be a SAML user:
   ```
 config user saml
   ```
edit "okta-idp"
    set cert "Fortinet_Factory"
    set entity-id "https://10.0.3.254:10443/remote/saml/metadata/"
    set single-sign-on-url "https://10.0.3.254:10443/remote/saml/login"
    set single-logout-url "https://10.0.3.254:10443/remote/saml/logout"
    set idp-entity-id "http://www.okta.com/exk103foxaa8gk5qy4x7"
    set idp-single-sign-on-url "https://fortinet01.okta.com/app/fortinetorg878484_fortigate_1/exk103foxaa8gk5qy4x7/sso/saml"
    set idp-single-logout-url "https://fortinet01.okta.com/app/fortinetorg878484_fortigate_1/exk103foxaa8gk5qy4x7/slo/saml"
    set idp-cert "Okta-IDP_Certificate"
    set user-name "username"
    set group-name "group"
next
end

2. Configure user group assertion on Okta as part of the SAML assertion attributes. It is important that the group attribute value received is locally matched with the group-name value:
   config user group
      edit "corporate-saml"
      set member "okta-idp"
      config match
         edit 1
            set server-name "okta-idp"
            set group-name "corporate-saml"
         next
      next
   end

3. Go to VPN > SSL-VPN Settings. Configure VPN settings as desired. When testing the VPN solution, starting with a web-based configuration, then moving to a tunnel-based configuration is recommended. Web-based testing can help in troubleshooting.

4. Configure a local or RADIUS user as a backup. This setting also provides a login web user with a choice of local or SSO login.

5. Go to Policy and Objects > Firewall Policies. Configure a policy as desired.

6. Increase the global authentication timeout period to allow users to fill in their credentials in time. The default timeout is five seconds:
   config system global
      set remoteauthtimeout 60
   end

To configure EMS:

1. In EMS, go to Endpoint Profiles > Manage Profiles. Edit a VPN profile.
2. Under VPN Tunnels, click Add Tunnel.
3. In the Remote Gateway field, enter the FortiGate IP address. In this example, it is 10.0.3.254.
4. In the Port field, enter the port number. In this example, it is 10443.

5. In Advanced Settings, enable Enable SAML Login.

6. Click Add Tunnel.

7. Save the profile.

8. After the policy synchronizes to the endpoint, the SAML Login button is visible on the Remote Access tab in FortiClient.

To test the configuration:

1. Test web-based SSL VPN authentication using Firefox with the SAML tracer plugin enabled. Install the SAML-tracer plugin to Firefox.
2. In Firefox, go to the FortiOS SSL VPN login page. In this example, this is https://10.0.3.254:10443.
3. Open the SAML tracer.
4. The browser redirects to the Okta SAML login page. Enter the Okta credentials, then click Sign in.
5. Upon successful authentication, the browser redirects to the authenticated SSL VPN page. If authentication does not succeed, review the SAML tracer to confirm the SAML assertion attributes that are passed during the authentication session. Select the POST message with the SAML information. On the SAML tab, confirm the username and group attributes.
6. To test tunnel mode, go to the Remote Access tab in FortiClient. Click the SAML Login button.
7. A FortiAuthenticator web login page opens within FortiClient. Enter the Okta credentials, then log in to connect to the VPN tunnel.

To troubleshoot the configuration:

You can view FortiOS event logs in Log & Report > Events to verify successful authentication and user group allocation.

You can also run the `diagnose debug application samld -1` command to verify that the SAML IdP sent the correct information. The following shows example output for this scenario:

```
\[saml\]_comm_negot: [0x0] 112421824 [0x0]
```

SSL VPN with Azure AD SSO integration

You can use SAML single sign on to authenticate against Azure Active Directory with SSL VPN SAML user via tunnel and web modes. See:

- Configuring SAML SSO login for SSL VPN with Azure AD acting as SAML IdP
- Tutorial: Azure AD SSO Integration with FortiGate SSL VPN

SSL VPN to IPsec VPN

This is a sample configuration of site-to-site IPsec VPN that allows access to the remote endpoint via SSL VPN.
This example uses a pre-existing user group, a tunnel mode SSL VPN with split tunneling, and a route-based IPsec VPN between two FortiGates. All sessions must start from the SSL VPN interface.

If you want sessions to start from the FGT_2 subnet, you need more policies. Also, if the remote subnet is beyond FGT_2 (if there are multiple hops), you need to include the SSL VPN subnet in those routers as well.

**Sample topology**

SSL VPN IP address pool: 20.2.200.0/24

**Sample configuration**

**To configure the site-to-site IPsec VPN on FGT_1:**

1. Go to **VPN > IPsec Wizard**.
2. In the **VPN Setup pane**:
   a. Specify the VPN connection **Name** as **to_FGT_2**.
   b. Select **Site to Site**.
   c. Click **Next**.
3. In the **Authentication pane**:
   a. Enter the **IP Address** to the Internet-facing interface.
   b. For **Authentication Method**, click **Pre-shared Key** and enter the **Pre-shared Key**.
c. Click Next.

4. In the Policy & Routing pane:
   a. Set the Local Interface to the internal interface.
   b. Set the Local Subnets to include the internal and SSL VPN subnets for FGT_1.
   c. Set Remote Subnets to include the internal subnet for FGT_2.

   ![Image of Policy & Routing pane]

   d. Click Next.

5. Review the VPN settings and click Create.
A confirmation screen shows a summary of the configuration including the firewall address groups for both the local and remote subnets, static routes, and security policies.

To configure SSL VPN settings:

1. Go to VPN > SSL-VPN Settings.
2. Set Listen on Interface(s) to wan1.
3. To avoid port conflicts, set Listen on Port to 10443.
4. Set Restrict Access to Allow access from any host.
5. In the Tunnel Mode Client Settings section, select Specify custom IP ranges and include the SSL VPN subnet range created by the IPSec Wizard.
6. In the Authentication/Portal Mapping section, add the VPN user group to the tunnel-access Portal. Set All Other Users/Groups to the web-access Portal.
It is **HIGHLY** recommended that you acquire a signed certificate for your installation. Please review the SSL VPN best practices on page 1619 and learn how to Procuring and importing a signed SSL certificate on page 2175.

7. **Click Apply.**

**To configure SSL VPN portal:**

1. Go to **VPN > SSL-VPN Portals**.
2. Select **tunnel-access** and click **Edit**.
3. Turn on **Enable Split Tunneling** so that only traffic intended for the local or remote networks flow through FGT_1 and follows corporate security profiles.
4. For **Routing Address**, add the local and remote IPsec VPN subnets created by the **IPsec Wizard**.
5. For **Source IP Pools**, add the SSL VPN subnet range created by the **IPsec Wizard**.
To add policies to FGT_1:

1. Go to Policy & Objects > Firewall Policy.
2. Click Create New to create a policy that allows SSL VPN users access to the IPsec VPN tunnel.
3. For Incoming Interface, select ssl.root.
4. For Outgoing Interface, select the IPsec tunnel interface to_FGT_2.
5. Set the Source to all and the VPN user group.
6. Set Destination to the remote IPsec VPN subnet.
7. Specify the Schedule.
8. Set the Service to ALL.
9. In the Firewall/Network Options section, disable NAT.

10. Click OK.

To configure the site-to-site IPsec VPN on FGT_2:

1. Go to VPN > IPsec Wizard.
2. In the VPN Setup pane:
   a. Specify the VPN connection Name as to_FGT_1.
   b. Select Site to Site.
c. Click Next.

3. In the **Authentication** pane:
   a. Enter the **IP Address** to the Internet-facing interface.
   b. For **Authentication Method**, click **Pre-shared Key** and enter the **Pre-shared Key** of the FGT_1.
   c. Click Next.

4. In the **Policy & Routing** pane:
   a. Set the **Local Interface** to the internal interface.
   b. Set the **Local Subnets** to include the internal and SSL VPN subnets for FGT_2.
   c. Set **Remote Subnets** to include the internal subnet for FGT_1.
   d. Click Create.

A confirmation screen shows a summary of the configuration including the firewall address groups for both the local and remote subnets, static routes, and security policies.

**To check the results:**

1. Go to **Dashboard > Network** and click the **IPsec** widget to expand to full screen view.
2. Select the tunnel and click **Bring Up**.

3. Verify that the **Status** changes to **Up**.
4. Configure the SSL VPN connection on the user's FortiClient and connect to the tunnel.

5. On the user's computer, send a ping though the tunnel to the remote endpoint to confirm access:

```
C:\>ping 172.16.200.55
Pinging 172.16.200.55 with 32 bytes of data:
Replay from 172.16.200.55: bytes=32 times=2ms TTL=62
Replay from 172.16.200.55: bytes=32 times=1ms TTL=62
Replay from 172.16.200.55: bytes=32 times=1ms TTL=62
Replay from 172.16.200.55: bytes=32 times=1ms TTL=62
```

Ping statistics for 172.16.200.55:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip time in milliseconds:
Minimum = 1ms, Maximum = 2ms, Average = 1ms

6. In FortiOS, go to the following pages for further verification:
   a. Go to Dashboard > Network and click the Routing widget to verify the IPsec and SSL VPNs are added.
   b. Go to VPN > SSL-VPN Clients to verify the connected users.
   c. Go to VPN > VPN Location Map to view the connection activity.
   d. Go to Log & Report > System Events and select the VPN Events card to view tunnel statistics.
   e. Go to Dashboard > FortiView Policies to view the policy usage.

Troubleshooting

To troubleshoot on FGT_1, use the following CLI commands:

```plaintext
diagnose debug reset
diagnose debug flow show function-name enable
diagnose debug flow show ioprope enable
diagnose debug flow filter addr 172.16.200.55
diagnose debug flow filter proto 1
diagnose debug flow trace start 2
diagnose debug enable
```

To troubleshoot using ping:

1. Send a ping through the SSL VPN tunnel to 172.16.200.55 and analyze the output of the debug.
2. Disable the debug output with: `diagnose debug disable`.

If traffic is entering the correct VPN tunnel on FGT_1, then run the same commands on FGT_2 to check whether the traffic is reaching the correct tunnel. If it is reaching the correct tunnel, confirm that the SSL VPN tunnel range is configured in the remote side quick mode selectors.

To troubleshoot using a sniffer command:

```plaintext
diagnose sniff packet any "host 172.16.200.44 and icmp" 4
```

To troubleshoot IPsec VPN issues, use the following commands on either FortiGate:

```plaintext
diagnose debug reset
diagnose vpn ike gateway clear
diagnose debug application ike -1
diagnose debug enable
```

SSL VPN protocols

The following topics provide information about SSL VPN protocols:

- TLS 1.3 support on page 1746
- SMBv2 support on page 1746
**TLS 1.3 support**

FortiOS supports TLS 1.3 for SSL VPN.

TLS 1.3 support requires IPS engine 4.205 or later and endpoints running FortiClient 6.2.0 or later.

**To establish a client SSL VPN connection with TLS 1.3 to the FortiGate:**

1. Enable TLS 1.3 support using the CLI:
   ```
 config vpn ssl setting
 set ssl-max proto-ver tls1-3
 set ssl-min proto-ver tls1-3
 end
   ```

2. Configure the SSL VPN and firewall policy:
   a. Configure the SSL VPN settings and firewall policy as needed.

3. For Linux clients, ensure OpenSSL 1.1.1a is installed:
   a. Run the following commands in the Linux client terminal:
      ```
 root@PC1:~/tools# openssl
 OpenSSL> version
 OpenSSL 1.1.1a 20 Nov 2018
      ```

4. For Linux clients, use OpenSSL with the TLS 1.3 option to connect to SSL VPN:
   a. Run the following command in the Linux client terminal:
      ```
 # openssl s_client -connect 10.1.100.10:10443 -tls1_3
      ```

5. Ensure the SSL VPN connection is established with TLS 1.3 using the CLI:
   ```
 # diagnose debug application sslvpn -1
 # diagnose debug enable
   ```
   The system displays a response like the following:
   ```
 [207:root:1d] SSL established: TLSv1.3 TLS_AES_256_GCM_SHA384
   ```

**Deep inspection (flow-based)**

FortiOS supports TLS 1.3 for policies that have the following security profiles applied:

- Web filter profile with flow-based inspection mode enabled.
- Deep inspection SSL/SSH inspection profile.

For example, when a client attempts to access a website that supports TLS 1.3, FortiOS sends the traffic to the IPS engine. The IPS engine then decodes TLS 1.3 and the client is able to access the website.

**SMBv2 support**

On all FortiGate models, SMBv2 is enabled by default for SSL VPN. Client PCs can access the SMBv2 server using SSL VPN web-only mode.
To configure SMBv2:

1. Set the minimum and maximum SMB versions.
   
   ```
 config vpn ssl web portal
 edit portal-name
 set smb-min-version smbv2
 set smb-max-version smbv3
 next
 end
   ```

2. Configure SSL VPN and firewall policies as usual.
3. Connect to the SSL VPN web portal and create an SMB bookmark for the SMBv2 server.
4. Click the bookmark to connect to the SMBv2 server.
5. On the FortiGate, use package capture to verify that SMBv2 works:

<table>
<thead>
<tr>
<th>Source IP</th>
<th>Destination IP</th>
<th>Protocol</th>
<th>Source Port</th>
<th>Destination Port</th>
<th>Protocol Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.440735802.3.0.1</td>
<td>172.16.209.10</td>
<td>SMB2</td>
<td>252</td>
<td>139</td>
<td>Negotiate Protocol Request</td>
</tr>
<tr>
<td>8.440735802.3.0.1</td>
<td>172.16.209.94</td>
<td>SMB2</td>
<td>252</td>
<td>139</td>
<td>Negotiate Protocol Response</td>
</tr>
</tbody>
</table>

**Configuring OS and host check**

Beyond the basics of setting up the SSL VPN, you can configure a number of other options that can help to ensure your internal network is secure and can limit the possibility of attacks and viruses entering the network from an outside source. These include verifying OS and performing host checks on software running on the remote device.

**Verifying remote user OS**

To verify that remote users are using devices with up-to-date Operating Systems to connect to your network, you can configure a host check for Windows and Mac OS. You can configure an OS host check for specific OS versions, such as Windows 7, 8.1, 10, and 11.

**To configure an OS host check for specific OS versions:**

1. Go to `VPN > SSL-VPN`.
2. Click `Create New`.
3. Enable `Restrict to Specific OS Versions`.
4. Select an OS version and click `Edit` to change the action.
5. Select the action:
   - `Allow`: The selected OS version is allowed to connect. This is the default action.
   - `Block`: The selected OS version is not allowed to connect.
   - `Check up to date`: Specify a Tolerance and Latest patch level that is allowed for the selected OS version.
6. Click `OK`.
7. Configure other parameters as needed.
8. Click `OK`.

**Host check**

Host check verifies whether the client device has AntiVirus, firewall, both, or other custom security software enabled on their Windows device. Admins may also define their own custom host check software, which supports Windows and Mac.
To configure host checking:

1. Go to VPN > SSL-VPN Portal.
2. Click Create New.
3. Enable Host Check.
4. Set the Type:
   - *Realtime AntiVirus*: Checks that AntiVirus software recognized by Windows Security Center is enabled.
   - *Firewall*: Checks that firewall software recognized by Windows Security Center is enabled.
   - *Enable both*: Checks that both *Realtime AntiVirus* and *Firewall* are enabled.
   - Custom: Not configurable from the GUI. See CLI settings below.
5. Configure other parameters as needed.
6. Click OK.

You can configure the full-access portal to perform a custom host check for FortiClient Host Security AV and firewall software.

To configure custom host checking:

```config
config vpn ssl web portal
 edit full-access
 set host-check custom
 set host-check-policy FortiClient-AV FortiClient-FW
 next
end
```

Many other security software can also be configured. Use `set host-check-policy ?` to see a list of software.

### Replacing the host check error message

You can add your own host security check error message using either the GUI or the CLI. The default message reads:

> Your PC does not meet the host checking requirements set by the firewall. Please try again in a few minutes. If the issue persists check that your OS version meets the minimum requirements, that your antivirus and firewall applications are installed and running properly, and that you have the correct network interface.

To replace the host check error message in the GUI:

1. Go to System > Replacement Messages.
2. Select Extended View in the upper right corner.
3. Scroll down to SSL-VPN and select Hostcheck Error Message.
4. Click Edit. The Hostcheck Error Message pane opens.
5. Edit the text in the right-hand column.
6. Click Save.

If you are unhappy with the new message, you can restore the message to its default by selecting Restore Defaults instead of Save.

MAC address check

Aside from OS and Host check, FortiGate can also perform a MAC address check on the remote host.

To configure a MAC address check on the remote host in the CLI:

```
config vpn ssl web portal
 edit <portal_name>
 set mac-addr-check enable
 config mac-addr-check-rule
 edit <rule_name>
 set mac-addr-list <address> [address]
 set mac-addr-mask <mask between 1-48>
 next
 set set mac-addr-action {allow | deny}
 next
end
```

Creating a custom host check list

You can add your own software requirements to the host check list using the CLI. Host integrity checking is only possible with client computers running Microsoft Windows platforms.

To add software requirements to the host check list:

```
config vpn ssl web host-check-software
 edit <software_name>
 set os-type {windows | macos}
 set type {av | fw}
 set version <version_number>
 set guid <guid_value>
 config check-item-list
 edit <ID>
 set action {require | deny}
 set type {file | registry | process}
 set target <target string>
 set version <version string>
 set md5s <hext string>
 next
 end
```
If known, enter the Globally Unique Identifier (GUID) for the host check application. Windows uses GUIDs to identify applications in the Windows Registry. The GUID can be found in the Windows registry in the HKEY_CLASSES_ROOT section.

To obtain the exact versioning, in Windows, right-click on the .EXE file of the application and select Properties, then select the Version tab.

**Example: Tunnel Mode Host Check - Registry Key Check**

The following example configuration checks if a required registry key is present on a Windows device.

```fortigate
config vpn ssl web host-check-software
 edit <computer_name>
 config check-item-list
 edit 1
 set target "HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\ComputerName\ActiveComputerName:ComputerName=WINXP32SP3B62"
 set type registry
 next
 next
 next
end
```

**Example: Tunnel Mode Host Check - Application Running Check**

The following example configuration checks if a required application is installed and/or running:

```fortigate
config vpn ssl web host-check-software
 edit "calc"
 config check-item-list
 edit 1
 set target "calc.exe"
 set type process
 next
 next
end
```

**Example: Mac OS host check and process check**

The os-type option is available under vpn ssl web host-check-software;if os-type is macos, then type, version and guid are hidden. Furthermore, type in check-item-list can only be set to file or process.

```fortigate
config vpn ssl web portal
 edit <portal_name>
 set os-check enable
 config os-check-list macos-bigsur-11
 set action {allow | deny | check-up-to-date}
 set tolerance <value>
 set latest-patch-level <value>
 end
 next
```
Example: Configuring Windows OS Check with patch version

The Windows patch check enables you to define the minimum Windows version and patch level allowed when connecting to the SSL VPN portal. When the user attempts to connect to the web portal, FortiOS performs a query on the version of Windows the user has installed. If it does not match the minimum requirement, the connection is denied. The Windows patch check is configured in the CLI.

To specify the acceptable patch level, you set the latest-patch-level and the tolerance. The lowest acceptable patch level is latest-patch-level minus tolerance. In this case, latest-patch-level is three and tolerance is one, so two is the lowest acceptable patch level.

To configure OS check:

```plaintext
config vpn ssl web portal
 edit <portal_name>
 set os-check enable
 config os-check-list <windows OS version>
 set action {allow | check-up-to-date | deny}
 set latest-patch-level {disable | 0 - 255}
 set tolerance <tolerance_num>
 end
 end
end
```

Example: Host check for Windows firewall

The Windows built-in firewall does not have a GUID in root\securitycenter or root\securitycenter2, but you can use a registry value to detect the firewall status.

If Windows firewall is on, the following registry value will be set to one:

- **KeyName**: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SharedAccess\Parameters\FirewallPolicy\StandardProfile
- **ValueName**: EnableFirewall

In FortiOS, use the `registry-value-check` feature to define the Windows firewall software.

To define the Windows firewall software:

```plaintext
config vpn ssl web host-check-software
 edit "Microsoft-Windows-Firewall"
 set type fw
```

config check-item-list
  edit 1
    set target "HKLM\SYSTEM\CurrentControlSet\Services\SharedAccess\Parameters\FirewallPolicy\StandardProfile:EnableFirewall==1"
    set type registry
    next
  edit 2
    set target "HKLM\SYSTEM\CurrentControlSet\Services\SharedAccess\Parameters\FirewallPolicy\PublicProfile:EnableFirewall==1"
    set type registry
    next
  edit 3
    set target "HKLM\SYSTEM\CurrentControlSet\Services\SharedAccess\Parameters\FirewallPolicy\DomainProfile:EnableFirewall==1"
    set type registry
    next
end
next
cfg vpn ssl web portal
  edit <portal_name>
    set host-check custom
    set host-check-policy Microsoft-Windows-Firewall
  next
end

Troubleshooting

To troubleshoot OS and host check, enable the following real-time debugs from the CLI:

```
diagnose debug app sslvpn -1
diagnose debug enable
```

From the remote client, connect to SSL VPN. Look for debug output similar to the following:

```
```

To interpret the above output:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>host check result: 4</td>
<td>This is the hex number of portal's host check value:</td>
</tr>
<tr>
<td></td>
<td>• 0: None</td>
</tr>
<tr>
<td></td>
<td>• 1: Check antivirus</td>
</tr>
<tr>
<td></td>
<td>• 2: Check firewall</td>
</tr>
<tr>
<td></td>
<td>• 3: Check antivirus and firewall</td>
</tr>
<tr>
<td></td>
<td>• 4: Custom check</td>
</tr>
<tr>
<td>0100</td>
<td>The 4 bytes shows the result of host check checking in the FortiGate Settings. Position counts from left to right, zero to three:</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>10.0.19042</td>
<td>This is the OS version.</td>
</tr>
<tr>
<td>74:78:27:4d:81:93</td>
<td>84:1b:77:3a:95:84</td>
</tr>
</tbody>
</table>

**FortiGate as SSL VPN Client**

The FortiGate can be configured as an SSL VPN client, using an SSL-VPN **Tunnel** interface type. When an SSL VPN client connection is established, the client dynamically adds a route to the subnets that are returned by the SSL VPN server. Policies can be defined to allow users that are behind the client to be tunneled through SSL VPN to destinations on the SSL VPN server.

FortiOS can be configured as an SSL VPN server that allows IP-level connectivity in tunnel mode, and can act as an SSL VPN client that uses the protocol used by the FortiOS SSL VPN server. This allows hub-and-spoke topologies to be configured with FortiGates as both the SSL VPN hub and spokes.

For an IP-level VPN between a device and a VPN server, this can be useful to avoid issues caused by intermediate devices, such as:

- ESP packets being blocked.
- UDP ports 500 or 4500 being blocked.
- Fragments being dropped, causing IKE negotiation that uses large certificates to fail if the peer does not support IKE fragmentation.

If the client specified destination is **all**, a default route is effectively dynamically created on the SSL VPN client, and the new default route is added to the existing default route in the form of ECMP. Some examples how to configure routing are:

- To make all traffic default to the SSL VPN server and still have a route to the server's listening interface, on the SSL VPN client set a lower distance for the default route that is learned from the server.
- To include both default routes in the routing table, with the route learned from the SSL VPN server taking priority, on the SSL VPN client set a lower distance for the route learned from the server. If the distance is already zero, then increase the priority on the default route.
- To avoid a default being learned on the SSL VPN client, on the SSL VPN server define a specific destination.

**Example**

In this example, the home FortiGate (FGT-A) is configured as an SSL VPN client, and the company FortiGate (FGT-B) is configured as an SSL VPN server. After FGT-A connects to FGT-B, the devices that are connected to FGT-A can access the resources behind FGT-B.
The SSL VPN server has a custom server certificate defined, and the SSL VPN client user uses PSK and a PKI client certificate to authenticate. The FortiGates must have the proper CA certificate installed to verify the certificate chain to the root CA that signed the certificate.

Split tunneling is used so that only the destination addresses defined in the server's firewall policies are routed to the server, and all other traffic is connected directly to the internet.

Configure the SSL VPN server

To create a local user in the GUI:

1. Go to User & Authentication > User Definition and click Create New.
2. Use the wizard to create a local user named client2.

To create a PKI user in the GUI:

The PKI menu is only available in the GUI after a PKI user has been created using the CLI, and a CN can only be configured in the CLI.

1. Go to User & Authentication > PKI and click Create New.
2. Set the Name to pki.
3. Set CA to the CA certificate that is used to verify the client certificate.
4. Click OK.
5. In the CLI, specify the CN that must be matched. If no CN is specified, then any certificate that is signed by the CA will be valid and matched.

```
config user peer
edit "pki"
 set cn "*.fos.automation.com"
next
end
```

To create an SSL VPN portal in the GUI:

1. Go to VPN > SSL-VPN Portals and click Create New.
2. Set the Name to testportal2.
3. Set Enable Split Tunneling to Enabled Based on Policy Destination.
5. Click OK.

To configure SSL VPN settings in the GUI:

1. Go to VPN > SSL-VPN Settings and enable Enable SSL-VPN.
2. Set Listen on Interface(s) to port2.
3. Set Listen on Port to 1443.
5. In the Authentication/Portal Mapping table click Create New:
   a. Set Users/Groups to client2.
   b. Set Portal to testportal2.
   c. Click OK.
6. Click OK.
7. In the CLI, enable SSL VPN client certificate restrictive and set the user peer to pki:

```
config vpn ssl settings
 config authentication-rule
 edit 1
 set client-cert enable
 set user-peer "pki"
next
end
```

To create a firewall address in the GUI:

1. Go to Policy & Objects > Addresses and click Create New > Address.
2. Set the Name to bing.com.
3. Set Type to FQDN.
5. Click OK.
To create a firewall policy in the GUI:

1. Go to Policy & Objects > Firewall Policy and click Create New.
2. Configure the policy:

<table>
<thead>
<tr>
<th>Name</th>
<th>sslvpn2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>SSL-VPN tunnel interface (ssl.root)</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>port1</td>
</tr>
<tr>
<td>Source</td>
<td>Address: all</td>
</tr>
<tr>
<td></td>
<td>User: client2</td>
</tr>
<tr>
<td>Destination</td>
<td>bing.com: This FQDN resolves to 13.107.21.200 and 204.79.197.200. Traffic to these addresses is directed to the SSL VPN, while other traffic is routed to the remote devices' default adapters or interfaces. mantis</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>ALL</td>
</tr>
<tr>
<td>Action</td>
<td>Accept</td>
</tr>
</tbody>
</table>

3. Click OK.

To configure the SSL VPN server (FGT-B) in the CLI:

1. Create a local user:

   ```
 config user local
 edit "client2"
 set passwd **********
 next
 end
   ```

2. Create a PKI user:

   ```
 config user peer
 edit "pki"
 set ca "CA_Cert_3"
 set cn "*.fos.automation.com"
 next
 end
   ```

3. Create a new SSL VPN portal:

   ```
 config vpn ssl web portal
 edit "testportal2"
 set tunnel-mode enable
 set ipv6-tunnel-mode enable
 set ip-pools "SSLVPN_TUNNEL_ADDR1"
 set split-tunneling enable
 set ipv6-pools "SSLVPN_TUNNEL_IPv6_ADDR1"
 set ipv6-split-tunneling enable
   ```
4. Configure SSL VPN settings, including the authentication rule for user mapping:

```fortigate-config
config vpn ssl settings
 set ssl-min-proto-ver tls1-1
 set servercert "fgt_gui_automation"
 set auth-timeout 0
 set login-attempt-limit 10
 set login-timeout 180
 set tunnel-ip-pools "SSLVPN_TUNNEL_ADDR1"
 set tunnel-ipv6-pools "SSLVPN_TUNNEL_IPV6_ADDR1"
 set dns-suffix "sslvpn.com"
 set port 1443
 set source-interface "port2"
 set source-address "all"
 set source-address6 "all"
 set default-portal "testportal1"
config authentication-rule
 edit 1
 set users "client2"
 set portal "testportal2"
 set client-cert enable
 set user-peer "pki"
 next
end
```

5. Create a firewall address and policy. The destination addresses used in the policy are routed to the SSL VPN server.

```fortigate-config
config firewall address
 edit "bing.com"
 set type fqdn
 set fqdn "www.bing.com"
 next
end

config firewall policy
 edit 2
 set name "sslvpn2"
 set srcintf "ssl.root"
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "mantis" "bing.com"
 set action accept
 set schedule "always"
 set service "ALL"
 set nat enable
 set users "client2"
 next
end
```
Configure the SSL VPN client

To create a PKI user in the GUI:

The PKI menu is only available in the GUI after a PKI user has been created using the CLI, and a CN can only be configured in the CLI.

1. Go to User & Authentication > PKI and click Create New.
2. Set the Name to fgt_gui_automation.
3. Set CA to the CA certificate. The CA certificate allows the FortiGate to complete the certificate chain and verify the server’s certificate, and is assumed to already be installed on the FortiGate.
4. Click OK.
5. In the CLI, specify the CN of the certificate on the SSL VPN server:

   ```
 config user peer
 edit "ftg_gui_automation"
 set cn "*.fos.automation.com"
 next
 end
   ```

To create an SSL VPN client and virtual interface in the GUI:

1. Go to VPN > SSL-VPN Clients and click Create New.
2. Expand the Interface drop down and click Create to create a new virtual interface:
   a. Set the Name to sslclient_port1.
   b. Set Interface to port1.
   c. Under Administrative Access, select HTTPS and PING.
   d. Click OK.
3. Configure the SSL VPN client:

<table>
<thead>
<tr>
<th>Name</th>
<th>sslclientTo9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>sslclient_port1</td>
</tr>
<tr>
<td>Server</td>
<td>172.16.200.9</td>
</tr>
<tr>
<td>Port</td>
<td>1443</td>
</tr>
<tr>
<td>Username</td>
<td>client2</td>
</tr>
<tr>
<td>Pre-shared Key</td>
<td>**********</td>
</tr>
<tr>
<td>Client Certificate</td>
<td>fgtb_gui_automation</td>
</tr>
<tr>
<td>Peer</td>
<td>fgt_gui_automation</td>
</tr>
<tr>
<td>Administrative Distance</td>
<td>Configure as needed.</td>
</tr>
<tr>
<td>Priority</td>
<td>Configure as needed.</td>
</tr>
<tr>
<td>Status</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

4. Click OK.

To create a firewall policy in the GUI:

1. Go to Policy & Objects > Firewall Policy and click Create New.
2. Configure the policy:

<table>
<thead>
<tr>
<th>Name</th>
<th>policy_to_sslvpn_tunnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>port2</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>sslclient_port1</td>
</tr>
<tr>
<td>Source</td>
<td>all</td>
</tr>
<tr>
<td>Destination</td>
<td>all</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>ALL</td>
</tr>
<tr>
<td>Action</td>
<td>Accept</td>
</tr>
</tbody>
</table>

3. Click OK.

To configure the SSL VPN client (FGT-A) in the CLI:

1. Create the PKI user. Use the CA that signed the certificate fgt_gui_automation, and the CN of that certificate on the SSL VPN server.

```fortios
config user peer
 edit "fgt_gui_automation"
```
2. Create the SSL interface that is used for the SSL VPN connection:

```text
set ca "GUI_CA"
set cn "*.fos.automation.com"
next
end
```

3. Create the SSL VPN client to use the PKI user and the client certificate *fgtb_gui_automation*:

```text
config vpn ssl client
edit "sslclientTo9"
set interface "sslclient_port1"
set user "client2"
set psk 123456
set peer "fgt_gui_automation"
set server "172.16.200.9"
set port 1443
set certificate "fgtb_gui_automation"
next
end
```

4. Create a firewall policy:

```text
config firewall policy
edit 1
set name "policy_to_sslvpn_tunnel"
set srcintf "port2"
set dstintf "sslclient_port1"
set srcaddr "all"
set dstaddr "all"
set action accept
set schedule "always"
set service "ALL"
set nat enable
next
end
```

**Verification**

After the tunnel is established, the route to 13.107.21.200 and 204.79.197.200 on FGT-A connects through the SSL VPN virtual interface `sslclient_port1`.

**To check the routing table details:**

```bash
(vdom1) # get router info routing-table details
Codes: K - kernel, C - connected, S - static, R - RIP, B - BGP
```
VPN

0 - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default

Routing table for VRF=0
S* 0.0.0.0/0 [10/0] via 172.16.200.254, port1
C 10.0.1.0/24 is directly connected, link_11
C 10.1.100.0/24 is directly connected, port2
C 10.212.134.200/32 is directly connected, sslclient_port1
S 10.1.100.126/32 [10/0] is directly connected, sslclient_port1
C 192.168.100.126/32 [10/0] is directly connected, sslclient_port1
S 204.79.197.200/32 [10/0] is directly connected, sslclient_port1

To check the added routing for an IPv6 tunnel:

(vdom1) # get router info6 routing-table database
IPv6 Routing Table
Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - selected route, * - FIB route, p - stale info
Timers: Uptime

S  * > ::/0 [10/0] via 2000:172:16:200::254, port1, 00:00:01, [1024/0]
   * > [10/0] via ::, sslclient_port1, 00:00:01, [1024/0]
C  * > ::/128 via ::, vdoml, 03:26:35
C  * > 2000:10:0:1::64 via ::, link_11, 03:26:35
C  * > 2000:10:1:100::64 via ::, port2, 03:26:35
C  * > 2000:172:16:200::64 via ::, port1, 03:26:35
C  * > 2001:1::1/128 via ::, sslclient_port1, 00:00:01
C  * > fe80::/64 via ::, port2, 03:26:35

To check the connection in the GUI:

1. On the SSL VPN server FortiGate (FGT-B), go to Dashboard > Network and expand the SSL-VPN widget.

![SSL VPN Dashboard](image)

2. On the SSL VPN client FortiGate (FGT-A), go to VPN > SSL-VPN Clients to see the tunnel list.

![SSL VPN Clients](image)
Dual stack IPv4 and IPv6 support for SSL VPN

Dual stack IPv4 and IPv6 support for SSL VPN servers and clients enables a client to establish a dual stack tunnel to allow both IPv4 and IPv6 traffic to pass through. FortiGate SSL VPN clients also support dual stack, which allows it to establish dual stack tunnels with other FortiGates.

Users connecting in web mode can connect to the web portal over IPv4 or IPv6. They can access bookmarks in either IPv4 or IPv6, depending on the preferred DNS setting of the web portal.

Example

In this example, FortiGate B works as an SSL VPN server with dual stack enabled. A test portal is configured to support tunnel mode and web mode SSL VPN.

FortiGate A is an SSL VPN client that connects to FortiGate B to establish an SSL VPN tunnel connection. It attempts to access www.bing.com and www.apple.com via separate IPv4 and IPv6 connections. Two addresses are configured on FortiGate B:

- bing.com uses IPv4 FQDN and resolves to 13.107.21.200 and 204.79.197.200.
- apple_v6 uses IPv6 FQDN and resolves to 2600:140a:c000:385::1aca and 2600:140a:c000:398::1aca.

The server certificate used is fgt_gui_automation, and the CN is *.fos.automation.com.

A PC serves as a client to connect to FortiGate B in SSL VPN web mode. The PC can connect to the SSL VPN server over IPv4 or IPv6. Based on the preferred DNS setting, it will access the destination website over IPv4 or IPv6.

To configure an SSL VPN server in tunnel and web mode with dual stack support in the GUI:

1. Create a local user:
   a. Go to User & Authentication > User Definition and click Create New. The Users/Groups Creation Wizard opens.
   b. Set the User Type to Local User and click Next.
   c. Enter the Username (client2) and password, then click Next.
   d. Optionally, configure the contact information and click Next.
   e. Click Submit.
2. Configure the addresses:
a. Go to Policy & Objects > Addresses and click Create New > Address.
b. Enter the following for the IPv4 address:

<table>
<thead>
<tr>
<th>Category</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>bing.com</td>
</tr>
<tr>
<td>Type</td>
<td>FQDN</td>
</tr>
<tr>
<td>FQDN</td>
<td><a href="http://www.bing.com">www.bing.com</a></td>
</tr>
</tbody>
</table>

c. Click OK.
d. Click Create New > Address and enter the following for the IPv6 address:

<table>
<thead>
<tr>
<th>Category</th>
<th>IPv6 Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>apple_v6</td>
</tr>
<tr>
<td>Type</td>
<td>FQDN</td>
</tr>
<tr>
<td>FQDN</td>
<td><a href="http://www.apple.com">www.apple.com</a></td>
</tr>
</tbody>
</table>

e. Click OK.

3. Configure the SSL VPN portal:
   a. Go to VPN > SSL-VPN Portals and click Create New.
   b. Enter a name (testportal1).
   c. Enable Tunnel Mode and for Enable Split Tunneling, select Enable Based on Policy Destination.
   d. For Source IP Pools, add SSLVPN_TUNNEL_ADDR1.
   e. Enable IPv6 Tunnel Mode and for Enable Split Tunneling, select Enable Based on Policy Destination.
   g. Enable Enable Web Mode.
h. Click OK.

4. Configure the SSL VPN settings:
a. Go to VPN > SSL-VPN Settings and configure the following:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listen on Interface(s)</td>
<td>port1</td>
</tr>
<tr>
<td>Listen on Port</td>
<td>1443</td>
</tr>
<tr>
<td>Restrict Access</td>
<td>Allow access from any host</td>
</tr>
<tr>
<td>Server Certificate</td>
<td>fgt_gui_automation</td>
</tr>
<tr>
<td>Address Range</td>
<td>Automatically assign addresses</td>
</tr>
<tr>
<td>DNS Server</td>
<td>Same as client system DNS</td>
</tr>
<tr>
<td>Authentication/Portal Mapping</td>
<td>Edit the All Other Users/Groups entry to use testportal1.</td>
</tr>
</tbody>
</table>

b. Click Apply.

c. Enable dual stack in the CLI:

```
config vpn ssl settings
 set dual-stack-mode enable
end
```

5. Configure the firewall policy:

a. Go to Policy & Objects > Firewall Policy and click Create New.

b. Enter the following:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>sslvpn</td>
</tr>
<tr>
<td>Incoming Interface</td>
<td>ssl.root</td>
</tr>
<tr>
<td><strong>Outgoing Interface</strong></td>
<td>port2</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------</td>
</tr>
<tr>
<td><strong>Source</strong></td>
<td>all (IPv4), all (IPv6), client2</td>
</tr>
<tr>
<td><strong>Destination</strong></td>
<td>bing.com, apple_v6</td>
</tr>
<tr>
<td><strong>Schedule</strong></td>
<td>Always</td>
</tr>
<tr>
<td><strong>Service</strong></td>
<td>All</td>
</tr>
<tr>
<td><strong>NAT</strong></td>
<td>Enabled</td>
</tr>
</tbody>
</table>

c. Click OK.

**To configure FortiGate A as an SSL VPN client in the GUI:**

1. **Create a peer to verify the server certificate:**

   The PKI menu is only available in the GUI (User & Authentication > PKI) after a PKI user has been created using the CLI, and a CN can only be configured in the CLI.
   If the CA is not known or is public, import the CA that signed the server certificate.

   a. Go to User & Authentication > PKI and click Create New.
   b. Set the Name to fgt_gui_automation.
   c. Set CA to the CA certificate that is used to verify the server certificate.
   d. Click OK.
   e. In the CLI, specify the CN that must be matched:

      ```
 config user peer
 edit "fgt_gui_automation"
 set ca "GUI_CA"
 set cn "*.fos.automation.com"
 next
 end
      ```

2. **Configure the SSL VPN client:**

   a. Go to VPN > SSL-VPN Clients and click Create New.
   b. In the Interface dropdown, click Create.
      i. Enter a Name (sslclient_port2).
      ii. Set Interface to port2.
      iii. Set Role to LAN.
iv. Click OK.

c. Configure the SSL VPN client:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>sslclientTo9</td>
</tr>
<tr>
<td>Interface</td>
<td>sslclient_port2</td>
</tr>
<tr>
<td>Server</td>
<td>Either IPv4 address 10.1.100.9 or IPv6 address 2000:10:1:100::9 can be used and will have the same results.</td>
</tr>
<tr>
<td>Port</td>
<td>1443</td>
</tr>
<tr>
<td>Username</td>
<td>client2</td>
</tr>
<tr>
<td>Pre-shared Key</td>
<td>******</td>
</tr>
<tr>
<td>Peer</td>
<td>fgt_gui_automation</td>
</tr>
<tr>
<td>Status</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

To configure FortiClient and connect to the VPN:

1. On the Remote Access tab and click Configure VPN, or if other connections have already been configured, click the sandwich icon and select Add a new connection.
2. Set Connection Name to FGT2500E, and Remote Gateway to 10.1.100.9.
3. Enable Customize port and enter the port number 1443.
4. Set Username to client2.
5. Enable Enable Dual-stack IPv6/IPv6 address.
6. Click Save.
7. Enter the password, then click Connect.

To configure an SSL VPN server in tunnel and web mode with dual stack support in the CLI:

1. Create a local user:

   ```
 config user local
 edit "client1"
 set type password
 set passwd *****
 next
 end
   ```

2. Configure the addresses:

   ```
 config firewall address
 edit "bing.com"
 set type fqdn
 set fqdn "www.bing.com"
 next
 end

 config firewall address6
 edit "apple_v6"
 set type fqdn
 set fqdn "www.apple.com"
 next
 end
   ```

3. Configure the SSL VPN portal:

   ```
 config vpn ssl web portal
 edit "testportal1"
 set tunnel-mode enable
 set ipv6-tunnel-mode enable
 set webmode enable
 set ip-pools "SSLVPN_TUNNEL_ADDR1"
 set ipv6-pools "SSLVPN_TUNNEL_IPv6_ADDR1"
   ```
set split-tunneling enable
set ipv6-split-tunneling enable
next
end

4. Configure the SSL VPN settings:

```plaintext
config vpn ssl settings
 set servercert "ftg_gui_automation"
 set tunnel-ip-pools "SSLVPN_TUNNEL_ADDR1"
 set tunnel-ipv6-pools "SSLVPN_TUNNEL_IPV6_ADDR1"
 set port 1443
 set source-interface "port1"
 set source-address "all"
 set source-address6 "all"
 set default-portal "testportal1"
 set dual-stack-mode enable
end
```

5. Configure the firewall policy:

```plaintext
config firewall policy
 edit 1
 set name "sslvpn"
 set srcintf "ssl.root"
 set dstintf "port2"
 set srcaddr "all"
 set dstaddr "bing.com"
 set srcaddr6 "all"
 set dstaddr6 "apple_v6"
 set action accept
 set schedule "always"
 set service "ALL"
 set nat enable
 set users "client2"
next
end
```

To configure FortiGate A as an SSL VPN client in the CLI:

1. Create a peer to verify the server certificate:

```plaintext
config user peer
 edit "ftg_gui_automation"
 set ca "GUI_CA"
 set cn "*.fos.automation.com"
next
end
```

2. Configure the interface:

```plaintext
config system interface
 edit "sslclient_port2"
 set vdom "vdom1"
 set type ssl
 set role lan
 set snmp-index 46
 set interface "port2"
```
3. Configure the SSL VPN client. Either IPv4 address 10.1.100.9 or IPv6 address 2000:10:1:100::9 can be used and will have the same results:

```fortigate
config vpn ssl client
edit "sslclientTo9"
 set interface "sslclient_port2"
 set user "client2"
 set psk *****
 set peer "fgt_gui_automation"
 set server {10.1.100.9 | 2000:10:1:100::9}
 set port 1443
end
```

**Testing dual stack with tunnel mode**

**To verify the SSL VPN tunnel connection in the GUI:**

1. On FortiGate B, go to Dashboard > Network.
2. Expand the SSL-VPN widget.

![SSL VPN widget](image)

**To verify the SSL VPN tunnel connection in the CLI:**

1. On FortiGate B, verify that the client is assigned with both IPv4 and IPv6 addresses:

```
(root) # get vpn ssl monitor
SSL VPN Login Users:
Index User Group Auth Type Timeout Auth-Timeout From HTTP
 0 client2 1(1) 292 2147483647 10.1.100.2
 0/0 0/0 0

SSL VPN sessions:
Index User Group Source IP Duration I/O Bytes Tunnel/Dest IP
 0 client2 10.1.100.2 5427 1756/1772
 10.212.134.200,fdff:ffff::1
```

2. On FortiGate A, verify the routing tables.
   a. IPv4 with resolved addresses for www.bing.com:

```
(vdom1) # get router info routing-table database
... Routing table for VRF=0
```
To test the address connections using ping:

1. On FortiGate A, ping www.bing.com using IPv4 ping:
   # execute ping www.bing.com
   64 bytes from 13.107.21.200: icmp_seq=0 ttl=117 time=1.8 ms
   ...

2. On FortiGate B, sniff for IPv4 ICMP packets and observe the results:
   # diagnose sniffer packet any icmp 4
   interfaces=[any]
   filters=[icmp]
   ...

3. On FortiGate A, ping www.apple.com using IPv6 ping:
   # execute ping6 www.apple.com
   PING www.apple.com (2600:140a:c000:385::1aca): 56 data bytes
   64 bytes from 2600:140a:c000:385::1aca: icmp_seq=1 ttl=52 time=1.88 ms
   ...

4. On FortiGate B, sniff for IPv6 ICMP packets and observe the results:
   # diagnose sniffer packet any icmp6 4
   interfaces=[any]
   filters=[icmp6]
   3.564296 ssl.root in fdff:ffff::1 -> 2600:140a:c000:385::1aca: icmp6: echo request seq 1
   3.564435 port2 out 2000:172:16:200::9 -> 2600:140a:c000:385::1aca: icmp6: echo request seq 1
Testing dual stack with web mode

In SSL VPN web mode, users can access both IPv4 and IPv6 bookmarks in the portal. The attribute, `prefer-ipv6-dns` can be enabled to prefer querying IPv6 DNS first, or disabled to prefer querying IPv4.

To test an IPv4 connection to the web portal and access www.bing.com over IPv6:

1. On FortiGate B, prioritize resolving IPv6 addresses:
   ```
 config vpn ssl web portal
 edit "testportal1"
 set prefer-ipv6-dns enable
 next
 end
   ```

2. Log in to the web portal in the browser over the IPv4 address 10.1.100.9.
4. Click the `bing` bookmark. The bing page will open over IPv6.

To test an IPv6 connection to the web portal and access www.apple.com over IPv4:

1. On FortiGate B, prioritize resolving IPv4 addresses:
   ```
 config vpn ssl web portal
 edit "testportal1"
 set prefer-ipv6-dns disable
 next
 end
   ```

2. Log in to the web portal in the browser over the IPv6 address [2000:10:1:100::9].
4. Click the *apple* bookmark. The apple page will open over IPv4.

Disable the clipboard in SSL VPN web mode RDP connections

In web portal profiles, the clipboard can be disabled for SSL VPN web mode RDP/VNC connections. User will not be able to copy and paste content to or from the internal server.

**Example**

In this example, two groups of users are using SSL VPN web mode to access internal servers with RDP/VNC. One group is allowed to copy and paste content to and from the internal server using the clipboard, while the other is not.

**To configure the SSL VPN portals in the GUI:**

1. Go to **VPN > SSL-VPN Portals** and click **Create New**.
2. Enter a name for the portal, such as *testportal1*.
3. Enable **Enable Web Mode** and enable **RDP/VNC clipboard** to allow copying and pasting.
4. Configure the remaining settings as needed.
5. Click **OK**.
6. Click Create New again.
7. Enter a name for the portal, such as testportal2.
8. Enable Enable Web Mode and disable RDP/VNC clipboard to prevent copying and pasting.
9. Configure the remaining settings as needed.

To configure the SSL VPN settings in the GUI:

1. Go to VPN > SSL-VPN Settings.
2. Set Listen on Interface to port2.
3. In the Authentication/Portal Mapping table, add the users to each of the portals:
   a. Click Create New.
   b. Set Users/Groups to u1 and Portal to testportal1.
   c. Click OK, then click Create New again.
   d. Set Users/Groups to u2 and Portal to testportal2.
   e. Click OK.
4. Configure the remaining settings as needed.
5. Click Apply.
To configure a firewall policy for SSL VPN in the GUI:

1. Go to Policy & Objects > Firewall Policy and click Create New.
2. Set a name for the policy, such as policy_to_sslvpn_tunnel.
3. Set Incoming Interface to the SSL VPN tunnel interface and Outgoing Interface to port1.
4. Set Source to the users, u1 and u2, and all addresses.
5. Set Destination to all addresses.
6. Set Schedule to always, Service to All, and Action to Accept.
7. Configure the remaining settings as needed.
8. Click OK.

To test if the users can use the clipboard:

1. On the PC, open a web browser and log in to the web portal as user u1.
2. Access the internal server using RDP/VNC.
3. The clipboard is available and you can copy and paste content to and from the remote server.
4. Log out of the web portal, then log back in as user u2 and access the internal server using RDP/VNC. The clipboard is disabled.

To configure the SSL-VPN portals and settings in the CLI:

1. Configure the SSL VPN portals:

```fortioscli
config vpn ssl web portal
edit "testportal1"
 set web-mode enable
 set clipboard enable
 ...
next
edit "testportal2"
 set web-mode enable
 set clipboard disable
 ...
next
end
```

2. Configure the SSL VPN settings:

```fortioscli
config vpn ssl settings
set port 1443
set source-interface "port2"
set source-address "all"
set source-address6 "all"
set default-portal "tunnel-access"
config authentication-rule
 edit 1
```
3. Configure a firewall policy for SSL VPN:

```
config firewall policy
edit 1
 set name "policy_to_sslvpn_tunnel"
 set srcintf "ssl.vdom1"
 set dstintf "port1"
 set action accept
 set srcaddr "all"
 set dstaddr "all"
 set srcaddr6 "all"
 set dstaddr6 "all"
 set schedule "always"
 set service "ALL"
 set nat enable
 set users "u1" "u2"
next
end
```

4. On the PC, open a web browser, log in to the web portal as user u1, access the internal server using RDP/VNC, and use the clipboard.

5. Check the SSL VPN session monitor:

```
get vpn ssl monitor
SSL-VPN Login Users:
<table>
<thead>
<tr>
<th>Index</th>
<th>User</th>
<th>Group</th>
<th>Auth Type</th>
<th>Timeout</th>
<th>Auth-Timeout</th>
<th>From</th>
<th>HTTP in/out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>u1</td>
<td></td>
<td></td>
<td>1(1)</td>
<td>N/A</td>
<td>10.1.100.146</td>
<td>0/0/364</td>
</tr>
</tbody>
</table>

SSL-VPN sessions:
<table>
<thead>
<tr>
<th>Index</th>
<th>User</th>
<th>Group</th>
<th>Source IP</th>
<th>Duration</th>
<th>I/O Bytes</th>
<th>Tunnel/Dest IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>u1</td>
<td></td>
<td>10.1.100.146</td>
<td>64</td>
<td>0/700</td>
<td>172.18.58.109</td>
</tr>
</tbody>
</table>
```

6. On the PC, open a web browser, log in to the web portal as user u2, access the internal server using RDP/VNC, and note that the clipboard is not available.

7. Check the SSL VPN session monitor:

```
get vpn ssl monitor
SSL-VPN Login Users:
<table>
<thead>
<tr>
<th>Index</th>
<th>User</th>
<th>Group</th>
<th>Auth Type</th>
<th>Timeout</th>
<th>Auth-Timeout</th>
<th>From</th>
<th>HTTP in/out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>u2</td>
<td></td>
<td></td>
<td>1(1)</td>
<td>N/A</td>
<td>10.1.100.146</td>
<td>0/2681</td>
</tr>
</tbody>
</table>

SSL-VPN sessions:
<table>
<thead>
<tr>
<th>Index</th>
<th>User</th>
<th>Group</th>
<th>Source IP</th>
<th>Duration</th>
<th>I/O Bytes</th>
<th>Tunnel/Dest IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>u2</td>
<td></td>
<td>10.1.100.146</td>
<td>7</td>
<td>0/553</td>
<td>172.18.58.109</td>
</tr>
</tbody>
</table>
```
SSL VPN IP address assignments

When a user disconnects from a VPN tunnel, it is not always desirable for the released IP address to be used immediately. In SSL VPN, IP addresses can be assigned from the pool in a round robin fashion, instead of the default first-available address method.

Example

![Diagram of two PCs connecting to a FortiGate through an SSL VPN tunnel]

In this example, two PCs connect to the VPN. SSL VPN is configured to use round robin IP address assignment. Dual stack address assignment (both IPv4 and IPv6) is used.

After a tunnel is disconnected, freeing a low IP address, the next client that connects gets the next address in the round robin instead of the lowest address.

To configure SSL VPN with round robin and dual stack:

1. Create IPv4 and IPv6 address ranges:

   ```
 config firewall address
 edit "sslvpn_ipv4_pool"
 set type iprange
 set start-ip 173.10.1.1
 set end-ip 173.10.1.3
 next
 end
 config firewall address6
 edit "sslvpn_ipv6_pool"
 set type iprange
 set start-ip 2000::ad0a:101
 set end-ip 2000::ad0a:103
 next
 end
   ```

2. Set the address ranges as IP pools in the SSL VPN settings:

   ```
 config vpn ssl settings
 set tunnel-ip-pools "sslvpn_ipv4_pool"
 set tunnel-ipv6-pools "sslvpn_ipv6_pool"
 end
   ```
When round-robin is used, any address pools defined in the web portal are ignored and the tunnel IPv4 and IPv6 pool addresses in the SSL VPN settings are used. Only one set of IP pool addresses can be applied.

3. Enable round-robin and dual stack in the SSL VPN settings:

```fortigate
config vpn ssl settings
 set dual-stack-mode enable
 set tunnel-addr-assigned-method round-robin
end
```

By default, the IP pool assignment follows the first available rule.

4. Create two users and assign them to an SSL VPN policy:

```fortigate
config user local
 edit "u1"
 set type password
 set passwd **********
 next
 edit "u2"
 set type password
 set passwd **********
 next
end
config firewall policy
 edit 1
 set name "sslvpnd"
 set srcintf "ssl.vdom1"
 set dstintf "link_11" "port1"
 set action accept
 set srcaddr "all"
 set dstaddr "all"
 set srcaddr6 "all"
 set dstaddr6 "all"
 set schedule "always"
 set service "ALL"
 set nat enable
 set users "u1" "u2"
 next
end
```

To test the results:

1. Log in to the SSL VPN on PC1 using user u1 and then check its assigned IP address:

```fortigate
get vpn ssl monitor
SSL-VPN Login Users:

<table>
<thead>
<tr>
<th>Index</th>
<th>User</th>
<th>Group</th>
<th>Auth Type</th>
<th>Two-factor Auth</th>
<th>Timeout</th>
<th>Auth-Timeout</th>
<th>From</th>
<th>HTTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ul</td>
<td>1</td>
<td>N/A</td>
<td>10.1.100.145</td>
<td>0/0</td>
<td>0/0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

SSL-VPN sessions:

<table>
<thead>
<tr>
<th>Index</th>
<th>User</th>
<th>Group</th>
<th>Source IP</th>
<th>Duration</th>
<th>I/O Bytes</th>
<th>Tunnel/Dest IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ul</td>
<td>1</td>
<td>10.1.100.145</td>
<td>13</td>
<td>49935/35251</td>
<td>173.10.1.1,2000::ad0a:101</td>
</tr>
</tbody>
</table>
```

2. Log in to the SSL VPN on PC1 using user u2 and then check its assigned IP address:
SSL VPN troubleshooting

The following topics provide information about SSL VPN troubleshooting:

- Debug commands on page 1780
- Troubleshooting common issues on page 1781

Debug commands

SSL VPN debug command

Use the following diagnose commands to identify SSL VPN issues. These commands enable debugging of SSL VPN with a debug level of -1 for detailed results.

diagnose debug application sslvpn -1
diagnose debug enable

The CLI displays debug output similar to the following:

FGT60C3G10002814 # [282:root]SSL state:before/accept initialization (172.20.120.12)
[282:root]SSL state:SSLv3 read client hello A (172.20.120.12)
[282:root]SSL state:SSLv3 write server hello A (172.20.120.12)
[282:root]SSL state:SSLv3 write change cipher spec A (172.20.120.12)
[282:root]SSL state:SSLv3 write finished B (172.20.120.12)
[282:root]SSL state:SSLv3 flush data (172.20.120.12)
[282:root]SSL state:SSLv3 read finished A:system lib(172.20.120.12)
[282:root]SSL state:SSLv3 read finished A (172.20.120.12)
[282:root]SSL state:SSL negotiation finished successfully (172.20.120.12)
[282:root]SSL established: DHE-RSA-AES256-SHA SSLv3 Kx=DH Au=RSA Enc=AES(256) Mac=SHA1

To disable the debug:

diagnose debug disable
diagnose debug reset

Remote user authentication debug command

Use the following diagnose commands to identify remote user authentication issues.

diagnose debug application fnbamd -1
diagnose debug reset

Troubleshooting common issues

To troubleshoot getting no response from the SSL VPN URL:

1. Go to VPN > SSL-VPN Settings.
   a. Confirm that SSL VPN is enabled.
   b. Check the SSL VPN port assignment.
   c. Check the Restrict Access setting to ensure the host you are connecting from is allowed.

2. Go to Policy > Firewall Policy.
   a. Check that the policy for SSL VPN traffic is configured correctly.
   b. Check the URL you are attempting to connect to. It should follow this pattern:
      https://<FortiGate IP>:<Port>
   c. Check that you are using the correct port number in the URL. Ensure FortiGate is reachable from the computer.
      ping <FortiGate IP>
   d. Check the browser has TLS 1.1, TLS 1.2, and TLS 1.3 enabled.

To troubleshoot FortiGate connection issues:

1. Check the Release Notes to ensure that the FortiClient version is compatible with your version of FortiOS.
2. FortiClient uses IE security setting, In IE Internet options > Advanced > Security, check that Use TLS 1.1 and Use TLS 1.2 are enabled.
3. Check that SSL VPN ip-pools has free IPs to sign out. The default ip-poolsSSLVPN_TUNNEL_ADDR1 has 10 IP addresses.
4. Export and check FortiClient debug logs.
   a. Go to File > Settings.
   b. In the Logging section, enable Export logs.
   c. Set the Log Level to Debug and select Clear logs.
   d. Try to connect to the VPN.
   e. When you get a connection error, select Export logs.
To troubleshoot SSL VPN hanging or disconnecting at 98%:

1. A new SSL VPN driver was added to FortiClient 5.6.0 and later to resolve SSL VPN connection issues. If your FortiOS version is compatible, upgrade to use one of these versions.

2. Latency or poor network connectivity can cause the login timeout on the FortiGate. In FortiOS 5.6.0 and later, use the following commands to allow a user to increase the SSL VPN login timeout setting.

   ```
 config vpn ssl settings
 set login-timeout 180 (default is 30)
 set dtls-hello-timeout 60 (default is 10)
 end
   ```

To troubleshoot tunnel mode connections shutting down after a few seconds:

This might occur if there are multiple interfaces connected to the Internet, for example, SD-WAN. This can cause the session to become “dirty”. To allow multiple interfaces to connect, use the following CLI commands.

If you are using a FortiOS 6.0.1 or later:

   ```
 config system interface
 edit <name>
 set preserve-session-route enable
 next
 end
   ```

If you are using a FortiOS 6.0.0 or earlier:

   ```
 config vpn ssl settings
 set route-source-interface enable
 end
   ```

To troubleshoot users being assigned to the wrong IP range:

1. Go to VPN > SSL-VPN Portals and VPN > SSL-VPN Settings and ensure the same IP Pool is used in both places. Using the same IP Pool prevents conflicts. If there is a conflict, the portal settings are used.

To troubleshoot slow SSL VPN throughput:

Many factors can contribute to slow throughput.

This recommendation tries to improve throughput by using the FortiOS Datagram Transport Layer Security (DTLS) tunnel option, available in FortiOS 5.4 and above.

DTLS allows SSL VPN to encrypt traffic using TLS and uses UDP as the transport layer instead of TCP. This avoids retransmission problems that can occur with TCP-in-TCP.

FortiClient 5.4.0 to 5.4.3 uses DTLS by default. FortiClient 5.4.4 and later uses normal TLS, regardless of the DTLS setting on the FortiGate.

To use DTLS with FortiClient:

1. Go to File > Settings and enable Preferred DTLS Tunnel.

To enable DTLS tunnel on FortiGate, use the following CLI commands:

   ```
 config vpn ssl settings
 set dtls-tunnel enable
 end
   ```
User & Authentication

In *User & Authentication*, you can control network access for different users and devices in your network. FortiGate authentication controls system access by user group. By assigning individual users to the appropriate user groups you can control each user’s access to network resources. You can define local users and peer users on the FortiGate unit. You can also define user accounts on remote authentication servers and connect them to FortiOS.

You can control network access for different device types in your network by doing the following:

- Identifying and monitoring the types of devices connecting to your network
- Using MAC address based access control to allow or deny individual devices
- Using Telemetry data received from FortiClient endpoints to construct a policy to deny access to endpoints with known vulnerabilities or to quarantine compromised endpoints

The following sections provide information about users and devices:

- Endpoint control and compliance on page 1783
- User definition and groups on page 1792
- LDAP servers on page 1805
- RADIUS servers on page 1820
- TACACS+ servers on page 1852
- SAML on page 1854
- Authentication settings on page 1882
- FortiTokens on page 1884
- PKI on page 1902
- Configuring the maximum log in attempts and lockout period on page 1902
- Configuring firewall authentication on page 1906
- FSSO on page 1913
- Authentication policy extensions on page 1923
- Configuring the FortiGate to act as an 802.1X supplicant on page 1924
- Include usernames in logs on page 1926

Endpoint control and compliance

The section contains the following topics:

- Per-policy disclaimer messages on page 1783
- Compliance on page 1786
- FortiGuard distribution of updated Apple certificates on page 1788
- Integrate user information from EMS and Exchange connectors in the user store on page 1789

Per-policy disclaimer messages

FortiOS supports a customizable captive portal to direct users to install or enable required software.
Per-policy custom disclaimers in each VDOM are supported. For example, you may want to configure three firewall policies, each of which matches traffic from endpoints with different FortiClient statuses:

<table>
<thead>
<tr>
<th>Endpoint status</th>
<th>FortiOS behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endpoint does not have FortiClient installed.</td>
<td>Traffic matches a firewall policy that displays an in-browser warning to install FortiClient from the provided link.</td>
</tr>
<tr>
<td>Endpoint has FortiClient installed, registered to EMS, and connected to the FortiGate.</td>
<td>Traffic matches a dynamic firewall policy which allows the endpoint to reach its destination via this policy.</td>
</tr>
<tr>
<td>Endpoint is deregistered from EMS and disconnected from the FortiGate.</td>
<td>Traffic matches another dynamic firewall policy that displays warning to register FortiClient to EMS.</td>
</tr>
</tbody>
</table>

The replacement message groups and policy disclaimer settings must be enabled.

To enable per-policy disclaimer messages in the GUI:

1. Go to System > Feature Visibility.
2. Enable Replacement Message Groups and Policy Disclaimer.
3. Click Apply.

To enable per-policy disclaimer messages in the CLI:

```fortios
config system global
 set gui-replacement-message-groups enable
end

config system settings
 set gui-policy-disclaimer enable
end
```

To configure per-policy disclaimers in the GUI:

1. Ensure the per-policy disclaimer messages option is enabled.
2. Go to Policy & Objects > Firewall Policy.
3. Edit the policy that applies when an endpoint does not have FortiClient installed.
5. Add a replacement message group:
   a. Select an existing replacement message group from the dropdown and click Edit Disclaimer Message.
   b. Click Create, enter a name, and click OK. Select the replacement message group and click Edit
6. Edit the message to warn users to install FortiClient, and provide the FortiClient download link.
7. Click Save.
8. Repeat the above steps for each policy that requires a custom disclaimer message.

To configure per-policy disclaimers in the CLI:

```plaintext
cfg firewall policy
 edit 1
 set name "111"
 set srcintf "port12"
 set dstintf "port11"
 set srcaddr "all"
 set dstaddr "pc155_address"
 set action accept
 set schedule "always"
 set service "ALL"
 set wss disable
 set groups "ems_03_group"
 set disclaimer enable
 set replacemsg-override-group "test"
 set nat enable
next
 edit 4
 set name "44"
 set srcintf "port12"
 set dstintf "port11"
 set srcaddr "all"
 set dstaddr "pc5-address"
 set action accept
```
set schedule "always"
set service "ALL"
set wssd disable
set groups "ems_03_group"
set disclaimer enable
set replacemsg-override-group "test2"
set nat enable

next

edit 6

set name "66"
set srcintf "port12"
set dstintf "port11"
set srcaddr "all"
set dstaddr "all"
set status disable
set schedule "always"
set service "ALL"
set logtraffic all
set fssd disable
set block-notification enable
set replacemsg-override-group "endpoint-override"

next

end

Compliance

The following topics provide information about compliance in FortiOS.

- FortiGate VM unique certificate on page 1786
- Running a file system check automatically on page 1787

FortiGate VM unique certificate

To safeguard against certificate compromise, FortiGate VM and FortiAnalyzer VM use the same deployment model as FortiManager VM where the license file contains a unique certificate tied to the serial number of the virtual device.

A hardware appliance usually comes with a BIOS certificate with a unique serial number that identifies the hardware appliance. This built-in BIOS certificate is different from a firmware certificate. A firmware certificate is distributed in all appliances with the same firmware version.

Using a BIOS certificate with a built-in serial number provides a high trust level for the other side in X.509 authentication.

Since a VM appliance has no BIOS certificate, a signed VM license can provide an equivalent of a BIOS certificate. The VM license assigns a serial number in the BIOS equivalent certificate. This gives the certificate an abstract access ability, which is similar to a BIOS certificate with the same high trust level.

This feature is only supported in new, registered VM licenses.
Sample configurations

Depending on the firmware version and VM license, the common name (CN) on the certificate will be configured differently.

<table>
<thead>
<tr>
<th>License</th>
<th>6.0</th>
<th>6.2</th>
<th>6.4</th>
<th>7.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>CN = FortiGate</td>
<td>CN = FortiGate</td>
<td>CN = FortiGate</td>
<td>CN = FortiGate</td>
</tr>
<tr>
<td>6.2</td>
<td>CN = FortiGate</td>
<td>CN = serial number</td>
<td>CN = serial number</td>
<td>CN = serial number</td>
</tr>
<tr>
<td>6.4</td>
<td>CN = FortiGate</td>
<td>CN = serial number</td>
<td>CN = serial number</td>
<td>CN = serial number</td>
</tr>
<tr>
<td>7.0</td>
<td>CN = FortiGate</td>
<td>CN = serial number</td>
<td>CN = serial number</td>
<td>CN = serial number</td>
</tr>
</tbody>
</table>

To view validated certificates:

1. Go to System > Certificates.
2. Double-click on a VM certificate. There are two VM certificates:
   - Fortinet.Factory
   - Fortinet.Factory_Backup
   The Certificate Detail Information window displays.

Running a file system check automatically

There is an option in FortiOS to enable automatic file system checks if the FortiGate shuts down ungracefully.

By default, the automatic file system check is disabled. When an administrator logs in after an ungraceful shutdown, a warning message appears advising them to manually run a file system check. A warning also appears in the CLI:

WARNING: File System Check Recommended! Unsafe reboot may have caused inconsistency in disk drive.
It is strongly recommended that you check file system consistency before proceeding.
Please run 'execute disk scan 17'

Note: The device will reboot and scan during startup. This may take up to an hour

Enabling automatic file system checks

You can enable automatic file system checks in both the GUI and CLI.

To enable automatic file system checks in the GUI:

1. Go to System > Settings.
2. In the Start Up Settings section, enable Auto file system check.
3. Click Apply.

To enable automatic file system checks using the CLI:

```
config system global
 set autorun-log-fsck enable
end
```

FortiGuard distribution of updated Apple certificates

Push notifications for iPhone (for the purpose of two-factor authentication) require a TLS server certificate to authenticate to Apple. As this certificate is only valid for one year, a service extension allows FortiGuard to distribute updated TLS server certificates to FortiGate when needed.

FortiGuard update service updates local Apple push notification TLS server certificates when the local certificate is expired. FortiGuard update service also reinstalls certificates when the certificates are lost.

You can verify that the feature is working on the FortiGate by using the CLI shell.

To verify certificate updates:

1. Using FortiOS CLI shell, verify that all certificates are installed:

   ```
 /data/etc/apns # ls -al
 drwxr-xr-x 2 0 0 Tue Jan 15 08:42:39 2019 1024 .
 drwxr-xr-x 12 0 0 Tue Jan 15 08:45:00 2019 2048 ..
 -rw-r--r-- 1 0 0 Sat Jan 12 00:06:30 2019 2377 apn-dev-cert.pem
 -rw-r--r-- 1 0 0 Sat Jan 12 00:06:30 2019 1859 apn-dev-key.pem
 -rw-r--r-- 1 0 0 Sat Jan 12 00:06:30 2019 8964 apn-dis-cert.pem
 -rw-r--r-- 1 0 0 Sat Jan 12 00:06:30 2019 4482 apn-dis-key.pem
   ```

2. Rename all current Apple certificates. Apple push notification no longer works after you rename the certificates.

   ```
 /data/etc/apns # mv apn-dis-cert.pem apn-dis-cert.pem.save
 /data/etc/apns # mv apn-dev-cert.pem apn-dev-cert.pem.save
 /data/etc/apns # mv apn-dev-key.pem apn-dev-key.pem.save
 /data/etc/apns # ls -al
   ```
3. Run a FortiGuard update, and verify that all certificates are installed again:

```
/data/etc/apns # ls -al
```

```
-rw-r--r- 1 0 0 Sat Jan 12 00:06:30 2019 2377 apn-dev-cert.pem.save
-rw-r--r- 1 0 0 Sat Jan 12 00:06:30 2019 1859 apn-dev-key.pem.save
-rw-r--r- 1 0 0 Sat Jan 12 00:06:30 2019 8964 apn-dis-cert.pem.save
-rw-r--r- 1 0 0 Sat Jan 12 00:06:30 2019 4482 apn-dis-key.pem.save
```

**Integrate user information from EMS and Exchange connectors in the user store**

When a FortiClient endpoint is managed by EMS, logged in user and domain information is shared with FortiOS through the EMS connector. This information can be joined with the Exchange connector to produce more complete user information in the user store.

The `diagnose user-device-store device memory list` command displays detailed device information.
In this example, the FortiClient PC user (test1) logs on to the AD domain (FORTINET-FSSO.COM), which is also the same domain as the Exchange server. The user information is pushed to the EMS server that the user is registered to. The FortiGate synchronizes the information from EMS, and at the same time looks up the user on the Exchange server under the Exchange connector. If the user exists on the Exchange server, additional information is fetched. These details are combined in the user store, which is visible in the FortiClient widget in the Status dashboard.

**To configure the Exchange server:**

```plaintext
config user exchange
edit "exchange-140"
 set server-name "W2K8-SERV1"
 set domain-name "FORTINET-FSSO.COM"
 set username "Administrator"
 set password ********
next
end
```

**To configure the EMS server:**

```plaintext
config endpoint-control fctems
edit "ems133"
 set server "172.18.62.12"
 set certificate-fingerprint "4F:A6:76:E2:00:4F:A6:76:E2:00:4F:A6:76:E2:00:E0"
```
To view the user information in the GUI:

1. Go to Dashboard > Status.
2. In the FortiClient widget, hover over a device or user name to view the information.

To view the user information in the CLI:

# diagnose user-device-store device memory list
...
Record #13:

device_info
  'ipv4_address' = '10.1.100.185'
  'mac' = '00:0c:29:11:5b:6b'
  'hardware_vendor' = 'VMware'
  'vdom' = 'root'
  'os_name' = 'Microsoft'
  'os_version' = 'Windows 7 Professional Edition, 32-bit Service Pack 1 (build 7601)'
  'hostname' = 'win7-5'
  'unauth_user' = 'Administrator'
  'last_seen' = '1611356490'
  'host_src' = 'forticlient'
  'user_info_src' = 'forticlient'
  'is_forticlient_endpoint' = 'true'
  'unjoined_forticlient_endpoint' = 'false'
  'is_forticlient_unauth_user' = 'true'
  'avatar_source' = 'OS'
  'domain' = 'Fortinet-FSSO.COM'
  'forticlient_id' = '*************'
  'forticlient_username' = 'Administrator'
  'forticlient_version' = '6.4.2'
  'on_net' = 'true'
  'quarantined_on_forticlient' = 'false'
  'vuln_count' = '0'
  'vuln_count_critical' = '0'
  'vuln_count_high' = '0'
  'vuln_count_info' = '0'
  'vuln_count_low' = '0'
  'vuln_count_medium' = '0'
  'is_online' = 'true'
interface_info
  'ipv4_address' = '10.1.100.185'
  'mac' = '00:0c:29:11:5b:6b'
  'master_mac' = '00:0c:29:11:5b:6b'
  'detected_interface' = 'port10'
  'last_seen' = '1611356490'
  'is_master_device' = 'true'
  'is_detected_interface_role_wan' = 'false'
  'detected_interface_fortitelemetry' = 'true'
  'forticlient_gateway_interface' = 'port10'
  'on_net' = 'true'
  'is_online' = 'true'
User & Authentication

User definition and groups

FortiGate authentication controls system access by user groups. By assigning individual users to the appropriate user groups, this controls each user’s access to network resources. The user groups members are user accounts, of which there are several types. Local and peer users are defined in FortiOS. User accounts can also be defined on remote authentication servers.

This section contains information about configuring the following:

- Users on page 1792
- User groups on page 1794
- Retail environment guest access on page 1801
- User and user group timeouts on page 1804

For information about configuring authentication servers, see the LDAP servers on page 1805, RADIUS servers on page 1820, TACACS+ servers on page 1852, and SAML on page 1854 sections.

Users

A user is a user account consisting of a username, password, and sometimes other information, that is configured in FortiOS or on an external authentication server. There are several types of user accounts with slightly different methods of authentication.

<table>
<thead>
<tr>
<th>User type</th>
<th>Authentication method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>The username and password must match a user account stored in FortiOS. Authentication is done by a firewall policy.</td>
</tr>
<tr>
<td>Remote</td>
<td>Remote users consist of usernames defined in FortiOS that are authenticated by a remote server. For example, RADIUS, TACACS+, LDAP, or FortiNAC. The server must be configured in FortiOS before creating a user.</td>
</tr>
<tr>
<td>FSSO</td>
<td>Users on a Microsoft Windows, Citrix, or Novell network can use their network authentication to access resources through the FortiGate. Access is controlled through FSSO user groups, which contain Windows, Citrix, or Novell user groups as members. The FSSO agent must be configured in FortiOS before creating a user (see FSSO on page 1913).</td>
</tr>
<tr>
<td>PKI or peer</td>
<td>A PKI or peer user is a digital certificate holder that authenticates using a client certificate. No password is required, unless two-factor authentication is enabled. In the GUI, the User &amp; Authentication &gt; PKI menu is only available after a PKI user is configured in the CLI (see Configuring a PKI user on page 1903).</td>
</tr>
</tbody>
</table>

Some user types have an option to enable multi-factor authentication using FortiToken or FortiToken Cloud. In some cases, the user must be defined first, and then can be edited to add multi-factor authentication. See FortiTokens on page 1884 for more information.

To create a user:

1. Go to User Authentication > User Definition and click Create New. The Users/Groups Creation Wizard appears.
2. Select a User Type and click Next.
3. The remaining wizard steps depend on the user type:
   - **Local User**:
     i. Enter a Username and Password, then click Next.
     ii. Optionally, enable Two-factor Authentication and configure the following:

Authentication Type	Select FortiToken Cloud or FortiToken.
Token	If using FortiToken to authenticate, select a token.
Email Address	Enter an email address.
SMS	Enable to send an SMS message to activate the token.
Country Dial Code	Select the country code.
Phone Number	Enter a phone number.

     iii. Click Next, then click Submit.

   - **Remote LDAP User**:
     i. Select an LDAP Server, then click Next.
     ii. Select the users to add from the LDAP server. If the user ID matches an existing configured username, it cannot be added.

User ID	Qualifier	Base DN	Search Filter	Result Count
Admin	Local	dc=lab,dc=local		0
martin	0			0
jim	0			0
kkk	0			0
krztg	0			0
omar	0			0
stanley	0			0
tobby	0			0

     iii. Click Submit.

   - **Remote RADIUS User and Remote TACACS+ User**:
     i. Enter a Username and select the server.
     ii. Click Next.
     iii. Optionally, enable Two-factor Authentication and configure the settings as needed.
     iv. Click Next, then click Submit.
FSSO:
   i. Select an FSSO Agent, click the + to add AD Groups, then click Next.
   ii. Select an FSSO group to add the AD Groups to. If an FSSO group already exists (see Configuring FSSO user groups on page 1798), click Choose Existing and select the group. Otherwise, click Create New, enter a name, and click OK.
   iii. Click Submit.

User groups

A user group is a list of user identities. A user identity can be a:

- Local user account (username/password) stored on the FortiGate
- Remote user account (password stored on a RADIUS, LDAP, or TACACS+ server)
- PKI user account with a digital client authentication certificate stored on the FortiGate
- RADIUS, LDAP, or TACACS+ server, optionally specifying particular user groups on that server
- User group defined on an FSSO server

User groups provide the ability to combine users that require the same permissions so they can be referenced at once, which enables consistency in configurations. User groups allow for remote servers to be referenced by leveraging the pre-existing user accounts, instead of redefining them on the FortiGate.

For example, when a new employee joins a department, they can be added to their respective group, whether in the remote authentication server or local group, and be subject to the same access as their colleagues in the same department. In FortiOS, user groups can be used when configuring firewall policies, traffic shaping policies, proxy policies, SSL VPN portals, IPsec VPN XAUTH, ZTNA, wireless networks (SSID), web filtering profiles, identity-based routing, and system administrators with remote authentication.

In most cases, the FortiGate authenticates users by requesting their username and password. The FortiGate checks local user accounts first. If a match is not found, the FortiGate checks the RADIUS, LDAP, or TACACS+ servers that belong to the user group. Authentication succeeds when a matching username and password are found. If the user belongs to multiple groups on a server, those groups will also be matched.

Four types of user groups can be configured:

- Firewall
- FSSO
- RSSO
- Guest

Configuring firewall user groups

Firewall user groups are used locally as part of authentication. For example, when a firewall policy allows access only to specified user groups, users must authenticate before matching the policy. If the user authenticates successfully and is a member of one of the permitted groups, the policy is applied to the user. A firewall user group may contain local users (defined locally or authenticated remotely), PKI users, or authentication servers.

There are two options to add users in a firewall group configuration: members or remote groups. Members are the individual users who have been defined in FortiOS. Remote groups are remote server that users may authenticate to. One or more user groups can be specified within that server to limit which users can authenticate to the firewall user group. Both options may be used at the same time. The FortiGate attempts to authenticate users in the members list first, and then the remote groups if the initial authentication does not succeed.
When adding remote groups to user groups, FortiTokens cannot be applied to the users. To use remote authentication servers and FortiToken for multi-factor authentication, a remote user type must be created and then added as a user group member.

The following user group configuration examples have local members and a remote authentication server user group. There are two LDAP users, but the principle applies to other remote authentication server types.

Both LDAP users (shudson and tflenderson) belong to the primary group, Domain Users. The user, shudson belongs to the Sales group; tflenderson belongs to the HR group.

**Example 1: Adding multiple remote groups to a user group**

In this example, two remote groups (HR and Sales) are added to a firewall group called SSL_VPN_ACCESS.

**To add multiple remote groups to a user group:**

1. Go to User & Authentication > User Groups and click Create New. Firewall is selected as the default Type.
2. Enter the group name, SSL_VPN_ACCESS.
3. In the Remote Groups Section, click Add.
4. Set Remote Server to the LDAP server (ldap).
5. In the Groups table, select Sales, then right-click and select Add Selected.
6. Select HR, then right-click and select Add Selected.

7. Click OK.
Both user group paths are specified under the Group Name.

8. Click OK.
In this configuration, shudson and tflenderson would be able to authenticate to this group.
Example 2: combining remote groups and local users in a user group

In this example, the firewall group (SSL_VPN_ACCESS) is configured to contain the HR remote group and a local LDAP user (shudson) with multi-factor authentication.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Two-factor Authentication</th>
<th>Groups</th>
<th>Status</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>shudson</td>
<td>LDAP</td>
<td></td>
<td>Enabled</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Administrator</td>
<td>LDAP</td>
<td></td>
<td>Enabled</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Guest</td>
<td>LDAP</td>
<td></td>
<td>Enabled</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mandrews</td>
<td>LDAP</td>
<td></td>
<td>Enabled</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

To combine remote groups and local users in a user group:

1. Go to User & Authentication > User Groups and click Create New. Firewall is selected as the default Type.
2. Enter the group name, SSL_VPN_ACCESS.
3. In the Remote Groups Section, click Add.
4. Set Remote Server to the LDAP server (ldap).
5. In the Groups table, select HR, then right-click and select Add Selected.
6. Click OK.
7. In the Members field, click the + and add shudson.

8. Click OK.

In this configuration, shudson, tflenderson, and any members of the HR LDAP group would be able to authenticate to the user group. Other users in the Sales group are not allowed.

Example 3: adding a user as a member and their group as a remote groups

This example uses a combination of the previous examples. The HR and Sales groups are added as remote groups similar to example 1. The local LDAP user, shudson (using a FortiToken), from example 2 is added as a group member.

This example is for demonstration only. It may cause unwanted results, so this configuration is not advised.
To add a user as a member and their group as a remote groups:

1. Refer to example 1 to configure the two remote groups.
2. In the Members field, click the + and add shudson.
3. Click OK.

One unwanted scenario from this configuration is that a user might be able to bypass multi-factor authentication on LDAP by changing the username case (see the related PSIRT advisory). By default, the username of the remote LDAP user is case sensitive. This means the username has to match what is configured (shudson). If a user types shudson, for example, this will not match the user shudson, so it falls through to remote group authentication. It will match the Sales group in this example. To prevent this, disable username case sensitivity (see SSL VPN for remote users with MFA and user sensitivity on page 1670 for more details).

To disable case sensitivity on the remote user:

```
config user local
 edit <name>
 set type ldap
 set two-factor fortitoken
 set fortitoken "FTKMOBxxxxxxxxxx"
 set email-to <email_address>
 set username-sensitivity disable
 set ldap-server <server_name>
 next
end
```

There is another unwanted scenario from this configuration than can occur to bypass multi-factor authentication. The LDAP server, ldap, has a user named shudson. Another LDAP server, ldap2, also has a user named shudson, but with a different password. If the ldap and ldap2 servers are added to the user group in addition to the remote shudson user, if a user tries to log in using shudson and the password on the ldap2 server, they would be able to bypass multi-factor authentication.

**Configuring FSSO user groups**

FSSO user groups contain only Windows, Citrix, and Novell network users. Information about these user groups and their member logon activities are provided by the corresponding FSSO connector. See the FSSO on page 1913 section for more information.


Configuring RSSO user groups

RADIUS single sign-on user groups leverage a RADIUS server to authenticate connecting users. This requires users to log in to their computer using their RADIUS account. The FortiGate does not interact with the remote RADIUS server. It only monitors RADIUS accounting records that the server forwards (originating from the RADIUS client). These records include the user IP address and user group. See RADIUS single sign-on agent on page 2500 for more information.

Configuring guest user groups

In some scenarios, an administrator might need to create temporary user accounts with a defined expiry time to access network resources. For example, if there is a large conference and may attendees require temporary network access for a few days. Guest Management can be used to combine many guest users into a group. Many guest accounts can be created at once using randomly-generated user IDs and passwords.

A guest group must be configured first. The guest user account user ID can be an email address, a randomly generated string, or an ID that the assigned by the administrator. The password can be assigned by the administrator or randomly generated. The guest group configuration determines the fields that are provided when creating guest user accounts in Guest Management.

To create a guest user group:

2. Enter a name, and set the Type to Guest.
### 3. Configure the following:

| **Batch Guest Account Creation** | Create multiple accounts automatically. When enabled:  
|  | • The user ID and password are automatically generated.  
|  | • The accounts only have user ID, password, and expiration fields. The expiration field is editable in the GUI in the *Start Countdown and Time* settings.  
|  | • An administrator can print the account information.  
|  | • Users do not receive an email or SMS notification. |

| **User ID** | Select one of the following:  
|  | • *Email*: use the user's email address  
|  | • *Auto Generate*: FortiOS creates a random user ID  
|  | • *Specify*: the administrator assigns a user ID |

| **Maximum Accounts** | Enable to set a maximum number of guest accounts that can be created for this group (disabled = unlimited). |

### Guest Details

**Enable Name**	If enabled, the user form has a field to enter a name.
**Enable Email**	If enabled, the user is notified by email.
**Enable SMS**	If enabled, the user is notified by SMS.

| **Password** | Select one of the following:  
|  | • *Auto Generate*: FortiOS creates a random password  
|  | • *Specify*: the administrator assigns a password  
|  | If the setting is disabled, no password is used. |

| **Sponsor** | If enabled, the user form has a field to enter a sponsor (*Optional*). Select *Required* if the sponsor field is mandatory. |

| **Company** | If enabled, the user form has a field to enter a company (*Optional*). Select *Required* if the company field is mandatory. |

### Expiration

| **Start Countdown** | Select one of the following:  
|  | • *On Account Creation*: the countdown starts from the time the account is created  
|  | • *After First Login*: the countdown starts from the time the first time the user logs in |

| **Time** | Set the expiry time. There are fields to enter values for *Days, Hours, Minutes, and Seconds*. |

### 4. Click OK.
To manually create a guest user account:

2. If more than one guest user group is configured, select the group from the dropdown beside the search box.
3. Click Create New and enter the information in the Create User pane. The fields are based on the guest group configuration. Optional fields can be left blank, such as Sponsor in this example.
4. Click OK.

To automatically create multiple guest user accounts:

2. If more than one guest user group is configured, select the group from the dropdown beside the search box. The group must have Batch Guest Account Creation enabled.
3. Click Create New > Multiple Users and enter the Number of Accounts.
4. Optionally, edit the Expiration date and time.
5. Click OK.

Retail environment guest access

Businesses such as coffee shops provide free Internet access for customers. In this scenario, you do not need to configure guest management, as customers can access the WiFi access point without logon credentials.

However, consider that the business wants to contact customers with promotional offers to encourage future patronage. You can configure an email collection portal to collect customer email addresses for this purpose. You can configure a firewall policy to grant network access only to users who provide a valid email address. The first time a customer’s device
User & Authentication

attempts WiFi connection, FortiOS requests an email address, which it validates. The customers' subsequent connections go directly to the Internet without interruption.

This configuration consists of the following steps:
1. Creating an email collection portal on page 1802
2. Creating a firewall policy on page 1802
3. Checking for collected emails on page 1803

Creating an email collection portal

The customer's first contact with your network is a captive portal that presents a webpage requesting an email address. When FortiOS has validated the email address, the customer's device MAC address is added to the collected emails device group.

This example modifies the freewifi WiFi interface to present an email collection captive portal.

To configure the freewifi SSID to use an email collection portal in the GUI:

1. Enable email collection:
   a. Go to System > Feature Visibility.
   b. In the Additional Features section, enable Email Collection.
   c. Click Apply.
2. Edit the freewifi SSID:
   a. Go to WiFi & Switch Controller > SSIDs and edit the freewifi SSID.
   b. In the Security Mode Settings section, set the Security mode to Captive Portal.
   c. Set the Portal type to Email Collection.
   d. Click OK.

To configure the freewifi SSID to use an email collection portal in the CLI:

```bash
config wireless-controller vap
edit freewifi
 set security captive-portal
 set portal-type email-collect
next
end
```

Creating a firewall policy

You must configure a firewall policy that allows traffic to flow from the WiFi SSID to the internet interface only for members of the collected emails device group. This policy must be listed first. Unknown devices are not members of the collected emails device group, so they do not match the policy.

To create a firewall policy:

```bash
config firewall policy
edit 3
 set srcintf "freewifi"
 set dstintf "wan1"
 set srcaddr "all"
 set dstaddr "all"
```
User & Authentication

set action accept  
set schedule "always"  
set service "ALL"  
set nat enable  
set email-collect enable

next
end

Checking for collected emails

When a WiFi user connects to the freewifi SSID, they are presented with a captive portal to enter their email address.

Once the user enters their email and clicks Continue, they will have access to the Internet. The collected emails can be verified in FortiOS.

To check for collected emails in the GUI:

1. Go to Dashboard > Users & Devices and click Add Widget.
2. In the User & Authentication section, select Collected Email and click Add Widget.
3. Click Close.
4. Click the Collected Email to expand to full view. The list of emails is displayed.

5. Optionally, click Export to export the data as a CSV or JSON file.
To check for collected emails in the CLI:

```bash
diagnose firewall auth mac list

72:4d:e1:**:**:**, admin@fortinet.com
 type: email, id: 0, duration: 937, idled: 19
 expire: 863980, allow-idle: 864000
 flag(1000): src_idle
 packets: in 4753 out 4592, bytes: in 2662403 out 2458644

----- 1 listed, 0 filtered -----
```

User and user group timeouts

Authenticated user groups can have timeout values per group in addition to FortiGate-wide timeouts. Three types of group timeouts can be configured: idle, hard, and session. These are in addition to any external timeouts, such as those on RADIUS servers.

To configure the timeout type for authenticated users:

```bash
config user setting
 set auth-timeout-type {idle-timeout | hard-timeout | new-session}
 set auth-timeout <integer>
end
```

Timeouts are measured in minutes (1 - 1440, default = 5). If VDOMs are enabled, the global level `auth-timeout` user setting is the default all VDOMs inherit.

<table>
<thead>
<tr>
<th>Timeout type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idle</td>
<td>This is the default setting. The idle timer starts when a user initiates a session. As long as data is transferred in this session, the timer continually resets. If the data flow stops, the timer is allowed to advance until it reaches its limit. When the user has been idle for too long, the user must re-authenticate before traffic is allowed to continue in that session.</td>
</tr>
<tr>
<td>Hard</td>
<td>The hard timer starts when a user initiates a session. When the timeout is reached, all the sessions for that user must be re-authenticated. This timeout is not affected by any events.</td>
</tr>
<tr>
<td>Session</td>
<td>The session timer starts when a user initiates a session. When the timeout is reached, existing sessions may continue. New sessions are not allowed until the user re-authenticates. This timeout is not affected by any events.</td>
</tr>
</tbody>
</table>

To configure the authentication timeout for a user group:

```bash
config user group
 edit <name>
 set auth-timeout <integer>
 next
end
```

Timeouts are measured in minutes (0 - 43200). A value of zero (the default) means the global timeout is used.
If a user belongs to multiple RADIUS groups, the group auth-timeout values are ignored. The global auth-timeout value is used instead (under config user setting).

**LDAP servers**

The following topics provide information about LDAP servers:

- Configuring an LDAP server on page 1805
- Enabling Active Directory recursive search on page 1807
- Configuring LDAP dial-in using a member attribute on page 1808
- Configuring wildcard admin accounts on page 1809
- Configuring least privileges for LDAP admin account authentication in Active Directory on page 1810
- Tracking users in each Active Directory LDAP group on page 1811
- Tracking rolling historical records of LDAP user logins on page 1814
- Configuring client certificate authentication on the LDAP server on page 1817

**Configuring an LDAP server**

FortiOS can be configured to use an LDAP server for authentication.

**To configure an LDAP server on the FortiGate:**

1. Go to User & Authentication > LDAP Servers.
2. Click Create New.
3. Configure the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>This connection name is for reference within the FortiGate only.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server IP/Name</td>
<td>LDAP server IP address or FQDN resolvable by the FortiGate.</td>
</tr>
<tr>
<td>Server Port</td>
<td>By default, LDAP uses port 389 and LDAPS uses 636. Use this field to specify a custom port if necessary.</td>
</tr>
</tbody>
</table>
| Common Name Identifier | Attribute field of the object in LDAP that the FortiGate uses to identify the connecting user. The identifier is case sensitive. Common attributes are:  
  - cn (Common Name)  
  - sAMAccountName (SAMAccountName)  
  - uid (User ID) |
| Distinguished Name    | Used to look up user account entries on the LDAP server. It reflects the hierarchy of LDAP database object classes above the CN identifier in which you are doing the lookup. Enter dc=COMPANY,dc=com to specify the root of the domain to include all objects. |
Enter `ou=VPN-Users,dc=COMPANY,dc=com` to look up users under a specific organization unit.

**Exchange server**
Enable to specify the exchange server connector to collect information about authenticated users from a corporate exchange server. See Exchange Server connector on page 2503 for more details.

**Bind Type**
Select one of the following options:
- **Simple**: bind using simple password authentication using the client name. The LDAP server only looks up against the distinguished name (DN), but does not search on the subtree.
- **Anonymous**: bind using an anonymous user, and search starting from the DN and recurse over the subtrees. Many LDAP servers do not allow this.
- **Regular**: bind using the username and password provided, and search starting from the DN and recurse over the subtrees.

**Username**
If using regular bind, enter a username with sufficient privileges to access the LDAP server. The following formats are supported:
- `username\administrator`
- `administrator@domain`
- `cn=administor,cn=users,dc=domain,dc=com`

**Password**
If using regular bind, enter the password associated with the username.

**Secure Connection**
Enable to apply security to the LDAP connection through STARTTLS or LDAPS.

**Protocol**
If Secure Connection is enabled, select STARTTLS or LDAPS. Selecting STARTTLS changes the port to 389 and selecting LDAPS changes the port to 636.

**Certificate**
Enable and select the certificate so the FortiGate will only accept a certificate from the LDAP server that is signed by this CA.

**Server identity check**
Enable to verify the server domain or IP address against the server certificate. This option is enabled by default and it is recommended to leave it enabled for a secure configuration.

---

When specifying a secure connection, there are some considerations for the certificate used by LDAP to secure the connection. The FortiGate checks the certificate presented by the LDAP server for the IP address or FQDN as specified in the Server IP/Name field with the following logic:
- If there is a Subject Alternative Name (SAN), it will ignore any Common Name (CN) value and look for a match in any of the SAN fields.
- If there is no SAN, it will check the CN for a match.

4. Optionally, click Test User Credentials to ensure that the account has sufficient access rights.
5. Click OK.
   The FortiGate checks the connection and updates the Connection Status.
Enabling Active Directory recursive search

By default, nested groups (groups that are members or other groups) are not searched in Windows Active Directory (AD) LDAP servers because this can slow down the group membership search. There is an option in FortiOS to enable the searching of nested groups for user group memberships on AD LDAP servers.

This option is not available for other LDAP servers, such as OpenLDAP-based servers.

The default behavior does not include nested groups:

```bash
config user ldap
 edit "ldap-ad"
 set server "10.1.100.131"
 set cnid "cn"
 set dn "dc=fortinet-fsso,dc=com"
 set type regular
 set username "cn=Administrator,cn=users,dc=fortinet-fsso,dc=com"
 set password XXXXXXXXXXXXXXXXXXXXXXXXXXX
 next
end
```

The default search results only show groups that have the user as member, and no groups that have groups as members:

```bash
diagnose test authserver ldap ldap-ad nuser nuser
 authenticate 'nuser' against 'ldap-ad' succeeded!
 Group membership(s) - CN=nested3,OU=Testing,DC=Fortinet-FSSO,DC=COM
 CN=Domain Users,CN=Users,DC=Fortinet-FSso,DC=COM
```

To enable recursive search to include nested groups in the results:

```bash
config user ldap
 edit "ldap-ad"
 set server "10.1.100.131"
 set cnid "cn"
 set dn "dc=fortinet-fsso,dc=com"
 set type regular
 set username "cn=Administrator,cn=users,dc=fortinet-fsso,dc=com"
 set password XXXXXXXXXXXXXXXXXXXXXXXXXXX
 set search-type recursive
 next
end
```

The search results now include groups that have other groups as members:

```bash
diagnose test authserver ldap ldap-ad nuser nuser
 authenticate 'nuser' against 'ldap-ad' succeeded!
 Group membership(s) - CN=nested3,OU=Testing,DC=Fortinet-FSSO,DC=COM
 CN=Domain Users,CN=Users,DC=Fortinet-FSso,DC=COM
 CN=nested2,OU=Testing,DC=Fortinet-FSSO,DC=COM
 CN=nested1,OU=Testing,DC=Fortinet-FSSO,DC=COM
```

The group nested3 is a member of the group nested2, which is a member of the group nested1.
Configuring LDAP dial-in using a member attribute

In this configuration, users defined in Microsoft AD can set up a VPN connection based on an attribute that is set to TRUE, instead of their user group. You can activate the Allow Dialin property in AD user properties, which sets the msNPAllowDialin attribute to TRUE. You can use this procedure for other member attributes as your system requires.

This configuration consists of the following steps:

1. Ensure that the AD server has the msNPAllowDialin attribute set to TRUE for the desired users.
2. Configure user LDAP member attribute settings.
3. Configure LDAP group settings.
4. Ensure that you configured the settings correctly.

To configure user LDAP member attribute settings:

```plaintext
config user ldap
 edit "ldap_server"
 set server "192.168.201.3"
 set cnid "sAMAccountName"
 set dn "DC=fortilabanz,DC=com,DC=au"
 set type regular
 set username "fortigate@sample.com"
 set password ******
 set member-attr "msNPAllowDialin"
 next
end
```

To configure LDAP group settings:

```plaintext
config user group
 edit "ldap_grp"
 set member "ldap_server"
 config match
 edit 1
 set server-name "ldap_server"
 set group-name "TRUE"
 next
 next
end
```

To ensure that you configured the settings correctly:

Users that are members of the ldap_grp user group should be able to authenticate. The following shows sample diagnose debug output when the Allow Dial-in attribute is set to TRUE:

```plaintext
get_member_of_groups-Get the memberOf groups.
get_member_of_groups- attr='msNPAllowDialin', found 1 values
get_member_of_groups-attr='msNPAllowDialin', val[0] = 'TRUE'
fnbamd_ldap_get_result=Auth accepted
fnbamd_ldap_get_result-Going to DONE state res=0
fnbamd_auth_poll_ldap-Result for ldap svr 192.168.201.3 is SUCCESS
fnbamd_auth_poll_ldap-Passed group matching
```

If the attribute is not set to TRUE but is expected, you may see the following output:
Configuring wildcard admin accounts

To avoid setting up individual admin accounts in FortiOS, you can configure an admin account with the wildcard option enabled, allowing multiple remote admin accounts to match one local admin account. This way, multiple LDAP admin accounts can use one FortiOS admin account.

Benefits include:

- Fast configuration of the FortiOS admin account to work with your LDAP network, saving effort and avoiding potential errors incurred when setting up multiple admin accounts.
- Reduced ongoing maintenance. As long as LDAP users belong to the same group and you do not modify the wildcard admin account in FortiOS, you do not need to configure changes on the LDAP accounts. If you add or remove a user from the LDAP group, you do not need to perform changes in FortiOS.

Potential issues include:

- Multiple users may be logged in to the same account simultaneously. This may cause issues if both users make changes simultaneously.
- Security is reduced since multiple users have login access to the same account, as opposed to an account for each user.

Wildcard admin configuration also applies to RADIUS. If configuring for RADIUS, configure the RADIUS server and RADIUS user group instead of LDAP. When using the GUI, wildcard admin is the only remote admin account that does not require you to enter a password on account creation. That password is normally used when the remote authentication server is unavailable during authentication.

This example uses default values where possible. If a specific value is not mentioned, the example sets it to its default value.

---

You can configure an admin account in Active Directory for LDAP authentication to allow an admin to perform lookups and reset passwords without being a member of the Account Operators or Domain Administrators built-in groups. See Configuring least privileges for LDAP admin account authentication in Active Directory on page 1810.

---

To configure the LDAP server:

The important parts of this configuration are the username and group lines. The username is the domain administrator account. The group binding allows only the GRP group access.

This example uses an example domain name. Configure as appropriate for your own network.

```
config user ldap
 edit "ldap_server"
 set server "192.168.201.3"
```
set cnid "sAMAccountName"
set dn "DC=example,DC=com,DC=au"
set type regular
set username "CN=Administrator,CN=Users,DC=example,DC=COM"
set password *
set group-member-check group-object
set group-object-filter (&
  (objectcategory=group)member="CN=GRP,OU=training,DC=example,DC=COM")
next
end

To configure the user group and add the LDAP server:

config user group
edit "ldap_group"
  set member "ldap_server"
  config match
    edit 1
      set server-name "ldap_server"
      set group-name "CN=GRP,OU=training,DC=example,DC=COM"
    next
  next
end
end

To configure the wildcard admin account:

config system admin
edit "test"
  set remote-auth enable
  set accprofile "super_admin"
  set wildcard enable
  set remote-group "ldap_group"
next
end

Configuring least privileges for LDAP admin account authentication in Active Directory

An administrator should only have sufficient privileges for their role. In the case of LDAP admin bind, you can configure an admin account in Active Directory for LDAP authentication to allow an admin to perform lookups and reset passwords without being a member of the Account Operators or Domain Administrators built-in groups.

For information about Active Directory, see the product documentation.

To configure account privileges for LDAP authentication in Active Directory:

1. In the Active Directory Users and Computers administrative console, right-click the Organizational Unit (OU) or the top-level domain you want to configure and select Delegate Control.
2. In the Delegation of Control Wizard dialog, click Next.
3. In the Users or Groups dialog, click Add... and search Active Directory for the users or groups.

4. Click OK and then click Next.

5. In the Tasks to Delegate dialog, select Create a custom task to delegate and click Next.

6. Select Only the following objects in the folder and scroll to the bottom of the list. Select User objects and click Next.

7. In the Permissions dialog, select General.

8. From the Permissions list, select the following:
   - Change password
   - Reset password


10. From the Permissions list, select the following:
    - Write lockoutTime
    - Read lockoutTime
    - Write pwdLastSet
    - Read pwdLastSet
    - Write UserAccountControl
    - Read UserAccountControl

11. Click Next and click Finish.

**Tracking users in each Active Directory LDAP group**

When LDAP users log on through firewall authentication, the active users per Active Directory LDAP group is counted and displayed in the Firewall Users widget and the CLI.
Example

The Active Directory LDAP server, FORTINET-FSSO.com, is configured with two groups that contain two users each: group1 consists of users test1 and test3; group2 consists of users test2 and test4.

To configure AD LDAP user groups in the GUI:

1. Configure the Active Directory LDAP server, FORTINET-FSSO:
   a. Go to User & Authentication > LDAP Servers and click Create New.
   b. Enter the following:
      
Name	FORTINET-FSSO
Server IP/Name	10.1.100.131
Distinguished Name	dc=FORTINET-FSSO,dc=com
Bind Type	Regular
Username	cn=administrator,cn=users,dc=FORTINET-FSSO,dc=com
Password	Enter the password.
   
   c. Click OK.

2. Configure the LDAP user groups:
   a. Go to User & Authentication > User Groups and click Create New.
   b. Enter the name, ldap1.
c. In the Remote Groups table, click Add. The Add Group Match pane opens.

d. For Remote Server, select FORTINET-FSSO.

e. In the search box, enter group1, and select the result in the table.

f. Click OK.

g. Repeat these steps to configure ldap2 with the FORTINET-FSSO group2.

h. Click OK.

3. Configure a firewall policy with both LDAP groups:
   a. Go to Policy & Objects > Firewall Policy and click Create New.
   b. For Source, select ldap1 and ldap2.
   c. Configure the other settings as needed.
   d. Click OK.

4. Get users test1 and test2 to log in.

5. In FortiOS, go to Dashboard > Users & Devices and click the Firewall Users widget to expand to full screen view. Hover over a group in the User Group donut chart to view how many users are logged on from that group, and the number of users as a percentage of all logged on users. The chart shows that two users are logged in.

6. Get users test3 and test4 to log in, and refresh the Firewall Users widget. Each LDAP group has two users logged in, with a total of four active users.
7. Get user test2 to log out, and refresh the Firewall Users widget. There is a total of three active users, and the ldap2 group only has one user that is logged in.

To verify the user group count in the CLI:

```
diagnose user-device-store user-count list <integer>
diagnose user-device-store user-count query <FQDN of AD group>
```

**Tracking rolling historical records of LDAP user logins**

Authenticated LDAP users can be tracked by logging the users' group memberships, logon timestamps, and logout timestamps into local files on a log disk over a rolling four-week period. The historical records can be queried from the CLI. This feature is only enabled on FortiGate models with a log disk.

**To view active user logged information:**

```
diagnose user-device-store user-stats query <yyyy-mm-dd> <range_in_days>
```

**Example**

In this example, the FortiGate is configured with an explicit web proxy and an LDAP server. When an LDAP user is authenticated by an IP-based authentication method in WAD, the WAD user is considered to be in an active logon
status. This WAD user is listed in the `diagnose wad user list` output. If the user is removed from WAD as an authenticated, such as when the IP-based authentication expires, then the user is considered to become inactive (logout status). The user is no longer listed in the `diagnose wad user list` output.

The WAD user’s group membership information and their logon and logout timestamps are written into local files on the FortiGate’s disk. There is one log file for each day, and the FortiGate can maintain up to 28 log files over a rolling period of 28 days (four weeks). This means after 28 days with 28 files stored, on the 29th day, the first file will be removed and a new file will be created for the 29th day.

To configure the FortiGate:

1. Enable the explicit web proxy on port1:

   ```plaintext
 config system interface
 edit "port1"
 set explicit-web-proxy enable
 set explicit-ftp-proxy enable
 set snmp-index 3
 next
 end
   ```

2. Configure the LDAP server:

   ```plaintext
 config user ldap
 edit "ldap-test"
 set server "172.16.200.98"
 set cnid "cn"
 set dn "dc=fortinetqa,dc=local"
 set type regular
 set username "CN=root,CN=Users,DC=fortinetqa,DC=local"
 set password **********
 next
 end
   ```
3. Configure the authentication scheme:

```plaintext
config authentication scheme
edit "basic-ldap"
 set method basic
 set user-database "ldap-test"
next
end
```

4. Configure the authentication rule:

```plaintext
config authentication rule
edit "basic-ldap"
 set srcaddr "all"
 set active-auth-method "basic-ldap"
 set web-portal disable
next
end
```

5. Configure the user group:

```plaintext
config user group
edit "ldap-group"
 set member "ldap" "ldap-test"
next
end
```

6. Configure the proxy policy:

```plaintext
config firewall proxy-policy
edit 1
 set proxy explicit-web
 set dstintf "port3"
 set srcaddr "all"
 set dstaddr "all"
 set service "web"
 set action accept
 set schedule "always"
 set groups "ldap-group"
 set utm-status enable
 set ssl-ssh-profile "deep-custom"
 set av-profile "av"
next
end
```

When users pass through the explicit proxy and log in and out through LDAP, their login and logout records will be logged to the disk.

In this example, there are two LDAP users, test1 and test3, with the following activity:

1. test3 logs on at 22:30:22 on February 23, 2022, then logs out at 22:31:09 on the same day.
2. test1 logs on at 23:55:02 on February 23, 2022, then logs out at 00:05:02 on February 24, 2022.
3. test3 logs on at 16:29:44 on February 24, 2022, then logs out at 16:39:44 on the same day.

The logon and logout timestamp information, and the group membership information for users test1 and test3 will be logged into two local files on the log disk.
To view the active user logged information for two days back from February 24, 2022:

`# diagnose user-device-store user-stats query 2022-02-24 2`

Record #0:
- `username` = 'test3'
- `groupname` = 'CN=Domain Admins,CN=Users,DC=FORTINETQA,DC=local'
- `groupname` = 'CN=FSSO,OU=QA,DC=FORTINETQA,DC=local'
- `logon` = '2022-02-23 22:30:22'
- `logout` = '2022-02-23 22:31:09'

Record #1:
- `username` = 'test1'
- `groupname` = 'CN=Domain Admins,CN=Users,DC=FORTINETQA,DC=local'
- `groupname` = 'CN=FSSO,OU=QA,DC=FORTINETQA,DC=local'
- `groupname` = 'CN=mytest-grp,OU=QA,DC=FORTINETQA,DC=local'
- `logon` = '2022-02-23 23:55:02'

Record #2:
- `username` = 'test1'
- `groupname` = 'CN=Domain Admins,CN=Users,DC=FORTINETQA,DC=local'
- `groupname` = 'CN=FSSO,OU=QA,DC=FORTINETQA,DC=local'
- `groupname` = 'CN=mytest-grp,OU=QA,DC=FORTINETQA,DC=local'
- `logon` = '2022-02-23 23:55:02'
- `logout` = '2022-02-24 00:05:02'

Record #3:
- `username` = 'test3'
- `groupname` = 'CN=Domain Admins,CN=Users,DC=FORTINETQA,DC=local'
- `groupname` = 'CN=FSSO,OU=QA,DC=FORTINETQA,DC=local'
- `logon` = '2022-02-24 16:29:44'
- `logout` = '2022-02-24 16:39:44'

Returned 4 records.

There is one record (logon) for test1 on 2022-02-23 because they remained active after midnight (until 00:05:02). There is another record for 2022-02-24 with logon and logout timestamps for test1.

Configuring client certificate authentication on the LDAP server

Administrators can configure a FortiGate client certificate in the LDAP server configuration when the FortiGate connects to an LDAPS server that requires client certificate authentication.

```
config user ldap
 edit <ldap_server>
 set client-cert-auth {enable | disable}
 set client-cert <source>
 next
end
```

Example

In this example, the FortiGate is configured as an explicit web proxy. It connects to the Windows AD server through LDAPS, where the Windows server requires a client certificate to connect. The client certificate is configured in the CLI.
The endpoint PC connecting to the web server will first need to authenticate to the explicit web proxy before accessing the server.

While this example demonstrates an LDAP client certificate for an explicit proxy configuration, LDAP client certificates can be used in firewall authentication, transparent proxy, ZTNA, and wherever LDAP configurations are used on the FortiGate.

**To configure a client certificate on the LDAP server:**

1. **Enable the explicit web proxy on port2:**
   ```
 config system interface
 edit "port2"
 set explicit-web-proxy enable
 next
 end
   ```

2. **Upload the client certificate to the FortiGate:**
   ```
 config vpn certificate local
 edit "Zach"
 set password **********
 set private-key <private key>
 set certificate <certificate>
 next
 end
   ```

3. **Configure the LDAP server settings:**
   ```
 config user ldap
 edit "ldaps"
 set server "172.16.200.57"
 set server-identity-check disable
 set cnid "CN"
 set dn "CN=Users,DC=ftnt,DC=com"
 set secure ldaps
 set port 636
 set client-cert-auth enable
 set client-cert "Zach"
 next
 end
   ```

4. **Configure the authentication scheme:**
config authentication scheme
edit "1"
    set method basic
    set user-database "ldaps"
next
end

5. Configure the authentication rule:

config authentication rule
edit "1"
    set srcintf "port2"
    set srcaddr "all"
    set dstaddr "all"
    set active-auth-method "1"
next
end

6. Configure the user group:

config user group
edit "test"
    set member "ldaps"
next
end

7. Configure the proxy policy with the user group:

config firewall proxy-policy
edit 1
    set proxy explicit-web
    set dstintf "port3"
    set srcaddr "all"
    set dstaddr "all"
    set service "webproxy"
    set action accept
    set schedule "always"
    set srcaddr6 "all"
    set dstaddr6 "all"
    set groups "test"
    set utm-status enable
    set ssl-ssh-profile "deep-inspection-clone"
    set av-profile "av"
next
end

Testing and verification

When traffic from the endpoint PC matches a policy and triggers authentication, the FortiGate starts the LDAPS TLS connection handshake with the Windows AD. The LDAPS server requests a client certificate to identify the FortiGate as a client. The FortiGate provides a configured client certificate, issued to zach.com, to the LDAPS server.

The following communication between the FortiGate and the LDAPS server shows the client certificate is sent by the FortiGate:
Remote Authentication and Dial-In User Service (RADIUS) is a broadly supported client-server protocol that provides centralized authentication, authorization, and accounting functions. RADIUS clients are built into gateways that allow access to networks such as a VPN server, network access server (NAS), and a network switch or firewall that uses authentication.

RADIUS servers use UDP packets to communicate with the RADIUS clients on the network to authenticate users before allowing them access to the network, authorize access to resources by appropriate users, and account or bill for those resources that are used. RADIUS servers are currently defined by RFC 2865 (RADIUS) and RFC 2866 (RADIUS Accounting), and listen on either UDP ports 1812 (authentication) and 1813 (accounting), or ports 1645 (authentication) and 1646 (accounting) requests. RADIUS servers exist for all major operating systems.

The RADIUS server must be configured to accept the FortiGate as a client so it can use the authentication and accounting functions of the RADIUS server.

RADIUS authentication with a FortiGate requires the following:

- Configuring one or more RADIUS server profiles on the FortiGate.
- Assigning the RADIUS server profile to a user or user group.
- Applying the user or user group to a firewall policy.

RADIUS authentication can be applied to many FortiGate functions, such as firewall authentication, SSL and IPsec VPNs, administrator profiles, ZTNA, explicit proxy, wireless, 802.1X, and more.

The RADIUS server uses a shared secret key with MD5 hashing to encrypt information passed between RADIUS servers and clients. Typically, only user credentials are encrypted. Additional security can be configured through IPsec tunnels by placing the RADIUS server behind another VPN gateway.

The following topics provide more information about RADIUS servers:

- Configuring a RADIUS server on page 1821
- Using multiple RADIUS servers on page 1822
- RADIUS AVPs and VSAs on page 1825
User & Authentication

- Restricting RADIUS user groups to match selective users on the RADIUS server on page 1827
- Configuring RADIUS SSO authentication on page 1828
- RSA ACE (SecurID) servers on page 1834
- Support for Okta RADIUS attributes filter-Id and class on page 1838
- Sending multiple RADIUS attribute values in a single RADIUS Access-Request on page 1840
- Traffic shaping based on dynamic RADIUS VSAs on page 1841
- RADIUS Termination-Action AVP in wired and wireless scenarios on page 1848

Configuring a RADIUS server

A RADIUS server can be configured in the GUI by going to User & Authentication > RADIUS Servers, or in the CLI under config user radius.

Basic configuration

The following table summarizes the common RADIUS settings that can be configured in the GUI and CLI.

<table>
<thead>
<tr>
<th>GUI field</th>
<th>CLI setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>edit &lt;name&gt;</td>
<td>Define the RADIUS server object within FortiOS.</td>
</tr>
<tr>
<td>Authentication method</td>
<td>set auth-type {auto</td>
<td>ms_chap_v2</td>
</tr>
<tr>
<td>NAS IP</td>
<td>set nas-ip &lt;IPv4_address&gt;</td>
<td>Optional setting, also known as Calling-Station-Id. Specify the IP address the FortiGate uses to communicate with the RADIUS server. If left unconfigured, the FortiGate will use the IP address of the interface that communicates with the RADIUS server.</td>
</tr>
<tr>
<td>Include in every user group</td>
<td>set all-usergroup {enable</td>
<td>disable}</td>
</tr>
<tr>
<td>Primary Server</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP/Name</td>
<td>set server &lt;string&gt;</td>
<td>Enter the IP address or resolvable FQDN of the RADIUS server.</td>
</tr>
<tr>
<td>Secret</td>
<td>set secret &lt;password&gt;</td>
<td>Enter the password used to connect to the RADIUS server.</td>
</tr>
</tbody>
</table>

There is an option in the GUI to configure a second server, and a third server can be configured in the CLI (see Using multiple RADIUS servers on page 1822).

Advanced settings

Advanced settings for RADIUS servers can be configured in the CLI. The following are some commonly used settings.
To edit the port used to connect with the RADIUS server:

```
config system global
 set radius-port <integer>
end
```

To edit the default setting for password encoding and username case sensitivity:

```
config user radius
 edit <name>
 set password-encoding {auto | ISO-8859-1}
 set username-case-sensitive {enable | disable}
 next
end
```

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>password-encoding</td>
<td>Set the password encoding to use the original encoding or ISO-8859-1 (default = auto). The auth-type must be auto or pap to change this setting.</td>
</tr>
<tr>
<td>username-case-sensitive</td>
<td>Enable/disable case sensitive usernames (default = disable).</td>
</tr>
</tbody>
</table>

**Using multiple RADIUS servers**

There are several ways to implement multiple RADIUS servers, and each has a different effect on user authentication. The three main options available are:

- Add a second (or third) RADIUS server in the same profile.
- Add a second RADIUS server profile, and add both to the same user group.
- Use two RADIUS server profiles for two user groups (one for each).

**Adding a second server in a RADIUS profile**

A second RADIUS server can be configured in the same RADIUS profile so in the event the first RADIUS server does not respond, the second server can be checked. If the first RADIUS server responds with an Access-Reject, no further servers are queried.

**To add a second server in a RADIUS profile:**

1. Go to User & Authentication > RADIUS Servers and click Create New.
2. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>RADIUS_with_2ndary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication method</td>
<td>Default</td>
</tr>
<tr>
<td>Primary Server</td>
<td></td>
</tr>
<tr>
<td>IP/Name</td>
<td>1.1.1.1</td>
</tr>
<tr>
<td>Secret</td>
<td>Enter the password used to connect to the RADIUS server.</td>
</tr>
<tr>
<td>Secondary Server</td>
<td></td>
</tr>
</tbody>
</table>
3. Click OK.

Adding two RADIUS server profiles in the same user group

When two separate RADIUS profiles are added to a user group, the FortiGate sends an Access-Request simultaneously to both RADIUS servers, and authentication succeeds if either server sends back an Access-Accept. This example includes the settings from the previous example where one or more of the RADIUS server profiles has a secondary server configured. In this case, the secondary server profile, RADIUS_with_2ndary, is only checked if the primary server of this profile times out and the fac_radius_server profile does not return an Access-Accept.

To add two RADIUS server profiles in the same user group:

1. Go to User & Authentication > RADIUS Servers, click Create New, and configure the RADIUS servers as needed (refer to the previous example).
2. Go to User & Authentication > User Groups and click Create New.
3. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>RADIUS_GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Firewall</td>
</tr>
</tbody>
</table>

4. In the Remote Groups table, click Add.
5. Select RADIUS_with_2ndary and click OK.
6. Click Add, select `fac_radius_server`, then click OK.

   ![Image of User & Authentication]

7. Click OK.

**Using separate RADIUS server profiles for separate user groups**

In this example, the FortiGate first evaluates if the user belongs to the first listed group (radius_group) in the policy. If the user fails to authenticate to this group, then the FortiGate checks if the user can successfully authenticate to the second user group (radius_group_2). Refer to the first and second examples for detailed instructions.

**To use separate RADIUS server profiles for separate user groups:**

1. Configure the RADIUS server profiles:
   a. Go to User & Authentication > RADIUS Servers and click Create New.
   b. Configure two RADIUS servers, `fac_radius_server` and `RADIUS_with_2ndary`, as needed (refer to the previous example).

2. Configure the firewall groups:
   a. Go to User & Authentication > User Groups and click Create New.
   b. Configure two firewall groups, one named `radius_group` with remote server member `fac_radius_server`, and one named `radius_group_2` with remote server member `RADIUS_with_2ndary` (refer to the previous example).

   ![Image of Group Configuration]

3. Configure the firewall policy:
   a. Go to Policy & Objects > Firewall Policy and click Create New.
   b. For Source, click User then select `radius_group` and `radius_group_2`. Click Address and select LAN address.
   c. Configure the other settings as needed.
   d. Click OK.
RADIUS AVPs and VSAs

This topic describes RADIUS Attribute Value Pairs (AVPs) and Vendor-Specific Attributes (VSAs).

AVPs

RADIUS packets include a set of AVPs to identify information about the user, their location, and other information. The IETF defined a set of 255 standard attributes, which are well known and come in the form of Type, Length, Value (for more details, refer to RFC 2865). Of the standard 255, the FortiGate sends the following RADIUS attributes:

<table>
<thead>
<tr>
<th>RADIUS attribute number</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>User-Name</td>
<td>Name of the user being authenticated by the RADIUS server.</td>
</tr>
<tr>
<td>4</td>
<td>NAS-IP-Address</td>
<td>IP address of the network access server (NAS) that is requesting authentication. The NAS is the FortiGate.</td>
</tr>
<tr>
<td>8</td>
<td>Framed-IP-Address</td>
<td>IP address to be configured for the user, by sending the IP address of a user to the RADIUS server in the Access-Request packet.</td>
</tr>
<tr>
<td>25</td>
<td>Class</td>
<td>Used in accounting packets and requests for firewall, WiFi, and proxy authentication. The attribute is returned in the Access-Accept message and added to all accounting packets.</td>
</tr>
<tr>
<td>26</td>
<td>Fortinet-VSA</td>
<td>See VSAs.</td>
</tr>
<tr>
<td>32</td>
<td>NAS-Identifier</td>
<td>Identifier or IP address of the NAS that is requesting authentication. The NAS is the FortiGate.</td>
</tr>
<tr>
<td>42</td>
<td>Acct-Input-Octets</td>
<td>Number of octets received from the port over the course of this service being provided. Used to charge the user for the amount of traffic they used.</td>
</tr>
<tr>
<td>43</td>
<td>Acct-Output-Octets</td>
<td>Number of octets sent to the port while delivering this service. Used to charge the user for the amount of traffic they used.</td>
</tr>
<tr>
<td>44</td>
<td>Acct-Session-Id</td>
<td>Unique number assigned to each start and stop record to make it easy to match them, and to eliminate duplicate records.</td>
</tr>
<tr>
<td>55</td>
<td>Event-Timestamp</td>
<td>Records the time that the event occurred on the NAS. The timestamp is measured in seconds since January 1, 1970 00:00 UTC. Before the Event-Timestamp attribute can be sent in a packet, make sure that the correct time is set on the FortiGate.</td>
</tr>
</tbody>
</table>

VSAs

Some vendors want or need to send attributes that do not match any of the defined IETF attributes. This can be accomplished by using RADIUS attribute type 26, which allows a vendor to encapsulate their own specific attributes in this standard AVP.

In order to support VSAs, the RADIUS server requires a dictionary to define the VSAs. This dictionary is typically supplied by the client or server vendor.
The Fortinet RADIUS vendor ID is 12356 and contains the following attributes:

<table>
<thead>
<tr>
<th>Attribute name</th>
<th>Attribute number</th>
<th>Attribute value format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortinet-Group-Name</td>
<td>1</td>
<td>String</td>
</tr>
<tr>
<td>Fortinet-Client-IP-Address</td>
<td>2</td>
<td>IP address</td>
</tr>
<tr>
<td>Fortinet-Vdom-Name</td>
<td>3</td>
<td>String</td>
</tr>
<tr>
<td>Fortinet-Client-IPv6-Address</td>
<td>4</td>
<td>Octets</td>
</tr>
<tr>
<td>Fortinet-Interface-Name</td>
<td>5</td>
<td>String</td>
</tr>
<tr>
<td>Fortinet-Access-Profile</td>
<td>6</td>
<td>String</td>
</tr>
<tr>
<td>Fortinet-SSID</td>
<td>7</td>
<td>String</td>
</tr>
<tr>
<td>Fortinet-AP-Name</td>
<td>8</td>
<td>String</td>
</tr>
<tr>
<td>Fortinet-FAC-Auth-Status</td>
<td>11</td>
<td>String</td>
</tr>
<tr>
<td>Fortinet-FAC-Token-ID</td>
<td>12</td>
<td>String</td>
</tr>
<tr>
<td>Fortinet-FAC-Challenge-Code</td>
<td>15</td>
<td>String</td>
</tr>
<tr>
<td>Fortinet-Webfilter-Category-Allow</td>
<td>16</td>
<td>String</td>
</tr>
<tr>
<td>Fortinet-Webfilter-Category-Block</td>
<td>17</td>
<td>Octets</td>
</tr>
<tr>
<td>Fortinet-Webfilter-Category-Monitor</td>
<td>18</td>
<td>Octets</td>
</tr>
<tr>
<td>Fortinet-AppCtrl-Category-Allow</td>
<td>19</td>
<td>Octets</td>
</tr>
<tr>
<td>Fortinet-AppCtrl-Category-Block</td>
<td>20</td>
<td>Octets</td>
</tr>
<tr>
<td>Fortinet-AppCtrl-Risk-Allow</td>
<td>21</td>
<td>Octets</td>
</tr>
<tr>
<td>Fortinet-AppCtrl-Risk-Block</td>
<td>22</td>
<td>Octets</td>
</tr>
<tr>
<td>Fortinet-WirelessController-Device-MAC</td>
<td>23</td>
<td>Ether</td>
</tr>
<tr>
<td>Fortinet-WirelessController-WTP-ID</td>
<td>24</td>
<td>String</td>
</tr>
<tr>
<td>Fortinet-WirelessController-Assoc-Time</td>
<td>25</td>
<td>Date</td>
</tr>
<tr>
<td>Fortinet-FortiWAN-AVPair</td>
<td>26</td>
<td>String</td>
</tr>
<tr>
<td>Fortinet-FDD-Access-Profile</td>
<td>30</td>
<td>String</td>
</tr>
<tr>
<td>Fortinet-FDD-Trusted-Hosts</td>
<td>31</td>
<td>String</td>
</tr>
<tr>
<td>Fortinet-FDD-SPP-Name</td>
<td>32</td>
<td>String</td>
</tr>
<tr>
<td>Fortinet-FDD-Is-System-Admin</td>
<td>33</td>
<td>String</td>
</tr>
<tr>
<td>Fortinet-FDD-Is-SPP-Admin</td>
<td>34</td>
<td>String</td>
</tr>
<tr>
<td>Fortinet-FDD-SPP-Policy-Group</td>
<td>35</td>
<td>String</td>
</tr>
<tr>
<td>Fortinet-FDD-Allow-API-Access</td>
<td>36</td>
<td>String</td>
</tr>
<tr>
<td>Fortinet-Fpc-User-Role</td>
<td>40</td>
<td>String</td>
</tr>
</tbody>
</table>
Restricting RADIUS user groups to match selective users on the RADIUS server

When a user group is configured in FortiOS to authenticate against a RADIUS server, it will allow any valid user account on the RADIUS server to match that user group. Sometimes you might want to specify which users on the RADIUS server should match a particular user group on the FortiGate. This can be accomplished using the RADIUS attribute value pair (AVP) 26, known as a Vendor-Specific Attribute (VSA). This attribute allows the Fortinet-Group-Name VSA to be included in the RADIUS response. In FortiOS, the user group must be configured to specifically match this group.

In the following example, a RADIUS Network Policy Server (NPS) has been configured to have the Fortinet-Group-Name be IT, and assumes that the user group, RADIUS_IT has been created, which authenticates to the RADIUS_NPS server.

To configure specific group matching in the GUI:

1. Go to User & Authentication > User Groups and edit the RADIUS_IT group.
2. In the Remote Groups table, select the RADIUS_NPS server and click Edit. The Add Group Match pane opens.
3. For Groups, select Specify and enter the group name configured on the RADIUS server (IT).
4. Click OK.

5. Click OK.

To configure specific group matching in the CLI:

```
config user group
 edit "RADIUS_IT"
 set member "RADIUS_NPS"
 config match
 edit 1
 set server-name "RADIUS_NPS"
 set group-name "IT"
 next
 next
end
```

To change the matching back to any group, under config match, enter delete 1. Changing the group-name to "Any" will cause the FortiGate to match the Fortinet-GroupName with the literal string, Any.

Configuring RADIUS SSO authentication

A common RADIUS SSO (RSSO) topology involves a medium-sized company network of users connecting to the Internet through the FortiGate and authenticating with a RADIUS server. The following describes how to configure FortiOS for this scenario. The example makes the following assumptions:

- VDOMs are not enabled.
- The super_admin account is used for all FortiGate configuration.
- A RADIUS server is installed on a server or FortiAuthenticator and uses default attributes.
- BGP is used for any dynamic routing.
- You have configured authentication event logging under Log & Report.

Example.com has an office with 20 users on the internal network who need access to the Internet. The office network is protected by a FortiGate-60C with access to the Internet through the wan1 interface, the user network on the internal
interface, and all servers are on the DMZ interface. This includes an Ubuntu sever running FreeRADIUS. This example configures two users:

<table>
<thead>
<tr>
<th>User</th>
<th>Account</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pat Lee</td>
<td><a href="mailto:plee@example.com">plee@example.com</a></td>
</tr>
<tr>
<td>Kelly Green</td>
<td><a href="mailto:kgreen@example.com">kgreen@example.com</a></td>
</tr>
</tbody>
</table>

Configuring this example consists of the following steps:

1. Configure RADIUS.
2. Configure FortiGate interfaces.
3. Configure a RSSO agent.
4. Create a RSSO user group.
5. Configure security policies.
6. Test the configuration.

To configure RADIUS:

Configuring RADIUS includes configuring a RADIUS server such as FreeRADIUS on user's computers and configuring users in the system. In this example, Pat and Kelly belong to the exampledotcom_employees group. After completing the configuration, you must start the RADIUS daemon. The users have a RADIUS client installed on their PCs that allow them to authenticate through the RADIUS server.

For any problems installing FreeRADIUS, see the FreeRADIUS documentation.

To configure FortiGate interfaces:

You must define a DHCP server for the internal network, as this network type typically uses DHCP. The wan1 and dmz interfaces are assigned static IP addresses and do not need a DHCP server. The following table shows the FortiGate interfaces used in this example:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Subnet</th>
<th>Act as DHCP server</th>
<th>Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>wan1</td>
<td>172.20.120.141</td>
<td>No</td>
<td>Internet service provider</td>
</tr>
<tr>
<td>dmz</td>
<td>10.11.101.100</td>
<td>No</td>
<td>Servers including RADIUS server</td>
</tr>
<tr>
<td>internal</td>
<td>10.11.102.100</td>
<td>Yes: x.x.x.110-250</td>
<td>Internal user network</td>
</tr>
</tbody>
</table>
1. Go to Network > Interfaces.
2. Edit wan1:

<table>
<thead>
<tr>
<th>Alias</th>
<th>Internet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addressing Mode</td>
<td>Manual</td>
</tr>
<tr>
<td>IP/Network Mask</td>
<td>172.20.120.141/255.255.255.0</td>
</tr>
<tr>
<td>Administrative Access</td>
<td>HTTPS, SSH</td>
</tr>
<tr>
<td>Enable DHCP Server</td>
<td>Not selected</td>
</tr>
<tr>
<td>Comments</td>
<td>Internet</td>
</tr>
<tr>
<td>Administrative Status</td>
<td>Up</td>
</tr>
</tbody>
</table>

3. Click OK.
4. Edit dmz:

<table>
<thead>
<tr>
<th>Alias</th>
<th>Servers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addressing Mode</td>
<td>Manual</td>
</tr>
<tr>
<td>IP/Network Mask</td>
<td>10.11.101.100/255.255.255.0</td>
</tr>
<tr>
<td>Administrative Access</td>
<td>HTTPS, SSH, PING, SNMP</td>
</tr>
<tr>
<td>Enable DHCP Server</td>
<td>Not selected</td>
</tr>
<tr>
<td>Listen for RADIUS Accounting Messages</td>
<td>Select</td>
</tr>
<tr>
<td>Comments</td>
<td>Servers</td>
</tr>
<tr>
<td>Administrative Status</td>
<td>Up</td>
</tr>
</tbody>
</table>

5. Click OK.
6. Edit internal:

<table>
<thead>
<tr>
<th>Alias</th>
<th>Internal network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addressing Mode</td>
<td>Manual</td>
</tr>
<tr>
<td>IP/Network Mask</td>
<td>10.11.102.100/255.255.255.0</td>
</tr>
<tr>
<td>Administrative Access</td>
<td>HTTPS, SSH, PING</td>
</tr>
<tr>
<td>Enable DHCP Server</td>
<td>Select</td>
</tr>
<tr>
<td>Address Range</td>
<td>10.11.102.110 - 10.11.102.250</td>
</tr>
<tr>
<td>Netmask</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>Default Gateway</td>
<td>Same as Interface IP</td>
</tr>
<tr>
<td>Comments</td>
<td>Internal network</td>
</tr>
<tr>
<td>Administrative Status</td>
<td>Up</td>
</tr>
</tbody>
</table>
To create a RADIUS SSO agent:

1. Go to Security Fabric > External Connectors.
2. Click Create New.
4. Enable Use RADIUS Shared Secret. Enter the RADIUS server's shared secret.
5. Enable Send RADIUS Responses. Click OK.

To create a RADIUS SSO user group:

2. Click Create New.
3. For Type, select RADIUS Single Sign-On (RSSO).
4. In RADIUS Attribute Value, enter the name of the RADIUS user group that this local user group represents.
5. Click OK.

Configuring security policies

The following security policies are required for RADIUS SSO:

<table>
<thead>
<tr>
<th>Sequence Number</th>
<th>From</th>
<th>To</th>
<th>Type</th>
<th>Schedule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>internal</td>
<td>wan1</td>
<td>RADIUS SSO</td>
<td>Business hours</td>
<td>Authenticate outgoing user traffic</td>
</tr>
<tr>
<td>2</td>
<td>internal</td>
<td>wan1</td>
<td>Regular</td>
<td>Always</td>
<td>Allow essential network services and VoIP</td>
</tr>
<tr>
<td>3</td>
<td>dmz</td>
<td>wan1</td>
<td>Regular</td>
<td>Always</td>
<td>Allow servers to access the Internet</td>
</tr>
<tr>
<td>4</td>
<td>internal</td>
<td>dmz</td>
<td>Regular</td>
<td>Always</td>
<td>Allow users to access servers</td>
</tr>
<tr>
<td>5</td>
<td>any</td>
<td>any</td>
<td>Deny</td>
<td>Always</td>
<td>Implicit policy denying all traffic that has not been matched</td>
</tr>
</tbody>
</table>

You must place the RADIUS SSO policy at the top of the policy list so that it is matched first. The only exception to this is if you have a policy to deny access to a list of banned users. In this case, you must put that policy at the top so that the RADIUS SSO does not mistakenly match a banned user or IP address.

You must configure lists before creating security policies.

Schedule

You must configure a business_hours schedule. You can configure a standard Monday to Friday 8 AM to 5 PM schedule, or whatever days and hours covers standard work hours at the company.

Address groups

You must configure the following address groups:
Service groups

You must configure the service groups. The services listed are suggestions and you may include more or less as required:

<table>
<thead>
<tr>
<th>Name</th>
<th>Interface</th>
<th>Description of services to be included</th>
</tr>
</thead>
<tbody>
<tr>
<td>essential_network_services</td>
<td>internal</td>
<td>Any network protocols required for normal network operation such as DNS, NTP, BGP</td>
</tr>
<tr>
<td>essential_server_services</td>
<td>dmz</td>
<td>All the protocols required by the company servers such as BGP, HTTP, HTTPS, FTP, IMAP, POP3, SMTP, IKE, SQL, MYSQL, NTP, TRACEROUTE, SOCKs, and SNMP</td>
</tr>
<tr>
<td>user_services</td>
<td>internal</td>
<td>Any protocols required by users such as HTTP, HTTPS, FTP</td>
</tr>
</tbody>
</table>

The following security policy configurations are basic and only include logging and default AV and IPS. These policies allow or deny access to non-RADIUS SSO traffic. These are essential as network services including DNS, NTP, and FortiGuard require access to the Internet.

To configure security policies:

1. Go to Policy & Objects > Firewall Policy.
2. Click Create New.
3. Configure the policy as follows, then click OK:

<table>
<thead>
<tr>
<th>Incoming Interface</th>
<th>Internal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Address</td>
<td>internal_network</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>wan1</td>
</tr>
<tr>
<td>Destination Address</td>
<td>all</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>essential_network_services</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>NAT</td>
<td>ON</td>
</tr>
<tr>
<td>Security Profiles</td>
<td>ON: AntiVirus, IPS</td>
</tr>
<tr>
<td>Log Allowed Traffic</td>
<td>ON</td>
</tr>
</tbody>
</table>
Comments: Essential network services

4. Click Create New, and configure the new policy as follows, then click OK:

- **Incoming Interface**: dmz
- **Source Address**: company_servers
- **Outgoing Interface**: wan1
- **Destination Address**: all
- **Schedule**: always
- **Service**: essential_server_services
- **Action**: ACCEPT
- **NAT**: ON
- **Security Profiles**: ON: AntiVirus, IPS
- **Log Allowed Traffic**: enable
- **Comments**: Company servers accessing the Internet

5. Click Create New, and configure the new policy as follows, then click OK:

- **Incoming Interface**: Internal
- **Source Address**: internal_network
- **Outgoing Interface**: dmz
- **Destination Address**: company_servers
- **Schedule**: always
- **Service**: all
- **Action**: ACCEPT
- **NAT**: ON
- **Security Profiles**: ON: AntiVirus, IPS
- **Log Allowed Traffic**: enable
- **Comments**: Access company servers

6. Click Create New, and configure the RADIUS SSO policy as follows, then click OK. This policy allows access for members of specific RADIUS groups.

- **Incoming Interface**: Internal
- **Source Address**: internal_network
- **Source User(s)**: Select the user groups that you created for RSSO.
- **Outgoing Interface**: wan1
Destination Address | all
---|---
Schedule | business_hours
Service | ALL
Action | ACCEPT
NAT | ON
Security Profiles | ON: AntiVirus, Web Filter, IPS, and Email Filter. In each case, select the default profile.

7. Place the RSSO policy higher in the security policy list than more general policies for the same interfaces. Click OK.

To test the configuration:

Once configured, a user only needs to log in to their PC using their RADIUS account. After that, when they attempt to access the Internet, the FortiGate uses their session information to get their RADIUS information. Once the user is verified, they can access the website.

1. The user logs on to their PC and tries to access the Internet.
2. The FortiGate contacts the RADIUS server for the user's information. Once confirmed, the user can access the Internet. Each step generates logs that enable you to verify that each step succeeded.
3. If a step does not succeed, confirm that your configuration is correct.

### RSA ACE (SecurID) servers

SecurID is a two-factor system produced by the company RSA that uses one-time password (OTP) authentication. This system consists of the following:

- Portable tokens that users carry
- RSA ACE/Server
- Agent host (the FortiGate)
When using SecurID, users carry a small device or "token" that generates and displays a pseudo-random password. According to RSA, each SecurID authenticator token has a unique 64-bit symmetric key that is combined with a powerful algorithm to generate a new code every 60 seconds. The token is time-synchronized with the SecurID RSA ACE/Server.

The RSA ACE/Server is the SecurID system's management component. It stores and validates the information about the SecurID tokens allowed on your network. Alternately, the server can be an RSA SecurID 130 appliance.

The agent host is the server on your network. In this case, this is the FortiGate, which intercepts user logon attempts. The agent host gathers the user ID and password entered from the SecurID token and sends the information to the RSA ACE/Server for validation. If valid, the RSA ACE/Server returns a reply indicating that it is a valid logon and FortiOS allows the user access to the network resources specified in the associated security policy.

Configuring SecurID with FortiOS consists of the following:

1. Configure the RSA and RADIUS servers to work with each other. See RSA server documentation.
2. Do one of the following:
   a. Configure the RSA SecurID 130 appliance.
   b. Configure the FortiGate as an agent host on the RSA ACE/Server.
3. Configure the RADIUS server in FortiOS.
4. Create a SecurID user group.
5. Create a SecurID user.
6. Configure authentication with SecurID.

The following instructions are based on RSA ACE/Server 5.1 and RSA SecurID 130 appliance. They assume that you have successfully completed all external RSA and RADIUS server configuration.

In this example, the RSA server is on the internal network and has an IP address of 192.128.100.000. The FortiOS internal interface address is 192.168.100.3. The RADIUS shared secret is fortinet123, and the RADIUS server is at IP address 192.168.100.202.

To configure the RSA SecurID 130 appliance:

1. Log on to the SecurID IMS console.
2. Go to RADIUS > RADIUS clients, then select Add New.

<table>
<thead>
<tr>
<th>RADIUS Client Basics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Name</td>
</tr>
<tr>
<td>Associated RSA Agent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RADIUS Client Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
</tr>
<tr>
<td>Make / Model</td>
</tr>
<tr>
<td>Shared Secret</td>
</tr>
<tr>
<td>Accounting</td>
</tr>
<tr>
<td>Client Status</td>
</tr>
</tbody>
</table>

3. Configure your FortiGate as a SecurID client:
4. Click Save.
To configure the FortiGate as an agent host on the RSA ACE/Server:

1. On the RSA ACE/Server, go to Start > Programs > RSA ACE/Server, then Database Administration - Host Mode.
2. From the Agent Host menu, select Add Agent Host.
3. Configure the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>FortiGate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Address</td>
<td>Enter the FortiOS internal interface. In this example, it is 192.168.100.3.</td>
</tr>
<tr>
<td>Secondary Nodes</td>
<td>You can optionally enter other IP addresses that resolve to the FortiGate.</td>
</tr>
</tbody>
</table>

For more information, see the RSA ACE/Server documentation.

To configure the RADIUS server in FortiOS:

1. Go to User & Authentication > RADIUS Servers, then click Create New.
2. Configure the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>RSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication method</td>
<td>Select Default.</td>
</tr>
<tr>
<td>Primary Server</td>
<td>192.168.100.102. You can click Test to ensure the IP address is correct and that FortiOS can contact the RADIUS server.</td>
</tr>
<tr>
<td>Secret</td>
<td>fortinet123</td>
</tr>
</tbody>
</table>

3. Click OK.

To create a SecurID user group:

2. Configure the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>RSA_group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Firewall</td>
</tr>
</tbody>
</table>

3. In Remote Groups, click Add, then select the RSA server.
4. Click OK.

To create a SecurID user:

1. Go to User & Authentication > User Definition. Click Create New.
2. Configure the following:

<table>
<thead>
<tr>
<th>User Type</th>
<th>Remote RADIUS User</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>wlloman</td>
</tr>
<tr>
<td>RADIUS Server</td>
<td>RSA</td>
</tr>
</tbody>
</table>
Contact Info (Optional) Enter email or SMS information.
User Group RSA_group

3. Click Create.

You can test the configuration by entering the `diagnose test authserver radius RSA auto wloman 1111111111` command. The series of 1s is the OTP that your RSA SecurID token generates that you enter for access.

**Configuring authentication with SecurID**

You can use the SecurID user group in several FortiOS features that authenticate by user group:

- Security policy on page 1837
- IPsec VPN XAuth on page 1838
- PPTP VPN on page 1838
- SSL VPN

Unless stated otherwise, the following examples use default values.

**Security policy**

The example creates a security policy that allows HTTP, FTP, and POP3 traffic from the internal interface to WAN1. If these interfaces are not available in FortiOS, substitute other similar interfaces.

**To configure a security policy with SecurID authentication:**

1. Go to Policy & Objects > Firewall Policy.
2. Click Create New.
3. Configure the following:

<table>
<thead>
<tr>
<th><strong>Incoming Interface</strong></th>
<th>internal</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Source Address</strong></td>
<td>all</td>
</tr>
<tr>
<td><strong>Source User(s)</strong></td>
<td>RSA_group</td>
</tr>
<tr>
<td><strong>Outgoing Interface</strong></td>
<td>wan1</td>
</tr>
<tr>
<td><strong>Destination Address</strong></td>
<td>all</td>
</tr>
<tr>
<td><strong>Schedule</strong></td>
<td>always</td>
</tr>
<tr>
<td><strong>Service</strong></td>
<td>HTTP, FTP, POP3</td>
</tr>
<tr>
<td><strong>Action</strong></td>
<td>ACCEPT</td>
</tr>
<tr>
<td><strong>NAT</strong></td>
<td>On</td>
</tr>
<tr>
<td><strong>Shared Shaper</strong></td>
<td>If you want to limit traffic or guarantee minimum bandwidth for traffic that uses the SecurID security policy, enable and use the default shaper, guarantee-100kbps.</td>
</tr>
<tr>
<td><strong>Log Allowed Traffic</strong></td>
<td>Enable if you want to generate usage reports on traffic that this policy has authenticated.</td>
</tr>
</tbody>
</table>

4. Click OK.
IPsec VPN XAuth

In VPN > IPsec Wizard, select the SecurID user group on the Authentication page. The SecurID user group members must enter their SecurID code to authenticate.

PPTP VPN

When configuring PPTP in the CLI, set usrgrp to the SecurID user group.

SSL VPN

You must map the SecurID user group to the portal that will serve SecurID users and include the SecurID user group in the security policy's Source User(s) field.

To map the SecurID group to an SSL VPN portal:

1. Go to VPN > SSL-VPN Settings.
3. Configure the following:

<table>
<thead>
<tr>
<th>Users/Groups</th>
<th>RSA_group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portal</td>
<td>Select the desired portal.</td>
</tr>
</tbody>
</table>

4. Click OK.

Support for Okta RADIUS attributes filter-Id and class

RADIUS user group membership information can be returned in the filter-Id (11) and class (25) attributes in RADIUS Access-Accept messages. The group membership information can be used for group matching in FortiGate user groups in firewall policies and for FortiGate wildcard administrators with remote RADIUS authentication.

In this example, a FortiAuthenticator is used as the RADIUS server. A local RADIUS user on the FortiAuthenticator is configure with two groups in the filter-Id attribute: okta-group1 and okta-group2.
To create the RADIUS user and set the attribute type to override group information:

```
config user radius
 edit "FAC193"
 set server "10.1.100.189"
 set secret **********
 set group-override-attr-type filter-Id
 next
end
```

FortiOS will only use the configured filter-Id attribute, even if the RADIUS server sends group names in both class and filter-id attributes. To return group membership information from the class attribute instead, set `group-override-attr-type to class`.

To configure group match in the user group:

2. Click Create New.
3. Enter a name for the group, and set Type to Firewall.
4. In the Remote Groups table, click Add.
5. Set Remote Server to the just created RADIUS server, `FAC193`.
6. Set Groups to Specify, and enter the group name, `okta-group2`. The string must match the group name configured on the RADIUS server for the filter-Id attribute.

   ![User Group Configuration](image)

7. Click OK.
   The remote server is added to the Remote Groups table.
8. Click OK.
9. Add the new user group to a firewall policy and generate traffic on the client PC that requires firewall authentication, such as connecting to an external web server.
10. After authentication, on the FortiGate, verify that traffic is authorized in the traffic log:
    b. Verify that the traffic was authorized.

To use the remote user group with group match in a system wildcard administrator configuration:

1. Go to `System > Administrators`.
2. Edit an existing administrator, or create a new one.
3. Set Type to `Match all users in a remote server group`.
4. Set Remote User Group to the remote server.

5. Configure the remaining settings as required.
6. Click OK.
7. Log in to the FortiGate using the remote user credentials on the RADIUS server.
   If the correct group name is returned in the filter-Id attribute, administrative access is allowed.

Sending multiple RADIUS attribute values in a single RADIUS Access-Request

A managed FortiSwitch can be configured to send multiple RADIUS attribute values in a single RADIUS Access-Request. This option is configured per RADIUS user, and is set to none by default.

The available service type options are:

<table>
<thead>
<tr>
<th>Service Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>login</td>
<td>User should be connected to a host.</td>
</tr>
<tr>
<td>framed</td>
<td>User use Framed Protocol.</td>
</tr>
<tr>
<td>callback-login</td>
<td>User disconnected and called back.</td>
</tr>
<tr>
<td>callback-framed</td>
<td>User disconnected and called back, then a Framed Protocol.</td>
</tr>
<tr>
<td>outbound</td>
<td>User granted access to outgoing devices.</td>
</tr>
<tr>
<td>administrative</td>
<td>User granted access to the administrative unsigned interface.</td>
</tr>
<tr>
<td>nas-prompt</td>
<td>User provided a command prompt on the NAS.</td>
</tr>
<tr>
<td>authenticate-only</td>
<td>Authentication requested, and no authentication information needs to be</td>
</tr>
<tr>
<td></td>
<td>returned.</td>
</tr>
<tr>
<td>callback-nas-prompt</td>
<td>User disconnected and called back, then provided a command prompt.</td>
</tr>
<tr>
<td>call-check</td>
<td>Used by the NAS in an Access-Request packet, Access-Accept to answer the</td>
</tr>
<tr>
<td></td>
<td>call.</td>
</tr>
<tr>
<td>callback-administrative</td>
<td>User disconnected and called back, granted access to the admin unsigned</td>
</tr>
<tr>
<td></td>
<td>interface.</td>
</tr>
</tbody>
</table>

To configure a managed FortiSwitch to the RADIUS attributes login, framed, and authenticate-only all at the same time:

```
config user radius
 edit "Radius_Server"
 set switch-controller-service-type-type login framed authenticate-only
```
Traffic shaping based on dynamic RADIUS VSAs

A FortiGate can use the WISPr-Bandwidth-Max-Down and WISPr-Bandwidth-Max-Up dynamic RADIUS VSAs (vendor-specific attributes) to control the traffic rates permitted for a certain device. The FortiGate can apply different traffic shaping to different users who authenticate with RADIUS based on the returned RADIUS VSA values. When the same user logs in from an additional device, the RADIUS server will send a CoA (change of authorization) message to update the bandwidth values to \( \frac{1}{N} \) of the total values, where \( N \) is the number of logged in devices from the same user.

This feature is not supported on NP hardware. NP offloading is automatically disabled on the policy if this feature is enabled.

When a user logs in to two devices through RADIUS authentication. The authentication and authorization flow is as follows:

1. The user logs in to a device and the authentication is sent to the FortiGate.
2. The FortiGate sends the Access-Request message to the RADIUS server.
3. The RADIUS server sends the Access-Accept message to the FortiGate. The server also returns the WISPr-Bandwidth-Max-Up and WISPr-Bandwidth-Max-Down VSAs.
4. Based on the VSA values, the FortiGate applies traffic shaping for the upload and download speeds based on its IP.
5. The user logs in to a second device and the authentication is sent to the FortiGate.
6. The FortiGate sends the Access-Request message to the RADIUS server.
7. The RADIUS server sends the Access-Accept message to the FortiGate. The server also returns the WISPr-Bandwidth-Max-Up and WISPr-Bandwidth-Max-Down VSAs at half the value from the first device.
8. Based on the VSA values, the FortiGate applies traffic shaping for the upload and download speeds on the second device based on its IP.
9. The RADIUS server sends a CoA message and returns WISPr-Bandwidth-Max-Up and WISPr-Bandwidth-Max-Down VSAs for the first device at half the value.
10. Based on the VSA values, the FortiGate updates traffic shaping for the upload and download speeds on the first device based on its IP.

Example

In this example, the FortiGate is configured to dynamically shape user traffic based on the WISPr-Bandwidth-Max-Up and WISPr-Bandwidth-Max-Down VSAs returned by the RADIUS server when the user logs in through firewall authentication.

To configure traffic shaping based on dynamic RADIUS VSAs:

1. Configure the RADIUS server users file to identify WISPr-Bandwidth-Max-Up and WISPr-Bandwidth-Max-Down:

The WISPr-Bandwidth is measured in bps, and the FortiOS dynamic shaper is measured in Bps.

WISPr-Bandwidth-Max-Up = 1004857,
WISPr-Bandwidth-Max-Down = 504857,

2. In FortiOS, configure the RADIUS server:

config user radius
  edit "rad1"
    set server "172.16.200.44"
    set secret ************
    set radius-coa enable
    set acct-all-servers enable
    config accounting-server
      edit 1
      set status enable
      set server "172.16.200.44"
      set secret ************
    next
  next
end

3. Configure the RADIUS user group:

config user group
  edit "group_radius"
    set member "rad1"
next
end
4. Configure the firewall policy with dynamic shaping and the RADIUS group:

```bash
config firewall policy
 edit 2
 set srcintf "port2"
 set dstintf "wan1"
 set srcaddr "all"
 set dstaddr "all"
 set srcaddr6 "all6"
 set dstaddr6 "all6"
 set action accept
 set schedule "always"
 set service "ALL"
 set dynamic-shaping enable
 set groups "group_radius"
 set nat enable
next
end
```

**Verification**

After a client PC is authenticated by the RADIUS server, dynamic shaping is applied to the client based on the IP address.

Use the following commands to monitor the dynamic shaper:

```bash
diagnose firewall shaper dynamic-shaper stats
diagnose firewall shaper dynamic-shaper list {ip | ipv6 | user} <address or username>
```

**Use case 1**

User1 is paying for rate plan A that limits their maximum bandwidth to 10 Mbps download and 5 Mbps upload. User2 is paying for rate plan B that limits their maximum bandwidth to 5 Mbps download and 5 Mbps upload. The speeds in both plans are provided by best effort, so there is no guaranteed minimum bandwidth.

User1 logs in to pc1 with RADIUS authentication and IP-based dynamic shaping is applied. User2 logs in to pc2 with RADIUS authentication and IP-based dynamic shaping is applied.

**To verify the dynamic shaping:**

1. On pc1, verify the bandwidth and transfer speed:

   ```bash
 root@pc1:~# iperf -c 172.16.200.44 -u -t 25 -b 20M

 Client connecting to 172.16.200.44, UDP port 5001
 Sending 1470 byte datagrams
 UDP buffer size: 208 KByte (default)

 [3] local 10.1.100.11 port 50510 connected with 172.16.200.44 port 5001
 [ID] Interval Transfer Bandwidth
 [3] 0.0-25.0 sec 59.6 MBytes 20.0 Mbits/sec
 [3] Sent 42518 datagrams
 [3] Server Report:
 [3] 0.0-25.3 sec 30.1 MBytes 9.99 Mbits/sec 15.651 ms 21058/42518 (50%)
   ```
2. On pc2, verify the bandwidth and transfer speed:

```bash
root@pc2:~# iperf -c 172.16.200.44 -u -t 25 -b 20M
Client connecting to 172.16.200.44, UDP port 5001
Sending 1470 byte datagrams
UDP buffer size: 208 KByte (default)
```

---

```bash
[3] local 10.1.100.22 port 52814 connected with 172.16.200.44 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-25.0 sec 59.6 MBytes 20.0 Mbits/sec
[3] Sent 42518 datagrams
[3] Server Report:
[3] 0.0-25.3 sec 15.1 MBytes 5.03 Mbits/sec 15.652 ms 31710/42514 (75%)
```

3. In FortiOS, check the authentication list:

```bash
diagnose firewall auth list
10.1.100.11, test-shaper1
 src_mac: **:****:**:**:**:**:**
 type: fw, id: 0, duration: 38, idled: 16
 expire: 562
 flag(814): hard radius no_idle
 server: rad1
 packets: in 8207 out 3999, bytes: in 12306164 out 226963
 group_id: 3
 group_name: group_radius

10.1.100.22, test-shaper2
 src_mac: **:****:**:**:**:**:**
 type: fw, id: 0, duration: 24, idled: 24
 expire: 156, max-life: 35976
 flag(814): hard radius no_idle
 server: rad1
 packets: in 0 out 5, bytes: in 0 out 300
 group_id: 3
 group_name: group_radius

----- 2 listed, 0 filtered -----
```

4. Check the dynamic shaper list:

```bash
diagnose firewall shaper dynamic-shaper list
addr: 10.1.100.11
 bandwidth(original/reply): 1250000 Bps/625000 Bps
 current bandwidth(original/reply): 1237072 Bps/0 Bps
 allow packets(original/reply): 38524/14
 allow bytes(original/reply): 55270378/11285
 drop packets(original/reply): 10136/0
 drop bytes(original/reply): 13516198/0
 life: 441
 idle: 0/40
 idle time limit: 600 s

addr: 10.1.100.22
 bandwidth(original/reply): 625000 Bps/625000 Bps
 current bandwidth(original/reply): 622909 Bps/0 Bps
 allow packets(original/reply): 3232/3
 allow bytes(original/reply): 4841536/243
 drop packets(original/reply): 2753/0
```
drop bytes(original/reply): 4123994/0
life: 10
idle: 0/10
idle time limit: 36000 s

5. Check the session list:

# diagnose sys session list
session info: proto=6 proto_state=05 duration=3 expire=116 timeout=3600 flags=00000004
socktype=4 socketport=10001 av_idx=0 use=4
origin-shaper=
reply-shaper=
per_ip_shaper=
class_id=0 ha_id=0 policy_dir=0 tunnel=/ vlan_cos=0/0

state=redirect local may_dirty auth dst-vis f00 dynamic_shaping
statistic(bytes/packets/allow_err): org=0/0/0 reply=638/4/1 tuples=2

origin->sink: org pre->post, reply pre->post dev=20->17/17->20 gwy=172.16.200.44/0.0.0.0
hook=pre dir=org act=nop 10.1.100.22:35561->172.16.200.44:80(0.0.0.0:0)
hook=post dir=reply act=noop 172.16.200.44:80->10.1.100.22:35561(0.0.0.0:0)

pos/(before,after) 0/(0,0), 0/(0,0)
src_mac=**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:]
flag2 (4030): fw wss resolve_sso
flag3 (200000b0): !sp link-local best-route dynamic-shaping
schedule(always)
cos_fwd=255 cos_rev=255
group=00100004 av=00004e20 au=00000003 split=00000000
host=1 chk_client_info=0x1 app_list=0 ips_view=0
misc=0
zone(1): 20 -> zone(1): 17
source(1): 0.0.0.0-255.255.255.255, uuid_idx=32,
dest(1): 0.0.0.0-255.255.255.255, uuid_idx=32,
user group(1): 3
service(1):
[0:0x0:0/(0,65535)->(0,65535)] helper:auto

Use case 2

A user logs in to a device (pc1, 10.1.100.11) and has a maximum bandwidth of 10 Mbps download and 5 Mbps upload. The same user logs in to a second device (pc2, 10.1.100.22) and the RADIUS server sends a CoA request with the WISPr-Bandwidth-Max to pc1. The maximum bandwidth on pc1 changes to 5 Mbps download and 2.5Mbps upload. On pc2, the maximum bandwidth is also 5 Mbps download and 2.5Mbps upload.

When the user logs out from pc1, the RADIUS server sends CoA request with the new WISPr-Bandwidth-Max for pc2. The FortiGate updates the authentication user list and dynamic shaper for pc2. The maximum bandwidth on pc2 changes to 10 Mbps download and 5 Mbps upload.

To verify the dynamic shaping:

1. Check the dynamic shaper list after the user logs in to pc1:

   # diagnose firewall shaper dynamic-shaper list
   addr: 10.1.100.11
   bandwidth(original/reply): 1250000 Bps/625000 Bps
   current bandwidth(original/reply): 0 Bps/0 Bps
   allow packets(original/reply): 0/3
   allow bytes(original/reply): 0/243
   drop packets(original/reply): 0/0
   drop bytes(original/reply): 0/0
   life: 491
   idle: 4/4
   idle time limit: 86400 s

2. Check the dynamic shaper list after the user logs in to pc2:

   # diagnose firewall shaper dynamic-shaper list
   addr: 10.1.100.11
   bandwidth(original/reply): 625000 Bps/312500 Bps
   current bandwidth(original/reply): 0 Bps/0 Bps
   allow packets(original/reply): 0/0
   allow bytes(original/reply): 0/0
   drop packets(original/reply): 0/0
   drop bytes(original/reply): 0/0
   life: 652
   idle: 5/5
   idle time limit: 600 s

   addr: 10.1.100.22
   bandwidth(original/reply): 625000 Bps/312500 Bps
current bandwidth(original/reply): 0 Bps/0 Bps
allow packets(original/reply): 0/3
allow bytes(original/reply): 0/243
drop packets(original/reply): 0/0
drop bytes(original/reply): 0/0
life: 3
idle: 3/3
idle time limit: 86400 s

3. Check the authentication list:

```
diagnose firewall auth list
10.1.100.11, test
 src_mac: **:**:**:**:**:**:**
 type: fw, id: 0, duration: 171, idled: 11
 expire: 589, max-life: 589
 flag(814): hard radius no_idle
 server: rad1
 packets: in 0 out 0, bytes: in 0 out 0
 group_id: 15
 group_name: group_radius

10.1.100.22, test
 src_mac: **:**:**:**:**:**:**
 type: fw, id: 0, duration: 9, idled: 9
 expire: 86391
 flag(814): hard radius no_idle
 server: rad1
 packets: in 0 out 0, bytes: in 0 out 0
 group_id: 15
 group_name: group_radius
```

----- 2 listed, 0 filtered -----

4. Check the dynamic shaper list after the user logs out from pc1:

```
diagnose firewall shaper dynamic-shaper list
addr: 10.1.100.22
bandwidth(original/reply): 1250000 Bps/625000 Bps
```

5. Check the authentication list again:

```
diagnose firewall auth list
10.1.100.22, test
 src_mac: **:**:**:**:**:**:**
 type: fw, id: 0, duration: 453, idled: 49
 expire: 551, max-life: 551
 flag(814): hard radius no_idle
 server: rad1
 packets: in 0 out 0, bytes: in 0 out 0
 group_id: 15
```
RADIUS Termination-Action AVP in wired and wireless scenarios

When authenticating with RADIUS in a wired or wireless scenario, the FortiGate can support proper handling of the Termination-Action AVP.

In a wired scenario, a hardware switch configured with 802.1X security authentication can read the Termination-Action attribute value from the RADIUS Access-Accept response. If the Termination-Action is 1, the FortiGate will initiate re-authentication when the session time has expired. During re-authentication, the port stays authorized. If the Termination-Action is 0, the session will be terminated.

In a wireless scenario, when a virtual AP is configured with WPA2-Enterprise security with RADIUS and has CoA enabled, it processes the RADIUS CoA request immediately upon receiving it and re-authenticates when the Termination-Action is 1.

Wired example

This example has a FortiGate configured with a hardware switch with two ports: port3 and port5. The hardware switch is enabled with 802.1X security and assigned to a RADIUS user group. Upon a successful authentication, the RADIUS server responds with an Access-Accept containing the authentication Session-Timeout and Termination-Action attributes. In this example, the Termination-Action value is 1, which informs the client to re-authenticate when the session time expires. During this time, the FortiGate keeps the client/port authorized while it initiates the re-authentication with the RADIUS server.

The message exchange is as follows:
To configure the RADIUS server and the FortiGate to handle the Termination-Action AVP:

1. On the RADIUS server, configure the Termination-Action AVP with the value `RADIUS-Request (1)` to indicate that re-authentication should occur upon expiration of the Session-Time.

2. On the FortiGate, configure the RADIUS server:

   ```conf
 config user radius
 edit "rad1"
 set server "172.18.60.203"
 set secret ENC **********
 set radius-coa enable
 config accounting-server
 edit 1
 set status enable
 set server "172.18.60.203"
 set secret ENC **********
 next
 end
 next
 end

 3. Configure the RADIUS user group:

   ```conf
   config user group
   edit "group_radius"
     set member "rad1"
4. Configure the hardware switch with 802.1X enabled.
   a. Configure the virtual switch settings:
      
      ```
 config system virtual-switch
 edit hw2
 set physical-switch "sw0"
 config port
 edit port3
 next
 edit port5
 next
 end
 next
 end
      ```
   
   WARNING: Changing 802.1X could interrupt network connectivity on affected interfaces.
   Do you want to continue? (y/n)y

   b. Configure the interface settings:
      
      ```
 config system interface
 edit hw2
 set vdom vdom1
 set ip 6.6.6.1 255.255.255.0
 set allowaccess ping https ssh
 set stp enable
 set security-mode 802.1X
 set security-groups "group_radius"
 next
      ```

5. On the client device, initiate 802.1X authentication, then verify that the switch port shows as authorized:

   ```
 # diagnose sys 802-1x status
 Virtual switch 'hw2' (default mode) 802.1x member status:
 port3: Link up, 802.1X state: unauthorized
 port5: Link up, 802.1X state: authorized
   ```

6. After successful authentication, wait for the session to timeout.

7. The FortiGate will keep the 802.1X port authenticated, and initiate re-authentication with the same Acct-Session-Id to the RADIUS server. The 802.1X status of the port remains unchanged:

   ```
 # diagnose sys 802-1x status
 Virtual switch 'hw2' (default mode) 802.1x member status:
 port3: Link up, 802.1X state: unauthorized
 port5: Link up, 802.1X state: authorized
   ```

### Wireless example

In this example, a virtual AP is configured with WPA2-Enterprise security with RADIUS and has CoA enabled. After a wireless user authenticates and connects to the wireless SSID, the RADIUS server triggers a CoA event with AVPs Session-timeout and a Termination-Action of 1. This signals the FortiGate to trigger re-authentication of the client, which the client immediately performs to stay connected to the wireless SSID.

The message exchange is as follows:
To configure the FortiGate to handle the Termination-Action AVP:

1. Configure the RADIUS server:

   ```bash
 config user radius
 edit "peap"
 set server "172.16.200.55"
 set secret **********
 set radius-coa enable
 next
 end
   ```

2. Configure the VAP:

   ```bash
 config wireless-controller vap
 edit "wifi"
 set ssid "FWF-60E-coa"
 set security wpa2-only-enterprise
 set auth radius
 set radius-server "peap"
 set schedule "always"
 next
 end
   ```
3. Verify that the wireless station connects to the SSID:

```bash
diagnose wireless-controller wlac -d sta online
vf=0 wtp=1 rId=1 wlan=wifi vlan_id=0 ip=10.10.80.2 ip6=: mac=**:**:**:**:**:**: vci=
host=wifi-qa-01 user=test1 group=group1 signal=-28 noise=-95 idle=1 bw=0 use=6 chan=149
radio_type=11AC security=wpa2_only_enterprise mpsk= encrypt=aes cp_authed=no online=yes
mimo=2
```

4. From the RADIUS server, manually trigger a RADIUS CoA event.
   a. RADIUS CoA sent to the FortiGate:

      ```
 Sent CoA-Request Id 7 from 0.0.0.0:54158 to 172.16.200.201:3799 length 39
 User-Name = "test1"
 Session-Timeout = 120
 Termination-Action = RADIUS-Request
      ```

   b. RADIUS CoA-ACK received from the FortiGate:

      ```
 Received CoA-ACK Id 7 from 172.16.200.201:3799 to 0.0.0.0:0 length 44
 Event-Timestamp = "Jan 5 2022 14:43:12 PST"
 Message-Authenticator = 0x3311ba3b763d68da653ab34351b0308
      ```

5. On the wireless station console, verify that the re-authentication happens immediately:

   ```
 root@wifi-qa-01:/home/wpa-test# wlan1: CTRL-EVENT-EAP-STARTED EAP authentication started
 wlan1: CTRL-EVENT-EAP-PROPOSED-METHOD vendor=0 method=25
 wlan1: CTRL-EVENT-EAP-METHOD EAP vendor 0 method 25 (PEAP) selected
 EAP-TLV: TLV Result - Success - EAP-TLV/Phase2 Completed
 wlan1: CTRL-EVENT-EAP-SUCCESS EAP authentication completed successfully
 wlan1: PMKSA-CACHE-REMOVED **:**:**:**:**:**:**:**:**:** 0
 wlan1: PMKSA-CACHE-ADDED **:**:**:**:**:**:**:**:**:** 0
 wlan1: WPA: Key negotiation completed with **:**:**:**:**:**:**:**:**:** [PTK=CCMP GTK=CCMP]
   ```

---

**TACACS+ servers**

TACACS+ is a remote authentication protocol that provides access control for routers, network access servers, and other network devices through one or more centralized servers.

FortiOS sends the following proprietary TACACS+ attributes to the TACACS+ server during authorization requests:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>service=&lt;name&gt;</td>
<td>User must be authorized to access the specified service.</td>
</tr>
<tr>
<td>memberof</td>
<td>Group that the user belongs to.</td>
</tr>
<tr>
<td>admin_prof</td>
<td>Administrator profile (admin access only).</td>
</tr>
</tbody>
</table>

Only memberof and admin_prof attributes are parsed in authentication replies.

You can configure up to ten remote TACACS+ servers in FortiOS. You must configure at least one server before you can configure remote users.
To configure TACACS+ authentication in the CLI:

1. Configure the TACACS+ server entry:

```plaintext
config user tacacs+
 edit "TACACS-SERVER"
 set server <IP address>
 set key <string>
 set authen-type ascii
 set source-ip <IP address>
 next
end
```

2. Configure the remote user group:

```plaintext
config user group
 edit "TACACS-GROUP"
 set group-type firewall
 set member "TACACS-SERVER"
 next
end
```

3. Configure the remote user:

```plaintext
config system admin
 edit TACACS-USER
 set remote-auth enable
 set accprofile "super_admin"
 set vdom "root"
 set wildcard enable
 set remote-group "TACACS-GROUP"
 next
end
```

To configure a TACACS+ server in the GUI:

1. Go to User & Authentication > TACACS+ Servers.
2. Click Create New.
3. Configure the following settings:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Enter the TACACS+ server name.</td>
</tr>
<tr>
<td>Authentication Type</td>
<td>Select the authentication type used for the TACACS+ server. Selecting Auto tries PAP, MSCHAP, and CHAP, in that order.</td>
</tr>
<tr>
<td>Server IP/Name</td>
<td>Enter the domain name or IP address for the primary server.</td>
</tr>
<tr>
<td>Server Secret</td>
<td>Enter the key to access the primary server.</td>
</tr>
</tbody>
</table>

4. Click OK.
The following topics provide information about SAML:

- Outbound firewall authentication for a SAML user on page 1854
- SAML SP for VPN authentication on page 1855
- Using a browser as an external user-agent for SAML authentication in an SSL VPN connection on page 1857
- SAML authentication in a proxy policy on page 1861
- Configuring SAML SSO in the GUI on page 1865
- Outbound firewall authentication with Azure AD as a SAML IdP on page 1871

Outbound firewall authentication for a SAML user

When you configure a FortiGate as a service provider (SP), you can create an authentication profile that uses SAML for firewall authentication.

You must use the identity provider’s (IdP) remote certificate on the SPs.

The following example uses a FortiGate as an SP and FortiAuthenticator as the IdP server:

To configure firewall authentication:

1. Configure the FortiGate SP to be a SAML user:

```config
config user saml
edit "fac-firewall"
set entity-id "http://10.2.2.1000/saml/metadata/"
single-sign-on-url "http://10.2.2.1003/saml/login/
set single-sign-on-url "https://10.2.2.1003/saml/login/"
set idp-entity-id "http://172.18.58.93:443/saml-idp/bbbbbb/metadata/"
set idp-single-sign-on-url "https://172.18.58.93:443/saml-idp/bbbbbb/login/"
set idp-single-sign-on-url "https://172.18.58.93:443/saml-idp/bbbbbb/login/"
set idp-cert "REMOTE_Cert_3"
set user-name "username"
set group-name "group"
```
next
end

2. Add the SAML user to the user group (optionally, you can configure group matching):

   config user group
   edit "saml_firewall"
   set member "fac-firewall"
   config match
     edit 1
     set server-name "fac-firewall"
     set group-name "user_group1"
   next
end

3. Add the SAML user group to a firewall policy:

   config firewall policy
   edit 2
     set srcintf "port3"
     set dstintrf "port1"
     set srcaddr "all"
     set dstaddr "pc4"
     set action accept
     set schedule "always"
     set service "ALL"
     set logtraffic all
     set fsso disable
     set groups "saml_firewall" "group_local"
     set users "first"
     set nat enable
   next
end

4. Configure the FortiAuthenticator IdP as needed.

5. Run HTTP/HTTPS authentication for a remote user. The SAML login page appears:

   [Image: SAML login page]

SAML SP for VPN authentication

When you configure a FortiGate as a service provider (SP), you can create an authentication profile that uses SAML for SSL VPN web portal authentication.

The following example uses a FortiGate as an SP and FortiAuthenticator as the IdP server:
To configure SSL VPN web portal authentication:

1. **Configure the FortiGate SP to be a SAML user:**

   ```
 config user
 edit "fac-sslvpn"
 set entity-id "https://10.2.2.2:10443/remote/saml/metadata/"
 set single-sign-on-url "https://10.2.2.2:10443/remote/saml/login/"
 set single-sign-out-url "https://10.2.2.2:10443/remote/saml/logout/"
 set idp-entity-id "http://172.18.58.93:443/saml-idp/ssssss/metadata/"
 set idp-single-sign-on-url "https://172.18.58.93:443/saml-idp/ssssss/login/"
 set idp-single-sign-out-url "https://172.18.58.93:443/saml-idp/ssssss/logout/"
 set idp-cert "REMOTE_Cert_3"
 set user-name "username"
 next
 end
   ```

2. **Add the SAML user to the user group (group matching may also be configured):**

   ```
 config user group
 edit "saml_sslvpn"
 set member "fac-sslvpn"
 next
 end
   ```

3. **Configure SSL VPN:**

   ```
 config vpn ssl settings
 set servercert "Fortinet Factory"
 set tunnel-ip-pools "SSLVPN_TUNNEL_ADDR1"
 set tunnel-ipv6-pools "SSLVPN_TUNNEL_IPV6_ADDR1"
 set source-interface "port3"
 set source-address "all"
 set source-address6 "all"
 set default-portal "full-access"
 config authentication-rule
 edit 1
 set groups "saml_sslvpn"
 set portal "full-access"
 next
 end
   ```
4. Add the SAML user group to a firewall policy:

```plaintext
config firewall policy
edit 0
 set srcintf "ssl.vdom1"
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set groups "local" "saml_sslvpn"
 set nat enable
end
```

5. Configure the FortiAuthenticator IdP as needed.

To connect from the SSL VPN web portal:

1. In a web browser, enter the portal address. The SAML login page appears:

2. Enter the user name and password.
3. Click Login, or if SSO has been configured, click Single-Sign-On. Once authenticated, the web portal opens.

Using a browser as an external user-agent for SAML authentication in an SSL VPN connection

FortiClient can use a browser as an external user-agent to perform SAML authentication for SSL VPN tunnel mode, instead of the FortiClient embedded log in window. If a user has already done SAML authentication in the default browser, they do not need to authenticate again in the FortiClient built-in browser. FortiClient 7.0.1 and later is required.

The following CLI is used to set the SAML local redirect port on the FortiClient endpoint after successful SAML authentication:

```plaintext
config vpn ssl settings
 set saml-redirect-port <port>
end
```

Example

In this example, a user wants to use their default browser to connect to IdP for SAML authentication, without needing to separately authenticate in the FortiClient built-in browser. After authenticating in the browser, FortiClient obtains the authentication cookie directly from the browser.
The authentication process proceeds as follows:

1. The remote client uses FortiClient to connect to the FortiGate SSL VPN on 172.16.58.92:1443 with the *Use external browser as user-agent for saml user authentication* option enabled.
2. The SSL VPN redirects FortiClient to complete SAML authentication using the Identity Provider (IdP).
3. FortiClient opens the default browser to authenticate the IdP server.
4. After a successful authentication, the browser redirects to localhost:<port>, where the port is defined by the `saml-redirect-port` variable on the FortiGate.
5. FortiClient reads the authentication ID passed by the successful authentication, then requests that the SAML authentication process continues on the FortiGate with this ID.
6. The FortiGate continues with the remaining SSL-VPN host-check and other steps until it receives the authentication cookie. It then allows the SSL VPN user to connect using tunnel mode.

**To configure the VPN:**

1. **Configure a SAML user:**

   ```
 config user saml
 edit "su1"
 set cert "fgt_gui_automation"
 set entity-id "http://172.18.58.92:1443/remote/saml/metadata/"
 set single-sign-on-url "https://172.18.58.92:1443/remote/saml/login/"
 set single.logout-url "https://172.18.58.92:1443/remote/saml/logout/"
 set idp-entity-id "http://172.18.58.93:443/saml-idp/222222/metadata/"
 set idp-single-sign-on-url "https://172.18.58.93:443/saml-idp/222222/login/"
 set idp-single.logout-url "https://172.18.58.93:443/saml-idp/222222/logout/"
 set idp-cert "REMOTE_Cert_1"
 set user-name "Username"
 set group-name "Groupname"
 set digest-method sha1
 next
 end
   ```

2. **Add the SAML user to a user group:**

   ```
 config user group
 edit "saml grp"
 set member "su1"
   ```
3. Create an SSL VPN web portal:

```bash
config vpn ssl web portal
 edit "testportal1"
 set tunnel-mode enable
 set ipv6-tunnel-mode enable
 set web-mode enable
 ...
next
end
```

4. Configure the SSL VPN:

```bash
config vpn ssl settings
 set tunnel-ip-pools "SSLVPN_TUNNEL_ADDR1"
 set tunnel-ipv6-pools "SSLVPN_TUNNEL_IPv6_ADDR1"
 set port 1443
 set source-interface "port2"
 set source-address "all"
 set source-address6 "all"
 set default-portal "testportal1"
 ...
end
```

5. Configure a firewall policy for the SSL VPN and assign the SAML group and a local user to it:

```bash
config firewall policy
 edit 1
 set name "policy_to_sslvpn_tunnel"
 set srcintf "ssl.root"
 set dstintf "port1"
 set action accept
 set srcaddr "all"
 set dstaddr "all"
 set srcaddr6 "all"
 set dstaddr6 "all"
 set schedule "always"
 set service "ALL"
 set nat enable
 set groups "saml_grp"
 set users "u1"
next
end
```

6. Enable the SAML redirect port:

```bash
config vpn ssl settings
 set saml-redirect-port 8020
end
```

To connect to the VPN using FortiClient:

1. Configure the SSL VPN connection:
   a. Open FortiClient and go to the Remote Access tab and click Configure VPN.
   b. Enter a name for the connection.
c. Set the **Remote Gateway** to the FortiGate port 172.18.58.92.

d. Enable **Customize port** and set the port to 1443.

e. Enable **Enable Single Sign On (SSO) for VPN Tunnel** and **Use external browser as user-agent for saml user authentication**.

f. Click **Save**.

2. On the **Remote Access** tab select the **FGT401E_SSO VPN connection** from the dropdown list.

3. Click **SAML Login**.

   The default browser opens to the IdP authentication page.

4. Enter the username and password, then click **Login**.

   The authenticated result is sent back to FortiClient and the connection is established.
To check the connection on the FortiGate:

```
get vpn ssl monitor
SSL-VPN Login Users:
Index User Group Auth Type Timeout Auth-Timeout From HTTP in/out
HTTPS in/out Two-factor Auth
1 fac3 saml_grp 256(1) N/A 10.1.100.254 0/0 0/0 0

SSL-VPN sessions:
Index User Group Source IP Duration I/O Bytes Tunnel/Dest IP
0 fac3 saml_grp 10.1.100.254 5 9990/8449
10.212.134.200,fdff:ffff::1

diagnose firewall auth list
10.212.134.200, fac3
type: fw, id: 0, duration: 6, idled: 0
type: fw, id: 0, duration: 6, idled: 0
expire: 259199, allow-idle: 259200
flag(80): sslvpn
server: sul
packets: in 28 out 28, bytes: in 23042 out 8561
group_id: 5
group_name: saml_grp
```

**SAML authentication in a proxy policy**

SAML user authentication can be used in explicit web proxies and transparent web proxies with the FortiGate acting as a SAML SP. SAML can be used as an authentication method for an authentication scheme that requires using a captive portal.
In this configuration, SAML authentication is used with an explicit web proxy. The IdP is a Windows 2016 server configured with ADFS. The LDAP and IdP servers are on the same server. The LDAP server is used as the user backend for the IdP to perform authentication; however, they are not required to be on the same server.

The authentication and authorization flow is as follows:

2. The browser is redirected by the web proxy the captive portal.
3. The request is redirected to the IdP's sign-in page.
4. If the user signs in, the IdP authenticates the user and sends back a SAML assertion message to the user's browser with the user group information.
5. The browser forwards the SAML assertion response as a HTTP POST to the FortiGate SAML assertion consumer service URL (https://fgt9.myqalab.local:7831/XX/YY/ZZ/saml/login/).
6. If the FortiGate authentication scheme has a user database configured, the FortiGate will query the LDAP server for the user group information and ignore the user group information from the SAML message.
7. The user group information is returned. The FortiGate matches the user group information against the LDAP group in the proxy policy group settings. If there is a match, the request is authorized and the proxy policy is matched.
8. If all policy criteria match successfully, then the webpage is returned to the client.
To configure SAML authentication with an explicit web proxy:

1. Enable the web proxy:
   
   ```
 config web-proxy explicit
 set status enable
 set http-incoming-port 8080
 end
   ```

2. Enable the proxy captive portal:
   
   ```
 config system interface
 edit "port10"
 set vdom "vdom1"
 set ip 10.1.100.1 255.255.255.0
 set allowaccess ping https ssh snmp http telnet
 set type physical
 set explicit-web-proxy enable
 set explicit-ftp-proxy enable
 set proxy-captive-portal enable
 set snmp-index 12
 next
   ```

3. Configure the LDAP server:
   
   ```
 config user ldap
 edit "ldap-10.1.100.198"
 set server "10.1.100.198"
 set cnid "cn"
 set dn "dc=myqalab,dc=local"
 set type regular
 set username "cn=fosqal,cn=users,dc=myqalab,dc=local"
 set password ************
 set group-search-base "dc=myqalab,dc=local"
 next
   ```

4. Configure the user group:
   
   ```
 config user group
 edit "ldap-group-saml"
 set member "ldap-10.1.100.198"
 next
   ```

5. Configure SAML:
   
   ```
 config user saml
 edit "saml_user"
 set cert "Fortinet_CA_SSL"
 set idp-entity-id "http://MYQALAB.LOCAL/adfs/services/trust"
 set idp-single-sign-on-url "https://myqalab.local/adfs/ls"
 set idp-single-sign-out-url "https://myqalab.local/adfs/ls"
 set idp-cert "REMOTE_Cert_4"
 set digest-method sha256
   ```
set adfs-claim enable
set user-claim-type name
set group-claim-type group
next
end

6. Configure the authentication scheme, rule, and setting:

config authentication scheme
edit "saml"
   set method saml
   set saml-server "saml_user"
   set user-database "ldap-10.1.100.198"
next
end
config authentication rule
edit "saml"
   set srcaddr "all"
   set active-auth-method "saml"
next
end
config authentication setting
   set captive-portal "fgt9.myqalab.local"
end

7. Configure the proxy policy:

config firewall proxy-policy
edit 3
   set proxy explicit-web
   set dstintf "port9"
   set srcaddr "all"
   set dstaddr "all"
   set service "webproxy"
   set action accept
   set schedule "always"
   set logtraffic all
   set groups "ldap-group-saml"
   set utm-status enable
   set profile-protocol-options "protocol"
   set ssl-ssh-profile "deep-custom"
   set av-profile "av"
next
end

When a user goes to www.google.com in a browser that is configured to use the FortiGate as a proxy, the IdP sign-in page appears.
Sample log

7: date=2021-03-16 time=21:11:19 eventtime=161594279072391030 tz=-0700 logid=0000000010 type=traffic subtype=forward level=notice vd=vdom1 srcip=10.1.100.143 srcport=53544 srcintf=port10 srcintfrole=undefined dstcountry=United States srccountry=Reserved dstip=173.194.219.99 dstport=443 dstintf=port9 dstintfrole=undefined sessionid=1751272387 service=HTTPS wanoptapptype=web-proxy proto=6 action=accept policyid=3 policytype=proxy-policy poluuid=052ae158-7d40-51eb-c1d8-19235c4500c2 trandisp=snat transip=172.16.200.1 transport=14844 duration=268 user=test1@MYQALAB.local group=ldap-group-saml authserver=ldap-10.1.100.198 wanin=345633 rcvdbyte=345633 wanout=13013 lanin=5098 sentbyte=5098 lanout=340778 appcat=unscanned

Configuring SAML SSO in the GUI

SAML single sign-on can be configured in the GUI under User & Authentication > User Groups. The GUI wizard helps generate the service provider (SP) URLs based on the supplied SP address. The SAML object that is created can be selected when defining new user groups.
In this example, FortiGate AA is the inside firewall (172.16.200.101). The other FortiGate is the outside firewall that only does port forwarding from 172.16.116.151:55443 to 172.16.200.101:443. FortiGate AA is configured to allow full SSL VPN access to the network in port2. This SSL VPN portal allows users from the user group saml_grp and SAML server saml_test to log in. In this topology, a FortiAuthenticator acts as the SAML identity provider (IdP), while the FortiGate is the SAML SP. External users are directed to the FortiAuthenticator IdP login URL to authenticate. For more information about configuring a FortiAuthenticator as an IdP, see Service providers.

The FortiAuthenticator in this example has the following configuration:
To configure FortiGate AA as an SP:

1. Create a new SAML server entry:
   b. Enter a name (saml_test). The other fields will automatically populate based on the FortiGate's WAN IP and port.
Click the icon beside the SP entity ID, SP single sign-on URL, and SP single logout URL fields to copy the text.

c. Click Next.
d. Enter the FortiAuthenticator IdP details:

<table>
<thead>
<tr>
<th><strong>IdP address</strong></th>
<th>172.18.58.93:443</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Prefix</strong></td>
<td>43211234</td>
</tr>
<tr>
<td><strong>IdP certificate</strong></td>
<td>REMOTE_Cert_1</td>
</tr>
</tbody>
</table>

e. Enter the additional SAML attributes that will be used to verify authentication attempts:

<table>
<thead>
<tr>
<th>Attribute used to identify users</th>
<th>Username</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute used to identify groups</td>
<td>Group</td>
</tr>
</tbody>
</table>

The IdP must be configured to include these attributes in the SAML attribute statement. In FortiAuthenticator, this is configured in the Assertion Attributes section.
f. Click Submit.
The following is created in the backend:

```
config user saml
 edit "saml_test"
 set cert "fgt_gui_automation"
 set idp-entity-id "http://172.18.58.93:443/saml-idp/43211234/metadata/"
 set idp-single-sign-on-url "https://172.18.58.93:443/saml-idp/43211234/login/"
 set idp-single-logout-url "https://172.18.58.93:443/saml-idp/43211234/logout/"
 set idp-cert "REMOTE_Cert_1"
 set user-name "Username"
 set group-name "Group"
 set digest-method sha1
next
end
```

2. Create the SAML group:
   a. Go to User & Authentication > User Groups and click Create New.
   b. Enter a name, saml_grp.
   c. In the Remote Groups table, click Add.
d. In the Remote Server dropdown, select saml_test and click OK.

![Remote Server dropdown]

```
config user group
 edit "saml_grp"
 set member "saml_test"
next
end
```

3. Add the SAML group in the SSL VPN settings:
   a. Go to VPN > SSL-VPN Settings.
   b. In the Authentication/Portal Mapping table, click Create New.
   c. For Users/Groups, click the + and select saml_grp.
   d. Select the Portal (testportal1).
   e. Click OK.

![SSL VPN Settings]

User & Authentication

4. Configure the firewall policy:
   a. Go to Policy & Objects > Firewall Policy and click Create New.
   b. Enter the following:

<table>
<thead>
<tr>
<th>Incoming Interface</th>
<th>ssl.root</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outgoing Interface</td>
<td>port2</td>
</tr>
<tr>
<td>Source</td>
<td>all, saml_grp, saml_test</td>
</tr>
</tbody>
</table>

c. Configure the other settings as needed.

d. Click OK.

5. On the client, log in with SAML using the SSL VPN web portal.

   If you are using FortiClient for tunnel mode access, enable Enable Single Sign On (SSO) for VPN Tunnel in the SSL-VPN connection settings to use the SAML log in. See Configuring an SSL VPN connection for more information.

6. In FortiOS, go to Dashboard > Network and click the SSL-VPN widget to expand to full view and verify the connection information.

### Outbound firewall authentication with Azure AD as a SAML IdP

In this example, users are managed through Microsoft Azure Active Directory (AD). The FortiGate is configured for SSO firewall authentication for outbound traffic, with authentication performed by the Azure AD as a SAML identity provider (IdP).

The SAML interaction occurs as follows:

1. The user initiates web traffic to the internet.
2. The FortiGate redirects to the local captive portal port (default is 1003), then redirects the user to the SAML IdP.
3. The user connects to the Microsoft log in page for the SAML authentication request.
4. The SAML IdP sends the SAML assertion containing the user and group.
5. The browser forwards the SAML assertion to the SAML SP.
6. If the user and group are allowed by the FortiGate, the user is allowed to access the internet.
In this example environment, a user is added in the Azure AD belonging to the security group called Firewall.

- Username: John Locus
- User login: jlocus@azure.kldocs.com
- Group: Firewall (ID 62b699ce-4f80-48c0-846e-c1dfde2dc667)

The goal is to allow users in the Firewall group to access the internet after passing firewall authentication.

### Configuring the Azure AD

The following Azure AD configuration demonstrates how to add the FortiGate as an enterprise non-gallery application. This application provides SAML SSO connectivity to the Azure AD IdP. Some steps are performed concurrently on the FortiGate.

This example is configured with an Azure AD free-tier directory. There may be limitations to managing users in Azure in this tier that are not limited in other tiers. Consult the Microsoft Azure AD documentation for more information.

There are three steps to configure the Azure AD:

1. Create a new enterprise application.
2. Configure the SAML SSO settings on the application and FortiGate.
3. Assign Azure AD users and groups to the application.

**To create a new enterprise application:**

1. Log in to the Azure portal.
2. In the Azure portal menu, click Azure Active Directory.
3. In the left-side menu go Manage > Enterprise applications.
4. Click New application.

5. Click Create your own application.

6. Enter a name for the application (SAML-FW-Auth) and select Integrate any other application you don't find in the gallery (Non-gallery).

7. Click Create.

To configure the SAML SSO settings on the application and FortiGate:

- This procedure requires going back and forth between Azure and the FortiGate GUI. Leave the FortiGate GUI open for the entire procedure.

1. On the Enterprise Application Overview page, go to Manage > Single sign-on and select SAML as the single sign-on method.
2. Under the SAML Signing Certificate section, download the Base64 certificate.

3. Import the certificate from Azure on the FortiGate as the IdP certificate:
   a. Go to System > Certificates and click Create/Import > Remote Certificate.
   b. Upload the certificate from Azure and click OK. The new certificate appears under the Remote Certificate section with the name REMOTE_Cert_(N).
   c. Optionally, rename the certificate in the CLI to give it a more recognizable name:

```
config vpn certificate remote
 rename REMOTE_Cert_3 to AZURE_AD_SAML_FW
end
```

4. The Basic SAML Configuration section in Azure describes the SAML SP entity and links that Azure will reference. Configure these settings on the FortiGate by creating a new SAML server object and defining the SP address. The SP (IP or FQDN) address should be accessible by the user who is authenticating against the firewall. The port used should match the port used by the FortiGate firewall authentication captive portal. By default, this is port 1003 for HTTPS. A captive portal does not need to be configured separately.
   b. Enter a Name for the SAML object, Azure-AD-SAML.
c. Enter the SP address, 10.1.0.1:1003. The three SP URLs are automatically populated.

5. In Azure on the Set up Single Sign-On with SAML page, copy the following URLs from the FortiGate to the Basic SAML Configuration section:

<table>
<thead>
<tr>
<th>From FortiGate</th>
<th>To Azure field</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP entity ID (<a href="http://10.1.0.1:1003/remote/saml/metadata/">http://10.1.0.1:1003/remote/saml/metadata/</a>)</td>
<td>Identifier (Entity ID), set to Default</td>
</tr>
<tr>
<td>SP single sign-on URL (<a href="https://10.1.0.1:1003/remote/saml/login//">https://10.1.0.1:1003/remote/saml/login//</a>)</td>
<td>Reply URL and Sign on URL</td>
</tr>
<tr>
<td>SP single logout URL (<a href="https://10.1.0.1:1003/remote/saml/logout/">https://10.1.0.1:1003/remote/saml/logout/</a>)</td>
<td>Logout URL</td>
</tr>
</tbody>
</table>

6. Click Save.

7. In the Set up <application name> section, copy the URLs from Azure to the FortiGate in the IdP Details section:

<table>
<thead>
<tr>
<th>From Azure</th>
<th>To FortiGate field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azure AD Identifier</td>
<td>IdP entity ID</td>
</tr>
<tr>
<td>Login URL</td>
<td>IdP single sign-on URL</td>
</tr>
<tr>
<td>Logout URL</td>
<td>IdP single logout URL</td>
</tr>
</tbody>
</table>

a. On the FortiGate, click Next.

b. For IdP type, select Custom and copy the following from Azure to the corresponding field:
c. For IdP certificate, select the remote certificate imported earlier.

8. In Azure, edit the User Attributes & Claims section. The attributes are returned in the SAML assertion, which the FortiGate uses to verify the user and group. Configuring group matching is optional.
   a. Click Add new claim, name it username, and set the Source attribute to user.displayname. The source attribute can be any of the related username fields. The value of the username returned to the FortiGate will be used in logs and monitors to identify the user.
   b. Click Save.
   c. Click Add a group claim and in the Group Claims pane, select All groups.
   d. In Advanced Options, select Customize the name of the group claim. Set the name to group.

```
Group Claims
Manage the group claims used by Azure AD to populate SAML tokens issued to your app
```

```
Advanced options
- Customize the name of the group claim
 - Name (required)
 - group

```

e. Click Save. The User Attributes & Claims section displays the update settings.

```
User Attributes & Claims
```

givenName
surName
emailAddress
name
username
group
```

9. On the FortiGate, update the Additional SAML Attributes section with the username and group created in Azure:
 a. For Attribute used to identify users, enter username.
 b. For Attribute used to identify groups, enter group.
To assign Azure AD users and groups to the application:

1. In Azure, go to Manage > Users and groups and click Add user/group.
2. Click Users to select the users or groups (John Locus is selected in this example).
3. Click Assign to add the assignment.

Configuring the FortiGate

The user group, user authentication settings, and firewall policies must be configured on the FortiGate.

Configuring the user group

A user group named Azure-FW-Auth is created with the member Azure-AD-SAML.
Configuring group matching is optional, and the Object ID from Azure is needed for the config match settings. In the Azure default directory, go to Manage > Groups and locate the Object ID for the Firewall group.

To configure the user group:

```forti-config
config user group
    edit "Azure-FW-Auth"
        set member "Azure-AD-SAML"
    config match
        edit 1
            set server-name "Azure-AD-SAML"
            set group-name "62b699ce-4f80-48c0-846e-c1dfde2dc667"
        next
    next
end
```

Configuring the user authentication setting

When a user initiates traffic, the FortiGate will redirect the user to the firewall authentication captive portal before redirecting them to the SAML IdP portal. After the SAML IdP responds with the SAML assertion, the user is again redirected to the firewall authentication captive portal. If the firewall portal’s certificate is not trusted by the user, they will receive a certificate warning. Use a custom certificate that the user trusts to avoid the certificate warning.

To configure a custom certificate:

2. For Certificate, select the custom certificate. The custom certificate’s SAN field should have the FQDN or IP from the SP URL.

Alternatively, assigning a CA certificate allows the FortiGate to automatically generate and sign a certificate for the portal page. This will override any assigned server certificate. In this example, the built-in Fortinet_CA_SSL is used.

To assign a CA certificate:

1. Edit the user setting:

```forti-config
config user setting
    set auth-ca-cert "Fortinet_CA_SSL"
end
```
2. Go to System > Certificates and download the certificate.
3. Install the certificate into the client’s certificate store.

Configuring the firewall policies

Firewall policies must be configured to apply user authentication and still allow users behind the FortiGate to access the Microsoft log in portal without authentication.

To configure the firewall policies:

1. Configure a policy to allow traffic to the Microsoft Azure internet service:
 a. Go to Policy & Objects > Firewall Policy and click Create New.
 b. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>LAN-to-AuthPortal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>port3</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>Underlay</td>
</tr>
<tr>
<td>Source</td>
<td>all</td>
</tr>
<tr>
<td>Destination</td>
<td>Microsoft-Azure (under Internet Service)</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>ALL</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>NAT</td>
<td>Enable and select NAT.</td>
</tr>
<tr>
<td>Log Allowed Traffic</td>
<td>Enable and select All Sessions.</td>
</tr>
</tbody>
</table>

c. Configure the other settings as needed.
d. Click OK.
2. Configure a policy to apply user authentication:
 a. Click Create New and enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>LAN-auth-policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>port3</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>Underlay</td>
</tr>
<tr>
<td>Source</td>
<td>all, Azure-FW-Auth</td>
</tr>
<tr>
<td>Destination</td>
<td>all</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>ALL</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>NAT</td>
<td>Enable and select NLog Allowed Traffic</td>
</tr>
</tbody>
</table>

 b. Configure the other settings as needed.
 c. Click OK.

Connecting from the client

When the client connects to the internet from a browser, they will be redirected to the Microsoft log in page to authenticate against the Azure AD. The FortiGate’s authentication portal certificate should be installed on the client.

To connect from the client:

1. On the client, open a browser (such as Firefox) and go to a website. The user is redirected to the Microsoft log in page.
2. Enter the user credentials.
3. If the log in attempt is successful, the user is allowed to access the internet
Viewing logs and diagnostics

To verify user logins, go to the Dashboard > Users & Devices > Firewall Users widget, or enter the following in the CLI:

```
# diagnose firewall auth list
10.1.0.100, John Locus
  src_mac: 02:09:0f:00:03:03
type: fw, id: 0, duration: 152, idled: 7
expire: 292, allow-idle: 300
server: Azure-AD-SAML
packets: in 2097 out 932, bytes: in 2208241 out 143741
group_id: 2
group_name: Azure-FW-Auth
----- 1 listed, 0 filtered -----
```

To verify user login logs, go to Log & Report > System Events and select the User Events card, or enter the following in the CLI:

```
# execute log filter category event
# execute log filter field subtype user
# execute log display
17 logs found.
10 logs returned.
7: date=2021-09-30 time=09:49:25 eventtime=1633020565577584390 tz="-0700" logid="0102043039"
type="event" subtype="user" level="notice" vd="root" logdesc="Authentication logon"
srcip=10.1.0.100 user="John Locus" authserver="Azure-AD-SAML" action="auth-logon"
status="logon" msg="User John Locus added to auth logon"
```

```
8: date=2021-09-30 time=09:49:25 eventtime=1633020565577075629 tz="-0700" logid="0102043008"
type="event" subtype="user" level="notice" vd="root" logdesc="Authentication success"
srcip=10.1.0.100 dstip=10.1.0.1 policyid=11 interface="port3" user="John Locus"
group="Azure-FW-Auth" authproto="HTTPS(10.1.0.100)" action="authentication" status="success"
reason="N/A" msg="User John Locus succeeded in authentication"
```

If user authentication is successful in Azure AD, but their group does not match the one defined in the FortiGate user group, the user will receive a **Firewall Authentication Failed** message in the browser. A log is also recorded:

```
# execute log filter category event
# execute log filter field subtype user
# execute log display
1: date=2021-09-30 time=10:39:35 eventtime=1633023575381139214 tz="-0700" logid="0102043009"
type="event" subtype="user" level="notice" vd="root" logdesc="Authentication failed"
srcip=10.1.0.100 dstip=10.1.0.1 policyid=11 interface="port3" user="Adam Thompson"
group="N/A" authproto="HTTPS(10.1.0.100)" action="authentication" status="failure"
reason="No matched SAML user or group name in auth resp" msg="User Adam Thompson failed in authentication"
```

If a user receives the following error message, this means the user is not assigned to the enterprise application **SAML-FW-Auth** in Azure.
To troubleshoot SAML issues:

diagnose debug application samld -l
diagnose debug enable

Authentication settings

You can configure general authentication settings, including timeout, protocol support, and certificates.

You cannot customize FTP and Telnet authentication replacement messages.
To configure authentication settings using the GUI:

2. Configure the following settings:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication Timeout</td>
<td>Enter the desired timeout in minutes. You can enter a number between 1 and 1440 (24 hours). The authentication timeout controls how long an authenticated connection can be idle before the user must reauthenticate. The default value is 5.</td>
</tr>
</tbody>
</table>
| Protocol Support | Select the protocols to challenge during firewall user authentication. When you enable user authentication within a security policy, the authentication challenge is normally issued for any of four protocols, depending on the connection protocol:
 • HTTP (you can set this to redirect to HTTPS)
 • HTTPS
 • FTP
 • Telnet
The protocols selected here control which protocols support the authentication challenge. Users must connect with a supported protocol first so they can subsequently connect with other protocols. If HTTPS is selected as a protocol support method, it allows the user to authenticate with a customized local certificate. When you enable user authentication within a security policy, FortiOS challenges the security policy user to authenticate. For user ID and password authentication, the user must provide their username and password. For certificate authentication (HTTPS or HTTP redirected to HTTPS only), you can install customized certificates on the unit and the user can also install customized certificates on their browser. Otherwise, users see a warning message and must accept a default Fortinet certificate. The network user’s web browser may deem the default certificate invalid. |
| Certificate | If using HTTPS protocol support, select the local certificate to use for authentication. This is available only if HTTPS and/or Redirect HTTP Challenge to a Secure Channel (HTTPS) are selected. |

To configure authentication settings using the CLI:

```
config user setting
  set auth-timeout 5
  set auth-type ftp http https telnet
  set auth-cert Fortinet_Factory
end
```
FortiTokens

FortiTokens are security tokens used as part of a multi-factor authentication (MFA) system on FortiGate and FortiAuthenticator. A security token is a 6-digit or 8-digit (configurable) one-time password (OTP) that is used to authenticate one's identity electronically as a prerequisite for accessing network resources. FortiToken is available as either a mobile or a physical (hard) token. Mobile tokens can be purchased as a license, or consumed with points as part of the FortiToken Cloud service.

FortiToken Mobile and physical FortiTokens store their encryption seeds on the cloud. FortiToken Mobile seeds are generated dynamically when the token is provisioned. They are always encrypted whether in motion or at rest.

You can only register FortiTokens to a single FortiGate or FortiAuthenticator for security purposes. This prevents malicious third parties from making fraudulent requests to hijack your FortiTokens by registering them on another FortiGate or FortiAuthenticator. If re-registering a FortiToken Mobile or Hard Token on another FortiGate is required, you must contact Fortinet Customer Support.

Common usage for FortiTokens includes:

- Applying MFA to a VPN dialup user connecting to the corporate network
- Applying MFA to FortiGate administrators
- Applying MFA to firewall authentication and captive portal authentication

The MFA process commonly involves:

- **Something you know**: User password
- **Something you have**: The FortiToken OTP

A third factor of authentication is added to the authentication process:

- **Something you are**: Your fingerprint or face

To enable the third factor, refer to the Activating FortiToken Mobile on a mobile phone on page 1888 section.

The following illustrates the FortiToken MFA process:

1. The user attempts to access a network resource.
2. FortiOS matches the traffic to an authentication security policy and prompts the user for their username and password.
3. The user enters their username and password.
4. FortiOS verifies their credentials. If valid, it prompts the user for the FortiToken code.
5. The user views the current code on their FortiToken. They enter the code at the prompt.
6. FortiOS verifies the FortiToken code. If valid, it allows the user access to network resources.

If the FortiToken has drifted, the following must take place for the FortiToken to resynchronize with FortiOS:

1. FortiOS prompts the user to enter a second code to confirm.
2. The user gets the next code from the FortiToken. They enter the code at the prompt.
3. FortiOS uses both codes to update its clock to match the FortiToken.
This section includes the following topics to quickly get started with FortiTokens:

- FortiToken Mobile quick start on page 1885
- FortiToken Cloud on page 1893
- Registering hard tokens on page 1893
- Managing FortiTokens on page 1895
- FortiToken Mobile Push on page 1897
- Troubleshooting and diagnosis on page 1899

FortiToken Mobile quick start

FortiToken Mobile is an OATH compliant, event- and time-based one-time password (OTP) generator for mobile devices. It provides an easy and flexible way to deploy and provision FortiTokens to your end users through mobile devices. FortiToken Mobile produces its OTP codes in an application that you can download onto your Android or iOS mobile device without the need for a physical token.

You can download the free FortiToken Mobile application for Android from the Google Play Store, and for iOS from the Apple App Store.

This section focuses on quickly getting started and setting up FortiToken Mobile for use on a FortiGate:

- Registering FortiToken Mobile on page 1885
- Provisioning FortiToken Mobile on page 1886
- Activating FortiToken Mobile on a mobile phone on page 1888
- Applying multi-factor authentication on page 1892

Registering FortiToken Mobile

To deploy FortiToken Mobile for your end users, you must first register the tokens on your FortiGate. After registering the tokens, you can assign them to your end users.
Each FortiGate comes with two free FortiToken Mobile tokens. These tokens should appear under User & Authentication > FortiTokens. If no tokens appear, you may import them. Ensure that your FortiGate is registered and has internet access to connect to the FortiToken servers to import the tokens.

To import FortiTokens from the FortiGate GUI:

1. Go to User & Authentication > FortiTokens.
2. Click the Import Free Trial Tokens icon at the top. The two free tokens are imported.

To import FortiTokens from the FortiGate CLI:

```
# execute fortitoken-mobile import 0000-0000-0000-0000-0000
# show user fortitoken
```

If only one free token appears, you can first delete that token and then follow the procedure to import the two free tokens from either the GUI or the CLI.

If you have the FortiToken Mobile redemption certificate, you can register FortiToken Mobile on a FortiGate.

To register FortiToken Mobile from the FortiGate GUI:

2. For the Type field, select Mobile Token.
3. Locate the 20-digit code on the redemption certificate and type it in the Activation Code field.
4. Click OK. The token is successfully registered.

If you attempt to add invalid FortiToken serial numbers, there is no error message. FortiOS does not add invalid serial numbers to the list.

To register FortiToken Mobile from the FortiGate CLI:

```
# execute fortitoken-mobile import <20-digit activation code>
# show user fortitoken
```

FortiToken Mobile stores its encryption seeds on the cloud. You can only register it to a single FortiGate or FortiAuthenticator.

Provisioning FortiToken Mobile

Once registered, FortiTokens need to be provisioned for users before they can be activated. In this example, you will provision a mobile token for a local user. Similar steps can be taken to assign FortiTokens to other types of users.
To create a local user and assign a FortiToken in the FortiGate GUI:

1. Go to User & Authentication > User Definition, and click Create New. The Users/Groups Creation Wizard appears.
2. In the User Type tab, select Local User, and click Next.

3. In the Login Credentials tab, enter a Username and Password for the user, and click Next.

4. In the Contact Info tab:
 a. Enable the Two-factor Authentication toggle.
 b. Select FortiToken for Authentication Type.
 c. Select a Token to assign to the user from the drop-down list.
 d. Enter the user's email address in the Email Address field. This is the email where the user will receive the QR code for activation of the FortiToken.
 e. Click Next.

5. In the Extra Info tab, make sure the User Account Status field is set to Enabled. You can also optionally assign the user to a user group by enabling the User Group toggle.
6. Click Submit. An activation code should be sent to the created user by email or SMS, depending upon the delivery method configured above.

FortiGate has the Email Service setting configured using the server notifications.fortinet.net by default. To see configuration, go to System > Settings > Email Service.

The activation code expires if not activated within the 3-day time period by default. However, the expiry time period is configurable.

To configure the time period (in hours) for FortiToken Mobile, using the CLI:

```
config system global
  set two-factor-ftm-expiry <1-168>
end
```

To resend the email or SMS with the activation code, refer to the Managing FortiTokens on page 1895 section.

Activating FortiToken Mobile on a mobile phone

After your system administrator provisions your token, you receive a notification with an activation code and expiry date via SMS or email. If you do not activate your token by the expiry date, you must contact your system administrator so that they can reassign your token for activation.

Platforms that support FortiToken Mobile:

<table>
<thead>
<tr>
<th>Platform</th>
<th>Device and firmware support</th>
</tr>
</thead>
<tbody>
<tr>
<td>iOS</td>
<td>iPhone, iPad, and iPod Touch with iOS 6.0 and later.</td>
</tr>
<tr>
<td>Android</td>
<td>Phones and tablets with Android Jellybean 4.1 and later.</td>
</tr>
<tr>
<td>Windows</td>
<td>Windows 10 (desktop and mobile), Windows Phone 8.1, and Windows Phone 8.</td>
</tr>
</tbody>
</table>

FortiToken is a Windows Universal Platform (UWP) application. To download FortiToken for Windows 10 desktop and mobile platforms, see FortiToken for Windows on the Microsoft Store.

The following instructions describe procedures when using FortiToken Mobile for iOS on an iPhone. Procedures may vary depending on your device and firmware.
To activate FortiToken Mobile on iOS:

1. On your iOS device, tap on the FortiToken application icon to open the application. If this is your first time opening the application, it may prompt you to create a PIN for secure access to the application and tokens.

2. Tap on the + icon. The Scan Barcode screen appears.

3. If you received the QR code via email, locate and scan the QR code in your email. OR If you received the activation key via SMS, tap on Enter Manually at the bottom of the screen, and tap on Fortinet.

Enter your email address in the Name field, the activation key in the Key field, and tap Done.
4. FortiToken Mobile activates your token, and starts generating OTP digits immediately. To view or hide the OTP digits, tap the eye icon.

After you open the application, FortiToken Mobile generates a new 6-digit OTP every 30 seconds. All configured tokens display on the application homescreen.

The FortiToken Mobile activation process described above caters to the MFA process that involves two factors (password and OTP) of the authentication process. A third factor (fingerprint or face) can be enabled as well.

To enable Touch/Face ID on iOS for FortiToken Mobile:

1. Open the FortiToken application and tap on *Info.*
2. Tap on **Touch/Face ID & PIN**.

3. Enable and set up a 4-digit **PIN** for the application. The **PIN** is required to be enabled before you can enable **Touch/Face ID**.
4. Enable Touch/Face ID.

You cannot enable Touch/Face ID for FortiToken if Touch/Face ID is not set up and enabled for device unlock (iPhone Unlock in this case) on iOS. You must first set up and enable Touch/Face ID from Settings on your iOS device.

5. When prompted by iOS, allow the FortiToken application to use Touch/Face ID by tapping on OK in the prompt.

Applying multi-factor authentication

Multi-factor authentication (MFA) may also be set up for SSL VPN users, administrators, firewall policy, wireless users, and so on. The following topics explain more about how you may use the newly created user in such scenarios:

- **MFA for SSL VPN**: Set up FortiToken multi-factor authentication on page 1627
- **MFA for IPsec VPN**: Add FortiToken multi-factor authentication on page 1424
- **MFA for Administrators**: Administrator account options on page 1943
- **MFA with Captive Portal**
- MFA for wireless users via Captive Portal
- Configuring firewall authentication on page 1906

FortiToken Cloud

FortiToken Cloud is an Identity and Access Management as a Service (IDaaS) cloud service offering by Fortinet. It enables FortiGate and FortiAuthenticator customers to add MFA for their respective users, through the use of Mobile tokens or Hard tokens. It protects local and remote administrators as well as firewall and VPN users.

For information, see Getting started—FGT-FTC users in the FortiToken Cloud Administration Guide.

Registering hard tokens

Registering FortiTokens consists of the following steps:

1. Adding FortiTokens to FortiOS.
2. Activating FortiTokens.
3. Associating FortiTokens with user accounts.

Adding FortiTokens to FortiOS

You can add FortiTokens to FortiOS in the following ways:

- Add FortiToken serial numbers using the GUI
- Add FortiToken serial numbers using the CLI
- Import FortiTokens using a serial number or seed file using the GUI

To manually add single hard token to FortiOS using the GUI:

1. Go to User & Authentication > FortiTokens.
2. Click Create New.
3. For Type, select Hard Token.
4. In the Serial Number field, enter one or more FortiToken serial numbers.
5. Click OK.

To add multiple FortiTokens to FortiOS using the CLI:

```
config user fortitoken
edit <serial_number>
next
edit <serial_number2>
next
```
To import multiple FortiTokens to FortiOS using the GUI:

1. Go to User & Authentication > FortiTokens.
2. Click Create New.
3. For Type, select Hard Token.
4. Click Import. The Import Tokens section slides in on the screen.
5. Select Serial Number File.

Seed files are only used with FortiToken-200CD. These are special hardware tokens that come with FortiToken seeds on a CD. See the FortiToken Comprehensive Guide for details.

6. Click Upload.
7. Browse to the file's location on your local machine, select the file, then click OK.
8. Click OK.

Activating FortiTokens

You must activate the FortiTokens before starting to use them. FortiOS requires connection to FortiGuard servers for FortiToken activation. During activation, FortiOS queries FortiGuard servers about each token's validity. Each token can only be used on a single FortiGate or FortiAuthenticator. If tokens are already registered, they are deemed invalid for re-activation on another device. FortiOS encrypts the serial number and information before sending for added security.

To activate a FortiToken using the GUI:

1. Go to User & Authentication > FortiTokens.
2. Select the desired FortiTokens that have an Available status.
3. Click Activate from the menu above.
4. Click Refresh. The selected FortiTokens are activated.

To activate a FortiToken using the CLI:

```
config user fortitoken
  edit <token_serial_num>
    set token_serial_num
  next
end
```
 Associating FortiTokens with user accounts

You can associate FortiTokens with local user or administrator accounts.

To associate a FortiToken to a local user account using the GUI:

1. Ensure that you have successfully added your FortiToken serial number to FortiOS and that its status is Available.
2. Go to User & Authentication > User Definition. Edit the desired user account.
3. Enable Two-factor Authentication.
4. From the Token dropdown list, select the desired FortiToken serial number.
5. In the Email Address field, enter the user's email address.
6. Click OK.

To associate a FortiToken to a local user account using the CLI:

```
config user local
  edit <username>
    set type password
    set passwd "myPassword"
    set two-factor fortitoken
    set fortitoken <serial_number>
    set email-to "username@example.com"
    set status enable
  next
end
```

Before you can use a new FortiToken, you may need to synchronize it due to clock drift.

To associate a FortiToken to an administrator account, refer to the Administrator account options on page 1943 section.

Managing FortiTokens

This section focuses on the following:

- Resending an activation email on page 1895
- Locking/unlocking FortiTokens on page 1896
- Managing FortiTokens drift on page 1896
- Deactivating FortiTokens on page 1896
- Moving FortiTokens to another device on page 1897

Resending an activation email

To resend an activation email/SMS for a mobile token on a FortiGate:

1. Go to User & Authentication > User Definition and edit the user.
2. Click Send Activation Code Email from the Two-factor Authentication section.
Locking/unlocking FortiTokens

To change FortiToken status to active or to lock:

```
config user fortitoken
    edit <token_serial_num>
        set status <active | lock>
    next
end
```

A user attempting to log in using a locked FortiToken cannot successfully authenticate.

Managing FortiTokens drift

If the FortiToken has drifted, the following must take place for the FortiToken to resynchronize with FortiOS:

1. FortiOS prompts the user to enter a second code to confirm.
2. The user gets the next code from the FortiToken. They enter the code at the prompt.
3. FortiOS uses both codes to update its clock to match the FortiToken.

If you still experience clock drift, it may be the result of incorrect time settings on your mobile device. If so, make sure that the mobile device clock is accurate by confirming the network time and the correct timezone.

If the device clock is set correctly, the issue could be the result of the FortiGate and FortiTokens being initialized prior to setting an NTP server. This will result in a time difference that is too large to correct with the synchronize function. To avoid this, selected Tokens can be manually drift adjusted.

To show current drift and status for each FortiToken:

```
diagnose fortitoken info
FORTITOKEN DRIFT STATUS
FTK200XXXXXXXXX: 0 token already activated, and seed won't be returned
FTK200XXXXXXXXX: 0 token already activated, and seed won't be returned
FTKMOBXXXXXXXXA: 0 provisioned
FTKMOBXXXXXXXXX4: 0 new
Total activated token: 0
Total global activated token: 0
Token server status: reachable
```

This command lists the serial number and drift for each configured FortiToken. You can check if it is necessary to synchronize the FortiGate and any particular FortiTokens.

To adjust Mobile FortiToken for drift:

```
# execute fortitoken sync <FortiToken_ID> <token_code1> <next_token_code2>
```

Deactivating FortiTokens

To deactivate FortiToken on a FortiGate:

1. Go to User & Authentication > User Definition.
2. Select and edit the user for which you want to deactivate the token.
3. Disable the Two-factor Authentication toggle.
4. Click OK. The token will be removed from the user's Two-factor Authentication column. The user will also be removed from the token’s User column under User & Authentication > FortiTokens.

Moving FortiTokens to another device

FortiTokens can only be activated on a single FortiGate or FortiAuthenticator. To move FortiTokens to another device, you would first have to reset the registered FortiTokens on a device and then reactivate them on another device.

To reset Hard tokens registered to a FortiGate appliance (non-VM model), you can reset all hardware FTK200 tokens from the Support Portal, or during RMA transfer. See the Migrating users and FortiTokens to another FortiGate KB article, for more information.

The above process will reset all Hard tokens and you cannot select individual tokens to reset.

To reset FortiToken Mobile, a single Hard token, a Hard token registered to a VM, and so on, an administrator must contact Customer Support and/or open a ticket on the Support Portal.

Once reset, the FortiTokens can be activated on another FortiGate or FortiAuthenticator.

FortiToken Mobile Push

FortiToken Mobile Push allows authentication requests to be sent as push notifications to the end user's FortiToken Mobile application.

The FortiToken Mobile push service operates as follows:

1. FortiGate sends a DNS query to the FortiToken Mobile Push proxy server (push.fortinet.com).
2. FortiGate connects to the proxy server via an encrypted connection over TCP/443.
3. The proxy server handles the notification request by making a TLS connection with either Apple (for iOS) or Google (for Android) notification servers. Notification data may include the recipient, session, FortiGate callback IP and port, and so on.
4. The notification service from either Apple or Google notifies the user's mobile device of the push request.
5. The FortiToken Mobile application on the user's mobile displays a prompt for the user to either Approve or Deny the
To configure FortiToken Mobile push services using the CLI:

```bash
config system ftm-push
  set status enable
  set server-ip <ip-address>
  set server-port [1-65535]
end
```

The default server port is 4433.

The server IP address is the public IP address of the FortiOS interface that FortiToken Mobile calls back to. FortiOS uses this IP address for incoming FortiToken Mobile calls.

If an SSL VPN user authenticates with their token, then logs out and attempts to reauthenticate within a minute, a *Please wait x seconds to login again* message displays. This replaces a previous error/permission denied message. The `x` value depends on the calculation of how much time is left in the current time step.

```bash
config system interface
  edit "guest"
    set allowaccess ftm
  next
end
```
FortiOS supports FortiAuthenticator-initiated FortiToken Mobile Push notifications for users attempting to authenticate through an SSL VPN and/or RADIUS server (with FortiAuthenticator as the RADIUS server).

Troubleshooting and diagnosis

This section contains some common scenarios for FortiTokens troubleshooting and diagnosis:

- FortiToken Statuses on page 1899
- Recovering trial FortiTokens on page 1900
- Recovering lost Administrator FortiTokens on page 1900
- SSL VPN with multi-factor authentication expiry timers on page 1901

FortiToken Statuses

When troubleshooting FortiToken issues, it is important to understand different FortiToken statuses. FortiToken status may be retrieved either from the CLI or the GUI, with a slightly different naming convention.

Before you begin, verify that the FortiGate has Internet connectivity and is also connected to both the FortiGuard and registration servers:

```
# execute ping fds1.fortinet.com
# execute ping directregistration.fortinet.com
# execute ping globalftm.fortinet.net
```

The `globalftm.fortinet.net` server is the Fortinet Anycast server added in FortiOS 6.4.2.

If there are connectivity issues, retrieving FortiToken statuses or performing FortiToken activation could fail. Therefore, troubleshoot connectivity issues before continuing.

To retrieve FortiToken statuses:

- In the CLI:
  ```
  # diagnose fortitoken info
  ```
- In the GUI:
 Go to `User & Authentication > FortiTokens`.

Various FortiToken statuses in either the CLI or the GUI may be described as follows:

<table>
<thead>
<tr>
<th>CLI</th>
<th>GUI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>new</td>
<td>Available</td>
<td>Newly added, not pending, not activated, not yet assigned.</td>
</tr>
<tr>
<td>active</td>
<td>Assigned</td>
<td>Assigned to a user, hardware token.</td>
</tr>
<tr>
<td>provisioning</td>
<td>Pending</td>
<td>Assigned to a user and waiting for activation on the FortiToken Mobile app.</td>
</tr>
<tr>
<td>provisioned</td>
<td>Assigned</td>
<td>Assigned to user and activated on the FortiToken Mobile app.</td>
</tr>
</tbody>
</table>
User & Authentication

<table>
<thead>
<tr>
<th>CLI</th>
<th>GUI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>provision</td>
<td></td>
<td>Token provided to user but not activated on the FortiToken Mobile app. To fix, the token needs to be re-provisioned and activated in time.</td>
</tr>
<tr>
<td>timeout</td>
<td></td>
<td></td>
</tr>
<tr>
<td>token already</td>
<td>Error</td>
<td>Token is locked by FortiGuard FDS. The hardware token was already activated on another device and locked by FDS.</td>
</tr>
<tr>
<td>activated, and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>seed won't be</td>
<td></td>
<td></td>
</tr>
<tr>
<td>returned locked</td>
<td></td>
<td>Either manually locked by an Administrator (set status lock), or locked automatically, for example, when the token is unassigned and the FortiCare FTM provisioning server was unreachable to process that change.</td>
</tr>
</tbody>
</table>

Recovering trial FortiTokens

You can recover trial FortiTokens if deleted from a FortiGate, or if stuck in a state where it is not possible to provision to a user.

When a token is stuck in an unusual state or with errors, delete the FortiTokens from the unit and proceed to recover trial FortiTokens.

To recover trial tokens via the GUI:

1. Go to *User & Authentication > FortiTokens*.
2. Click the *Import Free Trial Tokens* button at the top. The two free trial tokens are recovered.

To recover trial tokens via the CLI:

```
# execute fortitoken-mobile import 0000-0000-0000-0000-0000
```

- Before attempting to recover the trial tokens, both the tokens should be deleted from the unit first.
- If VDOMs are enabled, trial tokens are in the management VDOM *(root by default)*.

Following error codes might come up in the CLI:

- If the device is not registered:

  ```
  # execute fortitoken-mobile import 0000-0000-0000-0000-0000
  import fortitoken license error: -7571
  ```

- If the serial number format is incorrect:

  ```
  # execute fortitoken-mobile import 0000-0000-0000-0000-00
  import fortitoken license error: -7566
  ```

Recovering lost Administrator FortiTokens

If an Administrator loses their FortiToken or the FortiToken is not working, they will not be able to log into the admin console through the GUI or the CLI. If there is another Administrator that can log into the device, they may be able to reset the two-factor settings configured for the first Administrator, or create a new Admin user for them. Note that a super_admin user will be able to edit other admin user settings, but a prof_admin user will not be able to edit super_admin settings.
In the case where there are no other administrators configured, the only option is to flash format the device and reload a backup config file. You must have console access to the device in order to format and flash the device. It is recommended to be physically on site to perform this operation.

The process of resetting an Admin user password using the maintainner account cannot be used to reset or disable two-factor authentication.

Before formatting the device, verify that you have a backup config file. You may or may not have the latest config file backed up, though you should consider using a backed up config file, and reconfigure the rest of the recent changes manually. Otherwise, you may need to configure your device starting from the default factory settings.

To recover lost Administrator FortiTokens:

1. If you have a backed up config file:
 a. Open the config file and search for the specific admin user. For representational purposes we will use Test in our example:

   ```
   # edit "Test"
   set accprofile "super_admin"
   set vdom "root"
   set two-factor fortitoken
   set fortitoken "FTKXXXXXXXXXX"
   set email-to "admin@email.com"
   set password ********
   next
   end
   
   b. Once you find the settings for the Test user, delete the fortitoken-related settings:

   ```
 # edit "Test"
 set accprofile "super_admin"
 set vdom "root"
 set password ********
 next
 end
   ```

2. Format the boot device during a maintenance window and reload the firmware image using instructions in the Formatting and loading FortiGate firmware image using TFTP KB article.

3. Once the reload is complete, log into the admin console from the GUI using the default admin user credentials, and go to Configuration > Restore from the top right corner to reload your config file created in Step 1 above.

4. Once the FortiGate reboots and your configuration is restored, you can log in with your admin user credentials.

SSL VPN with multi-factor authentication expiry timers

When SSL VPN is configured with multi-factor authentication (MFA), sometimes you may require a longer token expiry time than the default 60 seconds.

To configure token expiry timers using the CLI:

```
config system global
 set two-factor-ftk-expiry <number of seconds>
 set two-factor-ftm-expiry <number of seconds>
 set two-factor-sms-expiry <number of seconds>
 set two-factor-fac-expiry <number of seconds>
```
set two-factor-email-expiry <number of seconds>
end

These timers apply to the tokens themselves and remain valid for as long as configured above. However, SSL VPN does not necessarily accept tokens for the entire duration they are valid. To ensure SSLVPN accepts the token for longer durations, you need to configure the remote authentication timeout setting accordingly.

To configure the remote authentication timeout:

config system global
    set remoteauthtimeout <1-300 seconds>
end

SSL VPN waits for a maximum of five minutes for a valid token code to be provided before closing down the connection, even if the token code is valid for longer.

The remoteauthtimeout setting shows how long SSL VPN waits not only for a valid token to be provided before closing down the connection, but also for other remote authentication like LDAP, RADIUS, and so on.

Configuring the maximum log in attempts and lockout period

Failed log in attempts can indicate malicious attempts to gain access to your network. To prevent this security risk, you can limit the number of failed log in attempts. After the configured maximum number of failed log in attempts is reached, access to the account is blocked for the configured lockout period.

To configure number of maximum log in attempts:

This example sets the maximum number of log in attempts to five.

config user setting
    set auth-lockout-threshold 5
end

To configure the lockout period in seconds:

This example sets the lockout period to five minutes (300 seconds).

config user setting
    set auth-lockout-duration 300
end

PKI

The following topics include information about public key infrastructure (PKI):

- Configuring a PKI user on page 1903
- SSL VPN with certificate authentication on page 1660
SSL VPN with LDAP-integrated certificate authentication on page 1665

Configuring a PKI user

PKI users are users who are identified by a digital certificate they hold. Defining a PKI user in FortiOS specifies:

- Which CA certificate to use to validate the user’s certificate
- The field and value of the user’s certificate that FortiOS will check to verify a user

These peer users can then be used in a FortiGate user group, or as a peer certificate group used for IPsec VPN configurations that accept RSA certificate authentication.

Example X.509 certificate

The following certificate demonstrates which FortiGate settings can be used to match on different fields.

Subject:

Subject Alternative Name:

Certification path:
To configure a PKI user:

```
config user peer
edit <name>
 set ca <string>
 set mandatory-ca-verify {enable | disable}
 set subject <string>
 set cn <string>
 set cn-type {string | email | FQDN | ipv4 | ipv6}
 set ldap-server <string>
 set ldap-username <string>
 set ldap-password <string>
 set ldap-mode {password | principal-name}
next
end
```

**ca <string>**
Specify which certificate on the FortiGate is used to validate the client’s certificate. This can be any CA in the client’s certificate chain. You may need to upload a CA certificate to the FortiGate specifically to identify PKI peer users (see Uploading a certificate using the GUI on page 2166).

**mandatory-ca-verify {enable | disable}**
Control the action if the CA certificate used to sign the client’s certificate is not installed on the FortiGate (default = enable). Disabling this setting makes the FortiGate consider any certificate presented by the peer as valid.
In the example certificate, the certification path shows that VF_CA signed jcarrey’s certificate.

**subject <string>**
Enter the peer certificate name constraints.

**cn <string>**
Enter the peer certificate common name.

**cn-type {string | email | FQDN | ipv4 | ipv6}**
Set the peer certificate common name type: string, email, FQDN, IPv4 address, or IPv6 address. See CN on page 1906 for more details.

**ldap-server <string>**
Enter the name of an LDAP server defined under config user ldap for performing client access rights checks. See LDAP servers on page 1805 for more details.
Identifying users based on their client certificate

When the client's certificate is valid, or mandatory-ca-verify is disabled, the FortiGate can then inspect the certificate to check specific fields for matching values. There are three ways of specifying which certificate field to verify: by subject, CN, or LDAP. All string comparisons are case sensitive.

Subject

This basic method verifies that the subject string defined in the PKI user setting matches a value or substring in the subject field of the user certificate. Further matching is controlled in the following VPN certificate settings.

```config
cfg vpn certificate setting
 set subject-match {substring | value}
 set subject-set {superset | subset}
 set cn-match {substring | value}
 set cn-allow-multi {enable | disable}
end
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| subject-match {substring | value} | Control how to do relative distinguished name (RDN) value matching with the certificate subject name:  
  - substring: find a match if any string in the certificate subject name matches the name being searched for (such as set subject jcarrey).  
  - value: find a match if any attribute value string in a certificate subject name is an exact match with the name being searched for (such as set subject "OU=TAC" or set subject "C=CA, CN=jcarrey, OU=TAC"). |
| set subject-set {superset | subset} | Control how to do RDN value matching with the certificate subject name:  
  - superset: a certificate only passes verification if it contains all the RDNs defined in the subject settings (such as set subject "E = jcarrey@fortinet.com, CN = jcarrey, OU = TAC, O = Fortinet, L = Burnaby, S = British Columbia, C = CA").  
  - subset: a certificate passes verification if the RDN is a subset of the certificate subject (such as set subject "CN = jcarrey, OU = TAC"). |
| cn-match {substring | value} | Control how to do CN value matching with the certificate subject name:  
  - substring: find a match if any string in the certificate subject name matches the name being searched for.  
  - value: find a match if any attribute value string in a certificate subject name is an exact match with the name being searched for. |
| cn-allow-multi {enable | disable} | Enable/disable allowing multiple CN entries with the certificate subject name (default = enable). |
CN

Common name (CN) certificate verification compares the CN in the subject field with the configured string (such as `set cn "jcarrey"`). The following logic is used when configuring different CN types:

<table>
<thead>
<tr>
<th>Type</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>Based on the <code>cn-match</code> setting, perform a substring or exact match in the certificate subject.</td>
</tr>
<tr>
<td>email</td>
<td>Look for a match in the certificate subject.</td>
</tr>
<tr>
<td>FQDN</td>
<td>Look for a match in the certificate subject, then compare the mapped IP and client IP. The FQDN is only retrieved from the CN.</td>
</tr>
<tr>
<td>ipv4</td>
<td>Look for a match in the certificate subject, then compare the IP.</td>
</tr>
<tr>
<td>ipv6</td>
<td>Look for a match in the certificate subject, then compare the IP.</td>
</tr>
</tbody>
</table>

The CN type also controls the format checking of the CN string. In this example, if the CN type is set to email, the CN must be in email format (`set cn "jcarrey@fortinet.com"`).

LDAP

LDAP-integrated user authentication allows the FortiGate to check the connecting user against an LDAP server in two ways: through a username and password, or the certificate’s principal name. The `password` method requires the username and password of each authenticating user to be entered, so it is not recommended when configuring PKI users. The `principal-name` method is recommended.

The UPN in the user certificate’s Subject Alternative Name field is used to look up the user in the LDAP directory. If a match is found, then authentication succeeds. This type of configuration scales well since only one PKI user needs to be created on the FortiGate. Connecting clients use their unique user certificate to match within the configured LDAP server.

Configuring firewall authentication

In this example, a Windows network is connected to the FortiGate on port 2, and another LAN, Network_1, is connected on port 3.
All Windows network users authenticate when they log on to their network. Engineering and Sales groups members can access the Internet without reentering their authentication credentials. The example assumes that you have already installed and configured FSSO on the domain controller.

LAN users who belong to the Internet_users group can access the Internet after entering their username and password. The example shows two users: User1, authenticated by a password stored in FortiOS; and User 2, authenticated on an external authentication server. Both users are local users since you create the user accounts in FortiOS.

1. Create a locally authenticated user account.
2. Create a RADIUS-authenticated user account.
3. Create an FSSO user group.
4. Create a firewall user group.
5. Define policy addresses.
6. Create security policies.

**Creating a locally authenticated user account**

User1 is authenticated by a password stored in FortiOS.

To create a locally authenticated user account in the GUI:

1. Go to User & Authentication > User Definition and click Create New.
2. Configure the following settings:

<table>
<thead>
<tr>
<th>User Type</th>
<th>Local User</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Name</td>
<td>User1</td>
</tr>
<tr>
<td>Password</td>
<td>hardtogo1ss1@@1</td>
</tr>
<tr>
<td>User Account Status</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

3. Click Submit.

To create a locally authenticated user account in the CLI:

```
config user local
edit user1
 set type password
 set passwd hardtogo1ss1@@1
next
end
```

**Creating a RADIUS-authenticated user account**

You must first configure FortiOS to access the external authentication server, then create the user account.
To create a RADIUS-authenticated user account in the GUI:

1. Go to User & Authentication > RADIUS Servers and click Create New.
2. Configure the following settings:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>OurRADIUSsrv</td>
</tr>
<tr>
<td>Authentication method</td>
<td>Default</td>
</tr>
<tr>
<td>Primary Server</td>
<td>10.11.101.15</td>
</tr>
<tr>
<td>Secret</td>
<td>OurSecret</td>
</tr>
</tbody>
</table>

3. Click OK.
4. Go to User & Authentication > User Definition and click Create New.
5. Configure the following settings:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Type</td>
<td>Remote RADIUS User</td>
</tr>
<tr>
<td>User Name</td>
<td>User2</td>
</tr>
<tr>
<td>RADIUS Server</td>
<td>OurRADIUSsrv</td>
</tr>
<tr>
<td>User Account Status</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

6. Click Submit.

To create a RADIUS-authenticated user account in the CLI:

```plaintext
cfg user radius
edit OurRADIUSsrv
 set server 10.11.102.15
 set secret OurSecret
 set auth-type auto
next
end
cfg user local
edit User2
 set name User2
 set type radius
 set radius-server OurRADIUSsrv
next
end
```

Creating an FSSO user group

This example assumes that you have already set up FSSO on the Windows network and that it used advanced mode, meaning that it uses LDAP to access user group information. You must do the following:

- Configure LDAP access to the Windows AD global catalog
- Specify the collector agent that sends user log in information to FortiOS
- Select Windows user groups to monitor
- Select and add the Engineering and Sales groups to an FSSO user group
To create an FSSO user group in the GUI:

1. Configure LDAP for FSSO:
   a. Go to User & Authentication > LDAP Servers and click Create New.
   b. Configure the following settings:

<table>
<thead>
<tr>
<th>Name</th>
<th>ADserver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server Name / IP</td>
<td>10.11.101.160</td>
</tr>
<tr>
<td>Distinguished Name</td>
<td>dc=office,dc=example,dc=com</td>
</tr>
<tr>
<td>Bind Type</td>
<td>Regular</td>
</tr>
<tr>
<td>Username</td>
<td>cn=FSSO_Admin,cn=users,dc=office,dc=example,dc=com</td>
</tr>
<tr>
<td>Password</td>
<td>Enter a secure password.</td>
</tr>
</tbody>
</table>

e. Leave other fields as-is. Click OK.

2. Specify the collector agent for FSSO:
   a. Go to Security Fabric > External Connectors and click Create New.
   b. Under Endpoint/Identity, select FSSO Agent on Windows AD.
   c. Configure the following settings:

   | Name          | Enter the Windows AD server name. This name appears in the Windows AD server list when you create user groups. In this example, the name is WinGroups. |
   | Server IP/Name | Enter the IP address or name of the server where the agent is installed. The maximum name length is 63 characters. In this example, the IP address is 10.11.101.160. |
   | Password       | Enter the password of the server where the agent is installed. You only need to enter a password for the collector agent if you configured the agent to require authenticated access. If the TCP port used for FSSO is not the default, 8000, you can run the config user fsso command to change the setting in the CLI. |
   | Collector Agent AD access mode | Advanced |
   | LDAP Server    | Select the previously configured LDAP server. In this example, it is ADserver. |
   | User/Groups/Organization Units | Select the users, groups, and OUs to monitor. |

d. Click OK.

3. Create the FSSO_Internet_users user group:
   a. Go to User & Authentication > User Groups and click Create New.
   b. Configure the following settings:

   | Name          | FSSO_Internet_users |
To create an FSSO user group in the CLI:

```plaintext
cfg user ldap
 edit "ADserver"
 set server "10.11.101.160"
 set dn "cn=users,dc=office,dc=example,dc=com"
 set type regular
 set username "cn=administrator,cn=users,dc=office,dc=example,dc=com"
 set password set_a_secure_password
next
end
cfg user fss
 edit "WinGroups"
 set ldap-server "ADserver"
 set password ********
 set server "10.11.101.160"
next
end
cfg user group
 edit FSSO_Internet_users
 set group-type fss-service
 set member CN=Engineering,cn=users,dc=office,dc=example,dc=com
 CN=Sales,cn=users,dc=office,dc=example,dc=com
next
end
```

Creating a firewall user group

This example shows a firewall user group with only two users. You can add additional members.

To create a firewall user group in the GUI:

1. Go to User & Authentication > User Groups and click Create New.
2. Configure the following settings:

<table>
<thead>
<tr>
<th>Name</th>
<th>Internet_users</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Firewall</td>
</tr>
<tr>
<td>Members</td>
<td>User1, User2</td>
</tr>
</tbody>
</table>

3. Click OK.

To create a firewall user group in the CLI:

```plaintext
cfg user group
 edit Internet_users
 set group-type firewall
 set member User1 User2
```
Defining policy addresses

To define policy addresses:

1. Go to Policy & Objects > Addresses.
2. Click Create New > Address.
3. Configure the following settings:

<table>
<thead>
<tr>
<th>Name</th>
<th>Internal_net</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Subnet</td>
</tr>
<tr>
<td>IP/Netmask</td>
<td>10.11.102.0/24</td>
</tr>
<tr>
<td>Interface</td>
<td>Port 3</td>
</tr>
</tbody>
</table>

4. Click OK.
5. Create another new address by repeating steps 2-4 using the following settings:

<table>
<thead>
<tr>
<th>Name</th>
<th>Windows_net</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Subnet</td>
</tr>
<tr>
<td>IP/Netmask</td>
<td>10.11.101.0/24</td>
</tr>
<tr>
<td>Interface</td>
<td>Port 2</td>
</tr>
</tbody>
</table>

Creating security policies

You must create two security policies: one for the firewall group connecting through port 3, and one for the FSSO group connecting through port 2.

To create security policies using the GUI:

1. Go to Policy & Objects > Firewall Policy.
2. Click Create New.
3. Configure the following settings:

<table>
<thead>
<tr>
<th>Incoming Interface</th>
<th>Port2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Address</td>
<td>Windows_net</td>
</tr>
<tr>
<td>Source User(s)</td>
<td>FSSO_Internet_users</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>Port1</td>
</tr>
<tr>
<td>Destination Address</td>
<td>all</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>ALL</td>
</tr>
</tbody>
</table>
NAT | Enabled.
---|---
Security Profiles | You can enable security profiles as desired.

4. Click OK.

5. Create another new policy by repeating steps 2-4 using the following settings:

<table>
<thead>
<tr>
<th><strong>Incoming Interface</strong></th>
<th>Port3</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Source Address</strong></td>
<td>Internal_net</td>
</tr>
<tr>
<td><strong>Source User(s)</strong></td>
<td>Internet_users</td>
</tr>
<tr>
<td><strong>Outgoing Interface</strong></td>
<td>Port1</td>
</tr>
<tr>
<td><strong>Destination Address</strong></td>
<td>all</td>
</tr>
<tr>
<td><strong>Schedule</strong></td>
<td>always</td>
</tr>
<tr>
<td><strong>Service</strong></td>
<td>ALL</td>
</tr>
<tr>
<td><strong>NAT</strong></td>
<td>Enabled.</td>
</tr>
<tr>
<td><strong>Security Profiles</strong></td>
<td>You can enable security profiles as desired.</td>
</tr>
</tbody>
</table>

6. Click OK.

**To create security policies using the CLI:**

```
config firewall policy
 edit 0
 set srcintf port2
 set dstintf port1
 set srcaddr Windows_net
 set dstaddr all
 set action accept
 set groups FSSO_Internet_users
 set schedule always
 set service ANY
 set nat enable
 next
end
config firewall policy
 edit 0
 set srcintf port3
 set dstintf port1
 set srcaddr internal_net
 set dstaddr all
 set action accept
 set schedule always
 set groups Internet_users
 set service ANY
 set nat enable
 next
end
```
FSSO

FortiOS can provide single sign-on capabilities to Windows AD, Citrix, VMware Horizon, Novell eDirectory, and Microsoft Exchange users with the help of agent software installed on these networks. The agent software sends information about user logons to the FortiGate unit. With user information such as IP address and user group memberships from the network, FortiGate security policies can allow authenticated network access to users who belong to the appropriate user groups without requesting their credentials again.

Fortinet Single Sign-On (FSSO), through agents installed on the network, monitors user logons and passes that information to the FortiGate unit. When a user logs on at a workstation in a monitored domain, FSSO:

- Detects the logon event and records the workstation name, domain, and user,
- Resolves the workstation name to an IP address,
- Determines which user groups the user belongs to,
- Sends the user logon information, including IP address and groups list, to the FortiGate unit, and
- Creates one or more log entries on the FortiGate unit for this logon event as appropriate.

When the user tries to access network resources, the FortiGate unit selects the appropriate security policy for the destination. If the user belongs to one of the permitted user groups associated with that policy then the connection is allowed, otherwise the connection is denied.

Agent-based FSSO

Several different FSSO agents can be used in an FSSO implementation:

- Domain Controller (DC) agent
- eDirectory agent
- Citrix/Terminal Server (TS) agent
- Collector Agent

Consult the latest FortiOS Release Notes for operating system compatibility information.

Domain Controller agent

The Domain Controller (DC) agent must be installed on every domain controller when you use DC Agent mode. The DC agents monitor user logon events and pass the information to the Collector agent, which stores the information and sends it to the FortiGate unit.

eDirectory agent

The eDirectory agent is installed on a Novell network to monitor user logons and send the required information to the FortiGate unit. It functions much like the Collector agent on a Windows AD domain controller. The agent can obtain information from the Novell eDirectory using either the Novell API or LDAP.

Terminal Server agent

The Terminal Server (TS) agent can be installed on a Citrix, VMware Horizon 7.4, or Windows Terminal Server to monitor user logons in real time. It functions much like the DC Agent on a Windows AD domain controller.
**Collector agent**

The Collector Agent (CA) is installed as a service on a server in the Windows AD network to monitor user logons and send the required information to the FortiGate unit. The Collector agent can collect information from a DC agent (Windows AD) and TS agent (Citrix or VMware Horizon Terminal Server).

In a Windows AD network, the Collector agent can optionally obtain logon information by polling the AD domain controllers. In this case, DC agents are not needed.

The CA is responsible for DNS lookups, group verification, workstation checks, and updating FortiGates on logon records. The FSSO CA sends Domain Local Security Group and Global Security Group information to FortiGate units. The CA communicates with the FortiGate over TCP port 8000 and it listens on UDP port 8002 for updates from the DC agents.

The FortiGate device can have up to five CAs configured for redundancy. If the first CA on the list is unreachable, the next is attempted, and so on down the list until one is contacted.

All DC agents must point to the correct CA port number and IP address on domains with multiple DCs.

---

A FortiAuthenticator device can act much like a CA, collecting Windows AD user logon information and sending it to the FortiGate device. It is particularly useful in large installations with several FortiGate units. For more information, see the FortiAuthenticator Administration Guide.

---

**Agentless FSSO**

For Windows AD networks, FortiGate devices can also provide SSO capability by directly polling Windows Security Event log entries on Windows DC for user log in information. This configuration does not require a CA or DC agent.

**FortiGate configuration**

To configure FSSO on a FortiGate, go to Security Fabric > External Connectors.

When creating a new connector, several options for connectors are available under Endpoint/Identity:

- **Fortinet single sign-on agent on page 2492**
  
  For most FSSO Agent-based deployments, this connector option will be used. Specify either Collector Agent or Local as User Group Source to collect user groups from the Collector Agent, or to match users to user groups from a LDAP server.

- **Poll Active Directory server on page 2493**
  
  This connection option directly polls Windows Security Event log entries on Windows DC for user log in information.

- **RADIUS single sign-on agent on page 2500**
  
  FortiGate can authenticate users who have authenticated on a remote RADIUS server by monitoring the RADIUS accounting records forwarded by the RADIUS server to the FortiGate.

- **Exchange Server connector on page 2503**
  
  FortiGate collects information about authenticated users from corporate Microsoft Exchange Servers.

- **Symantec endpoint connector on page 2494**
  
  This connector uses client IP information from Symantec Endpoint Protection Manager (SEPM) to assign dynamic IP addresses on FortiOS.
Since FSSO is commonly associated with Agent-based FSSO and Agentless FSSO, this chapter will primarily focus on the first two Security Fabric External Connector options.

**FSSO polling connector agent installation**

This topic gives an example of configuring a local FSSO agent on the FortiGate. The agent actively pools Windows Security Event log entries on Windows Domain Controller (DC) for user log in information. The FSSO user groups can then be used in a firewall policy.

This method does not require any additional software components, and all the configuration can be done on the FortiGate.

**To configure a local FSSO agent on the FortiGate:**

1. Configure an LDAP server on the FortiGate on page 1915
2. Configure a local FSSO polling connector on page 1915
3. Add the FSSO groups to a policy on page 1916

**Configure an LDAP server on the FortiGate**

Refer to Configuring an LDAP server on page 1805. The connection must be successful before configuring the FSSO polling connector.

**Configure a local FSSO polling connector**

**To configure a local FSSO polling connector:**

1. Go to Security Fabric > External Connectors and click Create New.
2. In the Endpoint/Identity section, select Poll Active Directory Server.
3. Fill in the required information.
4. For LDAP Server, select the server you just created.
5. Configure the group settings:
   a. For Users/Groups, click Edit. The structure of the LDAP tree is shown in the Users/Groups window.
   b. Click the Groups tab.
   c. Select the required groups, right-click on them, and select Add Selected. Multiple groups can be selected at one time by holding the CTRL or SHIFT keys. The groups list can be filtered or searched to limit the number of groups that are displayed.
   d. Click the Selected tab and verify that the required groups are listed. To remove a group, right-click and select Remove Selected.
   e. Click OK to save the group settings.
6. Click OK to save the connector settings.
8. There should be two new connectors:

- The **Local FSSO Agent** is the backend process that is automatically created when the first FSSO polling connector is created.
- The **Active Directory Connector** is the front end connector that can be configured by FortiGate administrators.

To verify the configuration, hover the cursor over the top right corner of the connector; a popup window will show the currently selected groups. A successful connection is also shown by a green up arrow in the lower right corner of the connector.

If you need to get log in information from multiple DCs, then you must configure other Active Directory connectors for each additional DC to be monitored.

**Add the FSSO groups to a policy**

FSSO groups can be used in a policy by either adding them to the policy directly, or by adding them to a local user group and then adding the group to a policy.

**To add the FSSO groups to a local user group:**

1. Go to **User & Authentication > User Groups** and click **Create New**.
2. Enter a name for the group in the **Name** field.
3. Set the **Type** to **Fortinet Single Sign-On (FSSO)**.
4. In the **Members** field, click the + and add the FSSO groups.
5. Click **OK**.
6. Add the local FSSO group to a policy.

**To add the FSSO groups directly to a firewall policy:**

1. Go to **Policy & Objects > Firewall Policy** and click **Create New**.
2. In the **Source** field, click the +. In the **Select Entries** pane, select the **User** tab.
3. Select the FSSO groups.
4. Configure the remaining settings as required.
5. Click **OK**.
Troubleshooting

If an authenticated AD user cannot access the internet or pass the firewall policy, verify the local FSSO user list:

```
diagnose debug authd fsso list
----FSSO logons----
IP: 10.1.100.188 User: test2 Groups: CN=group2,OU=Testing,DC=Fortinet-FSSO,DC=COM
Workstation: MemberOf: CN=group2,OU=Testing,DC=Fortinet-FSSO,DC=COM
Total number of logons listed: 1, filtered: 0
----end of FSSO logons----
```

1. Check that the group in MemberOf is allowed by the policy.
2. If the expected AD user is not in list, but other users are, it means that either:
   - The FortiGate missed the log in event, which can happen if many users log in at the same time, or
   - The user's workstation is unable to connect to the DC, and is currently logged in with cached credentials, so there is no entry in the DC security event log.
3. If there are no users in the local FSSO user list:
   a. Ensure that the local FSSO agent is working correctly:
```
 # diagnose debug enable
 # diagnose debug authd fsso server-status

 Server Name | Connection Status | Version | Address
 ------------ | ----------------- | ------- | -------
 FGT_A (vdom1) | Local FSSO Agent | connected | FSAE server 1.1 127.0.0.1
```
   The connection status must be connected.
   b. Verify the Active Directory connection status:
```
 # diagnose debug fsso-polling detail 1
 AD Server Status (connected):
 ID=1, name(10.1.100.131),ip=10.1.100.131,source(security),users(0)
 port=auto username=Administrator
 read log eof=1, latest logon timestamp: Fri Jul 26 10:36:20 2019

 polling frequency: every 10 second(s) success(274), fail(0)
 LDAP query: success(0), fail(0)
 LDAP max group query period(seconds): 0
 LDAP status: connected

 Group Filter: CN=group2,OU=Testing,DC=Fortinet-FSSO,DC=COM
```
   If the polling frequency shows successes and failures, that indicates sporadic network problems or a very busy DC. If it indicates no successes or failures, then incorrect credentials could be the issue.
   If the LDAP status is connected, then the FortiGate can access the configured LDAP server. This is required for AD group membership lookup of authenticated users because the Windows Security Event log does not include group membership information. The FortiGate sends an LDAP search for group membership of authenticated users to the configure LDAP server.
   FortiGate adds authenticated users to the local FSSO user list only if the group membership is one of the groups in Group Filter.
4. If necessary, capture the output of the local FortiGate daemon that polls Windows Security Event logs:
```
 # diagnose debug application fssod -l
```
This output contains a lot of detailed information which can be captured to a text file.

**Limitations**

- NTLM based authentication is not supported.
- If there are a large number of user log ins at the same time, the FSSO daemon may miss some. Consider using FSSO agent mode if this will be an issue. See Public and private SDN connectors on page 2428 for information.
- The FSSO daemon does not support all of the security log events that are supported by other FSSO scenarios. For example, only Kerberos log in events 4768 and 4769 are supported.

**FSSO using Syslog as source**

This example describes how to configure Fortinet Single Sign-On (FSSO) agent on Windows using syslog as the source and a custom syslog matching rule.

The FSSO collector agent must be build 0291 or later, and in advanced mode (see How to switch FSSO operation mode from Standard Mode to Advanced Mode).

**To configure the FSSO agent on Windows:**

1. Open the FSSO agent on Windows.
2. Click Advanced Settings.
3. Go to the Syslog Source List tab.
4. Select Enable this feature.
5. Set Syslog Listening Port, or use the default port.
6. Click Manage Rule.
7. Create a new syslog rule:
   a. Click Add.
   b. Configure the rule:

<table>
<thead>
<tr>
<th>Trigger</th>
<th>722051</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logon</td>
<td>assigned to session</td>
</tr>
</tbody>
</table>
Username Field  
User <{:username}>{:login}

Client IPv4 Field  
IPv4 Address <{:client_ip}>{:login}

Client IPv6 Field  
IPv6 Address <{:client_ipv6}>{:login}

Group Field  
Group <{:group}>

Groups List Separator  
,

---

**c.** To test the rule, enter a sample log line, then click Test.

**d.** Click OK.

---

**8.** Create a new syslog source:

a. On the Advanced Settings window, click Add.

b. Configure the source:

```
<table>
<thead>
<tr>
<th>Name</th>
<th>VPN-Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>192.168.100.12</td>
</tr>
<tr>
<td>Matching Rule</td>
<td>VPN</td>
</tr>
</tbody>
</table>
| User Type | External: Users are not defined on the CA and user groups come from the source. Remote User: Users are defined on a remote LDAP server and user groups are retrieved from the specified LDAP server. Any group from the syslog messages are ignored. See Connect to a remote LDAP server on page 1920.
```

c. Click OK.

---

**9.** Click OK.
**Connect to a remote LDAP server**

This section describes how to connect to a remote LDAP server to match the user identity from the syslog server with an LDAP server.

**To connect to a remote LDAP server:**

1. Open the FSSO agent on Windows.
2. Click **Advanced Settings**.
3. Go to the **Syslog Source List** tab.
4. Click **Manage LDAP Server**.
5. Click **Add** and configure the LDAP server settings:

![LDAP Server Configuration](image1)

6. Click **OK**.
7. Select the syslog source and click **Edit**.

![Syslog Source Settings](image2)

8. Set **User Type** to **Remote User**, and select the LDAP server from the drop-down list.

![Syslog Source Settings](image3)

9. Click **OK**.
Configuring the FSSO timeout when the collector agent connection fails

The logon-timeout option is used to manage how long authenticated FSSO users on the FortiGate will remain on the list of authenticated FSSO users when a network connection to the collector agent is lost.

```config
config user fsso
edit <name>
 set server <string>
 set password <string>
 set logon-timeout <integer>
next
end
```

*logon-timeout <integer>* Enter the interval to keep logons after the FSSO server is down, in minutes (1 - 2880, default = 5).

**Example**

In this example, the logon timeout is set for four minutes.

**To configure the FSSO logon timeout:**

1. Set the timeout value:

```config
config user fsso
edit "ad"
 set server "10.1.100.141"
 set password ********
 set logon-timeout 4
next
end
```

2. Log on to a PC with a valid FSSO user account.
3. Enable real-time debugging and check for authd polling collector agent information. During this time, the connection to the collector agent is lost:
After about three minutes, check that the FSSO user is still in the list of authenticated users and can connect to the internet:

```
diagnose firewall auth l
10.1.100.188, TEST1
 type: fsso, id: 0, duration: 229, idled: 229
 server: ad
 packets: in 0 out 0, bytes: in 0 out 0
 user_id: 16777219
 group_id: 3 33554433
 group_name: ad CN=GROUP1,OU=TESTING,DC=FORTINET-FSSO,DC=COM

----- 1 listed, 0 filtered -----
```

After four minutes, check the debugs again. Note that the FSSO users are cleared:

```
...
2021-06-10 16:24:57 authd_timer_run: 3 expired
2021-06-10 16:24:57 authd_epoll_work: timeout 60000
2021-06-10 16:24:59 [fsae_db_logoff:248]: vfid 0, ip 10.1.100.188, id(0), port_range_sz (0)
2021-06-10 16:24:59 [authd_fp_notify_logoff:444]: vfid 0, ip 10.1.100.188, id 0
2021-06-10 16:24:59 [authd_fp_on_user_logoff:412]: vfid 0, ip 10.1.100.188
2021-06-10 16:24:59 authd_epoll_work: timeout 21990

diagnose firewall auth l

----- 0 listed, 0 filtered -----
```

After the connection to the collector agent is restored, all users remain in the list of authenticated users and are synchronized to the FortiGate. The users do not need to log in again for authentication.
Authentication policy extensions

By default, unauthenticated traffic is permitted to fall to the next policy. This means that unauthenticated users are only forced to authenticate against a policy when there are no other matching policies. To avoid this, you can force authentication to always take place.

To set that authentication requirement:

```
config user setting
 set auth-on-demand {always | implicitly}
end
```

Where:

<table>
<thead>
<tr>
<th>always</th>
<th>Always trigger firewall authentication on demand.</th>
</tr>
</thead>
<tbody>
<tr>
<td>implicitly (default)</td>
<td>Implicitly trigger firewall authentication on demand. This is the default setting (and the behavior in FortiOS 6.0 and earlier).</td>
</tr>
</tbody>
</table>

In the following example, authentication is required; traffic that would otherwise be allowed by the second policy is instead blocked by the first policy.

To use forced authentication:

```
config user setting
 set auth-on-demand always
end
config firewall policy
 edit 1
 set name "QA to Database"
 set srcintf "port10"
 set dstintf "port9"
 set srcaddr "QA_subnet"
 set dstaddr "Database"
 set action accept
 set schedule "always"
 set service "ALL"
 set fsso disable
 set groups "qa_group"
 set nat enable
 next
 edit 2
 set name "QA to Internet"
 set srcintf "port10"
 set dstintf "port9"
 set srcaddr "QA_subnet"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set fsso disable
 set nat enable
```
Configuring the FortiGate to act as an 802.1X supplicant

The FortiGate can be configured to act as a 802.1X supplicant. The settings can be enabled on the network interface in the CLI. The EAP authentication method can be either PEAP or TLS using a user certificate.

```
config system interface
 edit <interface>
 set eap-suppliant {enable | disable}
 set eap-method {peap | tls}
 set eap-identity <identity>
 set eap-password <password>
 set eap-ca-cert <CA_cert>
 set eap-user-cert <user_cert>
 next
end
```

Example

In this example, the FortiGate connects to an L3 switch that is not physically secured. All devices that connect to the internet must be authenticated with 802.1X by either a username and password (PEAP), or a user certificate (TLS). Configuration examples for both EAP authentication methods on port33 are shown.

To configure EAP authentication with PEAP:

1. Configure the interface:

```
config system interface
 edit "port33"
 set vdom "vdom1"
 set ip 7.7.7.2 255.255.255.0
 set allowaccess ping https ssh snmp http telnet fgfm radius-acct probe-response
fabric
```
set stpforward enable
set type physical
set snmp-index 42
set eap-suppliant enable
set eap-method peap
set eap-identity "test1"
set eap-password **********

next
end

2. Verify the interface’s PEAP authentication details:

# diagnose test app eap_supp 2
Interface: port33
status:Authorized
method: PEAP
identity: test1
cacert:
client_cert:
private_key:
last_eapol_src =70:4c:a5:3b:0b:c6

Traffic is able to pass because the status is authorized.

To configure EAP authentication with TLS:

1. Configure the interface:

config system interface
edit "port33"
    set vdom "vdom1"
    set ip 7.7.7.2 255.255.255.0
    set allowaccess ping https ssh snmp http telnet fgfm radius-acct probe-response
fabric
    set stpforward enable
    set type physical
    set snmp-index 42
    set eap-suppliant enable
    set eap-method tls
    set eap-identity "test2@fortiqa.net"
    set eap-ca-cert "root_G_CA_Cert_1.cer"
    set eap-user-cert "root_eap_client_global.cer"

next
end

2. Verify the interface’s TLS authentication details:

# diagnose test application eap_supp 2
Interface: port33
status:Authorized
method: TLS
identity: test2@fortiqa.net
cacert: /etc/cert/ca/root_G_CA_Cert_1.cer
client_cert: /etc/cert/local/root_eap_client_global.cer
private_key: /etc/cert/local/root_eap_client_global.key
last_eapol_src =70:4c:a5:3b:0b:c6

Traffic is able to pass because the status is authorized.
Include usernames in logs

Usernames can be included in logs, instead of just IP addresses. The benefits of doing this include:

- FortiOS monitors and FortiAnalyzer reports display usernames instead of IP addresses, allowing you to quickly determine who the information pertains to. Without the usernames, it is difficult to correlate the IP addresses with specific users.
- User activity can be correlated across multiple IP addresses.
  
  For example, if DHCP is used a user might receive different IP addresses every day, making it difficult to track a specific user by specifying an IP address as the match criterion.

In this example, a collector agent (CA) is installed on a Windows machine to poll a domain controller (DC) agent (see FSSO on page 1913 for more information). On the FortiGate, an external connector to the CA is configured to receive user groups from the DC agent. The received group or groups are used in a policy, and some examples of the usernames in logs, monitors, and reports are shown.

Install and configure FSSO Agent

To download the FSSO agent:

1. Sign in to your FortiCloud account.
2. Go to Support > Firmware Download and select the Download tab.
3. Browse to the appropriate directory for the version of the FSSO agent that you need to download.

4. Click HTTPS to download the appropriate FSSO_Setup file.
To install the FSSO agent:

1. Run the FSSO_Setup file with administrator privileges.
2. Click Next, accept the terms of the license agreement, and click Next again.
3. Select the installation directory, or use the default location, then click Next.
4. Enter the User Name and Password, then click Next.

5. On the Install Options, select Advanced, then click Next.

6. Click Install.
7. After the FSSO Agent installs, run Install DC Agent.
8. Update the Collector Agent IP address and listening port as needed, then click Next.

9. Select the domain, in this example LAB:lab.local, then click Next.
10. Set the Working Mode to DC Agent Mode, then click Next to install the agent.
11. After the DC agent mode installation finishes, Reboot the DC to complete the setup.

To configure the FSSO agent:

1. Open the FSSO agent.
2. Enable *Require authentication from FortiGate* and enter a password for FortiGate authentication.
3. Click *Set Group Filters*, and create a default group filter to limit the groups that are sent to the FortiGate.
4. Click *Save&close*.

**Configure the FortiGate**

Create an external connector to the FSSO agent to receive the AD user groups. Add the user group or groups as the source in a firewall policy to include usernames in traffic logs. Enable security profiles, such as web filter or antivirus, in the policy to include the usernames in UTM logs.

Event logs include usernames when the log is created for a user action or interaction, such as logging in or an SSL VPN connection.
To create an external connector:

1. On the FortiGate, go to Security Fabric > External Connectors.
2. Click Create New and select FSSO Agent on Windows AD.
3. Set the Primary FSSO agent to the previously configured Collector Agent IP address and authentication password.

4. Click OK
   The connector shows a green arrow when the connection is established, and a number in the top right indicating the number of AD groups received from the DC agent. Edit the connector to view the user groups.

To configure a policy with an imported user group and web filter in the GUI:

1. Go to Policy & Objects > Firewall Policy.
2. Edit an existing policy, or create a new one. See Firewall policy on page 760 for information.
3. Add the FSSO groups or groups as sources:
   a. Click in the Source field.
   b. Select the User tab.
   c. Select the group or groups.
d. Click Close.

4. Under Security Profiles, enable Web Filter and select a profile that monitors or blocks traffic, such as the monitor-all profile. See Web filter on page 1124 for information.

5. Click OK.

To configure a policy with an imported user group and web filter in the CLI:

```
config firewall policy
 edit 0
 set name "LAN to WAN"
 set srcintf "port5"
 set dstintf "port1"
 set action accept
 set srcaddr "LAN"
 set dstaddr "all"
 set schedule "always"
 set service "ALL"
 set utm-status enable
 set ssl-ssh-profile "certificate-inspection"
 set webfilter-profile "monitor-all"
 set logtraffic all
 set nat enable
 set fss0-groups "CN=USERS,DC=LAB,DC=LOCAL"
next
end
```

Log, monitor, and report examples

For more information about logs, see the FortiOS Log Message Reference.

Traffic logs:

Without a web filter profile applied:

```
date=2022-05-24 time=13:50:47 eventtime=1653425447 time=13:50:47...218a843c5b5"
```
policyname="LAN to WAN" user="USER2" authserver="Corp_Users" service="PING" trandisp="snat" transip=192.168.2.99 transport=0 duration=0 sentbyte=0 rcvdbyte=0 sentpkt=0 rcvdpkt=0 appcat="unscanned"

With a web filter profile applied:

date=2022-05-25 time=12:16:54 id=7101754911016091650 itime=2022-05-25 12:16:07 euid=1039 epid=1037 dsteuid=3 dstepid=101 type=umt subtype=webfilter level=notice action=closed utmaction=allow policyid=15 sessionid=683 srcip=10.1.0.11 dstip=104.26.1.188 transip=192.168.2.99 srcport=64494 dstport=443 transport=64494 trandisp=snat duration=7 proto=6 sentbyte=1855 rcvdbyte=18631 sentpkt=16 rcvdpkt=21 logid=0000000013 user=USER2 group=CN=USERS,DC=LAB,DC=LOCAL service=HTTPS app=HTTPS appcat=unscanned srcintfrole=lan dstintfrole=wan srcsrid=683 srcswversion=Workstation srcfamily=Virtual Machine srcsrmac=00:0c:29:5e:f5:25 mastersrcmac=00:0c:29:5e:f5:25 srcchwvendor=VMware srchwversion=Reserved srcintf=port5 dstintf=port1 authserver=Corp_Users policyname=LAN to WAN hostname=www.yellow.com catdesc=Reference tz=-0700 devid=FGVM01TM22000459 vd=root dtime=2022-05-25 12:16:54 itime_t=1653506167

UTM log:


Event log:

date=2019-05-13 time=11:20:54 logid=0100032001 type="event" subtype="system" level="information" vd="vdom1" eventtime=155777165487081441 logdesc="Admin login successful" sn="1557771654" user="admin" ui="ssh(172.16.1.1)" method="ssh" srcip=172.16.200.254 dstip=172.16.200.2 action="login" status="success" reason="none" profile="super_admin" msg="Administrator admin logged in successfully from ssh (172.16.200.254)"

FortiOS monitors:

The FortiView Web Sites by Bytes monitor shows a list of visited websites. Double click a specific domain (or manually create a filter), such as microsoft.com, to see a breakdown of the usernames and IP addresses that visited that domain. See Monitors on page 106 for more information.
FortiAnalyzer reports:

The User Detailed Browsing Log report require a username or IP address to run. If a username is used, the report includes logs related to that user regardless of their IP address. For example, the following report show two source IP addresses:

The Web Usage report includes all usernames and IP addresses that match the specified conditions, like most visited categories.
See Reports in the FortiAnalyzer Administration guide for more information.
Wireless configuration

See the FortiWiFi and FortiAP Configuration Guide.
Switch Controller

Use the Switch Controller function, also known as FortiLink, to remotely manage FortiSwitch units. In the commonly-used layer 2 scenario, the FortiGate that is acting as a switch controller is connected to distribution FortiSwitch units. The distribution FortiSwitch units are in the top tier of stacks of FortiSwitch units and connected downwards with Convergent or Access layer FortiSwitch units. To leverage CAPWAP and the Fortinet proprietary FortiLink protocol, set up data and control planes between the FortiGate and FortiSwitch units.

FortiLink allows administrators to create and manage different VLANs, and apply the full-fledged security functions of FortiOS to them, such as 802.1X authentication and firewall policies. Most of the security control capabilities on the FortiGate are extended to the edge of the entire network, combining FortiGate, FortiSwitch, and FortiAP devices, and providing secure, seamless, and unified access control to users.

See FortiSwitch devices managed by FortiOS.
System

This topic contains information about FortiGate administration and system configuration that you can do after installing the FortiGate in your network.

Basic system settings

Administrators

By default, FortiGate has an administrator account with the username admin and no password. See Administrators on page 1939 for more information.

Administrator profiles

An administrator profile defines what the administrator can see and do on the FortiGate. See Administrator profiles on page 1951 for more information.

Password policy

Set up a password policy to enforce password criteria and change frequency. See Password policy on page 1948 for more information.

Interfaces

Physical and virtual interface allow traffic to flow between internal networks, and between the internet and internal networks. See Interfaces on page 135 for more information.

Advanced system settings

SNMP

The simple network management protocol (SNMP) allows you to monitor hardware on your network. See SNMP on page 2126 for more information.

DHCP server

You can configure one or more DHCP servers on any FortiGate interface. See DHCP server on page 287 for more information.
VDOM

You can use virtual domains (VDOMs) to divide a FortiGate into multiple virtual devices that function independently. See Virtual Domains on page 1996 for more information.

High availability

You can configure multiple FortiGate devices, including private and public cloud VMs, in HA mode. See High Availability on page 2032 for more information.

Certificates

You can manage certificates on the FortiGate. See Certificates on page 2166 for more information.

Operating modes

A FortiGate or VDOM (in multi-vdom mode) can operate in either NAT/route mode or transparent mode.

NAT/route mode

The FortiGate or VDOM is installed as a gateway or router between multiple networks, such as a private network and the internet. One function of NAT/route mode is to allow the FortiGate to hide the IP addresses on the private network using NAT. NAT/route mode can also be used to connect to multiple ISPs in an SD-WAN setup, and to route traffic between different networks.

By default, new VDOMs are set to NAT/route operation mode.

Transparent mode

The FortiGate or VDOM operates in layer 2 to forward traffic between network devices such as routers, firewalls, and switches. For example, it can be installed inline between a router and a switch to perform security scanning without changing the network topology or modifying the IP addresses. When you add a FortiGate that is in transparent mode to a network, it only needs to be provided with a management IP address in order to access the device. It is recommended that a dedicated interface is used to connect to the management network in transparent mode.

The following topology is an example of a transparent mode FortiGate inserted inline between a router and a switch:
Using transparent mode VDOMs is recommended when multiple VLANs pass through the FortiGate. Otherwise, they must be separated into different forwarding domains within the same VDOM.

Changing modes

The following is a sample configuration for changing from NAT/route operation mode to transparent operation mode in the CLI:

```
config system settings
 set opmode transparent
 set manageip <IP_address>
 set gateway <gateway_address>
end
```

The gateway setting is optional. However, once the operation mode is changed from NAT/route to transparent, the gateway configuration is found under the static router settings:

```
config router static
 edit <seq-num>
 set gateway <IP_address>
 next
end
```

The following is a sample configuration for changing from transparent operation to NAT/route operation mode in the CLI:

```
config system settings
 set opmode nat
 set ip <IP_address>
 set device <interface>
 set gateway <gateway_address>
end
```
The IP and device settings are mandatory. Once the operation mode is changed from transparent to NAT/route, the IP address configuration is found under the corresponding interface settings:

```plaintext
cfg system interface
edit <interface>
 set ip <IP_address>
next
end
```

The gateway setting is optional. However, once the operation mode is changed, the gateway configuration is found under the static router settings:

```plaintext
cfg router static
edit <seq-num>
 set gateway <IP_address>
 device <interface>
next
end
```

---

**Administrators**

By default, FortiGate has an administrator account with the username `admin` and no password. To prevent unauthorized access to the FortiGate, this account must be protected with a password. Additional administrators can be added for various functions, each with a unique username, password, and set of access privileges.

The following topics provide information about administrators:

- Local authentication on page 1939
- Remote authentication for administrators on page 1940
- Administrator account options on page 1943
- REST API administrator on page 1945
- SSO administrators on page 1947
- FortiCloud SSO on page 1947
- Password policy on page 1948
- Public key SSH access on page 1950

**Local authentication**

By default, FortiGate has one super admin named `admin`. You can create more administrator accounts with different privileges.

**To create an administrator account in the GUI:**

1. Go to `System > Administrators`.
2. Select `Create New > Administrator`. 
3. Specify the Username.

Do not use the characters < > ( ) # " ' in the administrator username.
Using these characters in an administrator username might have a cross site scripting (XSS) vulnerability.

4. Set Type to Local User.
5. Set the password and other fields.
6. Click OK.

To create an administrator account in the CLI:

```
config system admin
 edit <admin_name>
 set accprofile <profile_name>
 set vdom <vdom_name>
 set password <password for this admin>
 next
end
```

Remote authentication for administrators

Administrators can use remote authentication, such as LDAP, RADIUS, and TACACS+ to connect to the FortiGate.

Configuring remote authentication with an LDAP server is shown. For more information about configuring LDAP, see Configuring an LDAP server on page 1805.

For information about configuring RADIUS or TACACS+ servers, see Configuring a RADIUS server on page 1821 and TACACS+ servers on page 1852. To use a RADIUS or TACACS+ server for remote authentication, configure the server, and then add it to the user group instead of the LDAP server.

Local logins can also be restricted when remote authentication servers are available, see Restricting logins from local administrator accounts when remote servers are available on page 1943.

Configuring remote authentication for administrators using LDAP includes the following steps:

1. Configuring the LDAP server on page 1940
2. Adding the LDAP server to a user group on page 1941
3. Configuring the administrator account on page 1941

Configuring the LDAP server

To configure the LDAP server in the GUI:

1. Go to User & Authentication > LDAP Servers and click Create New.
2. Enter the server Name and Server IP/Name.
3. Enter the Common Name Identifier and Distinguished Name.
4. Set the Bind Type to Regular and enter the Username and Password.
5. Click OK.
To configure the LDAP server in the CLI:

cfg user ldap
  edit <name>
    set server <server_ip>
    set cnid "cn"
    set dn "dc=XYZ,dc=fortinet,dc=COM"
    set type regular
    set username "cn=Administrator,dc=XYA, dc=COM"
    set password <password>
  next
end

Adding the LDAP server to a user group

After configuring the LDAP server, create a user group that includes that LDAP server.

To create a user group in the GUI:

1. Go to User & Authentication > User Groups and click Create New.
2. Enter a Name for the group.
3. In the Remote groups section, select Create New.
4. Select the Remote Server from the dropdown list.
5. Click OK.

To create a user group in the CLI:

cfg user group
  edit <name>
    set member <ldap_server_name>
  next
end

Configuring the administrator account

After configuring the LDAP server and adding it to a user group, create a new administrator. For this administrator, instead of entering a password, use the new user group for authentication.

A remote authentication server can allow authentication of either a single user or any user from a specified group.

Public key infrastructure (PKI) administrator authentication requires a PKI user instead of a remote server. For information about creating a PKI user, see Configuring a PKI user on page 1903.

To create an administrator to match a single user in the GUI:

1. Go to System > Administrators and click Create New > Administrator.
2. Specify the Username.
   This username is used when the administrator logs in, and is what FortiOS sends to the remote authentication server for authorization.
3. Set Type to Match a user on a remote server group.
4. In Remote User Group, select the user group that you created.
5. Select an Administrator Profile.
6. Enter a Backup Password, to be used if the remote authentication server is unreachable.
7. Click OK.

To create an administrator match a single user in the CLI:

```
config system admin
 edit <name>
 set remote-auth enable
 set accprofile super_admin
 set remote-group <ldap_group_name>
 set password **********
 next
end
```

To create an administrator to match all users in a remote server group in the GUI:
1. Go to System > Administrators and click Create New > Administrator.
2. Specify the Username.
   This username is only used to identify this administrator group. Administrators can log in with any username in the remote user group.
3. Set Type to Match all users in a remote server group.
4. In Remote User Group, select the user group that you created.
5. Select an Administrator Profile.
6. Click OK.

To create an administrator to match all users in a remote server group in the CLI:

```
config system admin
 edit <name>
 set remote-auth enable
 set accprofile super_admin
 set wildcard enable
 set remote-group <ldap_group_name>
 next
end
```

To create an administrator that uses a PKI group in the GUI:
1. Go to System > Administrators and click Create New > Administrator.
2. Specify the Username.
3. Set Type to Use public key infrastructure (PKI) group.
4. In Remote User Group, select the user group that you created.
5. Select an Administrator Profile.
6. Click OK.
To create an administrator that uses a PKI group in the CLI:

```plaintext
config system admin
 edit <name>
 set remote-auth enable
 set accprofile super_admin
 set peer-group <pki_group_name>
 next
end
```

Restricting logins from local administrator accounts when remote servers are available

Logins from local administrator accounts can be restricted when remote servers are available. When enabled, FortiOS will check if all of the remote servers used by administrators are down before allowing a local administrator to log in. This option is applied globally, and is disabled by default.

To restrict local administrator authentication when a remote authentication server available:

```plaintext
config system global
 set admin-restrict-local enable
end
```

Administrator account options

Options to further define the access and abilities of an administrator account include:

- Multi-factor authentication on page 1943
- Restricting logins to trusted hosts on page 1945
- Restricting administrators to guest account provisioning on page 1945
- Global and VDOM administrators on page 1945

Multi-factor authentication

Multi-factor authentication (MFA) requires authenticating administrators to supply more than one factor to identify themselves in addition to their password, such as a FortiToken.

Before enabling MFA, it is recommended that you create second administrator account that is configured to guarantee administrator access to the FortiGate if you are unable to authenticate on the main account for any reason.

Multi-factor authentication options include:

- FortiToken
- FortiToken Cloud
- Email
- SMS


**FortiToken**

**To associate a FortiToken to an administrator account using the GUI:**

1. Ensure that you have successfully added your FortiToken serial number to FortiOS and that its status is *Available*.
2. Go to System > Administrators. Edit the admin account. This example assumes that the account is fully configured except for MFA.
3. Enable *Two-factor Authentication* and for *Authentication Type*, select *FortiToken*.
4. From the *Token* dropdown list, select the FortiToken serial number.
5. In the *Email Address* field, enter the administrator's email address.
6. Click OK.

For a mobile token, click *Send Activation Code* to send the activation code to the configured email address. The admin uses this code to activate their mobile token. You must have configured an email service in *System > Settings* to send the activation code.

**To associate a FortiToken to an administrator account using the CLI:**

```
config system admin
edit <username>
 set password "myPassword"
 set two-factor fortitoken
 set fortitoken <serial_number>
 set email-to "username@example.com"
next
end
```

The *fortitoken* keyword is not visible until you select *fortitoken* for the *two-factor* option.

Before you can use a new FortiToken, you may need to synchronize it due to clock drift.

---

**FortiToken Cloud**

FortiToken Cloud is an Identity and Access Management as a Service (IDaaS) cloud service provided by Fortinet. It enables FortiGate and FortiAuthenticator customers to add MFA for their users using Mobile or Hard tokens.

For more information, see Getting started—FGT-FTC users in the FortiToken Cloud Administration Guide.

**Email**

Enter an email address to send an MFA code to that address.

**SMS**

Enable SMS then select the *Country Dial Code* and enter the *Phone Number* (*sms-phone* in the CLI) to send an MFA code to.

SMS messages can also be sent to the FortiGuard SMS server or a custom server.
config system admin
   edit "admin"
   ...
   set sms-server {fortiguard | custom}
   set sms-server-custom <string>
   ...
next
end

**Restricting logins to trusted hosts**

Administrator accounts can be configured to only be accessible to a user using a trusted host. You can set a specific IP address for the trusted host, or use a subnet. Up to ten trusted hosts can be specified for an administrator.

When trusted hosts are defined for all of the administrators on the FortiGate, the administrative access on each interface will be restricted to the trusted hosts that are defined for the administrator, except for ping. If ping is enabled on an interface, it works regardless of the trusted hosts.

**Restricting administrators to guest account provisioning**

To simplify guest account creation, an administrator account can be created exclusively for guest user management. This allows new accounts to be created without requiring full administrative access to FortiOS.

When enabling this option, a guest group must be specified for the administrator to provision new accounts to. See Configuring guest user groups on page 1799 for information about creating such a group.

**Global and VDOM administrators**

When a FortiGate is in multi VDOM mode, it can be managed by either global or per-VDOM administrators. Each type of administrator will have a different view of the GUI that corresponds to their role. For more information, see Administrator roles and views on page 1998.

For information about configuring per-VDOM administrators, see Create per-VDOM administrators on page 2005.

**REST API administrator**

REST API administrator accounts are used for automated configuration, backup creation, and monitoring of the FortiGate.

For more information about the REST API, see the Fortinet Development Network (FNDN). Note that an account is required to access the FNDN.

**To create a REST API admin in the GUI:**

1. Go to System > Administrators.
2. Select Create New > REST API Admin.
3. Configure the administrator:

<table>
<thead>
<tr>
<th>Username</th>
<th>The username of the administrator.</th>
</tr>
</thead>
</table>

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
Do not use the characters `< > ( ) # " '` in the administrator username. Using these characters in an administrator username might have a cross site scripting (XSS) vulnerability.

<table>
<thead>
<tr>
<th>Administrator Profile</th>
<th>Where permissions for the REST API administrator are defined. A REST API administrator should have the minimum permissions required to complete the request.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKI Group</td>
<td>Certificate matching is supported as an extra layer of security. Both the client certificate and token must match to be granted access to the API.</td>
</tr>
<tr>
<td>CORS Allow Origin</td>
<td>Cross Origin Resource Sharing (CORS) allows third-party web apps to make API requests to the FortiGate using the token.</td>
</tr>
<tr>
<td>Trusted Hosts</td>
<td>The following can be used to restrict access to FortiGate API: • Multiple trusted hosts/subnets can be configured • IPv6 hosts are supported • Allow all (0.0.0.0/0) is not allowed You need your Source Address to create the trusted host.</td>
</tr>
</tbody>
</table>

4. Click OK.

An API token is generated. Make note of the token, as it is only shown once.

To create a REST API admin in the CLI:

1. Create the REST API administrator:

   ```
 config system api-user
 edit "api-admin"
 set comments <string>
 set api-key ************
 set accprofile "API profile"
 set vdom "root"
 config trusthost
 edit 1
 set ipv4-trusthost <class_ip&net_netmask>
 next
 ...
 end
 next
 end
   ```

2. Generate the API token:

   ```
 execute api-user generate-key <API username>
   ```

   Make note of the token, as it is only shown once.

---

By default, The SSO administrator account can only be assigned the `admin_no_access` or `super_admin_readonly` profile. You can define a new administrator profile with the required permissions for the account. For example, you could use a specific API user to query the FortiGate for just their own status. In that case, the profile would be configured as read-only.
SSO administrators

SSO administrators are automatically created when the FortiGate acts as a SAML service provider (SP) with SAML Single Sign-On enabled in the Security Fabric settings.

On the system login page, an administrator can log in with their username and password against the root FortiGate acting as the identity provider (IdP) in the Security Fabric. After the first successful log in, this user is added to the administrators table (System > Administrators under Single Sign-On Administrator). The default profile selected is based on the SP settings (Default admin profile). See Configuring a downstream FortiGate as an SP on page 2321 for more information.

SSO administrators can be manually configured in FortiOS.

To manually configure an SSO administrator in the GUI:

1. Go to System > Administrators and click Create New > SSO Admin.
2. Enter the username.
3. Select an administrator profile.
4. Click OK.

To manually configure an SSO administrator in the CLI:

```
config system sso-admin
edit <name>
 set accprofile <profile>
 set vdom <vdom>
next
end
```

FortiCloud SSO

By default, the FortiGate is configured to allow administrators to log in using FortiCloud single sign-on. Both IAM and non-IAM users on the FortiCloud support portal are supported. Non-IAM users must be the FortiCloud account that the FortiGate is registered to.

To configure an IAM user in FortiCloud:

1. Log in to your FortiCloud account at support.fortinet.com.
2. Select Services > IAM and click Add IAM user.
3. See Adding an IAM user in the FortiCloud Identity & Access Management (IAM) guide for more information. The Portal Permissions for SupportSite, IAMPortal, and FortiOS SSO must be configured to allow portal access for administrators.

To manually enable FortiCloud single sign-on in the GUI:

1. Log in to the FortiGate and go to System > Settings.
2. In the Administration Settings section, enable Allow administrative login using FortiCloud SSO.
3. Click Apply.
To manually enable FortiCloud single sign-on in the CLI:

```
config system global
 set admin-forticloud-sso-login {enable | disable}
end
```

To log in to the FortiGate with the FortiCloud user:

1. Go to the FortiGate log in screen.
2. Click Sign in with FortiCloud. The FortiCloud log in page opens.
3. Enter the FortiCloud account credentials and click Login.
   You are logged in to the FortiOS GUI. The SSO username is shown in the top right corner of the GUI.

Password policy

Brute force password software can launch more than just dictionary attacks. It can discover common passwords where a letter is replaced by a number. For example, if `p4ssw0rd` is used as a password, it can be cracked.

Using secure passwords is vital for preventing unauthorized access to your FortiGate. When changing the password, consider the following to ensure better security:

- Do not use passwords that are obvious, such as the company name, administrator names, or other obvious words or phrases.
- Use numbers in place of letters, for example: `pass0rd`.
- Administrator passwords can be up to 64 characters.
- Include a mixture of numbers, symbols, and upper and lower case letters.
- Use multiple words together, or possibly even a sentence, for example: `correcthorsebatterystaple`.
- Use a password generator.
- Change the password regularly and always make the new password unique and not a variation of the existing password. For example, do not change from `password` to `password1`.
- Make note of the password and store it in a safe place away from the management computer, in case you forget it; or ensure at least two people know the password in the event one person becomes unavailable. Alternatively, have two different admin logins.
FortiGate allows you to create a password policy for administrators and IPsec pre-shared keys. With this policy, you can enforce regular changes and specific criteria for a password policy, including:

- The minimum length, between 8 and 64 characters.
- If the password must contain uppercase (A, B, C) and/or lowercase (a, b, c) characters.
- If the password must contain numbers (1, 2, 3).
- If the password must contain special or non-alphanumeric characters: !, @, #, $, %, ^, &, *, (, and )
- Where the password applies (admin or IPsec or both).
- The duration of the password before a new one must be specified.
- The minimum number of unique characters that a new password must include.

If you add a password policy or change the requirements on an existing policy, the next time that administrator logs into the FortiGate, the administrator is prompted to update the password to meet the new requirements before proceeding to log in.

For information about setting passwords, see Default administrator password on page 1976.

**To create a system password policy the GUI:**

1. Go to **System > Settings**.
2. In the **Password Policy** section, change the **Password scope** to **Admin**, **IPsec**, or **Both**.
3. Configure the password policy options.

![System Settings](image)

4. Click **Apply**.

**To create a system password policy the CLI:**

```
config system password-policy
 set status {enable | disable}
 set apply-to {admin-password | ipsec-preshared-key}
 set minimum-length <8-128>
 set min-lower-case-letter <0-128>
 set min-upper-case-letter <0-128>
 set min-non-alphanumeric <0-128>
 set min-number <0-128>
 set min-change-characters <0-128>
 set expire-status {enable | disable}
 set expire-day <1-999>
 set reuse-password {enable | disable}
end
```
## Public key SSH access

Public-private key pairs can be used to authenticate administrators connecting to the CLI using an SSH client. These keys can be RSA, ECDSA, or EdDSA.

Weigh the pros and cons of using key-pair authentication, versus passwords, when considering their use:

<table>
<thead>
<tr>
<th>Pros</th>
<th>Key-pair</th>
<th>Password</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>More secure (higher complexity)</td>
<td>Easy to remember</td>
</tr>
<tr>
<td></td>
<td>Restricts logon to hosts that have the private key</td>
<td>Easy to update</td>
</tr>
<tr>
<td></td>
<td>Never sent to the FortiGate</td>
<td>Can log in from any system</td>
</tr>
<tr>
<td></td>
<td>Can add a password in addition to the key</td>
<td></td>
</tr>
<tr>
<td>Cons</td>
<td>More complex to implement</td>
<td>Might be guessable or brute forced</td>
</tr>
<tr>
<td></td>
<td>The private key is only as secure as the system storing it</td>
<td>Could be reused and compromised on another system</td>
</tr>
<tr>
<td></td>
<td>More complicated to train users and administrators to use keys</td>
<td>Might be stored in plain text on an authenticating device (This does not apply to FortiGates)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Can be phished or observed if written down</td>
</tr>
</tbody>
</table>

Key-pair authentication is often implemented when connecting to the FortiGate without any human interaction, such as when using a script. The script can leverage existing mechanisms to secure private keys, instead of trying to develop a way to securely store a username and password.

### Generating the key pair

Key pairs can be generated and added in multiple different ways. This example shows generating a key pair using **PuTTY Key Generator** and adding the private key to the endpoint using **PuTTY Pageant**.

#### To create the key pair using PuTTY:

1. Download and install PuTTY.
2. Run *PuTTYgen.exe*.
3. Set *Type of key to generate* to *RSA, ECDSA, or EdDSA*.
4. Click *Generate*, then move the mouse cursor around in the blank space to generate randomness while the keys are generated.
5. Save both the public and private keys. Optionally, a key passphrase can be entered to protect the private key.

#### To add the public key to the FortiGate:

1. Delete the *Key comment*, then copy the public key from the *PuTTY Key Generator*.
   
   Conversely, you can also open the saved public key in Notepad, remove the line breaks from the key, then remove extraneous lines:
--- BEGIN SSH2 PUBLIC KEY -----
Comment: "rsa-key-2022XXXX"
--- END SSH2 PUBLIC KEY -----

2. Add the key to the FortiGate:

    config system admin
    edit <admin>
    set ssh-public-key1 "<key_type> <key_value>"
    next
    end

Where `<key_value>` is the copied key, and `<key_type>` depends on the type of key that was generated:

<table>
<thead>
<tr>
<th>Key Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSA</td>
<td>ssh-rsa</td>
</tr>
<tr>
<td>ECDSA</td>
<td>ecdsa-sha2-nistp256</td>
</tr>
<tr>
<td></td>
<td>ecdsa-sha2-nistp384</td>
</tr>
<tr>
<td></td>
<td>ecdsa-sha2-nistp521</td>
</tr>
<tr>
<td>EdDSA</td>
<td>ssh-ed25519</td>
</tr>
</tbody>
</table>

To add the private key to the endpoint:

1. Open PuTTY Pageant.
2. Click Add Key or Add Key (encrypted) and select the previously saved private key.
3. Click Close.

You can now log in to the FortiGate on an SSH connection without using a password.

If using PuTTY, the username can be entered under Connection > Data in the Auto-login username field.

---

The generated keys can also be used in a certificate to authenticate with the FortiGate. See Administrative access using certificates on page 2187 for information about generating and using certificates for administrative authentication.

---

**Administrator profiles**

Administrator profiles define what the administrator can do when logged into the FortiGate. When you set up an administrator account, you also assign an administrator profile which dictates what the administrator sees. Depending on the nature of the administrator’s work, access level or seniority, you can allow them to view and configure as much or as little as is required. Access to CLI diagnose commands can also be disabled for global and VDOM level administrators.

By default, the FortiGate has an `admin` administrator account that uses the `super_admin` profile.
super_admin profile

This profile has access to all components of FortiOS, including the ability to add and remove other system administrators. For certain administrative functions, such as backing up and restoring the configuration, super_admin access is required. To ensure that there is always a method to administer the FortiGate, the super_admin profile cannot be deleted or modified.

💡 Lower level administrator profiles cannot backup or restore the FortiOS configuration.

The super_admin profile is used by the default admin account. It is recommended that you add a password and rename this account once you have set up your FortiGate. In order to rename the default account, a second admin account is required.

Creating customized profiles

To create a profile in the GUI:

1. Go to System > Admin Profiles and click Create New.
2. Configure the following settings:
   - Name
   - Access permissions
   - Usage of CLI diagnose commands
   - Override idle timeout
3. Click OK.

To create a profile in the CLI:

```bash
config system accprofile
edit <name>
 set secfabgrp {none | read | read-write}
 set ftviewgrp {none | read | read-write}
 set authgrp {none | read | read-write}
 set sysgrp {none | read | read-write}
 set netgrp {none | read | read-write}
 set loggrp {none | read | read-write}
 set fwgrp {none | read | read-write}
 set vpngrpv {none | read | read-write}
 set utmgrpv {none | read | read-write}
 set wanoptgrpv {none | read | read-write}
 set wifi {none | read | read-write}
 set admintimeout-override {enable | disable}
 set system-diagnostics {enable | disable}
next
end
```
Edit profiles

To edit a profile in the GUI:

1. Go to System > Admin Profiles.
2. Select the profile to be edited and click Edit.
3. Make the required changes.
4. Click OK to save any changes.

To edit a profile in the CLI:

```bash
config system accprofile
 edit "sample"
 set secfabgrp read
 next
end
```

Delete profiles

To delete a profile in the GUI:

1. Go to System > Admin Profiles.
2. Select the profile to be deleted and click Delete.
3. Click OK.

To delete a profile in the CLI:

```bash
config system accprofile
 delete "sample"
end
```

Fabric Management

The Fabric Management page allows administrators to manage the firmware running on each FortiGate, FortiAP, and FortiSwitch in the Security Fabric, and to authorize and register these Fabric devices.

The Fabric Management page displays a summary of devices in the Security Fabric that includes:

- Total number of devices in the Fortinet Security Fabric and the types of devices
- Upgrade status
- Device name
- Device status
- Registration status
- Firmware version and maturity level
- Upgrade status

From the Fabric Management page, administrators can perform the following actions:
### Upgrade

Use to upgrade firmware for the selected device.

The *Upgrade* option uses released firmware images from FortiGuard. Alternately you can download a firmware file from the Fortinet Customer Service & Support website, and upload it for the upgrade process.

See Upgrading individual device firmware on page 1957 and Upgrading individual device firmware by following the upgrade path (federated update) on page 1959.

### Fabric Upgrade

Use to upgrade firmware for the root FortiGate as well as all Fabric devices. You can also use this option to upgrade firmware for a non-Security Fabric FortiGate with managed FortiSwitch and FortiAP devices.

The *Fabric Upgrade* option uses released firmware images from FortiGuard.

See Upgrading all device firmware on page 1960 and Upgrading all device firmware by following the upgrade path (federated update) on page 1962.

### Register

Use the *Register* option to register a selected device to FortiCare.

The FortiGate, and then its service contract, must be registered to have full access to Fortinet Customer Service and Support, and FortiGuard services. The FortiGate can be registered in either the FortiGate GUI or the FortiCloud support portal. The service contract can be registered from the FortiCloud support portal.

See also Registration on page 55.

### Authorize

Use the *Authorize* option to authorize a selected device for use. See Authorizing devices on page 1965.

Before you upgrade FortiGate firmware, it is recommended to learn about firmware updates and firmware maturity levels. See About firmware installations on page 1954 and Firmware maturity levels on page 1955.

This section also includes the following topics:

- Firmware upgrade notifications on page 1967
- Downloading a firmware image on page 1968
- Testing a firmware version on page 1970
- Installing firmware from system reboot on page 1971
- Restoring from a USB drive on page 1973
- Using controlled upgrades on page 1973
- Downgrading individual device firmware on page 1974

---

**About firmware installations**

Fortinet periodically updates the FortiGate firmware to include new features and resolve important issues. After you have registered your FortiGate unit, firmware updates are available from FortiGuard and from the Fortinet Customer Service & Support website.

Installing a new firmware image replaces the current antivirus and attack definitions, along with the definitions included with the firmware release that is being installing. After you install new firmware, make sure that the antivirus and attack definitions are up to date.

It is recommended to back up your configuration before making any firmware changes. You will be prompted to back up your configuration as part of the upgrade process. See also Configuration backups on page 65.
Before you install any new firmware, follow the below steps:

1. Understand the maturity level of the current and target firmware releases to help you determine whether to upgrade. See Firmware maturity levels on page 1955.
3. Review the Supported Upgrade Paths.
4. Download a copy of the currently installed firmware, in case you need to revert to it. See Downloading a firmware image on page 1968 and Downgrading individual device firmware on page 1974 for details.
5. Have a plan in place in case there is a critical failure, such as the FortiGate not coming back online after the update. This could include having console access to the device (Connecting to the CLI on page 29), ensuring that your TFTP server is working (Installing firmware from system reboot on page 1971), and preparing a USB drive (Restoring from a USB drive on page 1973).
6. Back up the current configuration, including local certificates. The upgrade process prompts you to back up the current configuration. See also Configuration backups on page 65 for details.
7. Test the new firmware until you are satisfied that it applies to your configuration. See Testing a firmware version on page 1970 and Using controlled upgrades on page 1973 for details.

Installing new firmware without reviewing release notes or testing the firmware may result in changes to settings and unexpected issues.

Only FortiGate admin users and administrators whose access profiles contain system read and write privileges can change the FortiGate firmware.

Firmware maturity levels

Starting with FortiOS 7.2.0, released FortiOS firmware images use tags to indicate the following maturity levels:

- The Feature tag indicates that the firmware release includes new features.
- The Mature tag indicates that the firmware release includes no new, major features. Mature firmware will contain bug fixes and vulnerability patches where applicable.

Administrators can use the tags to identify the maturity level of the current firmware in the GUI or CLI.

Administrators can view the maturity level of each firmware image that is available for upgrade on the Fabric Management page. When upgrading from mature firmware to feature firmware, a warning message is displayed.

To demonstrate the functionality of this feature, this example uses FortiGates that are running fictitious build numbers.

To view maturity levels for firmware in the GUI:

1. Go to Dashboard > Status. The Firmware field in the System Information widget displays the version with build number and either (Mature) or (Feature).
   
The following is an example of firmware with the (Mature) tag:
The following is an example of firmware with the (Feature) tag:

2. Go to System > Fabric Management. The Firmware Version column displays the version with build number and either (Mature) or (Feature).

The following is an example of firmware with the (Feature) tag:

3. Select a device, and click Upgrade. The FortiGate Upgrade pane is displayed.

4. Click the Latest tab to view the latest available firmware version with its maturity level.

In the following example, the latest firmware version is mature:

5. Click the All Upgrades tab to view all available firmware versions and their maturity levels.

A gray box around the version number and the label Feature identifies feature firmware version. A green box around the version with the label Mature identifies a mature firmware version.
6. Select a version and click Confirm and Backup Config.
   When the firmware version is a feature release, a warning is displayed.

To view maturity levels for firmware in the CLI:

```
get system status
Version: FortiGate-301E v7.4.0,build0810,220307 (GA.F)
...
```

In this example, the Version field includes .F to indicate that the maturity level is feature.

```
get system status
Version: FortiGate-301E v7.2.2,build0610,220304 (GA.M)
...
```

In this example, the Version field includes .M to indicate that the maturity level is mature.

**Upgrading individual device firmware**

To upgrade individual device firmware in the GUI:

1. Log into the FortiGate GUI as the admin administrative user.
2. Go to System > Fabric Management.
3. Select the FortiGate, and click Upgrade. The FortiGate Upgrade pane opens.
4. Click the following tabs to view the available firmware:

   | Latest | Displays the latest, available firmware from FortiGuard. |

**FortiOS 7.2.0 Administration Guide**

Fortinet Inc.
To upgrade individual device firmware in the CLI:

1. Make sure that the TFTP server is running.
2. Copy the new firmware image file to the root directory of the TFTP server.
3. Log in to the CLI.
4. Ping the TFTP server to ensure that the FortiGate can connect to it:
   ```
 execute ping <tftp_ipv4>
   ```
5. Enter the following command to copy the firmware image from the TFTP server to the FortiGate unit:
   ```
 execute restore image tftp <filename> <tftp_ipv4>
   ```
   The FortiGate unit responds with the message:
   ```
 This operation will replace the current firmware version!
 Do you want to continue? (y/n)
   ```
6. Type y. The FortiGate unit uploads the firmware image file, verifies the signature of the firmware image, and determines the firmware maturity level.
   When you are upgrading to a feature firmware image, you are asked to confirm whether to continue with the upgrade.
   When you proceed with the upgrade, the upgrade image is installed and FortiGate restarts. This process takes a few minutes.

   Please wait...
   Connect to tftp server 172.16.200.55 ...
   ##########################################################################
   Get image from tftp server OK.
   Verifying the signature of the firmware image.

   Warning: Upgrading to an image with Feature maturity notation.
   Image file uploaded is marked as a Feature image, are you sure you want to upgrade?
   Do you want to continue? (y/n)y
   Please confirm again. Are you sure you want to upgrade using uploaded file?
   Do you want to continue? (y/n)y
   Checking new firmware integrity ... pass
   Please wait for system to restart.
   Firmware upgrade in progress ...
   Done.
   The system is going down NOW !!

7. Reconnect to the CLI.
8. Update the antivirus and attack definitions:
   `execute update-now`

Upgrading individual device firmware by following the upgrade path (federated update)

When upgrading a FortiGate to firmware that requires multiple builds in the upgrade path, FortiGate can follow the upgrade path to complete the upgrade automatically. This process is sometimes called a federated update. A federated update can be performed immediately or during a scheduled time.

To upgrade individual device firmware by following the upgrade path in the GUI:

1. Log into the FortiGate GUI as the admin administrative user.
2. Go to System > Fabric Management. The Firmware Version column displays the version and either (Feature) or (Mature).
3. Select the FortiGate, and click Upgrade. The FortiGate Upgrade pane opens.
4. Click All Upgrades. The available firmware versions are displayed.
   In this example, the firmware is available for 7.2 and 7.0.

5. Select the target firmware, and view the upgrade options.
   You can instruct FortiOS to follow the upgrade path (referred to as a federated upgrade) or upgrade directly to the selected firmware version.
   In this example, the target firmware is 7.2.0 build 1157(GA), and Follow upgrade path is selected. According to the upgrade path, the device can be automatically upgraded to v7.0.5, but not all the way to 7.2.0.
In the following example, the Directly update to v7.2.0 option is selected.

6. Select Follow upgrade path, and click Confirm and Backup Config. A warning message is displayed.
7. Click Continue to initiate the upgrade.
   The FortiGate unit backs up the current configuration to the management computer, uploads the firmware image file, upgrades to the new firmware version, and restarts. This process takes a few minutes.

Upgrading all device firmware

Use the Fabric Upgrade process to select a firmware version from FortiGuard for the FortiGate. When part of a Security Fabric, the select target firmware is for the root FortiGate.

The target firmware version is used to automatically upgrade firmware for all FortiGate, FortiAP, and FortiSwitch devices. Fabric members or managed devices download the chosen firmware directly from FortiGuard.

A Fabric Upgrade can be performed immediately or during a scheduled time.
To upgrade all device firmware:

1. Log into the FortiGate GUI as the admin administrative user.
2. Go to **System > Fabric Management** and click **Fabric Upgrade**. The **Fabric Upgrade** pane opens, and the following tabs are available:

<table>
<thead>
<tr>
<th>Tab</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latest</td>
<td>Displays the latest, available firmware from FortiGuard.</td>
</tr>
<tr>
<td>All Upgrades</td>
<td>Displays all available firmware from FortiGuard.</td>
</tr>
</tbody>
</table>

3. Select **Latest** or **All Upgrades**, select a target firmware version, and then click **Next**. In this example, **All Upgrades** is selected.

4. Select an upgrade schedule, either **Immediate** or **Custom**. If using **Custom**, enter an upgrade date and time (**Custom** is used in this example).

In a custom upgrade, the configuration backups are saved when the administrator schedules the upgrade. If the scheduled upgrade occurs after further configuration changes are made, the latest changes will not be saved in a new backup configuration file.

5. Click **Next** and review the update schedule. For FortiSwitch, a message appears because no firmware upgrade is currently available.
6. Click **Confirm and Backup Config**. The pane goes into a loading state to wait for all FortiGate configurations to save. Once completed, the pane closes and the device list refreshes to reflect the latest changes.

**Upgrading all device firmware by following the upgrade path (federated update)**

When performing a Fabric upgrade or non-Fabric upgrade under **System > Fabric Management** and choosing a firmware that requires multiple builds in the upgrade path, the FortiGate can follow the upgrade path to complete the upgrade automatically. This process is sometimes called a **federated update**. A federated update can be performed immediately or during a scheduled time.

To demonstrate the functionality of this feature, this example uses FortiGates that are running and upgrading to fictitious build numbers. FortiAPs and FortiSwitches currently cannot follow the upgrade path. They upgrade directly to the target version.

**Example**

In this example, the Security Fabric consists of a root FortiGate (FGT_101E) and a downstream FortiGate (GA_A_1). The FortiGates are currently running FortiOS 7.2.1 (build 0510). The administrator wants to upgrade the firmware to version 7.4.0 (build 0810). When upgrading the firmware on the **Fabric Management** page, the FortiGate is able to display the upgrade path, 7.2.1 > 7.2.2 > 7.4.0, and perform all of the upgrades in sequence (with multiple reboots).
To upgrade the FortiGate firmware:

2. In the Select Firmware section, select All Upgrades.
3. Select the 7.4.0 version. Upgrade options appear.
4. Select Follow upgrade path. The upgrade path is displayed: v7.2.1 > v7.2.2 > v7.4.0.

- If Directly upgrade to v7.4.0 is selected, a warning message appears that this may result in the loss of configuration.
5. Click Next.

6. Select an upgrade schedule, either Immediate or Custom. If using Custom, enter an upgrade date and time. (Custom is used in this example.)

7. Click Next and review the update schedule.

8. Click Confirm and Backup Config.

The Upgrade Status for both FortiGates indicated when the scheduled upgrade will take place. In this example, the first upgrade in the path is to version 7.2.2. The FortiGates will reboot and then upgrade to 7.4.0 as per the upgrade path.
Once the upgrades are complete and both FortiGates are running the desired firmware (7.4.0), the Upgrade Status changes to *Up to date*.

**CLI commands**

The following options are available in `execute federated-upgrade <option>`:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cancel</td>
<td>Cancel the currently configured upgrade.</td>
</tr>
<tr>
<td>initialize</td>
<td>Set up a federated upgrade.</td>
</tr>
<tr>
<td>status</td>
<td>Show the current status of a federated upgrade.</td>
</tr>
</tbody>
</table>

**Authorizing devices**

If there are any notifications in the top banner dropdown for unauthorized devices or devices that require authorization, clicking the notification redirects the user to the *System > Fabric Management* page. In this example, two devices require authorization.

On the *Fabric Management* page, the unauthorized devices (a downstream FortiGate and a FortiAP) are grayed out, and their status is *Waiting for authorization*. 
To authorize a Security Fabric device from the Fabric Management page:

1. Go to **System > Fabric Management**, and select an unauthorized device.
2. Click **Authorize** (below the donut charts), or right-click and select **Authorize**.

A notification appears in the bottom-right corner once the device is authorized.
3. Click the subsequent notification to refresh the page. The device's status is now *Online.*

To deauthorize a Security Fabric device from the Fabric Management page:

1. Go to the System > Fabric Management page, and select a device.
2. Right-click and select *Deauthorize.*
3. Click the subsequent notification to refresh the page.

**Firmware upgrade notifications**

FortiGates with a firmware upgrade license that are connected to FortiGuard display upgrade notifications in the setup window, banner, and FortiGuard menu. The firmware notifications are enabled by default.

To configure firmware notifications in the CLI:

```
config system global
 set gui-firmware-upgrade-warning {enable | disable}
end
```
To use the firmware upgrade notifications in the GUI:

1. When you log in to FortiGate, the FortiGate Setup window includes an Upgrade firmware step. Click Begin.

2. Follow the steps in the Setup Progress, then click Review Firmware Upgrade.

   The System > Fabric Management page opens.

3. Notifications appear below the Notification icon in the banner, and beside Fabric Management in the tree menu.

Downloading a firmware image

Firmware images for all FortiGate units are available on the Fortinet Customer Service & Support website.

To download firmware:

1. Log into the support site with your user name and password.
2. Go to Support > Firmware Download.
   
   A list of Release Notes is shown. If you have not already done so, download and review the Release Notes for the firmware version that you are upgrading your FortiGate unit to.
3. Select the Download tab.
4. Navigate to the folder for the firmware version that you are upgrading to.
5. Find your device model on the list. FortiWiFi devices have file names that start with FWF.
6. Click HTTPS in the far right column to download the firmware image to your computer.

   Firmware can also be downloaded using FTP, but as FTP is not an encrypted file transferring protocol, HTTPS downloading is recommended.

FortiOS image signing and verification

Official FortiOS firmware images are signed by the Fortinet CA. The BIOS checks the validity of an image when it is uploaded to the device. If the image is not signed by the Fortinet CA, warning messages appear in the GUI in several locations and in the CLI when the uploaded firmware fails the signature validation.
Warning message after an administrator logs in to the GUI:

![ Installed Firmware is Not Signed by Fortinet ]

Click *I Understand the Risk* to continue.

Sample GUI warnings

*Dashboard > Status page:*

![ Dashboard > Status page ]

*Banner:*

![ Banner ]

*System > Firmware page:*

![ System > Firmware page ]

Warning message after updating the firmware in the CLI:

```
execute restore image tftp FGT_100F-v7-build0197-FORTINET.out 172.16.200.55
This operation will replace the current firmware version!
Do you want to continue? (y/n)y
```
Please wait...
Connect to tftp server 172.16.200.55 ...

Get image from tftp server OK.

Verifying the signature of the firmware image.

*****WARNING: This firmware failed signature validation.*****

Fortinet cannot verify the authenticity of this firmware and therefore there may be a risk that the firmware contains code unknown to Fortinet. In short, Fortinet cannot validate the firmware and makes no warranties or representations concerning the firmware.

Please continue only if you understand and are willing to accept the risks.
Do you want to continue? (y/n)y

Checking new firmware integrity ... pass
Please wait for system to restart.

Firmware upgrade in progress ...
Done.

Testing a firmware version

The integrity of firmware images downloaded from Fortinet's support portal can be verified using a file checksum. A file checksum that does not match the expected value indicates a corrupt file. The corruption could be caused by errors in transfer or by file modification. A list of expected checksum values for each build of released code is available on Fortinet's support portal.

Image integrity is also verified when the FortiGate is booting up. This integrity check is done through a cyclic redundancy check (CRC). If the CRC fails, the FortiGate unit will encounter an error during the boot process.

Firmware images are signed and the signature is attached to the code as it is built. When upgrading an image, the running OS will generate a signature and compare it with the signature attached to the image. If the signatures do not match, the new OS will not load.

Testing before installation

FortiOS lets you test a new firmware image by installing the firmware image from a system reboot and saving it to system memory. After completing this procedure, the FortiGate unit operates using the new firmware image with the current configuration. The new firmware image is not permanently installed. The next time the FortiGate unit restarts, it operates with the originally installed firmware image using the current configuration. If the new firmware image operates successfully, you can install it permanently using the procedure explained in Upgrading individual device firmware.

For this procedure, you must install a TFTP server that you can connect to from the FortiGate internal interface. The TFTP server should be on the same subnet as the internal interface.

To test the new firmware version:

1. Connect to the CLI using an RJ-45 to USB (or DB-9) or null modem cable.
2. Ensure that the TFTP server is running.
3. Copy the new firmware image file to the root directory on the TFTP server.
4. Ensure that the FortiGate unit can connect to the TFTP server using the execute ping command.
5. Restart the FortiGate unit: execute reboot. The following message is shown:
   This operation will reboot the system!
   Do you want to continue? (y/n)
6. Type y. As the FortiGate unit starts, a series of system startup messages appears.

7. When the following messages appears:

```
Press any key to display configuration menu...........
```

Immediately press any key to interrupt the system startup.

You have only three seconds to press any key. If you do not press a key during this time, the FortiGate will reboot, and you will have to log in and repeat the `reboot` command.

If you successfully interrupt the startup process, the following messages appears:

```
[G]: Get firmware image from TFTP server.
[F]: Format boot device.
[B]: Boot with backup firmware and set as default
[C]: Configuration and information
[Q]: Quit menu and continue to boot with default firmware.
[H]: Display this list of options.
```

Enter G, F, Q, or H:

8. Type G to get the new firmware image from the TFTP server. The following message appears: Enter TFTP server address [192.168.1.168]:

9. Type the address of the TFTP server, then press Enter. The following message appears: Enter Local Address [192.168.1.188]:

10. Type the IP address of the FortiGate unit to connect to the TFTP server.

| The IP address must be on the same network as the TFTP server. |
| Make sure that you do not enter the IP address of another device on this network. |

The following message appears:

```
Enter File Name [image.out]:
```

11. Enter the firmware image file name then press Enter. The TFTP server uploads the firmware image file to the FortiGate unit and the following message appears:

```
Save as Default firmware/Backup firmware/Run image without saving: [D/B/R]
```

12. Type R. The FortiGate image is installed to system memory and the FortiGate unit starts running the new firmware image, but with its current configuration.

Test the new firmware image as required. When done testing, reboot the FortiGate unit, and the it will resume using the firmware that was running before you installed the test firmware.

### Installing firmware from system reboot

In the event that the firmware upgrade does not load properly and the FortiGate unit will not boot, or continuously reboots, it is best to perform a fresh install of the firmware from a reboots using the CLI. If configured, the firmware can also be automatically installed from a USB drive; see **Restoring from a USB drive on page 1973** for details.

This procedure installs a firmware image and resets the FortiGate unit to factory default settings. You can use this procedure to upgrade to a new firmware version, revert to an older firmware version, or re-install the current firmware.

To use this procedure, you must connect to the CLI using the FortiGate console port and a RJ-45 to USB (or DB-9), or null modem cable. You must also install a TFTP server that you can connect to from the FortiGate internal interface. The TFTP server should be on the same subnet as the internal interface.

Before beginning this procedure, ensure that you backup the FortiGate unit configuration. See **Configuration backups on page 65** for details. If you are reverting to a previous FortiOS version, you might not be able to restore the previous configuration from the backup configuration file.
Installing firmware replaces your current antivirus and attack definitions, along with the definitions included with the firmware release you are installing. After you install new firmware, make sure that antivirus and attack definitions are up to date.

To install firmware from a system reboot:

1. Connect to the CLI using the RJ-45 to USB (or DB-9) or null modem cable.
2. Ensure that the TFTP server is running.
3. Copy the new firmware image file to the root directory of the TFTP server.
4. Ensure that the FortiGate unit can connect to the TFTP server using the `execute ping` command.
5. Restart the FortiGate unit: `execute reboot`. The following message is shown:
   
   This operation will reboot the system!
   Do you want to continue? (y/n)

6. Type `y`. As the FortiGate unit starts, a series of system startup messages appears.
7. When the following messages appears:
   
   Press any key to display configuration menu...........

   Immediately press any key to interrupt the system startup.

   You have only three seconds to press any key. If you do not press a key during this time, the FortiGate will reboot, and you will have to log in and repeat the `execute reboot` command.

   If you successfully interrupt the startup process, the following messages appears:

   
   [C]: Configure TFTP parameters.
   [R]: Review TFTP parameters.
   [T]: Initiate TFTP firmware transfer.
   [F]: Format boot device.
   [I]: System information.
   [B]: Boot with backup firmware and set as default.
   [Q]: Quit menu and continue to boot.
   [H]: Display this list of options.

   Enter C,R,T,F,I,B,Q,or H:

8. If necessary, type `C` to configure the TFTP parameters, then type `Q` to return to the previous menu:

   [P]: Set firmware download port.
   [D]: Set DHCP mode.
   [I]: Set local IP address.
   [S]: Set local subnet mask.
   [G]: Set local gateway.
   [V]: Set local VLAN ID.
   [T]: Set remote TFTP server IP address.
   [F]: Set firmware file name.
   [E]: Reset TFTP parameters to factory defaults.
   [R]: Review TFTP parameters.
   [N]: Diagnose networking (ping).
   [Q]: Quit this menu.
   [H]: Display this list of options.

   Enter P,D,I,S,G,V,T,F,E,R,N,Q,or H:

---

The IP address must be on the same network as the TFTP server.
Make sure that you do not enter the IP address of another device on this network.
9. Type `get` to get the new firmware image from the TFTP server. The FortiGate unit loads the firmware.

10. Save the firmware as the default (D) or backup (B) firmware image, or run the image without saving it (R). The FortiGate unit installs the new firmware image and restarts. The installation might take a few minutes to complete.

**Restoring from a USB drive**

The FortiGate firmware can be manually restored from a USB drive, or installed automatically from a USB drive after a reboot.

**To restore the firmware from a USB drive:**

1. Copy the firmware file to the root directory on the USB drive.
2. Connect the USB drive to the USB port of the FortiGate device.
3. Connect to the FortiGate CLI using the RJ-45 to USB (or DB-9) or null modem cable.
4. Enter the following command:
   ```
 execute restore image usb <filename>
   ```
   The FortiGate unit responds with the following message:
   ```
 This operation will replace the current firmware version! Do you want to continue? (y/n)
   ```
5. Type `y`. The FortiGate unit restores the firmware and restarts. This process takes a few minutes.
6. Update the antivirus and attack definitions:
   ```
 execute update-now
   ```

**To install firmware automatically from a USB drive:**

1. Go to System > Settings.
2. In the Start Up Settings section, enable Detect firmware and enter the name of the firmware file.
3. Copy the firmware file to the root directory on the USB drive.
4. Connect the USB drive to the USB port of the FortiGate device.
5. Reboot the FortiGate device.

**Using controlled upgrades**

Using a controlled upgrade, you can upload a new version of the FortiOS firmware to a separate partition in the FortiGate memory for later upgrade. The FortiGate unit can be configured so that when it is rebooted, it will automatically load the new firmware. Using this option, you can stage multiple FortiGate units to upgrade simultaneously using FortiManager or a script.

**To load the firmware for later installation:**

```
execute restore secondary-image {ftp | tftp | usb} <filename_str>
```

**To set the FortiGate unit so that when it reboots, the new firmware is loaded:**

```
execute set-next-reboot {primary | secondary}
```

where {primary | secondary} is the partition with the preloaded firmware.
**Downgrading individual device firmware**

Downgrading the firmware is not recommended.

This procedure downgrades the FortiGate to a previous firmware version. After downgrading, you may be unable to restore the backup configuration.

**To downgrade to a previous firmware version in the GUI:**

1. Log into the FortiGate GUI as the admin administrative user.
2. Go to System > Fabric Management. The Firmware Version column displays the version and either (Feature) or (Mature).
3. Select the FortiGate, and click Upgrade. The FortiGate Upgrade pane opens.
4. Click one of the following tabs to select a downgrade method:

   - **All Downgrades**: Click the All Downgrades tab to view and select all firmware versions that are available from FortiGuard for downgrade.
   - **File Upload**: Click the File Upload tab to upload a firmware file that you previously downloaded from the Fortinet Customer Service & Support website.

   1. See Downloading a firmware image on page 1968.

In this example, the All Downgrades tab is selected.
5. Select a firmware version and click Confirm and Backup Config. A warning message is displayed.

6. Click Continue to continue with the downgrade.
   The FortiGate unit backs up the current configuration to the management computer, uploads the firmware image file, downgrades to the firmware version, and restarts. This process takes a few minutes.

To downgrade to a previous firmware version in the CLI:

1. Make sure that the TFTP server is running.
2. Copy the new firmware image file to the root directory of the TFTP server.
3. Log into the CLI.
4. Ping the TFTP server to ensure that the FortiGate can connect to it:
   ```bash
 execute ping <tftp_ipv4>
   ```
5. Enter the following command to copy the firmware image from the TFTP server to the FortiGate unit:
   ```bash
 execute restore image tftp <filename> <tftp_ipv4>
   ```
   The FortiGate unit responds with the message:
   ```
 This operation will replace the current firmware version!
 Do you want to continue? (y/n)
   ```
6. Type y. The FortiGate unit uploads the firmware image file, then a message similar to the following is shown:
   ```
 Get image from tftp server OK.
 Check image OK.
 This operation will downgrade the current firmware version!
 Do you want to continue? (y/n)
   ```
7. Type y. The FortiGate unit downgrades to the old firmware version and restarts. This process takes a few minutes.
8. Reconnect to the CLI.
9. Update the antivirus and attack definitions:
   ```bash
 execute update-now
   ```

Settings

The default administrator password should be configured immediately after the FortiGate is installed, see Default administrator password on page 1976.
After that, there are several system settings that should also be configured in System > Settings:

- Changing the host name on page 1977
- Setting the system time on page 1978
- Configuring ports on page 1981
- Setting the idle timeout time on page 1982
- Setting the password policy on page 1983
- Changing the view settings on page 1983
- Setting the administrator password retries and lockout time on page 1984
- TLS configuration on page 1984
- Controlling return path with auxiliary session on page 1985
- Email alerts on page 1989
- Using configuration save mode on page 1993
- Trusted platform module support on page 1994

**Default administrator password**

By default, your FortiGate has an administrator account set up with the username `admin` and no password. In order to prevent unauthorized access to the FortiGate, it is highly recommended that you add a password to this account.

---

Adding a password to the `admin` administrator is mandatory. You will be prompted to configured it the first time you log in to the FortiGate using that account, after a factory reset, and after a new image installation.

---

**To change the default password in the GUI:**

1. Go to System > Administrators.
2. Edit the `admin` account.
3. Click Change Password.
4. If applicable, enter the current password in the Old Password field.
5. Enter a password in the New Password field, then enter it again in the Confirm Password field.

If the password does not conform to the password policy, an error is shown:

If the password conforms to the password policy, no error message is shown:
6. Click OK.

To change the default password in the CLI:

```sh
config system admin
 edit admin
 set password <old password> <old password>
New password must conform to the password policy enforced on this device:
minimum-length=8; the new password must have at least 1 unique character(s) which don't exist in the old password.; must not be same as last two passwords

node_check_object fail! for password *

value parse error before '**'
Command fail. Return code -49
 set password <new password> <old password>
next
end
```

It is also recommended that you change the user name of this account; however, since you cannot change the user name of an account that is currently in use, a second administrator account must be created in order to do this.

Changing the host name

The FortiGate host name is shown in the Hostname field in the System Information widget on a dashboard, as the command prompt in the CLI, as the SNMP system name, as the device name on FortiGate Cloud, and other places. If the FortiGate is in an HA cluster, use a unique host name to distinguish it from the other devices in the cluster.

An administrator requires System > Configuration read/write access to edit the host name. See Administrator profiles on page 1951 for details.

To change the host name in the GUI:

1. Go to System > Settings.
2. In the Host name field, enter a new name.
3. Click Apply.
To change the host name in the CLI:

```
config system global
 set hostname <hostname>
end
```

**Setting the system time**

You can either manually set the FortiOS system time, or configure the device to automatically keep its system time correct by synchronizing with a Network Time Protocol (NTP) or Precision Time Protocol (PTP) server.

Daylight savings time is enabled by default, and can only be configured in the CLI.

---

For many features to work, including scheduling, logging, and SSL-dependent features, the FortiOS system time must be accurate.

---

**To configure the date and time in the GUI:**

1. Go to System > Settings.
2. In the System Time section, configure the following settings to either manually set the time or use an NTP server:

<table>
<thead>
<tr>
<th>Time Zone</th>
<th>Select a time zone from the list. This should be the time zone that the FortiGate is in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Time</td>
<td>Select either NTP, PTP, or Manual settings.</td>
</tr>
<tr>
<td>NTP</td>
<td>To use an NTP server other than FortiGuard, the CLI must be used. In the Sync interval field, enter how often, in minutes, that the device synchronizes its time with the NTP server.</td>
</tr>
<tr>
<td>PTP</td>
<td>• Set the Mode to Multicast or Hybrid.</td>
</tr>
<tr>
<td></td>
<td>• Select the Delay mechanism: E2E or P2P.</td>
</tr>
<tr>
<td></td>
<td>• Set the Request interval, in seconds.</td>
</tr>
<tr>
<td></td>
<td>• Select the Interface.</td>
</tr>
<tr>
<td>Manual settings</td>
<td>Manually enter the Date, and Time.</td>
</tr>
</tbody>
</table>

   Setup device as local NTP server
   Enable to configure the FortiGate as a local NTP server. This option is not available if Set Time is PTP.
   In the Listen on Interfaces field, set the interface or interfaces that the FortiGate will listen for NTP requests on.

3. Click Apply.

---

**To configure the date and time in the CLI:**

1. Configure the timezone and daylight savings time:

   ```
 config system global
 set timezone <integer>
   ```
set dst {enable | disable}
end

2. Either manually configure the date and time, or configure an NTP or PTP server:
   - Manual:
     execute date <yyyy-mm-dd>
     execute time <hh:mm:ss>
   - NTP server:
     config system ntp
     set ntpsync enable
     set type {fortiguard | custom}
     set syncinterval <integer>
     set source-ip <ip_address>
     set source-ip6 <ip6_address>
     set server-mode {enable | disable}
     set interface <interface>
     set authentication {enable | disable}
     set key-type {MD5 | SHA1}
     set key <password>
     set key-id <integer>
     config ntpserver
     edit <server_id>
       set server <ip_address or hostname>
       set ntpv3 {enable | disable}
       set authentication {enable | disable}
       set interface-select-method {auto | sdwan | specify}
       set key <password>
       set key-id <integer>
     next
     end
     end
   - PTP server:
     config system ptp
     set status enable
     set mode {multicast | hybrid}
     set delay-mechanism {E2E | P2P}
     set request-interval <integer>
     set interface <string>
     end

SHA-1 authentication support (for NTPv4)

SHA-1 authentication support allows the NTP client to verify that servers are known and trusted and not intruders masquerading (accidentally or intentionally) as legitimate servers. In cryptography, SHA-1 is a cryptographic hash algorithmic function.

SHA-1 authentication support is only available for NTP clients, not NTP servers.
To configure authentication on a FortiGate NTP client:

```
config system ntp
 set ntpsync enable
 set type custom
 set syncinterval 1
config ntpserver
 edit "883502"
 set server "10.1.100.11"
 set authentication enable
 set key ********
 set key-id 1
 next
end
end
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>authentication &lt;enable</td>
<td>Enable/disable MD5/SHA1 authentication (default = disable).</td>
</tr>
<tr>
<td>disable&gt;</td>
<td></td>
</tr>
<tr>
<td>key &lt;passwd&gt;</td>
<td>Key for MD5/SHA1 authentication. Enter a password value.</td>
</tr>
<tr>
<td>key-id &lt;integer&gt;</td>
<td>Key ID for authentication. Enter an integer value from 0 to 4294967295.</td>
</tr>
</tbody>
</table>

To confirm that NTP authentication is set up correctly:

```
diagnose sys ntp status
synchronized: yes, ntpsync: enabled, server-mode: disabled
ipv4 server(10.1.100.11) 10.1.100.11 -- reachable(0xff) S:4 T:6 selected
 server-version=4, stratum=3
```

If NTP authentication is set up correctly, the server version is equal to 4.

**PTPv2**

Precision time protocol (PTP) is used to synchronize network clocks. It is best suited to situations where time accuracy is of the utmost importance, as it supports accuracy in the sub-microsecond range. Conversely, NTP accuracy is in the range of milliseconds or tens of milliseconds.

The following CLI commands are available:

```
config system ptp
 set status {enable | disable}
 set mode {multicast | hybrid}
 set delay-mechanism {E2E | P2P}
 set request-interval <integer>
 set interface <interface>
end
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>status {enable</td>
<td>disable}</td>
</tr>
<tr>
<td>mode {multicast</td>
<td>hybrid}</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>delay-mechanism {E2E</td>
<td>P2P}</td>
</tr>
<tr>
<td>request-interval &lt;integer&gt;</td>
<td>The logarithmic mean interval between the delay request messages sent by the client to the server in seconds (default = 1).</td>
</tr>
<tr>
<td>interface &lt;interface&gt;</td>
<td>The interface that the PTP client will reply through.</td>
</tr>
</tbody>
</table>

Sample configuration

This example uses the following topology:

To configure a FortiGate to act as a PTP client that synchronizes itself with a Linux PTP server:

1. Enable debug messages:

   ```
 # diagnose debug application ptpd -l
   ```

   This command will provide details to debug the PTP communication with the server.

2. Check the system date:

   ```
 # execute date
 current date is: 2021-04-01
   ```

3. Configure PTP in global mode:

   ```
 config system ptp
 set status enable
 set interface wan2
 end
   ```

4. Check the system date again after synchronization with the PTP server:

   ```
 # execute date
 current date is: 2021-04-27
   ```

Configuring ports

To improve security, the default ports for administrative connections to the FortiGate can be changed. Port numbers must be unique. If a conflict exists with a particular port, a warning message is shown.

When connecting to the FortiGate after a port has been changed, the port number be included, for example:

`https://192.168.1.99:100`
To configure the ports in the GUI:

1. Go to System > Settings.
2. In the Administration Settings section, set the HTTP, HTTPS, SSH, and Telnet ports.
3. Enable Redirect to HTTPS to prevent HTTP from being used by administrators.
4. Click Apply.

To configure the ports in the CLI:

config system global
    set admin-port <port>
    set admin-sport <port>
    set admin-https-redirect {enable | disable}
    set admin-ssh-port <port>
    set admin-telnet-port <port>
end

Custom default service port range

The default service port range can be customized using the following CLI command:

config system global
    set default-service-source-port <port range>
end

Where <port range> is the new default service port range, that can have a minimum value of 0 and a maximum value up to 65535. The default value is 1 to 65535.

This change effects the TCP/UDP protocol.

Setting the idle timeout time

The idle timeout period is the amount of time that an administrator will stay logged in to the GUI without any activity. This is to prevent someone from accessing the FortiGate if the management PC is left unattended. By default, it is set to five minutes.

A setting of higher than 15 minutes will have a negative effect on a security rating score. See Security rating on page 2337 for more information.

To change the idle timeout in the GUI:

1. Go to System > Settings.
2. In the Administration Settings section, set the Idle timeout to up to 480 minutes.
3. Click Apply.
To change the idle timeout in the CLI:

```
config system global
 set admintimeout <1-480>
end
```

**Setting the password policy**

A password policy can be created for administrators and IPsec pre-shared keys. See Password policy on page 1948 for information.

**Changing the view settings**

The view settings change the look and language of the FortiOS GUI.

**To change the view settings in the GUI:**

1. Go to System > Settings.
2. In the View Settings section, configure the following settings:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Language</strong></td>
<td>Set the GUI language: English, French, Spanish, Portuguese, Japanese, Traditional Chinese, Simplifies Chinese, Korean.</td>
</tr>
<tr>
<td><strong>Theme</strong></td>
<td>Set the theme color: Jade, Neutrino, Mariner, Graphite, Melongene, Retro, Dark Matter, Onyx, or Eclipse.</td>
</tr>
<tr>
<td><strong>Date/Time Display</strong></td>
<td>Set the date and time to display using the FortiGate’s or the browser’s timezone.</td>
</tr>
<tr>
<td><strong>NGFW Mode</strong></td>
<td>Set the NGFW mode to either Profile-based (default) or Policy-based.</td>
</tr>
<tr>
<td><strong>Central SNAT</strong></td>
<td>Optionally, enable central SNAT. This option is only available in Profile-based mode.</td>
</tr>
</tbody>
</table>

3. Click Apply.

**To change the view settings in the CLI:**

```
config system global
 set language {english | french | spanish | portuguese | japanese | trach | simch | korean}
 set gui-theme {jade | neutrino | mariner | graphite | melongene | retro | dark-matter | onyx | eclipse}
 set gui-date-time-source {system | browser}
end
config system settings
 set ngfw-mode {profile-based | policy-based}
 set central-nat {enable | disable}
end
```
System Setting the administrator password retries and lockout time

By default, the number of password retry attempts is set to three, allowing the administrator a maximum of three attempts at logging in to their account before they are locked out for a set amount of time (by default, 60 seconds).

The number of attempts and the default wait time before the administrator can try to enter a password again can be configured using the CLI.

A maximum of ten retry attempts can be configured, and the lockout period can be 1 to 2,147,483,647 seconds (over 68 years). The higher the retry attempts, the higher the risk that someone might be able to guess the password.

To configure the lockout options:

```
cfg system global
 set admin-lockout-threshold <failed_attempts>
 set admin-lockout-duration <seconds>
end
```

For example, to set the number of retry attempts to 1, and the lockout time to 5 minutes:

```
cfg system global
 set admin-lockout-threshold 1
 set admin-lockout-duration 300
end
```

If the time span between the first failed log in attempt and the lockout threshold failed attempt is less than lockout time, the lockout will be triggered.

TLS configuration

The minimum TLS version that is used for local out connections from the FortiGate can be configured in the CLI:

```
cfg system global
 set ssl-min-proto-version {SSLv3 | TLSv1 | TLSv1-1 | TLSv1-2 | TLSv1-3}
end
```

By default, the minimum version is TLSv1.2. The FortiGate will try to negotiate a connection using the configured version or higher. If the server that FortiGate is connecting to does not support the version, then the connection will not be made. Some FortiCloud and FortiGuard services do not support TLSv1.3.

Minimum SSL/TLS versions can also be configured individually for the following settings, not all of which support TLSv1.3:

<table>
<thead>
<tr>
<th>Setting</th>
<th>CLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email server</td>
<td><code>config system email-server</code></td>
</tr>
<tr>
<td>Certificate</td>
<td><code>config vpn certificate setting</code></td>
</tr>
<tr>
<td>FortiSandbox</td>
<td><code>config system fortisandbox</code></td>
</tr>
<tr>
<td>FortiGuard</td>
<td><code>config log fortiguard setting</code></td>
</tr>
</tbody>
</table>
### System Setting

<table>
<thead>
<tr>
<th>Setting</th>
<th>CLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>FortiAnalyzer</td>
<td>config log fortianalyzer setting</td>
</tr>
<tr>
<td>Syslog</td>
<td>config log syslogd setting</td>
</tr>
<tr>
<td>User Authentication</td>
<td>config user setting</td>
</tr>
<tr>
<td>LDAP server</td>
<td>config user ldap</td>
</tr>
<tr>
<td>POP3 server</td>
<td>config user pop3</td>
</tr>
<tr>
<td>Exchange server</td>
<td>config user exchange</td>
</tr>
</tbody>
</table>

A minimum \(\text{ssl-min-proto-ver}\) and a maximum \(\text{ssl-max-proto-ver}\) version can be configured for SSL VPN. See TLS 1.3 support on page 1746

## Controlling return path with auxiliary session

When multiple incoming or outgoing interfaces are used in ECMP or for load balancing, changes to routing, incoming, or return traffic interfaces impacts how an existing sessions handles the traffic. Auxiliary sessions can be used to handle these changes to traffic patterns.

- In FortiOS 6.0 and earlier, the auxiliary session feature is not supported.
- In FortiOS 6.2.0 to 6.2.2, the auxiliary session feature is permanently enabled.
- In FortiOS 6.2.3 and later, the auxiliary session feature is disabled by default, and can be enabled if required.

### To enable or disable the auxiliary session feature:

```plaintext
config system settings
 set auxiliary-session {enable | disable*}
end
```

When enabling auxiliary sessions, consider the impact of routing in both traffic directions. In topologies such as SD-WAN hub and spoke or ADVPN deployments, the symmetry of the return traffic is important for maintaining the stability of the session. It is expected that the spoke selects the outbound interface and path, and the other nodes obey and reply symmetrically. It is recommended to disable auxiliary in these scenarios, and others where incoming and return traffic symmetry is expected.
Scenarios

Incoming traffic is from the client to the server. Return traffic is from the server to the client.

Scenario 1 - Return traffic returns on the original outgoing interface

In this scenario, a session is established between port1 and port3. When the return traffic hits port3:

Auxiliary sessions disabled:

The reply to the client egresses on the original incoming interface, port1. If policy routes or SD-WAN rules are configured, the next hop gateway is applied if the output device is the same as the original incoming interface.

Auxiliary sessions enabled:

The reply to the client egresses on the best route in the routing table:

- If the best route is port1, then it will egress on port1.
- If the best route is port2, then it will egress on port2.

If policy routes or SD-WAN rules are configured, they must be matched to determine the egress interface. If both are configured, policy routes have higher priority.

Scenario 2 - Return traffic returns on an interfaces other than the original outgoing interfaces

In this scenario, a session is established between port1 and port3. When the return traffic hits port4:

Auxiliary sessions disabled:

- The session is dirtied and then gets refreshed, and interfaces on the session are updated.
- If there is a high traffic volume or flapping between the interfaces, the CPU usage increases.

Auxiliary sessions enabled:

An auxiliary session is created for the existing session, and traffic returns to the client as normal on the auxiliary session.

Scenario 3 - Incoming traffic enters on an interfaces other than the original incoming interfaces

In this scenario, a session is established between port1 and port3. When the incoming traffic hits port2:
**Auxiliary sessions disabled:**

The session is dirtied and then gets refreshed, and interfaces on the session are updated.

**Auxiliary sessions enabled:**

An auxiliary session is created for the existing session, and traffic is forwarded to the server as normal on the auxiliary session.

**Scenario 4 - the routing table is changed**

In this scenario, a session has been established between port1 and port3, when a new route on port4 is updated as the route to the server.

**Auxiliary sessions disabled:**

As long as there is a route to the destination, the session will not be dirtied or refreshed. Even though there is a better route, traffic continues on the original path between port1 and port3.

**Auxiliary sessions enabled:**

The session is dirtied and then gets refreshed, and interfaces on the session are updated.

**Effect on NPU offloading sessions**

When the auxiliary session feature is disabled, there is always one session. If the incoming or return interface changes, the FortiGate marks the session as dirty and updates the session's interfaces. This cannot be done by the NPU, so the session is not offloaded to the NPU, and is processed by the CPU instead. If Equal-Cost Multi-Path (ECMP) causes the interface to keep changing, then it will use significant CPU resources.

When the auxiliary session feature is enabled and the incoming or return interface changes, it creates an auxiliary session, and all traffic can continue to be processed by the NPU.

**Verification**

When an auxiliary, or reflect, session is created, it will appear as a reflect session below the existing session:

```
diagnose sys session list
session info: proto=17 proto_state=00 duration=111 expire=175 timeout=0 flags=00000000
socktype=0 sockport=0 av_idx=0 use=4
origin-shaper=
reply-shaper=
per_ip_shaper=
class_id=0 ha_id=0 policy_dir=0 tunnel=/ vlan_cos=0/255
state=may_dirty npu
statistic(bytes/packets/allow_err): org=131/4/1 reply=0/0/0 tuples=2
tx speed(Rps/kbps): 0/0 rx speed(Rps/kbps): 0/0
origin->sink: org pre->post, reply pre->post dev=36->38/38->36 gwy=10.1.2.3/0.0.0.0
hook=pre dir=org act=noop 10.1.100.22:51926->172.16.204.44:5001(0.0.0.0:0)
hook=post dir=reply act=noop 172.16.204.44:5001->10.1.100:22:51926(0.0.0.0:0)
src_mac=90:6c:ac:19:19:58
misc=0 policy_id=1 auth_info=0 chk_client_info=0 vd=2
```
When a session is dirtied, a dirty flag is added to it:

```
diagnose sys session list
session info: proto=17 proto_state=00 duration=28 expire=152 timeout=0 flags=00000000 socktype=0 sockport=0 av_idx=0 use=3 origin-shaper=
reply-shaper=
per_ip_shaper=
class_id=0 ha_id=0 policy_dir=0 tunnel=/ vlan_cos=0/255 state=dirty may_dirty npu
statistic(bytes/packets/allow_err): org=68/2/1 reply=0/0/0 tuples=2
 tx speed(Bps/kbps): 2/0 rx speed(Bps/kbps): 0/0
 org->sink: org pre->post, reply pre->post dev=0->0->0 gwy=0.0.0.0/0.0.0.0
 hook=pre dir=org act=noop 10.1.100.22:51926->172.16.204.44:5001(0.0.0.0:0)
 hook=post dir=reply act=noop 172.16.204.44:5001->10.1.100.22:51926(0.0.0.0:0)
 misc=0 policy_id=1 auth_info=0 chk_client_info=0 vd=2 serial=0002b2c
tos=ff/ff app_list=0 app=0 url_cat=0

serial=00002b11 tos=ff/ff app_list=0 app=0 url_cat=0
sdwan_mbr_seq=0 sdwan_service_id=0
rpdb_link_id=00000000 rpdb_svc_id=0 ngfwid=n/a
npu_state=0x000400
npu info: flag=0x91/0x00, offload=8/0, epid=129/0, ipid=142/0,
vlan=0x0016/0x0000
vlifid=142/0, vtag_in=0x0016/0x0000 in_npu=1/0, out_npu=1/0, fwd_en=0/0, qid=4/0
no_ofid_reason:

reflect info 0:
dev=37->38/38->37
npu_state=0x000400
npu info: flag=0x91/0x00, offload=8/0, epid=129/0, ipid=142/0,
vlan=0x0017/0x0000
vlifid=142/0, vtag_in=0x0017/0x0000 in_npu=1/0, out_npu=1/0, fwd_en=0/0, qid=4/0
total reflect session num: 1

When an auxiliary session is created, NPU offloading will continue in the reflect session:

```
# diagnose sys session list
session info: proto=17 proto_state=01 duration=169 expire=129 timeout=0 flags=00000000 socktype=0 sockport=0 av_idx=0 use=4 origin-shaper=
reply-shaper=
per_ip_shaper=
class_id=0 ha_id=0 policy_dir=0 tunnel=/ vlan_cos=0/255 state=may_dirty npu
statistic(bytes/packets/allow_err): org=131/4/1 reply=66/2/1 tuples=2
 tx speed(Bps/kbps): 0/0 rx speed(Bps/kbps): 0/0
 org->sink: org pre->post, reply pre->post dev=36->38/38->36 gwy=10.1.2.3/172.17.2.1
 hook=pre dir=org act=noop 10.1.100.22:51926->172.16.204.44:5001(0.0.0.0:0)
```
Email alerts

Alert emails are used to notify administrators about events on the FortiGate device, allowing a quick response to any issues.

There are two methods that can be used to configure email alerts:

- Automation stitches on page 1990
- Alert emails on page 1993

The FortiGate has a default SMTP server, notification.fortinet.net, that provides secure mail service with SMTPS. It is used for all emails that are sent by the FortiGate, including alert emails, automation stitch emails, and FortiToken Mobile activations. You can also configure a custom email service.

To configure a custom email service in the GUI:

1. Go to System > Settings.
2. In the Email Service section, enable Use custom settings.
3. Configure the following settings:

<table>
<thead>
<tr>
<th>SMTP Server</th>
<th>Enter the address or name of the SMTP server, such as smtp.example.com.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>If required, select Specify and enter a specific port number. The default is port 465.</td>
</tr>
<tr>
<td>Authentication</td>
<td>If required by the email server, enable authentication. If enabled, enter the Username and Password.</td>
</tr>
<tr>
<td>Security Mode</td>
<td>Set the security mode: None, SMTPS, or STARTTLS.</td>
</tr>
<tr>
<td>Default Reply To</td>
<td>Optionally, enter the reply to email address, such as noreply@example.com. This address will override the from address that is configured for an alert email.</td>
</tr>
</tbody>
</table>
4. Click Apply.

To configure a custom email service in the CLI:

```bash
config system email-server
set reply-to "noreply@example.com"
set server "smtp.fortinet.net"
set port 465
set authenticate enable
set username "fortigate"
set password **********
set security smtps
end
```

Automation stitches

Automation stitches can be configured to send emails based on a variety of triggers, giving you control over the events that cause an alert, and who gets alerted. For more information, see [Automation stitches on page 2344](#).

In this example, the default mail service sends an email to two recipients when an Admin login failed event occurs or there is a configuration change.

To configure the automation stitch in the GUI:

1. On the root FortiGate, go to Security Fabric > Automation and click Create New.
2. Enter a name for the stitch, such as Admin Fail.
3. Configure the trigger:
 a. Click Add Trigger.
 b. Click Create and select FortiOS Event Log.
 c. Enter a name for the trigger, such as Admin Fail.
 d. Click in the Event field, and in the slide out pane, search for and select Admin login failed.
e. Click OK.

f. Select the trigger in the list and click **Apply**.

4. Configure the action:
 a. Click **Add Action**.
 b. Click **Create** and select **Email**.
 c. Configure the following settings:
 - **Name**: Enter a name for the action, such as *Admin Fail_email*.
 - **To**: Enter the two email recipients’ addresses, such as *admin@example.com* and *manager@example.com*.
 - **Subject**: Enter an subject, such as *Admin log in failed*.
 - **Body**: Edit as required. By default, the email body will include all the fields from the log event that triggered the stitch.

 d. Click OK.
 e. Select the action in the list and click **Apply**.

5. Click **OK**.
6. Create a second stitch with Configuration Change as the trigger, and an email action with a different subject line (such as Configuration Change Detected).

To configure the automation stitch in the CLI:

1. Create the automation triggers:
   ```
   config system automation-trigger
   edit "Admin Fail"
       set event-type event-log
       set logid 32002
   next
   edit "Config Change"
       set event-type config-change
   next
   end
   ```

2. Create automation actions to send the email messages:
   ```
   config system automation-action
   edit "Admin Fail_email"
       set action-type email
       set email-to "admin@example.com" "manager@example.com"
       set email-subject "Admin log in failed"
   next
   edit "Config Change_email"
       set action-type email
       set email-to "admin@example.com" "manager@example.com"
       set email-subject "Configuration Change Detected"
   next
   end
   ```

3. Create the automation stitches:
   ```
   config system automation-stitch
   edit "Admin Fail"
       set trigger "Admin Fail"
   config actions
       edit 1
           set action "Admin Fail_email"
           set required enable
       next
   end
   next
   edit "Config Change"
       set trigger "Config Change"
   config actions
       edit 1
           set action "Config Change_email"
           set required enable
       next
   end
   ```
Alert emails

When configuring an alert email, you can define the threshold when an issue becomes critical and requires attention. When the threshold is reached, an email is sent to up to three recipients on the configured schedule to notify them of the issue.

Alert email messages can be configured in the CLI. For more information on the available CLI commands, see Configure alert email settings.

IPS, SSH, violation traffic, antivirus, and web filter logs are supported as triggers in automation stitches. For more information, see Event log category triggers on page 2372.

In this example, the FortiGate is configured to send email messages to two addresses, admin@example.com and manager@example.com, every two minutes when multiple intrusions, administrator log in or out events, or configuration changes occur.

To configure an alert email:

```
config alertemail setting
    set username fortigate@example.com
    set mailto1 admin@example.com
    set mailto2 manager@example.com
    set filter-mode category
    set email-interval 2
    set IPS-logs enable
    set configuration-changes-logs enable
    set admin-login-logs enable
end
```

Using configuration save mode

Administrators can use configuration save mode set to Workplace to implement strict change control by requiring changes to be manually committed to the flash. To configure the setting in the GUI, go to System > Settings.

When Configuration save mode is set to Automatic (default), configuration changes are automatically saved to both memory and flash.

When Configuration save mode is set to Workplace, configuration changes are saved to memory, but not to flash. The changes take effect immediately, but must be manually saved to flash. Unsaved changes are reverted when the device is rebooted. If Revert upon timeout is enabled, the system might be unresponsive for a short time after the configured timeout while it reverts the changes back to the previous save point. Prior to the timeout expiring, a pop-up warning gives
you the option to postpone the reboot by one minute, revert the configuration immediately, or save the configuration changes.

In workspace mode, a warning is shown in the banner when there are unsaved changes. Click the warning to save, view, or revert the changes. When you click Reboot and revert changes, the system might be unresponsive for a short time while it reverts the changes back to the previous save point.

Clicking View Unsaved Changes opens a pane highlighting the changes that have not been committed.

This feature is also available in the CLI:

```
config system global
  set cfg-save {automatic | manual | revert}
  set cfg-revert-timeout <integer>
end

# execute cfg {reload | save}
```

Trusted platform module support

On supported FortiGate hardware devices, the Trusted Platform Module (TPM) can be used to protect your password and key against malicious software and phishing attacks. The dedicated module hardens the FortiGate by generating, storing, and authenticating cryptographic keys. To help prevent tampering, the chip is soldered on the motherboard to reduce the risk of data transaction interceptions from attackers.

By default, the TPM is disabled. To enable it, you must set the 32 hexadecimal digit master-encryption-password which encrypts sensitive data on the FortiGate using AES128-CBC. With the password, TPM generates a 2048-bit primary key.
to secure the master-encryption-password through RSA-2048 encryption. The master-encryption-password protects the data. The primary key protects the master-encryption-password.

The TPM module does not encrypt the disk drive of eligible FortiGates.

The primary key binds the encrypted configuration file to a specific FortiGate unit and never leaves the TPM. When backing up the configuration, the TPM uses the primary key to encrypt the master-encryption-password in the configuration file. When restoring a configuration that includes a TPM protected master-encryption-password:

- If TPM is disabled, then the configuration cannot be restored.
- If TPM is enabled but has a different master-encryption-password than the configuration file, then the configuration cannot be restored.
- If TPM is enabled and the master-encryption-password is the same in the configuration file, then the configuration can be restored.

For information on backing up and restoring the configuration, see Configuration backups on page 65.

Passwords and keys that can be encrypted by the master-encryption-key include:

- Alert email user’s password
- BGP and other routing related configurations
- External resource
- FortiGuard proxy password
- FortiToken/FortiToken Mobile’s seed
- HA password
- IPsec pre-shared key
- Link Monitor, server side password
- Local certificate’s private key
- Local, LDAP, RADIUS, FSSO, and other user category related passwords
- Modem/PPPoE
- NST password
- NTP Password
- SDN connector, server side password
- SNMP
- Wireless Security related password

In HA configurations, each cluster member must use the same master-encryption-key so that the HA cluster can form and its members can synchronize their configurations.

To check if your FortiGate device has a TPM:

Verify all the following commands exist. Otherwise, the platform does not support it.

```bash
# diagnose hardware test info
List of test cases:
```
bios: sysid
bios: checksum
bios: license
bios: detect

diagnose hardware deviceinfo tpm
TPM capability information of fixed properties:
==
TPM_PT_FAMILY_INDICATOR: 2.0
TPM_PT_LEVEL: 0
TPM_PT_REVISION: 138
TPM_PT_DAY_OF_YEAR: 8
TPM_PT_YEAR: 2018
TPM_PT_MANUFACTURER: NTC
diagnose hardware test tpm
============ Fortinet Hardware Test Report ==============
TPM
TPM Device Detection.. PASS
============ Fortinet Hardware Test PASSED ==============
diagnose tpm
get-property Get TPM properties. [Take 0-1 arg(s)]
get-var-property Get TPM var properties.
read-clock Read TPM internal clock.
shutdown-prepare Prepare for TPM power cycle.
seltest Perform self tests.
generate-random-number Generate a 4-byte random number
SHA-1 HASH a sequence of num with SHA-1 algo
SHA-256 HASH a sequence of num with SHA-256 algo

To enable TPM and input the master-encryption-password:

config system global
 set private-data-encryption enable
end
Please type your private data encryption key (32 hexadecimal numbers):

Please re-enter your private data encryption key (32 hexadecimal numbers) again:

Your private data encryption key is accepted.

Virtual Domains

Virtual Domains (VDOMs) are used to divide a FortiGate into two or more virtual units that function independently. VDOMs can provide separate security policies and, in NAT mode, completely separate configurations for routing and VPN services for each connected network.

Multiple VDOMs can be created and managed as independent units in multi VDOM mode.

By default, most FortiGate units support 10 VDOMs, and many FortiGate models support purchasing a license key to increase the maximum number. Some exceptions may apply.

The following topics provide an overview of VDOM concepts, topologies, best practices, and the general configurations involved when working with multi VDOM mode:
The following topics provide examples of configuring VDOMs:

- Inter-VDOM routing configuration example: Internet access on page 2009
- Inter-VDOM routing configuration example: Partial-mesh VDOMs on page 2019

VDOM overview

The following sections provide conceptual information on VDOMs:

- Multi VDOM mode on page 1997
- Global settings on page 1997
- Global and per-VDOM resources on page 1997
- Management VDOM on page 1998
- VDOM types on page 1998
- Administrator roles and views on page 1998
- Inter-VDOM routing on page 1999

The following sections provide information on methods of VDOM configuration:

- Topologies on page 1999
- Best practices on page 2001

Multi VDOM mode

In multi VDOM mode, the FortiGate can have multiple VDOMs that function as independent units. When multi VDOM mode is first enabled, all VDOM configurations will move to the root VDOM by default. The root VDOM cannot be deleted, and remains in the configuration even if it is not processing any traffic. New VDOMs can be created, up to the VDOM limit allowable on your device.

Global settings

Global settings are configured outside of a VDOM. They effect the entire FortiGate, and include settings such as interfaces, firmware, DNS, some logging and sandboxing options, and so on. Global settings should only be changed by top level administrators.

Global and per-VDOM resources

Global and per-VDOM resources can be configured when the FortiGate is in multi VDOM mode. Global resources apply to resources that are shared by the whole FortiGate, while per-VDOM resources are specific to each VDOM.

By default, all per-VDOM resource settings are set to have no limits. This means that any single VDOM can use all of the FortiGate device's resources. This could deprive other VDOMs of the resources that they require, to the point that could be unable to function. We recommend setting maximum values on the resources that are vital to you.
Management VDOM

The management VDOM refers to the specific role that must be designated to one of the VDOMs. By default, the root VDOM is the management VDOM, and management-related services such as FortiGuard updates and other local out (self-originating) traffic such as logs to remote servers originate from the management VDOM. The management VDOM cannot be deleted. See Management VDOM on page 2003 for configuration details.

VDOM types

When a FortiGate is in multi VDOM mode, a VDOM can be configured as an Admin or Traffic type VDOM.

When the VDOM type is set to Admin, the VDOM is used to administer and manage the FortiGate. Usually, the Admin VDOM resides in a management network which is only accessible by administrators. Global and VDOM administrators can log in to the FortiGate using SSH, HTTPS, and so on but traffic cannot pass through this Admin VDOM. A FortiGate does not need to have an Admin VDOM and, at most, there can only be one Admin VDOM per FortiGate.

When VDOM type is set to Traffic, the VDOM can pass traffic like a regular firewall. Most VDOMs will be Traffic type VDOMs. Network interfaces on a Traffic VDOM can also enable SSH, HTTPS, and so on for administrative and management purposes.

In general, an Admin VDOM has a subset of a Traffic VDOM’s capabilities.

FortiGate-VM supports having at least two VDOMs; one that supports an administrative VDOM and another that supports a traffic VDOM.

See Configure an administrative VDOM type on page 2005 for configuration details.

Administrator roles and views

When a FortiGate has been configured in multi VDOM mode, the device can be managed by global administrators and per-VDOM administrators. Each type of administrator will have a different view of the GUI in multi VDOM mode which corresponds to their role.

Global administrators

Global administrators have complete visibility and access because the scope of their role is to manage the entire physical FortiGate device. An example of a global administrator is an administrator working for a managed security services provider (MSSP) providing the FortiGate as a multi-tenant environment to its clients.

When global administrators log into the GUI, from the VDOM: Global view they will see all pages for global settings shared between VDOMs, and VDOM-specific settings.

To create a global administrator that has access to all VDOMs and access to global settings, it must be created at the global level and must use the super_admin administrator profile.

See Administrator profiles on page 1951 and Local authentication on page 1939 for configuration details.
VDOM administrators

VDOM administrators will be unable to view global settings or VDOMs not assigned to them because the scope of their role is restricted to managing specific VDOMs only. An example of a VDOM administrator is the administrator working for a company which is a client, or tenant, of an MSSP’s multi-tenant FortiGate.

When VDOM administrators log into the GUI, from the VDOM:<VDOM> view they will see pages for settings specific to the VDOM they have been configured to administer such as interfaces, routes, firewall policies, and security profiles.

See **Create per-VDOM administrators on page 2005** for configuration details.

Inter-VDOM routing

VDOM links are virtual interfaces that allow VDOMs to communicate internally without using additional physical interfaces. A VDOM link contains a pair of interfaces, each one connected to a VDOM to form each end of the inter-VDOM connection. Inter-VDOM routing can be configured in order to communicate between one VDOM to another.

When VDOMs are configured on your FortiGate unit, configuring inter-VDOM routing and VDOM links is similar to creating a VLAN interface. VDOM links can be managed in either the CLI or in the network interface list in the GUI.

See **Inter-VDOM routing configuration example: Internet access on page 2009** for more information.

Topologies

These are the main configuration types in multi VDOM mode:

- **Independent VDOMs**

 Multiple, completely separate VDOMs are created. Any VDOM can be the management VDOM, as long as it has Internet access to connect to FortiGuard services and other management resources. There are no inter-VDOM links, and each VDOM is independently managed.
In the Internet access VDOM configuration, Internet access is provided primarily by a single VDOM; for example, the management VDOM (depicted as root VDOM in the preceding diagram). Each tenant connects to the management VDOM via an inter-VDOM link. The management VDOM has complete control over Internet access, including the types of traffic that are allowed in both directions. This can improve security, as there is only one point of ingress and egress. There is no communication between the other VDOMs.

Meshed VDOMs

VDOMs can communicate with inter-VDOM links. In full-mesh configurations, all the VDOMs are interconnected. In partial-mesh configurations, only some of the VDOMs are interconnected.

In this configuration, inter-vdom links between tenants are created by the global administrator, but each tenant controls the firewall policies to allow access to other tenants.

See Inter-VDOM routing on page 2007 and Inter-VDOM routing configuration example: Internet access on page 2009 for configuration details.
Administrative VDOM on a management network

The administrative VDOM type can be used to limit administrative access to the FortiGate using SSH, HTTPS and so on to administrators working from a management network. Administrators may be limited to management settings or may have global privileges to access other VDOMs. The user or tenant network (depicted as Network A in the diagram) uses a traffic type VDOM, which allows traffic to pass through it like a regular firewall and allows configuration of firewall-related settings. This configuration can improve security if the management network is a closed network and administrative access is not enabled on any interfaces on the traffic VDOM.

Best practices

VDOMs can provide separate firewall policies and, in NAT mode, completely separate configurations for routing and VPN services for each connected network or organization. This section provides a list of best practices for configuring VDOMs.

Per-VDOM resource setting

All per-VDOM resource settings are set to no limit by default. To ensure proper functionality of all VDOMs, it is recommended that you set some maximum values for the most vital resources. See Global and per-VDOM resources on page 2003 for configuration details.

Virtual domains in NAT mode

Once the virtual domains have been enabled and one or more VDOMs have been created, they must be configured. The following steps provide a general overview of the configuration process.

To configure VDOMs:

1. Change the management virtual domain.
2. Configure FortiGate interfaces for your VDOMs in NAT mode.
3. Configure VDOM routing.
4. Configure security policies for VDOMs in NAT mode.
5. Configure UTM profiles for VDOMs in NAT mode.
6. Test the configuration.
While you may not require all of the steps for your network topology, it is recommended that you perform them in the order given.

See General configurations on page 2002 for configuration details.

Virtual clustering

Virtual clustering is an extension of FGCP HA that provides failover protection between two instances of one or more VDOMs operating on two FortiGates that are in a virtual cluster. A standard virtual cluster consists of FortiGates that are operating in active-passive HA mode with multiple VDOMs enabled. See HA virtual cluster setup on page 2041 for more details.

Typically, virtual clustering is configured with override enabled and uses device priorities to distribute traffic between the primary and secondary FortiGates.

If you decide to disable override for clustering, as a result of persistent renegotiating, you should disable it for both cluster units.

General configurations

VDOMs can be configured in the GUI and the CLI. To ensure that no VDOMs are accidentally configured in the CLI, prompts can be enabled. These prompts will display to ask for confirmation that the VDOM is meant to be configured in the CLI.

To configure confirmation prompts:

```
config system global
    set edit-vdom-prompt enable
end
```

The following topics provide information on general VDOM configurations:

- Enable multi VDOM mode on page 2002
- Management VDOM on page 2003
- Global and per-VDOM resources on page 2003
- Create per-VDOM administrators on page 2005
- Configure an administrative VDOM type on page 2005
- Assign interfaces to a VDOM on page 2006
- Inter-VDOM routing on page 2007
- Allow FortiGuard services and updates to initiate from a traffic VDOM on page 2008

Enable multi VDOM mode

Enable multi VDOM mode and create the VDOMs in the GUI and CLI.

On FortiGate 90 series models and lower, VDOMs can only be enabled using the CLI.
To enable VDOMs in the GUI:

1. Go to System > Settings.
2. In the System Operation Settings sections, enable Virtual Domains.
3. Click OK.

To enable VDOMs in the CLI:

```plaintext
config system global
    set vdom-mode multi-vdom
end
```

You will be logged out of the device when the VDOM mode is enabled.

Management VDOM

By default, the management VDOM is root. The management VDOM can be manually assigned from the GUI or the CLI.

To assign the management VDOM in the GUI:

1. In the Global VDOM, go to System > VDOM.
2. Select the VDOM you want to assign as the management VDOM.
3. Click Switch Management.
4. Click OK.

To assign the management VDOM in the CLI:

```plaintext
config global
    config system global
        set management-vdom <vdom>
    end
end
```

Only one management VDOM can exist at a time. It is strongly recommended that the management VDOM have Internet access otherwise management-related services, such as FortiGuard updates and queries, will not work.

Global and per-VDOM resources

Global resources apply to resources that are shared by the whole FortiGate, while per-VDOM resources are specific to each VDOM.

To configure global resources:

1. In the Global VDOM, go to System > Global Resources.
2. Enable the resource's override in the Override Maximum column, then enter the override value.
3. Click Apply.
 To reset all of the override values, click Reset All.

To configure per-VDOM resources:

1. In the Global VDOM, go to System > VDOM.
2. Select the VDOM whose resources need to be configured and click Edit.
3. Enable the resource's override in the Override Maximum column, then enter the override value.
4. Optionally, enter a value in the Guaranteed column.

5. Click OK.
 To reset all of the override values, click Reset All.
Create per-VDOM administrators

Per-VDOM administrators can be created that can access only the administrative or traffic VDOM. These administrators must use either the prof_admin administrator profile, or a custom profile.

A per-VDOM administrator can only access the FortiGate through a network interface that is assigned to the VDOM that they are assigned to. The interface must also be configured to allow management access. They can also connect to the FortiGate using the console port.

To assign an administrator to multiple VDOMs, they must be created at the global level. When creating an administrator at the VDOM level, the super_admin administrator profile cannot be used.

To create a per-VDOM administrator in the GUI:

1. On the FortiGate, connect to the Global VDOM.
2. Go to System > Administrators and click Create New > Administrator.
3. Fill in the required information, setting the Type as Local User.
4. In the Virtual Domains field, add the VDOM that the administrator will be assigned to, and if necessary, remove the other VDOM from the list.
5. Click OK.

To create a per-VDOM administrator using the CLI:

```
config global
    config system admin
        edit <name>
            set vdom <VDOM_name>
                set password <password>
                set accprofile <admin_profile>
            next
        end
    end
```

Configure an administrative VDOM type

Individual VDOMs can be configured as an administrative type in multi VDOM mode.

💡 Only one administrative VDOM can exist at a time and cannot be set on a FortiWifi. A VDOM cannot be an administrative type and in transparent mode at the same time.
To configure an administrative VDOM in the GUI:

1. Go to System > VDOM.
2. Click Create New.
3. Enter a Virtual Domain name and set the Type to Admin.
4. Click OK.
5. Click OK in the confirmation pane. The administrative VDOM is created.

To configure the VDOM type in the CLI:

```
config system settings
   set vdom-type {traffic | admin}
end
```

Assign interfaces to a VDOM

An interface can only be assigned to one of the VDOMs. An interface cannot be moved if it is referenced in an existing configuration.

In the GUI, the interface list Ref. column shows if the interface is referenced in an existing configuration, and allows you to quickly access and edit those references.

To assign an interface to a VDOM in the GUI:

1. In the Global VDOM, go to Network > Interfaces.
2. Select the interface that will be assigned to a VDOM and click Edit.
3. Select the VDOM that the interface will be assigned to from the Virtual Domain list.
4. Click OK.

To assign an interface to a VDOM using the CLI:

```plaintext
config global
    config system interface
        edit <interface>
            set vdom <VDOM_name>
        next
    end
end
```

Inter-VDOM routing

VDOM links allow VDOMs to communicate internally without using additional physical interfaces.

VDOM link does not support traffic offload. If you want to use traffic offload, use NPU-VDOM-LINK. See Configuring inter-VDOM link acceleration with NP6 processors in the Hardware Acceleration guide for details.

To configure a VDOM link in the GUI:

1. In the Global VDOM, go to Network > Interfaces.
2. Click Create New > VDOM Link.
3. Configure the fields, including the Name, Virtual Domain, IP information, Administrative Access, and so on, then click OK.

By default, VDOM links are created as point-to-point (ppp) links. If required, the link type can be changed in the CLI.

For example, when running OSPF in IPv6, a link-local address is required in order to communicate with OSPF neighbors. For a VDOM link to obtain a link-local address, its type must be set to ethernet.

To configure a VDOM link in the CLI:

```plaintext
config global
    config system vdom-link
```
edit "<vdom-link-name>"
 set type {ppp | ethernet}
next
end
config system interface
edit "<vdom-link-name0>"
 set vdom "<VDOM Name>"
 set type vdom-link
next
edit "<vdom-link-name1>"
 set vdom "<VDOM Name>"
 set type vdom-link
next
end
end

To delete a VDOM link in the GUI:

1. In the Global VDOM, go to Network > Interfaces.
2. Select a VDOM Link and click Delete.

To delete a VDOM link in the CLI:

config global
 config system vdom-link
 delete <VDOM-LINK-Name>
 end
end

Allow FortiGuard services and updates to initiate from a traffic VDOM

In multi VDOM mode, users can choose from which VDOM FortiGuard services and updates are initiated from, instead of being locked to the management VDOM. This allows deployment scenarios where the management VDOM resides in a closed management network.

![Diagram of FortiGate, Management VDOM, and Closed/Internal Network](image)

When the management VDOM resides in a closed network, it does not have internet access. FortiGuard services (FortiGuard updates, web filters, DNS proxy, DDNS, and so on) must be configured in a VDOM with Internet access in order to work. Therefore, in the example above, change the FortiGuard settings to initiate from the root VDOM.
To configure FortiGuard services on a traffic VDOM:

1. Set up a traffic VDOM for FortiGuard services:
   ```
   config global
   config system fortiguard
   set vdom "root"
   end
   end
   ``

2. Ensure the traffic VDOM has the correct gateway to reach the internet:
   ```
 config vdom
 edit root
 config router static
 edit 1
 set gateway 172.16.200.254
 set device "wan1"
 next
 end
 next
 end
 ``

3. Configure the DNS servers to ensure the FortiGuard services can resolve the server name through the traffic VDOM:
   ```
   config vdom
   edit root
   config system vdom-dns
   set vdom-dns enable
   set primary 208.91.112.53
   set secondary 208.91.112.52
   end
   next
   end
   ```

Inter-VDOM routing configuration example: Internet access

This example shows how to configure a FortiGate unit to use inter-VDOM routing to route outgoing traffic from individual VDOMs to a root VDOM with Internet access. See Inter-VDOM routing on page 2007 for more information.

Two departments of a company, Accounting and Sales, are connected to one FortiGate. The company uses a single ISP to connect to the Internet. This is an example of the Internet access configuration. See Topologies on page 1999 for details.
This example assumes that the interfaces of the FortiGate have already been configured with the IP addresses depicted in the preceding diagram.

General steps for this example

This example includes the following general steps. We recommend following the steps in the order below:

1. Enable multi VDOM mode and create the VDOMs on page 2010
2. Assign interfaces to VDOMs on page 2011
3. Configure the VDOM links on page 2011
4. Configure inter-VDOM routing on page 2013
5. Configure the firewall policies on page 2014
6. Test the configuration on page 2015

This example demonstrates how to configure these steps first using the GUI and then, at the end of the section, using the CLI. See Configuration with the CLI on page 2016 for details.

Enable multi VDOM mode and create the VDOMs

Create the Accounting and Sales VDOMs.

To enable VDOMs in the GUI:

1. Go to System > Settings.
2. In the System Operation Settings section, enable Virtual Domains.
3. Click OK.

On FortiGate 90 series models and lower, VDOMs can only be enabled using the CLI.

To create the Sales and Accounting VDOMs in the GUI:

1. In the Global VDOM, go to System > VDOM.
2. Click Create New.
3. In the Virtual Domain field, enter Sales.
4. If required, set the NGFW Mode. If the NGFW Mode is Profile-based, Central SNAT can be enabled.
5. Click OK to create the VDOM.
6. Repeat the above steps for Accounting.

Assign interfaces to VDOMs

This example uses three interfaces on the FortiGate unit: port2 (AccountingLocal), port3 (SalesLocal), and port1 (WAN). Port2 and port3 interfaces each have a department’s network connected. Port1 is for all traffic to and from the Internet and uses DHCP to configure its IP address, which is common with many ISPs.

To assign interfaces to VDOMs in the GUI:

1. In the Global VDOM, go to Network > Interfaces.
2. Select port2 and click Edit.
3. From the Virtual domain list, select Accounting.

4. Click OK.
5. Repeat the preceding steps to assign port3 to the Sales VDOM.
6. Repeat the preceding steps to assign port1 to the root VDOM.

Configure the VDOM links

To complete the connection between each VDOM and the management VDOM, add the two VDOM links. One pair is the Accounting — management link and the other is the Sales — management link. Each side of these links will be assigned IP addresses since they will be handy in configuring inter-VDOM routing in the next step.

To configure the Accounting and management VDOM link in the GUI:

1. In the Global VDOM, go to Network > Interfaces.
2. Select Create New > VDOM Link.
3. Enter the following information:

<table>
<thead>
<tr>
<th>Name</th>
<th>AccountVlnk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface 0</td>
<td></td>
</tr>
<tr>
<td>Virtual Domain</td>
<td>Accounting</td>
</tr>
<tr>
<td>IP/Netmask</td>
<td>11.11.11.2/255.255.255.252</td>
</tr>
<tr>
<td>Administrative Access</td>
<td>HTTPS, PING, SSH</td>
</tr>
<tr>
<td>Comment</td>
<td>Accounting side of the VDOM link</td>
</tr>
<tr>
<td>Interface 1</td>
<td></td>
</tr>
<tr>
<td>Virtual Domain</td>
<td>root</td>
</tr>
<tr>
<td>IP/Netmask</td>
<td>11.11.11.1/255.255.255.252</td>
</tr>
<tr>
<td>Administrative Access</td>
<td>HTTPS, PING, SSH</td>
</tr>
<tr>
<td>Comment</td>
<td>Management side of the VDOM link</td>
</tr>
</tbody>
</table>

4. Click OK.

To configure the Sales and management VDOM link in the GUI:

1. In the Global VDOM, go to Network > Interfaces.
2. Select Create New > VDOM link.
3. Enter the following information:

<table>
<thead>
<tr>
<th>Name</th>
<th>SalesVlnk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface 0</td>
<td></td>
</tr>
<tr>
<td>Virtual Domain</td>
<td>Sales</td>
</tr>
<tr>
<td>IP/Netmask</td>
<td>12.12.12.2/255.255.255.252</td>
</tr>
<tr>
<td>Administrative Access</td>
<td>HTTPS, PING, SSH</td>
</tr>
<tr>
<td>Comment</td>
<td>Accounting side of the VDOM link</td>
</tr>
<tr>
<td>Interface 1</td>
<td></td>
</tr>
<tr>
<td>Virtual Domain</td>
<td>root</td>
</tr>
<tr>
<td>IP/Netmask</td>
<td>12.12.12.1/255.255.255.252</td>
</tr>
<tr>
<td>Administrative Access</td>
<td>HTTPS, PING, SSH</td>
</tr>
<tr>
<td>Comment</td>
<td>Management side of the VDOM link</td>
</tr>
</tbody>
</table>

4. Click OK.
Configure inter-VDOM routing

A default static route can be configured on each VDOM to provide Internet access. In other words, this static route would provide inter-VDOM routing between each department VDOM and the root VDOM.

For this static route, these settings are used:

- Default Gateway: IP address of the management side of the VDOM link
 - Accounting VDOM: 11.11.11.1
 - Sales VDOM: 12.12.12.1
- Interface: Interface on the department VDOM side of the VDOM link
 - Accounting VDOM: AccountVlnk0
 - Sales VDOM: SalesVlnk0
- IP address: 0.0.0.0/0.0.0.0 (default)

To configure the default static route to the Internet in the Accounting VDOM:

1. In the Accounting VDOM, go to Network > Static Routes.
2. Click on Create New and select the version you need.
3. Enter the following information:

<table>
<thead>
<tr>
<th>Destination</th>
<th>Subnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>0.0.0.0/0.0.0.0</td>
</tr>
<tr>
<td>Gateway</td>
<td>11.11.11.1</td>
</tr>
<tr>
<td>Interface</td>
<td>AccountVlnk0</td>
</tr>
<tr>
<td>Administrative Distance</td>
<td>10</td>
</tr>
</tbody>
</table>

4. Click OK.

To configure the default static route to the Internet in the Sales VDOM:

1. In the Sales VDOM, go to Network > Static Routes.
2. Click on Create New and select the version you need.
3. Enter the following information:

<table>
<thead>
<tr>
<th>Destination</th>
<th>Subnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>0.0.0.0/0.0.0.0</td>
</tr>
<tr>
<td>Gateway</td>
<td>12.12.12.1</td>
</tr>
<tr>
<td>Interface</td>
<td>SalesVlnk0</td>
</tr>
<tr>
<td>Administrative Distance</td>
<td>10</td>
</tr>
</tbody>
</table>

4. Click OK.
Configure the firewall policies

With the VDOMs, physical interfaces, VDOM links, and static routes configured, the firewall must now be configured to allow the proper traffic. Firewalls are configured per-VDOM, and firewall objects and routes must be created for each VDOM separately.

To configure the firewall policies from AccountingLocal to Internet in the GUI:

1. In the Accounting VDOM, go to Policy & Objects > Firewall Policy.
2. Click Create New.
3. Enter the following information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Account-Local-to-Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>port2</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>AccountVlnk0</td>
</tr>
<tr>
<td>Source</td>
<td>All</td>
</tr>
<tr>
<td>Destination</td>
<td>All</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>ALL</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>NAT</td>
<td>enabled</td>
</tr>
</tbody>
</table>

4. Click OK.
5. In the root VDOM, go to Policy & Objects > Firewall Policy.
6. Click Create New.
7. Enter the following information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Account-VDOM-to-Internet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>AccountVlnk1</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>port1</td>
</tr>
<tr>
<td>Source</td>
<td>All</td>
</tr>
<tr>
<td>Destination</td>
<td>All</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>ALL</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>NAT</td>
<td>enabled</td>
</tr>
</tbody>
</table>

8. Click OK.
To configure the firewall policies from SalesLocal to Internet in the GUI:

1. In the Sales VDOM, go to Policy & Objects > Firewall Policy.
2. Click Create New.
3. Enter the following information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Sales-Local-to-Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>port3</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>SalesVlnk0</td>
</tr>
<tr>
<td>Source</td>
<td>All</td>
</tr>
<tr>
<td>Destination</td>
<td>All</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>ALL</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>NAT</td>
<td>enabled</td>
</tr>
</tbody>
</table>

4. Click OK.
5. In the root VDOM, go to Policy & Objects > Firewall Policy.
6. Click Create New.
7. Enter the following information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Sales-VDOM-to-Internet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>SalesVlnk1</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>port1</td>
</tr>
<tr>
<td>Source</td>
<td>All</td>
</tr>
<tr>
<td>Destination</td>
<td>All</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>ALL</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>NAT</td>
<td>enabled</td>
</tr>
</tbody>
</table>

8. Click OK.

Test the configuration

When the inter-VDOM routing has been configured, test the configuration to confirm proper operation. Testing connectivity ensures that physical networking connections, FortiGate unit interface configurations, and firewall policies are properly configured.

The easiest way to test connectivity is to use the `ping` and `traceroute` commands on hosts in the Accounting and Sales networks, respectively, to confirm the connectivity of different routes on the network. Test connectivity with hosts...
connected to port2 (AccountingLocal) in the Accounting VDOM to the internet and hosts connected to port3 (SalesLocal) in the Sales VDOM to the internet.

Configuration with the CLI

The example can also be configured in the CLI.

To configure inter-VDOM routing in the CLI:

1. **Enable multi VDOM mode:**

   ```
   config system global
   set vdom-mode multi-vdom
   end
   
   You will be logged out of the device when VDOM mode is enabled.
   ```

2. **Create the Sales and Accounting VDOMs:**

   ```
   config vdom
   edit Accounting
   next
   edit Sales
   next
   end
   ```

3. **Assign interfaces to the VDOMs:**

   ```
   config global
   config system interface
   edit port2
   set vdom Accounting
   next
   edit port3
   set vdom Sales
   next
   edit port1
   set vdom root
   next
   end
   ```

4. **Configure the Accounting and management VDOM link:**

   ```
   config global
   config system vdom-link
   edit AccountVlnk
   next
   end
   config system interface
   edit AccountVlnk0
   set vdom Accounting
   set ip 11.11.11.2 255.255.255.252
   set allowaccess https ping ssh
   set description "Accounting side of the VDOM link"
   next
   edit AccountVlnk1
set vdom root
set ip 11.11.11.1 255.255.255.252
set allowaccess https ping ssh
set description "Management side of the VDOM link"
next
end

5. Configure the Sales and management VDOM link:

config global
    config system vdom-link
        edit SalesVlnk
            next
    end
    config system interface
        edit SalesVlnk0
            set vdom Sales
            set ip 12.12.12.2 255.255.255.252
            set allowaccess https ping ssh
            set description "Sales side of the VDOM link"
        next
        edit SalesVlnk1
            set vdom root
            set ip 12.12.12.1 255.255.255.252
            set allowaccess https ping ssh
            set description "Management side of the VDOM link"
        next
    end
end

6. Configure the default static route to the Internet in the Accounting VDOM:

config vdom
    edit Accounting
        config router static
            edit 1
                set gateway 11.11.11.1
                set device "AccountVlnk0"
            next
        end
end

7. Configure the default static route to the Internet in the Sales VDOM:

config vdom
    edit Sales
        config router static
            edit 1
                set gateway 12.12.12.1
                set device "SalesVlnk0"
            next
        end
end

8. Configure the firewall policies from AccountingLocal to the Internet:

config vdom
    edit Accounting
config firewall policy
edit 1
set name "Accounting-Local-to-Management"
set srcintf port2
set dstintf AccountVlnk0
set srcaddr all
set dstaddr all
set action accept
set schedule always
set service ALL
set nat enable
next
end
next
edit root
cfg config firewall policy
edit 2
set name "Accounting-VDOM-to-Internet"
set srcintf AccountVlnk1
set dstintf port1
set srcaddr all
set dstaddr all
set action accept
set schedule always
set service ALL
set nat enable
next
end
next
end

9. Configure the firewall policies from SalesLocal to the Internet:

cfg config vdom
edit Sales
cfg config firewall policy
edit 3
set name "Sales-local-to-Management"
set srcintf port3
set dstintf SalesVlnk0
set srcaddr all
set dstaddr all
set action accept
set schedule always
set service ALL
set nat enable
next
end
next
cfg edit root
cfg config firewall policy
edit 4
set name "Sales-VDOM-to-Internet"
set srcintf SalesVlnk1
set dstintf port1
set srcaddr all
set dstaddr all
Inter-VDOM routing configuration example: Partial-mesh VDOMs

This example shows how to configure a FortiGate unit to use inter-VDOM routing to route traffic between an internal network and FTP server that are each behind separate VDOMs. See Inter-VDOM routing on page 2007 for more information.

The following example shows how to configure per-VDOM settings, such as operation mode, routing, and firewall policies, in a network that includes the following VDOMs:

- VDOM-A: allows the internal network to access the Internet.
- VDOM-B: allows external connections to an FTP server.
- root: the management VDOM.

You can use VDOMs in either NAT or transparent mode on the same FortiGate. By default, VDOMs operate in NAT mode. In this example, both VDOM-A and VDOM-B use NAT mode. An inter-VDOM link is created and inter-VDOM routes configured to allow users on the internal network to access the FTP server.

This is an example of the partial-mesh VDOMs configuration since only VDOM-A is connected to VDOM-B but neither of those VDOMs are connected to the root VDOM. See Topologies on page 1999 for details.

This example assumes that the interfaces of the FortiGate have already been configured with the IP addresses depicted in the preceding diagram.

General steps for this example

This configuration requires the following general steps:

1. Enable Multi VDOM mode and create the VDOMs on page 2020
2. Assign interfaces to VDOMs on page 2020
3. Configure VDOM-A on page 2021
4. Configure VDOM-B on page 2022
5. Configure the VDOM link on page 2024
6. Configure inter-VDOM routing on page 2024
7. Configure firewall policies using the VDOM link on page 2026

This example demonstrates how to configure these steps first using the GUI and then, at the end of the section, using the CLI. See Configuration with the CLI on page 2027 for details.

Enable Multi VDOM mode and create the VDOMs

Multi VDOM mode can be enabled in the GUI or CLI. Enabling it does not require a reboot, but does log you out of the device. The current configuration is assigned to the root VDOM.

On FortiGate 90 series models and lower, VDOMs can only be enabled using the CLI.

To enable multi VDOM mode in the GUI:
1. On the FortiGate, go to System > Settings.
2. In the System Operation Settings section, enable Virtual Domains.
3. Click OK.

To create the VDOMs in the GUI:
1. In the Global VDOM, go to System > VDOM. Click Create New.
2. In the Virtual Domain field, enter VDOM-A.
3. If required, set the NGFW Mode. If the NGFW Mode is Profile-based, Central SNAT can be enabled.
4. Click OK to create the VDOM.
5. Repeat the above steps for VDOM-B.

Assign interfaces to VDOMs

This example uses three interfaces on the FortiGate unit: port1 (internal network), port2 (FTP server), wan1 (WAN link for VDOM-A), and wan2 (WAN link for VDOM-B). The port1 and port2 interfaces are connected to the internal network and FTP server, respectively. The wan1 and wan2 interfaces are static assigned with IP addresses and default gateways provided by the ISPs for those WAN links.
To assign interfaces to VDOMs in the GUI:

1. In the Global VDOM, go to Network > Interfaces.
2. Select port1 and click Edit.
3. From the Virtual domain list, select VDOM-A.
4. Click OK.
5. Repeat the preceding steps to assign port2 to VDOM-B.
6. Repeat the preceding steps to assign wan1 to VDOM-A.
7. Repeat the preceding steps to assign wan2 to VDOM-B.

Configure VDOM-A

VDOM-A allows connections from devices on the internal network to the Internet. WAN1 and port1 are assigned to this VDOM.

The per-VDOM configuration for VDOM-A includes the following:

- A firewall address for the internal network
- A static route to the ISP gateway
- A firewall policy allowing the internal network to access the Internet

All procedures in this section require you to connect to VDOM-A, either using a global or per-VDOM administrator account.

To add the firewall addresses in the GUI:

1. Go to Policy & Objects > Addresses.
2. Click Create New > Address.
3. Enter the following information:

<table>
<thead>
<tr>
<th>Name</th>
<th>internal-network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Subnet</td>
</tr>
<tr>
<td>IP/Netmask</td>
<td>192.168.10.0/255.255.255.0</td>
</tr>
<tr>
<td>Interface</td>
<td>port1</td>
</tr>
</tbody>
</table>
4. Click OK.
To add a default route in the GUI:

1. Go to Network > Static Routes and create a new route.
2. Enter the following information:

<table>
<thead>
<tr>
<th>Destination</th>
<th>Subnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>0.0.0.0/0.0.0.0</td>
</tr>
<tr>
<td>Gateway</td>
<td>172.20.201.254</td>
</tr>
<tr>
<td>Interface</td>
<td>wan1</td>
</tr>
<tr>
<td>Administrative Distance</td>
<td>10</td>
</tr>
</tbody>
</table>

3. Click OK.

To add the firewall policy in the GUI:

1. Go to Policy & Objects > Firewall Policy.
2. Click Create New.
3. Enter the following information:

<table>
<thead>
<tr>
<th>Name</th>
<th>VDOM-A-Internet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>port1</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>wan1</td>
</tr>
<tr>
<td>Source</td>
<td>internal-network</td>
</tr>
<tr>
<td>Destination</td>
<td>all</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>ALL</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>NAT</td>
<td>enabled</td>
</tr>
</tbody>
</table>

4. Click OK.

**Configure VDOM-B**

VDOM-B allows external connections to reach an internal FTP server. WAN2 and port2 are assigned to this VDOM.

The per-VDOM configuration for VDOM-B includes the following:

- A firewall address for the FTP server
- A virtual IP address for the FTP server
- A static route to the ISP gateway
- A firewall policy allowing external traffic to reach the FTP server

The procedures described above require you to connect to VDOM-B, either using a global or per-VDOM administrator account.
To add the firewall addresses in the GUI:

1. Go to Policy & Objects > Addresses.
2. Click Create New > Address.
3. Enter the following information:
   
<table>
<thead>
<tr>
<th>Name</th>
<th>FTP-server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Subnet</td>
</tr>
<tr>
<td>IP/Netmask</td>
<td>192.168.10.0/255.255.255.255</td>
</tr>
<tr>
<td>Interface</td>
<td>port2</td>
</tr>
</tbody>
</table>

4. Click OK.

To add the virtual IP address in the GUI:

1. Go to Policy & Objects > Virtual IPs.
2. Click Create New > Virtual IP.
3. Enter the following information:
   
<table>
<thead>
<tr>
<th>Name</th>
<th>FTP-server-VIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>wan2</td>
</tr>
<tr>
<td>External IP address/range</td>
<td>172.20.10.2</td>
</tr>
<tr>
<td>Map To</td>
<td>192.168.20.10</td>
</tr>
</tbody>
</table>

4. Click OK.

To add a default route in the GUI:

1. Go to Network > Static Routes and create a new route.
2. Enter the following information:
   
<table>
<thead>
<tr>
<th>Destination</th>
<th>Subnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>0.0.0.0/0.0.0.0</td>
</tr>
<tr>
<td>Gateway</td>
<td>172.20.201.254</td>
</tr>
<tr>
<td>Interface</td>
<td>wan2</td>
</tr>
<tr>
<td>Administrative Distance</td>
<td>10</td>
</tr>
</tbody>
</table>

3. Click OK.

To add the firewall policy in the GUI:

1. Go to Policy & Objects > Firewall Policy.
2. Click Create New.
3. Enter the following information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Access-server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>wan2</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>port2</td>
</tr>
<tr>
<td>Source</td>
<td>all</td>
</tr>
<tr>
<td>Destination</td>
<td>FTP-server-VIP</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>FTP</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>NAT</td>
<td>enabled</td>
</tr>
</tbody>
</table>

4. Click OK.

**Configure the VDOM link**

The VDOM link allows connections from VDOM-A to VDOM-B. The VDOM link interface configured in this step will be used for inter-VDOM routing.

This step requires you to connect to the global VDOM using a global administrator account.

**To add the VDOM link in the GUI:**

1. In the Global VDOM, go to Network > Interfaces.
2. Create New > VDOM link.
3. Enter the following information:

<table>
<thead>
<tr>
<th>Name</th>
<th>VDOM-link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface 0</td>
<td></td>
</tr>
<tr>
<td>Virtual Domain</td>
<td>VDOM-A</td>
</tr>
<tr>
<td>IP/Netmask</td>
<td>11.11.1.1/255.255.255.252</td>
</tr>
<tr>
<td>Interface 1</td>
<td></td>
</tr>
<tr>
<td>Virtual Domain</td>
<td>VDOM-B</td>
</tr>
<tr>
<td>IP/Netmask</td>
<td>11.11.1.2/255.255.255.252</td>
</tr>
</tbody>
</table>

4. Click OK.

**Configure inter-VDOM routing**

Inter-VDOM routing allows users on the internal network to route traffic to the FTP server through the FortiGate.

The configuration of inter-VDOM routing includes the following:

- Firewall addresses for the FTP server on VDOM-A and for the internal network on VDOM-B
- Inter-VDOM routing using static routes for the FTP server on VDOM-A and for the internal network on VDOM-B
• Policies allowing traffic using the VDOM link

The procedures described above require you to connect to both VDOM-A and VDOM-B, either using a global or per-VDOM administrator account.

To add the firewall address on VDOM-A in the GUI:

1. In the VDOM-A VDOM, go to Policy & Objects > Addresses.
2. Click Create New > Address.
3. Enter the following information:

<table>
<thead>
<tr>
<th>Name</th>
<th>FTP-server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Subnet</td>
</tr>
<tr>
<td>IP/Netmask</td>
<td>192.168.20.10/32</td>
</tr>
<tr>
<td>Interface</td>
<td>VDOM-link2</td>
</tr>
<tr>
<td>Static route configuration</td>
<td>enabled</td>
</tr>
</tbody>
</table>

4. Click OK.

To add the static route on VDOM-A in the GUI:

1. Connect to VDOM-A.
2. Go to Network > Static Routes and create a new route.
3. Enter the following information:

<table>
<thead>
<tr>
<th>Destination</th>
<th>Named Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Named Address</td>
<td>FTP-server</td>
</tr>
<tr>
<td>Gateway</td>
<td>11.11.11.2</td>
</tr>
<tr>
<td>Interface</td>
<td>VDOM-link0</td>
</tr>
</tbody>
</table>

4. Click OK.

To add the firewall address on VDOM-B in the GUI:

1. In the VDOM-B VDOM, go to Policy & Objects > Addresses.
2. Click Create New > Address.
3. Enter the following information:

<table>
<thead>
<tr>
<th>Name</th>
<th>internal-network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Subnet</td>
</tr>
<tr>
<td>IP/Netmask</td>
<td>192.168.10.0/24</td>
</tr>
<tr>
<td>Interface</td>
<td>VDOM-link1</td>
</tr>
<tr>
<td>Static route configuration</td>
<td>enabled</td>
</tr>
</tbody>
</table>

4. Click OK.
To add the static route on VDOM-B in the GUI:

1. In the VDOM-B VDOM, go to Network > Static Routes and create a new route.
2. Enter the following information:

<table>
<thead>
<tr>
<th>Destination</th>
<th>Named Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Named Address</td>
<td>internal-network</td>
</tr>
<tr>
<td>Gateway</td>
<td>11.11.11.1</td>
</tr>
<tr>
<td>Interface</td>
<td>VDOM-link1</td>
</tr>
</tbody>
</table>

3. Click OK.

**Configure firewall policies using the VDOM link**

Firewall policies using the VDOM link allows users on the internal network to access the FTP server through the FortiGate.

Configuring policies allowing traffic using the VDOM link require you to connect to both VDOM-A and VDOM-B, respectively, either using a global or per-VDOM administrator account.

To add the firewall policy on VDOM-A in the GUI:

1. In the VDOM-A VDOM, go to Policy & Objects > Firewall Policy.
2. Click Create New.
3. Enter the following information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Access-FTP-server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>port1</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>VDOM-link0</td>
</tr>
<tr>
<td>Source</td>
<td>internal-network</td>
</tr>
<tr>
<td>Destination</td>
<td>FTP-server</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>FTP</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>NAT</td>
<td>disabled</td>
</tr>
</tbody>
</table>

4. Click OK.

To add the firewall policy on VDOM-B in the GUI:

1. In the VDOM-B VDOM, go to Policy & Objects > Firewall Policy.
2. Click Create New.
3. Enter the following information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Internal-server-access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incoming Interface</td>
<td>VDOM-link1</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>port2</td>
</tr>
<tr>
<td>Source</td>
<td>internal-network</td>
</tr>
<tr>
<td>Destination</td>
<td>FTP-server</td>
</tr>
<tr>
<td>Schedule</td>
<td>always</td>
</tr>
<tr>
<td>Service</td>
<td>FTP</td>
</tr>
<tr>
<td>Action</td>
<td>ACCEPT</td>
</tr>
<tr>
<td>NAT</td>
<td>disabled</td>
</tr>
</tbody>
</table>

4. Click OK.

Configuration with the CLI

The example can also be configured in the CLI.

To configure the two VDOMs:

1. Enable multi VDOM mode:

   ```
 config system global
 set vdom-mode multi-vdom
 end
   ```

   You will be logged out of the device when VDOM mode is enabled.

2. Create the VDOMs:

   ```
 config vdom
 edit VDOM-A
 next
 edit VDOM-B
 next
 end
   ```

3. Assign interfaces to the VDOMs:

   ```
 config global
 config system interface
 edit port1
 set vdom VDOM-A
 next
 edit port2
 set vdom VDOM-B
 next
 edit wan1
 set vdom VDOM-A
 next
 edit wan2
   ```
4. Add the firewall addresses to VDOM-A:

```fortios```
config vdom
edit VDOM-A
config firewall address
edit internal-network
set associated-interface port1
set subnet 192.168.10.0 255.255.255.0
next
next
end
```fortios```

5. Add a default route to VDOM-A:

```fortios```
config vdom
edit VDOM-A
config router static
edit 0
set gateway 172.20.201.254
set device wan1
next
next
end
```fortios```

6. Add the firewall policy to VDOM-A:

```fortios```
config vdom
edit VDOM-A
config firewall policy
edit 1
set name "VDOM-A-Internet"
set srcintf "port1"
set dstintf "wan1"
set srcaddr "internal-network"
set dstaddr "all"
set action accept
set schedule "always"
set service "ALL"
set nat enable
next
next
end
```fortios```

7. Add the firewall addresses to VDOM-B:

```fortios```
config vdom
edit VDOM-B
config firewall address
edit FTP-server
set associated-interface port2
set subnet 192.168.20.10 255.255.255.255
8. Add the virtual IP address to VDOM-B:

```fortigate
config vdom
edit VDOM-B
  config firewall vip
    edit FTP-server-VIP
      set extip 172.20.10.2
      set extintf wan2
      set mappedip 192.168.20.10
    next
  next
next
end
end
```

9. Add a default route to VDOM-B:

```fortigate
config vdom
edit VDOM-B
  config router static
    edit 0
      set gateway 172.20.10.254
      set device wan2
    next
  next
end
end
```

10. Add the firewall policy to VDOM-B:

```fortigate
config vdom
edit VDOM-B
  config firewall policy
    edit 1
      set name "Access-server"
      set srcintf "wan2"
      set dstintf "port2"
      set srcaddr "all"
      set dstaddr "FTP-server-VIP"
      set action accept
      set schedule "always"
      set service "FTP"
      set nat enable
    next
  next
end
end
```

To configure the VDOM link:

1. Configure the VDOM link:

```fortigate
config global
  config system vdom-link
```

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
2. Configure the firewall addresses on VDOM-A:

```fortigate-config
config vdom
  edit VDOM-A
    config firewall address
      edit "FTP-server"
        set associated-interface "VDOM-link0"
        set allow-routing enable
        set subnet 192.168.20.10 255.255.255.255
      next
    end
next
end
```

3. Add the firewall policy to VDOM-B:

```fortigate-config
config vdom
  edit VDOM-B
    config firewall policy
      edit 1
        set name "Access-server"
        set srcintf "wan2"
        set dstintf "port2"
        set srcaddr "all"
        set dstaddr "FTP-server-VIP"
        set action accept
        set schedule "always"
        set service "FTP"
        set nat enable
      next
    end
next
end
```

4. Add the static route on VDOM-A:

```fortigate-config
config vdom
  edit VDOM-A
    config router static
```
5. Configure the firewall addresses on VDOM-B:

```plaintext
cfg vdom
edit VDOM-B
config firewall address
edit internal-network
  set associated-interface VDOM-link1
  set allow-routing enable
  set subnet 192.168.10.0 255.255.255.0
next
end
next
end
```

6. Add the static route on VDOM-B:

```plaintext
cfg vdom
edit VDOM-B
config router static
edit 0
  set device VDOM-link1
  set dstaddr internal-network
  set gateway 11.11.11.1
next
end
next
end
```

7. Add the security policy on VDOM-A:

```plaintext
cfg vdom
edit VDOM-A
config firewall policy
edit 0
  set name Access-FTP-server
  set srcintf port1
  set dstintf VDOM-link0
  set srcaddr internal-network
  set dstaddr FTP-server
  set action accept
  set schedule always
  set service FTP
next
end
next
end
```

8. Add the firewall policy on VDOM-B:
High Availability

Whether your FortiGate is used as a security gateway, an internal segmentation firewall, in the cloud, or in an MSSP environment, as long as there is critical traffic passing through it, there is risk of it being a single point of failure. Physical outages can occur due to power failures, physical link failures, transceiver failures, or power supply failures. Non-physical outages can be caused by routing, resource issues, or kernel panic.

Network outages cause disruptions to business operations, downtime, and frustration for users and in some situations may have financial setbacks. In designing your network and architecture, it is important to weigh the risks and consequences associated with unexpected outages.

There are many ways to build redundancy and resiliency. In a switching network, you can accomplish this by adding redundant links and switches in partial or full mesh topologies. Using redundant and aggregate links, you can avoid a single link failure causing a network to go down. Using SD-WAN, you can build redundant and intelligent WAN load balancing and failover architectures.

FortiGate HA offers several solutions for adding redundancy in the case where a failure occurs on the FortiGate, or is detected by the FortiGate through monitored links, routes, and other health checks. These solutions support fast failover to avoid lengthy network outages and disruptions to your traffic.

FortiGate Clustering Protocol (FGCP)

FGCP provides a solution for two key requirements of critical enterprise networking components: enhanced reliability and increased performance. Enhanced reliability is achieved through device failover protection, link failover protection, and remote link failover protection. Session failover protection for most IPv4 and IPv6 sessions also contributes to enhanced reliability. Increased performance is achieved though active-active HA load balancing.

FortiGate Session Life Support Protocol (FGSP)

In a network that already includes load balancing (either with load balancers or routers) for traffic redundancy, two entities (either standalone FortiGates or FGCP clusters) can be integrated into the load balancing configuration using the FortiGate Session Life Support Protocol (FGSP). The external load balancers or routers can distribute sessions among
the FortiGates and the FGSP performs session synchronization of IPv4 and IPv6 TCP, SCTP, UDP, ICMP, expectation, and NAT sessions to keep the session tables of both entities synchronized. In the event of a failure, the load balancer can detect the failed unit and failover the sessions to other active members to continue processing the traffic.

VRRP

FortiGates can function as primary or backup Virtual Router Redundancy Protocol (VRRP) routers. The FortiGates can quickly and easily integrate into a network that has already deployed VRRP. A FortiGate can be integrated into a VRRP group with any third-party VRRP devices, and VRRP can provide redundancy between multiple FortiGates. FortiOS supports VRRP version 2 and 3.

The following topics provide more information about each HA solution and other HA related topics:

- FGCP on page 2033
- FGSP on page 2088
- Standalone configuration synchronization on page 2109
- VRRP on page 2114

FGCP

High availability (HA) is usually required in a system where there is high demand for little downtime. There are usually hot-swaps, backup routes, or standby backup units and as soon as the active entity fails, backup entities will start functioning. This results in minimal interruption for the users.

The FortiGate Clustering Protocol (FGCP) is a proprietary HA solution whereby FortiGates can find other member FortiGates to negotiate and create a cluster. A FortiGate HA cluster consists of at least two FortiGates (members) configured for HA operation. All FortiGates in the cluster must be the same model and have the same firmware installed. Cluster members must also have the same hardware configuration (such as the same number of hard disks). All cluster members share the same configurations except for their host name and priority in the HA settings. The cluster works like a device but always has a hot backup device.

Critical cluster components

The following are critical components in an HA cluster:
- Heartbeat connections: members will use this to communicate with each other. In general, a two-member cluster is most common. We recommend double back-to-back heartbeat connections.
- Identical connections for internal and external interfaces: as demonstrated in the topology, we recommend similar connections from each member to the switches for the cluster to function properly.

General operation

The following are best practices for general cluster operation:

- Ensure that heartbeat communication is present.
- Enable the session synchronization option in daily operation (see FGSP basic peer setup on page 2090).
- Monitor traffic flowing in and out of the interfaces.

Failover

FGCP provides failover protection in the following scenarios:

- The active device loses power.
- A monitored interface loses a connection.

After failover occurs, the user will not notice any difference, except that the active device has changed. See Failover protection on page 2035 for more information.

Synchronizing the configuration

FGCP uses a combination of incremental and periodic synchronization to make sure that the configuration of all cluster units is synchronized to that of the primary unit.

The following settings are not synchronized between cluster units:

- The FortiGate host name
- GUI Dashboard widgets
- HA override
- HA device priority
- The virtual cluster priority
- The HA priority setting for a ping server (or dead gateway detection) configuration
- The system interface settings of the HA reserved management interface
- The HA default route for the reserved management interface, set using the `ha-mgmt-interface-gateway` option of the `config system ha` command

Most subscriptions and licenses are not synchronized, as each FortiGate must be licensed individually. FortiToken Mobile is an exception; they are registered to the primary unit and synchronized to the secondary units.

The primary unit synchronizes all other configuration settings, including the other HA configuration settings.

All synchronization activity takes place over the HA heartbeat link using TCP/703 and UDP/703 packets.

The following topics provide more information about FGCP:

- Failover protection on page 2035
- HA active-passive cluster setup on page 2037
- HA active-active cluster setup on page 2039
- HA virtual cluster setup on page 2041
- Check HA synchronization status on page 2046
- Out-of-band management with reserved management interfaces on page 2049
- In-band management on page 2055
- Upgrading FortiGates in an HA cluster on page 2056
- HA between remote sites over managed FortiSwitches on page 2056
- HA using a hardware switch to replace a physical switch on page 2061
- VDOM exceptions on page 2064
- Override FortiAnalyzer and syslog server settings on page 2065
- Routing NetFlow data over the HA management interface on page 2069
- Force HA failover for testing and demonstrations on page 2071
- Disabling stateful SCTP inspection on page 2073
- Resume IPS scanning of ICCP traffic after HA failover on page 2074
- Querying autoscale clusters for FortiGate VM on page 2077
- Cluster virtual MAC addresses on page 2078
- Abbreviated TLS handshake after HA failover on page 2082
- Session synchronization during HA failover for ZTNA proxy sessions on page 2084
- Troubleshoot an HA formation on page 2086

Failover protection

The FortiGate Clustering Protocol (FGCP) provides failover protection, meaning that a cluster can provide FortiGate services even when one of the devices in the cluster encounters a problem that would result in the complete loss of connectivity for a stand-alone FortiGate unit. Failover protection provides a backup mechanism that can be used to reduce the risk of unexpected downtime, especially in mission-critical environments.

FGCP supports failover protection in four ways:

1. If a link fails.
2. If a device loses power.
3. If an SSD fails.
4. If memory utilization exceeds the threshold for a specified amount of time.

When session-pickup is enabled in the HA settings, existing TCP session are kept, and users on the network are not impacted by downtime as the traffic can be passed without reestablishing the sessions.

When and how the failover happens

1. **Link fails**

Before triggering a failover when a link fails, the administrator must ensure that monitor interfaces are configured. Normally, the internal interface that connects to the internal network, and an outgoing interface for traffic to the internet or outside the network, should be monitored. Any of those links going down will trigger a failover.

2. **Loss of power for active unit**

When an active (primary) unit loses power, a backup (secondary) unit automatically becomes the active, and the impact on traffic is minimal. There are no settings for this kind of fail over.
3. SSD failure

An HA failover can be triggered by an SSD failure.

To enable an SSD failure triggering HA failover:

```
config system ha
  set ssd-failover enable
end
```

4. Memory utilization

An HA failover can be triggered when memory utilization exceeds the threshold for a specific amount of time.

Memory utilization is checked at the configured sample rate (memory-failover-sample-rate). If the utilization is above the threshold (memory-failover-threshold) every time that it is sampled for the entire monitor period (memory-failover-monitor-period), then a failover is triggered.

If the FortiGate meets the memory utilization conditions to cause failover, but the last memory triggered failover happened within the timeout period (memory-failover-flip-timeout), then the failover does not occur. Other HA cluster members can still trigger memory based failovers if they meet the criteria and have not already failed within the timeout period.

After a memory based failover from FortiGate A to FortiGate B, if the memory usage on FortiGate A goes down below the threshold but the memory usage on FortiGate B is still below the threshold, then a failover is not triggered, as the cluster is working normally using FortiGate B as the primary device.

When you disable memory based failover, a new HA primary selection occurs to determine the primary device.

To configure memory based HA failover:

```
config system ha
  set memory-based-failover {enable | disable}
  set memory-failover-threshold <integer>
  set memory-failover-monitor-period <integer>
  set memory-failover-sample-rate <integer>
  set memory-failover-flip-timeout <integer>
end
```

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory-based-failover {enable</td>
<td>Enable/disable memory based failover (default = disable).</td>
</tr>
<tr>
<td>disable}</td>
<td></td>
</tr>
<tr>
<td>memory-failover-threshold</td>
<td>The memory usage threshold to trigger a memory based failover, in percentage (0 - 95, 0 = use the conserve mode threshold, default = 0).</td>
</tr>
<tr>
<td><integer></td>
<td></td>
</tr>
<tr>
<td>memory-failover-monitor-period</td>
<td>The duration of the high memory usage before a memory based failover is</td>
</tr>
<tr>
<td><integer></td>
<td>triggered, in seconds (1 - 300, default = 60).</td>
</tr>
<tr>
<td>memory-failover-sample-rate</td>
<td>The rate at which memory usage is sampled in order to measure memory usage,</td>
</tr>
<tr>
<td><integer></td>
<td>in seconds (1 - 60, default = 1).</td>
</tr>
<tr>
<td>memory-failover-flip-timeout</td>
<td>The time to wait between subsequent memory based failovers, in minutes (6 - 2147483647, default = 6).</td>
</tr>
<tr>
<td><integer></td>
<td></td>
</tr>
</tbody>
</table>
Configuring HA failover time

On supported models, the HA heartbeat interval unit can be changed from the 100ms default to 10ms. This allows for a failover time of less than 50ms, depending on the configuration and the network.

```plaintext
config system ha
    set hb-interval-in-milliseconds {100ms | 10ms}
end
```

In this example, the HA heartbeat interval unit is changed from 100ms to 10ms. As the default heartbeat interval is two, this means that a heartbeat is sent every 20ms. The number of lost heartbeats that signal a failure is also changed to two. So, after two consecutive heartbeats are lost, a failover will be detected in 40ms.

To configure the HA failover time:

```plaintext
config system ha
    set group-id 240
    set group-name "300D"
    set mode a-p
    set hbdev "port3" 50 "port5" 100
    set hb-interval 2
    set hb-interval-in-milliseconds 10ms
    set hb-lost-threshold 2
    set override enable
    set priority 200
end
```

HA active-passive cluster setup

An HA Active-Passive (A-P) cluster can be set up using the GUI or CLI.

This example uses the following network topology:
To set up an HA A-P cluster using the GUI:

1. Make all the necessary connections as shown in the topology diagram.
2. Log into one of the FortiGates.
3. Go to System > HA and set the following options:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>Active-Passive</td>
</tr>
<tr>
<td>Device priority</td>
<td>128 or higher</td>
</tr>
<tr>
<td>Group name</td>
<td>Example_cluster</td>
</tr>
<tr>
<td>Heartbeat interfaces</td>
<td>ha1 and ha2</td>
</tr>
</tbody>
</table>

Except for the device priority, these settings must be the same on all FortiGates in the cluster.

4. Leave the remaining settings as their default values. They can be changed after the cluster is in operation.
5. Click OK.

The FortiGate negotiates to establish an HA cluster. Connectivity with the FortiGate may be temporarily lost as the HA cluster negotiates and the FGCP changes the MAC addresses of the FortiGate’s interfaces.

6. Factory reset the other FortiGate that will be in the cluster, configure GUI access, then repeat steps 1 to 5, omitting setting the device priority, to join the cluster.
To set up an HA A-P cluster using the CLI:

1. Make all the necessary connections as shown in the topology diagram.
2. Log into one of the FortiGates.
3. Change the hostname of the FortiGate:
   ```
   config system global
   set hostname Example1_host
   end
   ```
 Changing the host name makes it easier to identify individual cluster units in the cluster operations.
4. Enable HA:
   ```
   config system ha
   set mode a-p
   set group-name Example_cluster
   set hbdev ha1 10 ha2 20
   end
   ```
5. Leave the remaining settings as their default values. They can be changed after the cluster is in operation.
6. Repeat steps 1 to 5 on the other FortiGate devices to join the cluster, giving each device a unique hostname.

HA active-active cluster setup

An HA Active-Active (A-A) cluster can be set up using the GUI or CLI.

FGCP in Active-Active mode cannot load balance any sessions that traverse NPU VDOM links or regular VDOM links. If Active-Active session load balancing between VDOMs is required, use an external router to handle the inter-VDOM routing.

This example uses the following network topology:

![Network Topology Diagram]

To set up an HA A-A cluster using the GUI:

1. Make all the necessary connections as shown in the topology diagram.
2. Log into one of the FortiGates.
3. Go to System > HA and set the following options:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>Active-Active</td>
</tr>
<tr>
<td>Device priority</td>
<td>128 or higher</td>
</tr>
<tr>
<td>Group name</td>
<td>Example_cluster</td>
</tr>
<tr>
<td>Heartbeat interfaces</td>
<td>ha1 and ha2</td>
</tr>
</tbody>
</table>

Except for the device priority, these settings must be the same on all FortiGates in the cluster.

4. Leave the remaining settings as their default values. They can be changed after the cluster is in operation.

5. Click OK.

The FortiGate negotiates to establish an HA cluster. Connectivity with the FortiGate may be temporarily lost as the HA cluster negotiates and the FGCP changes the MAC addresses of the FortiGate’s interfaces.

6. Factory reset the other FortiGate that will be in the cluster, configure GUI access, then repeat steps 1 to 5, omitting setting the device priority, to join the cluster.

To set up an HA A-A cluster using the CLI:

1. Make all the necessary connections as shown in the topology diagram.

2. Log into one of the FortiGates.

3. Change the hostname of the FortiGate:

   ```
   config system global
   set hostname Example1_host
   end
   ```

 Changing the host name makes it easier to identify individual cluster units in the cluster operations.

4. Enable HA:

   ```
   config system ha
   set mode a-a
   set group-name Example_cluster
   set hbdev ha1 10 ha2 20
   end
   ```

5. Leave the remaining settings as their default values. They can be changed after the cluster is in operation.

6. Repeat steps 1 to 5 on the other FortiGate devices to join the cluster.
HA virtual cluster setup

Virtual clustering is an extension of FGCP HA that provides failover protection between two instances of one or more VDOMs operating on two FortiGates that are in a virtual cluster. A standard virtual cluster consists of FortiGates that are operating in active-passive HA mode with multiple VDOMs enabled. The following custom settings can be configured per cluster:

```fortigate
config system ha
    set vcluster-status enable
    config vcluster
        edit <id>
            set override {enable | disable}
            set priority <integer>
            set vdom <vdom_1>, ... [vdom_n]
            set monitor <interface_1>, ... [interface_n]
            set pingserver-monitor-interface <interface_1>, ... [interface_n]
        next
    end
end
```

override (enable	disable)	Enable/disable override and increase the priority of the unit that should always be the primary.
priority <integer>	Increase the priority to select the primary unit (0 - 255, default = 128).	
vdom <vdom_1>, ... [vdom_n]	Set the virtual domains in the virtual cluster.	
monitor <interface_1>, ... [interface_n]	Set the interfaces to check for port monitoring (or link failure).	
pingserver-monitor-interface <interface_1>, ... [interface_n]	Set the interfaces to check for remote IP monitoring.	

Active-passive virtual clustering uses VDOM partitioning to send traffic for some VDOMs to the primary FortiGate and traffic for other VDOMs to the secondary FortiGates. Traffic distribution between FortiGates can potentially improve throughput. If a failure occurs and only one FortiGate continues to operate, all traffic fails over to that FortiGate, similar to normal HA. If the failed FortiGates rejoin the cluster, the configured traffic distribution is restored.

In an active-passive virtual cluster of two FortiGates, the primary and secondary FortiGates share traffic processing according to the VDOM partitioning configuration. If you add a third or fourth FortiGate, the primary and first secondary FortiGate process all traffic and the other one or two FortiGates operate in standby mode. If the primary or first secondary FortiGate fails, one of the other FortiGates becomes the new primary or secondary FortiGate and begins processing traffic.

Separation of VDOM traffic

Virtual clustering creates a cluster between instances of each VDOM on the two FortiGates in the virtual cluster. All traffic to and from a given VDOM is sent to one of the FortiGates where it stays within its VDOM and is only processed by that VDOM. One FortiGate is the primary FortiGate for each VDOM and one FortiGate is the secondary FortiGate for each VDOM. The primary FortiGate processes all traffic for its VDOMs; the secondary FortiGate processes all traffic for its VDOMs.
Virtual clustering and heartbeat interfaces

The HA heartbeat provides the same HA services in a virtual clustering configuration as in a standard HA configuration. One set of HA heartbeat interfaces provides HA heartbeat services for all of the VDOMs in the cluster. You do not have to add a heartbeat interface for each VDOM.

Special considerations for NPU-based VLANs in a virtual cluster

In an FGCP cluster, the primary FortiGate uses virtual MAC addresses when forwarding traffic, and the secondary uses the physical MAC addresses when forwarding traffic. In a virtual cluster, packets are sent with the cluster’s virtual MAC addresses. However, in the case of NPU offloading on a non-root VDOM, traffic that leaves an NPU-based VLAN will use the physical MAC address of its parent interface rather than the virtual MAC address. If this behavior is not desired, disable auto-asic-offload in the firewall policy where the VLAN interface is used.

Support up to 30 virtual clusters

FortiOS supports up to 30 virtual clusters, which allows more VDOMs to be spread across different virtual clusters without overlapping. Each virtual cluster supports its own failover conditions. Prior to 7.2.0, only two virtual clusters were supported.

When configuring virtual clusters, the group-id is limited to a value from 0 to 7. If the HA group-id is greater than 7, use the command line first to change the group-id before enabling virtual clusters.

```
config system ha
    set group-id <integer>
end
```

⚠️ When upgrading from 7.0 or earlier, old virtual clusters will be lost if the group-id is larger than 7.

Basic configuration

This example shows a virtual cluster configuration consisting of two FortiGates. The virtual cluster has two VDOMs, root and eng_vdm.
The root VDOM can only be associated with virtual cluster 1. The VDOM that is assigned as the management VDOM can also only be associated with virtual cluster 1.

To set up an HA virtual cluster using the GUI:

1. Make all the necessary connections as shown in the topology diagram.
2. Configure a regular A-P cluster:
 a. Log in to one of the FortiGates.
 b. Go to System > HA and set the following options:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Active-Passive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device priority</td>
<td>128 or higher</td>
</tr>
<tr>
<td>Group name</td>
<td>Example_cluster</td>
</tr>
<tr>
<td>Heartbeat interfaces</td>
<td>ha1 and ha2</td>
</tr>
</tbody>
</table>

 Except for the device priority, these settings must be the same on all FortiGates in the cluster.
 c. Leave the remaining settings as their default values. They can be changed after the cluster is in operation.
 d. Click OK.
 The FortiGate negotiates to establish an HA cluster. Connectivity with the FortiGate may be temporarily lost as the HA cluster negotiates and the FGCP changes the MAC addresses of the FortiGate’s interfaces.
 e. Factory reset the other FortiGate that will be in the cluster, configure GUI access, then repeat step 2 (omitting setting the device priority) to join the cluster.
3. On the primary FortiGate, go to System > Settings and enable Virtual Domains.
4. Click Apply. You will be logged out of the FortiGate.
5. Log back in to the FortiGate, and ensure that you are in the global VDOM.

6. Create the eng_vdm VDOM:
 a. Go to System > VDOM and click Create New. The New Virtual Domain pane opens.
 b. Enter the name in the Virtual Domain field, then click OK.

7. Implement a virtual cluster by moving the new VDOM to virtual cluster 2:
 a. Go to System > HA and enable VDOM Partitioning.
 b. In the table, click Create New. The New Virtual Cluster pane opens.
 c. Click the + and add the eng_vdm VDOM.
 d. Click OK to save the virtual cluster.
 e. Click OK to save the HA configuration.

To set up an HA virtual cluster using the CLI:

1. Make all the necessary connections as shown in the topology diagram.
2. Configure a regular A-P cluster. See HA active-passive cluster setup on page 2037.
3. Enable VDOMs:

   ```
   config system global
   set vdom-mode multi-vdom
   end
   
   You will be logged out of the FortiGate.
   ```
4. Create the eng_vdm VDOM:

   ```
   config vdom
   edit eng_vdm
   next
   end
   ```
5. Reconfigure the HA settings to be a virtual cluster:

```bash
config system ha
    set vclustr-status enable
config vclustr
    edit 1
        set vdom root
        set override disable
    next
    edit 2
        set vdom eng_vdm
        set override disable
    next
end
end
```

Configuration with 30 virtual clusters

In this example, there are 30 customers managed by an MSSP on an HA cluster, and each customer VDOM needs to failover independently of other customer VDOMs. Each customer is assigned to a different virtual cluster with its own virtual cluster configurations. This may include different monitored interfaces, ping servers, and priority for the primary and secondary cluster members. Each virtual cluster will fail over according to their own virtual cluster configurations.

This example assumes an A-P cluster and VDOMs have already been configured. See HA active-passive cluster setup on page 2037 and Virtual Domains on page 1996 for more information.

For each virtual cluster, this example assumes that unit 1 has an HA priority of 200, while unit 2 has an HA priority of 100. By default, unit 1 will be the primary cluster member of all the virtual clusters.

To configure multiple virtual clusters in the GUI:

1. Go to `System > HA` and enable VDOM Partitioning.
2. Create a virtual cluster:
 a. In the table, click `Create New`. The New Virtual Cluster pane opens.
 b. Set the `Device priority` to 200.
 c. Click the `+` and add the `Virtual domains`.
 d. Optionally, click the `+` and add the `Monitor interfaces`.
 e. Click OK.
3. Repeat step 2 to create the remaining virtual clusters.
4. Click OK to save the HA configuration. The HA page summary displays the multiple virtual clusters, each with a Primary and Secondary HA member.
5. Edit the priority settings for the secondary members to be 100:
 a. Select the Secondary member in the table, and click `Edit`.
 b. Set the `Priority` to 100.
 c. Click OK.
6. Repeat step 5 for the remaining secondary members.
To configure multiple virtual clusters in the CLI:

1. Configure the primary FortiGate:

   ```
   config system ha
   set vcluster-status enable
   config vcluster
   edit 1
       set override disable
       set priority 200
       set vdom "vdom1"
   next
   edit 2
       set override disable
       set priority 200
       set vdom "vdom2"
   next
   ...
   edit 30
       set override disable
       set priority 200
       set vdom "vdom30"
   next
   end
   end
   
   2. Configure the secondary FortiGate:

   ```
 config system ha
 set vcluster-status enable
 config vcluster
 edit 1
 set override disable
 set priority 100
 set vdom "vdom1"
 next
 edit 2
 set override disable
 set priority 100
 set vdom "vdom2"
 next
 ...
 edit 30
 set override disable
 set priority 100
 set vdom "vdom30"
 next
 end
 end

Check HA synchronization status

The HA synchronization status can be viewed in the GUI through either a widget on the Dashboard or on the System > HA page. It can also be confirmed through the CLI. When a cluster is out of synchronization, administrators should correct the issue as soon as possible as it affects the configuration integrity and can cause issues to occur.
When units are out of synchronization in an HA cluster, the GUI will compare the HA checksums and display the tables that caused HA to be out of synchronization. This can be visualized on the HA monitor page and in the HA status widget.

HA synchronization status in the GUI

Following HA setup, the *HA Status* widget can be added to the *Dashboard* that shows the HA synchronization statuses of the members.

A green checkmark is shown next to each member that is in synchronization.

![HA Status Widget](image)

A member that is out of synchronization is highlighted in red. Hover the cursor over the unsynchronized device to see the tables that are out of synchronization and the checksum values.

![Unsynchronized Member](image)

You can also go to *System > HA* to see the synchronization statuses of the members. A member that is out of synchronization will have a red icon next to its name. Hover the cursor over the unsynchronized device to see the tables that are out of synchronization and the checksum values.

Synchronized:

![Synchronized Members](image)

Unsynchronized:

![Unsynchronized Members](image)
HA synchronization status in the CLI

In the CLI, run the `get system ha status` command to see if the cluster is in synchronization. The synchronization status is reported under `Configuration Status`.

When both members are in synchronization:

```
# get system ha status
HA Health Status: OK
Model: FortiGate-VM64
Mode: HA A-P
Group: 0
Debug: 0
Cluster Uptime: 0 days 0:52:39
Cluster state change time: 2021-04-29 13:17:03
Primary selected using:
  <2021/04/29 13:17:03> FGVMEV00000000002 is selected as the primary because its uptime is larger than peer member FGVMEV70000000005.
  <2021/04/29 12:37:17> FGVMEV00000000002 is selected as the primary because it's the only member in the cluster.
ses_pickup: disable
override: disable
Configuration Status:
  FGVMEV00000000002 (updated 3 seconds ago): in-sync
  FGVMEV70000000005 (updated 2 seconds ago): in-sync
System Usage stats:
  FGVMEV00000000002 (updated 3 seconds ago):
    sessions=9, average-cpu-user/nice/system/idle=1%/0%/0%/99%, memory=66%
  FGVMEV70000000005 (updated 2 seconds ago):
    sessions=0, average-cpu-user/nice/system/idle=0%/0%/0%/100%, memory=65%
HBDEV stats:
  FGVMEV00000000002 (updated 3 seconds ago):
    port2: physical/1000auto, up, rx-bytes/packets/dropped/errors=7698164/22719/0/0, tx=7815947/23756/0/0
    port4: physical/1000auto, up, rx-bytes/packets/dropped/errors=714501/1749/0/0, tx=724254/1763/0/0
  FGVMEV70000000005 (updated 2 seconds ago):
    port2: physical/1000auto, up, rx-bytes/packets/dropped/errors=7819515/23764/0/0, tx=7697305/22724/0/0
    port4: physical/1000auto, up, rx-bytes/packets/dropped/errors=726500/1766/0/0, tx=714129/1751/0/0
MONDEV stats:
  FGVMEVYKXTDJN932 (updated 3 seconds ago):
    port3: physical/1000auto, up, rx-bytes/packets/dropped/errors=4610/15/0/0, tx=1224/21/0/0
  FGVMEV70000000005 (updated 2 seconds ago):
    port3: physical/1000auto, up, rx-bytes/packets/dropped/errors=1200/20/0/0, tx=630/10/0/0
Primary : FGDocs-P, FGVMEV00000000002, HA cluster index = 0
Secondary : FGDocs-S, FGVMEV70000000005, HA cluster index = 1
number of vcluster: 1
vcluster 1: work 169.254.0.1
Primary: FGVMEV00000000002, HA operating index = 0
Secondary: FGVMEV70000000005, HA operating index = 1
```

When one of the members is out of synchronization:
Out-of-band management with reserved management interfaces

As part of an HA configuration, you can reserve up to four management interfaces to provide direct management access to all cluster units. For each reserved management interface, you can configure a different IP address, administrative access, and other interface settings, for each cluster unit. By connecting these interfaces to your network, you can separately manage each cluster unit from different IP addresses.
Reserved management interfaces provide direct management access to each cluster unit, and give each cluster unit a different identity on your network. This simplifies using external services, such as SNMP, to monitor separate cluster units.

Reserved management interfaces are not assigned HA virtual MAC addresses. They retain the permanent hardware address of the physical interface, unless you manually change it using the `config system interface` command.

Reserved management interfaces and their IP addresses should not be used for managing a cluster using FortiManager. To manage a FortiGate HA cluster with FortiManager, use the IP address of one of the cluster unit interfaces.

Configuration changes to a reserved management interface are not synchronized to other cluster units. Other configuration changes are automatically synchronized to all cluster units.

You can configure an in-band management interface for a cluster unit. See In-band management on page 2055 for information. In-band management does not reserve the interface exclusively for HA management.

Management interface

Enable HTTPS or HTTP administrative access on the reserved management interfaces to connect to the GUI of each cluster unit. On secondary units, the GUI has the same features as the primary unit, except for unit specific information, for example:

- The System Information widget on the Status dashboard shows the secondary unit's serial number.
- In the cluster members list at System > HA, you can change the HA configuration of the unit that you are logged into. You can only change the host name and device priority of the primary and other secondary units.
- The system events logs show logs for the device that you are logged into. Use the HA device drop down to view the log messages for other cluster units, including the primary unit.

Enable SSH administrative access on the reserved management interfaces to connect to the CLI of each cluster unit. The CLI prompt includes the host of the cluster unit that you are connected to. Use the `execute ha manage` command to connect to other cluster unit CLIs.

Enable SNMP administrative access on a reserved management interface to use SNMP to monitor each cluster unit using the interface's IP address. Direct management of cluster members must also be enabled, see Configuration examples on page 2051.

Reserved management interfaces are available in both NAT and transparent mode, and when the cluster is operating with multiple VDOMs.

FortiCloud, FortiSandbox, and other management services

By default, management services such as FortiCloud, FortiSandbox, SNMP, remote logging, and remote authentication, use a cluster interface. This means that communication from each cluster unit will come from a cluster interface of the primary unit, and not from the individual cluster unit's interface.

You can configure HA reserved management interfaces to be used for communication with management services by enabling the `ha-direct` option. This separates management traffic for each cluster unit, and allows each unit to be individually managed. This is especially useful when cluster units are in different physical locations.

The following management features will then use the HA reserved management interface:
- Remote logging, including syslog, FortiAnalyzer, and FortiCloud
- Remote authentication and certificate verification
- Communication with FortiSandbox
- Netflow and sflow, see Routing NetFlow data over the HA management interface on page 2069 for information.
- SNMP queries and traps

Syntax for HA reserved management interfaces is as follows:

```plaintext
config system ha
  set ha-direct enable
  set ha-mgmt-status enable
  config ha-mgmt-interfaces
    edit 1
      set interface <interface>
      set dst <destination IP>
      set gateway <IPv4 gateway>
      set gateway6 <IPv6 gateway>
    next
  end
end
```

The `ha-direct` option is a pre-requisite for allowing communication on each HA reserved management interface for various management services listed above. Once enabled, all `source-ip` settings will be unset from log related, netflow and sflow management services. SNMP requires `ha-direct` to be configured under SNMP settings only. See below for more configuration options.

Configuration examples

The configuration examples below will use the following topology:

![Configuration examples](image)

Two FortiGate units are already operating in a cluster. On each unit, port 8 is connected to the internal network through a switch and configured as an out-of-band reserved management interface.
Administrative access and default route for HA management interface

To configure the primary unit's reserved management interface, configure an IP address and management access on port8. Then, configure the necessary HA settings to enable the HA reserved management interface and its route. To configure the secondary unit's reserved management interface, access the unit's CLI through the primary unit, and configure an IP address, management access on port8, and the necessary HA settings. Configuration changes to the reserved management interface are not synchronized to other cluster units.

To configure the primary unit reserved management interface to allow HTTPS, SSH, and ICMP access:

1. From a computer on the internal network, connect to the CLI at 10.11.101.100 on port2.
2. Change the port8 IP address and management access:

   ```
   config system interface
   edit port8
   set ip 10.11.101.101/24
   set allowaccess https ping ssh
   next
   end
   ```

3. Configure the HA settings for the HA reserved management interface by defining a default route to route to the gateway 10.11.101.2:

   ```
   config system ha
   set ha-mgmt-status enable
   config ha-mgmt-interfaces
   edit 1
   set interface port8
   set gateway 10.11.101.2
   next
   end
   end
   ```

You can now log into the primary unit's GUI by browsing to https://10.11.101.101. You can also log into the primary unit's CLI by using an SSH client to connect to 10.11.101.101.

To configure secondary unit reserved management interfaces to allow HTTPS, SSH, and ICMP access:

1. From a computer on the internal network, connect to the primary unit's CLI.
2. Connect to the secondary unit with the following command:

   ```
   execute ha manage <unit id> <username> <password>
   ```

3. Change the port8 IP address and management access:

   ```
   config system interface
   edit port8
   set ip 10.11.101.102/24
   set allowaccess https ping ssh
   ```
4. Configure the HA settings for the HA reserved management interface by defining a default route to route to the gateway 10.11.101.2:

```plaintext
config system ha
    set ha-mgmt-status enable
config ha-mgmt-interfaces
    edit 1
        set interface port8
        set gateway 10.11.101.2
    next
end
end
```

You can now log into the secondary unit’s GUI by browsing to https://10.11.101.102. You can also log into the secondary unit’s CLI by using an SSH client to connect to 10.11.101.102.

SNMP monitoring

The SNMP server can get status information from the cluster members. To use the reserved management interfaces, you must add at least one HA direct management host to an SNMP community. If the SNMP configuration includes SNMP users with user names and passwords, HA direct management must be enabled for the users.

To configure the cluster for SNMP management using the reserved management interfaces in the CLI:

1. **Allow SNMP on port8 on both primary and secondary units:**

```plaintext
config system interface
    edit port8
        append allowaccess snmp
    next
end
```

2. **Add an SNMP community with a host for the reserved management interface of each cluster member. The host includes the IP address of the SNMP server.**

```plaintext
config system snmp community
    edit 1
        set name "Community"
        config hosts
            edit 1
                set ip 10.11.101.20 255.255.255.255
                set ha-direct enable
            next
        next
end
```

Enabling `ha-direct` in a non-HA environment will make SNMP unusable.
3. Add an SNMP user for the reserved management interface:

```bash
config system snmp user
   edit "1"
      set notify-hosts 10.11.101.20
      set ha-direct enable
   next
end
```

The SNMP configuration is synchronized to all cluster units.

To get CPU, memory, and network usage information from the SNMP manager for each cluster unit using the reserved management IP addresses:

1. Connect to the SNMP manager CLI.
2. Get resource usage information for the primary unit using the MIB fields:

   ```bash
   snmpget -v2c -c Community 10.11.101.101 fgHaStatsCpuUsage
   snmpget -v2c -c Community 10.11.101.101 fgHaStatsMemUsage
   snmpget -v2c -c Community 10.11.101.101 fgHaStatsNetUsage
   ```

3. Get resource usage information for the primary unit using the OIDs:

   ```bash
   snmpget -v2c -c Community 10.11.101.101.1.3.6.1.4.1.12356.101.13.2.1.1.3.1
   snmpget -v2c -c Community 10.11.101.101.1.3.6.1.4.1.12356.101.13.2.1.1.4.1
   snmpget -v2c -c Community 10.11.101.101.1.3.6.1.4.1.12356.101.13.2.1.1.5.1
   ```

4. Get resource usage information for the secondary unit using the MIB fields:

   ```bash
   snmpget -v2c -c Community 10.11.101.102 fgHaStatsCpuUsage
   snmpget -v2c -c Community 10.11.101.102 fgHaStatsMemUsage
   snmpget -v2c -c Community 10.11.101.102 fgHaStatsNetUsage
   ```

5. Get resource usage information for the primary unit using the OIDs:

   ```bash
   snmpget -v2c -c Community 10.11.101.102.1.3.6.1.4.1.12356.101.13.2.1.1.3.1
   snmpget -v2c -c Community 10.11.101.102.1.3.6.1.4.1.12356.101.13.2.1.1.4.1
   snmpget -v2c -c Community 10.11.101.102.1.3.6.1.4.1.12356.101.13.2.1.1.5.1
   ```

Firewall local-in policies for the reserved management interface

Enabling `ha-mgmt-intf-only` applies the local-in policy only to the VDOM that contains the reserved management interface. The incoming interface is set to match any interface in the VDOM.

To add local-in policies for the reserved management interface:

```bash
config firewall local-in-policy
   edit 0
      set ha-mgmt-intf-only enable
      set intf any
      set srcaddr internal-net
      set dstaddr mgmt-int
      set action accept
      set service HTTPS
```
NTP over reserved management interfaces

When NTP is enabled in an HA cluster, the primary unit will always be the unit to contact the NTP server and synchronize system time to the secondary units over the HA heartbeat interface. However, in the event that the primary should contact the NTP server over the HA reserved management interface, then the `ha-direct` option should be enabled under the config system ha settings.

```bash
config system interface
  edit port5
    set ip 172.16.79.46 255.255.255.0
  next
end
config system ha
  set group-name FGT-HA
  set mode a-p
  set ha-mgmt-status enable
config ha-mgmt-interfaces
  edit 1
    set interface port5
    set gateway 172.16.79.1
  next
end
  set ha-direct enable
end
config system ntp
  set ntpsync enable
  set syncinterval 5
end
```

In-band management

In-band management IP addresses are an alternative to reserved HA management interfaces, and do not require reserving an interface exclusively for management access. They can be added to multiple interfaces on each cluster unit.

The in-band management IP address is accessible from the network that the cluster interface is connected to. It should be in the same subnet as the interface that you are adding it to. It cannot be in the same subnet as other interface IP addresses.

In-band management interfaces support ping, HTTP, HTTPS, and SNMP administrative access options.

Primary and secondary units send packets differently from an interface with a management IP address configured:

- On the primary unit, packets are sent to destinations based on routing information.
- On secondary units, packets can only be sent to destinations with the same management IP address segment.

In-band management IP address configuration is not synchronized to other cluster units.
To add an in-band management IP address to port23 with HTTPS, SSH, and SNMP access:

```plaintext
config system interface
  edit port23
    set management-ip 172.25.12.5/24
    set allowaccess https ssh snmp
  next
end
```

Upgrading FortiGates in an HA cluster

You can upgrade the firmware on an HA cluster in the same way as on a standalone FortiGate. During a firmware upgrade, the cluster upgrades the primary unit and all of the subordinate units to the new firmware image.

Before upgrading a cluster, back up your configuration (Configuration backups on page 65), schedule a maintenance window, and make sure that you are using a supported upgrade path (https://docs.fortinet.com/upgrade-tool).

Uninterrupted upgrade

An uninterrupted upgrade occurs without interrupting communication in the cluster.

To upgrade the cluster firmware without interrupting communication, the following steps are followed. These steps are transparent to the user and the network, and might result in the cluster selecting a new primary unit.

1. The administrator uploads a new firmware image using the GUI or CLI. See Upgrading individual device firmware on page 1957 for details.
2. The firmware is upgraded on all of the subordinate units.
3. A new primary unit is selected from the upgraded subordinates.
4. The firmware is upgraded on the former primary unit.
5. Primary unit selection occurs, according to the standard primary unit selection process.

If all of the subordinate units crash or otherwise stop responding during the upgrade process, the primary unit will continue to operate normally, and will not be upgraded until at least one subordinate rejoins the cluster.

Interrupted upgrade

An interrupted upgrade upgrades all cluster members at the same time. This takes less time than an uninterrupted upgrade, but it interrupts communication in the cluster. Interrupted upgrade is disabled by default.

To enable interrupted upgrade:

```plaintext
config system ha
  set uninterruptible-upgrade disable
end
```

HA between remote sites over managed FortiSwitches

In a multi-site FortiGate HA topology that uses managed FortiSwitches in a multi-chassis link aggregation group (MCLAG) to connect between sites, HA heartbeat signals can be sent through the switch layer of the FortiSwitches,
instead of through back-to-back links between the heartbeat interfaces. This means that two fiber connections can be used, instead of four (two back-to-back heartbeat fiber connections and two connections for the FortiSwitches). The FortiSwitches can be different models, but must all support MCLAG and be running version 6.4.2 or later.

This example shows how to configure heartbeat VLANs to assign to the access ports that the heartbeat interfaces connect to, passing over the trunk between the FortiSwitches on the two sites.

FortiGate HA is with two FortiGates in separate locations and the switch layer connection between the FortiSwitches is used for the heartbeat signal.

To configure the example:

1. Disconnect the physical connections between Site 1 and Site 2:
 - Disconnect the cable on Site 1 FSW-1 port 12.
 - Disconnect the cable on Site 1 FSW-2 port 10.
2. Configure Site 1:
a. On the FortiGate, go to **WiFi & Switch Controller > FortiLink Interface** and configure FortiLink:

![FortiLink Interface Configuration](image)

b. Go to **System > HA** and configure HA:
 i. Set the heartbeat ports to the ports that are connected to FortiSwitch.
 ii. Adjust the priority and enable override so that this FortiGate becomes the primary.

![High Availability Configuration](image)

c. Go to **WiFi & Switch Controller > FortiSwitch VLANs** and create switch VLANs that are dedicated to each FortiGate HA heartbeat interface between the two FortiGates: Heartbeat VLAN 1000 and Heartbeat VLAN 1100.

![Switch VLANs Configuration](image)
d. Assign the native VLAN of the switch ports that are connected to the heartbeat ports to the created VLAN. Each HA heartbeat should be in its own VLAN.
 i. Go to WiFi & Switch Controller > FortiSwitch Ports.
 ii. In the Native VLAN column for the heartbeat port that is connected to FSW-1, click the edit icon and select the Heartbeat VLAN.

 ![Native VLAN Table]

 iii. In the Native VLAN column for the heartbeat port that is connected to FSW-2, click the edit icon and select the Heartbeat2 VLAN.

 e. On each FortiSwitch, enable MCLAG-ICL on the trunk port:

   ```
   config switch trunk
   edit D243217000032-0
       set mclag-icl enable
   next
   end
   ```

3. Configure Site 2 the same as Site 1, except set the HA priority so that the FortiGate becomes the secondary.

4. Disconnect the physical connections for FortiGate HA and FortiLink interfaces on Site 2:
 - Disconnect the cable on Site 2 FSW-1 ports 47 and 48.
 - Disconnect the cable on Site 2 FSW-2 ports 47 and 48.

5. Connect cables between the FortiSwitch MCLAG in Site 1 and Site 2:
 - Connect a cable from Site 1 FSW-1 port 12 to Site 2 FSW-1 port 22.
 - Connect a cable from Site 1 FSW-2 port 10 to Site 2 FSW-2 port 20.

6. On all of the FortiSwitches, configure the auto-isl-port-group. The group must match on both sides.
 a. Site 1 FSW-1:
 Set members to the port that is connected to Site 2 FSW-1:
      ```
      config switch auto-isl-port-group
      edit 1
          set members port12
      next
      end
      ```
 b. Site 1 FSW-2:
 Set members to the port that is connected to Site 1 FSW-1:
config switch auto-isl-port-group
 edit 1
 set members port22
 next
end
c. Site 2 FSW-1:
Set members to the port that is connected to Site 2 FSW-2:
config switch auto-isl-port-group
 edit 1
 set members port10
 next
end
d. Site 2 FSW-2:
Set members to the port that is connected to Site 1 FSW-2:
config switch auto-isl-port-group
 edit 1
 set members port20
 next
end

7. Connect the FortiGate HA and FortiLink interface connections on Site 2.
8. Configure a firewall policy and route for traffic so that the client can reach the internet.
9. Wait for HA to finish synchronizing and for all of the FortiSwitches to come online, then on FortiGate-1, go to WiFi & Switch Controller > Managed FortiSwitches and select the Topology view from the drop-down on the right.

The page should look similar to the following:
To test the configuration to confirm what happens when there is a failover:

1. On both PC-1 and PC-2, access the internet and monitor traffic. The traffic should be going through the primary FortiGate.
2. Perform a continuous ping to an outside IP address, then reboot any one of the FortiSwitches.
 Traffic from both Site 1 and Site 2 to the internet should be recovered in approximately five seconds.
3. Perform a continuous ping to an outside IP address, then force an HA failover (see Force HA failover for testing and demonstrations on page 2071).
 Traffic from both Site 1 and Site 2 to the internet should be recovered in approximately five seconds.
4. After an HA failover, on the new primary FortiGate, go to WiFi & Switch Controller > Managed FortiSwitch.
 The switch layer tiering will be changed so that the directly connected FortiSwitches are at the top of the topology.

HA using a hardware switch to replace a physical switch

Using a hardware switch to replace a physical switch is not recommended, as it offers no redundancy or interface monitoring.

- If one FortiGate loses power, all of the clients connected to that FortiGate device cannot go to another device until that FortiGate recovers.
- A hardware switch cannot be used as a monitor interface in HA. Any incoming or outgoing link failures on hardware member interfaces will not trigger failover; this can affect traffic.

Examples

The examples use the following topology:

Traffic between hardware switches

When using Hardware switch in HA environment, a client device connected to the hardware switch on the primary FortiGate can communicate with client devices connected to the hardware switch on secondary FortiGates as long as there is a direct connection between the two switches.

No configuration is required after setting up the hardware switches. If a client connected to both of the hardware switches needs to reach destinations outside of the cluster, the firewall must be configured for it.
To configure the FortiGate devices:

1. Connect the devices as shown in the topology diagram.
2. On each FortiGate, configure HA:
   ```
   config system ha
   set mode a-a
   set group-name Example_cluster
   set hbdev ha1 10 ha2 20
   end
   ```
3. On the primary FortiGate, configure the hardware switch:
   ```
   config system virtual-switch
   edit Hardware-SW
   set physical-switch sw0
   config port
   edit port3
   next
   edit port5
   next
   end
   next
   end
   ```
4. On each FortiGate, configure the IP addresses on the hardware switches:
   ```
   config system interface
   edit Hardware-SW
   set ip 6.6.6.1 255.255.255.0
   set allowaccess ping ssh http https
   next
   end
   ```

After configuring the hardware switches, PC1 and PC2 can now communicate with each other.

Traffic passes through FortiGate

If client device needs to send traffic through the FortiGate, additional firewall configuration on the FortiGate is required.

All traffic from the hardware switches on either the primary or secondary FortiGate reaches the primary FortiGate first. The traffic is then directed according to the HA mode and firewall configuration.

To configure the FortiGate devices:

1. Connect the devices as shown in the topology diagram.
2. On each FortiGate, configure HA:
   ```
   config system ha
   set mode a-a
   set group-name Example_cluster
   set hbdev ha1 10 ha2 20
   end
   ```
3. On the primary FortiGate, configure the hardware switch:
   ```
   config system virtual-switch
   edit Hardware-SW
   ```
set physical-switch sw0
cfg port
 edit port3
 next
 edit port5
 next
end
next
edit Hardware-SW2
 set physical-switch sw0
 cfg port
 edit port1
 next
end
end

4. On each FortiGate, configure the IP addresses on the hardware switch:

 config system interface
 edit Hardware-SW
 set ip 6.6.6.1 255.255.255.0
 set allowaccess ping ssh http https
next
edit Hardware-SW2
 set ip 172.16.200.1 255.255.255.0
 set allowaccess ping ssh http https
next
end

5. On each FortiGate, configure a firewall policy:

 config firewall policy
 edit 1
 set srcintf Hardware-SW
 set dstintf Hardware-SW2
 set srcaddr all
 set dstaddr all
 set service ALL
 set action accept
 set schedule always
 set nat enable
next
end

6. On each FortiGate, configure a static route:

 config router static
 edit 1
 set device Hardware-SW2
 set gateway 172.16.200.254
next
end

Traffic from PC1 and PC2 can now reach destinations outside of the FortiGate cluster.
VDOM exceptions

VDOM exceptions are settings that can be selected for specific VDOMs or all VDOMs that are not synchronized to other HA members. This can be required when cluster members are not in the same physical location, subnets, or availability zones in a cloud environment.

Some examples of possible use cases include:

- You use different source IP addresses for FortiAnalyzer logging from each cluster member. See Override FortiAnalyzer and syslog server settings on page 2065 for more information.
- You need to keep management interfaces that have specific VIPs or local subnets that cannot transfer from being synchronized.
- In a unicast HA cluster in the cloud, you use NAT with different IP pools in different subnets, so IP pools must be exempt.

When a VDOM exception is configured, the object will not be synchronized between the primary and secondary devices when the HA forms. Different options can be configured for every object.

When VDOM mode is disabled, the configured object is excluded for the entire device. To define a scope, VDOM mode must be enabled and the object must be configurable in a VDOM.

VDOM exceptions are synchronized to other HA cluster members.

To configure VDOM exceptions:

```plaintext
config global
    config system vdom-exception
        edit 1
            set object <object name>
            set scope [all* | inclusive | exclusive]
            set vdom <vdom name>
        next
    end
end
```

object	The name of the configuration object that can be configured independently for some or all of the VDOMs. See Objects on page 2064 for a list of available settings and resources.
scope	Determine if the specified object is configured independently for all VDOMs or a subset of VDOMs.
	• all: Configure the object independently on all VDOMs.
	• inclusive: Configure the object independently only on the specified VDOMs.
	• exclusive: Configure the object independently on all of the VDOMs that are not specified.
vdom	The names of the VDOMs that are included or excluded.

Objects

The following settings and resources can be exempt from synchronization in an HA cluster:
Override FortiAnalyzer and syslog server settings

In an HA cluster, secondary devices can be configured to use different FortiAnalyzer devices and syslog servers than the primary device. VDOMs can also override global syslog server settings.

Configure a different syslog server on a secondary HA device

```
log.fortianalyzer.setting                  user.radius
log.fortianalyzer.override-setting        system.interface
log.fortianalyzer2.setting                vpn.ipsec.phase1-interface
log.fortianalyzer2.override-setting      vpn.ipsec.phase2-interface
log.fortianalyzer3.setting               router.bgp
log.fortianalyzer3.override-setting      router.route-map
log.fortianalyzer-cloud.setting          router.prefix-list
log.fortianalyzer-cloud.override-setting firewall.ippool
log.syslogd.setting                     firewall.ippool6
log.syslogd.override-setting             router.static
log.syslogd2.setting                     router.static6
log.syslogd2.override-setting            firewall.vip
log.syslogd3.setting                     firewall.vip6
log.syslogd3.override-setting            system.sdwan
log.syslogd4.setting                     system.saml
log.syslogd4.override-setting            router.policy
system.central-management                router.policy6
system.csf
```
To configure the primary HA device:

1. Configure a global syslog server:

   ```
   config global
   config log syslog setting
   set status enable
   set server 172.16.200.44
   set facility local6
   set format default
   end
   end
   ```

2. Set up a VDOM exception to enable setting the global syslog server on the secondary HA device:

   ```
   config global
   config system vdom-exception
   edit 1
   set object log.syslogd.setting
   next
   end
   end
   ```

To configure the secondary HA device:

1. Configure a global syslog server:

   ```
   config global
   config log syslogd setting
   set status enable
   set server 172.16.200.55
   set facility local5
   end
   end
   ```

2. After the primary and secondary device synchronize, generate logs on the secondary device.

To confirm that logs are been sent to the syslog server configured on the secondary device:

1. On the primary device, retrieve the following packet capture from the secondary device's syslog server:

   ```
   # diagnose sniffer packet any "host 172.16.200.55" 6
   interfaces=[any]
   filters=[host 172.16.200.55]
   ```

   ```
   266.859494 port2 out 172.16.200.2.7434 -> 172.16.200.55.514: udp 278
   0x0000 0000 0000 0000 0009 0f09 0004 0800 4500 ..........E.
   0x0010 0132 f3c7 0000 4011 9d98 ac10 c802 ac10 .2....@........
   0x0020 c837 1d0a 0202 011e 4b05 3c31 3734 3e64 .7......K.<174>d
   0x0030 6174 653d 3230 3230 2d30 332d 3134 2074 ate=2020-03-14.t
   0x0040 696d 653d 3132 3a30 303035 2064 6576 ime=12:00:05.dev
   0x0050 6e61 6d65 3d22 466f 7274 6947 6174 652d name="FGT-81E-Sl
   0x0060 3831 455f 4122 2064 6576 6964 3d22 4647 ave-A".devid="FG
   0x0070 5438 3145 3451 3136 3030 3030 3438 2220 T81E4Q16000048".
   0x0080 6c6f 6769 643d 2230 3100 3200 3200 30logid="010002002
   0x0090 3722 2074 7970 6d3d 2265 766e 7422 2200 .7".type="event".
   0x00a0 7375 6274 7970 653d 2273 7973 7465 6d22 subtype="system"
   0x00b0 206c 676e 656c 3d22 696e 666f 726d 6174 .level="informat
   ```
Configure a different syslog server in the root VDOM on a secondary HA device

To configure the primary HA device:

1. Configure a global syslog server:
   ```
   config global
   config log syslog setting
   set status enable
   set server 172.16.200.44
   set facility local6
   set format default
   end
   end
   ```

2. Set up a VDOM exception to enable syslog-override in the secondary HA device root VDOM:
   ```
   config global
   config system vdom-exception 
   edit 1
   set object log.syslogd.override-setting
   set scope inclusive
   set vdom root
   next
   end
   ```
3. In the VDOM, enable `syslog-override` in the log settings, and set up the override syslog server:

```bash
config root
    config log setting
        set syslog-override enable
    end
config log syslog override-setting
    set status enable
    set server 172.16.200.44
    set facility local6
    set format default
end
```

After `syslog-override` is enabled, an override syslog server must be configured, as logs will not be sent to the global syslog server.

To configure the secondary HA device:

1. Configure an override syslog server in the root VDOM:

```bash
config root
    config log syslogd override-setting
        set status enable
        set server 172.16.200.55
        set facility local5
        set format default
    end
```

2. After the primary and secondary device synchronize, generate logs in the root VDOM on the secondary device.

To confirm that logs are been sent to the syslog server configured for the root VDOM on the secondary device:

1. On the primary device, retrieve the following packet capture from the syslog server configured in the root VDOM on the secondary device:

```
# diagnose sniffer packet any "host 172.16.200.55" 6
interfaces=[any]
filters=[host 172.16.200.55]

156.759696 port2 out 172.16.200.2.1165 -> 172.16.200.55.514: udp 277
0x0000 0000 0000 0000 0000 0000 0000 0000 0f09 0004 0800 4500 . ..........E.
0x0010 0131 f398 0000 4011 9dc8 ac10 c802 ac10 .1....@........
0x0020 c837 048d 0202 011d af5f 3c31 3734 3e64 .7.......<_174>d
0x0030 6174 653d 3230 3230 2d30 332d 3134 2074 ate=2020-03-14.t
0x0040 696d 653d 3131 3a33 353a 3035 2064 6576 ime=11:35:05.dev
0x0050 6e61 6d65 3d22 466f 7274 47 6174 652d name="FGT-81E-S1"
0x0060 3831 455f 4122 2064 6576 6964 3d22 4647 ave=A”.devid="FG
0x0070 5438 3145 3451 3136 3030 3030 3438 2220 T81E4Q16000048”.
0x0080 6c6f 6769 643d 2230 3130 3030 3230 3032 logid=010002002
0x0090 3232 3074 7970 653d 2265 7665 6e74 2220 7”.type="event”.
0x00a0 7375 6274 7970 653d 31 3538 3432 3130 .subtype="system"
0x00b0 7375 6274 7970 653d 2226 7970 653d 2226 logtime=1584210
0x00c0 7375 6274 7970 653d 2226 7970 653d 2226 .level="informat
0x00d0 7375 6274 7970 653d 2226 7970 653d 2226 ion”.vd="root”.e
```
```
Routing NetFlow data over the HA management interface

In an HA environment, the ha-direct option allows data from services such as syslog, FortiAnalyzer, SNMP, and NetFlow to be routed over the outgoing interface.

The following example shows how NetFlow data can be routed over the HA management interface mgmt1.

To route NetFlow data over the HA management interface:

1. On the primary unit (FortiGate A), configure the HA and mgmt1 interface settings:

   (global) # config system ha
   set group-name "test-ha"
   set mode a-p
   set password ********
   set hbdev "port6" 50
   set hb-interval 4
   set hb-lost-threshold 10
   set session-pickup enable
   set ha-mgmt-status enable
   config ha-mgmt-interfaces
     edit 1
       set interface "mgmt1"
     next
   end
   set override enable
   set priority 200
   set ha-direct enable
   end

   (global) # config system interface
   edit "mgmt1"
     set ip 10.6.30.111 255.255.255.0
     set allowaccess ping https ssh http telnet fgfm
     set type physical
     set dedicated-to management
     set role lan
     set snmp-index 1
     next
   end

2. On the secondary unit (FortiGate B), configure the HA and mgmt1 interface settings:

   (global) # config system ha
   set group-name "test-ha"
   set mode a-p
   set password ********
   set hbdev "port6" 50
   set hb-interval 4
set hb-lost-threshold 10
set session-pickup enable
set ha-mgmt-status enable
config ha-mgmt-interfaces
  edit 1
    set interface "mgmt1"
  next
end
set override enable
set priority 100
set ha-direct enable
end

(global) # config system interface
  edit "mgmt1"
    set ip 10.6.30.112 255.255.255.0
    set allowaccess ping https ssh http telnet fgfm
    set type physical
    set dedicated-to management
    set role lan
    set snmp-index 1
  next
end

3. On the primary unit (FortiGate A), configure the NetFlow setting:

   (global) # config system netflow
     set collector-ip 10.6.30.59
end

4. Verify that NetFlow uses the mgmt1 IP:

   (global) # diagnose test application sflowd 3

5. Verify that the NetFlow packets are being sent by the mgmt1 IP:

   (vdom1) # diagnose sniffer packet any 'udp and port 2055' 4
   interfaces=[any]
   filters=[udp and port 2055] 8.397265 mgmt1 out 10.6.30.111.1992 -> 10.6.30.59.2055: udp 60
   23.392175 mgmt1 out 10.6.30.111.1992 -> 10.6.30.59.2055: udp 188
   23.392189 mgmt1 out 10.6.30.111.1992 -> 10.6.30.59.2055: udp 60
   ...
   3 packets received by filter
   0 packets dropped by kernel

6. On the secondary device (FortiGate B), change the priority so that it becomes the primary:

   (global) # config system ha
     set priority 250
end

7. Verify the NetFlow status on FortiGate A, which is using the new primary's mgmt1 IP:

   (global) # diagnose test application sflowd 3

8. Verify that the NetFlow packets use the new source IP on FortiGate B:

   (vdom1) # diagnose sniffer packet any 'udp and port 2055' 4
   interfaces=[any]
   filters=[udp and port 2055]
7.57974 mgmt1 out 10.6.30.112.3579 -> 10.6.30.59.2055: udp 60
22.58183 mgmt1 out 10.6.30.112.3579 -> 10.6.30.59.2055: udp 60
29.03833 mgmt1 out 10.6.30.112.3579 -> 10.6.30.59.2055: udp 1140
^C
3 packets received by filter
0 packets dropped by kernel

Force HA failover for testing and demonstrations

This command should only be used for testing, troubleshooting, maintenance, and demonstrations.
Do not use it in a live production environment outside of an active maintenance window.

HA failover can be forced on an HA primary device. The device will stay in a failover state regardless of the conditions.
The only way to remove the failover status is by manually turning it off.

Syntax

execute ha failover set <cluster_id>
execute ha failover unset <cluster_id>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;cluster_id&gt;</td>
<td>The cluster ID is 1 for any cluster that is not in virtual cluster mode, and can be 1 or 2 if virtual cluster mode is enabled.</td>
</tr>
</tbody>
</table>

Example

To manually force an HA failover:

```
execute ha failover set 1
Caution: This command will trigger an HA failover.
It is intended for testing purposes.
Do you want to continue? (y/n)y
```

To view the failover status:

```
execute ha failover status
failover status: set
```

To view the system status of a device in forced HA failover:

```
get system ha status
HA Health Status: OK
Model: FortiGate-300D
Mode: HA A-P
Group: 240
Debug: 0
Cluster Uptime: 0 days 2:11:46
Cluster state change time: 2020-03-12 17:38:04
Primary selected using:
```
<2020/03/12 17:38:04> FGT3HD3914800153 is selected as the primary because it has EXE_FAIL_OVER flag set.
<2020/03/12 15:27:26> FGT3HD3914800069 is selected as the primary because it has the largest value of override priority.

ses_pickup: disable
override: enable

Configuration Status:
  FGT3HD3914800069 (updated 4 seconds ago): in-sync
  FGT3HD3914800153 (updated 3 seconds ago): in-sync

System Usage stats:
  FGT3HD3914800069 (updated 4 seconds ago):
    sessions=5, average-cpu-user/nice/system/idle=0%/0%/0%/100%, memory=30%
  FGT3HD3914800153 (updated 3 seconds ago):
    sessions=41, average-cpu-user/nice/system/idle=0%/0%/0%/99%, memory=30%

HBDEV stats:
  FGT3HD3914800069 (updated 4 seconds ago):
    port3: physical/1000auto, up, rx-bytes/packets/dropped/errors=15914162/42929/0/0,
    tx=15681840/39525/0/0
  FGT3HD3914800153 (updated 3 seconds ago):
    port3: physical/1000auto, up, rx-bytes/packets/dropped/errors=16636700/45544/0/0,
    tx=15529791/39512/0/0

Secondary: FortiGate-300D, FGT3HD3914800069, HA cluster index = 1
Primary: FortiGate-300D, FGT3HD3914800153, HA cluster index = 0

To stop the failover status:

# execute ha failover unset 1
Caution: This command may trigger an HA failover.
Do you want to continue? (y/n)y

To view the system status of a device after forced HA failover is disabled:

# get system ha status
HA Health Status: OK
Model: FortiGate-300D
Mode: HA A-P
Group: 240
Debug: 0
Cluster Uptime: 0 days 2:14:55
Cluster state change time: 2020-03-12 17:42:17
Primary selected using:
  <2020/03/12 17:38:04> FGT3HD3914800153 is selected as the primary because it has EXE_FAIL_OVER flag set.
  <2020/03/12 17:38:04> FGT3HD3914800153 is selected as the primary because it has the largest value of override priority.
  <2020/03/12 15:27:26> FGT3HD3914800069 is selected as the primary because it has the largest value of override priority.
ses_pickup: disable
override: enable

Configuration Status:
FGT3HD3914800069 (updated 3 seconds ago): in-sync
FGT3HD3914800153 (updated 2 seconds ago): in-sync

System Usage stats:
FGT3HD3914800069 (updated 3 seconds ago):
  sessions=0, average-cpu-user/nice/system/idle=0%/0%/0%/100%, memory=30%
FGT3HD3914800153 (updated 2 seconds ago):
  sessions=38, average-cpu-user/nice/system/idle=0%/0%/0%/100%, memory=30%

HBDEV stats:
FGT3HD3914800069 (updated 3 seconds ago):
  port3: physical/1000auto, up, rx-bytes/packets/dropped/errors=16302442/43964/0/0,
    tx=16053848/40454/0/0
  port5: physical/1000auto, up, rx-bytes/packets/dropped/errors=18161941/54088/0/0,
    tx=20615650/55877/0/0
FGT3HD3914800153 (updated 2 seconds ago):
  port3: physical/1000auto, up, rx-bytes/packets/dropped/errors=17033009/46641/0/0,
    tx=15907891/40462/0/0
  port5: physical/1000auto, up, rx-bytes/packets/dropped/errors=20617180/55881/0/0,
    tx=18163135/54091/0/0

Primary: FortiGate-300D , FGT3HD3914800069, HA cluster index = 1
Secondary: FortiGate-300D , FGT3HD3914800153, HA cluster index = 0
number of vcluster: 1
vcluster 1: work 169.254.0.2
Primary: FGT3HD3914800069, HA operating index = 0
Secondary: FGT3HD3914800153, HA operating index = 1

Disabling stateful SCTP inspection

There is an option in FortiOS to disable stateful SCTP inspection. This option is useful when FortiGates are deployed in a high availability (HA) cluster that uses the FortiGate Clustering Protocol (FGCP) and virtual clustering in a multihoming topology. In this configuration, the primary stream control transmission protocol (SCTP) path traverses the primary FortiGate node by using its active VDOM (for example, VDOM1), and the backup SCTP path traverses the other passive FortiGate node by using its active VDOM (for example, VDOM2).

When stateful SCTP inspection is enabled, SCTP heartbeat traffic fails by means of the backup path because the primary path goes through a different platform and VDOM. Since there is no state sharing between VDOMs, the passive FortiGate is unaware of the original SCTP session and drops the heartbeats because of no associated sessions. When stateful SCTP inspection is disabled, the passive node permits the SCTP heartbeats to pass.

When set to enable, SCTP session creation without SCTP INIT is enabled. When set to disable, SCTP session creation without SCTP INIT is disabled (this is the default setting):

cfg system settings
  set sctp-session-without-init {enable | disable}
end

The following is an example topology and scenario:
In this example, FGT_A and FGT_B are in HA a-p mode with two virtual clusters. Two primaries exist on different FortiGate units. PC1 eth1 can access PC5 eth1 through VDOM1, and PC1 eth2 can access PC5 eth2 through VDOM2.

On PC5, to listen for an SCTP connection:
```
sctp_darn -H 172.16.200.55 -B 172.17.200.55 -P 2500 -l
```

On PC1, to start an SCTP connection:
```
sctp_darn -H 10.1.100.11 -B 20.1.100.11 -P 2600 -c 172.16.200.55 -c 172.17.200.55 -p 2500 -s
```

An SCTP four-way handshake is on one VDOM, and a session is created on that VDOM. With the default configuration, there is no session on any other VDOM, and the heartbeat on another path (another VDOM) is dropped. After enabling `sctp-session-without-init`, the other VDOM creates the session when it receives the heartbeat, and the heartbeat is forwarded:
```
config system settings
 set sctp-session-without-init enable
end
```

**Resume IPS scanning of ICCP traffic after HA failover**

After HA failover occurs, the IPS engine will resume processing ICCP sessions and keep the traffic going on the new primary unit. `session-pickup` must be enabled in an active-passive cluster to pick up the ICCP sessions.

**Example**

The following example uses an active-passive cluster. See HA active-passive cluster setup on page 2037 for more information.

**To configure HA:**

```
config system ha
 set group-name "HA-APP"
 set mode a-p
 set password ************
 set hbdev "port3" 100
 set session-pickup enable
 set override enable
end
```
**Session states before failover**

When HA is working, the ICCP session information is stored in the HA session cache on the secondary FortiGate.

**To verify the HA session cache on the secondary FortiGate:**

```
diagnose ips share list
HA Session Cache
 client=10.1.100.178:57218 server=172.16.200.177:102
 service=39, ignore_app_after=0, last_app=76919, buffer_len=32
 stock tags: nr=981, hash=e68dc8120970448
 custom tags: nr=0, hash=1a4b996b6a42aa2
tags [count=2]: s-737, s-828,
```

The ICCP session information can be found in the IPS session list and the session table on the primary FortiGate.

**To verify the IPS session information on the primary FortiGate:**

```
diagnose ips session list
SESSION id:1 serial:35487 proto:6 group:6 age:134 idle:1 flag:0x800012a6
 feature:0x4 encap:0 ignore:0, ignore_after:204800,0
tunnel:0 children:0 flag:....-....-....-
 C-10.1.100.178:57218, S-172.16.200.177:102
 state: C-ESTABLISHED/13749/0/0/0/0, S-ESTABLISHED/48951/0/0/0/0 pause:0, paws:0
 expire: 3599
 app: unknown:0 last:44684 unknown-size:0
cnf: cotp
 set: cotp
 asm: cotp
```

**To verify the system information on the primary FortiGate:**

```
diagnose sys session list
session info: proto=6 proto_state=11 duration=209 expire=3585 timeout=3600 flags=00000000
 socktype=0 sockport=0 av_idx=0 use=5
 origin-shaper=
 reply-shaper=
 per_ip_shaper=
class_id=0 ha_id=0 policy_dir=0 tunnel=/ vlan_cos=0/255
 state=log may_dirty ndr npu syn_sess app_valid
 statistic(bytes/packets/allow_err): org=11980/104/1 reply=57028/164/1 tuples=3
 tx speed(Bps/kbps): 0/0 rx speed(Bps/kbps): 0/0
origin->sink: org pre->post, reply pre->post dev=10->9/9->10 qwy=172.16.200.177/10.1.100.178
 hook=post dir=org act=snat 10.1.100.178:57218->172.16.200.177:102(172.16.200.4:57218)
 hook=pre reply act=dnat 172.16.200.177:102->172.16.200.4:57218(10.1.100.178:57218)
 hook=pre reply act=noop 172.16.200.177:102->10.1.100.178:57218(0.0.0.0:0)
 pos/(before,after) 0/(0,0), 0/(0,0)
 misc=0 policy_id=2 auth_info=0 chk_client_info=0 vd=1
 serial=00008a9f tcs=ff/ff app_list=2003 app=44684 url_cat=0
 sdwan_mbr_seq=0 sdwan_service_id=0
 rpdb_link_id=00000000 rpdb_svc_id=0 ngfwid=n/a
 npu_state=0x003c94 ips_offload
 npu info: flag=0x81/0x81, offload=8/8, ips_offload=1/1, epid=71/71, ipid=134/132,
 vlan=0x0000/0x0000
 vlifid=134/132, vtag_in=0x0000/0x0000 in_npu=1/1, out_npu=1/1, fwd_en=0/0, qid=10/10
```
Sample log on current primary FortiGate:

```
execute log display
304 logs found.
10 logs returned.
28.8% of logs has been searched.
```

```
1: date=2021-06-04 time=16:54:40 eventtime=1622850881110547135 tz="-0700" logid="1059028704"
type="utm" subtype="app-ctrl" eventtype="signature" level="information" vd="vd1" appid=44684
srcip=10.1.100.178 dstip=172.16.200.177 srcport=57218 dstport=102 srcintf="port2"
dstintf="port1" dstintfrole="undefined" proto=6 service="tcp/102"
direction="incoming" policyid=2 sessionid=35487 aplist="test" action="pass"
appcat="Industrial" app="ICCP_Transfer.Reporting" incidentserialno=61868187 msg="Industrial: ICCP_Transfer.Reporting," apprisk="elevated"
```

Session states after failover

After HA failover, the IPS engine on the new primary picks up the related ICCP sessions and continues passing the traffic. The HA session cache disappears on the new primary. The ICCP session now appears on the IPS session list and session table on the new primary.

To verify the IPS session information on the new primary FortiGate:

```
diagnose ips session list
SESSION id:1 serial:35487 proto:6 group:6 age:90 idle:2 flag:0x820012a3
 feature:0x4 encap:0 ignore:1,0 ignore_after:204800,0
tunnel:0 children:0 flag:.....-.....-i.
C-10.1.100.178:57218, S-172.16.200.177:102
state: C-ESTABLISHED/9114/0/0/0, S-ESTABLISHED/0/0/0/0 pause:0, paws:0
expire: 28
app: unknown:0 last:44684 unknown-size:0
```

The server and client IPs, ports, and protocols remain the same.

To verify the system information on the primary FortiGate:

```
diagnose sys session list
socktype=0 sockport=0 av_idx=0 use=5
origin-shaper=
reply-shaper=
per_ip_shaper=
class_id=0 ha_id=0 policy_dir=0 tunnel=/ vlan_cos=0/255
state=log may_dirty ndr npu syn_ses app_valid
statistic(bytes/packets/allow_err): org=38629/308/1 reply=160484/483/1 tuples=3
 tx speed(Bps/kbps): 158/1 rx speed(Bps/kbps): 1139/9
origin->sink: org pre->post, reply pre->post dev=10->9/9->10 gwy=172.16.200.177/10.1.100.178
hook=pre dir=org act=snat 10.1.100.178:57218->172.16.200.177:102(172.16.200.4:57218)
hook=pre dir=Reply act=dnat 172.16.200.177:102->172.16.200.4:57218(10.1.100.178:57218)
hook=post dir=reply act=noop 172.16.200.177:102->10.1.100.178:57218(0.0.0.0:0)
 pos/(before,after) 0/0, 0/0, 0/0,
misc=0 policy_id=2 auth_info=0 chk_client_info=0 vd=1
serial=00008a9f tos=ff/ff app_list=2003 app=44684 url_cat=0
sdwan_mbr_seq=0 sdwan_service_id=0
rpdb_link_id=00000000 rpdb_svc_id=0 ngfwid=n/a
```
The server and client IPs, ports, and NPU state remain the same.

**Sample log on new primary FortiGate:**

```
execute log display
653 logs found.
10 logs returned.
65.8% of logs has been searched.
```

1: date=2021-06-04 time=17:05:20 eventtime=1622851521364635480 tz="-0700" logid="1059028704" type="utm" subtype="app-ctrl" eventtype="signature" level="information" vd="vdl" appid=44684 srcip=10.1.100.178 dstip=172.16.200.177 srcport=57218 dstport=102 srcintf="port2" dstintf="undefined" proto=6 service="tcp/102" direction="incoming" policyid=2 sessionid=35487 aplllist="test" action="pass" appcat="Industrial" app="ICCP_Transfer.Reporting" incidentserialno=198181218 msg="Industrial: ICCP_Transfer.Reporting," apprisk="elevated"
```

Querying autoscale clusters for FortiGate VM

When a FortiGate VM secondary device is added to a cluster, the new secondary member can query the cluster about its autoscale environment. FortiManager can then run this query on the new secondary member to update its autoscale record.

To view cluster information from a secondary member:

```
# diagnose sys ha checksum autoscale-cluster
```

Cluster information sample

Sample cloud topology:

```
FGT_BYOL; primary; 10.0.0.6; FGVM04TM00000066
FGT_BYOL; secondary; 10.0.0.7; FGVM00000000056
FGT_PAYG; secondary; 10.0.0.4; FGTAZ000000000CD
FGT_PAYG; secondary; 10.0.0.5; FGTAZ0000000003D
```

From the secondary device, you can see cluster checksums and the primary device:

```
# diagnose sys ha checksum autoscale-cluster
================== FGTAZ000000000CD =================
is Autoscale_master()=0
debugzone
global: 56 49 b3 02 f2 b7 5b 82 ec 2d c2 1a ff 80 8c 79
root: bf 18 cf 83 le 04 c3 04 4c e4 66 bc 38 fe 3a dc
all: 77 06 d0 89 6e 06 c0 86 17 98 53 72 33 85 ae ff
checksum
global: 56 49 b3 02 f2 b7 5b 82 ec 2d c2 1a ff 80 8c 79
root: bf 18 cf 83 le 04 c3 04 4c e4 66 bc 38 fe 3a dc
all: 77 06 d0 89 6e 06 c0 86 17 98 53 72 33 85 ae ff
================== FGVM04TM00000066 =================
```
To get ha sync information from the secondary device:

```
# get test hasync 50
autoscale_count=69. current_jiffies=41235125
  10.0.0.6, timeo=31430, serial_no=FGVM04TM19001766
  10.0.0.7, timeo=31430, serial_no=FGVM04TM19008156
  10.0.0.5, timeo=31430, serial_no=FGTAZ2R7UZRRKNR3D
```

Cluster virtual MAC addresses

In a cluster, the FGCP assigns virtual MAC addresses (VMACs) to each primary device interface. HA uses VMAC addresses so that if a failover occurs, the new primary device interfaces will have the same VMAC addresses and IP addresses as the failed primary device. As a result, most network equipment will identify the new primary device as the same device as the failed primary device and still be able to communicate with the cluster.

If a cluster is operating in NAT mode, the FGCP assigns a different VMAC address to each primary device interface. VLAN subinterfaces are assigned the same VMAC address as the physical interface that the VLAN subinterface is added to. Redundant or 802.3ad aggregate interfaces are assigned the VMAC address of the first interface in the redundant or aggregate list.

If a cluster is operating in transparent mode, the FGCP assigns a VMAC address to the primary device's management IP address. Since you can connect to the management IP address from any interface, all FortiGate interfaces appear to have the same VMAC address.
The MAC address of a reserved management interface does not change to a VMAC address; it keeps its original MAC address.

Subordinate device MAC addresses do not change. Use `diagnose hardware deviceinfo nic <interface>` on the subordinate device to display the MAC addresses of each interface.

A MAC address conflict can occur when two clusters are operating on the same network using the same group ID (see [Diagnosing packet loss](#)). It is recommended that each cluster in the same network and broadcast domain uses a unique group ID.

Failover

When the new primary device is selected after a failover, the primary device sends gratuitous ARP packets to update the devices connected to the cluster interfaces (usually layer 2 switches) with the VMAC addresses. This is sometimes called using gratuitous ARP packets (or GARP packets) to train the network. The gratuitous ARP packets sent from the primary unit are intended to make sure that the layer 2 switch forwarding databases (FDBs) are updated as quickly as possible.

Sending gratuitous ARP packets is not a requirement because connected devices will eventually learn of the new ports to forward the packets to. However, many network switches will update their FDBs more quickly after a failover if the new primary device sends gratuitous ARP packets.

Configuring ARP packet settings

The following settings can be configured.

```plaintext
config system ha
    set arps <integer>
    set arps-interval <integer>
    set gratuitous-arps {enable | disable}
    set link-failed-signal {enable | disable}
end
```

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>arps <integer></td>
<td>Set the number of gratuitous ARPs; lower the value to reduce failover time (1 - 60, default = 5).</td>
</tr>
<tr>
<td>arps-interval <integer></td>
<td>Set the time between gratuitous ARPs; lower the value to reduce failover time, and increase the value to reduce traffic, in seconds (1 - 20, default = 8).</td>
</tr>
<tr>
<td>gratuitous-arps {enable</td>
<td>disable}</td>
</tr>
<tr>
<td>link-failed-signal {enable</td>
<td>disable}</td>
</tr>
</tbody>
</table>

If you disable sending gratuitous ARP packets, it is recommended to enable the `link-failed-signal` setting. The `linked-fail-signal` alerts the connected switches of a failed link, which triggers them to react immediately to the changes.

For more information about gratuitous ARP packets see [RFC 826](https://tools.ietf.org/html/rfc826) and [RFC 3927](https://tools.ietf.org/html/rfc3927).
Determining VMAC addresses

A VMAC address is determined based on following formula:

\[\text{<group-prefix>}:\text{<group-id_hex}>:(\text{<vcluster_integer>} + \text{<idx>}) \]

The \text{<group-prefix>} is determined by the following set of group IDs:
- Set 1: group IDs 0 - 255: group prefix 00:09:0f:09
- Set 2: group IDs 256 - 511: group prefix e0:23:ff:fc
- Set 3: group IDs 512 - 767: group prefix e0:23:ff:fd
- Set 4: group IDs 768 - 1023: group prefix e0:23:ff:fe

The \text{<group-id_hex>} is determined by the group ID \% 256, converted to hexadecimal. For example:

<table>
<thead>
<tr>
<th>Group ID</th>
<th>Hexadecimal ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: 0 % 256 = 0</td>
<td>00</td>
</tr>
<tr>
<td>255: 255 % 256 = 255</td>
<td>ff</td>
</tr>
<tr>
<td>256: 256 % 256 = 0</td>
<td>00</td>
</tr>
<tr>
<td>511: 511 % 256 = 255</td>
<td>ff</td>
</tr>
<tr>
<td>512: 512 % 256 = 0</td>
<td>00</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

The \text{<vcluster_integer>} is 00 for virtual cluster 1, and 20 for virtual cluster 2. If VDOMs are not enabled, HA sets the virtual cluster to 1 and by default all interfaces are in the root VDOM. Including virtual cluster and VDOM factors in the VMAC address formula means that the same formula can be used whether or not VDOMs and virtual clustering are enabled.

The \text{<idx>} is the index number of the interface. Interfaces are numbered from 0 to x (where x is the number of interfaces). Interfaces are numbered according to their map order. The first interface has an index of 0. The second interface in the list has an index of 1, and so on.

The following table compares the VMAC addresses for interfaces with an unchanged HA group ID (0) with VDOMs not enabled and interfaces when the group ID is changed to 34:

<table>
<thead>
<tr>
<th>Interface</th>
<th>VMAC address with unchanged group ID (0)</th>
<th>VMAC address with changed group ID (34)</th>
</tr>
</thead>
<tbody>
<tr>
<td>port5</td>
<td>00-09-0f-09-00-0a</td>
<td>00-09-0f-09-22-0a</td>
</tr>
<tr>
<td>port6</td>
<td>00-09-0f-09-00-0b</td>
<td>00-09-0f-09-22-0b</td>
</tr>
<tr>
<td>port7</td>
<td>00-09-0f-09-00-0c</td>
<td>00-09-0f-09-22-0c</td>
</tr>
<tr>
<td>port8</td>
<td>00-09-0f-09-00-0d</td>
<td>00-09-0f-09-22-0d</td>
</tr>
</tbody>
</table>

Using the same interfaces, a cluster with VDOMs is enabled and the group ID changes to 35. The root VDOM contains port5 and port6 (virtual cluster 1), and vdom_1 contains port7 and port8 (virtual cluster 2). The interfaces have the following VMAC addresses:
Displaying VMAC addresses

Each FortiGate physical interface has two MAC addresses: the permanent and current hardware addresses. The permanent hardware address cannot be changed, as it is the actual MAC address of the interface hardware. The current hardware address can be changed, as it is the address seen by the network.

To change the current hardware address on a FortiGate not operating in HA:

```
config system interface
  edit <name>
    set macaddr <address>
  next
end
```

In an operating cluster, the current hardware address of each cluster device interface is changed to the HA virtual MAC address by the FGCP. The `macaddr` option is not available for a functioning cluster.

To display MAC addresses on a FortiGate operating in HA:

```
# diagnose hardware deviceinfo nic port1
...
Current_HWaddr 00:09:0f:09:ff:02
Permanent_HWaddr 08:5b:0e:72:3b:b2
```

Diagnosing packet loss

A network can experience packet loss when two FortiGate HA clusters are deployed in the same broadcast domain due to MAC address conflicts. You can resolve the MAC address conflict by changing the HA group ID (or cluster ID) configuration of the two clusters.
You can diagnose packet loss by pinging from one cluster to the other, or by pinging both of the clusters from a device within the broadcast domain.

To check for a MAC address conflict in a HA cluster:

1. On Cluster_1 and Cluster_2, check the VMAC address (Current_HWaddr) used in an interface on the primary device:

   ```
   # diagnose hardware deviceinfo nic <interface>
   ```

 If the group prefix and group hexadecimal ID are identical, there will be MAC address conflicts.

2. Change one of the clusters to use a different group ID:

   ```
   config system ha
   set group-id <integer>
   end
   ```

Abbreviated TLS handshake after HA failover

TLS sessions that pass through an HA A-A or A-P cluster can use an abbreviated TLS handshake instead of a full TLS handshake upon failover from a primary HA unit to a secondary HA unit. This reduces session pickup delays by reducing the time needed to renegotiate the TLS session, given that the TLS session ticket can be re-used.

To accomplish this, FortiOS uses the web proxy global `ssl-ca-cert` to generate the key used in the TLS session ticket:

```
config web-proxy global
   set ssl-ca-cert "Fortinet_CA_SSL"
end
```

The certificate can be synchronized to the secondary HA unit, which allows the secondary unit to generate the same session key for a TLS session. When a TLS session reconnects after HA failover using the same session ticket as the first session, the new primary unit is able to generate the same key matching that session ticket and allow an abbreviated handshake.
Example

In this example, OpenSSL is used to create a TLS session between the client and the server through the primary FortiGate. The session ticket is outputted and saved. Upon failover, the same session ticket is reused to create a TLS session through the new primary unit. Because the new primary unit uses the same certificate to generate the key for the TLS session ticket, it allows the connection to be made using an abbreviated TLS handshake.

1. On the client using OpenSSL, open a new session to 172.16.200.44:443 and output the session ticket to a file called aaa.txt. This session will pass through the current HA primary unit:

   ```
   # openssl s_client -connect 172.16.200.44:443 -sess_out aaa.txt
   ```

2. Fail over the primary unit to the secondary unit. The HA secondary unit starts handling the traffic.

3. On the client, try connecting to 172.16.200.44:443 using the same saved session ticket as before (aaa.txt):

   ```
   # openssl s_client -connect 172.16.200.44:443 -sess_in aaa.txt
   ```

4. Verify whether the session succeeds in using the original session ticket:

 Reused, TLSv1.3, Cipher is TLS_AES_256_GCM_SHA384

 Server public key is 4096 bit
 Secure Renegotiation IS NOT supported
 Compression: NONE
 Expansion: NONE
 No ALPN negotiated
 Early data was not sent
 Verify return code: 19 (self signed certificate in certificate chain)
 ...

 If the session is established using the same ticket, **Reused, TLSv1.3, Cipher is <name>** is displayed. If session is established using a new ticket, **New, TLSv1.3, Cipher is <name>** is displayed.

 The new primary is able to use the web proxy global `ssl-ca-cert` to generate the same key as the old primary that was used in the session ticket. So, the second TLS connection that reuses the TLS session ticket from the first session can complete an abbreviated TLS handshake.
Session synchronization during HA failover for ZTNA proxy sessions

User information and TLS sessions are synchronized between HA members for ZTNA proxy sessions. When a failover occurs, the new primary unit will continue allowing sessions from the logged in users without asking for the client certificate and re-authentication again.

Example

In this example, a FortiGate HA pair is acting as a ZTNA access proxy. Clients that are trying to access the web server on qa.test.com are proxied by the ZTNA access proxy. Remote clients must be registered to the EMS server, and pass a client certificate check and user authentication in order to connect. Upon HA member failure, a failover occurs and the new primary unit will continue to allow connections without requesting client certificate check and user authentication for existing users and devices.

This example assumes ZTNA and EMS server settings are already configured.

To configure the HA settings:

```
config system ha
  set group-name "501E"
  set mode a-p
  set password **********
  set hbdev "ha" 0
  set session-pickup enable
  set override disable
  set monitor "port1" "port2"
end
```

To verify that the proxy sessions are synchronized between HA members:

1. On the client, access the web server. The ZTNA access proxy challenges the user for a client certificate and user authentication.
2. On the primary FortiGate, verify that the user information and TLS sessions are synchronized between HA members.

 a. Verify the list of proxy users:

```
501E-primary # diagnose wad user list
ID: 1, VDOM: root, IPv4: 10.1.100.22
   user name : localuser1
   worker : 0
   duration : 8
   auth_type : IP
   auth_method : Basic
   pol_id : 1
   g_id : 0
   user_based : 1
   expire : 597
LAN:
   bytes_in=2093 bytes_out=5753
WAN:
   bytes_in=2024 bytes_out=1235
```

 b. Apply a filter to WAD debug to diagnose the wad informer process:

```
501E-primary # diagnose test application wad 2400
Set diagnosis process: type=informer index=0 pid=305
```

 c. Show the user cache from the WAD informer. Verify that the localuser1 entry exists:

```
501E-primary # diagnose test application wad 110
users:
[1]  localuser1@10.1.100.22:0 upn_domain= from:worker worker:6 vf:0 ref:1 stale=0
       ntlm:0, has_fsae:0, guest:0
          user_node:(0x7fe18dfc0048) user:1[max=65536](0x7fe18dd08048) ip:1
            (0x7fe18dd00048) scheme:0 outofsync:0(0) id:1
...
```

 d. Verify using WAD real-time debugs on the secondary FortiGate. The user information is synchronized to the secondary FortiGate:

```
501E-secondary # diagnose wad debug enable category all
501E-secondary # diagnose wad debug enable level verbose
501E-secondary # diagnose debug enable
[I][p:296]  wad_proc_informer_ha_dgram_on_read:2811  Got HA msg: type=0, sizeof(msg)=8, dlen=80, sz=88
[I][p:296]  wad_proc_informer_on_ha_user_add :1493  reader: ip=10.1.100.22:45852 vf=0 seq=0 grp_type=0 scheme=0 is_ntlm=0 has_fsae=0 concur_user=65536 domain=''
[I][p:296]  wad_informer_update_user_ext :782
   ip=10.1.100.22:45852 name=localuser1 from=worker
```
3. Verify the user cache from the WAD informer:

 501E-secondary # diagnose test application wad 110
 users:
 [1] localuser1@10.1.100.22:0 upn_domain= from:worker worker:-126 vf:0 ref:1 stale=0
 ntlm:0, has_fsae:0, guest:0
 user_node:0x7fc1c84dd048, user_ip:0x7fc1c84ed048(0), user:0x7fc1c84f5048(0).

If the client tries to access the web server again after failover occurs, the client certificate check and authentication prompt does not appear. ZTNA allows the traffic to pass.

The ZTNA logs for both FortiGates contain the same user information.

Primary FortiGate log:

```
1: date=2022-03-23 time=11:49:57 eventtime=164806139754844970 tz="-0700" logid="0005000024"
    type="traffic" subtype="ztna" level="notice" vd="root" srcip=10.1.100.22 srcname="client"
    srcport=45826 srcintf="port2" srcintfrole="lan" dstcountry="Reserved" dstcountr
    dstip=172.16.200.209 dstport=443 dstintf="port1" dstintfrole="lan" sessionid=4786
    service="HTTPS" proto=6 action="accept" policyid=1 policytype="proxy-policy"
    poluuid="ea7a8a04-a56e-51ec-9d7b-90d24b32a289" policymname="ztna" duration=5
    user="localuser1" gatewayid=1 vip="ztna" accessproxy="ztna"
    clientdeviceid=EF73C831C3FE4FF195A5B2030B****** clientdevicetags="FCTEMS8821000000_all_registered_clients/MAC_FCTEMS8821000000_all_registered_clients/FCTEMS8821000000_ZT_FILE_CERTFILE" wanin=2024 rcvdbyte=2024 wanout=1325 lanin=1511 sentbyte=1511 lanout=1075
    fctuid="EF73C831C3FE4FF195A5B2030B****** unauthuser="fosqa" unauthusersource="forticlient"
    appcat="unscanned"
```

Secondary FortiGate log:

```
1: date=2022-03-23 time=11:55:01 eventtime=164806170162452041 tz="-0700" logid="0005000024"
    type="traffic" subtype="ztna" level="notice" vd="root" srcip=10.1.100.22 srcname="client"
    srcport=45830 srcintf="port2" srcintfrole="lan" dstcountry="Reserved" dstcountr
    dstip=172.16.200.209 dstport=443 dstintf="port1" dstintfrole="lan" sessionid=676
    service="HTTPS" proto=6 action="accept" policyid=1 policytype="proxy-policy"
    poluuid="ea7a8a04-a56e-51ec-9d7b-90d24b32a289" policymname="ztna" duration=5
    user="localuser1" gatewayid=1 vip="ztna" accessproxy="ztna"
    clientdeviceid=EF73C831C3FE4FF195A5B2030B****** clientdevicetags="FCTEMS8821000000_all_registered_clients/MAC_FCTEMS8821000000_all_registered_clients/FCTEMS8821000000_ZT_FILE_CERTFILE" wanin=2024 rcvdbyte=2024 wanout=1325 lanin=1511 sentbyte=1511 lanout=1075
    fctuid="EF73C831C3FE4FF195A5B2030B****** unauthuser="fosqa" unauthusersource="forticlient"
    appcat="unscanned"
```

Troubleshoot an HA formation

The following are requirements for setting up an HA cluster or FGSP peers.

Cluster members must have:

- The same model.
- The same hardware configuration.
The same connections.
The same generation.

The requirement to have the same generation is done as a best practice as it avoids issues that can occur later on. If you are unsure if the FortiGates are from the same generation, please contact customer service.

Troubleshooting common HA formation errors

One member keeps shutting down during HA setup (hard drive failure):

If one member has a hard drive failure but the other does not, the one with the hard drive failure will be shut down during HA setup. In this case, RMA the member to resolve the issue.

Split brain scenario:

A split brain scenario occurs when two or more members of a cluster cannot communicate with each other on the heartbeat interface, causing each member to think it is the primary. As a result, each member assumes the primary HA role and applies the same IP and virtual MAC addresses on its interfaces. This causes IP and MAC conflicts on the network, and causes flapping on L2 devices when they learn the same MAC address on ports connected to different FortiGates.

A split brain scenario is usually caused by a complete lost of the heartbeat link or links. This can be a physical connectivity issue, or less commonly, something blocking the heartbeat packets between the HA members. Another cause is congestion and latency in the heartbeat links that exceeds the heartbeat lost intervals and thresholds.

The following are common symptoms of a split brain scenario:

- The connections to the FortiGates in the cluster work intermittently when trying to connect with administrative access.
- Sessions cannot be established through the FortiGate, and the traffic drops.
- When logging in to the FortiGates using the `console`, `get system ha status` shows each FortiGate as the primary.

To resolve a split brain scenario:

- Be physically on-site with the FortiGates (recommended). If this is not possible, connect to the FortiGates using console access.
- Identify the heartbeat ports, and verify that they are physically connected and up.
- Verify that heartbeat packets are being sent and received on the heartbeat ports.
- Verify that the HA configurations match between the HA members. The HA `mode`, `group-name`, `group-id`, and `password` settings should be the same. Different `group-id` values will result in different virtual MAC addresses, which might not cause a MAC conflict. However, an IP conflict can still occur.
- If everything seems to be in working order, run `get system ha status` to verify that HA has formed successfully.

To avoid a split brain scenario:

- In a two-member HA configuration, use back-to-back links for heartbeat interface instead of connecting through a switch.
- Use redundant HA heartbeat interfaces.
• In a configuration where members are in different locations, ensure the heartbeat lost intervals and thresholds are longer than the possible latency in the links.

FGSP

Standalone FortiGates or FGCP clusters can be integrated into the load balancing configuration using the FortiGate Session Life Support Protocol (FGSP) in a network where traffic is load balanced by an upstream load balancer and scanned by downstream FortiGates. FGSP can perform session synchronization of IPv4 and IPv6 TCP, SCTP, UDP, ICMP, expectation, and NAT sessions to keep the session tables synchronized on all entities. If one of the FortiGates fails, the upstream load balancer should detect the failed member and stop distributing sessions to it. Session failover occurs and active sessions fail over to the peers that are still operating. Traffic continues to flow on the new peer without data loss because the sessions are synchronized.

The FortiGates in FGSP operate as peers that process traffic and synchronize sessions. An FGSP deployment can include two to 16 standalone FortiGates, or two to 16 FortiGate FGCP clusters of two members each. Adding more FortiGates increases the CPU and memory required to keep all of the FortiGates synchronized, and it increases network synchronization traffic. Exceeding the numbers of members is not recommended and may reduce overall performance. By default, FGSP synchronizes all IPv4 and IPv6 TCP sessions, and IPsec tunnels. You can optionally add filters to control which sessions are synchronized, such as synchronizing packets from specific source and destination addresses, source and destination interfaces, or services.

FGSP is also compatible with FortiGate VRRP.

FGSP is primarily used instead of FGCP when external load balancers are part of the topology, and they are responsible for distributing traffic amongst the downstream FortiGates. FGSP provides the means to synchronize sessions between the FortiGate peers without needing a primary member to distribute the sessions like in FGCP active-active mode. If the external load balancers direct all sessions to one peer, the effect is similar to active-passive FGCP HA. If external load balancers balance traffic to both peers, the effect is similar to active-active FGCP HA. The load balancers should be configured so that all packets for any given session are processed by the same peer, including return packets whenever possible.
Session pickup

Session pickup is an optional setting that can be enabled to synchronize connectionless (UDP and ICMP) sessions, expectation sessions, and NAT sessions. If session pickup is not enabled, the FGSP does not share session tables for the particular session type, and sessions do not resume after a failover. All sessions are interrupted by the failover and must be re-established at the application level. Many protocols can successfully restart sessions with little, or no, loss of data. Others may not recover as easily. Enable session pickup for sessions that may be difficult to reestablish. Since session pickup requires FortiGate memory and CPU resources, only enable this feature for sessions that need to synchronize.

Session synchronization link

The session synchronization link is an optional configuration that allows peers to synchronize sessions over a dedicated interface instead of the interface in which the peer IP is routed. In this configuration, communications occur over L2 instead of L3. Configuring session synchronization links is recommended when you want to minimize traffic over the peering interface when there are many sessions that need to be synchronized.

Expectation sessions

FortiOS session helpers keep track of the communication of layer 7 protocols, such as FTP and SIP, that have control sessions and expectation sessions. The control sessions establish the link between the server and client, and negotiate the ports and protocols that will be used for data communications. The session helpers then create expectation sessions through the FortiGate for the ports and protocols negotiated by the control session.

The expectation sessions are the sessions that actually communicate data. For FTP, the expectation sessions transmit files being uploaded or downloaded. For SIP, the expectation sessions transmit voice and video data. Expectation sessions usually have a timeout value of 30 seconds. If the communication from the server is not initiated within 30 seconds, the expectation session times out and traffic will be denied.

By default, FGSP does not synchronize expectation sessions; if a failover occurs, the sessions will have to be restarted.

To synchronize expectation sessions so they continue after a failover:

```config system ha
  set session-pickup enable
  set session-pickup-expectation enable
end```

The following topics provide more information about FGSP:

- FGSP basic peer setup on page 2090
- Synchronizing sessions between FGCP clusters on page 2093
- Session synchronization interfaces in FGSP on page 2094
- UTM inspection on asymmetric traffic in FGSP on page 2096
- UTM inspection on asymmetric traffic on L3 on page 2098
- Encryption for L3 on asymmetric traffic in FGSP on page 2100
- Optimizing FGSP session synchronization and redundancy on page 2101
- IKE monitor for FGSP on page 2106
- Firmware upgrades in FGSP on page 2108
- FGSP session synchronization between different FortiGate models or firmware versions on page 2108
**FGSP basic peer setup**

The FortiGate Session Life Support Protocol (FGSP) is a proprietary HA solution for only sharing sessions between entities based on peer-to-peer communications. The entities could be standalone FortiGates or an FGCP cluster. This example uses two peer FortiGates. The load balancer is configured to send all sessions to Peer_1, and if Peer_1 fails, all traffic is sent to Peer_2.

![Topology Diagram](image)

**To configure a basic FGSP peer setup:**

These instructions assume that all FortiGates have been factory reset.

1. Make all the necessary connections as shown in the topology diagram.
2. On Peer_1, configure the peer IP in which this device will peer with:

   ```
 config system cluster-sync
 edit 1
 set peerip 10.10.10.2
 next
 end
   ```

   If there are multiple peer IPs from the same peer, enter them as separate entries. If there are multiple peers, enter the IP of each peer in separate entries. See [Optimizing FGSP session synchronization and redundancy](#) on page 2101 for an example.

   Sessions by default will be synchronized over layer 3 on the interface in which the current unit connects to the peer’s IP.

3. On Peer_2, configure session synchronization:

   ```
 config system cluster-sync
 edit 1
 set peerip 10.10.10.1
 next
 end
   ```

4. Configure identical firewall policies on each peer, such as for traffic going from the same incoming interface (port1) to the outgoing interface (port2).
To test the FGSP peer setup:

1. Initiate TCP traffic (like HTTP access) to go through Peer_1.
2. Check the session information:
   
   ```
 # diagnose sys session filter src <IP_address>
 # diagnose sys session list
   ```
3. Enter the same commands on Peer_2 to verify if the same session information appears.

Optional filters

Filters can be added to synchronize certain types of sessions that meet the filter criteria.

To add filters for session synchronization:

```fortiosconfig
config system cluster-sync
edit <id>
 config session-sync-filter
 set srcintf <interface>
 set dstintf <interface>
 set srcaddr <IPv4_address>
 set dstaddr <IPv4_address>
 set srcaddr6 <IPv6_address>
 set dstaddr6 <IPv6_address>
 end
next
end
```

Filter examples

To synchronize only sessions with a particular source subnet:

```fortiosconfig
config system cluster-sync
edit 1
 config session-sync-filter
 set srcaddr 192.168.20.0/24
 end
next
end
```

To synchronize only sessions with a particular source address range:

```fortiosconfig
config system cluster-sync
edit 1
 config session-sync-filter
 set srcaddr 192.168.20.10 192.168.20.20
 end
next
end
```
To synchronize only sessions with a particular destination address range:

```
config system cluster-sync
 edit 1
 config session-sync-filter
 set dstaddr 2001:db8:0:2::/64
 end
 next
end
```

**Session pickup**

You can enable this setting to synchronize connectionless (UDP and ICMP) sessions, expectation sessions, and NAT sessions. If session pickup is not enabled, the FGSP does not share session tables for the particular session type, and sessions do not resume after a failover.

**To enable UDP and ICMP session synchronization:**

```
config system ha
 set session-pickup enable
 set session-pickup-connectionless enable
end
```

**Session synchronization**

You can specify interfaces used to synchronize sessions in L2 instead of L3 using the `session-sync-dev` setting. For more information about using session synchronization, see Session synchronization interfaces in FGSP on page 2094.

**To configure session synchronization over redundant L2 connections:**

```
config system standalone-cluster
 set session-sync-dev <interface 1> [<interface 2>] ... [<interface n>]
end
```

**VDOM synchronization**

When multi-VDOM mode is enabled, you can specify the peer VDOM and the synchronized VDOMs. The peer VDOM contains the session synchronization link interface on the peer unit. The synchronized VDOMs' sessions are synchronized using this session synchronization configuration.

**To synchronize between VDOMs:**

```
config system cluster-sync
 edit 1
 set peerip <IP address>
 set peervd <vdom>
 set syncvd <vdom 1> [<vdom 2>] ... [<vdom n>]
 next
end
```
Synchronizing sessions between FGCP clusters

Synchronizing sessions between FGCP clusters is useful when data centers in different locations are used for load balancing, and traffic must be shared and flow freely based on demand.

There are some limitations when synchronizing sessions between FGCP clusters:

- All FortiGates must have the same model and generation, hardware configuration, and FortiOS version.
- A total of 16 clusters can share sessions.

To configure session synchronization between two clusters:

1. Configure the two clusters (see HA active-passive cluster setup on page 2037 or HA active-active cluster setup on page 2039).
2. On cluster A, configure the peer IP for the interface:

```plaintext
config system interface
 edit "port5"
 set vdom "root"
 set ip 10.10.10.1 255.255.255.0
 set allowaccess ping https ssh snmp http telnet
 next
end
```

In this example, cluster A uses port5 and its IP address, 10.10.10.1, is reachable from another cluster.
3. On cluster A, configure cluster and session synchronization:

```conf
config system cluster-sync
edit 1
 set peerip 10.10.10.2
next
end
```

4. On cluster A, configure additional FGSP attributes as needed:

```conf
config system standalone-cluster
 set standalone-group-id 1
 set group-member-id 0
 set session-sync-dev <interface>
end
```

The `standalone-group-id` must match between FGSP members. The `group-member-id` is unique for each FGCP cluster. `session-sync-dev` is an optional command to specify the interfaces to sync sessions.

5. On cluster B, configure the peer IP for the interface:

```conf
config system interface
edit "port5"
 set vdom "root"
 set ip 10.10.10.2 255.255.255.0
 set allowaccess ping https ssh snmp http telnet
next
end
```

In this example, cluster B uses port5 and its IP address, 10.10.10.2, is reachable from another cluster.

6. On cluster B, configure cluster and session synchronization:

```conf
config system cluster-sync
edit 1
 set peerip 10.10.10.1
next
end
```

7. On cluster B, configure additional FGSP attributes as needed:

```conf
config system standalone-cluster
 set standalone-group-id 1
 set group-member-id 1
 set session-sync-dev <interface>
end
```

**Session synchronization interfaces in FGSP**

When peering over FGSP, by default, the FortiGates or FGCP clusters share information over L3 between the interfaces that are configured with Peer IP addresses. When a session synchronization interface is configured and FGSP peers are directly connected on this interface, then session synchronization is done over L2, only falling back to L3 if the session synchronization interface becomes unavailable.

When using a session synchronization interface, the synchronization process is offloaded to the kernel. A fast, dedicated, and stable L2 connection should be used for the session synchronization interface between the FGSP peers. For redundancy, multiple synchronization interfaces can be configured.

To provide full redundancy, FGCP clusters can be used in FGSP peering. This is called FGCP over FGSP.
To configure session-sync interfaces:

```plaintext
config system standalone-cluster
 set session-sync-dev <interface 1> [<interface 2>] ... [<interface n>]
 set layer2-connection {available | unavailable}
 set encryption {enable | disable}
end
```

The `layer2-connection` setting is for forwarded traffic between FGSP peers. Set it to `available` if the peer interface user for traffic forwarding is directly connected and supports L2 forwarding. See UTM inspection on asymmetric traffic in FGSP on page 2096 for more information.

**Session synchronization in FGCP over FGSP**

The following topology uses multiple session synchronization interfaces with a full mesh backbone to prevent any single point of failure.

![Session Synchronization Diagram]

The state diagram summarizes the session synchronization of a TCP session. It assumes that the session is connected over FGCP Cluster 1 and processed entirely by the primary unit, Cluster-1A.
1. The session starts with the Client SYN packet.
2. As the session is established, Cluster-1A synchronizes the session with Cluster-1B over the heartbeat interface, and with Cluster-2A over the session synchronization interface.
3. Cluster-2A then synchronizes the session with Cluster-2B over its heartbeat interface.
4. The process then repeats as it transitions to different states.

Session synchronization if links fail

In the previous topology, if any single session synchronization link fails on the primary member of each cluster, session synchronization will continue on the second link from the pair of session of session synchronization interfaces.

If the second link on the primary member of the same cluster then fails, L2 session synchronization over the session synchronization interface stops, and synchronization fails over to L3 between the peer IP links.

If the Peer IP link then fails, the FGSP peers are effectively disconnected, and no session synchronization will occur.

UTM inspection on asymmetric traffic in FGSP

When traffic passes asymmetrically through FGSP peers, UTM inspection can be supported by always forwarding traffic back to the session owner for processing. The session owner is the FortiGate that receives the first packet of the session.

In this example, traffic from the internal network first hits FGT_1, but the return traffic is routed to FGT_2. Consequently, traffic bounces from FGT_2 port1 to FGT_1 port1 using FGT_1’s MAC address. Traffic is then inspected by FGT_1.
This example requires the following settings:

- The internal and outgoing interfaces of both FortiGates in the FGSP pair are in the same subnet.
- Both peers have layer 2 access with each other.

To configure FTG_1:

1. Configure the cluster, setting the peer IP to the IP address of FGT_2:

   ```
 config system cluster-sync
 edit 1
 set peerip 10.2.2.2
 next
 end
   ```

2. Configure FGSP cluster attributes:

   ```
 config system standalone-cluster
 set standalone-group-id 1
 set group-member-id 0
 set layer2-connection available
 unset session-sync-dev
 end
   ```

3. Configure the firewall policy:

   ```
 config firewall policy
 edit 1
 set srcintf "port2"
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set utm-status enable
 set av-profile "default"
 set logtraffic all
 set nat enable
   ```
To configure FTG_2:

1. Configure the cluster, setting the peer IP to the IP address of FGT_1:
   
   ```
 config system cluster-sync
 edit 1
 set peerip 10.2.2.1
 next
 end
   ```

2. Configure FGSP cluster attributes:
   
   ```
 config system standalone-cluster
 set standalone-group-id 1
 set group-member-id 1
 set layer2-connection available
 unset session-sync-dev
 end
   ```

3. Configure the firewall policy:
   
   ```
 config firewall policy
 edit 1
 set srcintf "port2"
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set utm-status enable
 set av-profile "default"
 set logtraffic all
 set nat enable
 next
 end
   ```

Results

Capture packets on FGT_2 to see that traffic bounced from FGT_2 to FGT_1 over the traffic interface.

```
FGT_2 # diagnose sniffer packet any 'host 10.1.100.15 and host 172.6.200.55' 4
interfaces=[any]
filters=[host 10.1.100.15 and host 172.16.200.55]
91.803816 port1 in 172.16.200.55.80 -> 10.1.100.15.40008: syn 2572073713 ack 261949279
92.800480 port1 in 172.16.200.55.80 -> 10.1.100.15.40008: syn 2572073713 ack 261949279
92.800486 port1 out 172.16.200.55.80 -> 10.1.100.15.40008: syn 2572073713 ack 261949279
92.800816 port1 in 172.16.200.55.80 -> 10.1.100.15.40008: syn 2572073713 ack 261949279
92.800818 port1 out 172.16.200.55.80 -> 10.1.100.15.40008: syn 2572073713 ack 261949279
```

UTM inspection on asymmetric traffic on L3

When traffic passes asymmetrically through FGSP peers, UTM inspection can be supported by always forwarding traffic back to the session owner for processing. The session owner is the FortiGate that receives the first packet of the
session.

For networks where L2 connectivity is not available, such as cloud environments, traffic bound for the session owner are forwarded through the peer interface using a UDP connection.

In this example, traffic from the internal network first hits FGT_1, but the return traffic is routed to FGT_2. Consequently, return traffic is packed and sent from FGT_2 to FGT_1 using UDP encapsulation between two peer interfaces (port 3). Traffic is then inspected by FGT_1.

To configure FGT_1:

1. Configure the cluster, setting the peer IP to the IP address of FGT_2:
   ```
 config system cluster-sync
 edit 1
 set peerip 10.2.2.2
 next
 end
   ```

2. Configure FGSP cluster attributes:
   ```
 config system standalone-cluster
 set standalone-group-id 1
 set group-member-id 0
 set layer2-connection unavailable
 unset session-sync-dev
 end
   ```

3. Configure the firewall policy:
   ```
 config firewall policy
 edit 1
 set srcintf "port2"
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set utm-status enable
 set av-profile "default"
   ```
To configure FTG_2:

1. Configure the cluster, setting the peer IP to the IP address of FGT_1:
   ```
 config system cluster-sync
 edit 1
 set peerip 10.2.2.1
 next
 end
   ```

2. Configure FGSP cluster attributes:
   ```
 config system standalone-cluster
 set standalone-group-id 1
 set group-member-id 1
 set layer2-connection unavailable
 unset session-sync-dev
 end
   ```

3. Configure the firewall policy:
   ```
 config firewall policy
 edit 1
 set srcintf "port2"
 set dstintf "port1"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set utm-status enable
 set av-profile "default"
 set logtraffic all
 set nat enable
 next
 end
   ```

Encryption for L3 on asymmetric traffic in FGSP

In scenarios where asymmetric routing between FGSP members occurs, the return traffic can be encrypted and routed back to the session owner on Layer 3 (L3).

To encrypt L3 traffic in FGSP:

1. Run the following on both FortiGates:
   ```
 config system standalone-cluster
 set encryption enable
 set psksecret xxxxxxxxxx
 end
   ```
Optimizing FGSP session synchronization and redundancy

By using `session-sync-dev` to offload session synchronization processing to the kernel, FGSP session synchronization can be supported to handle heavy loads.

Topology

In this topology, there are three FGSP peer groups for each FortiGate. Sessions are synchronized between each FortiGate and its peer groups. Redundancy is achieved by using two dedicated session sync device links for each peer setup. There are a total of six IPs for each session synchronization device link in each FGSP peer. When one link is fails, session synchronization is not affected.

For optimization, `sync-packet-balance` is enabled to distribute synchronization packets processing to multiple CPUs. The session synchronization process is offloaded to the kernel, and sessions are synchronized over layer 2 over the connected interfaces (set `session-sync-dev "port5" "port6"`). Jumbo frame MTU 9216 is configured on each session synchronization device link to reduce the number of packets; however, setting MTU to 9216 is entirely optional.

To configure FGT_A:

1. Configure HA:
   ```
 config system ha
 set sync-packet-balance enable
 set session-pickup enable
 set session-pickup-connectionless enable
 set session-pickup-connectionless enable
 set session-pickup-connectionless enable
 set session-pickup-nat enable
 end
   ```

2. Configure the layer 2 session synchronization links:
   ```
 config system standalone-cluster
 set session-sync-dev "port5" "port6"
 end
   ```
3. Configure the session TTL default timeout:

```
config system session-ttl
 set default 300
end
```

4. Configure the interfaces:

```
config system interface
 edit port5
 set ip 10.1.1.1/24
 set mtu-override enable
 set mtu 9216
 next
 edit port6
 set ip 10.2.2.1/24
 set mtu-override enable
 set mtu 9216
 next
end
```

5. Configure FGSP session synchronization:

```
config system cluster-sync
 edit 1
 set peerip 10.1.1.2
 next
 edit 2
 set peerip 10.2.2.2
 next
 edit 3
 set peerip 10.1.1.3
 next
 edit 4
 set peerip 10.2.2.3
 next
 edit 5
 set peerip 10.1.1.4
 next
 edit 6
 set peerip 10.2.2.4
 next
end
```

To configure FGT_B:

1. Configure HA:

```
config system ha
 set sync-packet-balance enable
 set session-pickup enable
 set session-pickup-connectionless enable
 set session-pickup-expectation enable
 set session-pickup-nat enable
end
```
2. Configure the layer 2 session synchronization links:
   
   ```
 config system standalone-cluster
 set session-sync-dev "port5" "port6"
 end
   ```

3. Configure the session TTL default timeout:
   
   ```
 config system session-ttl
 set default 300
 end
   ```

4. Configure the interfaces:
   
   ```
 config system interface
 edit port5
 set ip 10.1.1.2/24
 set mtu-override enable
 set mtu 9216
 next
 edit port6
 set ip 10.2.2.2/24
 set mtu-override enable
 set mtu 9216
 next
 end
   ```

5. Configure FGSP session synchronization:
   
   ```
 config system cluster-sync
 edit 1
 set peerip 10.1.1.1
 next
 edit 2
 set peerip 10.2.2.1
 next
 edit 3
 set peerip 10.1.1.3
 next
 edit 4
 set peerip 10.2.2.3
 next
 edit 5
 set peerip 10.1.1.4
 next
 edit 6
 set peerip 10.2.2.4
 next
 end
   ```

To configure FGT_C:

1. Configure HA:

   ```
 config system ha
 set sync-packet-balance enable
 set session-pickup enable
 set session-pickup-connectionless enable
 set session-pickup-expectation enable
   ```
set session-pickup-nat enable
end

2. **Configure the layer 2 session synchronization links:**

```plaintext
cfg system standalone-cluster
 set session-sync-dev "port5" "port6"
end
```

3. **Configure the session TTL default timeout:**

```plaintext
cfg system session-ttl
 set default 300
end
```

4. **Configure the interfaces:**

```plaintext
cfg system interface
 edit port5
 set ip 10.1.1.3/24
 set mtu-override enable
 set mtu 9216
 next
 edit port6
 set ip 10.2.2.3/24
 set mtu-override enable
 set mtu 9216
 next
end
```

5. **Configure FGSP session synchronization:**

```plaintext
cfg system cluster-sync
 edit 1
 set peerip 10.1.1.1
 next
 edit 2
 set peerip 10.2.2.1
 next
 edit 3
 set peerip 10.1.1.2
 next
 edit 4
 set peerip 10.2.2.2
 next
 edit 5
 set peerip 10.1.1.4
 next
 edit 6
 set peerip 10.2.2.4
 next
end
```

**To configure FGT_D:**

1. **Configure HA:**

```plaintext
cfg system ha
 set sync-packet-balance enable
```
set session-pickup enable
set session-pickup-connectionless enable
set session-pickup-expectation enable
set session-pickup-nat enable
end

2. Configure the layer 2 session synchronization links:

   config system standalone-cluster
   set session-sync-dev "port5" "port6"
   end

3. Configure the session TTL default timeout:

   config system session-ttl
   set default 300
   end

4. Configure the interfaces:

   config system interface
   edit port5
      set ip 10.1.1.4/24
      set mtu-override enable
      set mtu 9216
   next
   edit port6
      set ip 10.2.2.4/24
      set mtu-override enable
      set mtu 9216
   next
   end

5. Configure FGSP session synchronization:

   config system cluster-sync
   edit 1
      set peerip 10.1.1.1
   next
   edit 2
      set peerip 10.2.2.1
   next
   edit 3
      set peerip 10.1.1.2
   next
   edit 4
      set peerip 10.2.2.2
   next
   edit 5
      set peerip 10.1.1.3
   next
   edit 6
      set peerip 10.2.2.3
   next
   end
IKE monitor for FGSP

Split-brain situations occur in a scenario where session synchronization is down between two FGSP peers. This can have an effect if IKE fails over from one unit to another, causing the tunnel to be invalid due to the IKE session and role being out of sync, and ESP anti-replay detection. In split-brain situations, the IKE monitor provides a mechanism to maintain the integrity of the state tables and primary/secondary roles for each VPN gateway. It continues to provide fault tolerance by keeping track of the timestamp of the latest received traffic, and it uses the ESP sequence number jump ahead value to preserve the sequence number per gateway. Once the link is up, the cluster resolves the role and synchronizes the session and IKE data. During this process, if the IKE fails over from one unit to another, the tunnel will remain valid and traffic continues to flow.

The IKE monitor only works with 2 peers in FGSP.

To configure the IKE monitor:

```
config system cluster-sync
 edit <id>
 set peerip <address>
 set ike-monitor {enable | disable}
 set ike-monitor-interval <integer>
 set ike-heartbeat-interval <integer>
 set ike-seqjump-speed <integer>
next
end
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ike-monitor {enable</td>
<td>disable}</td>
</tr>
<tr>
<td>ike-monitor-interval &lt;integer&gt;</td>
<td>Set the monitoring interval for determining how fast the cluster members detect split-brain mode, in seconds (10 - 300, default = 15).</td>
</tr>
<tr>
<td>ike-heartbeat-interval &lt;integer&gt;</td>
<td>Set the heartbeat message interval for sending the heartbeat per gateway to the other peers, in seconds (1 - 60, default = 3).</td>
</tr>
<tr>
<td>ike-seqjump-speed &lt;integer&gt;</td>
<td>Set the ESP jump ahead factor, in packets per second equivalent (1 - 10, default = 10). A value of 10 means it is the factor for a 10G interface.</td>
</tr>
</tbody>
</table>

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
Example

In this example, FortiGate A and FortiGate B are FGSP peers with port3 as the session synchronization link. The FortiGates act as IPsec dial-up servers and PCs on the 10.1.100.0 subnet are the IPsec dial-up clients. Router A acts as the external load balancer for IKE sessions between the FortiGates. Dynamic routing OSPF is configured for the FortiGates and routers.

When PC2 and other clients form IPsec dial-up tunnels to the FGSP peers, these tunnels terminate on either FortiGate A or FortiGate B, not both. For each tunnel, one FortiGate is the primary and the other is the secondary.

When the session synchronization link goes down, the FGSP split-brain scenario occurs. Without using the IKE monitor mechanism, the IKE and ESP information becomes out of sync between the two FortiGates. The secondary FortiGate for a tunnel does not receive any information about updated tunnel status. If there is a failover and tunnel traffic begins to flow to the secondary FortiGate, the tunnel will be invalidated because its state tables for that session are out of sync.

By using the IKE monitor when a split-brain scenario occurs, each unit starts periodically monitoring traffic flows and managing the sequence number jump ahead on standby units. Using a combination of timers with ESP sequence number jump ahead lets the units maintain integrity of the shared SA runtime state table, including ESP anti-replay sequence numbers.

Once the session synchronization link is up, the FGSP peers synchronize the state tables and resume regular operations.

To configure the IKE monitor:

```
config system cluster-sync
 edit 1
 set peerip 10.10.10.2
 set ike-monitor enable
 set ike-monitor-interval 12
 set ike-heartbeat-interval 2
 set ike-seqjump-speed 2
 next
end
```
**Firmware upgrades in FGSP**

The following steps are recommended to upgrade the firmware of FortiGates in an FGSP deployment. Follow these steps whether or not you have enabled standalone configuration synchronization.

This example FGSP deployment has two FortiGates, FGT-1 and FGT-2.

**To upgrade the firmware in an FGSP deployment:**

1. Switch all traffic to FGT-1:
   a. Configure the load balancer or router that distributes traffic between the FortiGates to send all traffic to FGT-1.
2. Disconnect FGT-2 from the network.
   Make sure to also disconnect the interfaces that allow heartbeat and synchronization communication with FGT-1. This is to prevent FGT-2 from communicating with FGT-1.
3. Upgrade the firmware on FGT-2.
4. Reconnect the traffic interfaces on FGT-2, but not the interfaces used for heartbeat and synchronization communication with FGT-1.
5. Switch all traffic to the newly upgraded FGT-2:
   a. Configure the load balancer or router that distributes traffic between the FortiGates to send all traffic to FGT-2.
6. Upgrade the firmware on FGT-1 (while heartbeat and synchronization communication with FGT-2 remains disconnected).
7. Reconnect the FGT-2 interfaces that allow heartbeat and synchronization communication between FGT-1 and FGT-2.
8. Restore the original traffic distribution between FGT-1 and FGT-2:
   a. Configure the load balancer or router to distribute traffic to both FortiGates in the FGSP deployment.

**FGSP session synchronization between different FortiGate models or firmware versions**

FGSP HA deployments are generally meant for interoperating between FortiGates with the same model and firmware version. However, situations may arise where individual members or FGCP clusters running over FGSP use different models or firmware versions. For example, to avoid downtime while upgrading the members, some FGSP members or clusters may be upgraded first and then re-join the FGSP peers after a successful upgrade. Or while performing maintenance, sessions may need to be offloaded to a temporary member or FGCP cluster of a different model.

Being able to perform FGSP session synchronization between members of different models or firmware versions is helpful to transition the traffic smoothly and causes minimal disruptions. This topic outlines requirements to be aware of before assessing whether FGSP session synchronization may work between members with different models or firmware versions.

**Different FortiGate models**

The general guideline is to only use FortiGate models in a similar tier and family. Vastly different models have different performance and capabilities, which may not be compatible. The goal is for two models to have similar capabilities so that data structures used in session synchronization will match, and are capable of delivering similar performance.

When considering FGSP session synchronization between two FortiGates, ensure that:

- The FortiGates use the same 32-bit kernel or 64-bit kernel.
- The FortiGates use the same type of CPU (such as ARM or x86).
For network interfaces:
- The same type of physical interface should be used on each member.
- The physical interfaces should be capable of the same speeds.
- The device memory should be similar in size. If the FortiGates have vastly different memory sizes, their performance may be different if one device supports more sessions than the other.
- The configurations related to session tables should match. For example, the logical names used in firewall policies, IPsec interface names, VDOM names, firewall policy tables, and so on.

Virtual clusters and asymmetric routing are not supported.

Different firmware versions

When operating in FGSP, the firmware needs to have compatible data structures and session synchronization packet headers. The firmware is generally able to handle different data structures between old and new FortiOS sessions. Session synchronization packets are typically the same between versions.

Note the following exceptions and guidelines when assessing FGSP session synchronization compatibility between different firmware versions:
- FortiOS 7.0.2 added support for widening the HA virtual MAC address range. This change updated the session synchronization packet header structure.
  - FortiGates running 7.0.2 or later, and FortiGates running 7.0.1 or earlier will not accept session synchronization packets from each other.
- If the traffic uses a new feature only available in a newer FortiOS version, it may not work when synchronized to an older FortiOS version.
  - For example, PFCP (Packet Forwarding Control Protocol) support was added in 7.0.1, and a PFCP profile name was added to the sessions. When the sessions are synchronized to an older firmware version, the PFCP profile name will be lost and the sessions will not be able to handle the traffic as they would in 7.0.1.

Session synchronization interfaces

Session synchronization between FGSP members uses an L3 connection over the peer IP by default.

Session synchronization between FGSP members uses an L2 connection when a session synchronization interface (session-sync-dev) is used. The synchronization process is also offloaded to the kernel.

FGSP is also compatible with FortiGate VRRP.

Standalone configuration synchronization

You can configure synchronization from one standalone FortiGate to another standalone FortiGate (standalone-config-sync). With the exception of some configurations that do not sync (settings that identify the FortiGate to the network), the rest of the configurations are synced, such as firewall policies, firewall addresses, and UTM profiles.
This option is useful in situations when you need to set up FGSP peers, or when you want to quickly deploy several FortiGates with the same configurations. You can set up `standalone-config-sync` for multiple members.

`standalone-config-sync` is an independent feature and should be used with caution as there are some limitations. We recommend disabling it once the configurations have been synced over.

### Limitations

When standalone configuration synchronization is enabled, there are some limitations, including but not limited to the following:

- Network interruptions occur during firmware upgrades: when upgrading the firmware, all members in the `standalone-config-sync` group are upgraded simultaneously. This creates downtime if the FortiGates are the only outgoing gateway in the network. We recommend disabling the option before upgrading firmware.
- Some unwanted configurations might be synced: the current design and implementation of `standalone-config-sync` is based on requirements from specific customers. Thus, some users may find that unwanted parts of the configurations are synced. Should this occur, we recommend disabling the option and modifying those configurations manually.
- The wrong primary device might be selected accidentally: `standalone-config-sync` is derived from the HA primary unit selection mechanism. All members in the group will join the selection process in the same way as a the HA cluster selection process. It is important to select the correct device as the primary, otherwise the wrong device could be selected and existing configurations could be overwritten.

### Setting up standalone configuration synchronization

Two or more standalone FortiGates should be connected to each other with one or more heartbeat interfaces, either back-to-back or via a switch. In the following example, the device supplying the configurations is called "conf-prim," and the devices receiving the configurations are called "conf-secos."

![HA Synchronization Diagram](image)

To set up standalone configuration synchronization:

1. Configure the conf-prim device for the group:
   ```fortios
 config system ha
 set hbdev ha1 50 ha2 100
 set priority 255
 set override enable
 set standalone-config-sync enable
 end
   ```

2. Configure the conf-prim device as needed to be functional.
3. Configure the other group members as conf-secos:
   ```fortios
 config system ha
 set standalone-config-sync enable
 end
   ```
4. Wait 10–15 minutes for the configurations to sync over.
5. Verify the synchronization status:

```bash
get system ha status
path=sys, objname=ha, tablename=(null), size=5912
HA Health Status:
 WARNING: FG201E4Q17900771 has hbdev down;
 WARNING: FG201ETK19900991 has hbdev down;
Model: FortiGate-201E
Mode: ConfigSync
Group: 0
Debug: 0
Cluster Uptime: 0 days 0:0:51
Cluster state change time: 2019-09-03 17:46:07
Primary selected using:
 <2019/09/03 17:46:07> FG201ETK19900991 is selected as the primary because it has the largest value of override priority.
 ses_pickup: disable
 override: disable
Configuration Status:
 FG201E4Q17900771 (updated 3 seconds ago): out-of-sync
 FG201ETK19900991 (updated 1 seconds ago): in-sync
System Usage stats:
 FG201E4Q17900771 (updated 3 seconds ago):
 sessions=1, average-cpu-user/nice/system/idle=0%/0%/0%/100%, memory=16%
 FG201ETK19900991 (updated 1 seconds ago):
 sessions=1, average-cpu-user/nice/system/idle=0%/0%/0%/100%, memory=16%
HBDEV stats:
 FG201E4Q17900771 (updated 3 seconds ago):
 wan2: physical/1000auto, up, rx-bytes/packets/dropped/errors=114918/266/0/0, tx=76752/178/0/0
 ha: physical/00, down, rx-bytes/packets/dropped/errors=0/0/0/0, tx=0/0/0/0
 FG201ETK19900991 (updated 1 seconds ago):
 wan2: physical/1000auto, up, rx-bytes/packets/dropped/errors=83024/192/0/0, tx=120216/278/0/0
 ha: physical/00, down, rx-bytes/packets/dropped/errors=0/0/0/0, tx=0/0/0/0
Secondary: FortiGate-201E, FG201E4Q17900771, HA cluster index = 1
Primary: FortiGate-201E, FG201ETK19900991, HA cluster index = 0
 number of vcluster: 1
 vcluster 1: work 169.254.0.1
Secondary: FG201E4Q17900771, HA operating index = 1
Primary: FG201ETK19900991, HA operating index = 0

If all members are in-sync, this means all members share the same configurations, except those that should not be synced. If any members are out-of-sync, this means the member failed to sync with the primary device.

Debugging is similar when a cluster is out of sync.

The following topic provides more information about standalone configuration synchronization:

- Layer 3 unicast standalone configuration synchronization on page 2112
Layer 3 unicast standalone configuration synchronization

Unicast standalone configuration synchronization is supported on layer 3, allowing peers to be synchronized in cloud environments that do not support layer 2 networking. Configuring a unicast gateway allows peers to be in different subnets.

Example

In this example, two FortiGates in different subnets are connected through a unicast gateway. Both cluster members use the same port for the heartbeat interface.

To configure unicast synchronization between peers:

1. Configure FortiGate A:

   ```fortios
   config system ha
   set group-name "testcs"
   set hbdev "port3" 50
   set standalone-config-sync enable
   config unicast-peers
   edit 1
     set peer-ip 10.1.100.72
   end
   set override enable
   set priority 200
   set unicast-status enable
   set unicast-gateway 172.16.200.74
   end
   ```

2. Configure FortiGate B:

   ```fortios
   config system ha
   set group-name "testcs"
   set hbdev "port3" 50
   set standalone-config-sync enable
   config unicast-peers
   edit 1
     set peer-ip 172.16.200.71
   end
   set override enable
   set priority 100
   set unicast-status enable
   set unicast-gateway 10.1.100.74
   end
   ```

3. Check the HA status on FortiGate A:
get system ha status
HA Health Status: OK
Model: FortiGate-VM64

Mode: ConfigSync
Group: 0
Debug: 0
Cluster Uptime: 2 days 3:40:25
Cluster state change time: 2021-03-08 12:00:38
Primary selected using:
 <2021/03/08 12:00:38> FGVMSLTM000000001 is selected as the primary because its
override priority is larger than peer member FGVMSLTM000000002.
 <2021/03/06 11:50:35> FGVMSLTM000000001 is selected as the primary because it's the
only member in the cluster.
ses_pickup: disable
override: enable

Configuration Status:
FGVMSLTM21000151(updated 5 seconds ago): in-sync
FGVMSLTM21000152(updated 5 seconds ago): in-sync

System Usage stats:
FGVMSLTM21000151(updated 5 seconds ago):
 sessions=7, average-cpu-user/nice/system/idle=0%/0%/0%/100%, memory=24%
FGVMSLTM21000152(updated 5 seconds ago):
 sessions=5, average-cpu-user/nice/system/idle=0%/0%/0%/100%, memory=23%

HBDEV stats:
FGVMSLTM21000151(updated 5 seconds ago):
 port3: physical/1000auto, up, rx-bytes/packets/dropped/errors=466060007/1049137/0/0, tx=429538329/953028/0/0
FGVMSLTM21000152(updated 5 seconds ago):
 port3: physical/1000auto, up, rx-bytes/packets/dropped/errors=48805199/85441/0/0, tx=33470286/81425/0/0

Primary: FGT-71, FGVMSLTM000000001, HA cluster index = 1
Secondary: FGT-72, FGVMSLTM000000002, HA cluster index = 0

number of vcluster: 1
vcluster 1: work 0.0.0.0

Primary: FGVMSLTM000000001, HA operating index = 0
Secondary: FGVMSLTM000000002, HA operating index = 1

4. Check the HA checksums on FortiGate A:

 # diagnose sys ha checksum cluster

 =========== FGVMSLTM000000001 ===========

 is_manage_primary()=1, is_root_primary()=1

debugzone
 global: 4f 2c a2 04 07 57 46 c4 47 28 ca d2 5a c5 98 ee
 root: 16 af 5d a4 ac cf a5 4b b7 22 93 ce f9 02 68 bc
 all: 6e 28 7f 8a 74 f7 37 43 8f 32 73 68 1e d6 ca cd

checksum
 global: 4f 2c a2 04 07 57 46 c4 47 28 ca d2 5a c5 98 ee
 root: 16 af 5d a4 ac cf a5 4b b7 22 93 ce f9 02 68 bc
 all: 6e 28 7f 8a 74 f7 37 43 8f 32 73 68 1e d6 ca cd

 =========== FGVMSLTM000000002 ===========

 is_manage_primary()=0, is_root_primary()=1
5. Verify that configuration changes on the primary FortiGate are synchronized to the secondary FortiGate:
 a. Adjust the administrator timeout value on FortiGate A:
      ```
      config system global
      set admintimeout 100
      end
      ```

 b. Check the debug messages on FortiGate B:
      ```
      # diagnose debug cli 7
      Debug messages will be on for 30 minutes.
      # diagnose debug enable

      create pid=15639, clictxno=0, last=1615246288
      0: conf sys global
      0: set admintimeout 100
      0: end
      ```

VRRP

A Virtual Router Redundancy Protocol (VRRP) configuration can be used as a high availability solution to ensure that a network maintains connectivity with the internet (or with other networks) even if the default router for the network fails. If a router or a FortiGate fails, all traffic to this device transparently fails over to another router or FortiGate that takes over the role of the failed device. If the failed device is restored, it will take over processing the network traffic.

FortiOS supports VRRP versions 2 and 3. VRRP domains can be created, which can include multiple FortiGates and other VRRP-compatible routers. Different FortiGate models can be added to the same VRRP domain.

FortiOS supports IPv4 and IPv6 VRRP. so IPv4 and IPv6 VRRP virtual routers can be added to the same interface. FortiGates can quickly and easily integrate into a network that has already deployed VRRP.

Basic VRRP configuration

The most common VRRP application is to provide redundant default routers between an internal network and the internet. The default routers can be FortiGates or any routers that support VRRP.

Two or more FortiGate interfaces or routers must be configured with the same virtual router ID and IP address so they can automatically join the same VRRP domain. Priorities must be assigned to each FortiGate interface or router in the VRRP domain. All of the routers in the VRRP domain should have different priorities. One FortiGate interface or router must have the highest priority to become the primary router. The other FortiGates or routers in the domain are assigned lower priorities and become backups. If the primary router fails, VRRP automatically fails over to the router in the domain with the next highest priority.
To configure VRRP:

1. Add a virtual VRRP router to the internal interface of each FortiGate and/or router. This adds the FortiGates and routers to the same VRRP domain.
2. Set the VRRP IP address of the domain to the internal network default gateway IP address.
3. Set the priorities.

See Adding IPv4 and IPv6 virtual routers to an interface on page 2115 Single-domain VRRP example on page 2122, and Multi-domain VRRP example on page 2123 for configuration examples.

During normal operations, all traffic from the internal network to the internet passes through the primary VRRP router. The primary router also sends VRRP advertisement messages to the backup routers. A backup router will not attempt to become a primary router while receiving these messages. If the primary router fails, the backup router with the highest priority becomes the new primary router after a short delay. All packets sent to the default route are now sent to the new primary router. If the new primary router is a FortiGate, the network continues to benefit from FortiOS security features. If the new primary router is just a router, traffic continues to flow, but FortiOS security features are unavailable until the FortiGate is back online.

If the backup router is a FortiGate, during a VRRP failover as the FortiGate begins operating as the new primary router, it will not have session information for all of the failed over in-progress sessions. So, it would normally not be able to forward in-progress session traffic.

Adding IPv4 and IPv6 virtual routers to an interface

This topic describes to how to add IPv4 and IPv6 virtual routers to an interface. VRRP can only be configured on physical or VLAN interfaces. VRRP cannot be configured on hardware switch interfaces where multiple physical interfaces are combined into a hardware switch interface.

IPv4 virtual router

In this example, an IPv4 VRRP router is added to port10 on the FortiGate. The VRRP virtual router has a virtual router ID of 200, uses IP address 10.31.101.200, and has a priority of 255. Since this is the highest priority in the configuration, this interface is configured to be the primary router of the VRRP domain.
To configure the interface settings:

```plaintext
cfg system interface
  edit port10
    config vrrp
      edit 200
        set vrip 10.31.101.200
        set priority 255
      next
    end
  next
end
```

IPv6 virtual router

In this example, an IPv6 VRRP router is added to port20 on the FortiGate. The VRRP virtual router has a virtual router ID of 220, uses IP address 2001:db8:1::12, and has a priority of 255. Since this is the highest priority in the configuration, this interface is configured to be the primary router of the VRRP domain.

To configure the interface settings:

```plaintext
cfg system interface
  edit port20
    config ipv6
      set vrip6_link_local <IPv6_address>
    config vrrp6
      edit 220
        set vrip 2001:db8:1::12
        set priority 255
      next
    end
  next
end
```

VRRP failover

VRRP routers in a VRRP domain periodically send VRRP advertisement messages to all routers in the domain to maintain one router as the primary router and the others as backup routers. The primary router has the highest priority. If the backup routers stop receiving these packets from the primary router, the backup router with the highest priority becomes the new primary router.

The primary router stops sending VRRP advertisement messages if it fails or becomes disconnected. Up to two VRRP destination addresses can be configured to be monitored by the primary router. As a best practice, the destination addresses should be remote addresses. If the primary router is unable to connect to these destination addresses, it stops sending VRRP advertisement messages, and the backup router with the highest priority becomes the primary router.

To configure IPv4 VRRP with two destination addresses for monitoring:

```plaintext
cfg system interface
  edit port14
    config vrrp
```
To configure IPv6 VRRP with one destination address for monitoring:

```plaintext
config system interface
date port23
  config ipv6
    config vrrp6
      edit 223
        set vrdst 1001:db8:1::12
      next
    end
  end
next
end
```

IPv4 VRRP active failover

The `vrdst-priority` option can be used to reduce IPv4 VRRP failover times. This option causes the primary router to actively signal to the backup routers when the primary router cannot reach its configured destination addresses. The primary router sends a lower priority for itself in the VRRP advertisement messages. The backup router with the highest priority becomes the new primary router and takes over traffic processing.

In this example, the primary router is configured to have a priority of 255, so it should always become the primary router. The `vrdst-priority` is set to 10. If the primary router cannot connect to the 10.10.10.1 destination address, then the primary router informs the VRRP group that its priority is now 10.

To set the priority of the virtual router when the destination address is unreachable:

```plaintext
config system interface
date port10
  config vrrp
    edit 12
      set vrip 10.31.101.200
      set priority 255
      set vrdst 10.10.10.1
      set vrdst-priority 10
    next
  end
next
end
```

IPv4 VIP and IP pool failover

The `proxy-arp` option can be used to map VIPs and IP pool address ranges to each router's VMAC (virtual MAC). After failover, the IP or ranges configured in the VRRP settings are routed to the new primary router's VMAC. In this example, a single IP and an address range are added for proxy ARP.
To configure the IP addresses for proxy ARP:

```plaintext
config system interface
   edit port5
      set vrrp-virtual-mac enable
   config vrrp
      edit 1
         config proxy-arp
            edit 1
               set ip 192.168.62.100-192.168.62.200
               next
            edit 2
               set ip 192.168.62.225
               next
         end
      end
   end
end
```

Changing the advertisement message interval

By default, VRRP advertisement messages are sent once every second. The frequency can be changed with the `adv-interval` option to change the frequency of sending these messages (1 - 255 seconds).

The `adv-interval` also affects the period of time that a backup VRRP router waits before assuming the primary router has failed. The waiting period is three times the `adv-interval`. For example, if the `adv-interval` is set to 5, then the backup router waits for up to 15 seconds to receive a VRRP advertisement from the current primary router before taking over the role as the primary router.

To configure IPv4 VRRP to send advertisement messages every 10 seconds:

```plaintext
config system interface
   edit port14
      config vrrp
         edit 12
            set adv-interval 10
            next
         end
   end
end
```

To configure IPv6 VRRP to send advertisement messages every 20 seconds:

```plaintext
config system interface
   edit port23
      config ipv6
         config vrrp6
            edit 223
               set adv-interval 20
               next
         end
   end
end
```
Changing the VRRP startup time

The VRRP startup time is the time a backup or primary VRRP router waits before sending or receiving VRRP advertisements before potentially changing state (start-time in seconds, 1 - 255, default = 3). This timer is mainly visible when VRRP-monitored interfaces become up after previously been down. When this occurs, the device will wait for the time period before considering, and potentially changing its status.

There are some instances when the advertisement messages might be delayed. For example, some switches with spanning tree enabled may delay some of the advertisement message packets. If backup routers are attempting to become primary routers even though the primary router has not failed, extend the start time to ensure that the backup routers wait long enough for the advertisement messages.

To configure the IPv4 VRRP startup time to 10 seconds:

```
config system interface
    edit port14
        config vrrp
            edit 12
                set start-time 10
            next
        next
    next
end
```

To configure the IPv6 VRRP startup time to 15 seconds:

```
config system interface
    edit port23
        config ipv6
            config vrrp6
                edit 223
                    set start-time 15
                next
        next
    next
end
```

VRRP groups

If VRRP routers are added to multiple interfaces of the same FortiGate, each router will be in a different VRRP domain. If one of the VRRP routers fails, it is useful if all of the VRRP routers added to the FortiGate also fail.

VRRP can only check the routers' status in a single VRRP domain and cannot track the status of routers in other domains. For multiple VRRP domains on a single FortiGate, only one can switch to being a backup, and the others remain operating normally. Using VRRP groups resolves this issue.

All the VRRP virtual routers on the FortiGate can be added to a VRRP group. If one of the virtual routers in a VRRP group switches to the backup, the VRRP group forces all members to switch to backups. All VRRP traffic being processed by the FortiGate fails over to other devices in the network.

💡 The status of the virtual routers in a VRRP group only changes when one or more of the virtual routers in the group changes status. A VRRP group should not be used to manually change the status of the virtual routers in the group.
To configure two IPv4 VRRP routers in a VRRP group:

```plaintext
cfg sys int
  edit port1
    config vrrp
      edit 200
        set vrip 10.31.101.200
        set priority 255
        set vrgrp 10
      next
    end
  next
  edit port20
    config vrrp
      edit 100
        set vrip 10.23.1.223
        set priority 20
        set vrgrp 10
      next
    end
  end
end
eend
```

To configure two IPv6 VRRP routers in a VRRP group:

```plaintext
cfg sys int
  edit port1
    config ipv6
      set vrip6_link_local <IPv6_address>
    config vrrp6
      edit 220
        set vrip 2001:db8:1::12
        set priority 255
        set vrgrp 90
      next
    end
  next
  edit port12
    config ipv6
      set vrip6_link_local <IPv6_address>
    config vrrp6
      edit 220
        set vrip 2001:db8:1::14
        set priority 100
        set vrgrp 90
      next
    end
  end
end
eend
```
VRRP virtual MACs

The VRRP virtual MAC address (or virtual router MAC address) is a shared MAC address adopted by the primary router. If the primary router fails, the same virtual MAC address is picked up by the new primary router, allowing all devices on the network to transparently connect to the default route using the same virtual MAC address. This feature must be enabled on all members in a VRRP domain.

Each VRRP router has its own virtual MAC address. The last part octet is based on the VRRP router ID using the following format:

```
00-00-5E-00-01-<VRID_hex>
```

Where `<VRID_hex>` is the VRRP router ID in hexadecimal format in internet standard bit-order. For more information about virtual MAC formatting, see RFC 3768.

For example:

- If the VRRP router ID is 10, then the virtual MAC is `00-00-5E-00-01-0a`.
- If the VRRP router ID is 200, then the virtual MAC is `00-00-5E-00-01-c8`.

If the VRRP virtual MAC address feature is disabled (the default setting), the VRRP domain uses the MAC address of the primary router. On a FortiGate VRRP virtual router, this is the MAC address of the FortiGate interface that the VRRP router is added to. If the primary fails, when the new primary takes over, it sends gratuitous ARPs to associate the VRRP router IP address with the MAC address of the new primary (or the FortiGate interface that became the new primary).

When a VRRP virtual MAC address is enabled, the new primary uses the same MAC address as the old primary.

Since devices on the LAN do not have to learn a new MAC address for a new VRRP router in the event of a failover, this feature can improve network efficiency, especially in large and complex networks.

To enable virtual MAC addresses in IPv4 VRRP:

```
config system interface
  edit <name>
    set vrrp-virtual-mac enable
  next
end
```

To enable virtual MAC addresses in IPv6 VRRP:

```
config system interface
  edit <name>
    config ipv6
      set vrrp-virtual-mac6 enable
    end
  next
end
```

Preempt mode

When preempt mode is enabled (the default setting), a higher priority backup router can preempt a lower priority primary router. This can happen if the primary router fails, the backup router becomes the primary router, and the failed primary router restarts. Since the restarted router has a higher priority, if preempt mode is enabled, the restarted router replaces the current primary router becoming the new primary router. If preempt mode is disabled, a restarted router that has a higher priority would not take over as the primary router.
To configure preempt mode in IPv4 VRRP:

```
config system interface
  edit <name>
    config vrrp
      edit <vrid>
        set preempt {enable | disable}
      next
    next
next
end
```

To configure preempt mode in IPv6 VRRP:

```
config system interface
  edit <name>
    config ipv6
    config vrrp6
      edit <vrid>
        set preempt {enable | disable}
      next
    end
  end
next
end
```

Single-domain VRRP example

This example consists of a VRRP domain with two FortiGates that connect an internal network to the internet. The FortiGate port2 interfaces connect to the internal network, and a VRRP virtual router is added to each port2 interface with VRRP virtual MAC addresses enabled. The internal network default route is 10.31.101.120. Each FortiGate port2 interface has an IP address that is different from the virtual router IP address. Since `vrrp-virtual-mac` is enabled, upon failover, the new primary VRRP router will use the same VMAC as the previous router.

```
To configure the primary FortiGate:

config system interface
  edit port2
    set vrrp-virtual-mac enable
```
To configure the backup FortiGate:

```plaintext
cfg sys int edit port2
  set vrrp-vmac enable
  cfg vrrp
    edit 5
      set vrip 10.31.101.120
      set priority 50
    next
  next
end
```

Multi-domain VRRP example

This example consists of two VRRP domains, and both FortiGates participate in the domains that connect an internal network to the internet. One FortiGate is the primary router of one domain and the other FortiGate is the primary router of the other domain. The network distributes traffic between two different default routes (10.31.101.120 and 10.31.101.130). One VRRP domain is configured with one of the default route IP addresses and the other VRRP domain gets the other default route IP address. During normal operation, both FortiGates process traffic, and the VRRP domains are used to load balance the traffic between the two FortiGates.

If one of the FortiGates fails, the remaining FortiGate becomes the primary router of both VRRP domains. The network sends all traffic for both default routes to this FortiGate. The result is a configuration that (under normal operational load) balances traffic between two FortiGates, but if one of the FortiGates fails, all traffic fails over to the FortiGate that is still operating.

VRRP virtual MAC address are enabled on both FortiGates' port2 interfaces so that the VRRP domains use their VRRP virtual MAC addresses.
VRRP on EMAC-VLAN interfaces

Virtual Router Redundancy Protocol (VRRP) can be configured on EMAC-VLAN interfaces.

<table>
<thead>
<tr>
<th>Device</th>
<th>VRRP primary</th>
<th></th>
<th>VRRP backup</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Virtual router IP</td>
<td>ID</td>
<td>Priority</td>
<td>Virtual router IP</td>
</tr>
<tr>
<td>FortiGate A</td>
<td>10.31.101.120</td>
<td>50</td>
<td>255</td>
<td>10.31.101.130</td>
</tr>
<tr>
<td>FortiGate B</td>
<td>10.31.101.130</td>
<td>100</td>
<td>255</td>
<td>10.31.101.120</td>
</tr>
</tbody>
</table>

To configure FortiGate A:

```plaintext
config system interface
  edit port2
    set vrrp-virtual-mac enable
    config vrrp
      edit 50
        set vrip 10.31.101.120
        set priority 255
      next
      edit 100
        set vrip 10.31.101.130
        set priority 50
      next
    end
  next
end
```

To configure FortiGate B:

```plaintext
config system interface
  edit port2
    set vrrp-virtual-mac enable
    config vrrp
      edit 50
        set vrip 10.31.101.120
        set priority 50
      next
      edit 100
        set vrip 10.31.101.130
        set priority 255
      next
    end
  next
end
```
To configure the interfaces:

1. Configure FortiGate A:

```fortigate
config system interface
edit "emac"
    set vdom "root"
    set ip 172.16.209.1 255.255.255.0
    set allowaccess ping https snmp http telnet fgfm
    set type emac-vlan
    set vrrp-virtual-mac enable
config vrrp
    edit 1
        set vrip 172.16.209.111
        set priority 200
    next
end
set snmp-index 61
set interface "port1"
next
end
```

2. Configure FortiGate B:

```fortigate
config system interface
edit "emac"
    set vdom "root"
    set ip 172.16.209.2 255.255.255.0
    set allowaccess ping https snmp http telnet fgfm
    set type emac-vlan
    set vrrp-virtual-mac enable
config vrrp
    edit 1
        set vrip 172.16.209.111
        set priority 222
    next
end
set snmp-index 32
set interface "port1"
next
end
```
Check the VRRP information on the FortiGates:

Because FortiGate B has a higher priority, it is the primary device and FortiGate A is the backup.

1. FortiGate A:

```
# get router info vrrp
Interface: emac, primary IP address: 172.16.209.1
  UseVMAC: 1, SoftSW: 0, EmacVlan: 1 BrPortIdx: 0, PromiscCount: 0
  HA mode: primary (0:0:1) VRRP master number: 0
  VRID: 1 verion: 2
  vrip: 172.16.209.111, priority: 200 (200,0), state: BACKUP
  adv_interval: 1, preempt: 1, ignore_dft: 0 start_time: 3
  master_adv_interval: 100, accept: 1
  vrmac: 00:00:5e:00:01:01
  vrdst: vrgrp: 0
```

2. FortiGate B:

```
# get router info vrrp
Interface: emac, primary IP address: 172.16.209.2
  UseVMAC: 1, SoftSW: 0, EmacVlan: 1 BrPortIdx: 0, PromiscCount: 1
  HA mode: primary (0:0:1) VRRP master number: 1
  VRID: 1 verion: 2
  vrip: 172.16.209.111, priority: 222 (222,0), state: PRIMARY
  adv_interval: 1, preempt: 1, ignore_dft: 0 start_time: 3
  master_adv_interval: 100, accept: 1
  vrmac: 00:00:5e:00:01:01
  vrdst: vrgrp: 0
```

SNMP

SNMP enables you to monitor hardware on your network. You can configure the hardware, such as the FortiGate SNMP agent, to report system information and send traps (alarms or event messages) to SNMP managers. SNMP traps alert you to events that happen, such as when a log disk is full or a virus is detected.

The FortiGate SNMP implementation is read-only. SNMP v1/v2c, and v3 compliant SNMP managers have read-only access to FortiGate system information through queries, and can receive trap messages from the FortiGate unit.

- Interface access on page 2127
- MIB files on page 2127
- SNMP agent on page 2128
- SNMP v1/v2c communities on page 2128
- SNMP v3 users on page 2130
- Access control for SNMP on page 2131
- Important SNMP traps on page 2133
- SNMP traps and query for monitoring DHCP pool on page 2135
Interface access

Before a remote SNMP manager can connect to the FortiGate SNMP agent, you must configure one or more FortiGate interfaces to accept SNMP connections.

To configure a FortiGate interface to accept SNMP connections in the GUI:

1. Go to *Network > Interfaces*.
2. Edit the interface.
3. In the *Administrative Access* options, enable *SNMP*.
4. Click *OK*.

To configure a FortiGate interface to accept SNMP connections in the CLI:

```plaintext
cfg system interface
  edit <interface>
    append allowaccess snmp
    set snmp-index <integer>
    config ipv6
      append ip6-allowaccess snmp
    end
  next
end
```

MIB files

The FortiGate SNMP agent supports Fortinet proprietary MIBs, as well as the parts of RFC 2665 and RFC 1213 that apply to FortiGate unit configuration.

Your SNMP manager may already include standard and private MIBs in a compiled database that is ready to use. You must add the Fortinet proprietary MIBs to this database to have access to Fortinet specific information.

<table>
<thead>
<tr>
<th>MIB file or RFC</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORTINET-CORE-MIB.mib</td>
<td>The Fortinet core MIB includes all system configuration and trap information that is common to all Fortinet products. Your SNMP manager requires this information to monitor Fortinet device settings and receive traps from the FortiGate SNMP agent.</td>
</tr>
<tr>
<td>FORTINET-FORTIGATE-MIB.mib</td>
<td>The FortiGate MIB includes all system configuration information and trap information that is specific to FortiGate units. Your SNMP manager requires this information to monitor FortiGate settings and receive traps from the FortiGate SNMP agent.</td>
</tr>
</tbody>
</table>
| RFC-1213 (MIB II) | The FortiGate SNMP agent supports MIB II groups with the following exceptions:
 • No support for the EGP group from MIB II (RFC 1213, section 3.11 and 6.10).
 • Protocol statistics returned for MIB II groups (IP/ICMP/TCP/UDP/etc.) do not accurately capture all Fortinet traffic activity. More accurate information can be obtained from the information reported by the FortiGate MIB. |
| RFC-2665 (Ethernet-like MIB) | The FortiGate SNMP agent supports Ethernet-like MIB information. |
To download the MIB files:

1. Go to System > SNMP.
2. Click Download FortiGate MIB File and save the file to the management computer.
3. Click Download Fortinet Core MIB File and save the file to the management computer.

SNMP agent

The SNMP agent sends SNMP traps originating on the FortiGate to an external monitoring SNMP manager defined in an SNMP community. The SNMP manager can monitor the FortiGate system to determine if it is operating properly, or if any critical events occurring.

The description, location, and contact information for this FortiGate system will be part of the information that the SNMP manager receives. This information is useful if the SNMP manager is monitoring many devices, and enables faster responses when the FortiGate system requires attention.

To configure the SNMP agent in the GUI:

1. Go to System > SNMP.
2. Enable SNMP Agent.
3. Enter a description of the agent.
4. Enter the location of the FortiGate unit.
5. Enter a contact or administrator for the SNMP Agent or FortiGate unit.
6. Click Apply.

To configure the SNMP agent in the CLI:

```
config system snmp sysinfo
   set status enable
   set description <string>
   set contact-info <string>
   set location <string>
end
```

SNMP v1/v2c communities

An SNMP community is a grouping of equipment for network administration purposes. A single device can belong to multiple communities.

You must add an SNMP community to the FortiGate so that the SNMP manager can receive traps and system information. Up to three communities can be added.
To create a SNMP v1/v2c community in the GUI:

1. Go to System > SNMP.
2. In the SNMP v1/v2c table, click Create New.
3. Enter a Community Name and enable the community.
4. In the Hosts section, enter the IP Address and select the Host Type for each SNMP manager.
5. In the Queries section, enable or disable v1 and v2c queries, then enter the port numbers that the SNMP managers in this community use for them.
6. In the Traps section, enable or disable v1 and v2c traps, then enter the local and remote port numbers that the SNMP managers in this community use for them.
7. In the SNMP Events section, enable or disable the events that activate traps in this community.
8. Click OK.

To create a SNMP v1/v2c community in the CLI:

```
config system snmp community
    edit 2
        set name <string>
        set status {enable | disable}
        config hosts
            edit <host_id>
                set ip <ip/mask>
                set source-ip <class_ip>
                set ha-direct {enable | disable}
                set host-type {any | query | trap}
            next
        end
        set query-v1-port <port_number>
        set query-v1-status {enable | disable}
        set query-v2c-port <port_number>
        set query-v2c-status {enable | disable}
        set trap-v1-lport <port_number>
```
set trap-v1-rport <port_number>
set trap-v1-status {enable | disable}
set trap-v2c-lport <port_number>
set trap-v2c-rport <port_number>
set trap-v2c-status {enable | disable}
set events <events>

SNMP v3 users

Authentication is used to ensure the identity of users. Privacy allows for encryption of SNMP v3 messages to ensure confidentiality of data. These protocols provide a higher level of security than is available in SNMP v1 and v2c, which use community strings for security. Both authentication and privacy are optional.

To create a SNMP v3 user in the GUI:

1. Go to **System > SNMP**.
2. In the SNMP v3 table, click **Create New**.
3. Enter a **User Name** and enable the user.
4. In the **Security Level** section, configure the security level:
 - **No Authentication**: No authentication or encryption.
 - **Authentication**: Select the authentication algorithm and password.
 - **Authentication and Private**: Select both the authentication and encryption algorithms and password.
5. In the **Hosts** section, enter the **IP Address** for each SNMP manager.
6. In the **Queries** section, enable or disable queries, then enter the port number that the SNMP managers use for them.
7. In the **Traps** section, enable or disable traps, then enter the local and remote port numbers that the SNMP managers use for them.
8. In the **SNMP Events** section, enable or disable the events that activate traps.

9. Click OK.

To create an SNMP v3 user in the CLI:

```
cFG sYstem snmp user
  edit <user>
    set status {enable | disable}
    set trap-status {enable | disable}
    set trap-lport <port_number>
    set trap-rport <port_number>
    set queries {enable | disable}
    set query-port <port_number>
    set notify-hosts <class_ip> ... <class_ip>
    set source-ip <class_ip>
    set ha-direct {enable | disable}
    set events <events>
    set security-level {no-auth-no-priv | auth-no-priv | auth-priv}
    set auth-proto {md5 | sha | sha224 | sha256 | sha384 | sha512}
    set auth-pwd <password>
    set priv-proto {aes | des | aes256 | aes256cisco}
    set priv-pwd <password>
  next
end
```  

Access control for SNMP

Administrators can provide access control to SNMP users and communities based on restricting a MIB view to specific OID subtrees. They can also define access based on the VDOM. This allows multi-tenant FortiGate deployments to provide restricted access per VDOM.

- **MIB view access control** allows the SNMP clients to query specific OIDs that are filtered by the MIB view settings.
- **VDOM access control** allows the SNMP clients to query data from specific VDOMs that are filtered by the VDOM settings.

When access control is enabled, the users can only access the information that is allowed by the access control, and all other information is inaccessible. Administrators have granular control, and can easily restrict specific information based on access control.

To configure MIB views:

```
cFG system snmp mib-view
  edit <name>
    set include <OIDs>
    set exclude <OIDs>
  next
end
```  

<table>
<thead>
<tr>
<th>include <OIDs></th>
<th>Enter the OID subtrees to be included in the view. A maximum of 16 subtrees can be added.</th>
</tr>
</thead>
<tbody>
<tr>
<td>exclude <OIDs></td>
<td>Enter the OID subtrees to be excluded in the view. A maximum of 64 subtrees can be added.</td>
</tr>
</tbody>
</table>
To configure access control based on MIB views and VDOMs for SNMP users and communities:

```
config system snmp user
edit <user>
    set mib-view <view>
    set vdoms <vdoms>
next
end
config system snmp community
edit <community>
    set mib-view <view>
    set vdoms <vdoms>
next
end
```

<table>
<thead>
<tr>
<th>mib-view <view></th>
<th>Set the SNMP access control MIB view.</th>
</tr>
</thead>
<tbody>
<tr>
<td>vdoms <vdoms></td>
<td>Set the SNMP access control VDOMs.</td>
</tr>
</tbody>
</table>

Example

In this example, two MIB views are created and, with VDOMs, used to control access for SNMP users and communities.

To configure access control for SNMP users and communities:

1. **Configure two MIB views:**

   ```
   config system snmp mib-view
   edit "view1"
       set include "1.3.6.1.2"
   next
   edit "view2"
       set include "1.3.6.1.2.1"
       set exclude "1.3.6.1.2.1.2.1" "1.3.6.1.2.1.4.31" "1.3.6.1.2.1.1.9.1"
   next
   end
   ```

2. **Add the MIB view and VDOM restrictions to SNMP users:**

   ```
   config system snmp user
   edit "v3user"
       set mib-view "view1"
   next
   edit "v3user1"
       set vdom "vdom1"
   next
   edit "v3user2"
       set mib-view "view1"
       set vdoms "root" "vdom1"
   next
   end
   ```

3. **Add the MIB view and VDOM restrictions to SNMP communities:**
 Important SNMP traps

Link Down and Link Up traps

This trap is sent when a FortiGate port either goes down or is brought up.

For example, the following traps are generated when the state of port34 is set to down using `set status down`, and then brought up using `set status up`:

```
NET-SNMP version 5.7.3 2019-01-31 14:11:48 10.1.100.1(via UDP: [10.1.100.1]:162->[10.1.100.11]:162) TRAP, SNMP v1, community REGR-SYS SNMPv2-MIB::snmpTraps Link Down Trap (0) Uptime: 0:14:44.95 IF-MIB::ifIndex.42 = INTEGER: 42 IF-MIB::ifAdminStatus.42 = INTEGER: down(2) IF-MIB::ifOperStatus.42 = INTEGER: down(2)
SNMPv2-MIB::sysName.0 = STRING: FortiGate-140D-POE
```

```
2019-01-31 14:11:48 <UNKNOWN> [UDP: [10.1.100.1]:162->[10.1.100.11]:162]: DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (88495) 0:14:44.95 SNMPv2-MIB::snmpTrapOID.0 = OID: IF-MIB::linkDown IF-MIB::ifIndex.42 = INTEGER: 42 IF-MIB::ifAdminStatus.42 = INTEGER: down(2) IF-MIB::ifOperStatus.42 = INTEGER: down(2)
SNMPv2-MIB::sysName.0 = STRING: FortiGate-140D-POE 2019-01-31 14:12:01 10.1.100.1(via UDP: [10.1.100.1]:162->[10.1.100.11]:162) TRAP, SNMP v1, community REGR-SYS SNMPv2-MIB::snmpTraps Link Up Trap (0) Uptime: 0:14:57.98 IF-MIB::ifIndex.42 = INTEGER: 42 IF-MIB::ifAdminStatus.42 = INTEGER: up(1) IF-MIB::ifOperStatus.42 = INTEGER: up(1)
```

fgFmTrapIfChange trap

This trap is sent when any changes are detected on the interface. The change can be very simple, such as giving an IPV4 address.
For example, the user has given the IP address of 1.2.3.4/24 to port 1 and the EMS Manager has detected the following trap:

```
DISMAN-EXPRESSION-MIB::sysUpTimeInstance = Timeticks: (7975058) 22:09:10.58 SNMPv2-MIB::snmpTrapOID.0 = OID: FORTINET-FORTIGATE-MIB::fgFmTrapIfChange FORTINET-CORE-MIB::fnSysSerial.0 = STRING: FG140P3G15800330 IF-MIB::ifName.45 = STRING: port1 FORTINET-FORTIGATE-MIB::fgManIfIp.0 = IpAddress: 1.2.3.4 FORTINET-FORTIGATE-MIB::fgManIfMask.0 = IpAddress: 255.255.255.0 FORTINET-FORTIGATE-MIB::fgManIfIp6.0 = STRING: 0:0:0:0:0:0:0:0
```

entConfigChange trap

The change to the interface in the previous example has also triggered the *ConfChange Trap* which is sent along with the *fgFmTrapIfChange* trap:

```
```

fgTrapDeviceNew trap

This trap is triggered when a new device, like a FortiSwitch, is connected to the FortiGate.

For example, the following scenario has given the device a new trap for adding FortiAP on a PoE interface a FortiGate 140D-POE. The trap has important information about the device name, device MAC address, and when it was last seen.

```
```

```
2018-11-15 11:17:43 FGT_A [UDP: [172.16.200.1]:162-][172.16.200.55]:162]: DISMAN-EXPRESSION-MIB::sysUpTimeInstance = Timeticks: (520817) 1:26:48.17 SNMPv2-MIB::snmpTrapOID.0 = OID: FORTINET-FORTIGATE-MIB::fgTrapDeviceNew FORTINET-CORE-MIB::fnSysSerial.0 = STRING: FG140P3G15800330 SNMPv2-MIB::sysName.0 = STRING: FGT_A IF-MIB::ifIndex.0 = INTEGER: 0 FORTINET-FORTIGATE-MIB::fgDeviceCreated.0 = Gauge32: 5 FORTINET-FORTIGATE-MIB::fgDeviceLastSeen.0 = Gauge32: 5 FORTINET-FORTIGATE-MIB::fgDeviceMacAddress.0 = STRING: 90:6c:ac:f9:97:a0
```

fgTrapAvOversize trap

The *fgTrapAvOversize* trap is generated when the antivirus scanner detects an oversized file:

```
019-01-31 13:22:04 10.1.100.1 via UDP: [10.1.100.1]:162->[10.1.100.11]:162] TRAP, SNMP v1, community REGR-SYS FORTINET-FORTIGATE-MIB::fgt140P Enterprise Specific Trap (602) Uptime: 1 day, 3:41:10.31 FORTINET-CORE-MIB::fnSysSerial.0 = STRING: FG140P3G15800330 SNMPv2-MIB::sysName.0 = STRING: FGT-A IF-MIB::ifIndex.0 = INTEGER: 0 FORTINET-FORTIGATE-MIB::fgDeviceCreated.0 = Gauge32: 5 FORTINET-FORTIGATE-MIB::fgDeviceLastSeen.0 = Gauge32: 5 FORTINET-FORTIGATE-MIB::fgDeviceMacAddress.0 = STRING: 90:6c:ac:f9:97:a0
```

```
019-01-31 13:22:04 10.1.100.1 via UDP: [10.1.100.1]:162->[10.1.100.11]:162] TRAP, SNMP v1, community REGR-SYS FORTINET-FORTIGATE-MIB::fgt140P Enterprise Specific Trap (602) Uptime: 1 day, 3:41:10.31 FORTINET-CORE-MIB::fnSysSerial.0 = STRING: FG140P3G15800330 SNMPv2-MIB::sysName.0 = STRING: FGT-A IF-MIB::ifIndex.0 = INTEGER: 0 FORTINET-FORTIGATE-MIB::fgDeviceCreated.0 = Gauge32: 5 FORTINET-FORTIGATE-MIB::fgDeviceLastSeen.0 = Gauge32: 5 FORTINET-FORTIGATE-MIB::fgDeviceMacAddress.0 = STRING: 90:6c:ac:f9:97:a0
```

FortiOS 7.2.0 Administration Guide 2134
Fortinet Inc.
SNMP traps and query for monitoring DHCP pool

The SNMP DHCP event contains three traps and one query.

Traps are sent when:

- DHCP server IP pool usage reaches 90%
- DHCP server detect an IP address that is already in use
- DHCP client receives DHCP NAK

SNMP queries are accepted for DHCP lease usage information (OID = 1.3.6.1.4.1.12356.101.23). The query result is based on the leased out percentage.

To enable the SNMP DHCP event in the GUI:

1. Go to System > SNMP.
2. Click Create New in either the SNMP v1/v2c table or SNMP v3 table, or edit an existing community or user.
3. Configure the settings as required.
4. In the SNMP Events list, enable DHCP addresses at limit.

 ![SNMP Events Configuration](image)

5. Click OK.

To enable the SNMP DHCP event in the CLI:

```bash
config system snmp community
   edit 1
      set name "REGR-SYS"
   config hosts
      edit 1
         set ip 10.1.100.11 255.255.255.255
      next
      edit 2
         set ip 172.16.200.55 255.255.255.255
      next
   end
   set events dhcp
next
end
config system snmp user
   edit "1"
      set notify-hosts 172.10.1.0 172.20.1.0
```
System

```
set events dhcp
set security-level auth-priv
set auth-proto sha384
set auth-pwd *********************
set priv-proto aes256
set priv-pwd *********************
next
end
```

Replacement messages

FortiOS has replacement messages that are HTML and text files. These messages can be customized to meet user requirements. The content can be modified, and images can be added.

Modifying replacement messages

The Replacement Messages page has two views. Simple View (the default view) shows the most commonly used replacement messages. Extended View shows the entire list and all replacement message categories.

To modify a replacement message in the GUI:

1. Go to System > Replacement Messages.
2. Select a replacement message and click Edit.
 If the message you want to edit is not visible, click Extended View in the upper right-hand corner of the top menu.
3. Edit the HTML code.
 The message is visible on the left alongside the HTML code on the right. The message view updates in real-time as you edit the content.
 When adding a variable to the code, right-click and select Insert Tag or type `%%` to view a list of the available variables, or start typing the variable name then press Enter or TAB to auto-complete the variable name.
4. Click Save.

Click Restore Defaults to return to the original message and code base.

To modify a replacement message in the CLI:

For example, to modify the Traffic Quota Limit Exceeded Page message:

```
config system replacemsg traffic-quota "per-ip-shaper-block"
set buffer "<html>
<head>
<title>
Traffic Quota Control
</title>
</head>
<body>
<font size=2>
<table width="100%">
<tr>
<td bgcolor=#3300cc align="center" colspan=2>
<font color=#ffffff>
<b>
Traffic blocked because exceeded session quota
</b>
</font>
</td>
</tr>
</table>
<br>
Traffic blocked because it exceeded the per IP shaper session quota. Please contact the system administrator.
<br>
%%QUOTA_INFO%%
<br>
<br>
```
Replacement message images

Images can be added to replacement messages on:

- Disclaimer pages
- Login pages
- Declined disclaimer pages
- Login failed pages
- Login challenge pages
- Keepalive pages

The supported image formats are GIF, JPEG, TIFF, and PNG. The maximum file size supported is 24 KB.

Adding images to replacement messages

To add images to replacement messages in the GUI:

1. Go to System > Replacement Messages.
2. In the top menu, click Manage Images.
3. Click Create New.
4. Enter a name for the image.
5. Click Upload Image and locate the file.
6. Click OK.
 The file is now visible in the list.
7. Return to the replacement message list and edit a message.
8. Right-click in the message code where you want to add the image, and select Insert Image.
9. Select the image from the list then press Enter, or double-click on the image to add it to the message.
10. Click Save.

To add images to replacement messages in the CLI:

1. Add the image to the FortiGate:
   ```
   config system replacemsg-image
   edit <image_name>
   set image-type {gif | jpg | tiff | png}
   set image-base64 <string>
   next
   end
   ```
2. Edit the replacement message, and include `%%IMAGE:<image_name>%%` in the code to add the image.

Replacement message groups

Replacement message groups allow users to customize replacement messages for individual policies and profiles.

There are two types of replacement message groups:

<table>
<thead>
<tr>
<th>Type</th>
<th>Usage</th>
<th>Customizable categories</th>
</tr>
</thead>
</table>
| utm | Used with UTM settings in firewall policies. | • admin
• alertmail
• custom-message
• fortiguard-wf
• ftp
• http
• icap
• mail
• nac-quar
• spam |
The messages added to a group do not need to be customized. The message body content, header type, and format will use the default values if not customized.

To make replacement message groups visible in the GUI:

```
config system settings
  set gui-replacement-message-groups enable
end
```

In the following example, two replacement message groups are created. The UTM message group includes custom mail-related messages and is assigned to an email filter profile. The authentication message group has a custom authentication success message that is applied to a proxy-based firewall policy that has an assigned email filter profile.

To create replacement message groups in the GUI:

1. Create the Security replacement message group:
 a. Go to System > Replacement Message Groups.
 b. Click Create New.
 c. For Name, enter newutm.
 d. In the Comments field, enter UTM message group.
 e. For Group Type, select Security.
 f. Click OK.

2. Customize the replacement messages in the newutm group:
 a. Go to System > Replacement Message Groups.
 b. Edit the newutm group.
c. Select the **Partial Email Block Message**.

d. Edit the message and click **Save**.
e. Select the **ASE Block Message**.
f. Edit the message and click **Save**.

3. **Create the Authentication replacement message group:**
 a. Go to **System > Replacement Message Groups**.
 b. Click **Create New**.
 c. For **Name**, enter **newauth**.
 d. In the **Comments** field, enter **Authentication message group**.
 e. For **Group Type**, select **Authentication**.
 f. Click **OK**.

4. **Apply the newutm replacement message group to an email filter profile in the CLI:**
   ```
   config emailfilter profile
   edit "newmsgs"
   set replacemsg-group "newutm"
   next
   end
   ```

5. **Apply the newauth replacement message group and the email filter profile to a firewall policy in the CLI:**
   ```
   config firewall policy
   edit 1
   ...  
   set replacemsg-override-group "newauth"
   set inspection-mode proxy
   set emailfilter-profile "newmsgs"
   ...  
   next
   end
   ```
To create replacement message groups in the CLI:

1. Create the replacement message groups:

 config system replacemsg-group
 edit "newutm"
 set comment "UTM message group"
 set group-type utm
 config mail
 edit "partial"
 set buffer "Fragmented emails are blocked, sorry."
 next
 end
 config spam
 edit "smtp-spam-ase"
 set buffer "This message has been blocked because ASE reports it as spam. You\'re welcome."
 next
 end
 next
 edit "newauth"
 set comment 'Authentication message group'
 set group-type auth
 config auth
 edit "auth-success-msg"
 set buffer "Welcome to the firewall. Your authentication has been accepted, please reconnect."
 next
 end
 next
 end

2. Apply the message group to the email filter:

 config emailfilter profile
 edit "newmsgs"
 set replacemsg-group "newutm"
 next
 end

3. Apply the email filter and message group to the policy:

 config firewall policy
 edit 1
 ...
 set replacemsg-override-group "newauth"
 set inspection-mode proxy
 set emailfilter-profile "newmsgs"
 ...
 next
 end
FortiGuard services can be purchased and registered to your FortiGate unit. The FortiGate must be connected to the Internet in order to automatically connect to the FortiGuard Distribution Network (FDN) to validate the license and download FDN updates.

The FortiGuard subscription update services include:

- Antivirus (AV)
- Intrusion Protection Service (IPS)
- Application Control
- Antispam
- Web Filtering
- Web Application Firewall (WAF)

AV and IPS packages are signed by the Fortinet CA, and automatic updates will validate whether a package is signed.

To view FDN support contract information, go to System > FortiGuard. The License Information table shows the status of your FortiGate’s support contract.

- Configuring FortiGuard updates on page 2143
- Configuring a proxy server for FortiGuard updates on page 2144
- Manual updates on page 2145
- Automatic updates on page 2147
- Scheduled updates on page 2148
- Sending malware statistics to FortiGuard on page 2149
- Update server location on page 2149
- Filtering on page 2150
- Online security tools on page 2152
- FortiGuard anycast and third-party SSL validation on page 2152
- Using FortiManager as a local FortiGuard server on page 2155
- Cloud service communication statistics on page 2156
- IoT detection service on page 2158
- FortiAP query to FortiGuard IoT service to determine device details on page 2160
- FortiGate Cloud / FDN communication through an explicit proxy on page 2161
- FDS-only ISDB package in firmware images on page 2162
- Licensing in air-gap environments on page 2163

Configuring FortiGuard updates

To configure FortiGuard updates:

1. Go to System > FortiGuard
2. Scroll down to the FortiGuard Updates section.
3. Configure the options for connecting and downloading definition files:
Immediately download updates

The option can be enabled on 2U and larger hardware models when the FortiGuard are servers are connected in anycast mode. The FortiGate forms a secure, persistent connection with FortiGuard to get notifications of new updates through an HTTPS connection. The FortiGate uses the fds_notify daemon to wait for the notification, then makes another connection to the FortiGuard server to download the updates.

Scheduled Updates

Enable to schedule updates to be sent to the FortiGate at the specified time or automatically. See Scheduled updates on page 2148 and Automatic updates on page 2147.

Improve IPS quality

Enable to send information to the FortiGuard servers when an attack occurs. This can help keep the FortiGuard database current as attacks evolve, and improve IPS signatures.

Use extended IPS signature package

Enable to use the extended IPS database, that includes protection from legacy attacks, along with the regular IPS database that protects against the latest common and in-the-wild attacks.

AntiVirus PUP/PUA

Enable antivirus grayware checks for potentially unwanted applications.

Update server location

The FortiGuard update server location. See Update server location on page 2149 for details.

4. Click Apply.

Configuring a proxy server for FortiGuard updates

You can configure FortiOS to use a proxy server to connect to the FortiGuard Distribution Network (FDN).

Proxy tunneling is supported only for registration, AV, and IPS updates. For FortiGate virtual machines, proxy tunneling can also be used for license validation. For web filtering or spam filtering, UDP protocol is used on ports 53 or 8888. UDP protocol traffic cannot be directed over a proxy server, even if you are using versions of FortiOS that support web filtering over port 443.

Consider the following before configuring FortiOS to use a proxy server to connect to FDN:
System

- FortiOS connects to the proxy server using the HTTP CONNECT method. For information about the HTTP CONNECT method, see RFC 2616.
- The proxy server must not inspect the HTTPS traffic used for FortiOS communication.
- FortiOS sends to the proxy server an HTTP CONNECT request that specifies the IP address and port required for the FDN connection. Authentication information is optional for the request.
- FortiOS must be configured to use DNS servers that resolve the addresses of FDN servers to support AV and IPS updates.
- The proxy server establishes the connection to FDN and passes information between FortiOS and FDN.

Use the following syntax to configure a proxy server in the CLI:

```
config system autoupdate tunneling
  set address <proxy_address>
  set port <proxy_port>
  set username <username>
  set password <password>
  set status {enable | disable}
end
```

In the following example, a proxy server with IP address 10.1.1.1 is configured to listen on port TCP/3128 without authentication.

To configure a proxy server:

```
config system autoupdate tunneling
  set address 10.1.1.1
  set port 3128
  set status enable
end
```

In a closed network without direct internet connection for web filtering or spam filtering, you can use FortiManager as a FortiGuard server. FortiManager supports proxy for both updates and rating, and FortiOS retrieves its updates and ratings through FortiManager. See Using FortiManager as a local FortiGuard server on page 2155.

Manual updates

When needed, FortiGuard Distribution Network (FDN) updates can be manually uploaded.

To manually update the signature definitions files:

1. Log in to the Fortinet Support website.
2. Go to Support > Service Updates.
3. Select your OS Version from the dropdown list.
4. Locate your device in the table, and download the signature definitions files.
5. On the FortiGate, go to System > FortiGuard.
6. In the License Information table, locate and expand the definitions that you are updating.
7. From the Actions menu in the rightmost column, select Upgrade Database.
8. In the pane that opens, click Upload, locate the downloaded definitions file on your computer, then click Open. The download may take a few minutes to complete.
9. Click OK.

AV and IPS manual updates

AV and IPS packages are signed by the Fortinet CA to ensure authenticity of the packages. During manual package updates, signed and validated packages will be accepted. If a package is not signed, the following applies:

- Level-0: accept the new package even if it is unsigned.
- Level-1: display a warning and request a user confirmation to accept.
- Level-2: display an error and reject the image.
- If no level is configured, apply Level-1.

Security levels are pre-configured on the BIOS.

To execute the update:

```
# execute restore ips tftp nids-720-19.261.pkg 172.16.200.55
```

To verify the manual AV and IPS package updates:

```
# diagnose debug app updated -1
# diagnose debug enable
```

Manual update of an unsigned package with level-1 configured

A warning message is displayed in the console, and requests a user confirmation to accept the update of an unsigned package.

To execute the update:

```
# execute restore ips tftp nids-720-19.261.pkg 172.16.200.55
This operation will overwrite the current IPS package!
Do you want to continue? (y/n)y
```

Please wait...

Connect to tftp server 172.16.200.55 ...
```
##
```
Get IPS database from tftp server OK.
*****WARNING: This package file has no signature for validation.*****
Fortinet cannot verify the authenticity of this package and therefore...
there may be a risk that the package contains code unknown to Fortinet. In short, Fortinet cannot validate the package and makes no warranties or representations concerning the package. Please continue only if you understand and are willing to accept the risks. Do you want to continue? (y/n)y

Manual update of an unsigned package with level-2 configured

A warning message is displayed in the console, and the image is rejected.

To execute the update:

```
# execute restore ips tftp nids-720-19.261.pkg 172.16.200.55
This operation will overwrite the current IPS package!
Do you want to continue? (y/n)y
```

Please wait...

Connect to tftp server 172.16.200.55 ...
```
##
Get IPS database from tftp server OK.
```

Automatic updates

The default auto-update schedule for FortiGuard packages is automatic. The update interval is calculated based on the model and percentage of valid subscriptions, within one hour.

For example, if a FortiGate 501E has 78% valid contracts, then based on this device model, the update schedule is calculated to be every 10 minutes. If you verify the system event logs (ID 0100041000), they are generated approximately every 10 minutes.

To configure automatic updates in the GUI:

1. Go to System > FortiGuard
2. In the FortiGuard Updates section, enable Scheduled Updates and select Automatic.

3. Click Apply.
To configure scheduled updates in the CLI:

```
config system autoupdate schedule
    set status enable
    set frequency automatic
end
```

Scheduled updates

Scheduling updates ensures that the virus and IPS definitions are downloaded to your FortiGate on a regular basis. Updating definitions can cause a brief disruption in traffic that is currently being scanned while the FortiGate unit applies the new signature database. Updates should be scheduled during off-peak hours when network usage is at a minimum to ensure that network activity will not be affected by downloading the definitions files.

A schedule of once a week means any urgent updates will not be pushed until the scheduled time. If an urgent update is required, click the *Update Licenses & Definitions Now* button to manually update the definitions.

To configure scheduled updates in the GUI:

1. Go to *System > FortiGuard*
2. In the *FortiGuard Updates* section, enable *Scheduled Updates*.
3. Configure the update schedule:

 ![FortiGuard Updates GUI](image)

 4. Click *Apply*.

To configure scheduled updates in the CLI:

```
config system autoupdate schedule
    set status enable
    set frequency {every | daily | weekly}
    set time <hh:mm>
    set day <day_of_week>
end
```
Sending malware statistics to FortiGuard

FortiGate devices periodically send encrypted antivirus, IPS, botnet IP list, and application control statistics to FortiGuard. Included with these data is the IP address and serial number of the FortiGate, and the country that it is in. This information is never shared with external parties, Fortinet Privacy Policy.

The malware statistics are used to improve various aspects of FortiGate malware protection. For example, antivirus data allow FortiGuard to determine what viruses are currently active. Signatures for those viruses are kept in the Active AV Signature Database that is used by multiple Fortinet products. Inactive virus signatures are moved to the Extended AV Signature Database (see Configuring FortiGuard updates on page 2143). When events for inactive viruses start appearing in the malware data, the signatures are moved back into the AV Signature Database.

The FortiGate and FortiGuard servers go through a 2-way SSL/TLS 1.2 authentication before any data is transmitted. The certificates used in this process must be trusted by each other and signed by the Fortinet CA server.

The FortiGate only accepts data from authorized FortiGuard servers. Fortinet products use DNS to find FortiGuard servers and periodically update their FortiGate server list. All other servers are provided by a list that is updated through the encrypted channel.

Malware statistics are accumulated and sent every 60 minutes by default.

To configure sharing this information, use the following CLI command:

```
config system global
    set fds-statistics {enable | disable}
    set fds-statistics-period <minutes>
end
```

The submission of malware data is in accordance with the Fortinet Privacy Policy. There is no sensitive or personal information included in these submissions. Only malware statistics are sent.

Fortinet uses the malware statistics collected in this manner to improve the performance of the FortiGate services and to display statistics on the Fortinet Support website for customers registered FortiGate devices.

Fortinet may also publish or share statistics or results derived from this malware data with various audiences. The malware statistics shared in this way do not include any customer data.

Update server location

Administrators can specify the location of the FortiGuard update server used by FortiGate. You can set the location to only servers in the USA, only servers in the European Union (EU), or to servers with the lowest latency.

In EU locations, it can be required that certain traffic is only handled by servers located in the EU. By setting the update server location to EU only, the FortiGate will use EU domains to resolve to EU servers for FortiGuard traffic to update, URL rating, and IoT servers.

<table>
<thead>
<tr>
<th>Server location</th>
<th>Anycast domain name</th>
<th>Non-Anycast FQDN addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU only</td>
<td>euupdate.fortinet.net</td>
<td>euguardservice.fortinet.net</td>
</tr>
</tbody>
</table>
System

<table>
<thead>
<tr>
<th>Server location</th>
<th>Anycast domain name</th>
<th>Non-Anycast FQDN addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>US only</td>
<td>usupdate.fortinet.net</td>
<td>usupdate.fortiguard.net</td>
</tr>
<tr>
<td></td>
<td>usguardservice.fortinet.net</td>
<td>UDP: usservice.fortiguard.net</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HTTPS: ussecurewf.fortiguard.net</td>
</tr>
<tr>
<td>Lowest latency (automatic)</td>
<td>globalupdate.fortinet.net</td>
<td>update.fortiguard.net</td>
</tr>
<tr>
<td></td>
<td>globalguardservice.fortinet.net</td>
<td>UDP: service.fortiguard.net</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HTTPS: securewf.fortiguard.net</td>
</tr>
</tbody>
</table>

On hardware FortiGate devices, the default is *Lowest latency locations*. On VM devices, the default is *US only*.

To configure the update server location in the GUI:

1. Go to **System > FortiGuard**
2. In the **FortiGuard Updates** section, set **Update server location** to *Lowest latency locations* or *Restrict to*.
3. If *Restrict to* is selected, choose *US only* or *EU only*.

4. Click **Apply**.

To configure the update server location in the CLI:

```
config system fortiguard
    set update-server-location {automatic | usa | eu}
end
```

Filtering

Web filtering is used to block access to harmful, inappropriate, and dangerous web sites (see FortiGuard filter on page 1130).

Email filtering is used to detect and block spam messages (see FortiGuard-based filters on page 1242).

To configure filtering in the GUI:

1. Go to **System > FortiGuard**
2. Scroll down to the **Filtering** section.
3. Configure the settings as needed:

<table>
<thead>
<tr>
<th>Web Filter Cache</th>
<th>Enable/disable web filter cache, and set the amount of time that the FortiGate will store a blocked IP address or URL locally. After the time expires, the FortiGate contacts the FDN to verify the address.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email Filter Cache</td>
<td>Enable/disable email filter cache, and set the amount of time that the FortiGate will store an email address locally.</td>
</tr>
<tr>
<td>FortiGuard filtering services</td>
<td>The protocol and port used to contact the FortiGuard servers. These options can be changed in the CLI.</td>
</tr>
<tr>
<td>Filtering service availability</td>
<td>The status of the filtering service. Click Test Connectivity if the filtering service is not available.</td>
</tr>
<tr>
<td>Request re-evaluation of a URL's category</td>
<td>Click to re-evaluate a URL category rating on the FortiGuard web filter service.</td>
</tr>
</tbody>
</table>

4. Click Apply.

To configure filtering in the CLI:

```
config system fortiguard
  set protocol {https | udp}
  set port {443 | 53 | 8888}
  set antispam-force-off {enable | disable}
  set antispam-cache {enable | disable}
  set antispam-cache-ttl <integer>
  set antispam-cache-mpercent <percent>
  set antispam-timeout <integer>
  set webfilter-force-off {enable | disable}
  set webfilter-cache {enable | disable}
  set webfilter-cache-ttl <integer>
  set webfilter-timeout <integer>
end
```

When anycast is enabled (by default) the protocol is HTTPS and the port is 443.
Online security tools

FortiGuard Labs provides a number of online security tools, including but not limited to:

- **URL lookup**
 Enter a website address to see if it has been rated and what category and classification it is filed as. If you find a site that has been wrongly categorized, use this page to request that the site be re-evaluated: https://www.fortiguard.com/webfilter

- **Threat Encyclopedia**
 Browse FortiGuard Labs extensive encyclopedia of threats. Search for viruses, botnet C&C, IPS, endpoint vulnerabilities, and mobile malware: https://www.fortiguard.com/encyclopedia

- **Application Control**
 Browse FortiGuard Labs extensive encyclopedia of applications: https://www.fortiguard.com/appcontrol

FortiGuard anycast and third-party SSL validation

Anycast optimizes routing performance to FortiGuard servers. It is the default FortiGuard access mode.

Using Fortinet DNS servers, the FortiGate receives a single IP address for the domain name of each FortiGuard service. BGP routing optimization is transparent to the FortiGate. The domain name of each FortiGuard service is the common name in that service's certificate, which is signed by a third-party intermediate CA. The FortiGuard server uses third-party certificate verification and the Online Certificate Status Protocol (OCSP) stapling check, so that the FortiGate can always validate the FortiGuard server certificate efficiently.

FortiGate will only complete the TLS handshake with an anycast server that has a good OCSP status for its certificate. Any other status will result in a failed SSL connection. OCSP stapling is reflected on the signature interval so that good means that the certificate is not revoked at that timestamp. The FortiGuard servers query the CA's OCSP responder every four hours and update its OCSP status. If the FortiGuard is unable to reach the OCSP responder, it will keep the last known OCSP status for up to seven days. This cached OCSP status will be sent out immediately when a client connection request is made, optimizing the response time.

FortiGuard represents all cloud based servers; see Anycast and unicast services for details.

The anycast server has one IP address to match its domain name. The FortiGate connects with a single server address, using HTTPS and port 443, regardless of where the FortiGate is located.
To configure the anycast FortiGuard access mode:

```
config system fortiguard
    set fortiguard-anycast {enable | disable}
    set fortiguard-anycast-source {fortinet | aws}
end
```

Connection process

The following process is used to connect to an anycast server:
1. The FortiGate embeds the CA_bundle certificate, which includes the root CA with CRL list and third-party intermediate CA, in the root CA level.

2. The FortiGate finds the FortiGuard IP address from its domain name from DNS.

3. The FortiGate starts a TLS handshake with the FortiGuard IP address. The client hello includes an extension of the status request.

4. The FortiGuard servers provide a certificate with its OCSP status: good, revoked, or unknown.

5. The FortiGate verifies the CA chain against the root CA in the CA_bundle.

6. The FortiGate verifies the intermediate CA's revoke status against the root CA's CRL.

7. The FortiGate verifies the FortiGuard certificate's OCSP status:

 OCSP Response Data:

 OCSP Response Status: successful (0x0)
 Response Type: Basic OCSP Response
 Version: 1 (0x0)
 Responder Id: 3DD350A5D6A0ADEEF34A600A65D321D4F8F8D60F
 Produced At: Aug 20 07:50:58 2019 GMT
 Responses:
 Certificate ID:
 Hash Algorithm: sha1
 Issuer Name Hash: 49F4BD8A18BF760698C5DE402D683B716AE4E686
 Issuer Key Hash: 3DD350A5D6A0ADEEF34A600A65D321D4F8F8D60F
 Serial Number: 02555C9F3901B799DF1873402FA9392D
 Cert Status: good
 This Update: Aug 20 07:50:58 2019 GMT
 Next Update: Aug 27 07:05:58 2019 GMT

 Abort conditions include:
 - The CN in the server's certificate does not match the domain name resolved from the DNS.
 - The OCSP status is not good.
 - The issuer-CA is revoked by the root-CA.

8. Once the SSL handshake is established, the FortiGate can engage the server.
Using FortiManager as a local FortiGuard server

FortiManager can provide a local FortiGuard server with port 443 access. Anycast FortiGuard settings force the rating process to use port 443, even with an override server. Using a unique address in the same subnet as the FortiManager access IP address, the FortiManager can provide local FortiGuard updates and rating access with a dedicated IP address and port 443.

To use a FortiManager as a local FortiGuard server in the GUI:

1. Go to System > FortiGuard
2. In the Override FortiGuard Servers table, click Create New. The Create New Override FortiGuard Server pane opens.
3. Select the server address type: IPv4, IPv6, or FQDN.
4. Enter the FortiManager address in the Address field.
5. Select the type of server: AntiVirus & IPS Updates, Filtering, or Both.
6. Click OK.
7. Click Create New again to add a second override FortiManager for filtering.
8. Click OK, then click Apply.
To use a FortiManager as a local FortiGuard server in the CLI:

```plaintext
config system central-management
  set type fortimanager
  set fmg "172.18.37.148"
config server-list
  edit 1
    set server-type update
    set server-address 172.18.37.150
  next
  edit 2
    set server-type rating
    set server-address 172.18.37.149
  next
end
set fmg-update-port 443
set include-default-servers enable
end
```

When `fmg-update-port` is set to 443, the update process will use port 443 to connect to the override update server, which is the local FortiGuard server in the FortiManager. If this is not set, the update process will use port 8890, and the server address setting has to be the FortiManager access IP address. Override FortiGuard services come from the server list that is the local FortiGuard server in the FortiManager, and use the traditional, non-OCSP TLS handshake. If override servers in the FortiManager are not available, the default FortiGuard servers are connected, and the anycast OCSP TLS handshake is used.

Cloud service communication statistics

Fortinet service communications statistics are displayed on the FortiGuard page. The statistics correspond with the output from `diagnose sys service-communication`. The traffic volume values in the GUI are the sums of data from the last 24 hours.

To view Fortinet service communications statistics:

1. Go to System > FortiGuard.
 The Fortinet Service Communications statistics are displayed on the right side of the screen:
2. Enter the following CLI command:

   ```bash
   # diagnose sys service-communication
   FortiCare:
   The last 1 hour (in bytes): 0 0 0 0 0 0 0 0 0 0 0 0
   The last 24 hours (in bytes): 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
   The last 7 days (in bytes): 0 0 0 0 0 0 0
   FortiGuard Download:
   The last 1 hour (in bytes): 0 0 0 0 336 1992 0 0 0 0 0 0
   The last 24 hours (in bytes): 0 2328 6752 4450632 0 33696 0 5666528 0 49712 0 28840 0 28840 0 4185832 0 31488 0 76424 0 4226808 0 173880
   The last 7 days (in bytes): 14454160 14985496 9532184 0 0 0 0
   FortiGuard Query:
   The last 1 hour (in bytes): 0 0 0 0 372 1107 0 0 0 0 0 0
   The last 24 hours (in bytes): 0 1479 4828 929 0 929 0 929 0 929 0 929 0 929 0 929 0 1858 0 929 0 1858 0 929 0 1858
   The last 7 days (in bytes): 13739 15793 13624 0 0 0 0
   FortiCloud Log:
   The last 1 hour (in bytes): 0 343 563 899 1014 405 0 0 0 570 405 0
   The last 24 hours (in bytes): 0 4535 6004 2184 684 1906 1938 680 861 1933 685 1020 687
   1772 693 978 1023 1574 1195 697 1035 1323 1020 678
   The last 7 days (in bytes): 26560 26136 0 0 0 0
   FortiSandbox Cloud:
   The last 1 hour (in bytes): 0 0 0 0 0 0 0 0 0 0 0 0
   The last 24 hours (in bytes): 0 0 0 0 0 0 0 0 0 0 0 0
   The last 7 days (in bytes): 0 0 0 0 0 0 0
   FortiGuard.com:
   The last 1 hour (in bytes): 0 0 122162 123544 122162 244324 0 0 0 0 0 0
   The last 24 hours (in bytes): 0 612192 532887 1939 1143 122162 44924 5039 0 125091 43096
   1939 0 123305 43090 1939 0 123305 43096 1939 0 122162 42478 4930
   The last 7 days (in bytes): 1658746 1347340 1421746 0 0 0 0
   OVPN Service:
   The last 1 hour (in bytes): 1044 9382 0 0 0 0 0 0 0 0 0 0 0 0
   The last 24 hours (in bytes): 1044 9382 0 0 0 0 0 0 0 0 0 0 0 0
   The last 7 days (in bytes): 10426 0 0 0 0 0 0
   SDNS Service:
   ```
The last 1 hour (in bytes): 0 0 0 0 0 0 0 0 0 0 0 0
The last 24 hours (in bytes): 0
The last 7 days (in bytes): 0 0 0 0 0 0 0

FortiToken Registration:
The last 1 hour (in bytes): 0
The last 24 hours (in bytes): 0
The last 7 days (in bytes): 0 0 0 0 0 0 0

SMS Service:
The last 1 hour (in bytes): 0
The last 24 hours (in bytes): 0
The last 7 days (in bytes): 0 0 0 0 0 0 0

IoT detection service

Internet of Things (IoT) detection is a subscription service that allows FortiGate to detect unknown devices in FortiGuard that are not detected by the local Device Database (CIDB). When the service is activated, FortiGate can send device information to the FortiGuard collection server. When a new device is detected, FortiGate queries the results from the FortiGuard query for more information about the device.

This feature requires an IoT Detection Service license.

FortiGate device requirements:

The FortiGate device must be:

- Registered with FortiCare
- Connected to an anycast FortiGuard server

How the service works:

1. Enable Device Detection on an interface.
2. FortiGate uses the interface to detect device traffic flow.
3. Upon detecting traffic from an unknown device, FortiGate sends the device data to the FortiGuard collection server.
4. The collection server returns data about the new device to the FortiGuard query server.
5. If the device signature does not appear in the local Device Database (CIDB) or some fields are not complete, FortiGate queries FortiGuard for more information about the device.

To view the latest device information in the GUI, go to Dashboard > Users & Devices and expand the Device Inventory widget.
To debug the daemon in the CLI:

1. Disable the local device database in order to force all queries to go to FortiGuard.

   ```bash
   # diagnose cid sigs disable
   ```

2. Enable iotd debugs.

   ```bash
   # diagnose debug application iotd -1
   # diagnose debug enable
   ```

FortiGate sends the device data to the FortiGuard collection server.

```
FortiWiFi-60E # [iotd] recv request from caller size:61
[iotd] service:collect hostname: ip: fd:-1 request tlv_len:41
[iotd] txt(......y...w......Jasons-iPhone6....579=23..)
[iotd] hex
   (02010007017903060f77fc0203000e4a61736f6e732d6950686536020400083537393d323330cf)
[iotd] service:collect hostname:qadevcollect.fortinet.net ip: fd:-1 got server hostname
[iotd] service:collect hostname:qadevcollect.fortinet.net ip:192.168.100.133 fd:-1 got server ip
[iotd] fd:13 monitor event:pollout
```

The FortiGuard collection server returns new device data to the FortiGuard query server.

```
FortiWiFi-60E # [iotd] recv request from caller size:61
```
FortiAP query to FortiGuard IoT service to determine device details

A FortiAP collects packets from devices and queries FortiGuard with the help of the FortiGate. Device detection results are reported back to the FortiGate where this information is displayed. Querying the FortiGuard service requires an IoT Detection Service license.

The following attributes can be configured in `wireless-controller setting`:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>device-weight</td>
<td>Set the device upper limit of confidence (0 - 255, default = 1, 0 = disable).</td>
</tr>
<tr>
<td>device-holdoff</td>
<td>Set the device lower limit of creation time, in minutes (0 - 60, default = 5).</td>
</tr>
<tr>
<td>device-idle</td>
<td>Set the device upper limit of idle time, in minutes (0 - 14400, default = 1440).</td>
</tr>
</tbody>
</table>

To query the FortiGuard IoT service:

```
config wireless-controller setting
...
set device-weight 1
set device-holdoff 5
set device-idle 1440
```
FortiGate Cloud / FDN communication through an explicit proxy

Explicit proxy communication to FortiGate Cloud and FortiGuard servers from FortiGate is enabled. A proxy server can be configured in the FortiGuard settings so that all FortiGuard connections under the forticldd process can be established through the proxy server.

Not all FortiGuard services are supported by these proxy settings. For example, web filter service traffic to FortiGuard will not be directed to the configured proxy.

To configure a proxy server and communicate with FortiGate Cloud though it:

1. Configure FortiGate B as a proxy server:

   ```
   config firewall proxy-policy
   edit 1
     set proxy explicit-web
     set dstintf "wan1"
     set srcaddr "all"
     set dstaddr "all"
     set service "webproxy"
     set action accept
     set schedule "always"
     set logtraffic all
     set users "guest1"
   next
   end
   config user local
   edit "guest1"
     set type password
     set passwd 123456
   next
   end
   config authentication scheme
   edit "local-basic"
   ```
set method basic
set user-database "local-user-db"
end

config authentication rule
edit "local-basic-rule"
set srcaddr "all"
set ip-based disable
set active-auth-method "local-basic"
end

2. Configure a firewall policy on FortiGate B to allow FortiGate A to get DNS resolution:

config firewall policy
edit 1
set name "dns"
set srcintf "port18"
set dstintf "wan1"
set srcaddr "all"
set dstaddr "all"
set action accept
set schedule "always"
set service "DNS"
set fss disable
set nat enable
end

3. Configure the FortiGuard proxy settings on FortiGate A:

config system fortiguard
set proxy-server-ip 10.2.2.2
set proxy-server-port 8080
set proxy-username "guest1"
set proxy-password 123456
end

4. On FortiGate A, log in to FortiGate Cloud to activate the logging service:

execute fortiguard-log login <username> <password>

5. On FortiGate A, view the fortic1dd debug message to see the connection to the log controller through the proxy server:

diagnose test application fortic1dd 1

FDS-only ISDB package in firmware images

FortiOS firmware images include Fortinet objects in the built-in Internet Service Database (ISDB).

diagnose firewall internet-service list
List internet service in kernel(global):
Internet Service Database Kernel Table: size 14974 bytes, Entry size 5844 bytes, number of index entries 165 number of IP range entries 0

Group(0): Weight(15), number of entries(162)
......
System

This lightweight ISDB package allows firewall rules and policy routes that use ISDB to access FortiGuard servers to continue working after upgrading FortiOS. For example, the following policy will work after an upgrade:

```bash
config firewall policy
edit 440
    set name "Fortinet Updates"
    set srcintf "port25"
    set dstintf "port1"
    set srcaddr "FortiAnalyzer" "FortiAuthenticator" "Tesla Management Interface" "BackupFortinet" "SipFW" "ConnectVPNmgmt"
    set internet-service enable
    set internet-service-id 1245187 1245326 1245324 1245325 1245193 1245192 1245190
1245185
    set action accept
    set schedule "always"
    set logtraffic all
    set fsso disable
next
end
```

After the FortiGate reboots after a firmware update, an automatic update will run in five minutes so that the FortiGate can get the ISDB, whether or not scheduled update is enabled.

```
# diagnose autoupdate versions | grep Internet -A 6

Internet-service Full Database
----------
Version: 7.02217 signed
Contract Expiry Date: n/a
Last Updated using manual update on Thu Mar 10 12:06:58 2022
Last Update Attempt: Thu Mar 10 12:07:27 2022
```

Licensing in air-gap environments

In the Operational Technology industry, industrial equipment is critical and must not be connected to the internet. However, the equipment is still required to be protected by a firewall in this air-gap environment. Without a gateway to FortiGuard in air-gap environments, FortiGuard packages, such as AntiVirus and IPS, must be manually uploaded to the FortiGate. FortiGate licenses can be downloaded from FortiCloud and uploaded manually to the FortiGate.

Manual licensing for air-gap environments is supported only on FortiGate hardware appliances, for both rugged and non-rugged models running FortiOS 7.2.0 or later. Manual licensing is currently not supported on FortiGate virtual machine (VM) appliances.

To manually upload FortiGate licenses in the GUI:

1. Register the FortiGuard license on FortiCloud. See Registration in the FortiOS Administration Guide for more information.
2. Download the product entitlement file in FortiCloud:
 a. Go to Products > Product List.
 b. Select the serial number of the FortiGate. The product page opens.
c. In the License & Key section, click Get The License File. The file downloads to your device in the format FG201E*********ProductEntitlement.lic.

3. In FortiOS, go to System > FortiGuard. Currently, the status for all services is Pending.

4. Click Upload License File. The file explorer opens.
5. Navigate to the product entitlement file and click Open.
 The license file uploads to the FortiGate. Once the upload is complete, the FortiGate shows that it is registered and licensed.

6. Click Apply.

To manually upgrade the AntiVirus Database in the GUI:

1. Download the static upgrade file from FortiCloud:
 a. Go to support.fortinet.com.
 b. Go to Download > Download FortiGuard Service Updates > FortiGate.
 c. Select the FortiOS version from the OS Version dropdown.
 d. Select the file from the appropriate FortiGate product model section. The file downloads to your device.
2. In FortiOS, go to System > FortiGuard and expand the AntiVirus section to view the current licenses.
3. Click **Upgrade Database**. The Anti-Virus Database Upgrade pane opens.
4. Click **Upload**. The file explorer opens.
5. Navigate to the static upgrade file and click **Open**.
6. Click **OK**.
7. Click **Apply**.
 The AntiVirus Database is upgraded.

To manually upload FortiGate licenses in the CLI:

```
# execute restore manual-license {ftp | tftp} <license file name> <server> [args]
```

Feature visibility

Feature visibility is used to control which features are visible in the GUI. This allows features that are not in use to be hidden. Some features are also invisible by default and must be made visible before they can be configure in the GUI.

The visibility of a feature does not affect its functionality or configuration. Invisible features can still be configured using the CLI.

To change the visibility of features:

1. Go to **System > Feature Visibility**.
2. Change the visibility of the features as required.
 For information about what settings each option affects, click on the + icon to the right of the feature name.
 Changes are listed on the right side of the content pane.
3. Click **Apply**.
Certificates

FortiOS leverages certificates in multiple areas, such as VPNs, administrative access, and deep packet inspection. This section contains topics about uploading certificates and provides examples of how certificates may be used to encrypt and decrypt communications, and represent the identity of the FortiGate. This sections assumes the reader has a high level understanding of the public key infrastructure (PKI) system, particularly how entities leverage trusted certificate authorities (CAs) to verify the authenticating party, and how public and private certificate keys work to secure communications.

The certificates feature is hidden by default in FortiOS. In the GUI, go to System > Feature Visibility and enable Certificates.

The following topics provide an overview of how to add certificates to the FortiGate:

- Uploading a certificate using the GUI on page 2166
- Uploading a certificate using the CLI on page 2169
- Uploading a certificate using an API on page 2170

The following topics provide examples of how to use certificates:

- Site-to-site VPN with digital certificate on page 1365
- Procuring and importing a signed SSL certificate on page 2175
- Microsoft CA deep packet inspection on page 2178
- ACME certificate support on page 2183
- Administrative access using certificates on page 2187
- Creating certificates with XCA on page 2188
- Configuring FortiClient EMS on page 2236
- SSL VPN with certificate authentication on page 1660
- SSL VPN with LDAP-integrated certificate authentication on page 1665
- Configuring certificates for SAML SSO on page 2323
- Protecting an SSL server on page 1301

Uploading a certificate using the GUI

On the System > Certificates page, there are two options to add a certificate: Generate (use a certificate signing request) and Import.

Generate certificate signing request

Certificate signing requests (CSRs) are used to generate a certificate which is then signed by a CA to create a chain of trust. The CSR includes details of the FortiGate (see table below) and its public key. A CSR is not strictly necessary; some CAs allow you to provide the details of the FortiGate manually, but a CSR helps streamline the process. Selecting Generate takes you the Generate Certificate Signing Request page to enter the following information:

<table>
<thead>
<tr>
<th>Certificate Name</th>
<th>Enter the certificate name; this is how it will appear in the Local Certificates list.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Information</td>
<td>Specify an ID type: host IP address, domain name (FQDN), or email address.</td>
</tr>
</tbody>
</table>
Optional Information

Although listed as optional, we recommended entering the information for each field in this section.

If you are generating a CSR for a third-party CA, you need to insure that these values reflect those listed for your company or organization at said certificate authority. If you are generating a certificate for a Microsoft CA, you need to check with the administrator regarding these values.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization Unit</td>
<td>Enter the name of the organizational unit under which the certificate will be issued.</td>
</tr>
<tr>
<td>Organization</td>
<td>Enter the overall name of the organization.</td>
</tr>
<tr>
<td>Locality(City)</td>
<td>Enter the city where the SSL certificate is located.</td>
</tr>
<tr>
<td>State / Province</td>
<td>Some issuers will reject a CSR that has an abbreviated state or province, so enter the full name of the state or province.</td>
</tr>
<tr>
<td>Country / Region</td>
<td>Enable the option and select the country from the dropdown.</td>
</tr>
<tr>
<td>E-Mail</td>
<td>Enter the email address of the technical contact for the SSL certificate that is being requested.</td>
</tr>
<tr>
<td>Subject Alternative Name</td>
<td>This field allows multiple domains to be used in an SSL certificate. Select from email addresses, IP addresses, URIs, DNS names, and so on.</td>
</tr>
<tr>
<td>Password for private key</td>
<td>If supplied, this is used as an encryption password for the private key file.</td>
</tr>
<tr>
<td>Key Type</td>
<td>Select RSA or Elliptic Curve.</td>
</tr>
<tr>
<td>Key Size</td>
<td>When Key Type is RSA, select 1024, 1536, 2048, or 4096 for bit-size/strength. We recommend using at least 2048 if your CA can issue certificates of that size.</td>
</tr>
<tr>
<td>Curve Name</td>
<td>When Key Type is Elliptic Curve, select the elliptic curve type: secp256r1, secp384r1, or secp521r1.</td>
</tr>
</tbody>
</table>
| **Enrollment Method** | Select one of the following methods that determines how the CSR will be signed. • *File Based:* this will generate a certificate in the certificate menu under Local Certificate, which differs from the existing ones because it has no Subject, Comments, Issuer, or Expires values in the table. It will also show a Pending status because it is only a CSR at the moment and cannot function as a certificate just yet. You can download the CSR to provide to a CA for signing. If you open the CSR file, it should look similar to this:

```
-----BEGIN CERTIFICATE REQUEST-----
MIIC7jCCAdYCAQAwg2UxCzAJBgNVBAYT... )HEKjDX+Hg==
-----END CERTIFICATE REQUEST------
```

Next, the CSR file is supplied to a CA for signing and the returned file from the CA should be in .CER format. This file is then uploaded to the FortiGate by going to System > Certificates > Import > Local Certificate and uploading the CERT file.

• *Online SCEP:* the Simple Certificate Enrollment Protocol (SCEP) allows... |
There is no field to upload a key with this option. Use this option when you have created a CSR on the FortiGate, as the key is generated as part of the CSR process and remains on the FortiGate. You will need to upload a .CER file.

This option takes a specific certificate file type that contains the private key. The certificate will be encrypted and a password must be supplied with the certificate file.

This option is intended for certificates that were generated without using the FortiGate’s CSR. Since the certificate private key is being uploaded, a password is required. This can be done two ways:
- Certificate file and key file (typically .CER and .PEM)
- Certificate and key bundle file (typically .PFX)

This option allows you to configure the Automated Certificate Management Environment (ACME), which allows you to request and use trusted certificates signed by Let’s Encrypt (see ACME certificate support on page 2183 for configuration details).

FortiGates come with many CA certificates from well-known certificate authorities pre-installed, just as most modern operating systems like Windows and MacOS. Use this option to add private CA certificates to the FortiGate so that certificates signed by this private CA are trusted by the FortiGate.

For example, a private CA can be used when two FortiGates are establishing a site-to-site VPN tunnel using a certificate not signed by a public or trustworthy CA, or for your LDAPS connection to your corporate AD server that also uses a
certificate signed with a private CA in your domain. It is very common to upload a private CA when using PKI user authentication, since most PKI user certificates will be signed by an internal CA.

When selecting CA Certificate, two type options appear in the Import CA Certificate pane:

<table>
<thead>
<tr>
<th>Online SCEP</th>
<th>The FortiGate contacts an SCEP server to request the CA certificate.</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>The CA certificate is uploaded directly to the FortiGate.</td>
</tr>
</tbody>
</table>

Remote certificate

Remote certificates are public certificates and contain only the public key. They are used to identify a remote device. For example, when configuring your FortiGate for SAML authentication with the FortiGate as an identity provider (IdP), you can optionally specify the service provider (SP) certificate. However, when configuring your FortiGate as a SP, you must specify the certificate used by the IdP. Both these certificates can be uploaded to the FortiGate as a remote certificate, since the private key is not necessary for its implementation.

CRL

Since it is not possible to recall a certificate, the CRL (certificate revocation list) list details certificates signed by valid CAs that should no longer be trusted. Certificates may be revoked for many reasons, such as if the certificate was issued erroneously, or if the private key of a valid certificate has been compromised. When selecting CRL, two import methods are available:

<table>
<thead>
<tr>
<th>File Based</th>
<th>CAs publish a file containing the list of certificates that should no longer be trusted.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online Updating</td>
<td>This is the preferred way to keep the list of revoked certificates up to date. Three protocols are offered: HTTP, LDAP, and SCEP.</td>
</tr>
</tbody>
</table>

Uploading a certificate using the CLI

Generate certificate signing request

The generated CSR must be signed by a CA then loaded to the FortiGate. See Generate certificate signing request on page 2166 for more details.

To generate a CSR:

```
# execute vpn certificate local generate cmp <certificate_name> <key_size> <server> <path> <server_certificate> <auth_certificate> <user> <password> <subject> [SANs] [options]
# execute vpn certificate local generate default-ssl-ca
# execute vpn certificate local generate default-ssl-key-certs
# execute vpn certificate local generate default-ssl-serv-key
# execute vpn certificate local generate ec <certificate_name> <curve_name> <subject> <country> <state/province> <city> <organization> <OU> <email> [SANs] [options]
# execute vpn certificate local generate rsa <certificate_name> <key_size> <subject> <country> <state/province> <city> <organization> <OU> <email> [SANs] [options]
```
Generate a certificate request over CMPv2.

Generate the default CA certificate used by SSL Inspection.

Generate the default untrusted CA certificate used by SSL Inspection.

Generate the default RSA, DSA and ECDSA key certs for ssl resign.

Generate the default server key used by SSL Inspection.

Generate an elliptic curve certificate request.

Generate a RSA certificate request.

Import

Any certificate uploaded to a VDOM is only accessible to that VDOM. Any certificate uploaded to the Global VDOM is globally accessible by all VDOMs.

A signed certificate that is created using a CSR that was generated by the FortiGate does not include a private key, and can be imported to the FortiGate from a TFTP file server.

To import a certificate that does not require a private key:

execute vpn certificate local import tftp <file_name> <server_address> <cert_type> [password]

To import a certificate that requires a private key to a VDOM, or when VDOMs are disabled:

config vpn certificate {local | ca | remote | ocsp-server | crl}

Refer to the FortiOS CLI Reference for detailed options for each certificate type (local, CA, remote, OSCP server, CRL).

To import a global certificate that requires a private key when VDOMs are enabled:

config certificate {local | ca | remote | crl}

This command is only available when VDOMs are enabled. For details, see the FortiOS CLI Reference.

Uploading a certificate using an API

There are several API methods to upload a certificate based on the type and purpose of the certificate. The parameters of each method are available options, and some methods do not require all parameters to upload the certificate.

When uploading a certificate to the FortiGate using API, the certificate must be provided to the FortiGate in Base64 encoding. You must create a REST API user to authenticate to the FortiGate and use the generated API token in the request.

api/v2/monitor/vpn-certificate/ca/import

{
 "import_method": "[file|scep]",
 "scep_url": "string",
}
api/v2/monitor/vpn-certificate/crl/import
{
 "scope": "[vdom*|global]",
 "file_content": "string"
}

api/v2/monitor/vpn-certificate/local/import
{
 "type": "[local|pkcs12|regular]",
 "certname": "string",
 "password": "string",
 "key_file_content": "string",
 "scope": "[vdom*|global]",
 "acme-domain": "string",
 "acme-email": "string",
 "acme-ca-url": "string",
 "acme-rsa-key-size": 0,
 "acme-renew-window": 0,
 "file_content": "string"
}

api/v2/monitor/vpn-certificate/remote/import
{
 "scope": "[vdom*|global]",
 "file_content": "string"
}

api/v2/monitor/vpn-certificate/csr/generate
{
 "certname": "string",
 "subject": "string",
 "keytype": "[rsa|ec]",
 "keysize": [1024|1536|2048|4096],
 "curvename": "[secp256r1|secp384r1|secp521r1]",
 "orgunits": ["string"],
 "org": "string",
 "city": "string",
 "state": "string",
 "countrycode": "string",
 "email": "string",
 "sub_alt_name": "string",
 "password": "string",
 "scep_url": "string",
 "scep_password": "string",
 "scep_ca_id": "string",
 "scope": "[vdom*|global]",
 "file_content": "string"}
"scope": "[vdom*|global]"

Example

In this example, a PKCS 12 certificate is uploaded as a local certificate using Postman as the API client. PowerShell is used for the Base64 encoding.

To upload a PKCS 12 certificate using an API:

1. In PowerShell, encode the PKCS 12 certificate to Base64:

```powershell
cd C:\users\username\desktop
$pkcs12cert = get-content 'C:\users\path\to\certificate\certificatename.p12' -Encoding Byte [System.Convert]::ToBase64String($pkcs12cert) | Out-File 'base12encodedcert.txt'
```

These three lines of code do the following:

a. Changes to working directory to the location where the encoded certificate will be created. In this example, it is the desktop.

b. Creates a variable called $pkcs12cert and defines it as the certificate file by specifying the full path to the certificate.

c. Creates a text file called `base12encodedcert` at the location specified in the first step. You will copy and paste the contents of this as file_content later in Postman.

2. Generate an API token on the FortiGate by creating a REST API user. See Generate an API token on the Fortinet Developer Network. A subscription to the Fortinet Developer Network is required to view this topic.

3. Open Postman and create a new request:

 a. Click the +.

 b. Click the Authorization tab and in the Type dropdown, select API Key.

 c. For Key, enter access_token and enter the Value for the API user.
d. **For Add to, select Query Params.**

4. In the HTTP request dropdown, change the request from **GET** to **POST**, and enter the FortiGate’s IP address and the URL of the API call.

5. Click the **Body** tab, and copy and paste the API parameters.

6. Remove unnecessary parameters (ACME related parameters and `key_file_content`) and enter the correct settings for your certificate. Copy and paste the contents of the file generated by PowerShell earlier into `file_content`.
7. **Click Send.** The lower window will return the results.
8. In FortiOS, go to System > Certificates and verify that the uploaded certificate is shown in the table (api_crt).

To debug using the HTTPS daemon:

```
# diagnose debug reset
# diagnose debug enable
# diagnose debug application httpsd -l
<output>
# diagnose debug disable
```

Procuring and importing a signed SSL certificate

A signed SSL certificate can be used when configuring SSL VPN, for administrator GUI access, and for other functions that require a certificate.

Before creating a certificate, you must have a registered domain. With a valid FortiGuard subscription, FortiDDNS can be used to register a domain; see DDNS on page 208 for more information.

Follow these instructions to purchase, import, and use a signed SSL certificate:

- Obtain, setup, and download an SSL certificate package from a certificate authority
- Generate a CSR
- Import the signed certificate into your FortiGate
- Configure your FortiGate to use the signed certificate

Obtain, setup, and download an SSL certificate package from a certificate authority

SSL certificate packages can be purchased from any Certificate Authority (CA), such as DigiCert, GoDaddy, or GlobalSign.
Let's Encrypt can be used to generate a free, trusted SSL certificate.

A third party CA might not sign a certificate with an intranet name or IP address. For details, see Can I request a certificate for an intranet name or IP address?

The process for purchasing, setting up, and downloading a certificate will vary depending on the CA that is used, and if a CSR must be generated on the FortiGate.

To purchase a certificate package:

1. Create an account with your chosen vendor, or use the account that you used to purchase your domain.
2. Locate the SSL Certificates page.
3. Purchase a basic SSL certificate for domain validation only. If required, a more secure SSL certificate can be purchased.
4. If required, load the CSR, either by uploaded the text file or copying and pasting the contents into the requisite text box. See Generate a CSR on page 2176 for information on generating the CSR on the FortiGate.
5. If required, set the server type to Other.
6. Verify the certificate per the requirements of the CA.
7. Download the signed certificate to your computer.
8. Import the signed certificate into your FortiGate; see Import the signed certificate into your FortiGate on page 2178.

Generate a CSR

Some CAs can auto-generate the CSR during the signing process, or provide tools for creating CSRs. If necessary, a CSR can be created in your FortiGate device’s GUI.

To generate a CSR on your FortiGate:

1. Go to System > Certificates. By default, the Certificates option is not visible, see Feature visibility on page 2165 for information.
2. Click Generate. The Generate Certificate Signing Request page opens.

3. Configure the CSR request:
 - Ensure that the certificate has a unique name.
 - Set the ID Type to Domain Name and enter a Domain Name.
 - An email address is required.
 - Ensure that the Key Size is set to 2048 Bit.
 - Set the Enrollment Method to File Based.

4. Click OK. The CSR will be added to the certificate list with a status of PENDING.

5. In the certificate list, select the new CSR then click Download to save the CSR to your computer. The CSR file can be opened in any text editor, and will resemble the following:

```
-----BEGIN CERTIFICATE REQUEST-----
MIICCaECBADQAwSzEcMBiGbGAUEAxMzczLm9ydGlzLz4xL2cG5kZW1vLmNvbTErMCkG
CSqGSIb3DQEJARYcZm9ydGlzLz4xL2cG5kZW1vLmNvbTCCASIwDQYJKoZIhvcNAQEB
BQADggEPADCCAQoCggEBAMtnpNoR20NH2+UFX/NsyCmZhrqc4af3Bei9Io0bo9Fk42
gw47r71mcAN+i1TL/Tcp3h5LrtpgoL72h3v3zVnBdD2wwU8owU7di5NLYl3Nnrf9
9r4T60A4L14KkbKpt5u90r5Spib6m1OIKvMnucRS66rW1St0Kmp/f6QjpjMrthny
JkCejgyTA1ywWNuT9boC06PTkxBqVMLaRP6TUH6He9uhOx1Cj/5tv3sRooZls2mc
MeiQg1Nld6oQcpdzA9QN41+c201UXRCMpoH7E4KUE3/Gnis+NMdQ8s1BjvMXCr
k20wb6sUEjAGJKcx1qVHYWCWXL6Owejmc4ipkCAwEAAaApMCcGCsCsGSlb3DQEJD
EaMBgwCQYDVQR0TBATwADALBqNVHQ8EBAMCBAwDQYJKoZIh
hvaNAQELBQADgEAJKhtz2BPfKeHH9NcJKnKBL+a6vull+1wWYqnyD+3oR9ec
0eCmlnFxyxvSe1/tRUsq4DFmCmL9gF4ZqA4GqUQqgD2k87cw6kiDAPCqv1
b+hFNPnZGsd09+HXAvOpXrMrw5YdSoRnau6QOYiEyennKTtIFscgh1mk4FSe
mb12DhPF+fQqDCDgtqNuxf1LC0WmDcmxwa/02KttqO3h3EBYgJ20714TMqOxs/q
A2zwJLdSNMbALL2Axk1RUMKUteDxXzQ0E8xNrz2pLtbWCNIpYjDrRqSd5C1w2VF4
CGugtTjFaJ13kYbimeMRQsFtjLV5Ax+BUUsnQ=
-----END CERTIFICATE REQUEST-----
```
Import the signed certificate into your FortiGate

To import the signed certificate into your FortiGate:

1. Unzip the file downloaded from the CA. There should be two CRT files: a CA certificate with `bundle` in the file name, and a local certificate.
2. Log in to your FortiGate unit and go to System > Certificates.
3. Click Import > Local Certificate.
4. Upload the local certificate file, then click OK.
5. The status of the certificate will change from PENDING to OK.
6. Click Import > CA Certificate.
7. Set the Type to File, upload the CA certificate file, then click OK.
 The CA certificate will be listed in the CA Certificates section of the certificates list.

Configure your FortiGate to use the signed certificate

After the signed certificates have been imported, you can use it when configuring SSL VPN, for administrator GUI access, and for other functions that require a certificate.

To configure your FortiGate to use the signed certificate for SSL VPN:

1. Go to VPN > SSL-VPN Settings.
2. Set Server Certificate to the new certificate.
3. Configure other settings as needed.
4. Click Apply.

For more information on configuring SSL VPN, see SSL VPN on page 1619 and the Setup SSL VPN video in the Fortinet Video Library.

To configure using the certificate for administrator GUI access in the CLI:

```
config system global
  set admin-server-cert fortisslvpndemo
end
```

To change the certificate that is used for administrator GUI access in the GUI:

1. Go to System > Settings.
2. In the Administration Settings section, change HTTPS server certificate as needed.
3. Click Apply. You will be logged out of FortiOS.

Microsoft CA deep packet inspection

In most production environments, you want to use a certificate issued by your own PKI for deep packet inspection (DPI).

An existing Microsoft root CA can be used to issue a subordinate CA (sub CA) certificate that is installed as a DPI certificate on the FortiGate.

Complete the following steps to create your own sub CA certificate and use it for DPI:
1. Create a Microsoft sub CA certificate
2. Export the certificate and private key
3. Import the certificate and private key into the FortiGate
4. Configure a firewall policy for DPI
5. Verify that the sub CA certificate is being used for DPI

The FortiGate firewall uses information in the original web server certificate, then issues a new certificate signed by the Microsoft DPI certificate. The FortiGate then sends this certificate with the issuing DPI certificate to the client’s web browser when the SSL session is being established.

The browser verifies that the certificate was issued by a valid CA, then looks for the issuing CA of the Microsoft DPI certificate in its local trusted root CA store to complete the path to trusted root CA.

The Microsoft CA root certificate is normally deployed to all client PCs in the Windows domain, so the client can complete the certificate path up to a trusted root CA. The FortiGate now controls and can inspect the two HTTPS sessions: one with the external web server, and one with the client PC.

Create a Microsoft sub CA certificate

A Microsoft sub CA certificate can be created on a Microsoft CA server, or remotely using a web browser.

Creating a certificate remotely requires that the web enrollment option is configured on the Microsoft CA server. Remote certificate requests require HTTPS; requests are not allowed with HTTP.

To create a Microsoft sub CA certificate remotely:

1. Open a web browser and go to one of the following URLs:
 - https://<FQDN-CA-server>/CertSrv
2. Log in to a domain administrator account that has web enrollment rights.
3. Click Request a certificate.
4. Click advanced certificate request.
5. Click Create and submit a request to this CA, then click Yes in the Web Access Confirmation warning.
6. For the Certificate Template, select Subordinate Certification Authority.
7. Enable Mark keys as exportable.
8. Fill out the remaining information according to your security policy.

9. Submit the request.

10. Click Yes in the Web Access Confirmation warning.

11. Click Install this certificate.
 The certificate and private key are located in the current user's certificate store.

Export the certificate and private key

To export the certificate and private key:

1. Open the Microsoft Management Console (MMC) and add the Certificate Snap-in.

2. Go to the user's certificate store to locate the sub CA certificate that you just installed.

3. Right-click the certificate and select All Tasks > Export.

4. Click Next to start the Microsoft Certificate Export Wizard.

5. Follow the steps in the wizard:
 - When asked, select Yes, export the private key.
 - Only the PKCS #12 (.PFX) format is available, and it requires a password.
 - When selecting the encryption type, select TripleDES-SHA1 if you are using an older version of FortiOS (5.6.9
and earlier. Otherwise, select AES256-SHA256.

6. Complete the wizard, and save the DPI certificate to a local folder.

Import the certificate and private key into the FortiGate

The certificate can be imported from the local computer using the GUI, or from a TFTP server using the CLI. After importing the certificate, you can view it in the GUI to verify that it was successfully imported.

To import the certificate and private key into the FortiGate in the GUI:

1. Go to System > Certificates.
2. Select Import > Local Certificate.
3. Set Type to PKCS #12 Certificate.
4. Click Upload and locate the certificate file.
5. Enter the Password.
6. Optionally, modify the Certificate Name.
7. Click OK.

To import the certificate and private key into the FortiGate in the CLI:

execute vpn certificate local import <certificate file name> <tftp ip address> <password>

To verify that the certificate was imported:

1. Go to System > Certificates. By default, the Certificate option is not visible, see Feature visibility on page 2165 for information.
2. Locate the newly imported certificate in the table.
3. Select the certificate and click View Details to view the certificate details.
Configure a firewall policy for DPI

The certificate is used in an SSL/SSH inspection profile that is then used in a firewall policy.

To configure a firewall policy for DPI:

1. Go to Security Profiles > SSL/SSH Inspection and click Create New.
2. Configure the inspection profile, selecting the new certificate

3. Click Apply.
4. Go to Policy & Objects > Firewall Policy.
5. Create a new policy, or edit an existing policy.
6. In the SSL Inspection field, select the new SSL inspection profile.

7. Configure the remaining settings as needed.
8. Click OK.

Verify that the sub CA certificate is being used for DPI

You can verify that the certificate is being used for resigning web server certificates when a user connects to an external HTTPS website.
To verify that the certificate is being used:

1. On a client PC that is behind the FortiGate, go to an external HTTPS website. When connecting to the website, no certificate warning should be shown.
2. In your web browser, view the certificate and certificate path. The methods for doing this vary depending on the browser. See your browsers documentation for information.

ACME certificate support

The Automated Certificate Management Environment (ACME), as defined in RFC 8555, is used by the public Let's Encrypt certificate authority (https://letsencrypt.org) to provide free SSL server certificates. The FortiGate can be configured to use certificates that are managed by Let's Encrypt, and other certificate management services, that use the ACME protocol. The server certificates can be used for secure administrator log in to the FortiGate.

ACME certificates do not support loopback interfaces.

- The FortiGate must have a public IP address and a hostname in DNS (FQDN) that resolves to the public IP address.
- The configured ACME interface must be public facing so that the FortiGate can listen for ACME update requests. It must not have any VIPs, or port forwarding on port 80 (HTTP) or 443 (HTTPS).
- The Subject Alternative Name (SAN) field is automatically filled with the FortiGate DNS hostname. It cannot be edited, wildcards cannot be used, and multiple SANs cannot be added.

This example shows how to import an ACME certificate from Let's Encrypt, and use it for secured remote administrator access to the FortiGate.

To configure certificates in the GUI, go to System > Feature Visibility and enable Certificates.

To import an ACME certificate in the GUI:

1. Go to System > Certificates and click Import > Local Certificate.
2. Set Type to Automated.
3. Set Certificate name to an appropriate name for the certificate.
4. Set Domain to the public FQDN of the FortiGate.
5. Set Email to a valid email address. The email is not used during the enrollment process.
6. Ensure that ACME service is set to Let's Encrypt.
7. Configure the remaining settings as required, then click OK.

8. If this is the first time enrolling a server certificate with Let's Encrypt on this FortiGate, the Set ACME Interface pane opens. Select the interface that the FortiGate communicates with Let's Encrypt on, then click OK.

The ACME interface can later be changed in System > Settings.

9. The new server certificate is added to the Local Certificate list. Click View Details to verify that the FortiGate's FQDN is in the certificate's Subject: Common Name (CN).

The Remote CA Certificate list includes the issuing Let's Encrypt intermediate CA, issued by the public CA ISRG Root X1 from Digital Signature Trust Company.
To exchange the default FortiGate administration server certificate for the new public Let’s Encrypt server certificate in the GUI:

1. Go to System > Settings.
2. Set HTTPS server certificate to the new certificate.
3. Click Apply.
4. Log in to the FortiGate using an administrator account from any internet browser. There should be no warnings related to non-trusted certificates, and the certificate path should be valid.

To import an ACME certificate in the CLI:

1. Set the interface that the FortiGate communicates with Let’s Encrypt on:
   ```
   config system acme
   set interface "port1"
   end
   ```
2. Make sure that the FortiGate can contact the Let’s Encrypt enrollment server:
execute ping acme-v02.api.letsencrypt.org
PING ca80a1adb12a4fbdac5ffcbc944e9a61.pacloudflare.com (172.65.32.248): 56 data bytes
64 bytes from 172.65.32.248: icmp_seq=0 ttl=60 time=2.0 ms
64 bytes from 172.65.32.248: icmp_seq=1 ttl=60 time=1.7 ms
64 bytes from 172.65.32.248: icmp_seq=2 ttl=60 time=1.7 ms
64 bytes from 172.65.32.248: icmp_seq=3 ttl=60 time=2.1 ms
64 bytes from 172.65.32.248: icmp_seq=4 ttl=60 time=2.0 ms
--- ca80a1adb12a4fbdac5ffcbc944e9a61.pacloudflare.com ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 1.7/1.9/2.1 ms

3. Configure the local certificate request:

```
config vpn certificate local
edit "acme-test"
   set enroll-protocol acme2
   set acme-domain "test.ftntlab.de"
   set acme-email "techdoc@fortinet.com"
next
By enabling this feature you declare that you agree to the Terms of Service at https://acme-v02.api.letsencrypt.org/directory
Do you want to continue? (y/n) y
end
```

4. Verify that the enrollment was successful:

```bash
# get vpn certificate local details acme-test
path=vpn.certificate, objname=local, tablename=(null), size=2632
== [ acme-test ]
   Name:   acme-test
   Subject: CN = test.ftntlab.de
   Issuer: C = US, O = Let's Encrypt, CN = R3
   Valid from: 2021-03-11 17:43:04 GMT
   Valid to: 2021-06-09 17:43:04 GMT

   ACME details:
   Status: The certificate for the managed domain has been renewed successfully and can be used (valid since Thu, 11 Mar 2021 17:43:04 GMT).
   Staging status: Nothing in staging
```

5. Check the ACME client full status log for the CN domain:

```json
# diagnose sys acme status-full test.ftntlab.de

"name": "test.ftntlab.de",
"finished": true,
"notified": false,
"last-run": "Thu, 11 Mar 2021 18:43:02 GMT",
"valid-from": "Thu, 11 Mar 2021 17:43:04 GMT",
"errors": 0,
"last": {
   "status": 0,
   "detail": "The certificate for the managed domain has been renewed successfully and can be used (valid since Thu, 11 Mar 2021 17:43:04 GMT). A graceful server restart now is recommended.",
   "valid-from": "Thu, 11 Mar 2021 17:43:04 GMT"
```
To exchange the default FortiGate administration server certificate for the new public Let's Encrypt server certificate in the CLI:

```
config system global
    set admin-server-cert "acme-test"
end
```

When you log in to the FortiGate using an administrator account there should be no warnings related to non-trusted certificates, and the certificate path should be valid.

Administrative access using certificates

Certificates can be used for administrative authentication.

Generated key pairs can also be used for this authentication. See [Public key SSH access on page 1950](#) for information about generating a key pair.

To log in to the FortiGate with a certificate private key:

1. On the PC, generate a certificate.
2. In FortiOS, import the PEM file for the remote certificate:
   ```
   # execute vpn certificate remote import tftp certificate.pem 172.16.200.55
   ```
3. Display the imported remote certificate:
   ```
   config certificate remote
       edit "REMOTE_Cert_1"
   next
   end
   ```
4. Apply the remote certificate to the administrative user:
   ```
   config system admin
       edit "admin1"
       set accprofile "prof_admin"
       set vdom "root"
       set ssh-certificate "REMOTE_Cert_1"
       set password ************
   ```
5. On the PC, verify that the administrator can log in to the FortiGate with the SSH certificate:

```
root@PC05:~# ssh -i certificate-private.pem admin@172.16.200.1
FortiGate-101F $ get system status
Version: FortiGate-101F v7.0.2,build0234,211019 (GA)
```

Creating certificates with XCA

This topic explains how to generate various certificates to be used in conjunction with a FortiGate, including:

- CA certificate
 - Signing server and client certificates
 - Issuing subordinate CAs for deep inspection
- Server certificate
 - SSL/TLS web administration authentication
 - VPN authentication
 - Internal SSL server protection
- Client certificate
 - End user authentication for SSL or IPsec VPN

XCA is an x509 certificate generation tool that handles RSA, DSA, and EC keys, as well as certificate signing requests (PKCS #10) and CRLs.

There are several options for generating and managing certificates. This topic covers basic certificate generation for XCA. It is not a comprehensive guide to its application and does not explore all options available when generating a certificate.

Creating the XCA database

Before creating any certificates, you must create an XCA database to group the certificates in. You should use a different database for each PKI you create.

To create the database:

1. Go to File > New Database.
2. Select a directory to store the created certificates and keys.
3. Enter a name. The provided password encrypts the private keys and is used to access the XCA database in the future.

The remaining procedures in this topic assume you are using this XCA database.

Creating a CA certificate

A CA certificate marks the root of a certificate chain. If this CA certificate is trusted by an end entity, any certificates signed by the CA certificate are also trusted.
To create a CA certificate:

1. Click the Certificates tab, then click New Certificate.
2. Edit the Source tab:
 a. Set Template for the new certificate to [default] CA.
 b. Click Apply extensions.

3. Edit the Subject tab:
 a. Enter an Internal Name to reference this certificate within XCA.
 b. Enter a commonName.
 c. Optionally, click Add to add other distinguished name fields.
 d. Since this XCA database does not contain any keys yet, click Generate a new key. The Private key field is now
4. Optionally, edit the Extensions tab:
 a. Adjust the Time range if needed.
 b. Click Apply.
5. Click OK.

Issuing a subordinate CA certificate for deep inspection

Subordinate CA certificates are similar to CA certificates because they are used to sign other certificates to establish trust of the signed certificate's content. This trust of the signed certificate is only valid if the subordinate CA is also trusted by the client.

When performing deep inspection on a FortiGate, the FortiGate proxies the connection between the endpoint and the server. This is done transparently so that the end user believes they are communicating with the server, and the server with the client. To do this, when the webpage is requested by a client, the FortiGate must present a certificate that matches the requested website and is trusted by the client.

The certificate presented by the FortiGate is generated on-demand to match the requested website and is signed by this subordinate CA to establish trust with the requesting endpoint. The subordinate CA must be installed on the FortiGate (with the private key) and on the client device (without the private key).

A subordinate CA is used in place of a CA so that it may be revoked as necessary. This is critical since the subordinate CA's private key is exported and becomes susceptible of being compromised. If the CA private key becomes compromised, you would be forced to re-create your entire PKI with a new root CA because root CAs cannot be revoked. See Microsoft CA deep packet inspection on page 2178 for more information about using subordinate CA certificates.
To issue a subordinate CA certificate for deep inspection:

1. Click the Certificates tab, then click New Certificate.
2. Edit the Source tab:
 a. Set Use this Certificate for signing to the CA created previously.
 b. Set Template for the new certificate to [default] CA.
 c. Click Apply extensions.
3. Edit the Subject tab:
 a. Enter an Internal Name to reference this certificate within XCA.
 b. Enter a commonName.
 c. Optionally, click Add to add other distinguished name fields.
 d. Click Generate a new key to create a new private key for the subordinate CA.
4. Optionally, edit the Extensions tab:
 a. Adjust the Time range if needed.
 b. Click Apply.
5. Click OK.

Creating a server host certificate

When a CA signs a host certificate, that CA is vouching for the credentials in the certificate. These credentials are what identifies the host.

Some endpoints can generate a certificate signing request (CSR). A CSR is a certificate outline that specifies the details of the endpoint, including its public key. This allows the CA to review the details and sign the request if they are true. This request is then returned or uploaded to the generating endpoint to be used.

Since some endpoints cannot generate their own CSR, you can create the certificate manually in XCA. If you already have a CSR, use the Certificate signing requests tab to import and then sign it.
To create a server host certificate:

1. Click the Certificates tab, then click New Certificate.
2. Edit the Source tab:
 a. Set Template for the new certificate to [default] TLS_server.
 b. Click Apply extensions.
 c. In the Signing section, select Use this Certificate for signing and select the subordinate CA certificate.
3. Edit the Subject tab:
 a. Enter an Internal Name to reference this certificate within XCA.
 b. Enter the distinguished name fields as needed.
 c. Click Generate a new key.
4. Edit the Extensions tab:
 a. For X509v3 Subject Alternative Name, enter email:user@domain.tld.
5. Click OK.
6. Click the **Certificates** tab to view the certificate.

![Certificate Management Interface](image)

This certificate may be used to identify an SSL or TLS server by uploading the certificate and key pair to the server, such as when the FortiGate presents the administrative webpage or for SSL VPN authentication (see [Configure your FortiGate to use the signed certificate on page 2178](#)). Another use case for a server host certificate is to enable SSL server protection so the FortiGate simulates the real server and brokers the connection (see [Protecting an SSL server on page 1301](#)).

Creating a client host certificate

A client host certificate is used to identify an end entity in a more secure way than a username and password. Once the client host certificate is generated, see [SSL VPN with certificate authentication on page 1660](#) for more information about using the certificate.

To create a client host certificate:

1. Click the **Certificates** tab, then click **New Certificate**.
2. Edit the **Source** tab:
 a. In the **Signing** section, select **Use this Certificate for signing** and select the CA or subordinate CA.
 b. Set **Template for the new certificate** to **[default] TLS_client**.
 c. Click **Apply extensions**.
3. Edit the **Subject** tab:
 a. Enter an **Internal Name** to reference this certificate within XCA.
 b. Enter the distinguished name fields as needed.
c. Click **Generate a new key**.

![Generate a new key](image)

4. Click **OK**.

5. Click the **Certificates** tab. The FortiGate and client certificates are listed under the signing CA certificate and are ready to be exported.

![Certificates tab](image)

6. Select a certificate and click **Export**.

7. Enter the file name and select an export format.

8. Click **OK**.

Certificate formats

Certificate file formats indicate what is contained in the file, how it is formatted, and how it is encoded. See **Uploading a certificate using the GUI** on page 2166 for more information about which formats the FortiGate expects for a given certificate type.
Configuration scripts

Configuration scripts are text files that contain CLI command sequences. They can be created using a text editor or copied from a CLI console, either manually or using the Record CLI Script function.

Scripts can be used to run the same task on multiple devices. For example, if your devices use the same security policies, you can enter or record the commands to create those policies in a script, and then run the script on each device. You could also create the policies in the GUI, and then copy and paste the CLI commands from the CLI Console using the show command.

If the FortiGate is managed by FortiManager, scripts can be uploaded to FortiManager and then run on any other FortiGates that are managed by that FortiManager. See Scripts in the FortiManager Administration Guide.

A comment line in a script starts with the number sign (#). Comments are not executed.

To run a script using the GUI:

1. Click on your username and select Configuration > Scripts.
2. Click Run Script.
3. Select the text file containing the script on your management computer, then click OK.
 The script runs immediately, and the Script Execution History table is updated, showing if the script ran successfully.

Workspace mode

Workspace mode allows administrators to make a batch of changes that are not implemented until the transaction is committed. Prior to committing, the changes can be reverted or edited as needed without impacting current operations.

When an object is edited in workspace mode it is locked, preventing other administrators from editing that object. A warning message will be shown to let the administrator know that the object is currently being configured in another transaction.

All administrators can use workspace mode; their permissions in workspace mode are the same as defined in their account profile.

A workspace mode transaction times out after five minutes if there is no activity. When a transaction times out, all changes are discarded. A warning message will be shown to let the administrator know that a timeout is imminent, or has already happened:
config transaction id=1 will expire in 30 seconds
config transaction id=1 will expire in 20 seconds
config transaction id=1 will expire in 10 seconds
config transaction id=1 has expired

The following commands are not changeable in a workspace transaction:

- config system console
- config system resource-limits
- config system elbc
- config system global
 - set split-port
 - set vdom-admin
 - set management-vdom
 - set wireless-mode
 - set internal-switch-mode
- config system settings
 - set opmode
- config system npu
- config system np6
- config system wireless
 - set mode
- config system vdom-property
- config system storage

The `execute batch` command cannot be used in or to start workspace mode.

To use workspace mode:

1. **Start workspace mode:**

 `execute config-transaction`

 Once in workspace mode, the administrator can make configuration changes, all of which are made in a local CLI process that is not viewable by other processes.

2. **Commit configuration changes:**

 `execute config-transaction commit`

 After performing the commit, the changes are available for all other processes, and are also made in the kernel.

3. **Abort configuration changes:**

 `execute config-transaction abort`

 If changes are aborted, no changes are made to the current configuration or the kernel.

Diagnose commands

`diagnose sys config-transaction showtxn-meta`

Show config transaction meta information. For example:

```
# diagnose sys config-transaction showtxn-meta
txn_next_id=8,txn_nr=2
```

`diagnose sys config-transaction showtxn-info`

Show config transaction information. For example:

```
# diagnose sys config-transaction showtxn-info
current_jiffies=680372
```
txn_id=6, expire_jiffies=706104, clicmd_fpath='/dev/cmdb/txn/6_EiLl9G.conf'
txn_id=7, expire_jiffies=707427, clicmd_fpath='/dev/cmdb/txn/7_UXX6wY.conf'

diagnose sys config-transaction show txn-entity
Show config transaction entity. For example:
diagnose sys config-transaction show txn-entity
 vd='global', cli-node-oid=37(system.vdom), txn_id=7. location: fileid=0, storeid=0,
 pgnr=0, pgidx=0
 vd='global', cli-node-oid=46(system.interface), txn_id=7. location: fileid=3,
 storeid=0, pgnr=0, pgidx=0

diagnose sys config-transaction show txn-lock
Show transaction lock status. For example:
diagnose sys config-transaction show txn-lock
type=-1, refcnt=0, value=256, pid=128

diagnose sys config-transaction status
Show the transaction status in the current CLI.

Custom languages

Custom languages can be uploaded and used for SSL VPN web portals. Custom languages must be enabled before they can be added in the GUI.

To enable custom languages:

config system global
 set gui-custom-language enable
end

To configure a custom language in the GUI:

1. Go to System > Custom Languages and click Create New.
2. Enter the name of the language.
3. Optionally, enter a comment.
4. Click Upload and upload the language JSON file from your management computer.
5. Click OK.
To configure a language in an SSL VPN web portal in the GUI:

1. Go to **VPN > SSL-VPN Portals**.
2. Edit an existing portal, or click **Create New** to create a new one.
3. Enable **Enable Web Mode**, then select the language from the **Language** field.
4. Click **OK**.

To configure a custom language in the CLI:

```
config system custom-language
  edit <language>
    set filename <file>
  next
end
```

To configure a language in an SSL VPN web portal in the GUI:

```
config vpn ssl web portal
  edit <portal>
    set web-mode enable
    set custom-lang <language>
  next
end
```

RAID

Most FortiGate devices with multiple disk drives (SSD or HHD) can be configured to use RAID.

⚠️ Enabling or disabling RAID, and changing the RAID level, erases all data on the log disk and reboots the device.

To verify that the FortiGate has multiple disks:

- List disk devices and partitions:

  ```
  # execute disk list
  
  Disk SSD1 ref: 255 223.6GiB type: SSD [ATA INTEL SSDSC2KB24] dev: /dev/sda
  ```
partition ref: 1 220.1GiB, 219.0GiB free mounted: Y label: LOGUSEDXA707476A dev: /dev/sda1 start: 2048

Disk SSD2 ref: 16 223.6GiB type: SSD [ATA INTEL SSDSC2KB24] dev: /dev/sdb
 partition ref: 17 62.7GiB, 62.4GiB free mounted: Y label: WANOPTXX1FEBBFA1 dev: /dev/sdb1 start: 2048
 partition ref: 18 63.7GiB, 63.7GiB free mounted: N label: dev: /dev/sdb2 start: 133625856
 partition ref: 19 85.0GiB, 85.0GiB free mounted: N label: dev: /dev/sdb3 start: 267249664

- Display information about all of the disks:

 # diagnose hardware deviceinfo disk

 Disk SSD1 ref: 255 223.6GiB type: SSD [ATA INTEL SSDSC2KB24] dev: /dev/sda
 partition ref: 1 220.1GiB, 219.0GiB free mounted: Y label: LOGUSEDXA707476A dev: /dev/sda1 start: 2048

 Disk SSD2 ref: 16 223.6GiB type: SSD [ATA INTEL SSDSC2KB24] dev: /dev/sdb
 partition ref: 17 62.7GiB, 62.4GiB free mounted: Y label: WANOPTXX1FEBBFA1 dev: /dev/sdb1 start: 2048
 partition ref: 18 63.7GiB, 63.7GiB free mounted: N label: dev: /dev/sdb2 start: 133625856
 partition ref: 19 85.0GiB, 85.0GiB free mounted: N label: dev: /dev/sdb3 start: 267249664

 Disk SYSTEM(boot) 14.9GiB type: SSD [ATA 16GB SATA Flash] dev: /dev/sdc
 partition 247.0MiB, 155.0MiB free mounted: N label: dev: /dev/sdcl(boot) start: 1
 partition 247.0MiB, 154.0MiB free mounted: Y label: dev: /dev/sdc2(boot) start: 524289
 partition ref: 35 14.2GiB, 14.0GiB free mounted: Y label: dev: /dev/sdc3 start: 1048577

 Disk USB-6(user-usb) ref: 48 28.6GiB type: USB [SanDisk Ultra] dev: /dev/sdd
 <<<<<<===this info for usb disk because i have usb disk on FGT301E
 partition ref: 49 28.6GiB, 28.6GiB free mounted: Y label: dev: /dev/sdd1 start: 0

 Total available disks: 4
 Max SSD disks: 2 Available storage disks: 2

To check the RAID status:

- RAID enabled:

 # execute disk raid status
 RAID Level: Raid-1
 RAID Status: OK (Background-Synchronizing) (9%)
 RAID Size: 239GB

 Disk 1: OK Used 228GB
 Disk 2: OK Used 228GB

- RAID disabled:

 # execute disk raid status
 RAID Level: Unavailable
 RAID Status: Unavailable
 RAID Size: 0GB
Disk 1: OK Not-Used 228GB
Disk 2: OK Not-Used 228GB

To enable RAID:

execute disk raid enable
This will erase all data on the log disk, and system will reboot!
Do you want to continue? (y/n)y

Dependent storage SSD2 removed.
Dependent storage SSD1 removed.
Raid-0 created with 2 disks.

Performing raid on the requested disk(s) and rebooting, please wait...

Configuring raid...
- unmounting /data2 : ok
- unmounting /var/log : ok
- unmounting /usb : ok
- unmounting /var/storage/SSD2-WANOPTXX0EA0EF17 : ok

Formatting the disk...
- unmounting /usb : ok
Formatting /dev/md0 ... done

The system is going down NOW !!

Please stand by while rebooting the system.
Restarting system.

To rebuild the RAID:

execute disk raid rebuild

To rebuild the RAID to another level:

1. Check the supported RAID levels:
 # execute disk raid rebuild-level
 <RAID level> supported: Raid-0, Raid-1

2. Rebuild the RAID to the required level:
 # execute disk raid rebuild-level Raid-1
 This will erase all data on the log disk, and system will reboot!
 Do you want to continue? (y/n)y

 Dependent storage RAID removed.
 Raid-1 created with 2 disks.

 Performing raid on the requested disk(s) and rebooting, please wait...

 Configuring raid...
 - unmounting /data2 : ok
 - unmounting /var/log : ok
- unmounting /usb : ok
Formatting the disk...
- unmounting /usb : ok
Formatting /dev/md0 ... done

The system is going down NOW !!

Please stand by while rebooting the system.
Restarting system.

To disable RAID:

execute disk raid disable
This will erase all data on the log disk, and system will reboot!
Do you want to continue? (y/n)y

Dependent storage RAID removed.

Performing format on the requested disk(s) and rebooting, please wait...

Configuring raid...
- unmounting /data2 : ok
- unmounting /var/log : ok
- unmounting /usb : ok

Formatting the disk...
Partitioning and formatting /dev/sda label LOGUSEDX3D36836D ... done
Partitioning and formatting /dev/sdb label WANOPTXX1FEBBFA1 ...
Sending request for partno=0 start=2048 stop=133624230
Sending request for partno=1 start=133625856 stop=267248460
Sending request for partno=2 start=267249664 stop=445414150
done

The system is going down NOW !!

Please stand by while rebooting the system.
Restarting system.
FortiGate-301E (11:11-04.30.2018)
.
Reading boot image 3017355 bytes.
Initializing firewall...
System is starting...

FortiGate encryption algorithm cipher suites

FortiGates use SSL/TLS encryption for HTTPS and SSH administrative access, and SSL VPN remote access. When establishing an SSL/TLS or SSH connection, you can control the encryption level and the ciphers that are used in order to control the security level.
HTTPS access

HTTP administrative access encryption is controlled using the following commands:

```
config system global
    set strong-crypto {enable | disable}
    set admin-https-ssl-versions {tlsv1-1 tlsv1-2 tlsv1-3}
    set admin-https-ssl-ciphersuites {<cipher_1> ... <cipher_n>}
    set admin-https-ssl-banned-ciphers {<cipher_1> ... <cipher_n>}
end
```

When strong encryption is enabled, only TLS 1.2 and TLS 1.3 are allowed. If strong encryption is then disabled, TLS 1.1 has to be manually enabled.

Setting `admin-https-ssl-ciphersuites` controls which cipher suites are offered in TLS 1.3. TLS 1.2 and lower are not affected by this command. To disable all TLS 1.3 cipher suites, remove TLS1-3 from `admin-https-ssl-versions`.

Setting `admin-https-ssl-banned-ciphers` controls which cipher technologies will not be offered for TLS 1.2 and lower.

Specific cipher suites are supported by each TLS version:

<table>
<thead>
<tr>
<th>TLS version</th>
<th>Supported Cipher Suites</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLS 1.1</td>
<td>ECDHE-RSA-AES256-SHA⁴</td>
</tr>
<tr>
<td></td>
<td>AES256-SHA¹</td>
</tr>
<tr>
<td></td>
<td>ECDHE-RSA-AES128-SHA⁴</td>
</tr>
<tr>
<td></td>
<td>AES128-SHA¹</td>
</tr>
<tr>
<td>TLS 1.2</td>
<td>ECDHE-RSA-AES256-GCM-SHA384</td>
</tr>
<tr>
<td></td>
<td>AES256-GCM-SHA384¹</td>
</tr>
<tr>
<td></td>
<td>ECDHE-RSA-AES128-GCM-SHA256</td>
</tr>
<tr>
<td></td>
<td>AES128-GCM-SHA256¹</td>
</tr>
<tr>
<td></td>
<td>ECDHE-RSA-CHACHA20-POLY1305</td>
</tr>
<tr>
<td></td>
<td>AES256-SHA256</td>
</tr>
<tr>
<td></td>
<td>ECDHE-RSA-AES256-SHA384</td>
</tr>
<tr>
<td></td>
<td>AES128-SHA256</td>
</tr>
<tr>
<td></td>
<td>ECDHE-RSA-AES128-SHA256</td>
</tr>
<tr>
<td></td>
<td>AES256-SHA¹</td>
</tr>
<tr>
<td></td>
<td>ECDHE-RSA-AES256-SHA¹</td>
</tr>
<tr>
<td></td>
<td>AES128-SHA¹</td>
</tr>
<tr>
<td></td>
<td>ECDHE-RSA-AES128-SHA¹</td>
</tr>
<tr>
<td>TLS 1.3</td>
<td>TLS-AES-128-GCM-SHA256</td>
</tr>
<tr>
<td></td>
<td>TLS-AES-128-CCM-8-SHA256</td>
</tr>
<tr>
<td></td>
<td>TLS-AES-256-GCM-SHA384</td>
</tr>
<tr>
<td></td>
<td>TLS-CHACHA20-POLY1305-SHA256</td>
</tr>
<tr>
<td></td>
<td>TLS-AES-128-CCM-SHA256</td>
</tr>
</tbody>
</table>

⁴ Disabled if strong encryption (`strong-crypto`) is enabled.

SSH access

SSH access encryption is controlled using the following command:

```
config system global
    set admin-ssh-v1 {enable | disable}
```
set strong-crypto {enable | disable}
set ssh-enc-algo <algo_1> [<algo_2> ... <algo_n>]
end

The algorithms available when configuring `set ssh-enc-algo` are affected by `set strong-crypto` as follows:

<table>
<thead>
<tr>
<th>Encryption</th>
<th>Supported Ciphers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong</td>
<td>chacha20-poly1305@openssh.com</td>
</tr>
<tr>
<td></td>
<td>aes128-ctr</td>
</tr>
<tr>
<td></td>
<td>aes128-cbc</td>
</tr>
<tr>
<td></td>
<td>aes192-ctr</td>
</tr>
<tr>
<td></td>
<td>aes192-cbc</td>
</tr>
<tr>
<td></td>
<td>aes256-cbc</td>
</tr>
<tr>
<td></td>
<td>3des-cbc</td>
</tr>
<tr>
<td></td>
<td>blowfish-cbc</td>
</tr>
<tr>
<td>Weak</td>
<td>arcfour256</td>
</tr>
<tr>
<td></td>
<td>arcfour128</td>
</tr>
<tr>
<td></td>
<td>aes256-cbc</td>
</tr>
<tr>
<td></td>
<td>rijndael-cbc@lysator.liu.se</td>
</tr>
</tbody>
</table>

SSL VPN

For SSL VPN connections, the TLS versions and cipher suites are controlled using the following commands:

```fortigate-config
config vpn ssl setting
  set algorithm {high | medium | low}
  set ssl-maxproto-ver {tls1-0 | tls1-1 | tls1-2 | tls1-3}
  set ssl-minproto-ver {tls1-0 | tls1-1 | tls1-2 | tls1-3}
  set ciphersuite (TLS-AES-128-GCM-SHA256 TLS-AES-256-GCM-SHA384 TLS-CHACHA20-POLY1305-SHA256 TLS-AES-128-CCM-SHA256 TLS-AES-128-CCM-8-SHA256)
end
```

Cipher suites (`ciphersuite`) can only be selected when the SSL maximum version is TLS 1.3.

When the SSL VPN security level (`algorithm`) is set to high, only high levels are allowed. When it is set to medium, high and medium levels are allowed. When it is set to low, any level is allowed.

The strong encryption (`strong-crypto`) command has no effect on the SSL VPN encryption level or ciphers.

Specific cipher suites are supported by each TLS version:
<table>
<thead>
<tr>
<th>TLS version</th>
<th>Supported Cipher Suites</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLS 1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECDHE-RSA-AES256-SHA</td>
</tr>
<tr>
<td></td>
<td>DHE-RSA-CAMELLIA128-SHA</td>
</tr>
<tr>
<td></td>
<td>DHE-RSA-AES256-SHA</td>
</tr>
<tr>
<td></td>
<td>AES128-SHA</td>
</tr>
<tr>
<td></td>
<td>DHE-RSA-CAMELLIA256-SHA</td>
</tr>
<tr>
<td></td>
<td>SEED-SHA¹</td>
</tr>
<tr>
<td></td>
<td>AES256-SHA</td>
</tr>
<tr>
<td></td>
<td>CAMELLIA128-SHA</td>
</tr>
<tr>
<td></td>
<td>CAMELLIA256-SHA</td>
</tr>
<tr>
<td></td>
<td>ECDHE-RSA-DES-CBC3-SHA¹</td>
</tr>
<tr>
<td></td>
<td>DHE-RSA-AES128-SHA¹</td>
</tr>
<tr>
<td></td>
<td>DES-CBC3-SHA¹</td>
</tr>
<tr>
<td></td>
<td>DHE-RSA-SEED-SHA</td>
</tr>
<tr>
<td>TLS 1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECDHE-RSA-AES256-SHA</td>
</tr>
<tr>
<td></td>
<td>DHE-RSA-CAMELLIA128-SHA</td>
</tr>
<tr>
<td></td>
<td>DHE-RSA-AES256-SHA</td>
</tr>
<tr>
<td></td>
<td>AES128-SHA</td>
</tr>
<tr>
<td></td>
<td>DHE-RSA-CAMELLIA256-SHA</td>
</tr>
<tr>
<td></td>
<td>SEED-SHA¹</td>
</tr>
<tr>
<td></td>
<td>AES256-SHA</td>
</tr>
<tr>
<td></td>
<td>CAMELLIA128-SHA</td>
</tr>
<tr>
<td></td>
<td>CAMELLIA256-SHA</td>
</tr>
<tr>
<td></td>
<td>ECDHE-RSA-DES-CBC3-SHA¹</td>
</tr>
<tr>
<td></td>
<td>DHE-RSA-AES128-SHA¹</td>
</tr>
<tr>
<td></td>
<td>DES-CBC3-SHA¹</td>
</tr>
<tr>
<td></td>
<td>DHE-RSA-SEED-SHA</td>
</tr>
<tr>
<td>TLS version</td>
<td>Supported Cipher Suites</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>TLS 1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECDHE-RSA-AES256-GCM-SHA384 ECDHE-RSA-AES128-SHA</td>
</tr>
<tr>
<td></td>
<td>ECDHE-RSA-AES256-SHA384 DHE-RSA-AES128-GCM-SHA256</td>
</tr>
<tr>
<td></td>
<td>ECDHE-RSA-AES256-SHA DHE-RSA-AES128-CCM8</td>
</tr>
<tr>
<td></td>
<td>DHE-RSA-AES256-GCM-SHA384 DHE-RSA-AES128-CCM</td>
</tr>
<tr>
<td></td>
<td>ECDHE-RSA-CHACHA20-POLY1305 AES128-CCM</td>
</tr>
<tr>
<td></td>
<td>DHE-RSA-CHACHA20-POLY1305 AES128-CCM</td>
</tr>
<tr>
<td></td>
<td>DHE-RSA-AES256-CCM8 DHE-RSA-AES128-SHA256</td>
</tr>
<tr>
<td></td>
<td>DHE-RSA-AES256-CCM DHE-RSA-AES128-SHA</td>
</tr>
<tr>
<td></td>
<td>DHE-RSA-AES256-SHA256 ECDHE-RSA-CAMELLIA128-SHA256</td>
</tr>
<tr>
<td></td>
<td>DHE-RSA-AES256-SHA DHE-RSA-CAMELLIA128-SHA256</td>
</tr>
<tr>
<td></td>
<td>ECDHE-RSA-CAMELLIA256-SHA384 DHE-RSA-SEED-SHA</td>
</tr>
<tr>
<td></td>
<td>DHE-RSA-CAMELLIA256-SHA256 DHE-RSA-CAMELLIA128-SHA</td>
</tr>
<tr>
<td></td>
<td>DHE-RSA-CAMELLIA256-SHA AES128-GCM-SHA256</td>
</tr>
<tr>
<td></td>
<td>AES256-GCM-SHA384 AES128-SHA256</td>
</tr>
<tr>
<td></td>
<td>AES256-CCM8 AES128-SHA</td>
</tr>
<tr>
<td></td>
<td>AES256-CCM CAMELLIA128-SHA256</td>
</tr>
<tr>
<td></td>
<td>AES256-SHA256 SEED-SHA</td>
</tr>
<tr>
<td></td>
<td>AES256-SHA CAMELLIA128-SHA</td>
</tr>
<tr>
<td></td>
<td>CAMELLIA256-SHA256 ARIA128-GCM-SHA256</td>
</tr>
<tr>
<td></td>
<td>CAMELLIA256-SHA DHE-RSA-ARIA128-GCM-SHA256</td>
</tr>
<tr>
<td></td>
<td>ARIA256-GCM-SHA384 ECDHE-ARIA128-GCM-SHA256</td>
</tr>
<tr>
<td></td>
<td>DHE-RSA-ARIA256-GCM-SHA384 ECDHE-RSA-AES256-GCM-SHA384</td>
</tr>
<tr>
<td></td>
<td>ECDHE-ARIA256-GCM-SHA384 ECDHE-RSA-DES-CBC3-SHA</td>
</tr>
<tr>
<td></td>
<td>ECDHE-RSA-AES128-GCM-SHA256 EDH-RSA-DES-CBC3-SHA</td>
</tr>
<tr>
<td></td>
<td>ECDHE-RSA-AES128-SHA256 DES-CBC3-SHA</td>
</tr>
<tr>
<td>TLS 1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TLS_AES_256_GCM_SHA384 TLS_AES_128_CCM_SHA256</td>
</tr>
<tr>
<td></td>
<td>TLS_CHACHA20_POLY1305_SHA256 TLS_AES_128_CCM_8_SHA256</td>
</tr>
<tr>
<td></td>
<td>TLS_AES_128_GCM_SHA256</td>
</tr>
</tbody>
</table>

1 This cipher is not available when the SSL VPN security level (algorithm) is set to high.
Fortinet Security Fabric

The Fortinet Security Fabric provides an intelligent architecture that interconnects discrete security solutions into an integrated whole to detect, monitor, block, and remediate attacks across the entire attack surface. It delivers broad protection and visibility into every network segment and device, be they hardware, virtual, or cloud based.

- The physical topology view shows all connected devices, including access layer devices. The logical topology view shows information about the interfaces that each device is connected to.
- Security rating checks analyze the Security Fabric deployment to identify potential vulnerabilities and highlight best practices to improve the network configuration, deploy new hardware and software, and increase visibility and control of the network.
- Fabric connectors provide integration with multiple SDN, cloud, and partner technology platforms to automate the process of managing dynamic security updates without manual intervention.
- Automation pairs an event trigger with one or more actions to monitor the network and take the designated actions automatically when the Security Fabric detects a threat.

Security Fabric settings and usage

This section contains information about how to configure the following devices as part of the Fortinet Security Fabric:

- Components on page 2207
- Configuring the root FortiGate and downstream FortiGates
- Configuring FortiAnalyzer
- Configuring FortiGate Cloud on page 2219
- Configuring FortiAnalyzer Cloud service on page 2223
- Configuring FortiManager on page 2227
- Configuring FortiManager Cloud service on page 2229
- Configuring Sandboxing on page 2230
- Configuring FortiClient EMS on page 2236
- Synchronizing FortiClient ZTNA tags on page 2249
- Configuring FortiNAC on page 2252
- Configuring FortiAP and FortiSwitch on page 2254
- Configuring FortiMail on page 2255
- Configuring FortiNDR on page 2257
- Configuring FortiDeceptor on page 2261
- Configuring FortiWeb on page 2264
- Configuring FortiTester on page 2266
- Configuring FortiMonitor on page 2269
- Configuring FortiVoice on page 2271
- Using the Security Fabric
- Deploying the Security Fabric on page 2290
- Deploying the Security Fabric in a multi-VDOM environment on page 2298
- Synchronizing objects across the Security Fabric on page 2303
Security Fabric

- Security Fabric over IPsec VPN on page 2310
- Leveraging LLDP to simplify Security Fabric negotiation on page 2316

System requirements

To set up the Security Fabric, the devices that you want to include must meet the Product Integration and Support requirements in the FortiOS Release Notes.

Some features of the Security Fabric are only available in certain firmware versions and models. Not all FortiGate models can run the FortiGuard Security Rating Service if they are the root FortiGate in a Security Fabric. For more information, see the Special Notices in the FortiOS Release Notes.

Prerequisites

- If devices are not already installed in your network, complete basic installation and configuration tasks by following the instructions in the device documentation.
- FortiGate devices must be operating in NAT mode.

Components

The Fortinet Security Fabric consists of different components that work together to secure your network.

The following devices are required to create a Security Fabric:

<table>
<thead>
<tr>
<th>Device</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FortiGate</td>
<td>FortiGates are the core of the Security Fabric and can have one of the following roles:</td>
</tr>
<tr>
<td></td>
<td>- Root: the root FortiGate is the main component in the Security Fabric. It is typically located on the edge of the network and connects the internal devices and networks to the internet through your ISP. From the root FortiGate, you can see information about the entire Security Fabric on the Physical and Logical Topology pages in the GUI.</td>
</tr>
<tr>
<td></td>
<td>- Downstream: after a root FortiGate is installed, all other FortiGate devices in the Security Fabric act as Internal Segmentation Firewalls (ISFWs), located at strategic points in your internal network, rather than on the network edge. This allows extra security measures to be taken around key network components, such as servers that contain valuable intellectual property. ISFW FortiGates create network visibility by sending traffic and information about the devices that are connected to them to the root FortiGate.</td>
</tr>
<tr>
<td></td>
<td>See Configuring the root FortiGate and downstream FortiGates on page 2210 for more information about adding FortiGate devices in the Security Fabric.</td>
</tr>
<tr>
<td></td>
<td>FortiGate documentation: https://docs.fortinet.com/product/fortigate</td>
</tr>
<tr>
<td>FortiAnalyzer</td>
<td>FortiAnalyzer gives you increased visibility into your network, centralized monitoring, and awareness of threats, events, and network activity by collecting and correlating logs from all Security Fabric devices. This gives you a deeper and more comprehensive view across the entire Security Fabric.</td>
</tr>
<tr>
<td></td>
<td>See Configuring FortiAnalyzer on page 2217 for more information about adding FortiAnalyzer devices in the Security Fabric.</td>
</tr>
<tr>
<td>Device</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>FortiAnalyzer documentation: https://docs.fortinet.com/product/fortianalyzer</td>
<td></td>
</tr>
</tbody>
</table>
| **Cloud Logging** | There are two options for cloud logging: FortiAnalyzer Cloud and FortiGate Cloud. Either can be used to enable the Security Fabric root device; however, if using FortiGate Cloud, all downstream devices must belong to the same FortiCloud account.
 See [Configuring FortiGate Cloud on page 2219](https://docs.fortinet.com/product/fortigate-cloud) for more information about configuring a Security Fabric with FortiGate Cloud.
 FortiGate Cloud documentation: https://docs.fortinet.com/product/fortigate-cloud |

* FortiAnalyzer or Cloud Logging is a required component for the Security Fabric. Either FortiAnalyzer, FortiAnalyzer Cloud, or FortiGate Cloud can be used to met this requirement.

The following devices are recommended:

<table>
<thead>
<tr>
<th>Device</th>
<th>Description</th>
</tr>
</thead>
</table>
| FortiNDR | FortiNDR (formerly FortiAI) uses artificial neural networks (ANN) that can deliver sub-second malware detection and a verdict. Add FortiNDR to your Security Fabric to automatically quarantine attacks.
 See [Configuring FortiNDR on page 2257](https://docs.fortinet.com/product/fortindr) for more information about adding FortiNDR devices in the Security Fabric.
 FortiNDR documentation: https://docs.fortinet.com/product/fortindr |
 See [Configuring FortiAP and FortiSwitch on page 2254](https://docs.fortinet.com/product/fortiap) for more information about adding FortiAP devices in the Security Fabric.
 FortiAP documentation: https://docs.fortinet.com/product/fortiap |
| FortiClient | FortiClient adds endpoint control to devices that are located in the Security Fabric, allowing only traffic from compliant devices to flow through the FortiGate. FortiClient compliance profiles are applied by the first FortiGate that a device’s traffic flows through. Device registration and on-net status information for a device that is running FortiClient appears only on the FortiGate that applies the FortiClient profile to that device.
 FortiClient documentation: https://docs.fortinet.com/product/forticlient |
| FortiDeceptor | FortiDeceptor automatically lays out a layer of decoys and lures, which helps conceal sensitive and critical assets behind a fabricated deception surface to confuse and redirect attackers while revealing their presence on your network.
 See [Configuring FortiDeceptor on page 2261](https://docs.fortinet.com/product/fortideceptor) for more information about adding FortiDeceptor devices in the Security Fabric.
 FortiDeceptor documentation: https://docs.fortinet.com/product/fortideceptor |
| FortiClient EMS | FortiClient EMS is used in the Security Fabric to provide visibility across your network, securely share information, and assign security profiles to endpoints.
 See [Configuring FortiClient EMS on page 2236](https://docs.fortinet.com/product/forticlient) for more information about adding FortiClient EMS devices in the Security Fabric.
 FortiClient EMS documentation: https://docs.fortinet.com/product/forticlient |
<table>
<thead>
<tr>
<th>Device</th>
<th>Description</th>
</tr>
</thead>
</table>
| **FortiMail**| FortiMail antispam processing helps offload from other devices in the Security Fabric that would typically carry out this process.
See Configuring FortiMail on page 2255 for more information about adding FortiMail devices in the Security Fabric.
FortiMail documentation: https://docs.fortinet.com/product/fortimail |
| **FortiManager** | Add FortiManager to simplify the network management of devices in the Security Fabric by centralizing management access in a single device. This allows you to easily control the deployment of security policies, FortiGuard content security updates, firmware revisions, and individual configurations for devices in the Security Fabric.
See Configuring FortiManager on page 2227 for more information about adding FortiManager devices in the Security Fabric.
FortiManager documentation: https://docs.fortinet.com/product/fortimanager |
| **FortiSandbox** | Add FortiSandbox to your Security Fabric to improve security with sandbox inspection. Sandbox integration allows FortiGate devices in the Security Fabric to automatically receive signature updates from FortiSandbox and add the originating URL of any malicious file to a blocked URL list.
See Configuring Sandboxing on page 2230 for more information about adding FortiSandbox devices in the Security Fabric.
FortiSandbox documentation: https://docs.fortinet.com/product/fortisandbox |
| **FortiSwitch** | A FortiSwitch can be added to the Security Fabric when it is managed by a FortiGate that is in the Security Fabric with the FortiLink protocol, and connected to an interface with Security Fabric Connection enabled. FortiSwitch ports to become logical extensions of the FortiGate. Devices connected to the FortiSwitch appear in the Physical and Logical Topology pages in the Security Fabric menu, and security features, such as FortiClient compliance profiles, are applied to them.
See Configuring FortiAP and FortiSwitch on page 2254 for more information about adding FortiSwitch devices in the Security Fabric.
FortiSwitch documentation: https://docs.fortinet.com/product/fortiswitch |
| **FortiWeb** | Add FortiWeb to defend the application attack surface from attacks that target application exploits. You can also configure FortiWeb to apply web application firewall features, virus scanning, and web filtering to HTTP traffic to help offload from other devices in the Security Fabric that would typically carry out these processes.
See Configuring FortiWeb on page 2264 for more information about adding FortiWeb devices in the Security Fabric.
FortiWeb documentation: https://docs.fortinet.com/product/fortiweb |

The following devices are optional:

<table>
<thead>
<tr>
<th>Device</th>
<th>Description</th>
</tr>
</thead>
</table>
| **FortiADC** | FortiADC devices optimize the availability, user experience, and scalability of enterprise application delivery. They enable fast, secure, and intelligent acceleration and distribution of even the most demanding enterprise applications.
FortiADC documentation: https://docs.fortinet.com/product/fortiadc |
<table>
<thead>
<tr>
<th>Device</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FortiDDoS</td>
<td>FortiDDoS is a Network Behavior Anomaly (NBA) prevention system that detects and blocks attacks that intend to disrupt network service by overutilizing server resources. FortiDDoS documentation: https://docs.fortinet.com/product/fortiddos</td>
</tr>
<tr>
<td>FortiWLC</td>
<td>FortiWLC delivers seamless mobility and superior reliability with optimized client distribution and channel utilization. Both single and multi channel deployment options are supported, maximizing efficiency to make the most of available wireless spectrum. FortiWLC documentation: https://docs.fortinet.com/product/wireless-controller</td>
</tr>
<tr>
<td>Other Fortinet products</td>
<td>Other Fortinet products can be added to the Security Fabric, including FortiAuthenticator, FortiToken, FortiCache, and FortiSIEM. Documentation: https://docs.fortinet.com/</td>
</tr>
<tr>
<td>Third-party products</td>
<td>Third-party products that belong to the Fortinet Fabric-Ready Partner Program can be added to the Security Fabric.</td>
</tr>
</tbody>
</table>

Configuring the root FortiGate and downstream FortiGates

The following procedures include configuration steps for a typical Security Fabric implementation, where the edge FortiGate is the root FortiGate with other FortiGates that are downstream from the root FortiGate.

For information about the recommended number of downstream FortiGates, see the *FortiOS Best Practices*.

Prerequisite

- The FortiGates must be operating in NAT mode.

Configuring the root FortiGate

The edge FortiGate is typically configured as the root FortiGate, as this allows you to view the full topology of the Security Fabric from the top down.

The following steps describe how to add the FortiGate to serve as the root device, and how to configure FortiAnalyzer logging.

To configure the root FortiGate:

1. On the root FortiGate, go to *Security Fabric > Fabric Connectors* and double-click the *Security Fabric Setup* card.
2. For *Status*, click *Enable*.
3. Set the *Security Fabric role* to *Serve as Fabric Root*. FortiAnalyzer logging is automatically enabled and the settings can be configured in the slide-out pane.
When neither FortiAnalyzer Logging nor Cloud Logging are enabled, if the FortiGate detects that a FortiAnalyzer Cloud entitlement is available on this FortiGate, the slide-out pane will display Cloud Logging configurations. Otherwise, if Cloud Logging is enabled, the slide-out pane will display the Cloud Logging page. If Cloud Logging is disabled but FortiAnalyzer is enabled, then it will display the FortiAnalyzer Logging page.

In the Cloud Logging card, there are two options available, FortiGate Cloud and FortiAnalyzer Cloud. If there are multiple services enrolled on the FortiGate, the preference is: Cloud Logging (FortiAnalyzer Cloud), FortiAnalyzer Logging, then Cloud Logging (FortiGate Cloud).

4. Enter the FortiAnalyzer IP and select the Upload option.
5. In the FortiAnalyzer Logging section, in the IP address field, enter the IP address of the FortiAnalyzer.
6. If required, enable Allow access to FortiGate REST API and, optionally, Verify FortiAnalyzer certificate. The REST API accesses the FortiGate topology and shares data and results. The FortiGate will verify the FortiAnalyzer by retrieving its serial number and checking it against the FortiAnalyzer certificate. When verified, the FortiAnalyzer serial number is stored in the FortiGate configuration. When authorizing the FortiGate on the FortiAnalyzer, the FortiGate admin credentials do not need to be entered.
7. Click Test Connectivity.
 If you select Test Connectivity and this is the first time that you are connecting the FortiGate to the FortiAnalyzer, you will receive a warning message because the FortiGate has not yet been authorized on the FortiAnalyzer. You can configure this authorization when you configure the FortiAnalyzer. See Configuring FortiAnalyzer on page 2217.
8. Click OK. The FortiAnalyzer serial number is verified.
9. Enter a Fabric name.
10. Ensure Allow other Security Fabric devices to join is enabled.
11. Select the interfaces that will be listening for device join requests. Enabling an interface here has the same effect as going to Network > Interfaces, editing an interface, and enabling Security Fabric Connection under Administrative Access.
12. Click OK.

Using the root FortiGate with disk to store historic user and device information

This backend implementation allows the root FortiGate in a Security Fabric to store historic user and device information in a database on its disk. This will allow administrators to visualize users and devices over a period of time.

The daemon, user_info_history, stores this data on the disk. The information source for the historical data will be the user_info daemon, which would be recorded on the disk when user_info notifies user_info_history that a user has logged out or the device is no longer connected.

Adding downstream devices

Downstream device serial numbers can be pre-authorized from the root FortiGate, or allowed to join by request. New authorization requests include the device serial number, IP address, and HA members. HA members can include up to four serial numbers and is used to ensure that, in the event of a fail over, the secondary FortiGate is still authorized.

A downstream device's certificate can also be used to authorize the device by uploading the certificate to the root FortiGate.

Pre-authorizing the downstream FortiGate

When a downstream Fortinet device's serial number or certificate is added to the trusted list on the root FortiGate, the device can join the Security Fabric as soon as it connects. After the new device is authorized, connected FortiAP and FortiSwitch devices are automatically included in the topology, where they can be authorized with one click.

The interface that connects to the downstream FortiGate must have Security Fabric Connection enabled.

To pre-authorize a FortiGate:

1. On the root FortiGate, go to Security Fabric > Fabric Connectors and double-click the Security Fabric Setup card.
3. Click Create New to add a new device for pre-authorization.
4. Enter the device name in the Name field.
5. Select the Authorization type, either Serial Number or Certificate.
6. If Certificate is selected, click Browse to upload the downstream device's certificate from the management computer.
7. Select the Action, either Accept or Deny.
8. Click OK and add more devices as required.
9. Click OK.
To configure a downstream FortiGate to connect to an upstream FortiGate:

1. Configure the downstream FortiGate:
 a. On the downstream FortiGate, go to Security Fabric > Fabric Connectors and double-click the Security Fabric Setup card.
 b. Set Status to Enable.
 c. Set Security Fabric role to Join Existing Fabric.
 d. Enter the IP address of the root FortiGate in the Upstream FortiGate IP field.
 e. Click OK.

2. On the root FortiGate, go to Security Fabric > Physical Topology and verify that the downstream FortiGate that you added appears in the Security Fabric topology.

Authorizing a downstream FortiGate

When you log in to an unauthorized downstream FortiGate, the log in prompt includes the option to authorize the device on the root FortiGate.

To authorize a downstream FortiGate:

1. Log in to the unauthorized, downstream device.

2. In the Fabric Setup step, click Review authorization on root FortiGate. A pop-up window opens to a log in screen for the root FortiGate.

3. Enter the log in credentials for the root FortiGate, then click Login. A list of pending authorizations is shown.
4. Select **Allow** and then click **OK** to authorize the downstream FortiGate. You can also select **Deny** to reject the authorization, or **Later** to postpone the decision to the next time that you log in. When authorization is allowed, the pop-up window closes, and the log in prompt shows that the downstream FortiGate has been authorized.

5. Click **Done** to log in to the downstream FortiGate.

Triggering authorization from the Fabric Connectors page

To authorize a downstream device from the Fabric Connectors page:

1. Go to **Security Fabric > Fabric Connectors**.
2. In the gutter on the right side of the screen, click **Review authorization on root FortiGate**.

The root FortiGate pop-up window shows the state of the device authorization.

Authorizing the downstream FortiGate from the root

In this example, a downstream FortiGate is unauthorized and it is not registered to a FortiCloud account.

To authorize the downstream FortiGate from the root:

1. Log in to the root FortiGate and go to **Security Fabric > Fabric Connectors**. Devices requiring authorization are highlighted in the **Topology** tree (right-side gutter).
2. Click on a highlighted device and select Authorize. The Authorize Devices pane opens.
4. The FortiGate is now authorized, so click Register to register the device to a FortiCloud account.

The FortiCloud Account pane opens.

5. Enter the required information (password, country/region, reseller). On the Fabric Connectors page, the same account name is implied for registration.

6. Click Submit. The Registration Summary pane opens.
7. Click Close.

You can use IPAM to automatically assign subnets to downstream FortiGates to prevent duplicate IP addresses from overlapping within the same Security Fabric. See Configure IPAM locally on the FortiGate on page 143.

CLI commands

Use the following commands to view, accept, and deny authorization requests, to view upstream and downstream devices, and to list or test Fabric devices:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>diagnose sys csf authorization pending-list</td>
<td>View pending authorization requests on the root FortiGate.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>diagnose sys csf authorization accept <serial number></td>
<td>Authorize a device to join the Security Fabric.</td>
</tr>
<tr>
<td>diagnose sys csf authorization deny <serial number></td>
<td>Deny a device from joining the Security Fabric.</td>
</tr>
<tr>
<td>diagnose sys csf downstream</td>
<td>Show connected downstream devices.</td>
</tr>
<tr>
<td>diagnose sys csf upstream</td>
<td>Show connected upstream devices.</td>
</tr>
<tr>
<td>diagnose sys csf fabric-device list</td>
<td>List all known Fabric devices.</td>
</tr>
</tbody>
</table>

Desynchronizing settings

By default, the settings for FortiAnalyzer logging, central management, sandbox inspection, and FortiClient EMS are synchronized between all FortiGates in the Security Fabric.

To disable automatic synchronization:

```
config system csf
    set configuration-sync local
end
```

Deauthorizing a device

A device can be deauthorized to remove it from the Security Fabric.

To deauthorize a device:

1. On the root FortiGate, go to Security Fabric > Fabric Connectors.
2. In the topology tree, click the device and select Deauthorize.

After a device is deauthorized, the serial number is saved in a trusted list that can be viewed in the CLI using the show system csf command. For example, this result shows a deauthorized FortiSwitch:

```
show system csf
config system csf
    set status enable
    set group-name "Office-Security-Fabric"
    set group-password ************
config trusted-list
    edit "FGT6HD391800000"
    next
    edit "S248DF3X1700000"
    set action deny
    next
end
```
Configuring FortiAnalyzer

FortiAnalyzer or Cloud Logging is a required component for the Security Fabric. Either FortiAnalyzer, FortiAnalyzer Cloud, or FortiGate Cloud can be used to meet this requirement.

FortiAnalyzer allows the Security Fabric to show historical data for the Security Fabric topology and logs for the entire Security Fabric. For more information about using FortiAnalyzer, see the FortiAnalyzer Administration Guide.

FortiAnalyzer 7.0.1 is used for this configuration example.

To authorize a FortiAnalyzer in the Security Fabric:

1. In FortiAnalyzer, configure the authorization address and port:
 a. Go to System Settings > Admin > Admin Settings.
 b. In the Fabric Authorization section, enter an Authorization Address and Authorization Port. This is used to access the FortiAnalyzer login screen.

 ![FortiAnalyzer Admin Settings](image)

 c. Click Apply.

2. In FortiOS, go to Security Fabric > Fabric Connectors and double-click the FortiAnalyzer Logging card.
3. Enter the FortiAnalyzer IP.
4. Click OK. The FortiAnalyzer Status (in the right-side gutter) is Unauthorized.

5. Click Authorize. You are redirected to a login screen.
6. Enter the username and password, then click Login.

![Login Screen](image)

The authorization dialog opens.

7. Select Approve and click OK to authorize the FortiGate.

![Authorization Dialog](image)

8. In FortiOS, refresh the FortiAnalyzer Logging page. The FortiAnalyzer Status is Authorized.

![FortiAnalyzer Logging Status](image)
Sending traffic logs to FortiAnalyzer Cloud

FortiGates with a FortiCloud Premium subscription (AFAC) for Cloud-based Central Logging & Analytics, can send traffic logs to FortiAnalyzer Cloud in addition to UTM logs and event logs. After the Premium subscription is registered through FortiCare, FortiGuard will verify the purchase and authorize the AFAC contract. Once the contract is verified, FortiGuard will deliver the contract to FortiGate.

FortiGates with a Standard FortiAnalyzer Cloud subscription (FAZC) can only send UTM and event logs. FortiGates with a Premium subscription will send the UTM and event logs even if the Standard subscription has expired.

For information about cloud logging, see Configuring FortiAnalyzer Cloud service on page 2223

FortiAnalyzer Cloud does not support DLP/IPS archives at this time.

To verify the status a FortiCloud subscription with the CLI:

```
# diagnose test update info
```

The **FAZC** and **AFAC** fields display the subscription expiration date. The **Support contract** field displays the FortiCare account information. The **User ID** field displays the ID for FortiAnalyzer-Cloud instance.

```
... 
FAZC,Tue Sep 24 16:00:00 2030 
AFAC,Mon Nov 29 16:00:00 2021 
... 
Support contract: pending_registration=255 got_contract_info=1 
account_id=[****@fortinet.com] company=[Fortinet] industry=[Technology] 
User ID: 979090
```

Configuring FortiGate Cloud

FortiGate Cloud is a hosted security management and log retention service for FortiGate devices. It provides centralized reporting, traffic analysis, configuration management, and log retention without the need for additional hardware or software.

FortiGate Cloud offers a wide range of features:

- **Simplified central management**
 FortiGate Cloud provides a central GUI to manage individual or aggregated FortiGate and FortiWiFi devices. Adding a device to the FortiGate Cloud management subscription is straightforward. FortiGate Cloud has detailed traffic and application visibility across the whole network.

- **Hosted log retention with large default storage allocated**
 Log retention is an integral part of any security and compliance program, but administering a separate storage system is onerous. FortiGate Cloud takes care of this automatically and stores the valuable log information in the cloud. Different types of logs can be stored, including Traffic, System Events, Web, Applications, and Security Events.

- **Monitoring and alerting in real time**
 Network availability is critical to a good end-user experience. FortiGate Cloud enables you to monitor your FortiGate network in real time with different alerting mechanisms to pinpoint potential issues. Alerting mechanisms can be delivered via email.
Customized or pre-configured reporting and analysis tools
Reporting and analysis are your eyes and ears into your network’s health and security. Pre-configured reports are available, as well as custom reports that can be tailored to your specific reporting and compliance requirements. The reports can be emailed as PDFs, and can cover different time periods.

Maintain important configuration information uniformly
The correct configuration of the devices within your network is essential for maintaining optimum performance and security posture. In addition, maintaining the correct firmware (operating system) level allows you to take advantage of the latest features.

Service security
All communication (including log information) between the devices and the cloud is encrypted. Redundant data centers are always used to give the service high availability. Operational security measures have been put in place to make sure your data is secure — only you can view or retrieve it.

For more information about FortiGate Cloud, see the FortiGate Cloud documentation.

Registration and activation

Before you can activate a FortiGate Cloud account, you must first register your device.

FortiGate Cloud accounts can be registered manually through the FortiGate Cloud website, https://www.forticloud.com, or you can easily register and activate your account directly from your FortiGate.

To activate your FortiGate Cloud account:

1. On your device, go to Dashboard > Status.
2. In the FortiGate Cloud widget, click the Not Activated > Activate button in the Status field.
3. A pane will open asking you to register your FortiGate Cloud account. Click Create Account, enter your information, view and accept the terms and conditions, and then click OK.
4. A second dialogue window open, asking you to enter your information to confirm your account. This sends a confirmation email to your registered email. The dashboard widget then updates to show that confirmation is required.
5. Open your email, and follow the confirmation link it contains. A FortiGate Cloud page will open, stating that your account has been confirmed. The Activation Pending message on the dashboard will change to state the type of account you have, and will provide a link to the FortiGate Cloud portal.

Enabling logging to FortiGate Cloud

To enable logging to FortiGate Cloud:

2. Enable Cloud Logging.
3. Select an upload option: Realtime, Every Minute, or Every 5 Minutes (default).
4. Click Apply.
Logging into the FortiGate Cloud portal

Once logging has been configured and you have registered your account, you can log into the FortiGate Cloud portal and begin viewing your logging results. There are two methods to reach the FortiGate Cloud portal:

- **If you have direct network access to the FortiGate:**
 a. Go to Dashboard > Status.
 b. In the FortiGate Cloud widget, in the Status field, click Activated > Launch Portal, or, in the Licenses widget, click FortiCare Support > Launch Portal.

- **If you do not have access to the FortiGate’s interface,** visit the FortiGate Cloud website (https://www.forticloud.com) and log in remotely, using your email and password. It will ask you to confirm the FortiGate Cloud account you are connecting to and then you will be granted access.

Configuring a Security Fabric with FortiGate Cloud logging

A Security Fabric can be created on the root device using FortiGate Cloud for cloud logging. When the FortiCloud account enforcement is enabled (by default), members joining the Fabric must be registered to the same FortiCloud account. Devices that are not activated with FortiCloud are also allowed.

For example, the root FortiGate (FGT_10_101F) is configured with FortiGate Cloud logging. In the Security Fabric settings, the FortiCloud account enforcement option is enabled by default. The downstream FortiGate, FGT-F-VM, with the same FortiCloud account ID is able to join the Fabric.

To configure a Security Fabric with FortiCloud logging in the GUI:

1. **On the root FortiGate, configure FortiCloud logging:**
 a. Go to Security Fabric > Fabric Connectors and double-click the Cloud Logging card.
 b. Set the Type to FortiGate Cloud.
 c. Set the Upload option to Real Time.
 d. Click OK.

2. **Configure the Security Fabric settings** (see Configuring the root FortiGate and downstream FortiGates on page 2210). The FortiCloud account enforcement setting is enabled by default.
3. On the FGT-F-VM, check the FortiCloud logging settings:
 a. Go to Security Fabric > Fabric Connectors and double-click the Cloud Logging card. The settings are automatically retrieved from the root and the Account is the same.

4. Configure the FGT-F-VM to join the Security Fabric:
 b. Set the Security Fabric role to Join Existing Fabric.
c. Click OK. The FortiGate is authorized and successfully joins the Security Fabric.

To configure a Security Fabric with FortiCloud logging in the CLI:

```plaintext
config log fortiguard setting
  set status enable
  set upload-option realtime
end
```

The FortiCloud account enforcement setting is enabled by default in the Security Fabric settings:

```plaintext
show system csf
  config system csf
    set status enable
    set group-name "CSF_101"
    set forticloud-account-enforcement enable
  end
```

Cloud sandboxing

FortiGate Cloud can be used for automated sample tracking, or sandboxing, for files from a FortiGate. This allows suspicious files to be sent to be inspected without risking network security. If the file exhibits risky behavior, or is found to contain a virus, a new virus signature is created and added to the FortiGuard antivirus signature database.

See Configuring Sandboxing on page 2230 for instructions to configure FortiGate Cloud Sandbox. Sandboxing results are shown on the Sandbox tab in the FortiGate Cloud portal.

Configuring FortiAnalyzer Cloud service

The FortiAnalyzer Cloud service can be used for event logging.

Traffic logs are not currently supported by FortiAnalyzer Cloud without a FortiCloud Premium subscription (AFAC). For information, see Configuring FortiAnalyzer on page 2217.
When FortiAnalyzer Cloud is licensed and enabled (see Deploying FortiAnalyzer Cloud for more information), all event logs are sent to FortiAnalyzer Cloud by default. All traffic logs, security logs, and archive files are not sent to FortiAnalyzer Cloud.

FortiAnalyzer Cloud differs from FortiAnalyzer in the following ways:

- You cannot enable FortiAnalyzer Cloud in `vdom override-setting` when global FortiAnalyzer Cloud is disabled.
- You must use the CLI to retrieve and display logs sent to FortiAnalyzer Cloud. The FortiOS GUI is not supported.
- You cannot enable FortiAnalyzer Cloud and FortiGate Cloud at the same time.

In the Security Fabric > Fabric Connectors > Cloud Logging card settings, FortiAnalyzer Cloud is grayed out when you do not have a FortiAnalyzer Cloud entitlement. When you have a FortiAnalyzer Cloud entitlement, FortiAnalyzer Cloud is available and you can authenticate by the certificate.

You can also view the FortiAnalyzer Cloud settings in the Log & Report > Log Settings page.

In FortiAnalyzer Cloud, you can view logs from FortiOS in the Event > All Types page.

To configure FortiAnalyzer Cloud logging in the GUI:

1. Go to Security Fabric > Fabric Connectors and double-click the Cloud Logging card.
2. Set the Type to FortiAnalyzer Cloud.
3. Click OK. A prompt appears to verify the FortiAnalyzer Cloud serial number.
4. Click Accept.
5. The verified FortiAnalyzer Cloud certificate appears in the settings.

To enable FortiAnalyzer Cloud logging in the CLI:

1. Configure the FortiAnalyzer Cloud settings:

   ```
   config log fortianalyzer-cloud setting
   set status enable
   set ips-archive disable
   set certificate-verification enable
   set serial "FAZVCLTM19000000"
   set access-config enable
   set enc-algorithm high
   set ssl-min-proto-version default
   set conn-timeout 10
   set monitor-keepalive-period 5
   set monitor-failure-retry-period 5
   set upload-option realtime
   end
   ```

2. Configure the FortiAnalyzer Cloud filters:

   ```
   config log fortianalyzer-cloud filter
   set severity information
   set forward-traffic disable
   set local-traffic disable
   set multicast-traffic disable
   set sniffer-traffic disable
   set anomaly disable
   set voip disable
   set dlp-archive disable
   end
   ```

To disable FortiAnalyzer Cloud logging for a specific VDOM in the CLI:

1. Enable override FortiAnalyzer in the general log settings:

   ```
   config log setting
   set faz-override enable
   end
   ```
2. Disable the override FortiAnalyzer Cloud setting:
   ```
   config log fortianalyzer-cloud override-setting
   set status disable
   end
   ```

To set FortiAnalyzer Cloud logging to filter for a specific VDOM in the CLI:

1. Enable override FortiAnalyzer in the general log settings:
   ```
   config log setting
   set faz-override enable
   end
   ```

2. Enable the override FortiAnalyzer Cloud setting:
   ```
   config log fortianalyzer-cloud override-setting
   set status enable
   end
   ```

3. Configure the override filters for FortiAnalyzer Cloud:
   ```
   config log fortianalyzer-cloud override-filter
   set severity information
   set forward-traffic disable
   set local-traffic disable
   set multicast-traffic disable
   set sniffer-traffic disable
   set anomaly disable
   set voip disable
   set dlp-archive disable
   end
   ```

To display FortiAnalyzer Cloud logs in the CLI:

execute log filter device fortianalyzer-cloud
execute log filter category event
execute log display

Sample log

```plaintext
date=2019-05-01 time=17:57:45 idseq=60796052214644736 bid=100926 dvid=1027 itime="2019-05-01 17:57:48" euid=3 epid=3 dsteuid=0 dstepid=3 logver=602000890 logid=0100032002 type="event" subtype="system" level="alert" srcip=10.6.30.254 dstip=10.6.30.9 action="login" msg="Administrator ddd login failed from 10.6.30.254 because of invalid user name" logdesc="Admin login failed" sn="0" user="ddd" ui="https(10.6.30.254)" status="failed" reason="name_invalid" method="https" eventtime=1556758667847129245 devid="FG5H1E5818900000" vd="root" dt ime="2019-05-01 17:57:45" itime_t=1556758668 devname="FortiGate-501E"

```

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
Configuring FortiManager

When a FortiManager device is added to the Security Fabric, it automatically synchronizes with any connected downstream devices.

To add a FortiManager to the Security Fabric, configure it on the root FortiGate. The root FortiGate then pushes this configuration to downstream FortiGate devices. The FortiManager provides remote management of FortiGate devices over TCP port 541. The FortiManager must have internet access for it to join the Security Fabric.

Once configured, the FortiGate can receive antivirus and IPS updates, and allows remote management through FortiManager or the FortiGate Cloud service. The FortiGate management option must be enabled so that the FortiGate can accept management updates to its firmware and FortiGuard services.

Adding a FortiManager device to the Security Fabric requires the following steps in FortiOS:

- Specify the FortiManager IP address or domain name.
- Approve the FortiManager serial number that is returned by the provided IP address or domain name.

You can complete the steps in FortiOS by using the GUI or CLI.

After you complete the steps in FortiOS, go to FortiManager to complete the process by authorizing the FortiGate.

To add a FortiManager to the Security Fabric using the CLI:

1. Provide FortiManager connection information:
   ```
   config system central-management
   set type fortimanager
   set fmg {<IP_address> | <Domain name>}
   end
   ```

2. Approve the returned FortiManager serial number:
 When configuring the FortiManager connection from the CLI, no prompt is available to approve the returned FortiManager serial number. Therefore you must provide the following command:
   ```
   execute central-mgmt <fmg-serial-no> <PSK>
   ```
 ![Tip]
 If you have not previously configured a model device in FortiManager and leveraged a pre-shared key for registration, you can enter any character for the PSK field in the `execute central-mgmt command`.

3. Go to FortiManager and authorize the FortiGate. See Authorizing the FortiGate in FortiManager on page 2228.

To add a FortiManager to the Security Fabric using the GUI:

1. On the root FortiGate, go to Security Fabric > Fabric Connectors and double-click the FortiManager card. The FortiManager card is used to configure the FortiManager connection information.

2. For Status, click Enable.
3. For **Type**, click **On-Premise**.

![Edit Fabric Connector](image)

4. Enter the **IP/Domain Name** of the FortiManager.
5. Click **OK**.

 The **Confirm** pane appears.

![Confirm Panel](image)

6. Review the serial number, and click **OK**.
7. Go to FortiManager and authorize the FortiGate. See [Authorizing the FortiGate in FortiManager on page 2228](#).

Authorizing the FortiGate in FortiManager

After completing the GUI or CLI steps in FortiOS, go to FortiManager to authorize the FortiGate, which completes the process.

To authorize the FortiGate in FortiManager:

1. On FortiManager, go to **Device Manager** and find the FortiGate in the **Unauthorized Devices** list.

 The unauthorized device list is located in the root ADOM, regardless of the firmware version of the root ADOM or FortiOS.
2. Select the FortiGate device or devices, and click **Authorize** in the toolbar.
3. In the **Authorize Device** pop-up, adjust the device names as needed, select the appropriate ADOM (if applicable), and click **OK**.

For more information about using FortiManager, see the [FortiManager Administration Guide](#).
Configuring FortiManager Cloud service

This cloud-based SaaS management service is available through FortiManager. This service is included in FortiCloud accounts with a FortiManager Cloud account level subscription (ALCI).

Configuring a per-device license

Once the FortiGate has acquired a contract named FortiManager Cloud, FortiCloud creates a cloud-based FortiManager instance under the user account. You can launch the portal for the cloud-based FortiManager from FortiCloud, and its URL starts with the User ID.

You can use a FortiGate with a contract for FortiManager Cloud to configure central management by using the FQDN of fortimanager.forticloud.com. A FortiGate-FortiManager tunnel is established between FortiGate and the FortiManager instance.

After the tunnel is established, you can execute FortiManager functions from the cloud-based FortiManager portal.

To configure FortiManager Cloud central management:

1. **Enable FortiManager Cloud.**
 a. Go to Security Fabric > Fabric Connectors and double-click the FortiManager card.
 b. For Status, click Enable.
 c. For Type, click FortiManager Cloud.
 d. Click OK.

 The FortiManager Cloud button can only be selected if you have a FortiManager Cloud product entitlement.

2. In the FortiManager Cloud instance, go to Device Manager and authorize the FortiGate. See Authorizing devices for more information.
 When using the FortiGate to enable FortiManager Cloud, the FortiGate appears as an unauthorized device. After authorizing the FortiGate, it becomes a managed device.
In FortiOS, the Security Fabric > Fabric Connectors page now displays green arrow in the FortiManager card because FortiManager Cloud is registered.

Diagnostics

To verify the contract information:

```
# diagnose test update info contract
... System contracts:
    ... Account contracts:
        FMGC, Thu Dec 2 16:00:00 2021
...
```

To verify the FortiManager Cloud instance has launched and the FortiGate is registered:

```
# diagnose fdsm central-mgmt-status
Connection status: Up
Registration status: Registered
```

Configuring Sandboxing

The Security Fabric supports the following FortiSandbox deployments.

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>FortiGate Cloud Sandbox</td>
<td>Files are sent to Fortinet’s Cloud Sandbox cluster for processing.</td>
<td>• The FortiGate must have a valid AV license.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The FortiCloud account provides access to a portal to view submissions. This is not required for the Security Fabric.</td>
</tr>
<tr>
<td>FortiSandbox Cloud</td>
<td>Files are sent to a dedicated FortiCloud hosted instance of FortiSandbox for processing.</td>
<td>• FortiCloud premium license</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FortiSandbox Cloud entitlement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The FortiGate and FortiCloud license are registered to the same account.</td>
</tr>
<tr>
<td>FortiSandbox appliance</td>
<td>Files are sent to a physical appliance or VM, typically residing on premise, for processing.</td>
<td>• None</td>
</tr>
</tbody>
</table>
To apply sandboxing in a Security Fabric, connect one of the FortiSandbox deployments, then configure an antivirus profile to submit files for dynamic analysis. The submission results supplement the AV signatures on the FortiGate. FortiSandbox inspection can also be used in web filter profiles.

In a Security Fabric environment, sandbox settings are configured on the root FortiGate. Once configured, the root FortiGate pushes the settings to other FortiGates in the Security Fabric.

FortiGate Cloud Sandbox

FortiGate Cloud Sandbox allows users to take advantage of FortiSandbox features without having to purchase, operate, and maintain a physical appliance. It also allows you to control the region where your traffic is sent to for analysis. This allows you to meet your country's compliance needs regarding data storage locations.

Users are not required to have a FortiCloud account to use FortiGate Sandbox Cloud.

The submission to the cloud with a valid FortiGuard Antivirus (AVDB) license is rate limited per FortiGate model. Refer to the Service Description for details. For those without any AVDB license, the submission is limited to only 100 per day.

To configure FortiGate Cloud Sandbox, you must first activate the connection from the CLI. Note that FortiGate Cloud Sandbox is decoupled from FortiGate Cloud logging, so you do not need to have a FortiCloud account or have cloud logging enabled.

To activate the FortiGate Cloud Sandbox connection:

```plaintext
# execute forticloud-sandbox region
0  Europe
1  Global
2  Japan
3  US
Please select cloud sandbox region[0-3]:3
```

After a region is selected, the following configuration is added:

```plaintext
config system fortiguard
    set sandbox-region {0 | 1 | 2 | 3}
end
```

Alternatively, using the `execute forticloud-sandbox update` command also works.

To obtain or renew a FortiGuard antivirus license:

1. See the [How to Purchase or Renew FortiGuard Services](#) video for FortiGuard antivirus license purchase instructions.
2. Once a FortiGuard license is purchased and activated, users are provided with a paid FortiSandbox Cloud license.
 a. Go to Dashboard > Status to view the FortiSandbox Cloud license indicator.

 ![Dashboard Status](image)

 b. Alternatively, go to System > FortiGuard to view the FortiSandbox Cloud license indicator.

To enable FortiGate Cloud Sandbox in the GUI:

1. Go to Security Fabric > Fabric Connectors and double-click the Cloud Sandbox card.
2. Set Status to Enable.
3. For Type, select FortiGate Cloud.
4. Select a Region from the dropdown.

 ![Fabric Connectors](image)

5. Click OK.

FortiSandbox Cloud

FortiSandbox Cloud offers more features and better detection capability. Connecting to FortiSandbox Cloud will automatically use the cloud user ID of the FortiGate to connect to the dedicated FortiSandbox Cloud instance. The
FortiGate automatically detects if there is a valid entitlement.

The following items are required to initialize FortiSandbox Cloud:

- A FortiCloud premium account.
- A valid FortiSandbox Cloud contract on the FortiGate. To view contract information in the CLI, enter `diagnose test update info`. The User ID at the end of the output shows FortiCloud which FortiSandbox Cloud account the FortiGate is connected to.
- A provisioned FortiSandbox Cloud. See Deploying FortiSandbox Cloud for information.

To configure FortiSandbox Cloud in the GUI:

1. Go to Security Fabric > Fabric Connectors and double-click the Cloud Sandbox card.
2. Set Status to Enable.
3. For Type, select FortiSandbox Cloud.

 If the FortiSandbox Cloud option is grayed out or not visible, enter the following in the CLI:

   ```
   config system global
   set gui-fortigate-cloud-sandbox enable
   end
   ```

4. Click OK.

To configure FortiSandbox Cloud in the CLI:

```fortigate
config system fortisandbox
set status enable
set forticloud enable
set server <string>
end
```

If the FortiGate does not detect the proper entitlement, a warning is displayed and the CLI configuration will not save.

If the FortiSandbox Cloud is running version 4.0.0 and later, the FortiGate will automatically connect to fortisandboxcloud.com, and then discover the specific region and server to connect to based on which region the customer selected to deploy their FortiSandbox Cloud instance. The FortiGate must have a FortiCloud premium account license and a FortiSandbox Cloud VM license for this functionality.

FortiSandbox appliance

FortiSandbox appliance is the on-premise option for a full featured FortiSandbox. Connecting to a FortiSandbox appliance requires that Cloud Sandbox is disabled.

To switch from Cloud Sandbox to FortiSandbox in the Security Fabric:

1. Go to Security Fabric > Fabric Connectors and double-click the Cloud Sandbox card.
2. Set Status to Disabled.
3. Click OK.
To enable FortiSandbox appliance in the GUI:

1. Go to Security Fabric > Fabric Connectors and double-click the FortiSandbox card.
2. Set Status to Enable.
3. In the Server field, enter the FortiSandbox device’s IP address.
4. Optionally, enter a Notifier email.
5. Click OK.

To enable FortiSandbox appliance in the CLI:

```
config system fortisandbox
    set status enable
    set forticloud disable
    set server <address>
end
```

Authorizing the FortiGate from FortiSandbox Cloud and a FortiSandbox appliance

Once the FortiGate makes a connection to the FortiSandbox Cloud or appliance, the FortiGate must be authorized.

To authorize a FortiGate from FortiSandbox:

1. In the FortiSandbox GUI, go to Scan Input > Device in 3.2 or Security Fabric > Device in 4.0.
2. Search using the FortiGate serial number to locate the FortiGate. In the Auth column, click the link icon to authorize the FortiGate.
3. Repeat this step to authorize the VDOMs if required.

The link icon changes from an open to a closed link, which indicates that the FortiGate is authorized.

4. In the FortiGate GUI, go to Security Fabric > Fabric Connectors and double-click the FortiSandbox card.
5. Click Test connectivity. The FortiGate is now authorized and the status displays as Connected.

Antivirus profiles

An antivirus profile must be configured to send files to the sandbox. Once submitted, sandbox inspection is performed on the file to detect malicious activities. The FortiGate can use the dynamic malware detection database from the sandbox to supplement the AV signature database. See Using FortiSandbox post-transfer scanning with antivirus on page 1113 for more information.
FortiSandbox inline scanning is supported on FortiSandbox appliances in proxy inspection mode. When inline scanning is enabled, the client’s file is held while it is sent to FortiSandbox for inspection. Once a verdict is returned, the appropriate action is performed on the held file. If there is an error or timeout on the FortiSandbox, the FortiGate’s configuration determines what to do with the held file. See Using FortiSandbox inline scanning with antivirus on page 1115 for more information.

Inline scanning requires a FortiSandbox appliance running version 4.2 or later. This feature is not supported on FortiSandbox Cloud or FortiGate Cloud Sandbox.

Web filter profiles

Sandbox inspection can be used in web filter profiles. The FortiGate uses URL threat detection database from the sandbox to block malicious URLs. See Block malicious URLs discovered by FortiSandbox on page 1148 for more information.

Top FortiSandbox Files FortiView monitor

In the Top FortiSandbox Files FortiView monitor, users can select a submitted file and drill down to view its static and dynamic file analysis. The full FortiSandbox report can be downloaded in PDF format. This feature works with FortiGate Cloud Sandbox, FortiSandbox Cloud, and FortiSandbox appliance. FortiSandbox must be running version 3.2.1 and later.

Prerequisites:

1. Add FortiSandbox to the Security Fabric.
2. Configure an AV profile with Send files to FortiSandbox for inspection enabled (see Using FortiSandbox post-transfer scanning with antivirus on page 1113).
3. Configure a firewall policy with the AV profile that allows traffic to the internet.
4. Add the Top FortiSandbox Files FortiView monitor (see Adding FortiView monitors on page 108).
5. On a client PC, attempt to download a suspicious file.

To view the FortiSandbox analysis and download the PDF:

1. Go to Dashboard > Top FortiSandbox Files. The entry appears in the table, but the analysis is not available yet.

2. After about five to ten minutes, refresh the table. The analysis is available.

3. Select the entry, then right-click and select Drill Down to Details.
4. In the dropdown, select Static File Analysis to view the static file analysis.

5. In the dropdown, select the client device to view the dynamic file analysis.

6. Click Download full report to download the detailed PDF report. The reports contains FortiSandbox job information, detailed file information, static analysis results, and dynamic analysis results.

Configuring FortiClient EMS

The FortiGate Security Fabric root device can link to FortiClient Endpoint Management System (EMS) and FortiClient EMS Cloud (a cloud-based EMS solution) for endpoint connectors and automation. Up to three EMS servers can be added to the Security Fabric, including a FortiClient EMS Cloud server. EMS settings are synchronized between all fabric members.

To enable cloud-based EMS services, the FortiGate must be registered to FortiCloud with an appropriate user account. The following examples presume that the EMS certificate has already been configured.

To add an on-premise FortiClient EMS server to the Security Fabric in the GUI:

1. On the root FortiGate, go to System > Feature Visibility and enable Endpoint Control.
2. Go to Security Fabric > Fabric Connectors and double-click the FortiClient EMS card.
3. For Type, click FortiClient EMS.
4. Optionally, enable EMS Threat Feed. See Malware threat feed from EMS on page 1103 for more information about using this setting in an AV profile.
Enter a name and IP address or FQDN. When connecting to a multitenancy-enabled EMS, Fabric connectors must use an FQDN to connect to EMS, where the FQDN hostname matches a site name in EMS (including "Default"). The following are examples of FQDNs to provide when configuring the connector to connect to the default site and to a site named SiteA, respectively: default.ems.yourcompany.com, sitea.ems.yourcompany.com. See Multitenancy.

Click OK.
A window appears to verify the EMS server certificate:

Click Accept.
The FortiClient EMS Status section displays a Successful connection and an Authorized certificate:

If the device is not authorized, log in to the FortiClient EMS to authorize the FortiGate under Administration > Fabric Devices.
To add a FortiClient EMS Cloud server to the Security Fabric in the GUI:

FortiClient EMS Cloud can only be configured when the FortiGate is registered to FortiCloud and the EMS Cloud entitlement is verified. If the FortiCloud account does not pass the FortiClient EMS Cloud entitlement check, the option is not selectable in the FortiClient EMS connector settings.

1. Go to Security Fabric > Fabric Connectors and double-click the FortiClient EMS card.
2. Set Type to FortiClient EMS Cloud.
3. Enter a name.
4. Click OK.
 A window appears to verify the EMS server certificate.
5. Click Accept.
 The FortiClient EMS Status section displays a Successful connection and an Authorized certificate.

To test connectivity with the EMS server:

1. Go to Security Fabric > Fabric Connectors and double-click the FortiClient EMS or FortiClient EMS Cloud card.
2. In the FortiClient EMS Status section under Connection, click Refresh.

To add an on-premise FortiClient EMS server to the Security Fabric in the CLI:

```
config endpoint-control fctems
edit <ems_name>
   set server <ip_address>
   set certificate <string>
   set https-port <integer>
   set source-ip <ip_address>
next
end
```

The https-port is the EMS HTTPS access port number, and the source-ip is the REST API call source IP address.

To add a FortiClient EMS Cloud server to the Security Fabric in the CLI:

```
config endpoint-control fctems
edit <name>
   set fortinet-one-cloud-authentication enable
   set certificate <string>
next
end
```

To verify the EMS Cloud entitlement in the CLI:

```
# diagnose test update info
```

To verify an EMS certificate in the CLI:

```
# execute fctems verify ems137
```

Subject: C = CA, ST = bc, L = burnaby, O = devqa, OU = top3, CN = sys169.qa.fortinet.cm, emailAddress = xxxx@xxxxxxxx.xxx
Issuer: CN = 155-sub1.fortinet.com
Valid from: 2017-12-05 00:37:57 GMT
Valid to: 2027-12-02 18:08:13 GMT
Root CA: No
Version: 3
Serial Num: 01:86:a2
Extensions:
 Name: X509v3 Basic Constraints
 Critical: yes
 Content:
 CA:FALSE

 Name: X509v3 Subject Key Identifier
 Critical: no
 Content:

 Name: X509v3 Authority Key Identifier
 Critical: no
 Content:

DirName:/C=CA/ST=bc/L=burnaby/O=devqa/OU=top3/CN=fac155.fortinet.com/emailAddress=xyguo@fortinet.com
serial:01:86:A4

 Name: X509v3 Subject Alternative Name
 Critical: no
 Content:
 DNS:sys169.qa.fortinet.cm

 Name: X509v3 Key Usage
 Critical: no
 Content:
 Digital Signature, Non Repudiation, Key Encipherment, Data Encipherment, Key Agreement, Certificate Sign, CRL Sign, Encipher Only, Decipher Only

 Name: X509v3 Extended Key Usage
 Critical: no
 Content:
 TLS Web Server Authentication, TLS Web Client Authentication

EMS configuration needs user to confirm server certificate.
Do you wish to add the above certificate to trusted remote certificates? (y/n)y

Troubleshooting

Certificate not trusted

When configuring a new connection to an EMS server, the certificate might not be trusted.
When you click Authorize, a warning displays: *The server certificate cannot be authenticated with installed CA certificates. Please install its CA certificates on this FortiGate.*

In the CLI, an error message displays when you try to verify the certificate:

```
# execute fctems verify Win2K16-EMS
certificate not configured/verified: 2
Could not verify server certificate based on current certificate authorities.
Error 1--92-60-0 in get SN call: EMS Certificate is not signed by a known CA.
```

The default FortiClient EMS certificate that is used for the SDN connection is signed by the CA certificate that is saved on the Windows server when FortiClient EMS is first installed. You can manually export and install it on the FortiGate.

To manually export and install the certificate on to the FortiGate:

1. Export the EMS certificate on the server that EMS is installed on:
 a. On the Windows server that EMS is installed on, go to *Settings > Manage computer certificates.*
 b. In the certificate management module, go to *Trusted Root Certification Authorities > Certificates.*
 c. Right click on the certificate issued by FortiClient Enterprise Management Server and select *All Tasks > Export.*
 d. The *Certificate Export Wizard* opens. Click *Next.*
 e. Select *Base-64 encoded X.509,* then click *Next.*
 f. Enter a file name for the certificate and click *Browse* to select the folder where it will be located, then click *Next.*
 g. Review the settings, then click *Finish.* The certificate is downloaded to the specified folder.
2. On the FortiGate, import the certificate:
 a. Go to *System > Certificate.* By default, the *Certificate* option is not visible, see Feature visibility on page 2165 for information.
 b. Click *Import > CA Certificate.*
 c. Set Type to *File,* and click *Upload* to import the certificate from the management computer.
 d. Click *OK.* The imported certificate is shown in the *Remote CA Certificate* section of the certificate table.
3. Try to authorize the certificate on the FortiGate:
 a. Go to *Security Fabric > Fabric Connectors* and edit the FortiClient EMS connector. The connection status should now say that the certificate is not authorized.
b. Click Authorize. The following warning is shown:

The warning can also be seen in the CLI:

```
# execute fctems verify Win2K16-EMS
failure in certificate configuration/verification: -4
Could not verify EMS. Error 1--94-0-401 in get SN call: Authentication denied.
```

4. Authorize the FortiGate on EMS:
 a. Log in to the EMS server console and go to Administration > Fabric Devices.
 b. Select the serial number of the FortiGate device, then click Authorize.
5. Try to authorize the certificate on the FortiGate again:
 a. On the FortiGate, go to Security Fabric > Fabric Connectors and edit the FortiClient EMS connector.
 b. Click Authorize.
 c. When presented with the EMS server certificate, click Accept to accept the certificate.

 Your connection should now be successful and authorized.

 d. Click OK.

Using EMS silent approval in the Security Fabric

FortiClient EMS with Fabric authorization and silent approval capabilities can approve the root FortiGate in a Security Fabric once, and then silently approve remaining downstream FortiGates in the Fabric. Similarly in an HA scenario, an approval only needs to be made once to the HA primary unit. The remaining cluster members are approved silently.

To use EMS silent approval:

1. Configure the EMS entry on the root FortiGate or HA primary:

```
config endpoint-control fctems
   edit "ems139"
      set fortinetone-cloud-authentication disable
      set server "172.16.200.139"
      set https-port 443
      set source-ip 0.0.0.0
      set pull-sysinfo enable
      set pull-vulnerabilities enable
      set pull-avatars enable
      set pull-tags enable
      set pull-malware-hash enable
      unset capabilities
      set call-timeout 30
      set websocket-override disable
   next
end
```
When the entry is created, the capabilities are unset by default.

2. Authenticate the FortiGate with EMS:

```
# execute fctems verify ems_139
...```

The FortiGate will enable the Fabric authorization and silent approval based on the EMS supported capabilities.

```
config endpoint-control fctems
 edit "ems139"
 set server "172.18.62.12"
 set capabilities fabric-auth silent-approval websocket
 next
end```

3. Configure a downstream device in the Security Fabric (see Configuring the root FortiGate and downstream FortiGates on page 2210 for more details). The downstream device will be silently approved.

4. Configure a secondary device in an HA system (see HA active-passive cluster setup on page 2037 and HA active-active cluster setup on page 2039 for more details). The secondary device will be silently approved.

Allowing deep inspection certificates to be synchronized to EMS and distributed to FortiClient

On FortiClient EMS versions that support push CA certs capability, the FortiGate will push CA certificates used in SSL deep inspection (see Deep inspection on page 1298 for more details) to the EMS server. On the EMS server, the CA certificates can be selected in the managed endpoint profiles so they can be installed on managed endpoints. FortiClient EMS 7.0.1 and later is required to use this feature.

To configure deep inspection certificate synchronization to EMS:

1. Configure the EMS Fabric connector:

```
config endpoint-control fctems
  edit "ems138"
    set fortinetone-cloud-authentication disable
    set server "172.16.200.138"
    set https-port 443
    set source-ip 0.0.0.0
    set pull-sysinfo enable
    set pull-vulnerabilities enable
    set pull-avatars enable
    set pull-tags enable
    set pull-malware-hash enable
    set capabilities fabric-auth silent-approval websocket websocket-malware push-ca-certs
      set call-timeout 30
      set websocket-override disable
      set preserve-ssl-session disable
  next
end```

2. Apply the certificate to an SSL/SSH profile for deep inspection:

```
config firewall ssl-ssh-profile
 edit "deep-inspection"```
set comment "Read-only deep inspection profile."

config https
 set ports 443
 set status deep-inspection
end

set server-cert-mode re-sign
 set caname "Fortinet_CA_SSL"
 set untrusted-caname "Fortinet_CA_Untrusted"
next
end

The default deep inspection profile, CA certificate, and untrusted CA certificates are used in this example.

3. Configure the firewall policy:

 config firewall policy
 edit 1
 set name "deep-inspection"
 set srcintf "port14"
 set dstintf "port13"
 set action accept
 set srcaddr "all"
 set dstaddr "all"
 set schedule "always"
 set service "ALL"
 set utm-status enable
 set inspection-mode proxy
 set ssl-ssh-profile "deep-inspection"
 set av-profile "default"
 set nat enable
 next
end

4. In EMS, verify that the CA certificate was pushed to EMS:
 a. Go to Endpoint Policy & Components > CA Certificates.

 b. Verify the certificate table to see that the EMS server received the CA certification from the different FortiGates.

5. Select the CA certificate in the endpoint profile:
 a. Go to Endpoint Profiles > Manage Profiles and edit a profile. The default profile is used in this example.
 b. Click Advanced in the top right corner and click the System Settings tab.
 c. In the Other section, enable Install CA Certificate on Client and select the Fortinet_CA_SSL certificate for the desired endpoint.
d. Click Save. Once the FortiClient endpoint is registered, it receives the CA certificate. When the FortiClient endpoint tries to access the internet through the FortiGate with the firewall policy that has deep inspection, no warning message is displayed. The server certificate is trusted with the installed CA certificate to complete the certificate chain.

Verification

Before configuring deep inspection certificate synchronization, a warning message is displayed when a FortiClient endpoint accesses the internet through the FortiGate with the firewall policy that has deep inspection. The FortiClient certificate store does not have the FortiGate's CA that is used in the deep inspection SSL/SSH profile.

For example, accessing https://www.facebook.com in Chrome shows a warning. In the address bar, clicking Not secure > Certificate opens the Certificate dialog, which indicates that Windows does not have enough information to verify the certificate.
After the EMS profile is pushed to FortiClient endpoint, the expected FortiGate's certificate is shown in its certificate store.
To verify the deep inspection certificate synchronization:

1. In Chrome, go to Settings > Privacy and security and open Manage certificates.
2. Click the Trusted Root Certification Authorities tab. The FortiGate's certificate appears in the list.
4. In the address bar, click the padlock, then click Certificate. The dialog displays the valid certificate information.

Diagnostics

Use the `diagnose endpoint fctems json deep-inspect-cert-sync` command in FortiOS to verify the certificate information. In the following example, there are multiple VDOMs with FortiGates in HA mode.

To verify the primary FortiGate:

```json
FGT_EC_Primary (global) # diagnose endpoint fctems json deep-inspect-cert-sync
JSON:

"fortigates": [
  "FG2K5E39169*****",
  "FG2K5E39169*****"
],
"vdoms": [
  "vdom":"root",
  "certs": [
    "name":"Fortinet_CA_SSL",
    "cert": "-----BEGIN CERTIFICATE-----
\nMIID5jCCAesg...Sfu+Q8zE8Crmh6LlX/bv+q\n-----END CERTIFICATE-----"
  ]
]"
To verify the secondary FortiGate:

```json
FGT_EC_Secondary(global) # diagnose endpoint fctems json deep-inspect-cert-sync
JSON:

"fortigates": [
 "FG2K5E39169*****",
 "FG2K5E39169*****"
],
"vdoms": [

 "vdom": "root",
 "certs": [
 "name": "Fortinet_CA_SSL",
 "cert": "-----BEGIN CERTIFICATE-----\nMIID5jCCAs6g...Sfu+Q8zE8Crmt6L1X/bv+q\n--END CERTIFICATE-----\n"
],

 "vdom": "vdom1",
 "certs": [
 "name": "Fortinet_CA_SSL",
 "cert": "-----BEGIN CERTIFICATE-----\nMIID5jCCAs6g...Sfu+Q8zE8Crmt6L1X/bv+q\n--END CERTIFICATE-----\n"
]
]
"vdom": "vdom1",
"certs": [
 "name": "Fortinet_CA_Untrusted",
 "cert": "-----BEGIN CERTIFICATE-----\nMIID8DCCAtig...3zBbfzP+nVUpC\n--END CERTIFICATE-----"
],
"vdom": "vdom1",
"certs": [
 "name": "Fortinet_CA_Untrusted",
 "cert": "-----BEGIN CERTIFICATE-----\nMIID8DCCAtig...3zBbfzP+nVUpC\n--END CERTIFICATE-----"
]
"
```
Synchronizing FortiClient ZTNA tags

ZTNA tags (formerly FortiClient EMS tags in FortiOS 6.4 and earlier) are tags synchronized from FortiClient EMS as dynamic address objects on the FortiGate. FortiClient EMS uses zero-trust tagging rules to automatically tag managed endpoints based on various attributes detected by the FortiClient. When the FortiGate establishes a connection with the FortiClient EMS server via the EMS Fabric connector, it pulls zero-trust tags containing device IP and MAC addresses and converts them to read-only dynamic address objects. It also establishes a persistent WebSocket connection to monitor for changes in zero-trust tags, which keeps the device information current. These ZTNA tags can then be used in ZTNA rules, firewall rules, and NAC policies to perform security posture checks. ZTNA tags are displayed in the Device Inventory widget, FortiClient widget, and Asset Identity Center page.

When using WebSocket, EMS pushes notifications to the corresponding FortiGate when there are updates to tags or other monitored attributes. The FortiGate then fetches the updated information using the REST API over TCP/8013. When WebSocket is not used (due to an override or unsupported EMS version), updates are triggered on demand from the FortiGate side over the REST API.

If the WebSocket capability is detected, the capabilities setting will automatically display the WebSocket option. You can use the `diagnose test application fcnacd 2` command to view the status of the WebSocket connection.

In the following example, the FortiGate connects to and retrieves ZTNA tags from a FortiClient EMS configured with tagging rules. It is assumed that zero-trust tags and rules are already created on the FortiClient EMS. For more information, see the Zero Trust Tags section of the EMS Administration Guide.
To verify zero-trust tags in FortiClient EMS:

1. Go to Zero Trust Tags > Zero Trust Tagging Rules to view the tags.

2. Go to Zero Trust Tags > Zero Trust Tag Monitor to view the registered users who match the defined tag.

To configure the EMS Fabric connector to synchronize ZTNA tags in the GUI:

1. Configure the EMS Fabric connector:
   a. On the root FortiGate, go to Security Fabric > Fabric Connectors.
   b. Click Create New and click FortiClient EMS.
   c. Enable Synchronize firewall addresses.
d. Configure the other settings as needed and validate the certificate.

e. Click OK.

2. Enable ZTNA:
   a. Go to System > Feature Visibility and enable Zero Trust Network Access.
   b. Click Apply.

3. Go to Policy & Objects > ZTNA and select the ZTNA Tags tab. You will see the ZTNA IP and ZTNA MAC tags synchronized from the FortiClient EMS.

To configure the EMS Fabric connector to synchronize ZTNA tags in the CLI:

1. Configure the EMS Fabric connector on the root FortiGate:

   ```
 config endpoint-control fctems
 edit "WIN10-EMS"
 set server "192.168.20.10"
 set https-port 443
 set pull-sysinfo enable
 set pull-vulnerabilities enable
 set pull-avatars enable
 set pull-tags enable
 set pull-malware-hash enable
 set capabilities fabric-auth silent-approval websocket
 next
 end
   ```

2. Verify which IPs the dynamic firewall address resolves to:

   ```
 # diagnose firewall dynamic list
 List all dynamic addresses:
 FCTEMS0000100000_all_registered_clients: ID(51)
 ADDR(172.17.194.209)
 ADDR(10.10.10.20)
 ...
 FCTEMS0000100000_Low: ID(78)
   ```
Configuring FortiNAC

A FortiNAC device can be added to the Security Fabric on the root FortiGate. After the device has been added and authorized, you can log in to the FortiNAC from the FortiGate topology views.

Adding a FortiNAC to the Security Fabric requires a FortiNAC with a license issued in the year 2020 or later that includes an additional certificate. The device cannot be added if it has an older license. Use the licensetool in the FortiNAC CLI to determine if your license includes the additional certificate.

The FortiNAC tags connector under Security Fabric > Fabric Connectors has been deprecated. It was replaced with a REST API (in FortiNAC and FortiOS) that is used by FortiNAC to send user logon and logoff information to the FortiGate. The FortiNAC tag dynamic firewall address type is used to store the device IP, FortiNAC firewall tags, and FortiNAC group information sent from FortiNAC by the REST API when user logon and logoff events are registered (see FortiNAC tag dynamic address on page 893 for more information).

For upgrade support, the FSSO FortiNAC user type can still be configured in the CLI.

To add a FortiNAC to the Security Fabric:

2. On the root FortiGate, authorize the FortiNAC.
3. Verify the connection status in the topology views.

To authorize the FortiNAC on the root FortiGate in the GUI:

2. The FortiNAC device will be highlighted in the topology list in the right panel with the status Waiting for Authorization.
3. Click on the highlighted FortiNAC and select Authorize.

Optionally, you can also deny authorization to the FortiNAC to remove it from the list.

To authorize the FortiNAC on the root FortiGate in the CLI:

```plaintext
cfg system csf
cfg trusted-list
edit "FNVMCATM20000306"
 set action accept
next
end
end
```

To verify the connection status:

1. After the FortiNAC is authorized, go to Security Fabric > Physical Topology and confirm that it is included in the topology.

2. Go to Security Fabric > Logical Topology and confirm the FortiNAC is also displayed there.

3. Run the following command in the CLI to view information about the FortiNAC device's status:

   ```bash
 # diagnose sys csf downstream-devices fortinac
 {
 "path":"FGSH1E5818900126:FNVMCATM20000306",
 "mgmt_ip_str":"10.1.100.197",
   ```
To log in to the FortiNAC from the FortiGate:

2. Click on the FortiNAC and select Login to <serial_number>.

A new tab will open to the FortiNAC log in page.
3. Enter the username and password to log in to the FortiNAC.

Configuring FortiAP and FortiSwitch

FortiAP and FortiSwitch devices can be authorized in the Security Fabric with one click. After connecting a FortiAP or FortiSwitch device to an authorized FortiGate, it will automatically be listed in the topology tree.

If the default auto-auth-extension-device settings on the FortiAP or FortiSwitch have been modified, manual authorization in the Security Fabric may not be required.

For more information about configuring FortiAPs, see Configuring the FortiGate interface to manage FortiAP units and Discovering, authorizing, and deauthorizing FortiAP units.

For more information about configuring FortiSwitches, see Using the FortiGate GUI.

To authorize FortiAP and FortiSwitch devices:

1. Connect the FortiAP or FortiSwitch device to a FortiGate.
2. On the root FortiGate, go to Security Fabric > Fabric Connectors. The new device is shown in the Topology tree.
3. Click the device and select Authorize.

![Diagram of FortiMail within Security Fabric]

### Configuring FortiMail

FortiMail can be authorized into the Security Fabric using either the gutter on the Fabric Connectors page, or by pre-authorizing using the FortiMail serial number or certificate.

#### To join the Security Fabric from FortiMail:

1. Go to System > Customization and click the Corporate Security Fabric tab (or the Corporate Security Fabric tab in FortiMail 6.4.2 and earlier).
2. Click the toggle to enable the Fabric.
3. Enter the Upstream IP Address (root FortiGate) and the Management IP of the FortiMail.
4. Click Apply.

#### Authorizing using FortiOS

If the FortiMail was added to the Security Fabric but not pre-authorized, you can authorize it in FortiOS on the Fabric Connectors page.
To authorize FortiMail:

2. In the topology tree, hover over the FortiMail and click Authorize.

3. Verify the certificate is correct, then click Accept.

Pre-authorizing using the FortiMail certificate

FortiMail can be pre-authorized using its serial number or certificate. When you pre-authorize, the FortiMail can join at any time, and you will not need to authorize it FortiOS. In this example, FortiMail is pre-authorized using a certificate.

To pre-authorize FortiMail using a third-party or default certificate:

1. Log in to FortiMail.
2. Download the certificate. For example, in Chrome:
   a. In the left side of the address bar, click the icon to view the site information.
   b. Click Certificate.
   c. Click the Details tab, then click Copy to File.
   d. The Certificate Export Wizard opens. Click Next to continue.
For the file format, select *Base-64 encoded X.509 (.CER)*, then click *Next.*

Browse to the folder location and enter a file name, then click *Next.*

Click *Finish,* then click *OK* to close the dialog box.

3. In FortiOS, go to *Security Fabric > Fabric Connectors* and double-click the *Security Fabric Setup* card.

4. Beside *Device authorization,* click *Edit* and configure the following:
   a. Enter the FortiMail serial number.
   b. For *Authorization type,* select *Serial Number.*
   c. For *Certificate,* upload the .CER file you saved previously.
   d. Click *OK.*

**Configuring FortiNDR**

FortiNDR (formerly FortiAI) can be added to the Security Fabric so it appears in the topology views and the dashboard widgets.

To add FortiNDR to the Security Fabric in the GUI:

1. Enable the Security Fabric and configure the interface to allow other Security Fabric devices to join (see Configuring the root FortiGate and downstream FortiGates on page 2210).
2. Install the FortiNDR appliance and activate the product with a valid license (see Registering products in the Asset Management Guide). A license file is provided after the product is registered.

3. In FortiNDR, go to System > FortiGuard and verify that the pre-trained models (engines) are up to date. Refer to the FortiGuard website for the latest FortiNDR ANN versions.

4. Configure and authorize the FortiGate in the FortiNDR GUI to join the Security Fabric:
   b. Click the toggle to Enable Security Fabric.
c. Enter the IP addresses for the root FortiGate and the FortiNDR.

![Fortinet Security Fabric Configuration Screen]

d. Click OK. The FortiNDR is now authorized.

5. Authorize the FortiNDR in FortiOS:
   b. In the topology tree, click the highlighted serial number and select Authorize.
c. Click Accept to verify the device certificate.

The Security Fabric widget on the dashboard also updates when the FortiNDR is authorized.


To add FortiNDR to the Security Fabric in the CLI:

1. Configure the interface to allow other Security Fabric devices to join:
   ```
 config system interface
 edit "port1"
 ... set allowaccess ping https ssh http fgfm fabric ...
 next
 end
   ```

2. Enable the Security Fabric:
   ```
 config system csf
 set status enable
 set group-name "fabric-ai"
 end
   ```

3. In FortiNDR, configure the device to join the Security Fabric:
   ```
 config system csf
 set status enable
 set upstream-ip 10.6.30.14
   ```
set management-ip 10.6.30.251
end

4. Authorize the FortiNDR in FortiOS:

```plaintext
config system csf
 set status enable
 set group-name "fabric-ai"
config trusted-list
 edit "FAIVSTM21000000"
 set authorization-type certificate
 set certificate "***************"
next
end
end
```

### Configuring FortiDeceptor

FortiDeceptor can be added to the Security Fabric so it appears in the topology views and the dashboard widgets.

#### To add FortiDeceptor to the Security Fabric in the GUI:

1. Enable the Security Fabric (see Configuring the root FortiGate and downstream FortiGates on page 2210 for more details) with the following settings:
   a. Configure the interface to allow other Security Fabric devices to join.
   b. Enable *Allow downstream device REST API access* so the FortiDeceptor can communicate with the FortiGate, and select an *Administrator profile*. The minimum permission required for the selected *Administrator profile* is *Read/Write for User & Device* (set authgrp read-write).

2. In FortiDeceptor, integrate the device:
   a. Go to Fabric > Integration Devices.
   b. Click Quarantine Integration With New Device.
   c. Click the toggle to enable the device.
   d. For *Upstream IP Address*, enter the root FortiGate's management IP address.

   ![Quarantine Integration With New Device](image)

   e. Click Apply.
3. Authorize the FortiDeceptor in FortiOS:
   a. Go to Security Fabric > Fabric Connectors.
   b. In the topology tree, click the highlighted FortiDeceptor serial number and select Authorize.

   The authorized device appears in the topology tree. Hover over the device name to view the tooltip.

   The Security Fabric widget on the dashboard also updates when the FortiDeceptor is authorized.


   Physical topology view:

   Logical topology view:
To add FortiDeceptor to the Security Fabric in the CLI:

1. Configure the interface to allow other Security Fabric devices to join:
   ```
 config system interface
 edit "wan1"
 ... set allowaccess ping https ssh snmp http fabric ... next
 end
   ```

2. Enable the Security Fabric:
   ```
 config system csf
 set status enable
 set group-name "csf-d"
 set downstream-access enable
 set downstream-accprofile "super_admin"
 end
   ```

3. In FortiDeceptor, integrate the device:
   a. Go to Fabric > Integration Devices.
   b. Click Quarantine Integration With New Device.
   c. Click the toggle to enable the device.
   d. For Upstream IP Address, enter the root FortiGate's management IP address.
   e. Click Apply.

4. Authorize the FortiDeceptor in FortiOS:
   ```
 config system csf
 set status enable
 set group-name "csf-d"
 config trusted-list
 edit "FDC-VMTM21000000"
 set serial "FDC-VMTM21000000"
 next
   ```
Configuring FortiWeb

A FortiWeb can be configured to join a Security Fabric through the root or downstream FortiGate. There are two methods to add a FortiWeb to the Security Fabric:

- Trigger the authorization on the FortiWeb side and authorize from the FortiOS side.
- Pre-authorize the FortiWeb from the FortiOS side.

Once the FortiWeb joins the Fabric, the following features are available:

- View the FortiWeb on topology pages.
- Create a dashboard Fabric Device widget to view FortiWeb data.
- Configure single sign-on using SAML.

Triggering the authorization in FortiWeb

In this example, a FortiWeb triggers the authorization process, and then the device is approved in FortiOS. This example assumes the Security Fabric has already been configured.

To trigger the Security Fabric authorization in FortiWeb:

1. Edit the FortiGate Fabric Connector settings in FortiWeb (see Fabric Connector: Single Sign On with FortiGate). The Connection Status is currently Authorize pending.
2. In FortiOS, go to Security Fabric > Fabric Connectors.
3. In the topology tree, hover over the FortiWeb and click Authorize.
4. Verify that the certificate is correct, then click Accept.
5. In FortiWeb, verify that the FortiGate Connection Status is now Authorized.

Pre-authorizing the FortiWeb in FortiOS

In this example, a FortiWeb is pre-authorized on the root FortiGate using certificate authorization. This example assumes the Security Fabric has already been configured.

To authorize a FortiWeb to join the Security Fabric in FortiOS:

2. Beside Device authorization, click Edit. The Device authorization pane opens.
3. Add the FortiWeb:
   a. Click Create New and enter a device name.
   b. For Authorization type, select Certificate.
   c. Click Browse to upload the certificate.
   d. For Action, select Accept.
e. Click OK. The FortiWeb appears in the table.


Physical topology view:

Logical topology view:
Configuring FortiTester

FortiTester can be added to the Security Fabric and authorized from the Security Fabric topology views. Once added, the FortiTester will appear in the Security Fabric widget on the dashboard. A FortiTester can be added to the dashboard as a Fabric device widget.

To add FortiTester to the Security Fabric in the GUI:

1. Enable the Security Fabric and configure the interface to allow other Security Fabric devices to join (see Configuring the root FortiGate and downstream FortiGates on page 2210).
2. In FortiTester, enable the Security Fabric:
   b. Click the toggle to enable the device (Enable Security Fabric).
   c. Enter the FortiGate Root IP Address.
   d. Click Apply.

3. Authorize the FortiTester in FortiOS:
   a. Go to Security Fabric > Fabric Connectors.
   b. In the topology tree, click the highlighted FortiTester serial number and select Authorize.

   The authorized device appears in the topology tree. Hover over the device name to view the tooltip.

   The Security Fabric widget on the dashboard also updates when the FortiTester is authorized.


   Physical topology view:
To add FortiTester to the Security Fabric in the CLI:

1. Configure the interface to allow other Security Fabric devices to join:

   ```
 config system interface
 edit "port8"
 ... set allowaccess ping https ssh http fgfm fabric ...
 next
   ```
2. Enable the Security Fabric:

   config system csf
   set status enable
   set group-name "CSF_F"
   end

3. In FortiTester, enable the Security Fabric:

   config system csf
   set ip 172.16.116.230
   set port 8013
   set status enable
   end

4. Authorize the FortiTester in FortiOS:

   config system csf
   set status enable
   set group-name "CSF_F"
   config trusted-list
     edit "FTSV3200000200000"
     set authorization-type certificate
     set certificate "***************"
   next
   end
   end

Configuring FortiMonitor

FortiMonitor can be added to the Security Fabric. When a FortiMonitor joins the Security Fabric and is authorized, it appears in the Fabric topology pages.

To add FortiMonitor to the Security Fabric:

1. Enable the Security Fabric (see Configuring the root FortiGate and downstream FortiGates on page 2210) with the following settings:
   a. Configure the interface to allow other Security Fabric devices to join.
   b. Enable Allow downstream device REST API access and select an Administrator profile.
2. In FortiMonitor, start configuring the device to join the Security Fabric (see Enable Security Fabric monitoring for detailed instructions):
a. Complete the *Discovery Details page.*

![Discovery Details page](image1)

3. Authorize the FortiMonitor in FortiOS:
   a. Go to *Security Fabric > Fabric Connectors.*
   b. In the topology tree, click the highlighted FortiMonitor and select *Authorize.*

![Topology tree with FortiMonitor](image2)

The authorized device appears in the topology tree. Hover over the device name to view the tooltip.

4. Go to *Security Fabric > Physical Topology* or *Security Fabric > Logical Topology* to view more information.

Physical topology view:
5. In FortiMonitor, complete the device configuration (see Enable Security Fabric monitoring for detailed instructions).

### Configuring FortiVoice

A FortiVoice can be added to the Security Fabric on the root FortiGate. Once the FortiVoice is added and authorized, you can log in to the device from the Security Fabric topology pages or the topology tree. A FortiVoice can be authorized in FortiOS, or can be pre-authorized with its serial number or certificate. A FortiVoice can be added to the dashboard as a Fabric device widget.

#### Authorizing using the FortiOS GUI

To authorize a FortiVoice to join the Security Fabric:

2. On the root FortiGate, go to *Security Fabric > Fabric Connectors*. The FortiVoice is highlighted in the topology list in the right panel with the status *Waiting for Authorization*.
3. Click the highlighted FortiVoice and select *Authorize*. 
4. Verify that the certificate is correct, then click Accept.

Pre-authorizing using the FortiVoice certificate

A FortiVoice can be pre-authorized using its serial number or certificate. When pre-authorizing, the FortiVoice can join at any time, and it will not need to be authorized in FortiOS. In the following example, the FortiVoice is pre-authorized using a certificate.

To pre-authorize a FortiVoice using a third-party or default certificate in the GUI:

1. Log in to the FortiVoice.
2. Download the certificate. For example, in Chrome:
   a. In the left side of the address bar, click the icon to view the site information.
   b. Click Certificate.
   c. In the Certificate window, click the Details tab, then click Copy to File.
The Certificate Export Wizard opens. Click Next.

Set the format to Base-64 encoded X.509 (.CER), then click Next.

Browse to the folder location, enter a file name, then click Next.

Click Finish, then click OK to close the wizard.

3. In FortiOS, go to Security Fabric > Fabric Connectors and double-click the Security Fabric Setup card.
4. Beside Device authorization, click Edit.
5. Click Create New and enter the following:
   a. In the Name field, enter the FortiVoice serial number.
   b. Set the Authorization type to Certificate.
   c. Upload the .CER file.
   d. Click OK, then close the Device authorization pane.

To pre-authorize a FortiVoice using a third-party or default certificate in the CLI:

```plaintext
config system csf
 config trusted-list
 edit "FOV-300E"
 set action accept
 set authorization-type certificate
 set certificate "-----BEGIN CERTIFICATE-----
...<encrypted_certificate_data>
...-----END CERTIFICATE-----"
 next
 end
end
```

To verify the connection status:

1. After the FortiVoice is authorized, go to Security Fabric > Physical Topology and confirm that it is included in the topology.
2. Go to Security Fabric > Logical Topology and confirm the FortiVoice is also displayed there.

Logging in to the FortiVoice using the Security Fabric

To log in using a topology page:

2. Click on the FortiVoice and select Login to <serial_number>.

To log in using the Fabric Connectors page:

2. In the topology tree, click the FortiVoice and select Login to <serial_number>.

Using the Security Fabric

Dashboard widgets

Security Fabric widgets can be added to FortiGate dashboards, including:

- Security Fabric status on page 2276
- Fabric Device on page 2276
- FortiGate Cloud on page 2277
Security Fabric status


Hover the cursor over the top icons to view pop-ups showing the statuses of the devices in the fabric.

The device tree shows devices that are connected, or could be connected, to your Security Fabric, according to the following color scheme:

- Blue: connected to the network
- Gray: not configured or not detected
- Red: no longer connected or not authorized

Hover over a device in the tree to view details about the device, such as its serial number, operation mode, IP address, CPU and memory usage, and others, depending on the device type.

Unauthorized FortiAP and FortiSwitch devices are highlighted in the list, and can be authorized by clicking on the device name.

Fabric Device

A Fabric Device widget shows statistics and system information about the selected fabric device. Widgets can be added for various Fabric devices including FortiMail, FortiNDR (formerly FortiAI), and FortiDeceptor.

For a FortiMail device, the widget can show:

- Mail Statistics: a chart of the total messages and total spam messages over time.
- Statistics Summary: a pie chart summarizes mail statistics.
- System Information: The FortiMail System Information widget
- System Usage: System usage information, such as CPU, memory, and disk usage, as well as the number of active
sessions.

FortiGate Cloud

The FortiGate Cloud widget shows the FortiGate Cloud status and information. If your account is not activated, you can activate it from the widget.

To activate your FortiGate Cloud account:

1. Click on the Not Activated button and select Activate. The Activate FortiGate Cloud pane opens.
2. If you already have an account:
   a. Fill in your email address, password, country or region, and reseller.
   b. Click OK.
3. If you are creating an account:
   a. In the FortiCloud field select Create Account.
   b. Fill in all of the required information.
   c. Click OK.

Topology

The full Security Fabric topology can be viewed on the root FortiGate. Downstream FortiGate devices' topology views do not include upstream devices.
The **Physical Topology** page shows the physical structure of your network, including all connected devices and the connections between them. The **Logical Topology** page shows information about the interfaces that connect devices to the Security Fabric.

In both topology pages, you can use filtering and sorting options to control the information that is shown. Hover the cursor over a device icon, port number, or endpoint to open a tooltip that shows information about that specific device, port, or endpoint. Right-click on a device to log into, configure, or deauthorize it. Right-click on an endpoint to perform various tasks, such as drilling down for more details in FortiView, quarantining the host, and banning the IP address.

The small number that might be shown in the top right corner of a device icon is the number of security ratings recommendations or warnings for that device. The circle color indicates the severity of the highest security rating check that failed. Clicking it opens the **Security Rating** page. See Security rating on page 2337 for more information.

**Views**

From the dropdown list beside the search bar, select one of the following views:

- **Device Traffic**: organize devices by traffic.
- **Device Count**: organize devices by the number of devices connected to it.
- **Device Operating System**: organize devices by operating system.
- **Device Hardware Vendor**: organize devices by hardware vendor.
- **Risk**: only include devices that have endpoints with medium, high, or critical risk values of the specified type: All, Compromised Host, Vulnerability, or Threat Score.
- **No Devices**: do not show endpoints.

**Endpoint groups**

The **Device Traffic** and **Device Count** views display endpoint groups as donut charts, with the total number of endpoints in the group in the center of the chart. Each sector of the donut chart represents a different endpoint operating system.
To zoom in on a donut chart, click any chart sector. Each sector represents a different endpoint OS. Hovering over each sector allows you to see the OS that the sector represents and the number of endpoints that have that OS installed.

In this example, the endpoint group contains a total of nine endpoints, with the following OSes installed:

<table>
<thead>
<tr>
<th>Donut sector color</th>
<th>OS</th>
<th>Number of endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orange</td>
<td>Linux</td>
<td>2</td>
</tr>
<tr>
<td>Green</td>
<td>FortiMail</td>
<td>1</td>
</tr>
<tr>
<td>Red</td>
<td>FortiManager</td>
<td>1</td>
</tr>
<tr>
<td>Blue</td>
<td>Other</td>
<td>5</td>
</tr>
</tbody>
</table>

To view the endpoint group in a bubble pack display, click the + button in the center of the donut chart. You can view each individual endpoint in the bubble pack view.

**FortiAP and FortiSwitch devices**

Newly discovered FortiAP and FortiSwitch devices are initially shown in the topologies with gray icons to indicate that they have not been authorized. To authorize a device, click on the device icon or name and select Authorize. Once authorized, the device icon will turn blue.

Right-click on an authorized FortiAP device to Deauthorize or Restart the device. Right-click on a FortiSwitch device to Deauthorize, Restart, or Upgrade the device, or to Connect to the CLI.

FortiAP and FortiSwitch links are enhanced to show link aggregation groups for the inter-switch link (ISL-LAG). To differentiate them from physical links, ISL-LAG links are shown with a thicker line. The endpoint circles can also be used as a reference to identify ISL-LAG groups that have more than two links.

**Managed clients connected over a VPN**

When managed clients are connected over a VPN, EMS collects user information about these registered clients, such as the VPN connection information. The FortiGate can synchronize this user information from EMS and display it in the logical topology view to provide a detailed picture of clients and their associated VPN interfaces.
Client using an IPsec VPN interface:

Client using an SSL VPN interface:

**Critical risks**

Click the *Critical Risks* button to see a list of endpoints that are deemed critical risks, organized by threat severity. These are the red endpoints in the current topology view.

For each endpoint, the user's photo, name, IP address, email address, and phone number are shown. The number of vulnerabilities of each severity is shown, and if the IoC verdict is that the endpoint is compromised.

If applicable, the endpoint's host can be quarantined (click *Quarantine Host*) or their IP address can be banned (click *Ban IP*).

The dropdown menu also provides options to drill down to more information on compromised hosts or endpoint vulnerabilities.
**Consolidated risk view**

The consolidated *Risk* view mode displays different risks within the Security Fabric topology. You can use the *Risk* view mode to filter threats by *Compromised Hosts*, *Vulnerability*, and *Threat Score*.

**To access the consolidated risk view mode:**

1. On one of the topology pages, in the view option dropdown list beside the search bar, select *Risk*.

   ![View Options Dropdown](image1)

   - **Risk**
   - **Critical Risks**
   - **Device Traffic**
   - **Device Count**
   - **Device Operating System**
   - **Device Hardware Vendor**
   - **Risk**
   - **No Devices**

2. Select one of the following options from the *Risk Type* dropdown menu:
   - **All**
   - **Compromised Hosts**
   - **Vulnerability**
   - **Threat Score**

3. When devices fit into the risk metric, they will appear in the endpoint groups. Click the + in the endpoint group to display the devices in a bubble chart.
**Viewing and controlling network risks in topology view**

On the physical and logical topology pages, you can view and control compromised hosts. Compromised hosts behind a FortiSwitch or FortiAP can be quarantined.

**To view a compromised endpoint host:**

1. Test that FortiGate detects a compromised endpoint host by opening a browser on the endpoint host and entering a malicious website URL. The browser displays a *Web Page Blocked!* warning and does not allow access to the website.
2. On the root FortiGate, go to *Security Fabric > Physical Topology* or *Security Fabric > Logical Topology*. Expand the endpoint group connected to a FortiSwitch or FortiAP. The endpoint host connected to the switch is highlighted in red. Mouse over the endpoint host to view a tooltip that shows the IoC verdict. The endpoint host is compromised.

**To quarantine a compromised endpoint host:**

1. On the *Physical Topology* or *Logical Topology* page, right-click the endpoint host and select *Quarantine Host*. A dialog displays the FortiGate, host MAC address, and description of the host to be quarantined. Quarantine entries for each MAC address will be created on the FortiGate that the FortiSwitch or FortiAP is connected to.
2. Click OK.
3. Go to *Dashboard > User & Devices* and click the *Quarantine* widget to expand it.
4. In the top-right corner, use the dropdown to select the FortiGate in which this host was quarantined. In this example, it is the Enterprise_Second_Floor FortiGate.
5. On the endpoint host, open a browser and visit a website such as https://www.fortinet.com/. If the website cannot be accessed, this confirms that the endpoint host is quarantined.

To show the quarantined device from the CLI:

1. Log in to the downstream device where the host was quarantined (Enterprise_Section_Floor).
2. Enter the following show command:

   ```
 Enterprise_Section_Floor # show user quarantine
 config user quarantine
 set firewall-groups "QuarantinedDevices"
 config targets
 edit "Erin Malone PC"
 set description "Manually quarantined"
 config macs
 edit **:**:**:**:**:**:**:**
 set description "manual-qtn Hostname: Erin Malone PC"
 next
 next
 end
 end
   ```

Asset Identity Center page

The Asset Identity Center page unifies information from detected addresses, devices, and users into a single page, while building a data structure to store the user and device information in the backend. Asset view groups information by Device, while Identity view groups information by User. Hover over a device or a user in the GUI to perform different actions relevant to the object, such as adding a firewall device address, adding an IP address, banning the IP, quarantining the host, and more.

To view the Asset Identity Center page:

1. Go to Security Fabric > Asset Identity Center.
2. Click Asset to view information by device. The default columns are Device, Software OS, Hardware, FortiClient User, User, Status, Vulnerabilities, Endpoint Tags, and Last Seen. The optional columns are Address, Firewall Address, Hostname, IP Address, and Server.
3. Click **Identity** to view information by user. The default columns are **User**, **Device**, and **Properties**. The optional columns are **IP Address**, **Logoff Time**, and **Logon Time**.

Each view has a dropdown option to view the information within different time frames (Latest, 1 hour, 24 hours, and 7 days). Vulnerability information is displayed when applicable. The page displays user and device relationships, such as which users are logged in to multiple devices or if multiple users are logged in to single devices.

4. Hover over a device in the list to view the tooltip and possible actions. In this example, the available actions are add firewall device address, add firewall IP address, and ban the IP.
Diagnostics for the unified user device store

The following options are available for `diagnose user-device-store unified <option>`:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>device-memory-query</td>
<td>Get device records and associated user records from memory.</td>
</tr>
<tr>
<td>device-query</td>
<td>Get device records and associated user records from memory and disk.</td>
</tr>
<tr>
<td>user-memory-query</td>
<td>Get user records and associated device records from memory.</td>
</tr>
<tr>
<td>user-query</td>
<td>Get user records and associated device records from memory and disk.</td>
</tr>
<tr>
<td>re-query</td>
<td>Retrieve query by <code>&lt;query-id&gt; &lt;iteration-start&gt; &lt;iteration-count&gt;</code> (takes 0-3 arguments).</td>
</tr>
<tr>
<td>list</td>
<td>List unified queries.</td>
</tr>
<tr>
<td>clear</td>
<td>Delete all unified queries.</td>
</tr>
<tr>
<td>dump</td>
<td>Dump unified query stats by <code>&lt;query-id&gt;</code> (takes 0-1 arguments).</td>
</tr>
<tr>
<td>delete</td>
<td>Delete unified query by <code>&lt;query-id&gt;</code> (takes 0-1 arguments).</td>
</tr>
<tr>
<td>stats</td>
<td>Get statistics for unified queries.</td>
</tr>
<tr>
<td>debug</td>
<td>Enable/disable debug logs for unified queries.</td>
</tr>
</tbody>
</table>

**OT asset visibility and network topology**

When the *Operational Technology (OT)* feature is enabled, tabs are added in the Asset Identity Center page to view the OT asset list and OT network topology using Purdue Levels. This feature is available regardless of whether a Security
Fabric is enabled.

**To enable the OT features in the GUI:**

1. Go to **System > Feature Visibility**.
2. In the **Additional Features** section, enable **Operational Technology (OT)**.
3. Click **Apply**.

**To enable the OT features in the CLI:**

```
config system settings
 set gui-ot enable
end
```

Once enabled, the **Security Fabric > Asset Identity Center** page displays an **Asset Identity List** tab and an **OT View** tab.

- The **Asset Identity List** tab includes a configurable **Purdue Level** column and a **Show in OT View** option for selected devices in the table.

```
<table>
<thead>
<tr>
<th>Device</th>
<th>Software OS</th>
<th>Other identified device</th>
<th>Forti</th>
<th>FortiOS User</th>
<th>User</th>
<th>Status</th>
<th>Vulnerabilities</th>
<th>Endpoint Tags</th>
<th>Purdue Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
```

- The **OT View** tab shows a topology of detected components and connections mapped to Purdue Levels. The default view is locked, but devices can be dragged and dropped to other Purdue Levels if the view is unlocked.

FortiGates and managed FortiSwitches are statically assigned Purdue Level 2 and cannot be changed. Other detected devices are assigned Purdue Level 3 by default and can be changed (except to level S, 0, or external).

The following diagram lists the Purdue Levels based on OT network topologies:
To change the Purdue Level in the Asset Identity List tab:

1. Go to Security Fabric > Asset Identity Center and select the Asset Identity List tab.
2. Add the Purdue Level column to the table:
   a. Hover over the table header and click the gear icon (Configure Table).
   b. Select Purdue Level.
   c. Click Apply.
3. Select a device and hover over the Purdue Level value.
4. Click the pencil icon to edit the level.
5. Select a value from the dropdown.
6. Click Apply.

To change the Purdue Level in the OT View tab:

1. Go to Security Fabric > Asset Identity Center and select the OT View tab.
2. Click Unlock View.
3. Select a device.

4. Drag the device icon to another level row.
5. Optionally, click *Lock View* to revert to the locked view.

**To change the Purdue Level in the CLI:**

```
diagnose user-device-store device memory ot-purdue-set <mac> <ip> <level>
```

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>mac</strong></td>
<td>Enter the MAC address of the device.</td>
</tr>
<tr>
<td><strong>ip</strong></td>
<td>Enter the IPv4 address of the device.</td>
</tr>
<tr>
<td><strong>level</strong></td>
<td>Enter the Purdue Level: 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 5.5.</td>
</tr>
</tbody>
</table>

**WebSocket for Security Fabric events**

With the WebSocket for Security Fabric events, subscribers to the WebSocket (such as the *Fabric Management* page) are updated upon new Fabric events and alert users to reload the page.

**Example**

**To deauthorize a downstream FortiGate:**

1. Go to *System > Fabric Management* and select a downstream FortiGate in the table.
2. Right-click on the device and select *Deauthorize*.
3. An alert appears in the bottom-right corner of the page. Click *Reload Now* to refresh the page.

The deauthorized FortiGate is removed from the table.
Deploying the Security Fabric

This topic provides an example of deploying Security Fabric with three downstream FortiGates connecting to one root FortiGate. To deploy Security Fabric, you need a FortiAnalyzer running firmware version 6.2 or later.

The following shows a sample network topology with three downstream FortiGates (Accounting, Marketing, and Sales) connected to the root FortiGate (Edge).
To configure the root FortiGate (Edge):

1. Configure interfaces:
   a. In the root FortiGate (Edge), go to Network > Interfaces.
   b. Edit port16:
      - Set Role to DMZ.
      - For the interface connected to FortiAnalyzer, set the IP/Network Mask to 192.168.65.2/255.255.255.0
   c. Edit port10:
      - Set Role to LAN.
      - For the interface connected to the downstream FortiGate (Accounting), set the IP/Network Mask to 192.168.10.2/255.255.255.0
   d. Edit port11:
      - Set Role to LAN.
      - For the interface connected to the downstream FortiGate (Marketing), set the IP/Network Mask to 192.168.200.2/255.255.255.0

2. Configure Security Fabric:
   a. In the root FortiGate (Edge), go to Security Fabric > Fabric Connectors and double-click the Security Fabric Setup card.
   b. For Status, click Enable.
   c. Set the Security Fabric role to Serve as Fabric Root. The FortiAnalyzer settings can be configured.
   d. Enter the FortiAnalyzer IP (192.168.65.10) and select and Upload option (the default is Real Time).
   e. Click Test Connectivity.
      A warning message indicates that the FortiGate is not authorized on the FortiAnalyzer. The authorization is configured in a later step on the FortiAnalyzer.
   f. Click OK. The FortiAnalyzer serial number is verified.
   g. Enter a Fabric name, such as Office-Security-Fabric.
   h. Ensure Allow other Security Fabric devices to join is enabled and add port10 and port11.
   i. Click OK.

3. Create a policy to allow the downstream FortiGate (Accounting) to access the FortiAnalyzer:
   a. In the root FortiGate (Edge), go to Policy & Objects > Addresses.
   b. Click Create New.
      - Set Name to FAZ-addr.
      - Set Type to Subnet.
      - Set Subnet/IP Range to 192.168.65.10/32.
      - Set Interface to any.
   c. Click OK.
   d. Click Create New.
      - Set Name to Accounting.
      - Set Type to Subnet.
      - Set Subnet/IP Range to 192.168.10.10/32.
      - Set Interface to any.
   e. Click OK.
   f. In the root FortiGate (Edge), go to Policy & Objects > Firewall Policy and click Create New.
      - Set Name to Accounting-to-FAZ.
      - Set srcintf to port10.
      - Set dstintf to port16.
- Set `srcaddr` to `Accounting-addr`.
- Set `dstaddr` to `FAZ-addr`.
- Set `Action` to `Accept`.
- Set `Schedule` to `Always`.
- Set `Service` to `All`.
- Enable `NAT`.
- Set `IP Pool Configuration` to `Use Outgoing Interface Address`.

4. Create a policy to allow the two downstream FortiGates (Marketing and Sales) to access the FortiAnalyzer:
   a. In the root FortiGate (Edge), go to `Policy & Objects > Addresses` and click `Create New`.
      - Set `Name` to `Marketing-addr`.
      - Set `Type` to `Subnet`.
      - Set `Subnet/IP Range` to `192.168.200.10/32`.
      - Set `Interface` to any.
   b. Click `OK`.
   c. In the root FortiGate (Edge), go to `Policy & Objects > Firewall Policy` and click `Create New`.
      - Set `Name` to `Marketing-to-FAZ`.
      - Set `srcintf` to `port11`.
      - Set `dstintf` to `port16`.
      - Set `srcaddr` to `Marketing-addr`.
      - Set `dstaddr` to `FAZ-addr`.
      - Set `Action` to `Accept`.
      - Set `Schedule` to `Always`.
      - Set `Service` to `All`.
      - Enable `NAT`.
      - Set `IP Pool Configuration` to `Use Outgoing Interface Address`.
   d. Click `OK`.

To configure the downstream FortiGate (Accounting):

1. Configure interface:
   a. In the downstream FortiGate (Accounting), go to `Network > Interfaces`.
   b. Edit interface `wan1`:
      - Set `Role` to `WAN`.
      - For the interface connected to root, set the `IP/Network Mask` to `192.168.10.10/255.255.255.0`.

2. Configure the default static route to connect to the root FortiGate (Edge):
   a. In the downstream FortiGate (Accounting), go to `Network > Static Routes` and click `Create New` or `Create New > IPv4 Static Route`.
      - Set `Destination` to `0.0.0.0/0.0.0.0`.
      - Set `Interface` to `wan1`.
      - Set `Gateway Address` to `192.168.10.2`.
   b. Click `OK`.

3. Configure Security Fabric:
   a. In the downstream FortiGate (Accounting), go to `Security Fabric > Fabric Connectors` and double-click the `Security Fabric Setup` card.
b. For Status, click Enable. FortiAnalyzer automatically enables logging. Settings for the FortiAnalyzer are retrieved from the root FortiGate (Edge) when FortiGate (Accounting) connects to the root FortiGate (Edge).

c. Set the Security Fabric role to Join Existing Fabric.

d. Upstream FortiGate IP is filled in automatically with the default static route Gateway Address of 192.168.10.2 set in the previous step.

e. Disable Allow other FortiGates to join, because there is no downstream FortiGate connecting to it.

f. Click OK.

To configure the downstream FortiGate (Marketing):

1. Configure interface:
   a. In the downstream FortiGate (Marketing), go to Network > Interfaces.
   b. Edit port12:
      - Set Role to LAN.
      - For the interface connected to the downstream FortiGate (Sales), set the IP/Network Mask to 192.168.135.11/255.255.255.0.
   c. Edit wan1:
      - Set Role to WAN.
      - For the interface connected to the root FortiGate (Edge), set the IP/Network Mask to 192.168.200.10/255.255.255.0.

2. Configure the default static route to connect to the root FortiGate (Edge):
   a. In the downstream FortiGate (Marketing), go to Network > Static Routes and click Create New or Create New > IPv4 Static Route.
      - Set Destination to 0.0.0.0/0.0.0.0.
      - Set Interface to wan1.
      - Set Gateway Address to 192.168.200.2.
   b. Click OK.

3. Configure Security Fabric:
   a. In the downstream FortiGate (Marketing), go to Security Fabric > Fabric Connectors and double-click the Security Fabric Setup card.
   b. For Status, click Enable.
      - FortiAnalyzer automatically enables logging. Settings for the FortiAnalyzer are retrieved from the root FortiGate (Edge) when FortiGate (Marketing) connects to the root FortiGate (Edge).
   c. Set the Security Fabric role to Join Existing Fabric.
   d. Upstream FortiGate IP is filled in automatically with the default static route Gateway Address of 192.168.200.2 set in the previous step.
   e. Enable Allow other FortiGates to join and add port12.
   f. Click OK.

4. Create a policy to allow another downstream FortiGate (Sales) going through FortiGate (Marketing) to access the FortiAnalyzer:
   a. In the downstream FortiGate (Marketing), go to Policy & Objects > Addresses and click Create New.
      - Set Name to FAZ-addr.
      - Set Type to Subnet.
      - Set Subnet/IP Range to 192.168.65.10/32.
      - Set Interface to any.
   b. Click OK.
c. Click Create New.
   - Set Name to Sales.addr.
   - Set Type to Subnet.
   - Set Subnet/IP Range to 192.168.135.10/32.
   - Set Interface to any.

d. Click OK.

e. In the downstream FortiGate (Marketing), go to Policy & Objects > Firewall Policy and click Create New.
   - Set Name to Sales-to-FAZ.
   - Set srcintf to port12.
   - Set dstintf to wan1.
   - Set srcaddr to Sales addr.
   - Set dstaddr to FAZ addr.
   - Set Action to Accept.
   - Set Schedule to Always.
   - Set Service to All.
   - Enable NAT.
   - Set IP Pool Configuration to Use Outgoing Interface Address.

f. Click OK.

To configure the downstream FortiGate (Accounting):

1. Configure interface:
   a. In the downstream FortiGate (Accounting), go to Network > Interfaces.
   b. Edit interface wan1:
      - Set Role to WAN.
      - For the interface connected to root, set the IP/Network Mask to 192.168.10.10/255.255.255.0

2. Configure the default static route to connect to the root FortiGate (Edge):
   a. In the downstream FortiGate (Accounting), go to Network > Static Routes and click Create New or Create New > IPv4 Static Route.
      - Set Destination to 0.0.0.0/0.0.0.0.
      - Set Interface to wan1.
      - Set Gateway Address to 192.168.10.2.

   b. Click OK.

3. Configure Security Fabric:
   a. In the downstream FortiGate (Accounting), go to Security Fabric > Fabric Connectors and double-click the Security Fabric Setup card.
   b. For Status, click Enable.
      FortiAnalyzer automatically enables logging. Settings for the FortiAnalyzer are retrieved from the root FortiGate (Edge) when FortiGate (Accounting) connects to the root FortiGate (Edge).
   c. Set the Security Fabric role to Join Existing Fabric.
   d. Upstream FortiGate IP is filled in automatically with the default static route Gateway Address of 192.168.10.2 set in the previous step.
   e. Disable Allow other FortiGates to join, because there is no downstream FortiGate connecting to it.

   f. Click OK.
To configure the downstream FortiGate (Sales):

1. Configure interface:
   a. In the downstream FortiGate (Sales), go to Network > Interfaces.
   b. Edit wan2:
      - Set Role to WAN.
      - For the interface connected to the upstream FortiGate (Marketing), set the IP/Network Mask to 192.168.135.10/255.255.255.0.

2. Configure the default static route to connect to the upstream FortiGate (Marketing):
   a. In the downstream FortiGate (Sales), go to Network > Static Routes and click Create New or Create New > IPv4 Static Route.
      - Set Destination to 0.0.0.0/0.0.0.0.
      - Set Interface to wan2.
      - Set Gateway Address to 192.168.135.11.
   b. Click OK.

3. Configure Security Fabric:
   a. In the downstream FortiGate (Sales), go to Security Fabric > Fabric Connectors and double-click the Security Fabric Setup card.
   b. For Status, click Enable.
      FortiAnalyzer automatically enables logging. Settings for the FortiAnalyzer are retrieved from the root FortiGate (Edge) when FortiGate (Sales) connects to the root FortiGate (Edge).
   c. Set the Security Fabric role to Join Existing Fabric.
   d. Upstream FortiGate IP is filled in automatically with the default static route Gateway Address of 192.168.135.11 set in the previous step.
   e. Disable Allow other FortiGates to join, because there is no downstream FortiGate connecting to it.
   f. Click OK.

To authorize downstream FortiGates (Accounting, Marketing, and Sales) on the root FortiGate (Edge):

1. In the root FortiGate (Edge), go to Security Fabric > Fabric Connectors and double-click the Security Fabric Setup card.
   The Topology tree highlights two connected FortiGates with their serial numbers and asks you to authorize the highlighted devices.

2. Select the highlighted FortiGates and select Authorize.
   After they are authorized, the two downstream FortiGates (Accounting and Marketing) appear in the Topology tree in the Security Fabric > Fabric Connectors > Security Fabric Setup page. This means that the two downstream FortiGates (Accounting and Marketing) have successfully joined the Security Fabric.

3. The Topology tree now highlights the FortiGate with the serial number that is connected to the downstream FortiGate (Marketing) and asks you to authorize the highlighted device.

4. Select the highlighted FortiGates and select Authorize.
   After it is authorized, the downstream FortiGate (Sales) appears in the Topology tree in the Security Fabric > Fabric Connectors > Security Fabric Setup page. This means that the downstream FortiGates (Sales) has successfully joined the Security Fabric.
To use FortiAnalyzer to authorize all the Security Fabric FortiGates:

1. Authorize all the Security Fabric FortiGates on the FortiAnalyzer side:
   a. On the FortiAnalyzer, go to System Settings > Network > All Interfaces.
   b. Edit port1 and set IP Address/Netmask to 192.168.65.10/255.255.255.0.
   c. Go to Device Manager > Unauthorized. All of the FortiGates are listed as unauthorized.
      i. Select all the FortiGates and select Authorize. The FortiGates are now listed as authorized.
      After a moment, a warning icon appears beside the root FortiGate (Edge) because the FortiAnalyzer needs administrative access to the root FortiGate (Edge) in the Security Fabric.
      ii. Click the warning icon and enter the admin username and password of the root FortiGate (Edge).

2. Check FortiAnalyzer status on all the Security Fabric FortiGates:
   a. On each FortiGate, go to Security Fabric > Fabric Connectors and double-click the FortiAnalyzer Logging card.
   b. Check that Storage usage information is shown.

To check Security Fabric deployment result:

1. On FortiGate (Edge), go to Dashboard > Status. The Security Fabric widget displays all the FortiGates in the Security Fabric.

2. On FortiGate (Edge), go to Security Fabric > Physical Topology. This page shows a visualization of access layer devices in the Security Fabric.
3. On FortiGate (Edge), go to Security Fabric > Physical Topology. This dashboard shows information about the interfaces of each device in the Security Fabric.

To run diagnose commands:

1. Run the `diagnose sys csf authorization pending-list` command in the root FortiGate to show the downstream FortiGate pending for root FortiGate authorization:

   ```
 Edge # diagnose sys csf authorization pending-list
 Serial IP Address HA-Members Path

 FG201ETK18902514 0.0.0.0 FG3H1E5818900718:FG201ETK18902514
   ```

2. Run the `diagnose sys csf downstream` command in the root or middle FortiGate to show the downstream FortiGates after they join Security Fabric:

   ```
 Edge # diagnose sys csf downstream
 1: FG201ETK18902514 (192.168.200.10) Management-IP: 0.0.0.0 Management-port:0 parent: FG3H1E5818900718
 path:FG3H1E5818900718:FG201ETK18902514
 data received: Y downstream intf:wan1 upstream intf:port11 admin-port:443
 authorizer:FG3H1E5818900718
 2: FGT81ETK18002246 (192.168.10.10) Management-IP: 0.0.0.0 Management-port:0 parent: FG3H1E5818900718
 path:FG3H1E5818900718:FGT81ETK18002246
 data received: Y downstream intf:wan1 upstream intf:port10 admin-port:443
 authorizer:FG3H1E5818900718
 3: FG101ETK18002187 (192.168.135.10) Management-IP: 0.0.0.0 Management-port:0 parent: FG201ETK18902514
 path:FG3H1E5818900718:FG201ETK18902514:FG101ETK18002187
 data received: Y downstream intf:wan2 upstream intf:port12 admin-port:443
 authorizer:FG3H1E5818900718
   ```

3. Run the `diagnose sys csf upstream` command in any downstream FortiGate to show the upstream FortiGate after downstream FortiGate joins Security Fabric:

   ```
 Marketing # diagnose sys csf upstream
 Upstream Information:
 Serial Number:FG3H1E5818900718
 IP:192.168.200.2
 Connecting interface:wan1
 Connection status:Authorized
   ```
Deploying the Security Fabric in a multi-VDOM environment

A Security Fabric can be enabled in multi-VDOM environments. This allows access to all of the Security Fabric features, including automation, security rating, and topologies, across the VDOM deployment.

- Users can navigate to downstream FortiGate devices and VDOMs directly from the root FortiGate using the Fabric selection menu.

- The logical topology shows all of the configured VDOMs.

- Security rating reports include results for all of the configured VDOMs as well the entire Fabric.

Downstream FortiGate devices must connect to the upstream FortiGate from its management VDOM.
**Topography**

In this topology, there is a root FortiGate with three FortiGates connected through two different VDOMs. The root FortiGate is able to manage all devices running in multi-VDOM mode.

This example assumes multi-VDOM mode is already configured on each FortiGate, and that FortiAnalyzer logging is configured on the root FortiGate (see Configuring FortiAnalyzer on page 2217 and Configuring the root FortiGate and downstream FortiGates on page 2210 for more details).

**To enable multi-VDOM mode:**

```plaintext
config system global
set vdom-mode multi-vdom
end
```

**Device configurations**

**Root FortiGate (Root-E)**

The Security Fabric is enabled, and configured so that downstream interfaces from all VDOMs can allow other Security Fabric devices to join.

**To configure Root-E in the GUI:**

2. Ensure that the Status is Enabled and the Security Fabric role is set to Serve as Fabric Root.
3. Enable Allow other Security Fabric devices to join and click the + to add the interfaces (vlan50 and vlan90) from the vdom_nat1 and root VDOMs.
4. Configure the other settings as needed.
5. Click OK.

To configure Root-E in the CLI:

1. Enable the Security Fabric:
   
   ```
 config system csf
 set status enable
 set group-name "CSF_E"
 end
   ```

2. Configure the interfaces:
   
   ```
 config system interface
 edit "vlan50"
 set vdom "vdom_nat1"
 ... set allowaccess ping https ssh http fgfm fabric ...
 next
 edit "vlan90"
 set vdom "root"
 ... set allowaccess ping https ssh http fgfm fabric ...
 next
 end
   ```

Downstream FortiGate 1 (Downstream-G)

To configure Downstream-G in the GUI:

2. For Status, select Enabled and set the role to Join Existing Fabric.
3. Enter the Upstream FortiGate IP, which is the IP of the root FortiGate vdom_nat1 interface (192.168.5.5). Downstream-G must use the interface from the management VDOM to connect to the upstream FortiGate IP.
4. Enable Allow other Security Fabric devices to join and click the + to add the downstream interface (sw-vlan71) from the FG-traffic VDOM.
5. Configure the other settings as needed.
6. Click OK.

To configure Downstream-G in the CLI:

1. Enable the Security Fabric:
   ```
 config system csf
 set status enable
 set upstream-ip 192.168.5.5
 end
   ```

2. Configure the interfaces:
   ```
 config system interface
 edit "sw-vlan71"
 set vdom "FG-traffic"
 ... set allowaccess ping https ssh http fgfm fabric
 ... next
 end
   ```

**Downstream FortiGate 2 (Level2-downstream-H)**

To configure Level2-downstream-H in the GUI:

2. For `Status`, select `Enabled` and set the role to `Join Existing Fabric`. 
3. Enter the *Upstream FortiGate IP*, which is the IP of the root VDOM on Downstream-G (192.168.71.7).

4. Configure the other settings as needed.

5. Click **OK**.

**To configure Level2-downstream-H in the CLI:**

```plaintext
cfg system csf
 set status enable
 set upstream-ip 192.168.71.7
end
```

**Downstream FortiGate 3 (Level1-downstream-10)**

**To configure Level1-downstream-10 in the GUI:**

1. Go to **Security Fabric > Fabric Connectors** and double-click the **Security Fabric Setup card**.
2. For **Status**, select **Enabled** and set the role to **Join Existing Fabric**.
3. Enter the *Upstream FortiGate IP*, which is the IP of the root VDOM on Root-E (192.168.9.5).

4. Configure the other settings as needed.

5. Click **OK**.

**To configure Level1-downstream-10 in the CLI:**

```plaintext
cfg system csf
 set status enable
 set upstream-ip 192.168.9.5
end
```

**Device authorization and verification**

**To authorize the downstream devices on the root FortiGate:**

1. On Root-E, go to *Security Fabric > Fabric Connectors*.
2. In the topology tree, click the highlighted serial number and select **Authorize** for each downstream FortiGate. Once all the devices are authorized, the physical topology page shows the root and downstream FortiGates. The logical topology page shows the root and downstream FortiGates connected to interfaces in their corresponding VDOMs.

**Synchronizing objects across the Security Fabric**

When the Security Fabric is enabled, various objects such as addresses, services, and schedules are synced from the upstream FortiGate to all downstream devices by default. FortiOS has the following settings for object synchronization across the Security Fabric:

- Set object synchronization (*fabric-object-unification*) to **default** or **local** on a downstream device.
- Set a per object option to toggle whether the specific Fabric object will be synchronized or not. After upgrading from **6.4.3**, this option is disabled for supported Fabric objects. The synchronized Fabric objects are kept as locally created objects on downstream FortiGates.
- Define the number of task workers to handle synchronizations.
The firewall object synchronization wizard helps identify objects that are not synchronized and resolves any conflicts. A warning message appears in the topology tree if there is a conflict.

**Summary of CLI commands**

**To configure object synchronization:**

```plaintext
config system csf
 set fabric-object-unification {default | local}
 set configuration-sync {default | local}
 set fabric-workers <integer>
end
```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| fabric-object-unification  | **default**: Global CMDB objects will be synchronized in the Security Fabric.  
|                            | **local**: Global CMDB objects will not be synchronized to and from this device.  
|                            | This command is available on the root FortiGate. If set to local, the device does not synchronize objects from the root, but will send the synchronized objects downstream. |
| configuration-sync         | **default**: Synchronize configuration for FortiAnalyzer, FortiSandbox, and Central Management to root node.  
|                            | **local**: Do not synchronize configuration with root node.  
|                            | If downstream FortiGates are set to local, the synchronized objects from the root to downstream are not applied locally. However, the downstream FortiGate will send the configuration to lower FortiGates. |
| fabric-workers             | Define how many task worker process are created to handle synchronizations (1-4, default = 2). The worker processes dies if there is no task to perform after 60 seconds. |

The per object setting can be configured on the root FortiGate as follows:

```plaintext
config firewall <object>
 edit <name>
 set fabric-object {enable | disable}
 next
end
```

Where:

- `<object>` is one of the following: `address, address6, addrgrp, addrgrp6, service category, service custom, service group, schedule group, schedule onetime, or schedule recurring.`
- **Enabling fabric-object** sets the object as a Security Fabric-wide global object that is synchronized to downstream FortiGates.
- **Disabling fabric-object** sets the object as local to this Security Fabric member.
- If a device in the Fabric is in multi-VDOM mode, the GUI will not display the Fabric synchronization option. Even if this is enabled in the CLI, the object will not be synchronized to any downstream devices.
Sample topology

In this Security Fabric, the root FortiGate (FGTA-1) has `fabric-object-unification set to default` so the Fabric objects can be synchronized to the downstream FortiGate. The level 1 downstream FortiGate (FGTB-1) has `configuration-sync set to local`, so it will not apply the synchronized objects locally. The level 2 downstream FortiGate (FGTC) has `configuration-sync set to default`, so it will apply the synchronized objects locally.

In this example, firewall addresses and address groups are used. Other supported Fabric objects have the same behaviors. The following use cases illustrate common synchronization scenarios:

- If no conflicts exist, firewall addresses and address groups can be synchronized to downstream FortiGates (see example below).
- If a conflict exists between the root and downstream FortiGates, it can be resolved with the conflict resolution wizard. After the conflict is resolved, the firewall addresses and address groups can be synchronized to downstream FortiGates (see example below).
- If `set fabric-object` (Fabric synchronization option in the GUI) is disabled for firewall addresses and address groups on the root FortiGate, they will not be synchronized to downstream FortiGates (see example below).

To configure the FortiGates used in this example:

FGTA-1 # config system csf
  set status enable
  set group-name "fabric"
    set fabric-object-unification default
  ...
end
FGTB-1 # config system csf
  set status enable
  set upstream-ip 10.2.200.1
  set configuration-sync local
  ...
end
FGTC # config system csf
  set status enable
  set upstream-ip 192.168.7.2
  set configuration-sync default
  ...
end

To synchronize a firewall address and address group in the Security Fabric:

1. Configure the firewall address on the root FortiGate:

   FGTA-1 # config firewall address
   edit "add_subnet_1"
set fabric-object enable
set subnet 22.22.22.0 255.255.255.0
next
end

2. Configure the address group on the root FortiGate:

FGTA-1 # config firewall addrgrp
  edit "group_subnet_1"
    set member "add_subnet_1"
    set fabric-object enable
  next
end

3. Check the firewall address and address group on the downstream FortiGates:

FGTB-1 # show firewall address add_subnet_1
entry is not found in table

FGTB-1 # show firewall addrgrp group_subnet_1
entry is not found in table

The synchronized objects are not applied locally on this FortiGate because configuration-sync is set to local.

FGTC # show firewall address add_subnet_1
config firewall address
  edit "add_subnet_1"
    set uuid 378a8094-34cb-51eb-ce40-097f298fcdc
    set fabric-object enable
    set subnet 22.22.22.0 255.255.255.0
  next
end

FGTC # show firewall addrgrp group_subnet_1
config firewall addrgrp
  edit "group_subnet_1"
    set uuid 4d7a8a52-34cb-51eb-fce7-d93f76915319
    set member "add_subnet_1"
    set color 19
    set fabric-object enable
  next
end

The objects are synchronized on this FortiGate because configuration-sync is set to default.

To resolve a firewall address and address group conflict in the Security Fabric:

1. On FGTC, create a firewall address:
   a. Go to Policy & Objects > Addresses and click Create New > Address.
   b. Configure the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>sync_add_1</th>
<th>IP/Netmask</th>
</tr>
</thead>
<tbody>
<tr>
<td>sync_add_1</td>
<td></td>
<td>33.33.33.0 255.255.255.0</td>
</tr>
</tbody>
</table>

   c. Click OK.
2. On FGTA-1 (Fabric root), create the firewall address with same name but a different subnet:
   a. Go to Policy & Objects > Addresses and click Create New > Address.
   b. Configure the following:
      - Name: sync_add_1
      - IP/Netmask: 11.11.11.0 255.255.255.0
      - Fabric synchronization: Enable
   c. Click OK.
3. Add the address to a different address group than what is configured on FGTC:
   a. Go to Policy & Objects > Addresses and click Create New > Address Group.
   b. Configure the following:
      - Name: sync_group4
      - Members: sync_add_1
      - Fabric synchronization: Enable
   c. Click OK.
4. Go to Security Fabric > Fabric Connectors. In the topology tree, there is a message that Firewall objects are in conflict with other FortiGates in the fabric.
5. Resolve the conflict:
   a. Click Review firewall object conflicts. The Firewall Object Synchronization pane opens.
   b. Click Rename All Objects. The conflicted object will be renamed on the downstream FortiGate.
c. The conflict is resolved. Click Close to exit the Firewall Object Synchronization pane.

![Firewall Object Synchronization](image)

6. Verify the results on the downstream FortiGates:
   a. On FGTB-1, go to Policy & Objects > Addresses.
   b. Search for sync_add_1 and sync_group4. No results are found. The synchronized objects are not applied locally on this FortiGate because configuration-sync is set to local.

![Policy & Objects](image)

   c. On FGTC, go to Policy & Objects > Addresses.
   d. Search for sync_add_1. The original firewall address sync_add_1 was renamed to sync_add_1_FGTC by resolving the conflict on FGTA-1. The address sync_add_1 and address group sync_group4 are synchronized
To disable Fabric synchronization on the root FortiGate in the GUI:

1. On FGTA-1, create a firewall address:
   a. Go to Policy & Objects > Addresses and click Create New > Address.
   b. Configure the following:
      
Name	add_subnet_3
IP/Netmask	33.33.33.0 255.255.255.0
Fabric	
      synchronization | Disable |
   c. Click OK.

2. Create the firewall address group and add the address:
   a. Go to Policy & Objects > Addresses and click Create New > Address Group.
   b. Configure the following:
      
Name	group_subnet_3
Members	add_subnet_3
Fabric	
      synchronization | Disable |
   c. Click OK.

3. On FGTB-1, go to Policy & Objects > Addresses and search for subnet_3. No results are found because Fabric synchronization is disabled on the root FortiGate (FGTA-1).

4. On FGTC, go to Policy & Objects > Addresses and search for subnet_3. No results are found because Fabric
synchronization is disabled on the root FortiGate (FGTA-1).

To disable Fabric synchronization on the root FortiGate in the CLI:

1. Configure the firewall address on the root FortiGate:

   FGTA-1 # config firewall address
   edit "add_subnet_3"
   set subnet 33.33.33.0 255.255.255.0
   set fabric-object disable
   next
   end

2. Configure the address group on the root FortiGate:

   FGTA-1 # config firewall addrgrp
   edit "group_subnet_3"
   set member "add_subnet_3"
   set fabric-object disable
   next
   end

3. Check the firewall address and address group on the downstream FortiGates:

   FGTB-1 # show firewall address add_subnet_3
   entry is not found in table

   FGTB-1 # show firewall addrgrp group_subnet_3
   entry is not found in table

   FGTC # show firewall address add_subnet_3
   entry is not found in table

   FGTC # show firewall addrgrp group_subnet_3
   entry is not found in table

   The objects are not synchronized from the root FortiGate (FGTA-1) because the fabric-object setting is disabled.

Security Fabric over IPsec VPN

This is an example of configuring Security Fabric over IPsec VPN.
Sample topology

This sample topology shows a downstream FortiGate (HQ2) connected to the root FortiGate (HQ1) over IPsec VPN to join Security Fabric.

Sample configuration

To configure the root FortiGate (HQ1):

1. Configure interface:
   a. In the root FortiGate (HQ1), go to Network > Interfaces.
   b. Edit port2:
      • Set Role to WAN.
      • For the interface connected to the Internet, set the IP/Network Mask to 10.2.200.1/255.255.255.0
   c. Edit port6:
      • Set Role to DMZ.
      • For the interface connected to FortiAnalyzer, set the IP/Network Mask to 192.168.8.250/255.255.255.0

2. Configure the static route to connect to the Internet:
   a. Go to Network > Static Routes and click Create New or Create New > IPv4 Static Route.
      • Set Destination to 0.0.0.0/0.0.0.0.
      • Set Interface to port2.
      • Set Gateway Address to 10.2.200.2.
   b. Click OK.

3. Configure IPsec VPN:
   a. Go to VPN > IPsec Wizard.
      • Set Name to To-HQ2.
      • Set Template Type to Custom.
      • Click Next.
      • Set Authentication to Method.
      • Set Pre-shared Key to 123456.
   b. Leave all other fields in their default values and click OK.

4. Configure the IPsec VPN interface IP address which will be used to form Security Fabric:
   a. Go to Network > Interfaces.
   b. Edit To-HQ2:
      • Set Role to LAN.
      • Set the IP/Network Mask to 10.10.10.255/255.255.255.255.
      • Set Remote IP/Network Mask to 10.10.10.3/255.255.255.0.
5. Configure IPsec VPN local and remote subnet:
   a. Go to Policy & Objects > Addresses.
   b. Click Create New
      - Set Name to To-HQ2_remote_subnet_2.
      - Set Type to Subnet.
      - Set IP/Network Mask to 10.10.10.3/32.
   c. Click OK.
   d. Click Create New
      - Set Name to To-HQ2_local_subnet_1.
      - Set Type to Subnet.
      - Set IP/Network Mask to 192.168.8.0/24.
   e. Click OK.
   f. Click Create New
      - Set Name to To-HQ2_remote_subnet_1.
      - Set Type to Subnet.
      - Set IP/Network Mask to 10.1.100.0/24.
   g. Click OK.

6. Configure IPsec VPN static routes:
   a. Go to Network > Static Routes
   b. Click Create New or Create New > IPv4 Static Route.
      - For Named Address, select Type and select To-HQ2_remote_subnet_1.
      - Set Interface to To-HQ2.
      - Click OK.
   c. Click Create New or Create New > IPv4 Static Route.
      - For Named Address, select Type and select To-HQ2_remote_subnet_1.
      - Set Interface to Blackhole.
      - Set Administrative Distance to 254.
   d. Click OK.

7. Configure IPsec VPN policies:
   a. Go to Policy & Objects > Firewall Policy
   b. Click Create New.
      - Set Name to vpn_To-HQ2_local.
      - Set Incoming Interface to port6.
      - Set Outgoing Interface to To-HQ2.
      - Set Source to To-HQ2_local_subnet_1.
      - Set Destination to To-HQ2_remote_subnet_1.
      - Set Schedule to Always.
      - Set Service to All.
      - Disable NAT.
   c. Click OK.
   d. Click Create New.
      - Set Name to vpn_To-HQ2_remote.
      - Set Incoming Interface to To-HQ2.
      - Set Outgoing Interface to port6.
      - Set Source to To-HQ2_remote_subnet_1, To-HQ2_remote_subnet_2.
To configure the downstream FortiGate (HQ2):

1. Configure interface:
   a. Go to Network > Interfaces.
   b. Edit interface wan1:
      - Set Role to WAN.
      - For the interface connected to the Internet, set the IP/Network Mask to 192.168.7.3/255.255.255.0.
   c. Edit interface vlan20:
      - Set Role to LAN.
      - For the interface connected to local endpoint clients, set the IP/Network Mask to 10.1.100.3/255.255.255.0.

2. Configure the static route to connect to the Internet:
   a. Go to Network > Static Routes and click Create New or Create New > IPv4 Static Route.
      - Set Destination to 0.0.0.0/0.0.0.0.
      - Set Interface to wan1.
      - Set Gateway Address to 192.168.7.2.
   b. Click OK.

3. Configure IPsec VPN:
   a. Go to VPN > IPsec Wizard.
      - Set VPN Name to To-HQ1.
      - Set Template Type to Custom.
      - Click Next.
      - In the Network IP Address, enter 10.2.200.1.
      - Set Interface to wan1.
      - Set Authentication to Method.
      - Set Pre-shared Key to 123456.
   b. Leave all other fields in their default values and click OK.

- Set Destination to To-HQ2_local_subnet_1.
- Set Schedule to Always.
- Set Service to All.
- Enable NAT.
- Set IP Pool Configuration to Use Outgoing Interface Address.

e. Click OK.

8. Configure Security Fabric:
   b. For Status, click Enable.
      After FortiGate Telemetry is enabled, FortiAnalyzer automatically enables Logging and Upload is set to Real Time.
   c. Set the Security Fabric role to Serve as Fabric Root. The FortiAnalyzer settings can be configured.
   d. Enter the FortiAnalyzer IP (192.168.8.250).
   e. Click OK. The FortiAnalyzer serial number is verified.
   f. Enter a Fabric name, such as Office-Security-Fabric.
   g. Ensure Allow other Security Fabric devices to join is enabled and add VPN interface To-HQ2.
   h. Click OK.
4. Configure the IPsec VPN interface IP address which will be used to form Security Fabric:
   a. Go to Network > Interfaces.
   b. Edit To-HQ1:
      - Set Role to WAN.
      - Set the IP/Network Mask to 10.10.10.3/255.255.255.255.
      - Set Remote IP/Network Mask to 10.10.1/255.255.255.0.0.

5. Configure IPsec VPN local and remote subnet:
   a. Go to Policy & Objects > Addresses.
   b. Click Create New
      - Set Name to To-HQ1_local_subnet_1.
      - Set Type to Subnet.
      - Set IP/Network Mask to 10.1.100.0/24.
   c. Click OK.
   d. Click Create New
      - Set Name to To-HQ1_remote_subnet_1.
      - Set Type to Subnet.
      - Set IP/Network Mask to 192.168.8.0/24.
   e. Click OK.

6. Configure IPsec VPN static routes:
   a. Go to Network > Static Routes and click Create New or Create New > IPv4 Static Route.
      - For Named Address, select Type and select To-HQ1_remote_subnet_1.
      - Set Interface to To-HQ1.
   b. Click OK.
   c. Click Create New or Create New > IPv4 Static Route.
      - For Named Address, select Type and select To-HQ1_remote_subnet_1.
      - Set Interface to Blackhole.
      - Set Administrative Distance to 254.
   d. Click OK.

7. Configure IPsec VPN policies:
   a. Go to Policy & Objects > Firewall Policy and click Create New.
      - Set Name to vpn_To-HQ1_local.
      - Set Incoming Interface to vlan20.
      - Set Outgoing Interface to To-HQ1.
      - Set Source to To-HQ1_local_subnet_1.
      - Set Destination to To-HQ1_remote_subnet_1.
      - Set Schedule to Always.
      - Set Service to All.
      - Disable NAT.
   b. Click OK.
   c. Click Create New.
      - Set Name to vpn_To-HQ1_remote.
      - Set Incoming Interface to To-HQ1.
      - Set Outgoing Interface to vlan20.
      - Set Source to To-HQ1_remote_subnet_1.
      - Set Destination to HQ1_local_subnet_1.
- Set \textit{Schedule} to \textit{Always}.
- Set \textit{Service} to \textit{All}.
- Disable \textit{NAT}.

d. Click OK.

8. Configure Security Fabric:
   a. Go to \textit{Security Fabric > Fabric Connectors} and double-click the \textit{Security Fabric Setup} card.
   b. For \textit{Status}, click \textit{Enable}.
      FortiAnalyzer automatically enables logging. FortiAnalyzer settings will be retrieved when the downstream FortiGate connects to the root FortiGate.
   c. Set the \textit{Security Fabric role} to \textit{Join Existing Fabric}.
   d. Set the \textit{Upstream FortiGate IP} to 10.10.10.1.
   e. Click OK.

To authorize the downstream FortiGate (HQ2) on the root FortiGate (HQ1):

1. In the root FortiGate (HQ1), go to \textit{Security Fabric > Fabric Connectors} and double-click the \textit{Security Fabric Setup} card.
   The \textit{Topology} tree highlights the connected FortiGate (HQ2) with the serial number and asks you to authorize the highlighted device.
2. Select the highlighted FortiGates and select \textit{Authorize}.
   After authorization, the downstream FortiGate (HQ2) appears in the \textit{Topology} tree in the \textit{Security Fabric > Fabric Connectors > Security Fabric Setup} page. This means the downstream FortiGate (HQ2) has successfully joined the Security Fabric.

To check Security Fabric over IPsec VPN:

1. On the root FortiGate (HQ1), go to \textit{Security Fabric > Physical Topology}.
   The root FortiGate (HQ1) is connected by the downstream FortiGate (HQ2) with VPN icon in the middle.

```
 HQ1 ---HQ2
```

2. On the root FortiGate (HQ1), go to \textit{Security Fabric > Logical Topology}.
   The root FortiGate (HQ1) VPN interface \textit{To-HQ2} is connected by downstream FortiGate (HQ2) VPN interface \textit{To-HQ1} with VPN icon in the middle.

```
 HQ1 ------HQ2
```

To run diagnose commands:

1. Run the \texttt{diagnose sys csf authorization pending-list} command in the root FortiGate (HQ1) to show the downstream FortiGate pending for root FortiGate authorization:
Fortinet Security Fabric

2. Run the `diagnose sys csf downstream` command in the root FortiGate (HQ1) to show the downstream FortiGate (HQ2) after it joins Security Fabric:

   HQ1 # diagnose sys csf downstream
   Serial Number:FG101ETK18002187 (10.10.10.3) Management-IP: 0.0.0.0 Management-port:0 parent:
   path:FG3H1E5818900718:FG101ETK18002187
data received: Y downstream intf:To-HQ1 upstream intf:To-HQ2 admin-port:443
   authorizer:FG3H1E5818900718

3. Run the `diagnose sys csf upstream` command in the downstream FortiGate (HQ2) to show the root FortiGate (HQ1) after the downstream FortiGate joins Security Fabric:

   HQ2 # diagnose sys csf upstream
   Upstream Information:
   Serial Number:FG3H1E5818900718
   IP:10.10.10.1
   Connecting interface:To-HQ1
   Connection status:Authorized

Leveraging LLDP to simplify Security Fabric negotiation

LLDP reception is enabled on WAN interfaces, which prompts FortiGates that are joining the Security Fabric if the upstream FortiGate asks.

- If the interface role is undefined, LLDP reception and transmission inherit settings from the VDOM.
- If the interface role is WAN, LLDP reception is enabled.
- If the interface role is LAN, LLDP transmission is enabled.

![Diagram of two FortiGates](image)

When a FortiGate B’s WAN interface detects that FortiGate A’s LAN interface is immediately upstream (through the default gateway), and FortiGate A has Security Fabric enabled, FortiGate B will show a notification on the GUI asking to join the Security Fabric.

To configure LLDP reception and join a Security Fabric in the GUI:

1. On FortiGate A, go to Network > Interfaces.
2. Configure an interface:
   - If the interface’s role is undefined, under Administrative Access, set Receive LLDP and Transmit LLDP to Use VDOM Setting.
- If the interface’s role is WAN, under Administrative Access, set Receive LLDP to Enable and Transmit LLDP to Use VDOM Setting.

- If the interface’s role is LAN, under Administrative Access, set Receive LLDP to Use VDOM Setting and Transmit LLDP to Enable.
3. Click OK. A notification is shown on FortiGate B. You can connect to a Security Fabric via an upstream FortiGate at 10.2.200.1.

4. Click the notification. The Core Network Security page with the Security Fabric settings opens. All the required settings automatically configured.

5. Click OK to apply the settings.

To configure LLDP reception and join a Security Fabric in the CLI:

1. Configure the interface on FortiGate A:
   - Undefined role

   ```
 config system interface
 edit "port3"
 set lldp-reception vdom
 set lldp-transmission vdom
 set role undefined
   ```
• WAN role

```
config system interface
edit "wan1"
 set lldp-reception enable
 set lldp-transmission vdom
 set role wan
...
next
end
```

• LAN role

```
config system interface
edit "port2"
 set lldp-reception vdom
 set lldp-transmission enable
 set role lan
...
next
end
```

2. Edit the Security Fabric settings on FortiGate B:

```
config system csf
 set status enable
 set upstream-ip 10.2.200.1
end
```

**Configuring the Security Fabric with SAML**

Security Assertion Markup Language (SAML) is an open standard for exchanging authentication and authorization data between one Identity Provider (IdP) and one or more Service Providers (SP). Both parties exchange messages using the XML protocol as transport. FortiGate firewall devices can be configured as IdPs or SPs.

When the Security Fabric is enabled, you can configure the root FortiGate as the IdP. You can also configure downstream FortiGates to be automatically configured as SPs, with all links required for SAML communication, when added to the Security Fabric. Administrators must still be authorized on each device. Credentials are verified by the root FortiGate, and login credentials are shared between devices. Once authorized, an administrator can move between fabric devices without logging in again.

Optionally, the downstream FortiGate can also be manually configured as an SP, and then linked to the root FortiGate.

The authentication service is provided by the root FortiGate using local system admin accounts for authentication. Any of the administrator account types can be used for SAML log in. After successful authentication, the administrator logs in to the first downstream FortiGate SP, and can then connect to other downstream FortiGates that have the SSO account properly configured, without needing to provide credentials again, as long as admins use the same browser session. In summary, the root FortiGate IdP performs SAML SSO authentication, and individual device administrators define authorization on FortiGate SPs by using security profiles.
Configuring single-sign-on in the Security Fabric

SAML SSO enables a single FortiGate device to act as the identity provider (IdP), while other FortiGate devices act as service providers (SP) and redirect logins to the IdP.

Only the root FortiGate can be the identity provider (IdP). The downstream FortiGates can be configured as service providers (SP).

The process is as follows:

1. Configuring the root FortiGate as the IdP on page 2320
2. Configuring a downstream FortiGate as an SP on page 2321
3. Configuring certificates for SAML SSO on page 2323
4. Verifying the single-sign-on configuration on page 2325

You can also use the CLI. See CLI commands for SAML SSO on page 2326.

Configuring the root FortiGate as the IdP

To configure the root FortiGate as the IdP:

1. Log in to the root FortiGate.
2. Go to Security Fabric > Fabric Connectors and double-click the Security Fabric Setup card.
3. Enable SAML Single Sign-On. The Mode field is automatically populated as Identity Provider (IdP).
4. Enter an IP address in the Management IP/FQDN box.
5. Enter a management port in the Management port box.
   The Management IP/FQDN will be used by the SPs to redirect the login request. The Management IP/FQDN and Management port must be reachable from the user’s device.
6. Select the IdP certificate.
7. Click OK.

Configuring a downstream FortiGate as an SP

There are two ways to configure the downstream FortiGate:

- From the root FortiGate
- From within the downstream device

An SP must be a member of the Security Fabric before you configure it.

To configure the downstream FortiGate from the root FortiGate:

1. Log in to the root FortiGate.
2. Go to Security Fabric > Fabric Connectors and double-click the Security Fabric Setup card.
3. In the Topology tree, hover over a FortiGate and click Configure.

![Topology tree with FortiGate configuration options]

The Configure pane opens.

4. Select a SAML Single Sign-On option. Auto sets the device to SP mode. Manual allows you to configure the SSO settings by clicking Advanced Options.

5. Select a Default login page option.

6. Select one of the following Default admin profile types: prof_admin, super_admin, or super_admin_readonly.

7. Enter an IP address in the Management IP/FQDN box.

8. Enter a management port in the Management port box.

   The Management IP/FQDN will be used by the IdP and so other SPs can redirect to each other. The Management port must be reachable from the user's device.
9. Click OK.

To configure the downstream FortiGate within the device:

1. Log in to the downstream FortiGate.
2. Go to Security Fabric > Fabric Connectors and double-click the Security Fabric Setup card.
3. Select a SAML Single Sign-On option. Auto sets the device to SP mode. Manual allows you to configure the SSO settings by clicking Advanced Options.
4. Select a Default login page option.
5. Select one of the following Default admin profile types: prof_admin, super_admin, or super_admin_readonly.
6. Enter an IP address in the Management IP/FQDN box.
7. Enter a management port in the Management port box.
   The Management IP/FQDN will be used by the IdP and so other SPs can redirect to each other. The Management port must be reachable from the user's device.
8. Click OK.

Configuring certificates for SAML SSO

Because communication between the root FortiGate IdP and FortiGate SPs is secured, you must select a local server certificate in the IdP certificate option on the root FortiGate. When downstream SPs join the IdP (root FortiGate), the SP automatically obtains the certificate.

In the following SP example, the IdP certificate displays REMOTE_Cert_2, which is the root server certificate for the IdP:
It is possible to manually import a certificate from an SP to the IdP so it can be used for authentication.

To manually import an SP certificate to an IdP:

1. Add the certificate:
   a. On the SP, go to Security Fabric > Fabric Connectors and double-click the Security Fabric Setup card.
   b. Click Advanced Options. The SAML SSO pane opens.
   c. Enable SP certificate and select a certificate from the dropdown box.
   d. Click Download. The certificate is downloaded on the local file system.
   e. Click OK.

2. Import the certificate:
   b. Click Advanced Options. The SAML SSO pane opens.
   c. In the Service Providers table, select the SP from step 1 and click Edit.
d. Enable SP certificate and in the dropdown box, click Import.

The Upload Remote Certificate window opens.
e. Click Upload and select the certificate downloaded in step 1.
f. Click OK. The certificate is imported.
g. Click OK.
h. In the IdP certificate list, select the certificate that you imported.
i. Click OK.

Verifying the single-sign-on configuration

After you have logged in to a Security Fabric member using SSO, you can navigate between any Security Fabric member with SSO configured.

To navigate between Security Fabric members:

1. Log in to a Security Fabric member that is using SSO.
2. In the top banner, click the name of the device you are logged in to. A list of Security Fabric members displays.

4. A prompt appears that an SSO administrator account has been created. Click **Continue**.

![Image of a successful SSO login]

You are now logged in to the Security Fabric member with SSO. The letters "SSO" also display beside the user name in the top banner.

5. Go to **System > Administrators > Single-Sign-On Administrator** to view the list of SSO admins created.

![Image of the Administrators screen]

**CLI commands for SAML SSO**

To enter a question mark (\?) or a tab, Ctrl + V must be entered first. Question marks and tabs cannot be typed or copied into the CLI Console or some SSH clients.

**To configure the IdP:**

```bash
config system saml
 set status enable
 set role identity-provider
 set cert "Fortinet_Factory"
 set server-address "172.16.106.74"
config service-providers
 edit "csf_172.16.106.74:12443"
 set prefix "csf_ngrczjqxujfshgr9ivhehwu37fml20"
 set sp-entity-id "http://172.16.106.74/metadata/
 set sp-single-sign-on-url "https://172.16.106.74/saml/?acs"
 set sp-single-logout-url "https://172.16.106.74/saml/?sls"
 set sp-portal-url "https://172.16.106.74/saml/login/"
config assertion-attributes
 edit "username"
 next
 edit "tdoc@fortinet.com"
 next
 set type email
 next
end
end
```

**To configure an SP:**

```bash
config system saml
 set status enable
 set cert "Fortinet_Factory"
 set idp-entity-id "http://172.16.106.74/saml-idp/csf_
```
To configure an SSO administrator:

    config system sso-admin
    edit "SSO-admin-name"
        set accprofile <SSO admin user access profile>
        set vdom <Virtual domain(s) that the administrator can access>
    next
    end

SAML SSO with pre-authorized FortiGates

You can set up SAML SSO authentication in a Security Fabric environment by starting with a root FortiGate that has one or more pre-authorized FortiGates.

After the initial configuration, you can add more downstream FortiGates to the Security Fabric, and they are automatically configured with default values for a service provider.

To set up basic SAML SSO for the Security Fabric:

1. Log in to the root FortiGate of the Security Fabric.
2. Go to Security Fabric > Fabric Connectors and double-click the Security Fabric Setup card.
3. Join two pre-authorized FortiGates to the root FortiGate (see Configuring the root FortiGate and downstream FortiGates on page 2210).
4. Configure the IdP (see Configuring the root FortiGate as the IdP on page 2320).
5. Configure the SPs (see Configuring a downstream FortiGate as an SP on page 2321).

Navigating between Security Fabric members with SSO

After you have logged in to a Security Fabric member by using SSO, you can navigate between any Security Fabric member with SSO configured. This can be done using the Security Fabric members dropdown menu or by logging in to a FortiGate SP from the root FortiGate IdP.

Security Fabric members dropdown

The Security Fabric members dropdown menu allows you to easily switch between all FortiGate devices that are connected to the Security Fabric. You can also use this menu to customize a FortiGate in the Security Fabric.

To navigate between Security Fabric members:

1. Log in to a Security Fabric member by using SSO.
2. In the top banner, click the name of the device you are logged into with SSO. A list of Security Fabric members is displayed.
3. Click the Security Fabric member. You are logged in to the Security Fabric member without further authentication.
To customize a FortiGate in the Security Fabric:

1. In the Security Fabric members dropdown menu, hover the cursor over a FortiGate so the tooltip is shown.
2. Click Configure. The Configure pane opens.
3. Edit the settings as required.
4. Click OK.

Logging in to an SP from the root IdP

The following example describes how to log in to a root FortiGate IdP, and navigate to other FortiGate SPs in the Security Fabric without further authentication. The local administrator account is named test3. The local administrator account must also be available as an SSO administrator account on all downstream FortiGate SPs. Different tabs of the same browser are used to log in to the various FortiGates.

To log in to a FortiGate SP from a root FortiGate IdP:

1. Log in to the root FortiGate IdP by using the local administrator account. In this example, the local administrator account is named test3.
2. Go to Security Fabric > Fabric Connectors and double-click the Security Fabric Setup card.
3. In the Topology tree, click one of the downstream FortiGate SPs, and select Login to <name of FortiGate>. The login screen is displayed.
4. In the login screen, select Single Sign-On.

By using cookies in your local browser for the already-authenticated SSO administrator, FortiGate logs you in to the downstream FortiGate SP as the SSO administrator. In this example, the SSO administrator name is test3.

5. While still logged into the root FortiGate IdP in your browser, go to the browser tab for the root FortiGate IdP, and log in to another FortiGate SP that is displayed on the Security Fabric widget in the GUI.
SAML SSO login uses SAML_IDP session cookies of already authenticated admin users in your local browser cache to send to the root FortiGate IdP for authentication. If your browser cache is manually cleared, or you close your browser, you must authenticate again.

It is possible to log in to one downstream FortiGate SP in a Security Fabric, and then open another tab in your browser to connect to another FortiGate SP that is not a member of the Security Fabric.

This is useful in cases where the SSO administrator and the local system administrator on the FortiGate SP both have the same login name, but are two different entities.

Integrating FortiAnalyzer management using SAML SSO

When a FortiGate acting as a Security Fabric root is configured as a SAML SSO identity provider (IdP), the FortiAnalyzer of the Security Fabric can register itself as a service provider (SP). This simplifies the configuration by enabling the setting in FortiAnalyzer to facilitate Fabric SSO access to the FortiAnalyzer once authenticated to the root FortiGate. When signed in using SSO, the FortiAnalyzer includes a Security Fabric navigation dropdown, which allows easy navigation to FortiGates in the Fabric.
To enable FortiAnalyzer as a Fabric SP in the GUI:

1. On the root FortiGate, go to Security Fabric > Physical Topology or Logical Topology.
2. In the topology, click the FortiAnalyzer icon and select Login to FortiAnalyzer.
3. Enter the credentials to log in. A Security Fabric must be configured with the Fabric devices listed under the Fabric name.
   a. Go to Device Manager to verify the Fabric setup. There is an asterisk beside the root FortiGate.
4. Edit the FortiAnalyzer SAML SSO settings:
   a. Go to System Settings > Admin > SAML SSO.
   b. For Single Sign-On Mode, select Fabric SP and enter the address to access the FortiAnalyzer in Server Address.
   c. Click Apply and log out of the FortiAnalyzer. The FortiAnalyzer will automatically register itself on the FortiGate and is a visible appliance in the list of SPs.
5. Verify that the FortiAnalyzer registration was successful:
   a. In FortiOS, go to Security Fabric > Fabric Connectors and double-click the Security Fabric Setup card.
   b. In the SAML Single Sign-On section click Advanced Options. There should be an entry for the FortiAnalyzer in the Service Providers table (appliance_192.168.1.103).

6. Log in to the FortiAnalyzer. There is a new option to Login with Fabric Single Sign-On.
7. Click *Login with Fabric Single Sign-On*. A dialog appears to select a Fabric IdP.

8. Select a FortiGate. The ADOM containing that FortiGate opens.

**To enable FortiAnalyzer as a Fabric SP in the CLI:**

1. In FortiAnalyzer, enable the device as a Fabric SP:
   ```
 config system saml
 set status enable
 set role FAB-SP
 set server-address "192.168.1.99"
 end

 FortiAnalyzer will register itself on the FortiGate as an appliance.

2. Verify the configuration in FortiOS:
   ```
   show system saml
   config system saml
   set status enable
   set role identity-provider
   set cert "fortigate.domain.tld"
   set server-address "192.168.1.99"
   config service-providers
   edit "appliance_192.168.1.103"
   set prefix "csf_76sh0bm4e7hf1ty54w42yrrv88tk8uj"
   set sp-entity-id "http://192.168.1.103/metadata/"
   set sp-single-sign-on-url "https://192.168.1.103/saml/?acs"
   set sp-single-logout-url "https://192.168.1.103/saml/?sis"
   set sp-portal-url "https://192.168.1.103/saml/login/"
   config assertion-attributes
   edit "username"
   next
   edit "profilenamer"
   set type profile-name
   next
   ```
To navigate between devices using SAML SSO in FortiOS:

1. Log in to the root FortiGate.
2. Go to Security Fabric > Physical Topology or Logical Topology.
3. In the topology, click the FortiAnalyzer icon and select Login to FortiAnalyzer.

To navigate between devices using SAML SSO in FortiAnalyzer:

1. Log in to the FortiAnalyzer using SSO.
2. Navigate to the ADOM that contains the root FortiGate of the Security Fabric.
3. In the toolbar, click the Security Fabric name to display a dropdown a list of the Fabric FortiGates.

Integrating FortiManager management using SAML SSO

When a FortiGate is configured as the SAML SSO IdP, FortiManager can be added as an SP.

To configure FortiManager as a Fabric SP:

2. In the Security Fabric Settings section, click Advanced Options.
3. In the Service Providers section, click Create New.
4. Enter a name and a prefix for the SP. FortiOS generates a unique prefix, but you can enter your own.
5. In **SP address**, enter the FortiManager address including the port number.

 ![Create Service Provider](image)

 - **Name**: cdf_fmg
 - **Prefix**: fmgfortidemo52610
 - **SP type**: Fortinet Product
 - **SP address**: [Input Field]
 - **SP certificate**: [Input Field]

 ![SAML Attribute](image)

 - **Name**: username
 - **Type**: Username

 ![OK Cancel](image)

6. Click **OK**.

7. In FortiManager, go to **System Settings > Admin > SAML SSO** and in the **Single Sign-On Mode** section, click **Service Provider (SP)**.

8. Configure the **IdP Settings**:

a. For **IdP Type**, click **Fortinet**.
b. For **IdP Address**, enter the root FortiGate address including the port number.
c. Enter the **Prefix** of the SP.
d. For **IdP Certificate**, import the same certificate used on the root FortiGate.
e. Click **Apply**.
9. To verify that the configuration works, log out of FortiManager and log in using the Login via Single-Sign-On link.

Advanced option - FortiGate SP changes

From a root FortiGate IdP, you can edit each of the FortiGate SPs. For example, you can edit a FortiGate SP to generate a new prefix, or you can add or modify SAML attributes. When you generate a new prefix value, it is propagated to the respective downstream FortiGates.

To edit an SP from the root FortiGate (IdP):

2. Click Advanced Options. The SAML SSO pane opens.
3. In the Service Providers table, select a device and click Edit. The Edit Service Provider pane opens.
4. Edit the settings as needed.
5. Click OK.
Security rating

The security rating uses real-time monitoring to analyze your Security Fabric deployment, identify potential vulnerabilities, highlight best practices that can be used to improve the security and performance of your network, and calculate Security Fabric scores.

To view the security rating, go to Security Fabric > Security Rating on the root FortiGate.

The Security Rating page is separated into three major scorecards: Security Posture, Fabric Coverage, and Optimization, which provide an executive summary of the three largest areas of security focus in the Security Fabric.

The scorecards show an overall letter grade and breakdown of the performance in sub-categories. Clicking a scorecard drills down to a detailed report of itemized results and compliance recommendations. The point score represents the net score for all passed and failed items in that area. In the drill down report, hover the cursor over a score to view the calculation breakdown.

The report includes the security controls that were tested against, linking to specific FSBP or PCI compliance policies. Click the FSBP and PCI buttons to reference the corresponding standard. Users can search or filter the report results. If there is a failed check on the scorecard, there is a link in the Recommendations section that takes you to the page to resolve the problem.
Certain remediations marked with an EZ symbol represent configuration recommendations that support Easy Apply. In the panel on the right, in the Recommendations section, click Apply to apply the changes to resolve the failed security control.

The report table can be customized by adding more columns, such as Category, to view, filter, or sort the results based on scorecard categories. Click the gear icon to customize the table.
Users can also export the reports as CSV or JSON files by clicking the Export dropdown.

To exit the current view, click the icon beside the scorecard title to return to the summary view.

For more information about security ratings, and details about each of the checks that are performed, go to Security Best Practices & Security Rating Feature.

The following licensing options are available for security rating checks:

- A base set of free checks
- A licensed set that requires a FortiGuard Security Rating Service subscription

The base set can be run locally on any FortiGate and on all other devices in the Security Fabric. For a list of base and licensed security rating checks, see FortiGuard Security Rating Service.

Security rating notifications

Security rating notifications are shown on settings pages, which list configuration issues determined by the security rating report. You can open the recommendations to see which items need to be fixed. Notifications can be dismissed in the GUI. Dismissed issues are unique for each administrator. Hashes for dismissed notifications are saved in local storage. If a user clears the local storage, all issues will show up again as not dismissed.

Notification locations

On the System > Settings page, there is a Security Rating Issues section in the right-side gutter. To dismiss a notification, hover over the issue and click the X beside it. To view dismissed notifications, enable Show Dismissed.
On the Network > Interfaces page, there is a Security Rating Issues section in the table footer. Click Security Rating Issues to view the list of issues. To dismiss a notification, click the X beside it. To view dismissed notifications, click Show Dismissed.

Notification pop-ups

When you click a security rating notification, a pop-up appears and the related setting is highlighted in the GUI. The pop-up contains a description of the problem and a timestamp of when the issue was found.
Once an issue is resolved, the notification disappears after the next security rating report runs.

Security rating check scheduling

Security rating checks by default are scheduled to run automatically every four hours.

To disable automatic security checks using the CLI:

```bash
config system global
    security-rating-run-on-schedule disable
end
```

To manually run a report using the CLI:

```
# diagnose report-runner trigger
```

Logging the security rating

The results of past security checks are available on the *Log & Report > System Events* page. Click the *Security Rating Events* card to see the detailed log.
An event filter subtype can be created for the Security Fabric rating so event logs are created on the root FortiGate that summarize the results and show detailed information for the individual tests.

To configure security rating logging using the CLI:

```plaintext
config log eventfilter
    set security-rating enable
end
```

Multi VDOM mode

In multi VDOM mode, security rating reports can be generated in the Global VDOM for all of the VDOMs on the device. Administrators with read/write access can run the security rating report in the Global VDOM. Administrators with read-only access can only view the report.

On the report scorecards, the *Scope* column shows the VDOMs that the check was run on. On checks that support *Easy Apply*, the remediation can be run on all of the associated VDOMs.

Global scope:
VDOM scope:

The security rating event log is available on the root VDOM.

Security Fabric score

The Security Fabric score is calculated when a security rating check is run, based on the severity level of the checks that are passed or failed. A higher scores represents a more secure network. Points are added for passed checks and removed for failed checks.

<table>
<thead>
<tr>
<th>Severity level</th>
<th>Weight (points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical</td>
<td>50</td>
</tr>
<tr>
<td>High</td>
<td>25</td>
</tr>
<tr>
<td>Medium</td>
<td>10</td>
</tr>
<tr>
<td>Low</td>
<td>5</td>
</tr>
</tbody>
</table>
To calculate the number of points awarded to a device for a passed check, the following equation is used:

\[
\text{score} = \frac{\text{<severity level weight>}}{\text{<# of FortiGates>}} \times \text{<secure FortiGate multiplier>}
\]

The secure FortiGate multiplier is determined using logarithms and the number of FortiGate devices in the Security Fabric.

For example, if there are four FortiGate devices in the Security Fabric that all pass the compatible firmware check, the score for each FortiGate device is calculated with the following equation:

\[
\frac{50}{4} \times 1.292 = 16.15 \text{ points}
\]

All of the FortiGate devices in the Security Fabric must pass the check in order to receive the points. If any one of the FortiGate devices fails a check, the devices that passed are not awarded any points. For the device that failed the check, the following equation is used to calculated the number of points that are lost:

\[
\text{score} = \frac{\text{<severity level weight>}}{\text{<# of FortiGates>}} \times \text{<secure FortiGate multiplier>}
\]

For example, if the check finds two critical FortiClient vulnerabilities, the score is calculated with the following equation:

\[
-50 \times 2 = -100 \text{ points}
\]

Scores are not affected by checks that do not apply to your network. For example, if there are no FortiAP devices in the Security Fabric, no points will be added or subtracted for the FortiAP firmware version check.

Automation stitches

Automation stitches automate the activities between the different components in the Security Fabric, which decreases the response times to security events. Events from any source in the Security Fabric can be monitored, and action responses can be set up to any destination.

Automation stitches can also be used on FortiGate devices that are not part of a Security Fabric.

An automation stitch consists of two parts: the trigger and the actions. The trigger is the condition or event on the FortiGate that activates the action, for example, a specific log, or a failed log in attempt. The action is what the FortiGate does in response to the trigger.

Automation stitches that use cloud-based actions (AWS Lambda, Azure Function, Google Cloud Function, and AliCloud Function) have the option to delay an action after the previous action is completed.

Diagnose commands are available in the CLI to test, log, and display the stitch history and settings.

Automation stitches can only be created on the root FortiGate in a Security Fabric.
Creating automation stitches

To create an automation stitch, a trigger event and a response action or actions are selected. Automation stitches can be tested after they are created.

In the GUI, go to Security Fabric > Automation and click Create New. Automation stitches, actions, and triggers are configured in separate dialogs.

The stitch Action execution can be set to either Sequential or Parallel. In sequential execution, actions will execute one after another with a delay (if specified). If one action fails, then the action chain stops. This is the default setting. In parallel execution, all actions will execute immediately when the stitch is triggered.

When creating a stitch, clicking Add Trigger and Add Action displays a list of available triggers and actions, and the option to create a new one.

Once the stitch is configured, a process diagram of the trigger, actions, and delays is displayed. A delay can be added before an action if Sequential action execution is used. Executing the next action can be delayed by up to 3600 seconds (one hour).
Triggers and actions can be configured separately, and then added to an automation stitch.

The maximum number of automation stitches that are allowed to run concurrently can be configured in the CLI (32 - 256, default = 128).

To configure the maximum number of concurrent automation stitches:

```
config automation setting
   set max-concurrent-stitches <integer>
end
```

Tabs on the Automation page

On the Security Fabric > Automation page, there are tabs for Stitch, Trigger, and Action. The Stitch tab is the default view that lists the trigger and actions used in each stitch. Individual triggers and actions can be created or edited in the corresponding tabs.
Click **Trigger** to view the list of triggers.

Click **Action** to view the list of actions.
Sample configuration

The following example shows how to configure a Security Rating Summary automation stitch with AWS Lambda and Email actions. There is a 60-second delay before the Email action.

To configure the automation stitch in the GUI:

2. Enter the stitch name and description.
3. Configure the trigger:
 a. Click Add Trigger.
 b. Click Create and select Security Rating Summary.
 c. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>aws_no_delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report</td>
<td>Security Posture</td>
</tr>
</tbody>
</table>
d. Click OK.
e. Select the trigger in the list and click Apply.

4. Configure the AWS Lambda function action:
 a. Click Add Action.
 b. Click Create and select AWS Lambda.
 c. Enter the following:

 | Name | aws_no_delay |
 | URL | Enter the request API URI |
 | API key | Enter the API key |
 | HTTP header | header2: header2_value |

 | Name | aws_no_delay |
 | Minimum interval | 0 second(s) |
 | Description | |
 | URL | Enter the request API URI |
 | API key | Enter the API key |
 | HTTP header | header2: header2_value |

 d. Click OK.
e. Select the action in the list and click Apply.
5. Configure the Email notification action:
 a. Click Add Action.
 b. Click Create and select Email.
 c. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>email_action</th>
</tr>
</thead>
<tbody>
<tr>
<td>To</td>
<td>Enter an email address</td>
</tr>
<tr>
<td>Subject</td>
<td>email action for test</td>
</tr>
<tr>
<td>Replacement message</td>
<td>Enable</td>
</tr>
</tbody>
</table>

 d. Click OK.
 e. Select the action in the list and click Apply.

6. Click the Add delay located between both actions. Enter 60 and click OK.
7. Click OK.

To configure the automation stitch in the CLI:

1. Configure the trigger:

   ```
   config system automation-trigger
   edit "aws_no_delay"
     set event-type security-rating-summary
   next
   end
   ```

2. Configure the actions:

   ```
   config system automation-action
   edit "aws_no_delay"
     set action-type aws-lambda
     set aws-api-key xxxxxxxxxx
     set uri "xxxxxxxxxx.execute-api.us-east-1.amazonaws.com/xxxxxxxxxx"
     set headers "header2:header2_value"
   ```
next
edit "email_action"
 set action-type email
 set email-to "test@fortinet.com"
 set email-subject "email action for test"
 set replacement-message enable
next
end

3. Configure the stitch:

 config system automation-stitch
 edit "aws_no_delay"
 set description "aws action test"
 set trigger "aws_no_delay"
 config actions
 edit 1
 set action "aws_no_delay"
 set required enable
 next
 edit 2
 set action "email_action"
 set delay 60
 set required enable
 next
 end
 end
next
end

Testing automation stitches

In the GUI, go to Security Fabric > Automation, right-click on the automation stitch and select Test Automation Stitch.

In the CLI, enter `diagnose automation test <automation-stitch name>`.

Default automation stitches

The following default automation stitches are included in FortiOS:

- Compromised Host Quarantine
- Incoming Webhook Quarantine
- HA Failover
- Network Down
- Reboot
- FortiAnalyzer Connection Down
- License Expired Notification
- Security Rating Notification

To view and edit the automation stitches in the GUI, go to Security Fabric > Automation.
CLI configurations

Compromised Host Quarantine

```bash
config system automation-action
    edit "Quarantine on FortiSwitch + FortiAP"
        set description "Default automation action configuration for quarantining a MAC address on FortiSwitches and FortiAPs."
        set action-type quarantine
    next
    edit "Quarantine FortiClient EMS Endpoint"
        set description "Default automation action configuration for quarantining a FortiClient EMS endpoint device."
        set action-type quarantine-forticlient
    next
end

config system automation-trigger
    edit "Compromised Host - High"
        set description "Default automation trigger configuration for when a high severity compromised host is detected."
    next
end

config system automation-stitch
    edit "Compromised Host Quarantine"
        set description "Default automation stitch to quarantine a high severity compromised host on FortiAPs, FortiSwitches, and FortiClient EMS."
        set status disable
        set trigger "Compromised Host - High"
    config actions
        edit 1
            set action "Quarantine on FortiSwitch + FortiAP"
    next
```
edit 2
 set action "Quarantine FortiClient EMS Endpoint"
next
end
next
end

FortiAnalyzer Connection Down

config system automation-action
 edit "FortiExplorer Notification"
 set description "Default automation action configuration for sending a notification
to any FortiExplorer mobile application."
 set action-type fortixplorer-notification
next
end
config system automation-trigger
 edit "FortiAnalyzer Connection Down"
 set description "Default automation trigger configuration for when the FortiAnalyzer
connection is lost."
 set event-type event-log
 set logid 22902
next
end
config system automation-stitch
 edit "FortiAnalyzer Connection Down"
 set description "Default automation stitch to send a FortiExplorer notification when
the connection to FortiAnalyzer is lost."
 set trigger "FortiAnalyzer Connection Down"
 config actions
 edit 1
 set action "FortiExplorer Notification"
next
next
end

Network Down

config system automation-action
 edit "Default Email"
 set description "Default automation action configuration for sending an email with
basic information on the log event."
 set action-type email
 set email-subject "%%log.logdesc%%"
next
end
config system automation-trigger
 edit "Network Down"
 set description "Default automation trigger configuration for when a network
connection goes down."
 set event-type event-log
 set logid 20099
 config fields
edit 1
 set name "status"
 set value "DOWN"
next
end
next
disable

config system automation-stitch
 edit "Network Down"
 set description "Default automation stitch to send an email when a network goes down."
 set status disable
 set trigger "Network Down"
 config actions
 edit 1
 set action "Default Email"
 next
end

HA Failover

config system automation-action
 edit "Default Email"
 set description "Default automation action configuration for sending an email with basic information on the log event."
 set action-type email
 set email-subject "%%log.logdesc%%"
next
end

config system automation-trigger
 edit "HA Failover"
 set description "Default automation trigger configuration for when an HA failover occurs."
 set event-type ha-failover
next
end

config system automation-stitch
 edit "HA Failover"
 set description "Default automation stitch to send an email when a HA failover is detected."
 set status disable
 set trigger "HA Failover"
 config actions
 edit 1
 set action "Default Email"
 next
end
next
end
Incoming Webhook Quarantine

config system automation-action
 edit "Quarantine on FortiSwitch + FortiAP"
 set description "Default automation action configuration for quarantining a MAC address on FortiSwitches and FortiAPs."
 set action-type quarantine
 next
 edit "Quarantine FortiClient EMS Endpoint"
 set description "Default automation action configuration for quarantining a FortiClient EMS endpoint device."
 set action-type quarantine-forticlient
 next
end

config system automation-trigger
 edit "Incoming Webhook Call"
 set description "Default automation trigger configuration for an incoming webhook."
 set event-type incoming-webhook
 next
end

config system automation-stitch
 edit "Incoming Webhook Quarantine"
 set description "Default automation stitch to quarantine a provided MAC address on FortiAPs, FortiSwitches, and FortiClient EMS using an Incoming Webhook."
 config actions
 edit 1
 set action "Quarantine on FortiSwitch + FortiAP"
 next
 edit 2
 set action "Quarantine FortiClient EMS Endpoint"
 next
 end
 next
end

License Expired Notification

config system automation-action
 edit "FortiExplorer Notification"
 set description "Default automation action configuration for sending a notification to any FortiExplorer mobile application."
 set action-type fortiexplorer-notification
 next
end

config system automation-trigger
 edit "License Expired Notification"
 set description "Default automation trigger configuration for when a license is near expiration."
 set event-type license-near-expiry
 set license-type any
 next
end
config system automation-stitch
 edit "License Expired Notification"
 set description "Default automation stitch to send a FortiExplorer notification when
 a license is near expiration."
 set trigger "License Expired Notification"
 config actions
 edit 1
 set action "FortiExplorer Notification"
 next
 end
next
end

Reboot

config system automation-action
 edit "Default Email"
 set description "Default automation action configuration for sending an email with
 basic information on the log event."
 set action-type email
 set email-subject "%%log.logdesc%%"
 next
end

config system automation-trigger
 edit "Reboot"
 set description "Default automation trigger configuration for when a FortiGate is
 rebooted."
 set event-type reboot
 next
end

config system automation-stitch
 edit "Reboot"
 set description "Default automation stitch to send an email when a FortiGate is
 rebooted."
 set status disable
 set trigger "Reboot"
 config actions
 edit 1
 set action "Default Email"
 next
 end
next
end

Security Rating Notification

config system automation-action
 edit "FortiExplorer Notification"
 set description "Default automation action configuration for sending a notification
 to any FortiExplorer mobile application."
 set action-type fortiexplorer-notification
 next
end
config system automation-trigger
 edit "Security Rating Notification"
 set description "Default automation trigger configuration for when a new Security Rating report is available."
 set event-type security-rating-summary
 set report-type any
 next
end

config system automation-stitch
 edit "Security Rating Notification"
 set description "Default automation stitch to send a FortiExplorer notification when a new Security Rating report is available."
 set trigger "Security Rating Notification"
 config actions
 edit 1
 set action "FortiExplorer Notification"
 next
next
end

Incoming Webhook Quarantine stitch

The Incoming Webhook Quarantine stitch for API calls to the FortiGate accepts multiple parameters (MAC address and FortiClient UUID) from an Incoming Webhook trigger, which enacts either the Access Layer Quarantine action (MAC address) or the FortiClient Quarantine action (FortiClient UUID). This is a default automation stitch included in FortiOS.

To trigger the Incoming Webhook Quarantine stitch in the GUI:

1. Create a new API user:
 a. Go to System > Administrators.
 b. Click Create New > REST API Admin.
 c. Configure the New REST API Admin settings, and copy the API key to the clipboard.

2. Enable the stitch:
 b. Under Incoming Webhook, right-click Incoming Webhook Quarantine, and select Select Status > Enable.

3. Get the sample cURL request:
 a. Click the Trigger trigger tab.
 b. Under Incoming Webhook, right-click Incoming Webhook Call, and select Edit.
c. In the API admin key field, enter the API key you recorded previously. The Sample cURL request field updates.

d. Copy the Sample cURL request to the clipboard.
e. Click OK.

4. Execute the request:
a. Edit the sample cURL request you just copied.
b. Add parameters to the data field ("mac" and "fctuid"), and then execute the request.

```bash
root@pc:~# curl -k -X POST -H 'Authorization: Bearer cftctimx3fQxr4khb994p7swdfmk' --data '{ "mac":"0c:0a:00:0c:ce:b0", "fctuid": "0000BB0B0A0B0D0A0B0E0F0B00B"}' https://172.16.116.226/api/v2/monitor/system/automation-stitch/webhook/Incoming%20Webhook%20Quarantine
```

Once the automation stitch is triggered, the MAC address is quarantined by the FortiGate, and an event log is created. The FortiClient UUID is quarantined on the EMS server side.

To trigger the Incoming Webhook Quarantine stitch in the CLI:

1. Create a new API user and note the API key:

```bash
cfgtctimx3fQxr4khb994p7swdfmk
```

Encode spaces in the automation stitch name with %20. For example, "Incoming%20Webhook%20Quarantine"
2. Enable the automation stitch:

```bash
config system api-user
  edit "api"
    set api-key *************
    set accprofile "api_profile"
    set vdom "root"
  config trusthost
    edit 1
      set ipv4-trusthost 10.6.30.0 200.200.200.0
    next
  end
end
```

3. Edit the cURL request to include parameters in the `data` field ("mac" and "fctuid"), then execute the request:

```bash
root@pc56:~# curl -k -X POST -H 'Authorization: Bearer
cfgtctlmmx0fQxr0kbb000p70wdfmk' --data '{ "mac":"0c:0a:00:0c:ce:b0", "fctuid": "3000B8B0DBD000B0D0A0B0E0B00B"}'
https://100.10.100.200/api/v2/monitor/system/automation-stitch/webhook/Incoming%20Webhook%20Quarantine
```

```json
{
  "http_method":"POST",
  "status":"success",
  "http_status":200,
  "serial":"FGT80E0Q00000000",
  "version":"v6.4.0",
  "build":1545
}
```

Encode spaces in the automation stitch name with `%20`. For example, `Incoming%20Webhook%20Quarantine`.

Once the automation stitch is triggered, the MAC address is quarantined by the FortiGate, and an event log is created. The FortiClient UUID is quarantined on the EMS server side.

Sample log

```plaintext
date=2020-02-14 time=15:37:48 logid="0100046600" type="event" subtype="system"
level="notice" vd="root" eventtime=1581723468644200712 tz="-0800" logdesc="Automation stitch triggered" stitch="Incoming Webhook Quarantine" trigger="Incoming Webhook Quarantine" stitchaction="Compromised Host Quarantine_quarantine,Compromised Host Quarantine_quarantine-forticlient" from="log" msg="stitch:Incoming Webhook Quarantine is triggered."
```

Triggers

The following table outlines the available triggers.

<table>
<thead>
<tr>
<th>Category</th>
<th>Trigger</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security Fabric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>Trigger</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Compromised Host | | An indicator of compromise (IoC) is detected on a host endpoint. The threat level must be selected and can be Medium or High. If Medium is selected, both medium and high level threats are included. Additional actions are available only for Compromised Host triggers:
 • Access Layer Quarantine
 • FortiClient Quarantine
 • VMware NSX Security Tag
 • IP Ban |
| Security Rating Summary | | A summary is available for a recently run Security Rating report. Options include:
 • Security Posture
 • Fabric Coverage
 • Optimization
 • Any |
| | FortiAnalyzer Event Handler | The specified FortiAnalyzer event handler has occurred. See FortiAnalyzer event handler trigger on page 2361 for details. |
| | FortiGate Cloud Event Handler | The specified FortiGate Cloud event handler has occurred. This option requires a FortiGate Cloud log retention license. |
| | Fabric Connector Event | An event has occurred on a specific Fabric connector. See Fabric connector event trigger on page 2366 for details. |
| | FortiGate Cloud-Based IOC | IOC detection from the FortiGate Cloud IOC service. This option requires an IOC license, a web filter license, and FortiCloud logging must be enabled. |
| System | | |
| Reboot | | A FortiGate is rebooting. |
| HA Failover | | An HA failover is occurring. |
| Conserve Mode | | A FortiGate entered conserve mode due to low memory. See Execute a CLI script based on CPU and memory thresholds on page 2412 for an example. |
| Configuration Change| | A FortiGate configuration change has occurred. |
| License Expiry | | A FortiGuard license is expiring. The license type must be selected. Options include:
 • FortiCare Support
 • FortiGuard Web Filter
 • FortiGuard AntiSpam
 • FortiGuard AntiVirus
 • FortiGuard IPS
 • FortiGuard Management Service
 • FortiGate Cloud |
<table>
<thead>
<tr>
<th>Category</th>
<th>Trigger</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV & IPS DB Update</td>
<td>Any</td>
<td>The antivirus and IPS database is updating.</td>
</tr>
<tr>
<td>High CPU</td>
<td></td>
<td>A FortiGate has high CPU usage. See Execute a CLI script based on CPU and memory thresholds on page 2412 for an example.</td>
</tr>
</tbody>
</table>

Event Log Category

<table>
<thead>
<tr>
<th>Category</th>
<th>Trigger</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anomaly Logs</td>
<td></td>
<td>An anomalous event has occurred. See Event log category triggers on page 2372 for an example.</td>
</tr>
<tr>
<td>IPS Logs</td>
<td></td>
<td>An IPS event has occurred.</td>
</tr>
<tr>
<td>SSH Logs</td>
<td></td>
<td>An SSH event has occurred.</td>
</tr>
<tr>
<td>Traffic Violation</td>
<td></td>
<td>A traffic policy has been violated.</td>
</tr>
<tr>
<td>Virus Logs</td>
<td></td>
<td>A virus event has occurred.</td>
</tr>
<tr>
<td>Web Filter Violation</td>
<td></td>
<td>A web filter policy has been violated.</td>
</tr>
</tbody>
</table>

Miscellaneous

<table>
<thead>
<tr>
<th>Category</th>
<th>Trigger</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FortiOS Event Log</td>
<td></td>
<td>The specified FortiOS log has occurred. Multiple event log IDs can be selected, and log field filters can be applied. See FortiOS event log trigger on page 2371 for an example.</td>
</tr>
<tr>
<td>Incoming Webhook</td>
<td></td>
<td>An incoming webhook is triggered.</td>
</tr>
<tr>
<td>Schedule</td>
<td></td>
<td>A scheduled monthly, weekly, daily, or hourly trigger. Set to occur on a specific minute of an specific hour on a specific day.</td>
</tr>
</tbody>
</table>

FortiAnalyzer event handler trigger

You can trigger automation stitches based on FortiAnalyzer event handlers. This allows you to define rules based on complex correlations across devices, log types, frequencies, and other criteria.

To set up a FortiAnalyzer event handler trigger:

1. Configure a FortiGate event handler on the FortiAnalyzer
2. Configure FortiAnalyzer logging on the FortiGate on page 2362
3. Configure an automation stitch that is triggered by a FortiAnalyzer event handler on page 2363

Configure a FortiGate event handler on the FortiAnalyzer

On the FortiAnalyzer, configure an event handler for the automation stitch. In this example, the event handler is triggered when an administrator logs in to the FortiGate. See Creating a custom event handler in the FortiAnalyzer Administration Guide for more information.
To configure an event handler on the FortiAnalyzer:

1. Go to FortiSoC > Handlers > FortiGate Event Handlers, and click Create New.
2. Configure an event handler with two conditions for the automation stitch:

<table>
<thead>
<tr>
<th>Log Type</th>
<th>Event Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Subtype</td>
<td>System</td>
</tr>
<tr>
<td>Group By</td>
<td>Device ID</td>
</tr>
<tr>
<td>Logs match</td>
<td>Any of the following conditions</td>
</tr>
<tr>
<td>Log Field</td>
<td>Level</td>
</tr>
<tr>
<td>Match Criteria</td>
<td>Equal To</td>
</tr>
<tr>
<td>Value</td>
<td>Information</td>
</tr>
<tr>
<td>Log Field</td>
<td>Action</td>
</tr>
<tr>
<td>Match Criteria</td>
<td>Equal To</td>
</tr>
<tr>
<td>Value</td>
<td>login</td>
</tr>
</tbody>
</table>

3. Configure the other settings as needed.

4. Click OK.

Configure FortiAnalyzer logging on the FortiGate

See Configuring FortiAnalyzer on page 2217 for more information.
To configure FortiAnalyzer logging in the GUI:

1. Go to Security Fabric > Fabric Connectors and double-click the FortiAnalyzer Logging card.
2. Ensure the Status is Enabled, and configure the settings as needed.

3. Click OK.

To configure FortiAnalyzer logging in the CLI:

```bash
config log fortianalyzer setting
  set status enable
  set server "10.6.30.250"
  set serial "FL-4HET000000000"
  set upload-option realtime
  set reliable enable
end
```

Configure an automation stitch that is triggered by a FortiAnalyzer event handler

When a FortiAnalyzer event handler is triggered, it sends a notification to the FortiGate automation framework, which generates a log and triggers the automation stitch.

To configure an automation stitch that is triggered by a FortiAnalyzer event handler in the GUI:

2. Enter the stitch name, auto-faz-1.
3. Configure the trigger:
 a. Click Add Trigger.
 b. Click Create and select FortiAnalyzer Event Handler.
 c. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>auto-faz-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event handler name</td>
<td>system-log-handler2</td>
</tr>
<tr>
<td>Event severity</td>
<td>Medium</td>
</tr>
</tbody>
</table>
4. Configure the Email notification action:
 a. Click Add Action.
 b. Click Create and select Email.
 c. Enter the following:
 - **Name**: auto-faz-1_email
 - **To**: Enter an email address
 - **Subject**: CSF stitch alert
 - **Body**: User login FortiGate successfully.

d. Click OK.
e. Select the action in the list and click Apply.

5. Click OK.
To configure an automation stitch that is triggered by a FortiAnalyzer event handler in the CLI:

1. Create an automation trigger:

   ```
   config system automation-trigger
   edit "auto-faz-1"
   set event-type faz-event
   set faz-event-name "system-log-handler2"
   set faz-event-severity "medium"
   set faz-event-tags "User log in successful"
   next
   end
   ```

2. Create an automation action:

   ```
   config system automation-action
   edit "auto-faz-1_email"
   set action-type email
   set email-to "admin@fortinet.com"
   set email-subject "CSF stitch alert"
   set message "User login FortiGate successfully."
   next
   end
   ```

3. Create the automation stitch:

   ```
   config system automation-stitch
   edit "auto-faz-1"
   set trigger "auto-faz-1"
   config actions
   edit 1
   set action "auto-faz-1_email"
   set required enable
   next
   end
   ```

View the trigger event log

To view the trigger event log in the GUI:

1. Log in to the FortiGate.
 The FortiAnalyzer sends a notification to the FortiGate automation framework, generates an event log on the FortiGate, and triggers the automation stitch.

2. Go to Log & Report > System Events and select General System Events. From the log location dropdown, select FortiAnalyzer.

To view the trigger event log in the CLI:

```
# execute log display
```

```text
date=2019-02-05 time=14:16:17 logid="0100046600" type="event" subtype="system"
level="notice" vd="root" eventtime=1549404977 logdesc="Automation stitch triggered"
stitch="auto-faz-1" trigger="auto-faz-1" from="log" msg="stitch:auto-faz-1 is triggered."
```
Sample email

The email sent by the action will look similar to the following:

Fabric connector event trigger

With the Fabric Connector Event trigger, any supported Fabric connector is able to trigger an automation stitch on the FortiGate based on a specific event defined on the Fabric connector. Currently, only FortiDeceptor 4.1 supports this trigger for the Insider Threat, Notify Ban, and Notify Unban events.

In the following example, an authorized FortiDeceptor in the Security Fabric deploys a decoy called ubuntu16 configured with SSH, SAMBA, HTTP, and HTTPS services.

This example assumes the Security Fabric is already configured. Refer to Configuring the root FortiGate and downstream FortiGates and FortiDeceptor for detailed configuration steps. On the root FortiGate, the Allow downstream device REST API access option must be enabled (set downstream-access enable). The minimum permission required for the selected Administrator profile is Read/Write for User & Device (set authgrp read-write).

Three stitches are configured, one for each FortiDeceptor trigger type:

<table>
<thead>
<tr>
<th>Stitch name</th>
<th>Fabric connector event trigger</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>fortideceptor_threat</td>
<td>Insider threat</td>
<td>Email and IP ban</td>
</tr>
<tr>
<td>fortideceptor_ban</td>
<td>Notify ban</td>
<td>Email and IP ban</td>
</tr>
<tr>
<td>fortideceptor_unban</td>
<td>Notify unban</td>
<td>Email and CLI script</td>
</tr>
</tbody>
</table>

To configure stitches with the Fabric connector event trigger in the GUI:

1. Configure the triggers:
 a. Go to Security Fabric > Automation, select the Trigger tab, and click Create New.
 b. In the Security Fabric section, click Fabric Connector Event and enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>fdc_Insider_Threat</td>
</tr>
<tr>
<td>Description</td>
<td>Insider_Threat</td>
</tr>
<tr>
<td>Connector</td>
<td>Select the FortiDeceptor connector</td>
</tr>
<tr>
<td>Event Name</td>
<td>Insider Threat</td>
</tr>
</tbody>
</table>
 c. Click OK.
 d. Repeat these steps to create two more triggers with the following settings:

<table>
<thead>
<tr>
<th>Name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>fdc_Notify_Ban</td>
</tr>
<tr>
<td>Description</td>
<td>Notify_Ban</td>
</tr>
</tbody>
</table>
2. Configure the actions:
 a. Go to Security Fabric > Automation, select the Action tab, and click Create New.
 b. In the Security Response section, click IP Ban and enter the name, fdc_ban-ip.
 c. Click OK.
 d. Repeat these steps to create an Email (in the Notifications section) and a CLI Script (in the General section) action with the following settings:

 Email
 - **Name**: email_log
 - **To**: Enter an email address
 - **Subject**: CSF stitch alert

 CLI Script
 - **Name**: fdc_unban
 - **Script**: diagnose user quarantine delete src4 %%log.srcip%%
 - **Administrator profile**: super_admin

3. Configure the fortideceptor_threat stitch:
 a. Go to Security Fabric > Automation, select the Stitch tab, and click Create New.
 b. Enter the name, fortideceptor_threat.
 c. Click Add Trigger. Select fdc_Insider_Threat and click Apply.
 d. Click Add Action. Select email_log and click Apply.
 e. Click Add Action. Select fdc_ban-ip and click Apply.
 f. Click the Add delay located between both actions. Enter 5 and click OK.
 g. Click OK.

4. Configure the fortideceptor_ban stitch:
 a. Go to Security Fabric > Automation, select the Stitch tab, and click Create New.
 b. Enter the name, fortideceptor_ban.
 c. Click Add Trigger. Select fdc_Notify_Ban and click Apply.
 d. Click Add Action. Select email_log and click Apply.
 e. Click Add Action. Select fdc_ban-ip and click Apply.
 f. Click the Add delay located between both actions. Enter 5 and click OK.
 g. Click OK.
5. Configure the `fortideceptor_unban` stitch:
 a. Go to Security Fabric > Automation, select the Stitch tab, and click Create New.
 b. Enter the name, `fortideceptor_unban`.
 c. Click Add Trigger. Select `fdc_Notify_Unban` and click Apply.
 d. Click Add Action. Select `email_log` and click Apply.
 e. Click Add Action. Select `fdc_unban` and click Apply.
 f. Click the Add delay located between both actions. Enter 5 and click OK.
 g. Click OK.

To configure stitches with the Fabric connector event trigger in the CLI:

1. Configure the triggers:

   ```
   config system automation-trigger
   edit "fdc_Insider_Threat"
   set description "Insider_Threat"
   set event-type fabric-event
   set serial "FDC-VMTM210000***"
   set fabric-event-name "insider_threat"
   next
   edit "fdc_Notify_Ban"
   set description "Notify_Ban"
   set event-type fabric-event
   set serial "FDC-VMTM210000***"
   set fabric-event-name "notify_ban"
   next
   edit "fdc_Notify_Unban"
   set description "Notify_Unban"
   set event-type fabric-event
   set serial "FDC-VMTM210000***"
   set fabric-event-name "notify_unban"
   next
   end
   ```

2. Configure the actions:

   ```
   config system automation-action
   edit "fdc_ban-ip"
   set action-type ban-ip
   next
   edit "fdc_unban"
   set action-type cli-script
   set script "diagnose user quarantine delete src4 %%log.srcip%%"
   set output-size 10
   set timeout 0
   set accprofile "super_admin"
   next
   edit "email_log"
   set action-type email
   set email-to "*******@fortinet.com"
   set email-subject "CSF stitch alert"
   next
   end
   ```
3. Configure the stitches:

```plaintext
config system automation-stitch
  edit "fortideceptor_threat"
    set trigger "fdc_Insider_Threat"
  config actions
    edit 1
      set action "email_log"
      set required enable
    next
    edit 2
      set action "fdc_ban-ip"
      set delay 5
      set required enable
    next
  end
next
edit "fortideceptor_ban"
  set trigger "fdc_Notify_Ban"
  config actions
    edit 1
      set action "email_log"
      set required enable
    next
    edit 2
      set action "fdc_ban-ip"
      set delay 5
      set required enable
    next
  end
next
edit "fortideceptor_unban"
  set trigger "fdc_Notify_Unban"
  config actions
    edit 1
      set action "email_log"
      set required enable
    next
    edit 2
      set action "fdc_unban"
      set delay 5
      set required enable
    next
  end
next
end
```

Verification

A device with IP 172.16.200.33 uses SSH to access the decoy (ubuntu16) deployed in the FortiDeceptor. The FortiDeceptor will detect the attacker IP 172.16.200.33, automatically quarantine it, and send the insider threat notification to the FortiGate. This notification will trigger the `fortideceptor_threat` stitch due to the insider threat event trigger, so an email alert is sent and the attacker IP (172.16.200.33) is banned.

In FortiDeceptor, if the attacker IP (172.16.200.33) is manually blocked or unblocked, the FortiDeceptor will send out the internal block or unblock notification to FortiGate (see Quarantine Status for more details). This notification will trigger
the *fortideceptor_ban* or *fortideceptor_unban* stitch due the notify ban or unban event trigger. An email alert is sent, and based on the event, the IP is banned or the CLI script runs to unban the IP.

To view the quarantine details in FortiDeceptor:

1. Go to *Fabric > Quarantine Status*.
 a. Automatic quarantine:

 ![Automatic Quarantine Table]

 b. Manual block or unblock:

 ![Manual Block or Unblock Table]

To confirm that the stitch was triggered in the FortiOS GUI:

1. Go to *Security Fabric > Automation* and select the *Stitch* tab.
 a. Triggered insider threat:

 ![Triggered Insider Threat]

 b. Triggered notify ban or unban:

 ![Triggered Notify Ban or Unban]

To view the quarantined IP details in the FortiOS CLI:

```
# diagnose user quarantine list
src-ip-addr  created      expires       cause
```

If the IP is unbanned by the stitch, the list will be empty:

```
# diagnose user quarantine list
src-ip-addr  created      expires       cause
```
FortiOS event log trigger

You can configure a FortiOS event log trigger for when a specific event log ID occurs. You can select multiple event log IDs, and apply log field filters.

To configure a FortiOS event log trigger in the GUI:

1. Go to Security Fabric > Automation, select the Trigger tab, and click Create New.
2. In the Miscellaneous section, click FortiOS Event Log.
3. Enter a name and description.
4. In the Event field, click the + to select multiple event log IDs.
 The Event options correspond to the Message Meaning listed in the FortiOS Log Message Reference. Hover over an entry to view the tooltip that includes the event ID and log name. In this example, the Admin login successful event in the GUI corresponds to log ID 32001, which is LOG_ID_ADMIN_LOGIN_SUCC.

![FortiOS Event Log Trigger GUI](image)

5. In the Field filter(s) field, click the + to add multiple field filters. The configured filters must match in order for the stitch to be triggered.
 a. To view the list of available fields for a log, refer to the FortiOS Log Message Reference by appending the log ID to the document URL (https://docs.fortinet.com/document/fortigate/7.2.0/fortios-log-message-reference/<log_ID>).

![Field Filters](image)

6. Click OK.
To configure a FortiOS event log trigger in the CLI:

```bash
config system automation-trigger
  edit "event_login_logout"
    set description "trigger for login logout event"
    set event-type event-log
    set logid 32001 32003
  config fields
    edit 1
      set name "user"
      set value "csf"
    next
    edit 2
      set name "srcip"
      set value "10.6.30.254"
    next
  next
end
```

Event log category triggers

There are six automation triggers based on event log categories:

- Anomaly logs
- IPS logs
- SSH logs
- Traffic violations
- Virus logs
- Web filter violations

When multi VDOM mode is enabled, individual VDOMs can be specified so that the trigger is only applied to those VDOMs.

```bash
config system automation-trigger
  edit <name>
    set event-type {ips-logs | anomaly-logs | virus-logs | ssh-logs | webfilter-violation | traffic-violation}
    set vdom <name>
  next
end
```

Example

In this example, an automation stitch is created that uses an anomaly logs trigger and an email notification action. The trigger specifies which VDOMs should be used. There is a three-second delay between the trigger and action.

To configure an automation stitch with the anomaly logs trigger in the GUI:

1. Configure the trigger:
 a. Go to Security Fabric > Automation, select the Trigger tab, and click Create New.
 b. In the Event Log Category section, click Anomaly Logs.
 c. Enter a name (anomaly-logs) and add the required VDOMs (root, vdom-nat, vdom-tp).
d. Click OK.

2. Configure the action:
 a. Go to Security Fabric > Automation, select the Action tab, and click Create New.
 b. In the Notifications section, click Email and enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>email_default_rep_message</th>
</tr>
</thead>
<tbody>
<tr>
<td>To</td>
<td>Enter an email address</td>
</tr>
<tr>
<td>Subject</td>
<td>CSF stitch alert</td>
</tr>
<tr>
<td>Replacement message</td>
<td>Enable</td>
</tr>
</tbody>
</table>

 c. Click OK.

3. Configure the stitch:
 a. Go to Security Fabric > Automation, select the Stitch tab, and click Create New.
 b. Enter the name, anomaly-logs-stitch.
 c. Click Add Trigger. Select anomaly-logs and click Apply.
 d. Click Add Action. Select email_default_rep_message and click Apply.
 e. Click Add delay (between the trigger and action). Enter 3 and click OK.
 f. Click OK.

To configure an automation stitch with the anomaly logs trigger in the CLI:

1. Configure the trigger:
   ```
   config system automation-trigger
   edit "anomaly-logs"
   set event-type anomaly-logs
   set vdom "root" "vdom-nat" "vdom-tp"
   next
   end
   ```

2. Configure the action:
   ```
   config system automation-action
   edit "email_default_rep_message"
   set action-type email
   set email-to "admin@fortinet.com"
   ```
3. Configure the stitch:

```plaintext
set email-subject "CSF stitch alert"
set replacement-message enable
next
end
```

```plaintext
config system automation-stitch
edit "anomaly-logs-stitch"
set description "anomaly-logs"
set trigger "anomaly-logs"
config actions
   edit 1
      set action "email_default_rep_message"
      set delay 3
      set required enable
   next
next
end
```

Verification

Once the anomaly log is generated, the automation stitch is triggered and the email notification is sent.

To confirm that the stitch was triggered in the GUI:

1. Go to Security Fabric > Automation and select the Stitch tab.
2. Verify the Last Triggered column.

To confirm that the stitch was triggered in the CLI:

```
# diagnose test application autod 2
...
stitch: anomaly-logs-stitch
destinations: all
trigger: anomaly-logs
```
type: anomaly logs

field ids:
 (id:6) vd=root, vdom-nat, vdom-tp

local hit: 1 related to: 0 related from: 0

actions:
 email_default_rep_message type: email interval: 0
delay: 3 required: yes
subject: CSF stitch alert
body: %%log%%
sender: mailto:admin@fortinet.com;

Actions

The following table outlines the available actions. Multiple actions can be added to an automation stitch. Actions can be reorganized in the Edit Automation Stitch page by dragging and dropping the actions in the diagram.

<table>
<thead>
<tr>
<th>Category</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security Response</td>
<td>Access Layer Quarantine</td>
<td>This option is only available for Compromised Host triggers. Quarantine the MAC address on access layer devices (FortiSwitch and FortiAP).</td>
</tr>
<tr>
<td></td>
<td>FortiClient Quarantine</td>
<td>This option is only available for Compromised Host triggers. Use FortiClient EMS to block all traffic from the source addresses that are flagged as compromised hosts. Quarantined devices are flagged on the Security Fabric topology views. Go to the Dashboard > Users & Devices > Quarantine widget to view and manage quarantined IP addresses.</td>
</tr>
<tr>
<td></td>
<td>FortiNAC Quarantine</td>
<td>This option is only available for Compromised Host and Incoming Webhook triggers. Use FortiNAC to quarantine a client PC and disable its MAC address. See FortiNAC Quarantine action on page 2377 for details.</td>
</tr>
<tr>
<td></td>
<td>VMware NSX Security Tag</td>
<td>This option is only available for Compromised Host triggers. If an endpoint instance in a VMware NSX environment is compromised, the configured security tag is assigned to the compromised endpoint. See VMware NSX security tag action on page 2380 and VMware NSX-T security tag action on page 2384 for details.</td>
</tr>
<tr>
<td></td>
<td>IP Ban</td>
<td>This option is only available for Compromised Host triggers. Block all traffic from the source addresses flagged by the IoC. Go to the Dashboard > Users & Devices > Quarantine widget to view and manage quarantined IP addresses.</td>
</tr>
<tr>
<td>Category</td>
<td>Action</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Notifications</td>
<td>Email</td>
<td>Send a custom email message to the selected recipients. At least one recipient and an email subject must be specified. The email body can use parameters from logs or previous action results. Wrapping the parameter with %% will replace the expression with the JSON value for the parameter, for example: %%results.source%% is the source property from the previous action. Replacement messages can be enabled in the email body to create branded email alerts. See Replacement messages for email alerts on page 2388 for details.</td>
</tr>
<tr>
<td></td>
<td>FortiExplorer Notification</td>
<td>Send push notifications to FortiExplorer. The FortiGate must be registered to FortiCare on the mobile app that will receive the notification.</td>
</tr>
<tr>
<td></td>
<td>Slack Notification</td>
<td>Send a notification to a Slack channel. See Slack Notification action on page 2392 for details.</td>
</tr>
<tr>
<td></td>
<td>Microsoft Teams Notification</td>
<td>Send a notification to channels in Microsoft Teams. See Microsoft Teams Notification action on page 2397 for details.</td>
</tr>
<tr>
<td>Cloud Compute</td>
<td>AWS Lambda</td>
<td>Send log data to an integrated AWS service. See AWS Lambda action on page 2402 for details.</td>
</tr>
<tr>
<td></td>
<td>Azure Function</td>
<td>Send log data to an Azure function. See Azure Function action on page 2404 for details.</td>
</tr>
<tr>
<td></td>
<td>Google Cloud Function</td>
<td>Send log data to a Google Cloud function. See Google Cloud Function action on page 2405 for details.</td>
</tr>
<tr>
<td>General</td>
<td>CLI Script</td>
<td>Run one or more CLI scripts. See CLI script action on page 2409 for details. See Execute a CLI script based on CPU and memory thresholds on page 2412 for an example.</td>
</tr>
<tr>
<td></td>
<td>Webhook</td>
<td>Send an HTTP request using a REST callback. See Webhook action on page 2420 for details, and Slack integration webhook on page 2424 and Microsoft Teams integration webhook on page 2426 for examples.</td>
</tr>
<tr>
<td></td>
<td>Alert</td>
<td>Generate a FortiOS dashboard alert. This option is only available in the CLI.</td>
</tr>
<tr>
<td></td>
<td>Disable SSID</td>
<td>Disable the SSID interface. This option is only available in the CLI.</td>
</tr>
</tbody>
</table>
FortiNAC Quarantine action

Users can configure an automation stitch with the FortiNAC Quarantine action with a Compromised Host or Incoming Webhook trigger. When the automation is triggered, the client PC will be quarantined and its MAC address is disabled in the configured FortiNAC.

In this example, the FortiNAC has been configured to join an enabled Security Fabric. See Configuring FortiNAC on page 2252 for more information.

The FortiNAC must also be configured to isolate disabled hosts:

- Endpoints connecting to FortiWiFi or wired ports on FortiGate:
 - See the requisite Configure FortiNAC section in the FortiGate Endpoint Management Integration Guide.
- Endpoints connecting to FortiAP:
 - Set the Dead End VLAN. See Model configuration.
- Endpoints connecting to FortiSwitch:
 - Set the Dead End VLAN. See Model configuration.
 - Add the switch to the physical address filtering group. See Systems groups and Modify a group.

To configure an automation stitch with a FortiNAC quarantine action in the GUI:

1. Create a new API user and generate the API key:
 a. Go to System > Administrators and click Create New > REST API Admin.
 b. Configure the settings as needed.
 c. Click OK. The New API key window opens.
 d. Copy the key to the clipboard and click Close.
 e. Click OK.

2. Configure the automation stitch trigger:
 a. Go to Security Fabric > Automation and click Create New.
 b. Enter the stitch name (auto_webhook).
 c. Click Add Trigger.
 d. Click Create and select Incoming Webhook.
 e. Enter a name (auto_webhook).
 f. Click OK.
g. Paste the key in the API admin key field.

![Image of automated stitch configuration](image)

h. Click OK.

i. Select the trigger in the list and click **Apply**.

3. Configure the automation stitch action:

 a. Click **Add Action**.
 b. Click **Create** and select **FortiNAC Quarantine**.
 c. Enter an action name (**auto_webhook_quarantine-fortinac**) and click **OK**.
 d. Select the action in the list and click **Apply**.
 e. Click **OK**.

4. On a Linux PC accessible by the FortiGate, create a cURL request to trigger the automation stitch:

```
```

5. In FortiOS, verify the automation stitch is triggered and the action is executed:

 a. Go to **Log & Report > System Events** to confirm that the stitch was activated.
 b. Go to **Security Fabric > Automation** to see the last time that the stitch was triggered.

 In FortiNAC, the **Host View** shows the status of the client PC. It is quarantined and its MAC address is disabled.
To configure an automation stitch with a FortiNAC quarantine action in the CLI:

1. Create a new API user and generate the API key:

   ```
   config system api-user
   edit "g-api-rw-user"
       set api-key ************
       set accprofile "super_admin"
       set vdom "root"
   config trusthost
       edit 1
           set ipv4-trusthost 10.6.30.0 255.255.255.0
       next
   next
   end
   ```

2. Configure the automation trigger:

   ```
   config system automation-trigger
   edit "auto_webhook"
       set event-type incoming-webhook
   next
   end
   ```

3. Configure the automation action:

   ```
   config system automation-action
   edit "auto_webhook_quarantine-fortinac"
       set action-type quarantine-fortinac
   next
   end
   ```

4. Configure the automation stitch:

   ```
   config system automation-stitch
   edit "auto_webhook"
       set trigger "auto_webhook"
   config actions
       edit 1
           set action "auto_webhook_quarantine-fortinac"
       set required enable
   next
   next
   end
   ```

5. On a Linux PC accessible by the FortiGate, create a cURL request to trigger the automation stitch:

   ```bash
   ```

6. In FortiOS, verify that the automation stitch is triggered and the action is executed:

   ```bash
   # diagnose test application autod 2
csf: enabled  root=yes
version:1592949233 sync time:Tue Jun 23 15:03:15 2020
   ```
total stitches activated: 1

stitch: auto_webhook
 destinations: all
 trigger: auto_webhook

 (id:15)service=auto_webhook

 local hit: 1 relayed to: 0 relayed from: 0
 actions:
 auto_webhook_quarantine-fortinac type:quarantine-fortinac interval:0

date=2020-06-23 time=15:25:44 logdesc="Internal Message" path="system" name="automation-stitch" action="webhook" mkey="auto_webhook" srcip="1.1.1.1" mac="00:0C:29:0B:A6:16"
 fctuid="A8BA0B12DA694E47BA4ADF24F8358E2F" vdom="root" service="auto_webhook"

date=2020-06-23 time=15:25:44 logid="0100046600" type="event" subtype="system"
 level="notice" vd="root" eventtime=1592951144401490054 tz="-0700" logdesc="Automation stitch triggered" stitch="auto_webhook" trigger="auto_webhook" stitchaction="auto_webhook_quarantine-fortinac" from="log" msg="stitch: auto_webhook is triggered."

VMware NSX security tag action

If an endpoint instance in a VMware NSX environment is compromised, this action will assign the configured security tag to the compromised endpoint.

This action is only available when the automation trigger is set to compromised host.

To set up the NSX quarantine action, you need to:

1. Configure a VMware NSX SDN connector
2. Configure an NSX security tag automation stitch
3. Configure FortiAnalyzer logging on the FortiGate

Configure a VMware NSX SDN connector

The FortiGate retrieves security tags from the VMware NSX server through the connector.

To configure a VMware NSX SDN connector in the GUI:

1. Go to Security Fabric > External Connectors.
2. Click Create New.
3. Select VMware NSX.
4. Configure the settings as needed.

5. Click OK.

To configure a VMware NSX SDN connector in the CLI:

```bash
config system sdn-connector
edit "nsx"
    set type nsx
    set server "172.18.64.32"
    set username "admin"
    set password xxxxxxxxxxxxx
next
end
```

Configure an NSX security tag automation stitch

Security tags are retrieved from the VMware NSX server through the NSX SDN connector.

To configure an automation stitch with an NSX security tag in the GUI:

1. Go to *Security Fabric > Automation* and click *Create New*.
2. Enter the stitch name *(pcui-test)*.
3. Configure the trigger:
 a. Click *Add Trigger*.
 b. Click *Create* and select *Compromised Host*.
 c. Enter the following:

<table>
<thead>
<tr>
<th></th>
<th>pcui-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>pcui-test</td>
</tr>
<tr>
<td>Threat level threshold</td>
<td>High</td>
</tr>
</tbody>
</table>
3. Click OK.
4. **Configure the VMware NSX Security Tag action:**
 a. Click **Add Action**.
 b. Click **Create** and select **VMware NSX Security Tag**.
 c. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>pcui-test_quarantine-nsx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify NSX server(s)</td>
<td>Enable and select the SDN connector</td>
</tr>
<tr>
<td>Security tag</td>
<td>Select an existing tag, or create a new one</td>
</tr>
</tbody>
</table>

 d. Click OK.
 e. Select the action in the list and click **Apply**.

5. Click OK.

To configure an automation stitch with an NSX security tag in the CLI:

1. **Create an automation trigger:**

   ```
   config system automation-trigger
   edit "pcui-test"
       set ioc-level high
   next
   end
   ```

2. **Create an automation action:**

   ```
   config system automation-action
   edit "pcui-test_quarantine-nsx"
       set action-type quarantine-nsx
       set security-tag "pcui-tag2"
       set sdn-connector "nsx"
   next
   end
   ```
3. Create the automation stitch:

```plaintext
config system automation-stitch
    edit "pcui-test"
        set trigger "pcui-test"
    config actions
        edit 1
            set action "pcui-test_quarantine-nsx"
            set required enable
        next
    next
end
```

Configure FortiAnalyzer logging on the FortiGate

The FortiAnalyzer is used to send endpoint compromise notification to the FortiGate.

See [Configuring FortiAnalyzer on page 2217](#) for more information.

To configure FortiAnalyzer logging in the GUI:

1. Go to Security Fabric > Fabric Connectors and double-click the FortiAnalyzer Logging card.
2. Ensure the Status is Enabled, and configure the settings as needed.

![FortiAnalyzer GUI Configuration](#)

3. Click Apply.

To configure FortiAnalyzer logging in the CLI:

```plaintext
config log fortianalyzer setting
    set status enable
    set server "172.18.64.234"
    set serial "FL-8HFT000000000"
    set upload-option realtime
    set reliable enable
end
```
When an endpoint instance is compromised

When an endpoint instance, such as `pcui-ubuntu2`, in the VMware NSX environment is compromised, the automation stitch is triggered. The FortiGate then assigns the configured security tag, `pcui-tag2` in this example, to the compromised NSX endpoint instance.

VMware NSX-T security tag action

VMware NSX SDN connectors’ vCenter server and credentials can be configured so the FortiGate resolves NSX-T VMs. The FortiGate uses the VMWare NSX Security Tag automation action to assign a tag to the VM through an automation stitch.

The FortiGate is notified of a compromised host on the NSX-T network by an incoming webhook or other means, such as FortiGuard IOC. An automation stitch can be configured to process this trigger and action it by assigning a VMware NSX security tag on the VM instance.

To configure an automation stitch to assign a security tag to NSX-T VMs in the GUI:

1. Configure the NSX SDN connector:
 a. Go to Security Fabric > External Connectors and click Create New.
 b. Select VMware NSX.
 c. Configure the connector settings.
d. Enable vCenter Settings and configure as needed.

![Automation Stitch Settings]

<table>
<thead>
<tr>
<th>Name</th>
<th>auto_webhook_quarantine-nsx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify NSX server(s)</td>
<td>Enable and select the SDN connector</td>
</tr>
<tr>
<td>Security tag</td>
<td>Select an existing tag, or create a new one</td>
</tr>
</tbody>
</table>

e. Click OK.

2. Configure the automation stitch trigger:
 a. Go to Security Fabric > Automation and click Create New.
 b. Enter the stitch name (auto_webhook).
 c. Click Add Trigger.
 d. Click Create and select Incoming Webhook.
 e. Enter a name (auto_webhook).
 f. Click OK to close the Incoming Webhook URL prompt.
 g. Select the trigger in the list and click Apply.

3. Configure the automation stitch action:
 a. Click Add Action.
 b. Click Create and select VMware NSX Security Tag.
 c. Enter the following:

```markdown
<table>
<thead>
<tr>
<th>Name</th>
<th>auto_webhook_quarantine-nsx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specify NSX server(s)</td>
<td>Enable and select the SDN connector</td>
</tr>
<tr>
<td>Security tag</td>
<td>Select an existing tag, or create a new one</td>
</tr>
</tbody>
</table>
```
d. Click OK.
e. Select the action in the list and click Apply.

4. Click OK.

5. In NSX-T, create a cURL request to trigger the automation stitch on the FortiGate:

```bash
root@pc56:/home# curl -k -X POST -H 'Authorization: Bearer 3fdxMG08mgNg0fh4NQ51g1NQ1QHcxx' --data '{ "srcip": "10.1.30.242"}' https://172.16.116.230/api/v2/monitor/system/automation-stitch/webhook/auto_webhook
{
  "http_method":"POST",
  "status":"success",
  "http_status":200,
  "serial":"FGVM08TM20000000",
  "version":"v6.4.0",
  "build":1608
}
```

The automation stitch is triggered and the configured tag is added to the NSX-T VM.

In FortiOS, the Security Fabric > Automation page shows the last trigger time.
To configure an automation stitch to assign a security tag to NSX-T VMs in the CLI:

1. Configure the NSX SDN connector:

   ```
   config system sdn-connector
   edit "nsx_t25"
       set type nsx
       set server "172.18.64.205"
       set username "admin"
       set password xxxxxxxxxxx
       set vcenter-server "172.18.64.201"
       set vcenter-username "administrator@vsphere.local"
       set vcenter-password xxxxxxxxxxx
   next
   end
   ```

2. Configure the automation stitch:

   ```
   config system automation-trigger
   edit "auto_webhook"
       set trigger-type event-based
       set event-type incoming-webhook
   next
   end

   config system automation-action
   edit "auto_webhook_quarantine-nsx"
       set action-type quarantine-nsx
       set security-tag "automation_tag"
       set sdn-connector "nsx_t25"
   next
   end

   config system automation-stitch
   edit "auto_webhook"
       set trigger "auto_webhook"
       config actions
           edit 1
           set action "auto_webhook_quarantine-nsx"
           set required enable
       next
   next
   end
   ```

3. In NSX-T, create a cURL request to trigger the automation stitch on the FortiGate:

   ```
   root@pc56:/home# curl -k -X POST -H 'Authorization: Bearer
   3fdxNG08mgNg0fh4NQ51g1NQ1QHcxR' --data '{ "srcip": "10.1.30.242"}'
   ```
To verify the automation stitch is triggered and the action is executed:

```bash
# diagnose test application autod 2
csf: enabled root:yes
version:1586883541 sync time:Tue Apr 14 11:04:05 2020
total stitches activated: 1
stitch: auto_webhook
destinations: all
trigger: auto_webhook
(id:15)service=auto_webhook
local hit: 1 relayed to: 0 relayed from: 0
actions:
auto_webhook_quarantine-nsx type:quarantine-nsx interval:0
security_tag:automation_tag
sdn_connector:
nsx_t25;
```

Replacement messages for email alerts

Automation stitches with an Email action can leverage the formatting options provided by replacement messages to create branded email alerts.

You can enable a replacement message and edit the message body or select a customized replacement message group when you configure the automation action. When the automation stitch is triggered, the FortiGate will send the email with the defined replacement message.

In this example, a Security Rating report triggers an Email notification action. The email uses a customized replacement message group.

To configure the replacement message group in the GUI:

1. Go to System > Replacement Message Groups and click Create New.
2. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>group-sec1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group Type</td>
<td>Security</td>
</tr>
</tbody>
</table>

3. Click OK.
4. Select the group in the list and click Edit.
5. Select Automation Alert Email and click Edit.

6. Edit the HTML code as needed, then click Save.

To configure the email action in the GUI:

2. Enter the stitch name.
3. Configure the trigger:
 a. Click Add Trigger.
 b. Click Create and select Security Rating Summary.
 c. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>rating_posture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>rating test</td>
</tr>
<tr>
<td>Report</td>
<td>Security Posture</td>
</tr>
</tbody>
</table>
4. Configure the Email notification action:
 a. Click Add Action.
 b. Click Create and select Email.
 c. Enter the following:

 - **Name**: email-group1
 - **To**: Enter an email address
 - **Subject**: CSF stitch alert group1
 - **Replacement message**: Enable
 - **Customize messages**: Enable and select group-sec1 from the dropdown

5. Click OK.
6. Right-click the automation stitch, and click Test Automation Stitch. After the Security Rating report is finished, the automation is triggered, and the email is delivered with the customized replacement message in the email body.

![Image of Security Fabric Automation rating trigger]

To configure the replacement message group in the CLI:

```plaintext
cfg system replacemsg-group
  edit "group-secl"
    set comment ""
    set group-type utm
  config automation
    edit "automation-email"
    set buffer "...<h1> Security Fabric Automation rating trigger </h1>...
    ...
  next
next
end
```

To configure the email action in the CLI:

1. Configure the automation trigger:

```plaintext
cfg system automation-trigger
  edit "rating_posture"
    set description "rating test"
    set event-type security-rating-summary
  next
end
```

2. Configure the automation action:

```plaintext
cfg system automation-action
  edit "email-group1"
    set action-type email
    set email-to "admin@fortinet.com"
    set email-subject "CSF stitch alert group1"
    set replacement-message enable
```
3. **Configure the automation stitch:**

   ```plaintext
   set replacemsg-group "group-secl"
   next
   end
   
   config system automation-stitch
   edit "auto_rating"
   set trigger "rating_posture"
   config actions
   edit 1
   set action "email-group1"
   set required enable
   next
   next
   end
   end
   
   4. To view the automation stitch information after it is triggered:

   ```plaintext
 # diagnose test application autod 3
 stitch: auto_rating
 local hit: 1 relayed to: 0 relayed from: 0
 last trigger: Tue Mar 16 15:11:29 2021
 last relay:
 actions:
 email-group1:
 done: 1 relayed to: 0 relayed from: 0
 last trigger: Tue Mar 16 15:11:29 2021
 last relay:

 logid2stitch mapping:
 id:52000 local hit: 1 relayed hits: 0
 auto_rating
   ```

**Slack Notification action**

To configure an automation stitch with a Slack Notification action, you first need to configure an incoming webhook in Slack. Then you can enter the webhook URL when you configure the Slack Notification action.

This example uses a Security Rating Summary trigger in the automation stitch with two Slack Notification actions with different notification messages. One message is a custom message, and the other is for the Security Rating Summary log with a 90 second delay.
To create an Incoming Webhook in Slack:

1. Go to the Slack website, and create a workspace.
2. Create a Slack application for the workspace.
3. Add an Incoming Webhook to a channel in the workspace (see Sending messages using Incoming Webhooks for more details).
4. Activate the Incoming Webhook, and copy the Webhook URL to the clipboard.

To configure an automation stitch with Slack Notification actions in the GUI:

2. Enter the stitch name.
3. Configure the Security Rating Summary trigger:
   a. Click Add Trigger.
   b. Click Create and select Security Rating Summary.
c. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>auto-rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report</td>
<td>Security Posture</td>
</tr>
</tbody>
</table>

d. Click OK.
e. Select the trigger in the list and click Apply.

4. Configure the first Slack Notification action:
a. Click Add Action.
b. Click Create and select Slack Notification.
c. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>slack1</th>
</tr>
</thead>
<tbody>
<tr>
<td>URL</td>
<td>Paste the webhook URL from the clipboard</td>
</tr>
<tr>
<td>Message</td>
<td>Text</td>
</tr>
<tr>
<td>Message text</td>
<td>This is test for slack notification.</td>
</tr>
</tbody>
</table>

d. Click OK.
e. Select the action in the list and click Apply.

5. Configure the second Slack Notification action:
a. Click Add Action.
b. Click Create and select Slack Notification.
c. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>slack2</th>
</tr>
</thead>
<tbody>
<tr>
<td>URL</td>
<td>Paste the webhook URL from the clipboard</td>
</tr>
</tbody>
</table>
d. Click OK.

e. Select the action in the list and click Apply.

f. Click the Add delay located between both actions. Enter 90 and click OK.

6. Click OK.
7. Trigger the automation stitch:
   a. Right-click the automation stitch and select *Test Automation Stitch.*
   After the Security Rating report is finished, the automation is triggered and an event log is created by the FortiGate. The two notifications are sent to the Slack channel.

To configure an automation stitch with Slack Notification actions in the CLI:

1. Configure the automation trigger:
   ```fortios
 config system automation-trigger
 edit "auto-rating"
 set event-type security-rating-summary
 next
 end
   ```

2. Configure the automation actions:
   ```fortios
 config system automation-action
 edit "slack1"
 set action-type slack-notification
 set message "This is test for slack notification."
 set uri "hooks.slack.com/services/xxxxxxxxx/xxxxxxxxx/xxxxxxxxxxxxxxxxxxxxxxxxxx"
 next
 edit "slack2"
 set action-type slack-notification
 set uri "hooks.slack.com/services/xxxxxxxxx/xxxxxxxxx/xxxxxxxxxxxxxxxxxxxxxxxxxx"
 next
 end
   ```

3. Configure the automation stitch:
   ```fortios
 config system automation-stitch
 edit "auto_rating"
 set trigger "auto-rating"
 config actions
 edit 1
 set action "slack1"
 set required enable
 next
 edit 2
 set action "slack2"
   ```
4. Verify that the automation action was triggered:

```plaintext
set delay 90
set required enable
next
end
next
end
```

Microsoft Teams Notification action

Microsoft Teams Notification actions can be configured to send notifications to channels in Microsoft Teams. To trigger the notifications, you need to add an Incoming Webhook connector to a channel in Microsoft Teams, then you can configure the automation stitch with the webhook URL.

In the following example, you will configure an automation stitch with a Security Rating Summary trigger and two Microsoft Teams Notification actions with different notification messages. One message is for the Security Rating Summary log, and the other is a custom message with a ten second delay.

To add the Incoming Webhook connector in a Microsoft Teams channel:

1. In Microsoft Teams, click the ... (More options) beside the channel name, and select Connectors.
2. Search for Incoming Webhook and click Configure.
3. Enter a name for the webhook, upload an image for the webhook, and click Create.
4. Copy the webhook to the clipboard and save it.
5. Click Done.

To configure an automation stitch with Microsoft Teams Notification actions in the GUI:

2. Enter the stitch name.
3. Configure the Security Rating Summary trigger:
   a. Click Add Trigger.
   b. Click Create and select Security Rating Summary.
   c. Enter a name, and for Report, select Security Posture.
   d. Click OK.
   e. Select the trigger in the list and click Apply.
4. Configure the first Microsoft Teams Notification action:
   a. Click Add Action.
   b. Click Create and select Microsoft Teams Notification.
   c. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>teams_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>URL</td>
<td>Paste the webhook URI from the clipboard</td>
</tr>
<tr>
<td>Message</td>
<td>Text</td>
</tr>
<tr>
<td>Message text</td>
<td>%%log%%</td>
</tr>
</tbody>
</table>
d. Click OK.
e. Select the action in the list and click Apply.

5. Configure the second Microsoft Teams Notification action:
   a. Click Add Action.
   b. Click Create and select Microsoft Teams Notification.
   c. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>teams_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>URL</td>
<td>Paste the webhook URI from the clipboard</td>
</tr>
<tr>
<td>Message</td>
<td>Text</td>
</tr>
<tr>
<td>Message text</td>
<td>This is for test.</td>
</tr>
</tbody>
</table>
d. Click OK.
e. Select the action in the list and click Apply.
f. Click the Add delay located between both actions. Enter 10 and click OK.

6. Click OK.

7. Trigger the automation stitch:
   a. Right-click the automation stitch and select Test Automation Stitch.
      After the Security Rating report is finished, the automation is triggered and an event log is created by the FortiGate. The two notifications are sent to the Microsoft Teams channel.
To configure an automation stitch with Microsoft Teams Notification actions in the CLI:

1. Configure the automation trigger:

   ```
 config system automation-trigger
 edit "Teams_action"
 set event-type security-rating-summary
 next
 end
   ```

2. Configure the automation actions:

   ```
 config system automation-action
 edit "teams_1"
 set action-type microsoft-teams-notification
 set uri "outlook.office.com/webhook/xxxxxxxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxxx/IncomingWebhook/xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx/xxxxxxxxxxxxx"
 next
 edit "teams_2"
 set action-type microsoft-teams-notification
 set message "This is for test."
 set uri "outlook.office.com/webhook/xxxxxxxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxxx/IncomingWebhook/xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx/xxxxxxxxxxxxx"
 next
 end
   ```

3. Configure the automation stitch:

   ```
 config system automation-stitch
 edit "Teams_action"
 set trigger "Teams_action"
   ```
config actions
edit 1
        set action "teams_1"
        set required enable
next
edit 2
        set action "teams_2"
        set delay 10
        set required enable
next
end
next
end

4. Verify that the automation action was triggered:

```
diagnose test application autod 3
stitch: Teams_action
 local hit: 2 relayed to: 0 relayed from: 0
 last trigger: Mon Nov 16 10:28:08 2020
 last relay:
 actions:
 teams_1:
 done: 2 relayed to: 0 relayed from: 0
 last trigger: Mon Nov 16 10:28:08 2020
 last relay:
 teams_2:
 done: 2 relayed to: 0 relayed from: 0
 last trigger: Mon Nov 16 10:28:08 2020
 last relay:
logid2stitch mapping:
id:52000 local hit: 22 relayed hits: 0
Teams_action
```

**AWS Lambda action**

AWS Lambda functions can be called when an automation stitch is triggered. This example uses a Security Rating Summary trigger in the automation stitch.

**To configure an AWS Lambda function automation stitch in the GUI:**

1. Go to *Security Fabric > Automation* and click *Create New*.
2. Enter the stitch name.
3. Configure the trigger:
   a. Click *Add Trigger*.
   b. Click *Create* and select *Security Rating Summary*.
   c. Enter the following:
      
Name	auto-aws
Report	Security Posture

   d. Click *OK*.
   e. Select the trigger in the list and click *Apply*. 
4. Configure the AWS Lambda function action:
   a. Click Add Action.
   b. Click Create and select AWS Lambda.
   c. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>aws-action-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>URL</td>
<td>Enter the request API URI</td>
</tr>
<tr>
<td>API key</td>
<td>Enter the API key</td>
</tr>
<tr>
<td>HTTP header</td>
<td>header2:header2_value</td>
</tr>
</tbody>
</table>
   
   d. Click OK.
   e. Select the action in the list and click Apply.

5. Click OK.

To configure an AWS Lambda function automation stitch in the CLI:

1. Create the automation trigger:
   ```bash
 config system automation-trigger
 edit "auto-aws"
 set event-type security-rating-summary
 next
 end
   ```

2. Create the automation action:
   ```bash
 config system automation-action
 edit "aws-action-1"
 set action-type aws-lambda
 set aws-api-key *************
 set uri "0100000000.execute-api.us-east-2.amazonaws.com/default/xxxxx-autobatoon-XXX-lambdaXXX"
 set headers "header2:header2_value"
 next
 end
   ```

3. Create the automation stitch:
   ```bash
 config system automation-stitch
 edit "auto-aws"
 set trigger "auto-aws"
 config actions
 edit 1
 set action "aws-action-1"
 set required enable
 next
 end
 next
 end
   ```

When the automation stitch is triggered, the Security Fabric > Automation page shows the stitch trigger time. In AWS, the log shows that the function was called, executed, and finished.
**Azure Function action**

Azure functions can be called when an automation stitch is triggered. This example uses a Security Rating Summary trigger in the automation stitch.

**To configure an Azure function automation stitch in the GUI:**

2. Enter the stitch name.  
3. Configure the trigger:  
   a. Click Add Trigger.  
   b. Click Create and select Security Rating Summary.  
   c. Enter the following:  
Name	auto-azure	Report	Security Posture
   d. Click OK.  
   e. Select the trigger in the list and click Apply.  
4. Configure the Azure Function action:  
   a. Click Add Action.  
   b. Click Create and select Azure Function.  
   c. Enter the following:  
Name	azure_function	URL	Enter the request API URI
Authorization	Function	API key	Enter the API key
HTTP header	header1 : value1		
   d. Click OK.  
   e. Select the action in the list and click Apply.  
5. Click OK.

**To configure an Azure function automation stitch in the CLI:**

1. Create an automation trigger:  
   ```bash  
 config system automation-trigger
 edit "auto-azure"
 set event-type security-rating-summary
 next
 end
   ```
2. Create an automation action:  
   ```bash  
 config system automation-action
 edit "azure_function"
 set action-type azure-function
   ```
set azure-function-authorization function
set azure-api-key ***********
set uri "xxxxx00-no-delete-xxxx.azurewebsites.net/api/headersResponse"
set headers "header1:value1"
next
end

3. Create the automation stitch:

   config system automation-stitch
   edit "auto-azure"
   set trigger "auto-azure"
   config actions
     edit 1
     set action "azure_function"
     set required enable
   next
next
end

When the automation stitch is triggered, the Security Fabric > Automation page shows the stitch trigger time. In Azure, the function log shows that the function was called, executed, and finished:

Google Cloud Function action

Google Cloud functions can be called when an automation stitch is triggered. This example uses a Security Rating Summary trigger in the automation stitch.

To configure a Google Cloud function automation stitch in the GUI:

2. Enter the stitch name.
3. Configure the trigger:
   a. Click Add Trigger.
   b. Click Create and select Security Rating Summary.
c. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>auto-google1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report</td>
<td>Security Posture</td>
</tr>
</tbody>
</table>

d. Click OK.

e. Select the trigger in the list and click Apply.

4. Configure the Google Cloud Function action:
   a. Click Add Action.
   b. Click Create and select Google Cloud Function.
   c. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>google-echo</th>
</tr>
</thead>
<tbody>
<tr>
<td>URL</td>
<td>Enter the request API URI</td>
</tr>
<tr>
<td>HTTP header</td>
<td>echo-header : echo-value</td>
</tr>
</tbody>
</table>

d. Click OK.

e. Select the action in the list and click Apply.

5. Click OK.

To configure a Google Cloud function automation stitch in the CLI:

1. Create an automation trigger:

```
config system automation-trigger
edit "auto-google1"
 set event-type security-rating-summary
next
end
```

2. Create an automation action:

```
config system automation-action
edit "google-echo"
 set action-type google-cloud-function
 set uri "us-central1-xxx-xxxxxxx-000-000000.cloudfunctions.net/xxxx-echo"
 set headers "echo-header:echo-value"
next
end
```

3. Create the automation stitch:

```
config system automation-stitch
edit "auto-google1"
 set trigger "auto-google1"
config actions
 edit 1
 set action "google-echo"
 set required enable
next
end
end
```
When the automation stitch is triggered, the Security Fabric > Automation page shows the stitch trigger time. In Google Cloud, go to Logs to see the function log showing that the configured function was called, executed, and finished:

![Function log in Google Cloud](image)

**AliCloud Function action**

AliCloud functions can be called when an automation stitch is triggered. This example uses a Security Rating Summary trigger in the automation stitch.

**To configure an AliCloud function automation stitch in the GUI:**

2. Enter the stitch name.
3. Configure the trigger:
   a. Click Add Trigger.
   b. Click Create and select Security Rating Summary.
   c. Enter the following:
      
Name	auto-ali
Report	Security Posture

   d. Click OK.
   e. Select the trigger in the list and click Apply.
4. Configure the AliCloud Function action:
   a. Click Add Action.
   b. Click Create and select AliCloud Function.
   c. Enter the following:
      
Name	Ali-Action-1
URL	Enter the request API URI
Authorization	Function
AccessKey ID	Enter the access key ID
d. Click OK.

e. Select the action in the list and click Apply.

5. Click OK.

To configure an AliCloud function automation stitch in the CLI:

1. Create an automation trigger:

```plaintext
config system automation-trigger
 edit "auto-ali"
 set event-type security-rating-summary
 next
end
```

2. Create an automation action:

```plaintext
config system automation-action
 edit "Ali-Action-1"
 set action-type alicloud-function
 set alicloud-function-authorization function
 set alicloud-access-key-id "XXXXXXXXXXXXXXXXX"
 set alicloud-access-key-secret xxxxxx
 set uri "0000000000000000.us-east-1.fc.aliyuncs.com/2099-99-99/proxy/test-function/echoBodyAuth/"
 next
end
```

3. Create the automation stitch:

```plaintext
config system automation-stitch
 edit "auto-ali"
 set trigger "auto-ali"
 config actions
 edit 1
 set action "Ali-Action-1"
 set required enable
 next
 next
end
```

When the automation stitch is triggered, the Security Fabric > Automation page shows the stitch trigger time. In AliCloud, the function log shows that the function was called, executed, and finished:
CLI script action

CLI scripts can run when an automation stitch is triggered. The scripts can be entered manually, uploaded as a file, or recorded in the CLI console. The output of the script can be sent as an email action.

The maximum length of the CLI script action output is 16 thousand characters. The CLI script can be configured in the GUI and CLI; however, the output size and timeout settings can only be configured in the CLI.

```
config system automation-action
 edit <name>
 set action-type cli-script
 set output-size <integer>
 set timeout <integer>
 next
end
```

<table>
<thead>
<tr>
<th><code>output-size &lt;integer&gt;</code></th>
<th>Set the size to limit the script output, in megabytes (1 - 1024, default = 10).</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>timeout &lt;integer&gt;</code></td>
<td>Set the maximum running time for this script, in seconds (0 - 300, 0 = no timeout).</td>
</tr>
</tbody>
</table>

Example

In this example, the script sets the idle timeout value to 479 minutes, and sends an email with the script output.

To configure a stitch with a CLI script action in the GUI:

2. Enter the stitch name (`auto-cli-1`).
3. Configure the trigger:
   a. Click Add Trigger.
   b. Click Create and select Security Rating Summary.
c. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>auto-cli-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report</td>
<td>Security Posture</td>
</tr>
</tbody>
</table>

d. Click OK.
e. Select the trigger in the list and click Apply.

4. Configure the CLI Script action:
   a. Click Add Action.
   b. Click Create and select CLI Script.
   c. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>admintimeout</th>
</tr>
</thead>
</table>
| Script       | config system global  
              |   set admintimeout 479
              | end                |

Alternatively, click Upload to upload a file, or click > Record in CLI console and enter the CLI commands.

5. Configure the Email notification action:
   a. Click Add Action.
   b. Click Create and select Email.
   c. Enter the following:
c. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>auto-cli-1_email</th>
</tr>
</thead>
<tbody>
<tr>
<td>To</td>
<td>Enter an email address</td>
</tr>
<tr>
<td>Subject</td>
<td>CSF stitch alert</td>
</tr>
<tr>
<td>Body</td>
<td>%%results%%</td>
</tr>
</tbody>
</table>

d. Click OK.

e. Select the action in the list and click Apply.

6. Click OK.

To configure a stitch with a CLI script action in the CLI:

1. Create the automation trigger:

   ```
 config system automation-trigger
 edit "auto-cli-1"
 set event-type security-rating-summary
 next
 end
   ```

2. Create the automation actions:

   ```
 config system automation-action
 edit "admintimeout"
 set action-type cli-script
 set script "config system global
 set admintimeout 479
 end"
 set output-size 10
 set timeout 0
 set accprofile "super_admin"
   ```
next
define action-type email
  set email-to "admin@fortinet.com"
  set email-subject "CSF stitch alert"
  set message "%%results%%"
definition

3. Create the automation stitch:

config system automation-stitch
define "auto-cli-1"
  set trigger "auto-cli-1"
  config actions
define 1
  set action "admintimeout"
  set required enable
definition
  define 2
  set action "auto-cli-1_email"
  set required enable
definition
definition

Sample email

The email sent by the action will look similar to the following:

Execute a CLI script based on CPU and memory thresholds

Automation stitches can be created to run a CLI script and send an email message when CPU or memory usage exceeds specified thresholds.

In this example, two automation stitches are created that run a CLI script to collect debug information, and then email the results of the script to a specified email address when the CPU usage threshold is exceeded, or memory usage causes the FortiGate to enter conserve mode.

The maximum size of the CLI script action output is 16K characters.
To define CPU and memory usage thresholds:

```
config system global
 set cpu-use-threshold <percent>
 set memory-use-threshold-extreme <percent>
 set memory-use-threshold-green <percent>
 set memory-use-threshold-red <percent>
end
```

Where:

<table>
<thead>
<tr>
<th>Threshold Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpu-use-threshold</td>
<td>Threshold at which CPU usage is reported, in percent of total possible CPU</td>
</tr>
<tr>
<td>memory-use-threshold-extreme</td>
<td>Threshold at which memory usage is considered extreme, and new sessions are</td>
</tr>
<tr>
<td></td>
<td>dropped, in percent of total RAM (default = 95).</td>
</tr>
<tr>
<td>memory-use-threshold-green</td>
<td>Threshold at which memory usage forces the FortiGate to exit conserve mode,</td>
</tr>
<tr>
<td></td>
<td>in percent of total RAM (default = 82).</td>
</tr>
<tr>
<td>memory-use-threshold-red</td>
<td>Threshold at which memory usage forces the FortiGate to enter conserve mode,</td>
</tr>
<tr>
<td></td>
<td>in percent of total RAM (default = 88).</td>
</tr>
</tbody>
</table>

Configuring the automation stitches

High CPU usage stitch

To create an automation stitch for high CPU usage in the GUI:

2. Enter the stitch name (auto_high_cpu).
3. Configure the trigger:
   a. Click Add Trigger.
   b. Click Create and select High CPU.
   c. Enter the name, auto_high_cpu.
   d. Click OK.
   e. Select the trigger in the list and click Apply.
4. Configure the CLI Script action:
   a. Click Add Action.
   b. Click Create and select CLI Script.
   c. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>high_cpu_debug</th>
</tr>
</thead>
</table>
| Script       | diagnose debug cli 8
               | diagnose debug console timestamp enable
               | diagnose debug enable
               | diagnose debug crashlog read
               | get system performance status
               | get system session status
d. Click OK.
e. Select the action in the list and click Apply.

5. Configure the Email notification action:
   a. Click Add Action.
   b. Click Create and select Email.
   c. Enter the following:

   **Name**  auto_high_cpu_email
To create an automation stitch for high CPU usage in the CLI:

1. Create the automation trigger:

```fortigate
config system automation-trigger
 edit "auto_high_cpu"
 set event-type high-cpu
 next
end
```

2. Create the automation actions:

```fortigate
config system automation-action
 edit "high_cpu_debug"
 set action-type cli-script
 set script "diagnose debug console timestamp enable
diagnose debug enable
diagnose debug crashlog read
get system performance status
get system session status
diagnose sys session full-stat
diagnose firewall iprope state
diagnose sys flash list
diagnose hardware sysinfo memory
diagnose hardware sysinfo slab
diagnose hardware sysinfo shm
diagnose hardware deviceinfo disk
get system arp
diagnose ip arp list
diagnose ip address list
get router info routing-table all
get router info kernel
diagnose ip rtcache list
diagnose sys top-summary
diagnose sys top 9 99"
 set output-size 10
 set timeout 0
 set accprofile "super_admin"
 next
 edit "auto_high_cpu_email"
 set action-type email
 set email-to "person@fortinet.com"
 set email-subject "CSF stitch alert: high_cpu"
 set message "%%results%%"
 next
end
```
3. Create the automation stitch:

```bash
config system automation-stitch
edit "auto_high_cpu"
 set trigger "auto_high_cpu"
 config actions
 edit 1
 set action "high_cpu_debug"
 set required enable
 next
 edit 2
 set action "auto_high_cpu_email"
 set required enable
 next
 end
next
end
```

**High memory usage stitch**

**To create an automation stitch for high memory usage in the GUI:**

2. Enter the stitch name *(auto_high_memory)*.
3. Configure the trigger:
   a. Click Add Trigger.
   b. Click Create and select Conserve Mode.
   c. Enter the name, *auto_high_memory*.
   d. Click OK.
   e. Select the trigger in the list and click Apply.
4. Configure the CLI Script action:
   a. Click Add Action.
   b. Click Create and select CLI Script.
   c. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>high_memory_debug</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Script</strong></td>
<td></td>
</tr>
<tr>
<td>diagnose debug cli 8</td>
<td></td>
</tr>
<tr>
<td>diagnose debug console timestamp enable</td>
<td></td>
</tr>
<tr>
<td>diagnose debug enable</td>
<td></td>
</tr>
<tr>
<td>diagnose debug crashlog read</td>
<td></td>
</tr>
<tr>
<td>get system performance status</td>
<td></td>
</tr>
<tr>
<td>get system session status</td>
<td></td>
</tr>
<tr>
<td>diagnose sys session full-stat</td>
<td></td>
</tr>
<tr>
<td>diagnose firewall iprope state</td>
<td></td>
</tr>
<tr>
<td>diagnose sys flash list</td>
<td></td>
</tr>
<tr>
<td>diagnose hardware sysinfo memory</td>
<td></td>
</tr>
<tr>
<td>diagnose hardware sysinfo slab</td>
<td></td>
</tr>
<tr>
<td>diagnose hardware sysinfo shm</td>
<td></td>
</tr>
<tr>
<td>diagnose hardware deviceinfo disk</td>
<td></td>
</tr>
<tr>
<td>get system arp</td>
<td></td>
</tr>
</tbody>
</table>
d. Click OK.
e. Select the action in the list and click Apply.

5. Configure the Email notification action:
   a. Click Add Action.
   b. Click Create and select Email.
   c. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>auto_high_memory_email</th>
</tr>
</thead>
<tbody>
<tr>
<td>To</td>
<td>Enter an email address</td>
</tr>
<tr>
<td>Subject</td>
<td>CSF stitch alert: high_memory</td>
</tr>
<tr>
<td>Body</td>
<td>%%results%%</td>
</tr>
</tbody>
</table>

d. Click OK.
e. Select the action in the list and click Apply.

6. Click OK.
To create an automation stitch for high memory usage in the CLI:

1. Create the automation trigger:

   ```
 config system automation-trigger
 edit "auto_high_memory"
 set event-type low-memory
 next
 end
   ```

2. Create the automation actions:

   ```
 config system automation-action
 edit "high_memory_debug"
 set action-type cli-script
 set script "diagnose debug cli 8
diagnose debug console timestamp enable
diagnose debug enable
diagnose debug crashlog read
get system performance status
get system session status
diagnose sys session full-stat
diagnose firewall iprope state
diagnose sys flash list
diagnose hardware sysinfo memory
diagnose hardware sysinfo slab
diagnose hardware sysinfo shm
diagnose hardware deviceinfo disk
get system arp
diagnose ip arp list
diagnose ip address list
get router info routing-table all
get router info kernel
diagnose ip rtcache list
diagnose sys top-summary
diagnose sys top 9 99"
 set output-size 10
 set timeout 0
 set accprofile "super_admin"
 next
 edit "auto_high_memory_email"
 set action-type email
 set email-to "person@fortinet.com"
 set email-subject "CSF stitch alert: high_memory"
 set message "%%results%%"
 next
 end
   ```

3. Create the automation stitch:

   ```
 config system automation-stitch
 edit "auto_high_memory"
 set trigger "auto_high_memory"
 config actions
 edit 1
 set action "high_memory_debug"
 set required enable
 next
   ```
edit 2
  set action "auto_high_memory_email"
  set required enable
next
end
next
end

Results

When the FortiGate enters conserve mode due to the memory-use-threshold-red being exceeded, the GUI displays a notice, and the auto_high_memory automation stitch is triggered. This causes the CLI script to run and the script results are emailed to the specified address.

Here is sample text from the email message:

CSF stitch alert: high_memory
noreply@notification.fortinet.net
Thu 11/21/2019 11:06 AM
John Doe
FGT[FGVM16TM19000000] Automation Stitch:auto_high_memory is triggered.

 Francois stitch alert: high_memory
noreply@notification.fortinet.net
Thu 11/21/2019 11:06 AM
John Doe
FGT[FGVM16TM19000000] Automation Stitch:auto_high_memory is triggered.

 FGVM16TM19000000 $ diag deb cli 8
Debug messages will be on for 25 minutes.

 FGVM16TM19000000 $ diag deb console timestamp enable

 FGVM16TM19000000 $ diag deb enable

 FGVM16TM19000000 $ diag deb crashlog read

 1: 2019-08-08 11:35:25 the killed daemon is /bin/dhcpcd: status=0x0
 2: 2019-08-08 17:52:47 the killed daemon is /bin/pyfcgid: status=0x0
 3: 2019-08-23 11:32:31 from=license status=INVALID
 4: 2019-08-23 11:32:32 from=license status=INVALID
 5: 2019-11-21 09:53:31 from=license status=VALID

...
Webhook action

The webhook automation stitch action makes HTTP and HTTPS requests to a specified server, with custom headers, bodies, ports, and methods. It can be used to leverage the ubiquity of HTML requests and APIs to integrate with other tools.

The URI and HTTP body can use parameters from logs or previous action results. Wrapping the parameter with %% will replace the expression with the JSON value for the parameter, for example: %%results.source%% is the source property from the previous action.

In this example, a specific log message (failed administrator log in attempt) triggers the FortiGate to send the contents of the log to a server. The server responds with a generic reply. This example assumes that the server is already configured and able to communicate with the FortiGate.

To configure the webhook automation stitch in the GUI:

2. Enter the stitch name (badLogin).
3. Configure the trigger:
   a. Click Add Trigger.
   b. Click Create and select FortiOS Event Log.
   c. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>badLogin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event</td>
<td>Admin login failed</td>
</tr>
</tbody>
</table>

   d. Click OK.
   e. Select the trigger in the list and click Apply.

4. Configure the automation stitch action:
   a. Click Add Action.
   b. Click Create and select Webhook.
   c. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>Send Log To Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>HTTP</td>
</tr>
<tr>
<td>URL</td>
<td>172.16.200.44</td>
</tr>
<tr>
<td>Custom port</td>
<td>Enable and enter 80</td>
</tr>
<tr>
<td>Method</td>
<td>POST</td>
</tr>
<tr>
<td>HTTP body</td>
<td>%%log%%</td>
</tr>
<tr>
<td>HTTP header</td>
<td>Header : 1st Action</td>
</tr>
</tbody>
</table>
To configure the webhook automation stitch in the CLI:

1. **Create an automation trigger:**

   ```
 config system automation-trigger
 edit "badLogin"
 set event-type event-log
 set logid 32002
 next
 end
   ```

2. **Create the automation action:**

   ```
 config system automation-action
 edit "Send Log To Server"
 set action-type webhook
 set uri "172.16.200.44"
 set http-body "%%log%%"
 set port 80
 set headers "Header:1st Action"
 next
 end
   ```

3. **Create the automation stitch:**

   ```
 config system automation-stitch
 edit "badLogin"
 set trigger "badLogin"
 config actions
 edit 1
 set action "Send Log To Server"
 set required enable
 next
 end
   ```
To test the automation stitch:

1. Attempt to log in to the FortiGate with an incorrect username or password.
2. On the server, check the log to see that its contents were sent by the FortiGate.

   The body content is replaced with the log from the trigger.

3. On the FortiGate, go to Log & Report > System Events to confirm that the stitch was activated.
4. Go to Security Fabric > Automation to see the last time that the stitch was triggered.

Diagnose commands

To enable log dumping:

```
diagnose test application autod 1
autod dumped total:1 logs, num of logids:1
autod log dumping is enabled

vdom:root(0) logid:32002 len:408 log:
 date=2019-05-30 time=17:41:03 logid="0100032002" type="event" subtype="system" level="alert"
 vdom="root" eventtime=1559263263858888451 tz="-0700" logdesc="Admin login failed" sn="0"
 user="admin" ui="http(10.6.30.254)" method="http" srcip=10.6.30.254 dstip=10.6.30.5
 action="login" status="failed" reason="passwd_invalid" msg="Administrator admin login failed from http(10.6.30.254) because of invalid password"
autod log dumping is disabled

autod logs dumping summary:
 logid:32002 count:1

autod dumped total:1 logs, num of logids:1
```

To show the automation settings:

```
diagnose test application autod 2
csf: enabled root:yes
total stitches activated: 2

stitch: badLogin
 destinations: all
 trigger: badLogin
 local hit: 6 relayed to: 6 relayed from: 6
 actions:
```
Send Log To Server type: webhook interval: 0
delay: 0 required: no
proto: 0 method: 0 port: 80
uri: 172.16.200.44
http body: %%log%%
headers:
  0. Header: 1st Action

To show the automation statistics:

# diagnose test application autod 3

stitch: badLogin

  local hit: 1 relayed to: 1 relayed from: 1

  actions:
    Send Log To Server:
      done: 1 relayed to: 1 relayed from: 1

logid2stitch mapping:
id: 32002   local hit: 3 relayed to: 3 relayed from: 3
badLogin

  action run cfg&stats:
    total: 55 cur: 0 done: 55 drop: 0
    email:
      flags: 10
      stats: total: 4 cur: 0 done: 4 drop: 0
    fortieexplorer-notification:
      flags: 1
      stats: total: 0 cur: 0 done: 0 drop: 0
    alert:
      flags: 0
      stats: total: 0 cur: 0 done: 0 drop: 0
    disable-ssid:
      flags: 7
      stats: total: 0 cur: 0 done: 0 drop: 0
    quarantine:
      flags: 7
      stats: total: 0 cur: 0 done: 0 drop: 0
    quarantine-forticlient:
      flags: 4
      stats: total: 0 cur: 0 done: 0 drop: 0
    quarantine-nsx:
      flags: 4
      stats: total: 0 cur: 0 done: 0 drop: 0
    ban-ip:
      flags: 7
      stats: total: 0 cur: 0 done: 0 drop: 0
    aws-lambda:
      flags: 11
To enable debug output and turn on automation debug messages for about 30 minutes:

```bash
diagnose debug enable
diagnose debug application autod -1
__auto_generate_generic_curl_request()=358: Generating generic automation CURL request for action (Send Log To Server).
__auto_generate_generic_curl_request()=406: Generic automation CURL request POST data for action (Send Log To Server):
date=2019-05-30 time=16:44:43 logid="0100032002" type="event" subtype="system" level="alert" vd="root" eventtime=1559259884209355090 tz="-0700" logdesc="Admin login failed sn="0" user="admin" ui="http(10.6.30.254)" method="http" srcip=10.6.30.254 dstip=10.6.30.5 action="login" status="failed" reason="passwd_invalid" msg="Administrator admin login failed from http(10.6.30.254) because of invalid password"

__auto_generic_curl_request_close()=512: Generic CURL request response body from http://172.16.200.44:
{
 "userId": 1,
 "id": 1,
 "title": "Test Response",
 "body": "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
}
```

**Slack integration webhook**

A webhook can be created to post messages and notifications to Slack.

In this example, a configuration change triggers the FortiGate to post a message to Slack.

**To create a webhook automation stitch for Slack integration in the GUI:**

1. Create an incoming webhook in Slack. See Sending messages using Incoming Webhooks for more information.
2. Go to Security Fabric > Automation and click Create New.
3. Enter the stitch name.
4. Configure the trigger:
   a. Click Add Trigger.
   b. Click Create and select Configuration Change.
Fortinet Security Fabric
c. Enter a name (config change).
d. Click OK.
e. Select the trigger in the list and click Apply.
5. Configure the action:
a. Click Add Action.
b. Click Create and select Webhook.
c. Enter the following:
Name

send to Slack

Protocol

HTTPS

URL

Enter the incoming webhook URL created in Slack

Custom port

Enable and enter 443

Method

POST

HTTP body

{\"channel\": \"#delivery\", \"username\": \"tleela\", \"text\": \"Configuration
changed\", \"icon_emoji\": \":worried:\"}

HTTP header

Content-type : application/json

d. Click OK.
e. Select the action in the list and click Apply.
6. Click OK.

FortiOS 7.2.0 Administration Guide
Fortinet Inc.

2425


To create a webhook automation stitch for Slack integration in the CLI:

1. Create an incoming webhook in Slack. See Sending messages using Incoming Webhooks for more information.
2. Create the automation trigger:

   ```
 config system automation-trigger
 edit "config change"
 set event-type config-change
 next
 end
   ```

3. Create the automation action:

   ```
 config system automation-action
 edit "send to Slack"
 set action-type webhook
 set protocol https
 set uri "hooks.slack.com/services/xxxxxxx"
 set http-body "{
 \"channel\": \"#delivery\", \"username\": \"tleela\", \"text\": \"Configuration changed\", \"icon_emoji\": \":worried:\"\"
 }
 set port 443
 set headers "Content-type:application/json"
 next
 end
   ```

4. Create the automation stitch:

   ```
 config system automation-stitch
 edit "Slack"
 set trigger "config change"
 config actions
 edit 1
 set action "send to Slack"
 set required enable
 next
 end
 next
 end
   ```

**Microsoft Teams integration webhook**

A webhook can be created to post messages and notifications to Microsoft Teams.

In this example, a configuration change triggers the FortiGate to post a message to Teams.

To create a webhook automation stitch for Teams integration in the GUI:

2. Go to Security Fabric > Automation and click Create New.
3. Enter the stitch name.
4. Configure the trigger:
   a. Click Add Trigger.
   b. Click Create and select Configuration Change.
   c. Enter a name (Teams).
d. Click OK.
e. Select the trigger in the list and click Apply.

5. Configure the action:
   a. Click Add Action.
   b. Click Create and select Webhook.
   c. Enter the following:

<table>
<thead>
<tr>
<th>Name</th>
<th>send to Teams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>HTTPS</td>
</tr>
<tr>
<td>URL</td>
<td>Enter the incoming webhook URL created in Teams</td>
</tr>
<tr>
<td>Custom port</td>
<td>Enable and enter 443</td>
</tr>
<tr>
<td>Method</td>
<td>POST</td>
</tr>
<tr>
<td>HTTP body</td>
<td>{&quot;text&quot;: &quot;&lt;message to send&gt;&quot;}</td>
</tr>
<tr>
<td>HTTP header</td>
<td>Content-type : application/json</td>
</tr>
</tbody>
</table>

   d. Click OK.
e. Select the action in the list and click Apply.

6. Click OK.

To create a webhook automation stitch for Teams integration in the CLI:

2. Create the automation trigger:

   ```
 config system automation-trigger
 edit "Teams"
 set event-type config-change
   ```
3. Create the automation action:

```fortran
config system automation-action
 edit "send to Teams"
 set action-type webhook
 set protocol https
 set uri "outlook.office.com/webhook/XXXXXXXXXXXXX/IncomingWebhook/XXXXXXXXXXXXX/XXXXXXXXXXXXXX"
 set http-body "{ "text": "<message to send>" }"
 set port 443
 set headers "Content-type: application/json"
next
end
```

4. Create the automation stitch:

```fortran
config system automation-stitch
 edit "Teams"
 set trigger "Teams"
 config actions
 edit 1
 set action "send to Teams"
 set required enable
next
next
end
```

For information about more advanced messages that can be configured and sent to the Teams incoming webhook, see Sending messages to connectors and webhooks.

Public and private SDN connectors

Cloud SDN connectors provide integration and orchestration of Fortinet products with public and private cloud solutions. In a typical cloud environment, resources are dynamic and often provisioned and scaled on-demand. By using an SDN connector, you can ensure that changes to cloud environment attributes are automatically updated in the Security Fabric.

To protect the East-West or North-South traffic in these environments, the FortiGate uses the SDN connector to sync the dynamic addresses that these volatile environments use. You can then configure the dynamic address objects as sources or destinations for firewall policies. When you make changes to cloud environment resources, such as moving them to a new location or assigning different IP addresses to them, you do not need to modify the policy in FortiOS, as the SDN connector syncs changes to the cloud address objects.

These configurations consist of three primary steps:

1. Configure the cloud SDN connector to connect your FortiGate and public or private cloud account.
2. Create dynamic address objects to use the SDN connector. Use filters to sync only cloud address objects that you
3. Apply the dynamic address objects to your firewall policy to protect your traffic.

This chapter explores the steps in detail and describes how to connect to each currently supported cloud platform. This chapter does not discuss cloud account role-based or permission requirements. The respective cloud documents contain this information.

The following external connector categories are available in the Security Fabric: Public SDN, Private SDN, Endpoint/Identity, and Threat Feeds.

### Public SDN
- Amazon Web Services (AWS)
- Microsoft Azure
- Google Cloud Platform (GCP)
- Oracle Cloud Infrastructure (OCI)
- IBM Cloud
- AliCloud

### Private SDN
- Kubernetes
- VMware ESXi
- VMware NSX
- OpenStack (Horizon)
- AgileCentric Infrastructure (ACI)
- Nuage Virtualized Services Platform
- Nutanix

### Endpoint/Identity
- FSSO Agent on Windows AD
- Symantec Endpoint Protection
- Dell Active Directory Server
- RADIUS Single Sign-On Agent
- Exchange Server

### Threat Feeds
- FortiGuard Category
- IP Address
- Domain Name
- Malware Hash

If VDOMs are enabled, SDN and Threat Feeds connectors are in the global settings, and Endpoint/Identity connectors are per VDOM.

---

**Getting started with public and private SDN connectors**

You can use SDN connectors to connect your FortiGate to public and private cloud solutions. By using an SDN connector, you can ensure that changes to cloud environment attributes are automatically updated in the Security Fabric. You can use SDN connector address objects to create policies that provide dynamic access control based on cloud environment attribute changes. There is no need to manually reconfigure addresses and policies whenever changes to the cloud environment occur.

There are four steps to creating and using an SDN connector:
1. Gather the required information. The required information depends on which public or private cloud solution SDN connector you are configuring.

2. Creating the SDN connector on page 2430
3. Creating an SDN connector address on page 2430
4. Adding the address to a firewall policy on page 2432

The following provides general instructions for creating an SDN connector and using the dynamic address object in a firewall policy. For instructions for specific public and private cloud solutions, see the relevant topic in this guide. For advanced scenarios regarding SDN connectors, see the appropriate FortiOS 7.2 cloud platform guide.

Creating the SDN connector

To create an SDN connector in the GUI:

1. Go to Security Fabric > External Connectors.
2. Click Create New.
3. Click the desired public or private cloud.
4. Enter the Name, Status, and Update Interval for the connector.
5. Enter previously collected information for the connector as needed.
6. Click OK.

To create an SDN connector in the CLI:

```
config system sdn-connector
edit <name>
 set status {enable | disable}
 set type {connector type}
 ... set update-interval <integer>
next
end
```

The available CLI commands vary depending on the selected SDN connector type.

Creating an SDN connector address

You can use an SDN connector address in the following ways:

- As the source or destination address for firewall policies.
- To automatically update changes to addresses in the public or private cloud environment, based on specified filters.
- To automatically apply changes to firewall policies that use the address, based on specified filters.

To create an SDN connector address in the GUI:

1. Go to Policy & Objects > Addresses.
2. Click Create New > Address.
3. Configure the address:
   a. Set the *Type* to *Dynamic*.
   b. From the *Sub Type* dropdown list, select *Fabric Connector Address*.
   c. From the *SDN Connector* dropdown list, select the desired SDN connector.
   d. From the *Filter* dropdown list, configure the desired filter. The filters available depend on the selected SDN connector type. The SDN connector automatically populates and updates IP addresses only for instances that satisfy the filter requirements. In this example, the address will automatically populate and update IP addresses only for AliCloud instances that belong to the specified security group:

   ![Edit Address](image)

   You can set filtering conditions using multiple entries with AND ("&") or OR ("|"). When both AND and OR are specified, AND is interpreted first, then OR.

   e. Configure other settings as desired.
   f. Click OK.

4. Ensure that the SDN connector resolves dynamic firewall IP addresses as configured:
   a. Go to *Policy & Objects* > *Addresses*.
   b. Hover over the address that you created to see a list of IP addresses for instances that satisfy the filter that you configured. In this case, the IP addresses of instances that belong to the specified security group display:

   ![Addresses](image)

To create an SDN connector address in the CLI:

1. Create the address:
   ```
 config firewall address
 edit <name>
 set type dynamic
 set sdn <sdn_connector>
 set visibility enable
 set associated-interface <interface_name>
 set color <integer>
   ```
... set comment <comment>
config tagging
    edit <name>
        set category <string>
        set tags <strings>
    next
    end
next
end

The available CLI commands vary depending on the selected SDN connector type.

Adding the address to a firewall policy

You can use an SDN connector address as the source or destination address in a policy.

To add the address to a firewall policy in the GUI:

1. Go to Policy & Objects > Firewall Policy.
2. Click Create New.
3. Use the SDN connector address as the source or destination address.
4. Configure the remaining settings as needed.
5. Click OK.

To add the address to a firewall policy in the CLI:

```
config firewall policy
 edit 0
 set name <name>
 set srcintf <port_name>
 set dstintf <port_name>
 set srcaddr <firewall_address>
```
set dstaddr <firewall_address>
set action accept
set schedule <schedule>
set service <service>
next
end

Connector tooltips

In Security Fabric > External Connectors, hover over an SDN connector to view a tooltip that shows basic configuration information.

Three buttons provide additional information:

<table>
<thead>
<tr>
<th>Button</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>View Connector Objects</td>
<td>Connector's dynamic objects, such as filters and instances.</td>
</tr>
<tr>
<td>View Policies</td>
<td>List of policies that use the dynamic addresses from the connector.</td>
</tr>
<tr>
<td>View Automation Rules</td>
<td>List of automation actions that use the connector.</td>
</tr>
</tbody>
</table>

AliCloud SDN connector using access key

FortiOS automatically updates dynamic addresses for AliCloud using an AliCloud SDN connector, including mapping the following attributes from AliCloud instances to dynamic address groups in FortiOS:

- ImageId
- InstanceId
- SecurityGroupId
- VpcId
- VSwitchId
- TagKey
- TagValue
To configure AliCloud SDN connector using the GUI:

1. Configure the AliCloud SDN connector:
   a. Go to Security Fabric > External Connectors.
   b. Click Create New, and select AliCloud.
   c. Configure as shown, substituting the access key, secret, and region ID for your deployment. The update interval is in seconds.

2. Create a dynamic firewall address for the configured AliCloud SDN connector:
   a. Go to Policy & Objects > Addresses.
   b. Click Create New, then select Address.
   c. Configure the address as shown, selecting the desired filter in the Filter dropdown list. In this example, the address will automatically populate and update IP addresses only for AliCloud instances that belong to the specified security group:

3. Ensure that the AliCloud SDN connector resolves dynamic firewall IP addresses:
   a. Go to Policy & Objects > Addresses.
   b. Hover over the address created in step 2 to see a list of IP addresses for instances that belong to the security
group configured in step 2:

To configure AliCloud SDN connector using CLI commands:

1. Configure the AliCloud SDN connector:
   ```fortigate-config
 config system sdn-connector
 edit "ali1"
 set type acs
 set access-key "LTAIKmERWEuEOChg"
 set secret-key xxxxx
 set region "us-west-1"
 set update-interval 30
 next
 end
   ```

2. Create a dynamic firewall address for the configured AliCloud SDN connector with the supported AliCloud filter. In this example, the AliCloud SDN Connector will automatically populate and update IP addresses only for instances that belong to the specified security group:
   ```fortigate-config
 config firewall address
 edit "ali-address-security"
 set type dynamic
 set sdn "ali1"
 set filter "SecurityGroupId=sg-rj9bp5ax5kwy3gqdzqb"
 next
 end
   ```

3. Confirm that the AliCloud SDN connector resolves dynamic firewall IP addresses using the configured filter:
   ```fortigate-config
 config firewall address
 edit "ali-address-security"
 set type dynamic
 set sdn "ali1"
 set filter "SecurityGroupId=sg-rj9bp5ax5kwy3gqdzqb"
 config list
 edit "10.0.0.16"
 next
 edit "10.0.0.17"
 next
 edit "10.0.0.20"
 next
 end
 next
 end
   ```

AWS SDN connector using certificates

FortiOS automatically updates dynamic addresses for AWS using an AWS SDN connector, including mapping attributes from AWS instances to dynamic address groups in FortiOS.
Configuring the SDN connector using the GUI, then checking the configuration using the CLI is recommended.

To configure an AWS SDN connector using the GUI:

1. Configure the AWS SDN connector:
   a. Go to Security Fabric > External Connectors.
   b. Click Create New, and select Amazon Web Services (AWS).
   c. In the Access key ID field, enter the key created in the AWS management portal.
   d. In the Secret access key field, enter the secret access key accompanying the above access key.
   e. In the Region name field, enter the region name. Refer to AWS Regions and Endpoints for the desired region name.
   f. In the VPC ID field, enter the VPC ID within the specified region you desire to cover with the SDN connector.
   g. Click OK.

2. Check the configuration using the CLI:
   config system sdn-connector
   edit "<connector-name>"
   show
   The output resembles the following:
   config system sdn-connector
   edit "<connector-name>"
   set access-key "<example-access-key>"
   set secret-key ENC <example-secret-key>
   set region "us-west-2"
   set vpc-id "vpc-e1e4b587"
   set update-interval 1
   next
   end
   If you see that the SDN connector is not enabled in Security Fabric > External Connectors in the GUI, run the following commands to enable the SDN connector:
   diagnose deb application awsd -1
diagnose debug enable
   The output may display an error like the following:
   FGT # awsd sdn connector AWS_SDN prepare to update
   awsd sdn connector AWS_SDN start updating
   aws curl response err, 403
   <?xml version="1.0" encoding="UTF-8"?>
   <Response><Errors><Error><Code>UnauthorizedOperation</Code><Message>You are not authorized to perform this operation.</Message></Error></Errors><RequestID>8403cc11-b185-41da-ad6d-23bb4db7d00a</RequestID></Response>
   awsd curl failed 403
   awsd sdn connector AWS_SDN failed to get instance list
   aws curl response err, 403
   awsd sdn connector AWS_SDN get EKS cluster list failed
   awsd sdn connector AWS_SDN list EKS cluster failed
   awsd sdn connector AWS_SDN start updating IP addresses
   awsd sdn connector AWS_SDN finish updating IP addresses
   awsd reap child pid: 569
   In this case, you must configure power user access for the current administrator in the AWS management console:
After configuring power user access, run the following commands:

diagnose deb application awsd -l

diagnose debug enable

The output should display without error, as follows:

FGT # AWSD: update sdn connector AWS_SDN status to enabled
awsd sdn connector AWS_SDN prepare to update
awsd sdn connector AWS_SDN start updating
awsd get ec2 instance info successfully
awsd sdn connector AWS_SDN start updating IP addresses
awsd sdn connector AWS_SDN finish updating IP addresses
awsd reap child pid: 893

The AWS connector is now enabled.

3. Create a dynamic firewall address for the configured AWS SDN connector:
   a. Go to Policy & Objects > Addresses.
   b. Click Create New, then select Address.
   c. From the Type dropdown list, select Dynamic.
   d. From the Sub Type dropdown list, select Fabric Connector Address.
In the *Filter* field, add the desired filters. The following filters are supported:

<table>
<thead>
<tr>
<th>Description</th>
<th>Key</th>
<th>Example value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>architecture</td>
<td>x86</td>
</tr>
<tr>
<td>Autoscaling group</td>
<td>AutoScaleGroup</td>
<td>10703c-4f731e90-fortigate-payg-auto-scaling-group</td>
</tr>
<tr>
<td>AZ</td>
<td>placement.availabilityzone</td>
<td>us-east-1a</td>
</tr>
<tr>
<td>Group name</td>
<td>placement.groupname</td>
<td></td>
</tr>
<tr>
<td>Image ID</td>
<td>imageld</td>
<td>ami-123456</td>
</tr>
<tr>
<td>Instance ID</td>
<td>instanceId</td>
<td>i-12345678</td>
</tr>
<tr>
<td>Instance type</td>
<td>instanceType</td>
<td>t2.micro</td>
</tr>
<tr>
<td>Key name</td>
<td>keyName</td>
<td></td>
</tr>
<tr>
<td>Kubernetes cluster</td>
<td>k8s_cluster</td>
<td></td>
</tr>
<tr>
<td>Kubernetes label and its name</td>
<td>k8s_label.Name</td>
<td></td>
</tr>
<tr>
<td>Kubernetes namespace</td>
<td>k8s_namespace</td>
<td></td>
</tr>
<tr>
<td>Kubernetes node name</td>
<td>k8s_nodename</td>
<td></td>
</tr>
<tr>
<td>Kubernetes pod name</td>
<td>k8s_podname</td>
<td></td>
</tr>
<tr>
<td>Kubernetes region</td>
<td>k8s_region</td>
<td></td>
</tr>
<tr>
<td>Kubernetes service name</td>
<td>k8s_servicename</td>
<td></td>
</tr>
<tr>
<td>Kubernetes zone</td>
<td>k8s_zone</td>
<td></td>
</tr>
<tr>
<td>Private DNS name</td>
<td>privateDnsName</td>
<td>ip-172-31-10-211.us-west-2.compute.internal</td>
</tr>
<tr>
<td>Public DNS name</td>
<td>publicDnsName</td>
<td>ec2-54-202-168-254.us-west-2.compute.amazonaws.com</td>
</tr>
<tr>
<td>Security group ID</td>
<td>SecurityGroupId</td>
<td></td>
</tr>
<tr>
<td>Subnet ID</td>
<td>subnetId</td>
<td>sub-123456</td>
</tr>
<tr>
<td>Tag and its name. This key supports a maximum of eight tags.</td>
<td>tag.Name</td>
<td></td>
</tr>
<tr>
<td>Tenancy placement</td>
<td>placement.tenancy</td>
<td></td>
</tr>
<tr>
<td>VPC ID</td>
<td>VpcId</td>
<td></td>
</tr>
</tbody>
</table>
4. Ensure that the AWS SDN connector resolves dynamic firewall IP addresses:
   a. Go to Policy & Objects > Addresses.
   b. Hover over the address created in step 2 to see a list of IP addresses for instances that belong to the security group configured in step 2.

   The following is an example for a public SDN address type:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Details</th>
<th>Interface</th>
<th>Visibility</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>aws-ec2</td>
<td>Subnet</td>
<td>0.0.0.0</td>
<td></td>
<td>Visible 0</td>
<td></td>
</tr>
<tr>
<td>all</td>
<td>Subnet</td>
<td>0.0.0.0</td>
<td></td>
<td>Hidden 0</td>
<td></td>
</tr>
</tbody>
</table>

   The following is an example for a private SDN address type:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Details</th>
<th>Interface</th>
<th>Visibility</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>aws-ec1</td>
<td>Subnet</td>
<td>0.0.0.0</td>
<td></td>
<td>Visible 0</td>
<td></td>
</tr>
<tr>
<td>all</td>
<td>Subnet</td>
<td>0.0.0.0</td>
<td></td>
<td>Visible 0</td>
<td></td>
</tr>
</tbody>
</table>

   To configure AWS SDN connector using CLI commands:

   1. Configure the AWS connector:
      ```
 config system sdn-connector
 edit "<connector-name>"
 set access-key "<example-access-key>"
 set secret-key ENC <example-secret-key>
 set region "us-west-2"
 set vpc-id "vpc-ele4b587"
 set update-interval 1
 next
 end
      ```

   2. Create a dynamic firewall address for the configured AWS SDN connector with the supported filter:
      ```
 config firewall address
 edit "aws-ec2"
 set type dynamic
 set sdn "<connector-name>"
 set filter "SecurityGroupId=sg-05f4749cf84267548"
 set sdn-addr-type public
      ```
next
edit "aws-eks1"
    set type dynamic
    set sdn "<connector-name>"
    set filter "K8S_Region=us-west-2"
next
end

3. Confirm that the AWS SDN connector resolves dynamic firewall IP addresses using the configured filter:

   config firewall address
   edit "aws-ec2"
       set type dynamic
       set sdn "<connector-name>"
       set filter "SecurityGroupId=sg-05f4749cf84267548"
       set sdn-addr-type public
   config list
       edit "34.222.246.198"
       next
       edit "54.188.139.177"
       next
       edit "54.218.229.229"
       next
   end
next
edit "aws-eks1"
    set type dynamic
    set sdn "<connector-name>"
    set filter "K8S_Region=us-west-2"
config list
    edit "192.168.114.197"
    next
    edit "192.168.167.20"
    next
    edit "192.168.180.72"
    next
    edit "192.168.181.186"
    next
    edit "192.168.210.107"
    next
end
next
end

To add an EC2 instance to test automatic address population:

1. Assume that you want to boot up another instance with an IP address of 34.222.246.178, which is currently stopped. This instance belongs to the security group that the aws-ec2 address is filtering for. In the AWS management portal, start the instance.

2. Verify that the instance is running.

3. At this point, running show again shows the SDN connector has automatically populated and added the 34.222.246.178 instance.

   config firewall address
   edit "aws-ec2"
       set type dynamic
       set sdn "<connector-name>"
       set filter "SecurityGroupId=sg-05f4749cf84267548"
Fortinet Security Fabric

set sdn-addr-type public
config list
  edit "34.222.246.198"
  next
  edit "54.188.139.177"
  next
  edit "54.218.229.229"
  next
  edit "34.222.246.178"
  next
end
next
end

Therefore, administrators do not need to add this instance to the address manually. When a firewall policy is applied to this address, 34.222.246.178 is automatically covered.

Azure SDN connector using service principal

FortiOS automatically updates dynamic addresses for Azure using Azure SDN connector, including mapping attributes from Azure instances to dynamic address groups in FortiOS.

To configure the Azure SDN connector using service principal:

1. Create an Azure SDN connector:
   a. Go to Security Fabric > External Connectors and click Create New.
   b. Select Microsoft Azure.
   c. Configure the connector. See Azure SDN connector service principal configuration requirements:

   ![Azure SDN connector settings](image)

   d. Click OK.

2. Create a dynamic firewall address for the Azure connector.
   a. Go to Policy & Objects > Addresses and click Create New > Address.
   b. From the Type dropdown list, select Dynamic.
   c. From the Sub Type dropdown list, select Fabric Connector Address.
d. From the **SDN Connector** dropdown list, select the Azure SDN connector.

e. In the **Filter** field, add filters as desired. The Azure SDN connector supports the following filters:
   - `vm=<VM name>`
   - `securitygroup=<nsg id>`
   - `vnet=<VNet id>`
   - `subnet=<subnet id>`
   - `vmss=<VM scale set>`
   - `tag.<key>=<value>`
   - `servicetag=<value>`
   - `tag.<key>=<value>`

f. Click **OK**.

g. Hover the cursor over the address name to see the dynamic IP addresses that the connector resolves.

**Cisco ACI SDN connector using a standalone connector**

Cisco ACI (Application Centric Infrastructure) SDN connectors can be used in dynamic firewall addresses.

The Fortinet SDN Connector for Cisco ACI and Nuage Networks is a standalone connector that connects to SDN controllers within Cisco ACI and Nuage Networks. You must configure a connection to the Fortinet SDN connector in FortiOS to query the dynamic addresses.

**To configure a Cisco ACI connector in the GUI:**

1. Create the Cisco ACI SDN connector:
   a. Go to **Security Fabric > External Connectors** and click **Create New**.
   b. In the **Private SDN** section, click **Application Centric Infrastructure (ACI)**.
   c. In the **Cisco ACI Connector** section, for **Type**, select **Fortinet SDN Connector** and configure the remaining settings as needed.
   d. Click **OK**.
2. Create the dynamic firewall address for the connector:
   a. Go to Policy & Objects > Addresses and click Create New > Address.
   b. Configure the following settings:
      i. For Type, select Dynamic.
      ii. For Sub Type, select Fabric Connector Address.
      iii. For SDN Connector, select the first ACI connector.
      iv. Configure the remaining settings as needed.
   c. Click OK.

To verify the dynamic firewall IPs are resolved by the SDN connector in the GUI:

1. Go to Policy & Objects > Addresses.
2. In the address table, hover over the address to view which IPs it resolves to.

To configure a Cisco ACI connector in the CLI:

1. Create the SDN connector:

   ```
 config system sdn-connector
 edit "acil"
 set type aci
 set server "172.18.64.31"
 set username "admin"
 set password xxxxxxxxx
 next
 end
   ```

2. Create the dynamic firewall address for the connector:

   ```
 config firewall address
 edit "aci-address1"
 set type dynamic
 set sdn "acil"
 set color 17
 set tenant "wqdai-ten"
   ```
set epg-name "EPG-in"
  set sdn-tag "fffff"
next
end

To verify the dynamic firewall IPs are resolved by the SDN connector in the CLI:

# diagnose firewall dynamic list

List all dynamic addresses:
aci1.aci.wqdai-ten.EPG-in.fffff: ID(171) ADDR(192.168.100.20)

ClearPass endpoint connector via FortiManager

ClearPass Policy Manager (CPPM) is a network access system that can send information about authenticated users to third party systems, such as a FortiGate or FortiManager.

In this example, communications are established between CPPM and FortiManager, and then the FortiManager forwards information to a managed FortiGate. On the FortiGate, the user information can be used in firewall policies and added to FSSO dynamic addresses.

Configure the FortiManager

Establish communications between FortiManager and CPPM so that FortiManager can synchronize CPPM user groups. See Creating a ClearPass connector in the FortiManager Administration Guide.

FortiManager forwards the group information to managed FortiGates.
Adding CPPM FSSO user groups to a local user group

To add CPPM user groups to a local user group in the GUI:

1. On the FortiGate, go to User & Authentication > User Groups.
2. Click Create New.
3. Enter a name for the group and set Type to Fortinet Single Sign-On (FSSO).
4. Click the Members field, and add one or more FSSO groups.
   FSSO groups can come from multiple sources; CPPM FSSO groups are prefixed with cp_ and are listed under the FortiManager heading.

5. Click OK.

To add CPPM user groups to a local user group in the CLI:

```bash
config user group
 edit fsso-group
 set group-type fsso-service
 set member "cp_test_[Employee]" "cp_test_FSSOROLE"
 next
end
```

Using the local FSSO user group in a firewall policy

To add the local FSSO user group to a firewall policy in the GUI:

1. Go to Policy & Objects > Firewall Policy.
2. Create a new policy, or edit an existing one.
3. Click in the Source field and add the fsso-group user group.

![Image of the Source field addition](image)

CPPM user groups can also be added directly to the policy.

4. Click OK.

To add the local FSSO user group to a firewall policy in the CLI:

```plaintext
config firewall policy
edit 1
 set name "pol1"
 set srcintf "port2"
 set dstintf "port3"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set logtraffic all
 set groups "fsso-group"
 set nat enable
next
end
```

**Verification**

To verify that a user was added to the FSSO list on the FortiGate:

1. Log on to the client and authenticate with CPPM. After successful authentication, the user is added to the FSSO list on the FortiGate.
2. On the FortiGate, go to Dashboard > Users & Devices and look at the Firewall Users widget to verify that the user was added.

![Image of Firewall Users widget](image)

The user group cp_test_FSSOROLE is listed separately because the user is a member of that group on the CPPM.
To verify that traffic can pass the firewall:

1. Log on to the client and browse to an external website.
2. On the FortiGate, go to Dashboard > FortiView Sources.
3. Double-click on the user and select the Destinations tab to verify that traffic is being passed by the firewall.

To verify the user address groups:

```
show user adgrp
config user adgrp
 edit "cp_test_FSSOROLE"
 set server-name "FortiManager"
 next
 edit "cp_test_[AirGroup v1]"
 set server-name "FortiManager"
 next
 edit "cp_test_[AirGroup v2]"
 set server-name "FortiManager"
 next
 edit "cp_test_[Aruba TACACS read-only Admin]"
 set server-name "FortiManager"
 next
 edit "cp_test_[Aruba TACACS root Admin]"
 set server-name "FortiManager"
 next
 edit "cp_test_[BYOD Operator]"
 set server-name "FortiManager"
 next
 edit "cp_test_[Contractor]"
 set server-name "FortiManager"
 next
 edit "cp_test_[Device Registration]"
 set server-name "FortiManager"
 next
 ...
 edit "CN=group1,OU=Testing,DC=Fortinet-FSSO,DC=COM"
 set server-name "Local FSSO Agent" <<--- !!!!
 next
end
```

**GCP SDN connector using service account**

FortiOS automatically updates dynamic addresses for GCP using a GCP SDN connector, including mapping attributes from GCP instances to dynamic address groups in FortiOS.

To configure GCP connector using the GUI:

1. In FortiOS, go to Security Fabric > External Connectors.
2. Click Create New, and select Google Cloud Platform (GCP).
   Note you can create only one SDN Connector per connector type. For example, you can create one entry for GCP.
3. Configure the connector as follows:
   a. *Project name*: Enter the name of the GCP project. The VMs whose IP addresses you want to populate should be running within this project.
   b. *Service account email*: Enter the email address associated with the service account that will call APIs to the GCP project specified above.
   c. *Private key*: Enter the private key statement as shown in the text box. For details, see *Creating a GCP service account*.

Once the connector is successfully configured, a green indicator appears at the bottom right corner. If the indicator is red, the connector is not working. See *Troubleshooting GCP SDN Connector*.

4. Create a dynamic firewall address for the configured GCP SDN connector:
   a. Go to *Policy & Objects > Addresses*. Click *Create New*, then select *Address*.
   b. Configure the address:
      i. *Name*: Enter the desired name.
      ii. *Type*: Select *Dynamic*.
      iii. *Fabric Connector Type*: Select *Google Cloud Platform (GCP)*.
      iv. *Filter*: The SDN connector automatically populates and updates only instances that match this filtering condition. Currently GCP supports the following filters:
          - `id=<instance id>`: This matches an VM instance ID.
          - `name=<instance name>`: This matches a VM instance name.
          - `zone=<gcp zones>`: This matches a zone name.
          - `network=<gcp network name>`: This matches a network name.
          - `subnet=<gcp subnet name>`: This matches a subnet name.
          - `tag=<gcp network tags>`: This matches a network tag.
          - `label.<gcp label key>=<gcp label value>`: This matches a free form GCP label key and its value.

      In the example, the filter is set as 'network=default & zone=us-central-1f'. This configuration populates all IP addresses that belong to the default network in the zone us-central-1f.
      You can set filtering conditions using multiple entries with AND ('&') or OR ('|'). When both AND and OR are specified, AND is interpreted first, then OR.
Note that wildcards (such as the asterisk) are not allowed in filter values.

v. Click OK.
The address has been created. Wait for a few minutes before the setting takes effect. You will know that the address is in effect when the exclamation mark disappears from the address entry. When you hover over the address, you can see the list of populated IP addresses.

If the exclamation mark does not disappear, check the address settings.

**IBM Cloud SDN connector using API keys**

FortiOS can automatically update dynamic addresses for IBM Cloud using an SDN connector.

**To configure IBM Cloud SDN connectors using the GUI:**

1. Create SDN connectors for compute generation 1 and 2:
   a. Go to Security Fabric > External Connectors.
   b. Click Create New, then select IBM Cloud.
c. Configure the connector for computer generation 1:

\[\text{Configure the connector for computer generation 1:}\]

\[\text{Click OK.}\]

\[\text{Click Create New, then select IBM Cloud.}\]

\[\text{Configure the connector for computer generation 2:}\]

\[\text{Click OK.}\]

2. Create dynamic firewall addresses for the configured connectors:

\[\text{Go to Policy & Objects > Addresses.}\]

\[\text{Click Create New > Address.}\]

\[\text{From the Type dropdown list, select Dynamic.}\]

\[\text{From the Sub Type dropdown list, select Fabric Connector Address.}\]

\[\text{From the SDN Connector dropdown list, select the IBM SDN connector.}\]

\[\text{In the Filter field, add the desired filters. The following filters are supported:}\]

\[\text{<InstanceId>}\]

\[\text{<InstanceName>}\]

\[\text{<ImageId>}\]

\[\text{<ImageName>}\]

\[\text{<Architecture>}\]

\[\text{<Profile>}\]

\[\text{<Vpc>}\]

\[\text{<Zone>}\]

\[\text{<Subnet>}\]

\[\text{<ResourceGroup>}\]

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
g. Click OK.
h. Click Create New > Address.
i. Repeat the process for computer generation 2:

j. Click OK.

3. Ensure that the connectors resolve dynamic firewall IP addresses:
   a. Go to Policy & Objects > Addresses.
   b. Hover over the addresses created in step 2 to see a list of IP addresses that the connector has resolved:

To configure IBM Cloud SDN connectors using the CLI:

1. Create SDN connectors for compute generation 1 and 2:

   config system sdn-connector
   edit "ibm_gen1"
       set status enable
       set type ibm
       set api-key xxxxxx
       set compute-generation 1
       set ibm-region us-south
       set update-interval 60
   next
   edit "ibm_gen2"
       set status enable
       set type ibm
set api-key xxxxxxx
set compute-generation 2
set ibm-region us-east
set update-interval 60
next
end

2. Create dynamic firewall addresses for the configured connectors:

config firewall address
edit "ibm_gen1_add1"
    set type dynamic
    set sdn "ibm_gen1"
    set color 19
    set filter "Vpc=alex-vpc1"
next
edit "ibm_gen2_add1"
    set type dynamic
    set sdn "ibm_gen2"
    set color 19
    set filter "ResourceGroup=alex-grp2"
next
end

3. Ensure that the connectors resolve dynamic firewall IP addresses:

    # show firewall address ibm_gen1_add1
config firewall address
edit "ibm_gen1_add1"
    set uuid 586841c4-7f46-51ea-dc66-dbf840af6033
    set type dynamic
    set sdn "ibm_gen1"
    set color 19
    set filter "Vpc=alex-vpc1"
cfg config list
    edit "10.240.0.49"
next
    edit "10.240.0.75"
next
    edit "169.61.227.88"
next
    edit "52.117.170.31"
next
next
end

    # show firewall address ibm_gen2_add1
config firewall address
edit "ibm_gen2_add1"
    set uuid 586841c4-7f46-51ea-2b79-b5170fbd4a8
    set type dynamic
    set sdn "ibm_gen2"
    set color 19
    set filter "ResourceGroup=alex-grp2"
cfg config list
    edit "10.241.128.4"
next
Kubernetes (K8s) SDN connectors

The following topics provide information about configuring Kubernetes SDN connectors:

- AliCloud Kubernetes SDN connector using access key on page 2453
- AWS Kubernetes (EKS) SDN connector using access key on page 2455
- Azure Kubernetes (AKS) SDN connector using client secret on page 2458
- GCP Kubernetes (GKE) SDN connector using service account on page 2460
- Oracle Kubernetes (OKE) SDN connector using certificates on page 2463
- Private cloud K8s SDN connector using secret token on page 2465

AliCloud Kubernetes SDN connector using access key

When an AliCloud SDN connector is configured, dynamic address objects can support Kubernetes filters based on cluster, service, node, pod, and more.

The following address filters can be applied:

- K8S_Cluster
- K8S_Namespace
- K8S_ServiceName
- K8S_NodeName
- K8S_PodName
- K8S_Region
- K8S_Zone
- K8S_Label

To configure an AliCloud SDN connector with a Kubernetes filter in the GUI:

1. Configure the AliCloud SDN connector:
   a. Go to Security Fabric > External Connectors.
   b. Click Create New, and select AliCloud.
c. Configure the settings as needed and click OK.

2. Create a dynamic firewall address with the supported Kubernetes filter:
   a. Go to Policy & Objects > Addresses.
   b. Click Create New > Address and enter a name.
   c. Configure the following settings:
      i. For Type, select Dynamic.
      ii. For Sub Type, select Fabric Connector Address.
      iii. For SDN Connector, select the connector created in step 1.
      iv. For SDN address type, select Private.
      v. For Filter, select K8S_Cluster=zhmcluster.
   d. Click OK.
      The corresponding IP addresses are dynamically updated and resolved after applying the Kubernetes filter.

3. Confirm that the AliCloud SDN connector resolves dynamic firewall IP addresses using the configured filter:
   a. Go to Policy & Objects > Addresses.
   b. In the address table, hover over the address created in step 2 to view which IPs it resolves to:
To configure an AliCloud SDN connector with a Kubernetes filter in the CLI:

1. Configure the AliCloud SDN connector:

```fortigate
config system sdn-connector
dit "ali1"
 set type alicloud
 set access-key "**************"
 set secret-key xxxxxxx
 set region "us-west-1"
next
dit end
```

2. Create a dynamic firewall address with the supported Kubernetes filter:

```fortigate
config firewall address
dit "ali_add1"
 set type dynamic
 set sdn "ali1"
 set color 10
 set filter "K8S_Cluster=zhmcluster1"
next
dit end
```

3. Confirm that the AliCloud SDN connector resolves dynamic firewall IP addresses using the configured filter:

```fortigate
config firewall address
dit "ali_add1"
 show
cconfig firewall address
dit "ali_add1"
 set uuid c48e4f00-5435-51eb-0547-aced5cf80f1f
 set type dynamic
 set sdn "ali1"
 set color 10
 set filter "K8S_Cluster=zhmcluster1"
cconfig list
 edit "10.0.0.28"
 next
 edit "10.0.0.29"
 next
 edit "10.0.0.30"
 next
 ...
next
dit end
dit end
dit end
```

**AWS Kubernetes (EKS) SDN connector using access key**

AWS SDN connectors support dynamic address groups based on AWS Kubernetes (EKS) filters.
To enable an AWS SDN connector to fetch IP addresses from AWS Kubernetes:

1. Go to Security Fabric > External Connectors. Click Create New, then select Amazon Web Services (AWS). Configure the SDN connector as desired. See AWS SDN connector using certificates on page 2435

2. Go to Policies & Objects > Addresses. Click Create New > Address to create a dynamic firewall address for the configured SDN connector using the supported Kubernetes filter.

3. From the Type dropdown list, select Dynamic.

4. From the Sub Type dropdown list, select Fabric Connector Address.

5. From the SDN Connector dropdown list, select the desired SDN connector.

6. In the Filter field, add the desired filters. The following filters are supported:

<table>
<thead>
<tr>
<th>Filter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>k8s_cluster</td>
<td>Name of Kubernetes cluster.</td>
</tr>
<tr>
<td>k8s_namespace</td>
<td>Namespace of a Kubernetes service or pod.</td>
</tr>
<tr>
<td>k8s_svcname</td>
<td>Name of a Kubernetes service.</td>
</tr>
<tr>
<td>k8s_nodename</td>
<td>Name of a Kubernetes node.</td>
</tr>
<tr>
<td>k8s_zone</td>
<td>Zone of a Kubernetes node.</td>
</tr>
<tr>
<td>k8s_region</td>
<td>Region of a Kubernetes node.</td>
</tr>
<tr>
<td>k8s_podname</td>
<td>Name of a Kubernetes pod.</td>
</tr>
<tr>
<td>k8s_label.xxx</td>
<td>Name of label of a Kubernetes resource (cluster/service/node/pod).</td>
</tr>
</tbody>
</table>
7. Configure the rest of the settings, then click OK.
8. Ensure that the SDN connector resolves the dynamic firewall address IP addresses by going to Policy & Objects > Addresses and hovering over the newly created address.

To configure an AWS Kubernetes SDN connector through the CLI:

1. Configure the SDN connector:
   ```
 config system sdn-connector
 edit "aws1"
 set type aws
 set access-key "AKIAIJNKE75ANV5APEQA"
 set secret-key xxxxx
 set region "us-west-2"
 set update-interval 30
 next
 end
   ```

2. Create a dynamic firewall address for the SDN connector with a supported Kubernetes filter:
   ```
 config firewall address
 edit "aws-pod"
 set type dynamic
 set sdn "aws1"
 set filter "K8S_PodName=aws-node-g6zhx"
 next
 end
   ```

   The SDN connector resolves the dynamic firewall address IP address:
   ```
 config firewall address
 edit "aws-pod"
 set type dynamic
 set sdn "aws1"
   ```
set filter "K8S_PodName=aws-node-g6zhx"
config list
    edit "192.168.114.197"
    next
end
next
end

Azure Kubernetes (AKS) SDN connector using client secret

Azure SDN connectors support dynamic address groups based on Azure Kubernetes (AKS) filters.

To enable an Azure SDN connector to fetch IP addresses from Azure Kubernetes:

1. Configure the Azure SDN connector:
   a. Go to Security Fabric > External Connectors.
   b. Click Create New, and select Azure.
   c. Configure as shown substituting the region, tenant and client IDs, and client secret for your deployment. See Azure SDN connector service principal configuration requirements.

2. Create a dynamic firewall address for the configured K8s SDN connector:
   a. Go to Policy & Objects > Addresses.
   b. Click Create New, then select Address.
   c. From the Type dropdown list, select Dynamic.
   d. From the Sub Type dropdown list, select Fabric Connector Address.
   e. From the SDN Connector dropdown list, select the desired SDN connector.
   f. In the Filter field, add the desired filter. The following filters are supported:

<table>
<thead>
<tr>
<th>Filter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>k8s_cluster</td>
<td>Name of Kubernetes cluster.</td>
</tr>
<tr>
<td>k8s_namespace</td>
<td>Namespace of a Kubernetes service or pod.</td>
</tr>
</tbody>
</table>
### Filter | Description
--- | ---
k8s_svcname | Name of a Kubernetes service.
k8s_nodename | Name of a Kubernetes node.
k8s_zone | Zone of a Kubernetes node.
k8s_region | Region of a Kubernetes node.
k8s_podname | Name of a Kubernetes pod.
k8s_label.xxx | Name of label of a Kubernetes resource (cluster/service/node/pod).

In this example, the address is configured to automatically populate and update IP addresses only for instances that belong to the zhmKC cluster:

3. Ensure that the K8s SDN connector resolves dynamic firewall IP addresses:
   a. Go to Policy & Objects > Addresses.
   b. Hover over the address created in step 2 to see a list of IP addresses for instances that belong to the zhmKC cluster as configured in step 2:
To configure an Azure Kubernetes SDN connector through the CLI:

1. **Configure the SDN connector:**
   ```
 config system sdn-connector
 edit "azure1"
 set type azure
 set tenant-id "942b80cd-1b14-42a1-8dcf-4b21dece61ba"
 set client-id "14dbd5c5-307e-4ea4-8133-68738141febl"
 set client-secret xxxxx
 set update-interval 30
 next
 end
   ```

2. **Create a dynamic firewall address for the SDN connector with a supported Kubernetes filter.** In this example, the address will automatically populate and update IP addresses only for instances that belong to the zhmKC cluster:
   ```
 config firewall address
 edit "az-k8s-cluster"
 set type dynamic
 set sdn "azure1"
 set filter "K8S_Cluster=zhmKC"
 next
 end
   ```

3. **Confirm that the Azure SDN connector resolves dynamic firewall IP addresses using the configured filter:**
   ```
 config firewall address
 edit "az-k8s-cluster"
 set type dynamic
 set sdn "azure1"
 set filter "K8S_Cluster=zhmKC"
 config list
 edit "10.240.0.4"
 next
 edit "10.240.0.5"
 next
 edit "10.244.0.10"
 next
 end
 next
 end
   ```

**GCP Kubernetes (GKE) SDN connector using service account**

Google Cloud Platform (GCP) SDN connectors support dynamic address groups based on GCP Kubernetes Engine (GKE) filters.
To enable a GCP SDN connector to fetch IP addresses from GKE:

1. Go to Security Fabric > External Connectors, and configure an SDN connector for GCP.

   ![Edit External Connector](image)

   - **Name**: gcp1
   - **Status**: Enabled
   - **Update Interval**: Specify 30
   - **Project name**: dev-project-001-166400
   - **Service account email**: 766517025500-compute@developer.g
   - **Private key**: BEGIN PRIVATE KEY...

2. Go to Policies & Objects > Addresses and create a dynamic firewall address for the configured SDN connector using the supported Kubernetes filter.

3. To filter out the Kubernetes IP addresses, select the address filter or filters. The following filters are supported:

<table>
<thead>
<tr>
<th>Filter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>k8s_cluster</td>
<td>Name of Kubernetes cluster.</td>
</tr>
<tr>
<td>k8s_namespace</td>
<td>Namespace of a Kubernetes service or pod.</td>
</tr>
<tr>
<td>k8s_svcname</td>
<td>Name of a Kubernetes service.</td>
</tr>
<tr>
<td>k8s_nodename</td>
<td>Name of a Kubernetes node.</td>
</tr>
<tr>
<td>k8s_zone</td>
<td>Zone of a Kubernetes node.</td>
</tr>
<tr>
<td>k8s_region</td>
<td>Region of a Kubernetes node.</td>
</tr>
<tr>
<td>k8s_podname</td>
<td>Name of a Kubernetes pod.</td>
</tr>
<tr>
<td>k8s_label.xxx</td>
<td>Name of label of a Kubernetes resource (cluster/service/node/Pod).</td>
</tr>
</tbody>
</table>

   In this example, the GCP SDN connector will automatically populate and update IP addresses only for instances that belong to the zhm-kc3 cluster:
4. Configure the rest of the settings, then click OK. The dynamic firewall address IP is resolved by the SDN connector.

To configure a GCP Kubernetes SDN connector through the CLI:

1. Configure an SDN connector for Kubernetes:
   ```plaintext
 config system sdn-connector
 edit "gcp1"
 set type gcp
 set gcp-project "dev-project-001-166400"
 set service-account "966517025500-compute@developer.gserviceaccount.com"
 set update-interval 30
 next
 end
   ```

2. Create a dynamic firewall address for the SDN connector with a supported Kubernetes filter:
   ```plaintext
 config firewall address
 edit "gcp-k8s-cluster"
 set type dynamic
 set sdn "gcp1"
   ```
The dynamic firewall address IP is resolved by the SDN connector:

```plaintext
set filter "K8S_Cluster=zhm-kc3"
next
end
```

Oracle Kubernetes (OKE) SDN connector using certificates

OCI SDN connectors support dynamic address groups based on Oracle Kubernetes (OKE) filters.

To enable an OCI SDN connector to fetch IP addresses from Oracle Kubernetes:

1. Configure the OCI SDN connector:
   a. Go to Security Fabric > External Connectors.
   b. Click Create New, and select Oracle Cloud Infrastructure (OCI).
   c. Configure as shown substituting the region, tenant and client IDs, and client secret for your deployment. The update interval is in seconds.

   ![OCI SDN Connector Configuration](image)

2. Create dynamic firewall addresses for the configured SDN connector with supported Kubernetes filter:
   a. Go to Policy & Objects > Addresses.
   b. Click Create New, then select Address.
c. In the *Filter* field, select the desired filters. The following filters are supported:

<table>
<thead>
<tr>
<th>Filter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>k8s_cluster</td>
<td>Name of Kubernetes cluster.</td>
</tr>
<tr>
<td>k8s_namespace</td>
<td>Namespace of a Kubernetes service or pod.</td>
</tr>
<tr>
<td>k8s_svcname</td>
<td>Name of a Kubernetes service.</td>
</tr>
<tr>
<td>k8s_nodeName</td>
<td>Name of a Kubernetes node.</td>
</tr>
<tr>
<td>k8s_zone</td>
<td>Zone of a Kubernetes node.</td>
</tr>
<tr>
<td>k8s_region</td>
<td>Region of a Kubernetes node.</td>
</tr>
<tr>
<td>k8s_podname</td>
<td>Name of a Kubernetes pod.</td>
</tr>
<tr>
<td>k8s_label.xxx</td>
<td>Name of label of a Kubernetes resource (cluster/service/node/Pod).</td>
</tr>
</tbody>
</table>

3. Confirm that the SDN connector resolves dynamic firewall IP addresses:
   a. Go to *Policy & Objects > Addresses.*
   b. Hover over the address created in step 2 to see a list of IP addresses for instances:
To configure an SDN connector through the CLI:

1. Configure the OCI SDN connector:
   ```fortioscli
cfg system sdn-connector
 edit "oci1"
 set type oci
 set tenant-id "ocid1.tenancy.oc1..aaaaaaaambr3uzztoyhweohbzqqdof775h7d3t54zpmzkp4b2cf35vs55cxxx"
 set user-id "ocid1.user.oc1..aaaaaaaaq2lfspeo3uetzbzpiv2pqvzeozccnys347stwssvzqlatfxxx"
 set compartment-id "ocid1.compartment.oc1..aaaaaaaaelxxdjazqo7nznztpgypiqckkmytjry6nfq5345vw7eavpwnmxx"
 set oci-region ashburn
 set oci-cert "cert-sha2"
 set update-interval 30
next
end
```

2. Create dynamic firewall addresses for the configured SDN connector with supported Kubernetes filter:
   ```fortioscli
cfg firewall address
 edit "k8s_nodename"
 set type dynamic
 set sdn "oci1"
 set filter "K8S_NodeName=129.213.120.172"
next
end
```

3. Confirm that the SDN connector resolves dynamic firewall IP addresses:
   ```fortioscli
cfg firewall address
 edit "k8s_nodename"
 set type dynamic
 set sdn "oci1"
 set filter "K8S_NodeName=129.213.120.172"
 config list
 edit "10.0.32.2"
next
edit "10.244.2.2"
next
edit "10.244.2.3"
next
edit "10.244.2.4"
next
edit "10.244.2.5"
next
end
next
end
```

Private cloud K8s SDN connector using secret token

FortiOS automatically updates dynamic and cluster IP addresses for Kubernetes (K8s) by using a K8s SDN connector, enabling FortiOS to manage K8s pods as global address objects, as with other connectors. This includes mapping the following attributes from K8s instances to dynamic address groups in FortiOS:
<table>
<thead>
<tr>
<th>Filter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Namespace</td>
<td>Filter service IP addresses in a given namespace.</td>
</tr>
<tr>
<td>ServiceName</td>
<td>Filter service IP addresses by the given service name.</td>
</tr>
<tr>
<td>NodeName</td>
<td>Filter node IP addresses by the given node name.</td>
</tr>
<tr>
<td>PodName</td>
<td>Filter IP addresses by the pod name.</td>
</tr>
</tbody>
</table>
| Label.XXX  | Filter service or node IP addresses with the given label XXX. For example: K8S_
|            | Label.app=nginx.                                                           |

FortiOS 6.2.3 and later collect cluster IP addresses in addition to external IP addresses for exposed K8s services.

There is no maximum limit for the number of IP addresses populated with the filters.

To configure K8s SDN connector using the GUI:

1. Configure the K8s SDN connector:
   a. Go to Security Fabric > External Connectors > Create New Connector.
   b. Select Kubernetes.
   c. In the IP field, enter the IP address that you obtained in Obtaining the IP address, port, and secret token in Kubernetes.
   d. In the Port field, select Specify, then enter the port that you obtained in Obtaining the IP address, port, and secret token in Kubernetes.
   e. In the Secret token field, enter the token that you obtained in Obtaining the IP address, port, and secret token in Kubernetes.
   f. Configure the other fields as desired.

2. Create a dynamic firewall address for the configured K8S SDN connector:
   a. Go to Policy & Objects > Addresses.
   b. Click Create New, then select Address.
   c. Configure the address as shown, selecting the desired filter in the Filter dropdown list. In this example, the K8s SDN connector will automatically populate and update IP addresses only for node instances that match
the specified node name:

3. Ensure that the K8s SDN connector resolves dynamic firewall IP addresses:
   a. Go to Policy & Objects > Addresses.
   b. Hover over the address created in step 2 to see a list of IP addresses for node instances that match the node name configured in step 2:

To configure K8s SDN connector using CLI commands:

1. Configure the K8s SDN connector:
   ```
 config system sdn-connector
 edit "kubernetes1"
 set type kubernetes
 set server "<IP address obtained in Obtaining the IP address, port, and secret token in Kubernetes>"
 set server-port <Port obtained in Obtaining the IP address, port, and secret token in Kubernetes>
 set secret-token <Secret token obtained in Obtaining the IP address, port, and secret token in Kubernetes>
 set update-interval 30
 next
 end
   ```

2. Create a dynamic firewall address for the configured K8s SDN connector with the supported K8s filter. In this example, the K8s SDN connector will automatically populate and update IP addresses only for node instances that match the specified node name:
To troubleshoot the connection:

1. In FortiOS, run the following commands:
   ```shell
diagnose deb application kubed -l
diagnose debug enable
   ```

2. Reset the connection on the web UI to generate logs and troubleshoot the issue. The following shows the output in the case of a failure:

   ```shell
 Fortigate & diagnose deb application kubed -l
 debug messages will be on for 30 minutes.
   ```

   The following shows the output in the case of a success:

   ```shell
 kube-system
 k8s pod ip: 10.180.0.3, podname: myapp-deployment-c6b80565b-9a5d5, namespace: my
 k8s pod ip: 10.180.0.14, podname: myapp-deployment-c6b80565b-9a5d5, namespace: my
 k8s pod ip: 10.180.0.15, podname: myapp-deployment-c6b80565b-9a5d5, namespace: my
 k8s pod ip: 10.180.0.16, podname: myapp-deployment-c6b80565b-9a5d5, namespace: my
 k8s pod ip: 10.180.0.17, podname: myapp-deployment-c6b80565b-9a5d5, namespace: my
 k8s pod ip: 10.180.0.18, podname: myapp-deployment-c6b80565b-9a5d5, namespace: my
   ```
Nuage SDN connector using server credentials

You can use Nuage SDN connectors in dynamic firewall addresses.

The Fortinet SDN Connector for Cisco ACI and Nuage Networks is a standalone connector that connects to SDN controllers within Cisco ACI and Nuage Networks. You must configure a connection to the Fortinet SDN connector in FortiOS to query the dynamic addresses.

To configure a Nuage connector in the GUI:

1. Create the Nuage SDN connector:
   a. Go to Security Fabric > External Connectors and click Create New.
   b. In the Private SDN section, click Nuage Virtualized Services Platform.
   c. Configure the settings as needed.
   d. Click OK.

2. Create the dynamic firewall address for the connector:
   a. Go to Policy & Objects > Addresses and click Create New > Address.
   b. Configure the following settings:
      i. For Type, select Dynamic.
      ii. For Sub Type, select Fabric Connector Address.
      iii. For SDN Connector, select the Nuage connector.
      iv. Configure the remaining settings as needed.
c. Click OK.

To verify the SDN connector resolves the dynamic firewall IP addresses in the GUI:

1. Go to Policy & Objects > Addresses.
2. In the address table, hover over an address to view which IP addresses it resolves to.

To configure a Nuage connector in the CLI:

1. Create the SDN connector:

   ```
 config system sdn-connector
 edit "nuagel"
 set type nuage
 set server "172.18.64.27"
 set server-port 5671
 set username "admin"
 set password xxxxxxx
 next
 end
   ```

2. Create the dynamic firewall address for the connector:

   ```
 config firewall address
 edit "nuage-address1"
 set type dynamic
 set sdn "nuagel"
 set color 19
 set organization "nuage/L3"
 set subnet-name "Subnet20"
 next
 end
   ```

To verify the SDN connector resolves the dynamic firewall IP addresses in the CLI:

```
diagnose firewall dynamic list

List all dynamic addresses:
uagel.nuage.nuage/L3.Subnet20.*: ID(196)
 ADDR(192.168.20.92)
 ADDR(192.168.20.240)
```
Nutanix SDN connector using server credentials

FortiOS automatically updates dynamic addresses for Nutanix using an Nutanix SDN connector, including mapping the following attributes from Nutanix instances to dynamic address groups in FortiOS:

- Cluster name
- Cluster UUID
- Description
- Host name
- Host UUID
- Hypervisor type
- Image name
- Image UUID
- Subnet name
- Subnet UUID
- VM name
- VM UUID

To configure a Nutanix connector using the GUI:

1. Configure the Nutanix SDN connector:
   a. Go to Security Fabric > External Connectors.
   b. Select Nutanix.
   c. In the IP address field, enter the IP address for your Nutanix environment.
   d. In the Port field, enter the desired port.
   e. In the Username and Password fields, enter the credentials for your Nutanix environment.
   f. Click OK.

2. Create a dynamic firewall address for the configured Nutanix SDN connector:
   a. Go to Policy & Objects > Addresses.
   b. Click Create New, then select Address.
   c. From the Type dropdown list, select Dynamic.
   d. From the Sub Type dropdown list, select Fabric Connector Address.
   e. From the SDN Connector dropdown list, select the Nutanix connector.
   f. From the Filter dropdown list, select the desired filters.
   g. Click OK.

3. Ensure that the Nutanix SDN connector resolves dynamic firewall IP addresses:
   a. Go to Policy & Objects > Addresses.
   b. Hover over the address created in step 2 to see a list of IP addresses for instances that satisfy the filter
requirements configured in step 2. In this example, the configured filter is "ClusterName=Fortinet-Lab":

To configure a Nutanix connector using the CLI:

1. Configure the Nutanix SDN connector:
   ```
 config system sdn-connector
 edit "nutanix_connector"
 set status disable
 set type nutanix set server "172.18.33.59"
 set server-port 9440
 set username "admin"
 set password **********
 set update-interval 60
 next
 end
   ```

2. Create a dynamic firewall address for the configured Nutanix SDN connector:
   ```
 config firewall address
 edit "nutanix-addr"
 set uuid 382ceafe-8e72-51eb-7300-0807ee907946
 set type dynamic
 set sdn "nutanix_connector"
 set color 2
 set filter "ClusterName=Fortinet-Lab"
 next
 end
   ```

3. Ensure that the Nutanix SDN connector resolves dynamic firewall IP addresses:
   ```
 config firewall address
 edit "nutanix-addr"
 set uuid 382ceafe-8e72-51eb-7300-0807ee907946
 set type dynamic
 set sdn "nutanix_connector"
 set color 2
 set filter "ClusterName=Fortinet-Lab"
 config list
 edit "192.168.10.15"
 next
 edit "192.168.10.16"
 next
 edit "192.168.11.15"
 next
 edit "192.168.11.16"
   ```
OCI SDN connector using certificates

You can configure SDN connector integration with Oracle Cloud Infrastructure (OCI).

To configure an OCI SDN connector in the GUI:

1. Go to Security Fabric > External Connectors and click Create New.
2. In the Public SDN section, select Oracle Cloud Infrastructure (OCI).
3. Configure the connector as desired:
   a. **User ID**: Enter the OCID of the OCI user who belongs to the administrator group. See Certificate-based SDN connector requirements.
   b. For the **OCI Certificate** field, you must select a certificate that satisfies OCI key size limits. The minimum size is 2048 bits. Do one of the following:
      i. Select the built-in default certificate called Fortinet_Factory.
      ii. Follow steps 1-2 in Using custom certificates to configure a custom certificate.

4. Click OK.
5. At this stage, you must register the certificate's fingerprint to the specified OCI user.
   a. Go to the OCI user, then API Keys > Add Public Key.
   b. If you selected the Fortinet_Factory certificate in step 2f, do the following:
      i. In FortiOS, go to System > Certificate. Select Fortinet_Factory, then click Download.
      ii. You now have the Fortinet_Factory.cer file. Create a public key file in PEM format from it, using a freely available tool of your choice such as OpenSSL.
   c. Copy and paste the content of the certificate PEM key file in the Add Public Key window in OCI. Click Add.
d. You now see the fingerprint.

API Keys

You can configure the following for the fingerprint:

1. **Update Interval**: The default value is 60 seconds. You can change the value to between 1 and 3600 seconds.

2. **Status**: Green means that the connector is enabled. You can disable it at any time by toggling the switch.

e. Click OK.

6. Go to **Policy & Objects > Addresses** and click **Create New > Address**.

7. Configure the address as needed, selecting the OCI connector in the **SDN Connector** field. The following filters are supported:

   - `'vm_name=<vm name>`: matches VM instance name.
   - `'instance_id=<instance id>`: matches instance OCID.
   - `'tag.<key>=<value>`: matches freeform tag key and its value.
   - `'definedtag.<namespace>.<key>=<value>`: matches a tag namespace, tag key, and its value.

8. Click OK.

To configure an OCI SDN connector in the CLI:

1. Configure an SDN connector:

   ```
 config system sdn-connector
 edit "oci1"
 set status enable
 set type oci
 set tenant-id "ocid1.tenancy.oc1..aaaaaaaaaaa3aaaaaaaaaaaaaa77xxxxx54bbbbbb4xxxx35xx55xxxx"
 set user-id "ocid1.user.oc1..aaaaaaaaa2llaaaaa3aaaaaaaaaabbbbbbbbbccccccccccxxxxxxyxx"
 set compartment-id "ocid1.compartment.oc1..aaaaaaaaaaaaaaa7bbbbbbbbbbccccccccc6xxxx35xxxx7xxxxxxxxxx"
 set oci-region "us-ashburn-1"
   ```
set oci-region-type commercial
set oci-cert "cert-sha2"
set update-interval 30
next
end

2. Create a dynamic firewall address for the SDN connector with a supported filter:

```
config firewall address
 edit "oci-address-1"
 set type dynamic
 set sdn "oci1"
 set filter "CompartmentName=DevelopmentEngineering"
next
end
```

To confirm that dynamic firewall addresses are resolved by the SDN connector:

1. In the CLI, check that the addresses are listed:

```
config firewall address
 edit "oci-address-1"
 set type dynamic
 set sdn "oci1"
 set filter "CompartmentName=DevelopmentEngineering"
config list
 edit "10.0.0.11"
 next
 edit "10.0.0.118"
 next
 ...
 next
 ...
next
end
```

2. In the GUI, go to Policy & Objects > Addresses and hover the cursor over the address name.

OpenStack SDN connector using node credentials

To configure OpenStack SDN connector using node credentials:

1. Go to Security Fabric > External Connectors.
2. Click Create New, then select OpenStack (Horizon).
3. Configure the fields as follows:
   a. **Name**: Name the connector as desired.
   b. **IP**: Enter the OpenStack management component's IP address. Generally you can find it in the OpenStack identity.
   c. **User name**: Enter the specified node's administrator name.
   d. **Password**: Enter the administrator password.

4. Click OK. The SDN connector is now configured.

**To configure a dynamic firewall address:**

The next step is to create an address that will be used as an address group or single address that acts as the source/destination for firewall policies. The address is based on IP addresses and contains VM instances' IP addresses.

No matter what changes occur to the instances, the SDN connector populates and updates the changes automatically based on the specified filtering condition so that administrators do not need to reconfigure the address content manually. Appropriate firewall policies using the address are applied to instances that are members of the address.
1. Go to Policy & Objects > Address. Click Create New, then select Address.
2. Configure the address as follows:
   a. **Name**: Name the address as desired.
   b. **Type**: Select Dynamic.
   c. **Sub Type**: Select Fabric Connector Address.
   d. **SDN Connector**: Select openstack.
   e. **Filter**: The SDN connector automatically populates and updates only IP addresses belonging to the specified filter that matches the condition. OpenStack Horizon connectors support the following filters:
      i. **id=<instance id>**: This matches a VM instance ID.
      ii. **name=<instance name>**: This matches a VM instance name.
      iii. **flavor=<instance flavor name>**: This matches an instance flavor name.
      iv. **keypair=<key pair name>**: This matches a key pair name.
      v. **network=<net name>**: This matches a network name.
      vi. **project=<project name>**: This matches a project name.
      vii. **availabilityzone=<zone name>**: This matches an availability zone name.
      viii. **servergroup=<group name>**: This matches a server group name.
      ix. **securitygroup=<security group name>**: This matches a security group name.
      x. **metadata.<key>=<value>**: This matches metadata with its key and value pair.
   You can set filtering conditions using multiple entries with AND ("&") or OR ("|"). When both AND and OR are specified, AND is interpreted first, then OR.

   For example, you could enter `flavor=m1.nano & project=admin`. In this case, IP addresses of instances that match both the flavor name and project name are populated. Wildcards (asterisks) are not allowed in values.

   ![Address Configuration](image)

   In this example, let's use project=admin, assuming the project name is admin.
3. Click OK after completing all required fields.

4. Ensure that the address was created.

5. After a few minutes, the new address takes effect. Hover your cursor on the address to see a list of IP addresses and instances with the project name "admin".
VMware ESXi SDN connector using server credentials

Dynamic addresses for VMware ESXi and vCenter servers can be automatically updated by using a VMware ESXi SDN connector, including mapping the following attributes from VMware ESXi and vCenter objects to dynamic address groups in FortiOS:

- vmid
- host
- name
- uuid
- vmuuid
- vmnetwork
- guestid
- guestname
- annotation
- datacenter
- tag

To configure VMware ESXi SDN connector using the GUI:

1. Configure the VMware ESXi SDN connector:
   a. Go to Security Fabric > External Connectors.
   b. Click Create New, and select VMware ESXi.
   c. Configure as shown, substituting the server IP address, username, and password for your deployment. The update interval is in seconds. The password cannot contain single or double quotes.

2. Create a dynamic firewall address for the configured VMware ESXi SDN connector:
   a. Go to Policy & Objects > Addresses and click Create New > Address.
   b. Configure the address as shown, selecting the desired filter in the Filter dropdown list. In this example, the VMware ESXi fabric connector will automatically populate and update IP addresses only for instances that
belong to VLAN80:

3. Ensure that the VMware ESXi SDN connector resolves dynamic firewall IP addresses:
   a. Go to Policy & Objects > Addresses.
   b. Hover over the address created in step 2 to see a list of IP addresses for instances that belong to VLAN80 as configured in step 2:

To configure VMware ESXi SDN connector using CLI commands:

1. Configure the VMware ESXi SDN connector:
   ```
 config system sdn-connector
 edit "vmware1"
 set type vmware
 set server "172.17.48.222"
 set username "example_username"
 set password xxxxx
 set update-interval 30
 next
 end
   ```

2. Create a dynamic firewall address for the configured VMware ESXi SDN connector with the supported VMware ESXi filter. In this example, the VMware ESXi SDN connector will automatically populate and update IP addresses only for instances that belong to the specified VLAN:
   ```
 config firewall address
 edit "vmware-network"
 set type dynamic
 set sdn "vmware1"
 set filter "vmnetwork=VLAN80"
 next
 end
   ```

3. Confirm that the VMware ESXi SDN connector resolves dynamic firewall IP addresses using the configured filter:
   ```
 config firewall address
 edit "vmware-network"
 set type dynamic
 set sdn "vmware1"
 set filter "vmnetwork=VLAN80"
 config list
 edit "192.168.8.240"
 next
 end
 next
 end
   ```
VMware NSX-T Manager SDN connector using NSX-T Manager credentials

This feature provides SDN connector configuration for VMware NSX-T manager. You can import specific groups, or all groups from the NSX-T Manager.

To configure SDN connector for NSX-T Manager in the GUI:

1. Go to Security Fabric > External Connectors and click Create New.
2. In the Private SDN section, click VMware NSX.

3. Configure the settings and click OK.

To configure SDN connector for NSX-T Manager in the CLI:

```
config system sdn-connector
edit "nsx_t24"
 set type nsx
 set server "172.18.64.205"
 set username "admin"
 set password xxxxxxx
next
end
```

To import a specific group from the NSX-T Manager:

```
execute nsx group import nsx_t24 root csf_ns_group
[1] 336914ba-0660-4840-b0f1-9320f5c5ca5e csf_ns_group:
 Name:csf_ns_group
 Address:1.1.1.0
 Address:1.1.1.1
 Address:172.16.10.104
 Address:172.16.20.104
 Address:172.16.30.104
 Address:2.2.2.0
 Address:2.2.2.2
 Address:4.4.4.0
 Address:5.5.5.0
```
To import all groups from NSX-T Manager:

# execute nsx group import nsx_t24 root

[1] 663a7686-b9a3-4659-b06f-b45c908349a0 ServiceInsertion_NSGroup:
   Name:ServiceInsertion_NSGroup
   Address:10.0.0.2

[2] 336914ba-0660-4840-b0f1-9320f5c5ca5e csf_ns_group:
   Name:csf_ns_group
   Address:1.1.1.0
   Address:1.1.1.1
   Address:172.16.10.104
   Address:172.16.20.104
   Address:172.16.30.104
   Address:2.2.2.0
   Address:2.2.2.2
   Address:4.4.4.0
   Address:5.5.5.0
   Address:6.6.6.6
   Address:7.7.7.7

[3] c462ec4d-d526-4ceb-aeb5-3f168ceed9d charlie_test:
   Name:charlie_test
   Address:1.1.1.1
   Address:2.2.2.2
   Address:6.6.6.6
   Address:7.7.7.7

[4] ff4dcb08-53cf-46bd-bef4-f7aeda9c0ad9 fgt:
   Name:fgt
   Address:172.16.10.101
   Address:172.16.10.102
   Address:172.16.20.102
   Address:172.16.30.103

[5] 3dd7df0d-2baa-44e0-b88f-bd21a92eb2e5 yongyu_test:
   Name:yongyu_test
   Address:1.1.1.10
   Address:2.2.2.0
   Address:4.4.4.0
   Address:5.5.5.0
To view the dynamic firewall IP addresses that are resolved by the SDN connector in the GUI:

1. Go to Policy & Objects > Addresses to view the IP addresses resolved by an SDN connector.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Details</th>
<th>Interface</th>
<th>Visibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>acl-add-long</td>
<td>Fabric Connector Address (ACI)</td>
<td></td>
<td></td>
<td>Visible</td>
</tr>
<tr>
<td>acl-add-tag</td>
<td>Fabric Connector Address (ACI)</td>
<td></td>
<td></td>
<td>Visible</td>
</tr>
<tr>
<td>csf_ns_group</td>
<td>Fabric Connector Address (NSX)</td>
<td></td>
<td></td>
<td>Visible</td>
</tr>
<tr>
<td>all</td>
<td>Fabric Connector Address (VMWARE)</td>
<td></td>
<td></td>
<td>Visible</td>
</tr>
<tr>
<td>aws-address</td>
<td>Fabric Connector Address (AWS)</td>
<td></td>
<td></td>
<td>Visible</td>
</tr>
<tr>
<td>aws-address</td>
<td>Fabric Connector Address (AWS)</td>
<td></td>
<td></td>
<td>Visible</td>
</tr>
<tr>
<td>aws-address</td>
<td>Fabric Connector Address (AWS)</td>
<td></td>
<td></td>
<td>Visible</td>
</tr>
<tr>
<td>azure-address</td>
<td>Fabric Connector Address (AZURE)</td>
<td></td>
<td></td>
<td>Visible</td>
</tr>
<tr>
<td>charlie_test</td>
<td>Fabric Connector Address (NSX)</td>
<td></td>
<td></td>
<td>Visible</td>
</tr>
</tbody>
</table>

To view the dynamic firewall IP addresses that are resolved by the SDN connector in the CLI:

```
show firewall address csf_ns_group
config firewall address
edit "csf_ns_group"
 set uuid ee4a2696-bacd-51e9-f828-59457565b880
 set type dynamic
 set sdn "nsx_t24"
 set obj-id "336914ba-0660-4840-b0f1-9320f5c5ca5e"
config list
 edit "1.1.1.0"
 next
 edit "1.1.1.1"
 next
 edit "172.16.10.104"
 next
 edit "172.16.20.104"
 next
 edit "172.16.30.104"
 next
 edit "172.16.40.104"
 next
 edit "172.16.50.104"
 next
 edit "172.16.60.104"
 next
 edit "2.2.2.0"
 next
 edit "2.2.2.2"
 next
 edit "4.4.4.0"
 next
 edit "5.5.5.0"
 next
 edit "6.6.6.6"
 next
 edit "7.7.7.7"
 next
```
Multiple concurrent SDN connectors

This guide shows how to configure SDN connectors and resolve dynamic firewall addresses through the configured SDN connector in FortiOS.

FortiOS supports multiple SDN connectors including public connectors (AWS, Azure, GCP, OCI, AliCloud) and private connectors (Kubernetes, VMware ESXi, VMware NSX, OpenStack, Cisco ACI, Nuage). FortiOS also supports multiple instances for each type of SDN connector.

This guide uses an Azure SDN connector as an example. The configuration procedure for all supported SDN connectors is the same. In the following topology, the FortiGate accesses the Azure public cloud through the Internet:

![FortiGate to Azure Cloud diagram]

This process consists of the following:

1. Configure the interface.
2. Configure a static route to connect to the Internet.
3. Configure two Azure SDN connectors with different client IDs.
4. Check the configured SDN connectors.
5. Create two firewall addresses.
6. Check the resolved firewall addresses after the update interval.
7. Run diagnose commands.

To configure the interface:

1. In FortiOS, go to Network > Interfaces.
2. Edit port1:
   a. From the Role dropdown list, select WAN.
   b. In the IP/Network Mask field, enter 10.6.30.4/255.255.255.0 for the interface connected to the Internet.

To configure a static route to connect to the Internet:

1. Go to Network > Static Routes. Click Create New.
2. In the Destination field, enter 0.0.0.0/0.0.0.0.
3. From the Interface dropdown list, select port1.
4. In the Gateway Address field, enter 10.60.30.254.
To configure two Azure SDN connectors with different client IDs:

1. Go to Security Fabric > External Connectors.
2. Click Create New. Configure the first SDN connector:
   a. Select Microsoft Azure.
   b. In the Name field, enter azure1.
   c. In the Status field, select Enabled.
   d. From the Server region dropdown list, select Global.
   e. In the Directory ID field, enter the directory ID. In this example, it is 942b80cd-1b14-42a1-8dcf-4b21dece61ba.
   f. In the Application ID field, enter the application ID. In this example, it is 14dbd5c5-307e-4ea4-8133-68738141feb1.
   g. In the Client secret field, enter the client secret.
   h. Leave the Resource path disabled.
   i. Click OK.

3. Click Create New. Configure the second SDN connector:
   a. Select Microsoft Azure.
   b. In the Name field, enter azure2.
   c. In the Status field, select Enabled.
   d. From the Server region dropdown list, select Global.
   e. In the Directory ID field, enter the directory ID. In this example, it is 942b80cd-1b14-42a1-8dcf-4b21dece61ba.
   f. In the Application ID field, enter the application ID. In this example, it is 3ba0a6c-4ff-4f94-b292-07f7a2c36be6.
   g. In the Client secret field, enter the client secret.
   h. Leave the Resource path disabled.
To check the configured SDN connectors:

1. Go to Security Fabric > External Connectors.
2. Click the Refresh icon in the upper right corner of each configured SDN connector. A green up arrow appears in the lower right corner, meaning that both SDN connectors are connected to the Azure cloud using different client IDs.

To create two firewall addresses:

This process creates two SDN connector firewall addresses to associate with the configured SDN connectors.

1. Go to Policy & Objects > Addresses.
2. Click Create New > Address. Configure the first SDN connector firewall address:
   a. In the Name field, enter azure-address-1.
   b. From the Type dropdown list, select Dynamic.
   c. From the Sub Type dropdown list, select Fabric Connector address.
   d. From the SDN Connector dropdown list, select azure1.
   e. For SDN address type, select Private.
   f. From the Filter dropdown list, select the desired filter.
   g. For Interface, select any.
h. Click OK.

3. Click Create New > Address. Configure the second SDN connector firewall address:
   a. In the Name field, enter azure-address-1.
   b. From the Type dropdown list, select Dynamic.
   c. From the Sub Type dropdown list, select Fabric Connector address.
   d. From the SDN Connector dropdown list, select azure2.
   e. For SDN address type, select Private.
   f. From the Filter dropdown list, select the desired filter.
   g. For Interface, select any.
   h. Click OK.

To check the resolved firewall addresses after the update interval:

By default, the update interval is 60 seconds.

1. Go to Policy & Objects > Addresses.
2. Hover over the created addresses. The firewall address that the configured SDN connectors resolved display.

To run diagnose commands:

Run the `show sdn connector status` command. Both SDN connectors should appear with a status of connected.

Run the `diagnose debug application azd -1` command. The output should look like the following:

```
Level2-downstream-D # diagnose debug application azd -1
...
azd sdn connector azure1 start updating IP addresses
azd checking firewall address object azure-address-1, vd 0
IP address change, new list: 10.18.0.4
...
```

To restart the Azure SDN connector daemon, run the `diagnose test application azd 99` command.
Filter lookup in SDN connectors

When configuring dynamic address mappings for filters in SDN connectors for Azure, GCP, OpenStack, Kubernetes, and AliCloud, FortiGate can query the filters automatically.

To use the filter lookup:

1. Navigate to Policy & Objects > Addresses.
2. Create or edit an SDN connector type dynamic IP address.
   Supported SDN connector types include: AWS, Azure, GCP, OpenStack, Kubernetes, and AliCloud. The example below is for an Azure SDN connector.
3. In the address Filter field, you can perform the following actions:
   - List all available filters.
   - Search the available filters.
Create custom filters.
Support for wildcard SDN connectors in filter configurations

Wildcards are supported for SDN connectors when configuring dynamic address filters. The following SDN connector types are currently supported:

- AWS
- Azure
- Google Cloud Platform
- Kubernetes
- OpenStack
- Oracle Cloud Infrastructure
- VMware ESXi

To configure a dynamic address filter for AWS in the GUI:

1. Create the SDN connector:
   a. Go to Security Fabric > External Connectors.
   b. Click Create New.
   c. In the Public SDN section, click Amazon Web Services (AWS).
   d. Configure the settings as needed.
   e. Click OK.

2. Create the dynamic firewall address:
   a. Go to Policy & Objects > Addresses.
   b. Click Create New > Address
   c. Enter a name for the address, then configure the following settings:
      - Set Type to Dynamic.
      - Set Sub Type to Fabric Connector Address.
      - Set SDN Connector to aws1.
      - Set SDN address type to Private.
For Filter, click Create, enter Tag.Name=aws*, the click OK.

d. Click OK.

3. In the address table, hover over the address to view what IPs it resolves to.

4. In AWS, verify to confirm the IP addresses match.

To configure a dynamic address filter for AWS in the CLI:

1. Configure the SDN connector:

   ```
 config firewall address
 edit "aws-address-1"
 set type dynamic
 set sdn "aws1"
 set filter "Tag.Name=aws*"
 set sdn-addr-type public
 next
 end
   ```

2. Create the dynamic firewall address and verify where the IP addresses resolve to:

   ```
 config firewall address
 edit "aws-address-1"
 set type dynamic
 set sdn "aws1"
 set filter "Tag.Name=aws*"
 set sdn-addr-type public
 config list
 edit "18.234.167.123"
   ```
In AWS, verify that the IP addresses match.

**Endpoint/Identity connectors**

SSO fabric connectors integrate SSO authentication into the network. This allows users to enter their credentials only once, and have those credentials reused when accessing other network resources through the FortiGate.

The following fabric connectors are available:

- Fortinet single sign-on agent on page 2492
- Poll Active Directory server on page 2493
- Symantec endpoint connector on page 2494
- RADIUS single sign-on agent on page 2500
- Exchange Server connector on page 2503

**Fortinet single sign-on agent**

To create an FSSO agent connector in the GUI:

1. Go to Security Fabric > External Connectors.
2. Click Create New.
3. In the **Endpoint/Identity** section, click **FSSO Agent on Windows AD**.

![FSSO Agent on Windows AD](image)

4. Fill in the **Name**, and **Primary FSSO Agent** server IP address or name and **Password**.
5. Optionally, add more FSSO agents by clicking the plus icon.
6. Optionally, enable **Trusted SSL certificate** and select or import a certificate.
7. Select the **User group source**:
   - **Collector Agent**: User groups will be pushed to the FortiGate from the collector agent. Click **Apply & Refresh** to fetch group filters from the collector agent.
   - **Local**: User groups will be specified in the FortiGate unit's configuration. Select the LDAP server from the list, then click **Edit** to select the **Users, Groups, and Organizational Units**. Optionally, enable **Proactively retrieve from LDAP server** and configure the **Search filter** and **Interval**.
8. Click **OK**.

**Poll Active Directory server**

The FortiGate unit can authenticate users and allow them network access based on groups membership in Windows Active Directory (AD).

**To create an AD server connector in the GUI:**

1. Go to **Security Fabric > External Connectors**.
2. Click **Create New**.
3. In the **Endpoint/Identity** section, click **Poll Active Directory Server.**

4. Fill in the **Server IP/Name**, **User**, and **Password** for the AD server.
5. Select the LDAP server from the list.
6. If necessary, disable **Enable Polling**. This can be used to temporarily stop the FortiGate from polling security event logs on the Windows logon server, for troubleshooting purposes.
7. Click **OK**.

### Symantec endpoint connector

With the Fabric connector for Symantec Endpoint Protection Manager (SEPM), you can use the client IP information from SEPM to assign to dynamic IP addresses on FortiOS.

When communication between FortiGate and SEPM is established, FortiGate polls every minute for updates via TLS over port 8446. You can use the CLI to change the default one minute polling interval.

For example, you can create a dynamic Fabric Connector IP address subtype and use it in firewall policies as the source address. The dynamic IP address contains all IP addresses sent by SEPM.

This example shows a dynamic IP address with SEPM and one client PC managed by SEPM using FortiGate as the default gateway.

**To configure SEPM on a managed client PC:**

1. In SEPM, create client packages for client hosts and group them into SEPM groups. You can install packages locally on clients or download them directly from SEPM.
2. When a package is installed on the client host, the host is considered managed by SEPM. Even if the host has multiple interfaces, only one IP per host is displayed.

To configure Symantec endpoint connector on FortiGate in the GUI:

1. Go to Security Fabric > External Connectors and click Create New:
   a. In the Endpoint/Identity section, click Symantec Endpoint Protection.
   b. Fill in the Name, and set the Status and Update Interval.
   c. Set Server to the SEPM IP address.
   d. Enter the Username and Password for the server.
   e. To limit the domain or group that is monitored, enter them in the requisite fields.
   
   f. Click OK.

   When the connection is established, you can see a green up arrow in the bottom right of the card. You might need to refresh your browser to see the established connection.

2. Go to Policy & Objects > Addresses and click Create New > Address:
   a. Fill in the address Name.
   b. Set Type to Dynamic.
   c. Set Sub Type to Fabric Connector Address.
   d. Set SDN Connector to the fabric connector that you just created.
e. Add Filters as needed.

![Filter options](image1)

f. Click OK.

Filter options are only available for active computers that are configured and registered in SEPM. Free-form filters can be created manually by clicking Create and entering the filter, in the format: `filter_type=value`.

Possible manual filter types are: `GroupName`, `GroupID`, `ComputerName`, `ComputerUUID`, and `OSName`. For example: `GroupName=MyGroup`.

3. Go to Policy & Objects > Addresses and hover the cursor over the name of the new address to see the resolved IP addresses of the host.

![Address Group](image2)

4. Go to Policy & Objects > Firewall Policy, click Create New, and add a policy that uses the dynamic IP address.
To verify the configuration:

1. On the client PC, check that it is managed by SEPM to access the Internet.

2. On the FortiGate, you can check in Dashboard > FortiView Sources and Log & Report > Forward Traffic.

Because this traffic is not authenticated traffic but is based on source IP address only, it is not shown in the GUI firewall monitor or in the diagnose firewall auth list CLI command.
To configure Symantec endpoint connector on FortiGate in the CLI:

1. Create the fabric connector:

   ```
 config system sdn-connector
 edit "sepm-217"
 set type sepm
 set server "172.18.60.217"
 set username "admin"
 set password *********
 set status enable
 next
 end
   ```

2. Create the dynamic IP address:

   ```
 config firewall address
 edit "sepm-ip"
 set type dynamic
 set sdn "sepm-217"
 set filter "ComputerName=win10-1"
 config list
 edit "10.1.100.187"
 next
 edit "10.6.30.187"
 next
 edit "172.16.200.187"
 next
 end
 next
 end
   ```

3. Add the dynamic IP address to the firewall policy:

   ```
 config firewall policy
 edit 1
 set name "pol1"
 set srcintf "port2"
 set dstintf "port1"
 set srcaddr "sepm-ip"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set utm-status enable
 set ssl-ssh-profile "certificate-inspection"
 set av-profile "default"
 set logtraffic all
 set fsso disable
 set nat enable
 next
 end
   ```

To troubleshoot Symantec SD connector in the CLI:

```
diagnose debug application sepmd -1
```

Output is sent every minute (default). All IPv4 learned from SEPM. IPv6 also sent but not
yet supported.

2019-09-09 12:01:09 sepmd sdn connector sepm-217 start updating IP addresses
2019-09-09 12:01:09 sepmd checking firewall address object sepm-ip, vd 0
2019-09-09 12:01:09 sepmd sdn connector sepm-217 finish updating IP addresses
2019-09-09 12:01:09 sepmd reap child pid: 18079
2019-09-09 12:02:09 sepmd sdn connector sepm-217 prepare to update
2019-09-09 12:02:09 sepmd sdn connector sepm-217 start updating
2019-09-09 12:02:09 sdn-217 sdn connector will retrieve token after 9526 secs
2019-09-09 12:02:09 sym_new_ip_addr ComputerName win10-1
  ComputerUuid AC894D56-BD86-A786-7DDB-7FD98B718AE0, OsName Windows 10
  IP 172.16.200.187
  DomainName Default, DomainId 6C507580AC10C80E5F3CAED5B1711A8E
2019-09-09 12:02:09 sym_new_ip_addr ComputerName win10-1
  ComputerUuid AC894D56-BD86-A786-7DDB-7FD98B718AE0, OsName Windows 10
  IP 10.6.30.187
  DomainName Default, DomainId 6C507580AC10C80E5F3CAED5B1711A8E
2019-09-09 12:02:09 sym_new_ip_addr ComputerName win10-1
  ComputerUuid AC894D56-BD86-A786-7DDB-7FD98B718AE0, OsName Windows 10
  IP 10.1.100.187
  DomainName Default, DomainId 6C507580AC10C80E5F3CAED5B1711A8E
2019-09-09 12:02:09 2001:0000:0000:0000:0000:0000:0000:0187 is not in IPv4 presentation format

2019-09-09 12:02:09 sepmd sdn connector sepm-217 start updating IP addresses
2019-09-09 12:02:09 sepmd checking firewall address object sepm-ip, vd 0
2019-09-09 12:02:09 sepmd sdn connector sepm-217 finish updating IP addresses
2019-09-09 12:02:09 sepmd reap child pid: 18089
2019-09-09 12:03:09 sepmd sdn connector sepm-217 prepare to update
2019-09-09 12:03:09 sepmd sdn connector sepm-217 start updating
2019-09-09 12:03:09 sdn-217 sdn connector will retrieve token after 9466 secs
2019-09-09 12:03:09 sym_new_ip_addr ComputerName win10-1
  ComputerUuid AC894D56-BD86-A786-7DDB-7FD98B718AE0, OsName Windows 10
  IP 172.16.200.187
  DomainName Default, DomainId 6C507580AC10C80E5F3CAED5B1711A8E
2019-09-09 12:03:09 sym_new_ip_addr ComputerName win10-1
  ComputerUuid AC894D56-BD86-A786-7DDB-7FD98B718AE0, OsName Windows 10
  IP 10.6.30.187
  DomainName Default, DomainId 6C507580AC10C80E5F3CAED5B1711A8E
2019-09-09 12:03:09 sym_new_ip_addr ComputerName win10-1
  ComputerUuid AC894D56-BD86-A786-7DDB-7FD98B718AE0, OsName Windows 10
  IP 10.1.100.187
  DomainName Default, DomainId 6C507580AC10C80E5F3CAED5B1711A8E
2019-09-09 12:03:09 2001:0000:0000:0000:0000:0000:0000:0187 is not in IPv4 presentation format
To list the SEPM daemon SDN connectors:

```
diagnose test application sepm 1
sepm SDN connector list:
 name: sepm-217, status: enabled, updater_interval: 60
```

To list the SEPM daemon SDN filters:

```
diagnose test application sepm 2
sepm SDN connector sepm-217 filter list:
 name: sepm-ip, vd 0, filter 'ComputerName=win10-1'
```

**RADIUS single sign-on agent**

With RADIUS single sign-on (RSSO), a FortiGate can authenticate users who have authenticated on a remote RADIUS server. Based on which user group the user belongs to, the security policy applies the appropriate UTM profiles.

The FortiGate does not interact with the remote RADIUS server; it only monitors RADIUS accounting records that the server forwards (originating from the RADIUS client). These records include the user IP address and user group. The remote RADIUS server sends the following accounting messages to the FortiGate:

<table>
<thead>
<tr>
<th>Message</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>If the information in the start message matches the RSSO configuration on the FortiGate, the user is added to the local list of authenticated firewall users.</td>
</tr>
<tr>
<td>Stop</td>
<td>The user is removed from the local list of authenticated firewall users because the user session no longer exists on the RADIUS server.</td>
</tr>
</tbody>
</table>

You can configure an RSSO agent connector using the FortiOS GUI; however, in most cases, you will need to use the CLI. There are some default options you may need to modify that can only be done in the CLI.

```
config user radius
 edit <name>
 set rsso enable
 set rsso-radius-response enable
 set rsso-secret <password>
 set rsso-endpoint-attribute <attribute>
 set sso-attribute <attribute>
 set delimiter {plus | comma}
 next
end
```

**To configure an RSSO agent connector:**

1. Create the new connector:
   a. Go to Security Fabric > External Connectors.
   b. Click Create New.
   d. Enter the connector name.
e. Enable Use RADIUS Shared Secret.

The value entered in Use RADIUS Shared Secret must be identical to what the remote RADIUS server uses to authenticate when it sends RADIUS accounting messages to the FortiGate.

f. Enable Send RADIUS Responses.

You should enable Send RADIUS Responses because some RADIUS servers continue to send the same RADIUS accounting message several times if there is no response.

g. Click OK.

2. Edit the network interface:
   a. Go to Network > Interfaces.
   b. Double-click the interface that will receive the RADIUS accounting messages. The Edit Interface pane opens.
   c. In the Administrative Access section, select the RADIUS Accounting checkbox. This will open listening for port 1813 on this interface. The FortiGate will then be ready to receive RADIUS accounting messages.
   d. Click OK.

3. Create a local RSSO user group:
   a. Go to User & Authentication > User Groups.
   b. Click Create New.
   c. Enter the group name.
   d. For the Type field, click RADIUS Single-Sign-ON (RSSO).
   e. Enter a value for RADIUS Attribute Value.

This value by default is the class attribute. The FortiGate uses the content of this attribute in RADIUS accounting start messages to map a user to a FortiGate group, which then can be used in firewall policies. In this example configuration, the FortiGate will only add a remote RADIUS user to the local firewall user list if the class attribute in the RADIUS accounting START message contains the value group1.
If your users are in multiple groups, you will need to add multiple local RSSO user group.

If the RADIUS attribute value used to map users to a local RSSO group is different than the RADIUS attribute in the RADIUS accounting messages forwarded by the server, you must change it in the CLI.

4. Edit the local RSSO agent to modify default options using the CLI.
   For example, the default value for rsso-endpoint-attribute might work in common remote access scenarios where users are identified by their unique Calling-Station-Id, but in other scenarios the user name might be in a different attribute.

   ```
 config user radius
 edit "Local RSSO Agent"
 set rsso-endpoint-attribute <attribute>
 set sso-attribute <attribute>
 next
 end
   ```

5. Add the local RSSO user group to a firewall policy.

**Verifying the RSSO configuration**

Verification requires a working remote RADIUS server configured for RADIUS accounting forwarding and wireless or wired clients that use RADIUS for user authentication.

For a quick test, you can use one of the publicly available RADIUS test tools to send RADIUS accounting start and stop messages to the FortiGate. You can also use radclient.

**To verify the RSSO configuration:**

1. In radclient, enter the RADIUS attributes. These attributes are then executed with the FortiGate IP parameters (sends accounting messages to port 1813) and shared password you configured. `-x` is used for verbose output:

   ```
 root@ControlPC:~# echo "Acct-Status-Type =Start,Framed-IP-Address=10.1.100.185,User-Name=test2,Acct-Session-Id=0211a4ef,Class=group1,Calling-Station-Id=00-0c-29-44-BE-B8" | radclient -x 10.1.100.1 acct 123456
 Sending Accounting-Request of id 180 to 10.1.100.1 port 1813
 Acct-Status-Type = Start
 Framed-IP-Address = 10.1.100.185
 User-Name = "test2"
 Acct-Session-Id = "0211a4ef"
 Class = 0x67726f757031
 Calling-Station-Id = "00-0c-29-44-BE-B8"
 rad_recv: Accounting-Response packet from host 10.1.100.1 port 1813, id=180, length=20
 root@ControlPC:~#
   ```

2. Verify that the user is in the local firewall user list with the correct type (`rsso`) and local firewall group(`rsso-group1`):
Fortinet Security Fabric

# diagnose firewall auth 1

10.1.100.185, test2
  type: rsso, id: 0, duration: 5, idled: 5
  flag(10): radius
  server: vdom1
  packets: in 0 out 0, bytes: in 0 out 0
  group_id: 3
  group_name: rsso-group-1

----- 1 listed, 0 filtered ------

Exchange Server connector

FortiGate can collect additional information about authenticated users from corporate Microsoft Exchange Servers. After a user logs in, the additional information can be viewed in various parts of the GUI.

The Exchange connector must be mapped to the LDAP server that is used for authentication.

The following attributes are retrieved:

- USER_INFO_FULL_NAME
- USER_INFO_FIRST_NAME
- USER_INFO_LAST_NAME
- USER_INFO_LOGON_NAME
- USER_INFO_TELEPHONE
- USER_INFO_EMAIL
- USER_INFO_USER_PHOTO
- USER_INFO_COMPANY
- USER_INFO_DEPARTMENT
- USER_INFO_GROUP
- USER_INFO_TITLE
- USER_INFO_MANAGER
- USER_INFO_STREET
- USER_INFO_POSTAL_CODE
- USER_INFO_COUNTRY
- USER_INFO_ACCOUNT_EXPIRES
- USER_INFO_POST_OFFICE_BOX

Kerberos Key Distribution Center (KDC) automatic discovery is enabled by default. The FortiGate must be able to use DNS to resolve the KDC IP addresses, otherwise the FortiGate will be unable to retrieve additional user information from the Exchange Server.

KDC automatic discovery can be disabled, and one or more internal IP addresses that the FortiGate can reach can be configured for KDC.

The Override server IP address is enabled when the IP address of the Exchange server cannot be resolved by DNS and must be entered manually.

To configure an Exchange connector in the GUI:

1. Go to Security Fabric > External Connectors and click Create New.
2. In the Endpoint/Identity section, click Exchange Server.
3. Set Name to exchange140.
4. Set Exchange account to Administrator@W2K8-SERV1.FORTINET-FSSO.COM.
   Administrator is the username, W2K8-SERV1 is the exchange server name, and FORTINET-FSSO.COM is the domain name.
5. Set Password to the password.
6. Enable Override server IP address and set it to 10.1.100.140.
7. Ensure that *Auto-discover KDC* is enabled.

8. Click OK.

To link the connector to the LDAP server in the GUI:

1. Go to *User & Authentication > LDAP Servers.*
2. Edit an existing LDAP server, or click *Create New* to create a new one.
3. Enable *Exchange server,* and select the connector from the list.
4. Configure the remaining settings as required.

5. Click OK.

To configure an Exchange connector with automatic KDC discovery in the CLI:

```plaintext
config user exchange
edit "exchange140"
 set server-name "W2K8-SERV1"
 set domain-name "FORTINET-FSSO.COM"
 set username "Administrator"
 set password **********
 set ip 10.1.100.140
 set auto-discover-kdc enable
next
end
```
To link the connector to the LDAP server in the CLI:

```plaintext
cfg user ldap
 edit "openldap"
 set server "172.18.60.213"
 set cnid "cn"
 set dn "dc=fortinet-fsso,dc=com"
 set type regular
 set username "cn=Manager,dc=fortinet-fsso,dc=com"
 set password **********
 set group-member-check group-object
 set group-object-filter "(&(objectclass=groupofnames)(member=")
 set member-attr "member"
 set user-info-exchange-server "exchange140"
next
end
```

Verification

To verify that KDC auto-discovery is working:

```plaintext
diagnose wad debug enable category all
diagnose wad debug enable level verbose
diagnose debug enable
diagnose wad user exchange test-auto-discover

wad_diag_session_acceptor(3115): diag socket 20 accepted.
__wad_fmem_open(557): fmem=0x12490bd8, fmem_name='cmem 9188 bucket', elm_sz=9188, block_sz=73728, overhead=0, type=advanced
Starting auto-discover test for all configured user-exchanges.
[NOTE]: If any errors are returned, try manually configuring IPs for the reported errors.

wad_rpc_nspi_test_autodiscover_kdc(1835): Starting DNS SRV request for srv(0x7f938e052050)
query(_kerberos._udp.FORTINET-FSSO.COM)
wad_dns_send_srv_query(705): 1:0: sending DNS SRV request for remote peer _kerberos._
udp.FORTINET-FSSO.COM id=0
1: DNS response received for remote host _kerberos._udp.FORTINET-FSSO.COM req-id=0
wad_dns_parse_srv_resp(409): _kerberos._udp.FORTINET-FSSO.COM: resp_type(SUCCESS)
srv[0]: name(w2k12-serv1.fortinet-fsso.com) port(88) priority(0) weight(100)
 addr[0]: 10.1.100.131
 addr[1]: 10.6.30.131
 addr[2]: 172.16.200.131
 addr[3]: 2003::131
 addr[4]: 2001::131
srv[1]: name(fsso-core-DC.Fortinet-FSSO.COM) port(88) priority(0) weight(100)
 addr[0]: 10.6.30.16
 addr[1]: 172.16.200.16
srv[2]: name(w2k12-serv1.Fortinet-FSSO.COM) port(88) priority(0) weight(100)
 addr[0]: 10.1.100.131
 addr[1]: 172.16.200.131
 addr[2]: 10.6.30.131
 addr[3]: 2001::131
 addr[4]: 2003::131
wad_rpc_nspi_dns_on_discover_kdc_done(1787): Received response for DNS autodiscover req
(0x7f938dfe8050) query(_kerberos._udp.FORTINET-FSSO.COM) n_rsp(3)
```
Completed auto-discover test for all configured user-exchanges.

To check the collected information after the user has been authenticated:

1. In the GUI, go to Dashboard > Users & Devices, expand the Firewall Users widget, and hover over the user name.
2. In the CLI, run the following diagnose command:

   ```
 # diagnose wad user info 20 test1
 'username' = 'test1'
 'sourceip' = '10.1.100.185'
 'vdom' = 'root'
 'cn' = 'test1'
 'givenName' = 'test1'
 'sn' = 'test101'
 'userPrincipalName' = 'test1@Fortinet-FSSO.COM'
 'telephoneNumber' = '604-123456'
 'mail' = 'test1@fortinet-fsso.com'
 'thumbnailPhoto' = '/tmp/wad/user_info/76665fff62ffffffffffffffffffff75ff68fffffffffa'
 'company' = 'Fortinet'
 'department' = 'Release QA'
 'memberOf' = 'CN=group321,OU=Testing,DC=Fortinet-FSSO,DC=COM'
 'memberOf' = 'CN=g1,OU=Testing,DC=Fortinet-FSSO,DC=COM'
 'memberOf' = 'CN=group21,OU=Testing,DC=Fortinet-FSSO,DC=COM'
 'memberOf' = 'CN=group1,OU=Testing,DC=Fortinet-FSSO,DC=COM'
 'manager' = 'CN=test6,OU=Testing,DC=Fortinet-FSSO,DC=COM'
 'streetAddress' = 'One Backend Street 1901'
 'l' = 'Burnaby'
 'st' = 'BC'
 'postalCode' = '4711'
 'co' = 'Canada'
 'accountExpires' = '9223372036854'
   ```

   If the results are not as expected, verify what information FortiGate can collect from the Exchanger Server:

   ```
 # diagnose test application wad 2500
 # diagnose test application wad 162
   ```

**Threat feeds**

Threat feeds dynamically import an external block list from an HTTP server in the form of a plain text file, or from a STIX/TAXII server. Block lists can be used to enforce special security requirements, such as long term policies to always block access to certain websites, or short term requirements to block access to known compromised locations. The lists are dynamically imported, so that any changes are immediately imported by FortiOS.

There are four types of threat feeds:

<table>
<thead>
<tr>
<th><strong>FortiGuard Category</strong></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The file contains one URL per line. It is available as a Remote Category in Web Filter profiles, SSL inspection exemptions, and proxy addresses. See Web rating override on page 1320 for more information. Example:</td>
<td></td>
</tr>
</tbody>
</table>
The file contains one IP/IP range/subnet per line. It is available as an *External IP Block List* in DNS Filter profiles, and as a *Source/Destination* in IPv4, IPv6, and proxy policies.

**Example:**

- 192.168.2.100
- 172.200.1.4/16
- 172.16.1.2/24
- 172.16.8.1-172.16.8.100
- 2001:0db8::eade:27ff:fe04:9a01/120
- 2001:0db8::eade:27ff:fe04:aa01-2001:0db8::eade:27ff:fe04:ab01

**Domain Name**
The file contains one domain per line. Simple wildcards are supported. It is available as a *Remote Category* in DNS Filter profiles. See External resources for DNS filter on page 2513 for more information.

**Example:**

- mail.*.example.com
- *-special.example.com
- www.*example.com
- example.com

**Malware Hash**
The file contains one hash per line in the format `<hex hash> [optional hash description]`. Each line supports MD5, SHA1, and SHA256 hashes. It is automatically used for virus outbreak prevention on antivirus profiles with external-blocklist enabled.

**Note:** For optimal performance, do not mix different hashes in the list. Only use one of MD5, SHA1, or SHA256.

**Example:**

- 292b2e6bb027cd4ff4d24e338f5c48de
- dda37961870ce079defbf185eeeef905 Trojan-Ransom.Win32.Locky.abfl
- 3fa86717650a17d075d856a41b3874265f8e9eab Trojan-Ransom.Win32.Locky.abfl
- c35f705df9e475305c0984b05991d444450809c35dd1d96106bb8e7128b9082f Trojan-Ransom.Win32.Locky.abfl

See External malware block list on page 1100 for an example.

### External resources file format

File format requirements for a HTTP/HTTPS external resources file:

- The file is in plain text format with each URL list, IP address, domain name, or malware hash occupying one line.
- The file is limited to 10 MB or 128 × 1024 (131072) entries, whichever limit is hit first.
- The entry limit also follows the table size limitation defined by CMDB per model.
- The external resources update period can be set to 1 minute, hourly, daily, weekly, or monthly (43200 min, 30 days).
- The external resources type as category (URL list) and domain (domain name list) share the category number range 192 to 221 (total of 30 categories).
- There is no duplicated entry validation for the external resources file (entry inside each file or inside different files).
- If the number of entries exceed the limit, a warning is displayed. Additional entries beyond the threshold will not be loaded.
For domain name list (type = domain):
- Simple wildcards are allowed in the domain name list, for example: *.test.com.
- IDN (international domain name) is supported.

For IP address list (type = address):
- The IP address can be a single IP address, subnet address, or address range. For example, 192.168.1.1, 192.168.10.0/24, or 192.168.100.1-192.168.100.254.
- The address can be an IPv4 or IPv6 address. An IPv6 address does not need to be in [ ] format.

For URL list (type=category):
- The scheme is optional, and will be truncated if found; https:// and http:// are not required.
- Wildcards are allowed at the beginning or end or the URL, for example: *.domain.com or domain.com.*.
- IDN and UTF encoding URL are supported.
- The URL can be an IPv4 or IPv6 address. An IPv6 URL must be in [ ] format.

To determine the external resource table size limit for your device:

```
print tablesize
...
system.external-resource: 0 256 512
...
```

For this device, a FortiGate 60E, the global limit is 512 and the limit per VDOM is 256.

### Create a threat feed

**To create a threat feed in the GUI:**

1. Go to Security Fabric > External Connectors.
2. Click Create New.
3. In the Thread Feeds section, click on the required feed type.
4. Configure the connector settings:

<table>
<thead>
<tr>
<th>Name</th>
<th>Enter a name for the threat feed connector.</th>
</tr>
</thead>
<tbody>
<tr>
<td>URI of external resource</td>
<td>Enter the link to the external resource file. HTTP, HTTPS, and STIX protocols are supported.</td>
</tr>
<tr>
<td>HTTP basic authentication</td>
<td>Enable/disable basic HTTP authentication. When enabled, enter the username and password in the requisite fields.</td>
</tr>
<tr>
<td>Refresh Rate</td>
<td>The time interval to refresh the external resource, in minutes (1 - 43200, default = 5).</td>
</tr>
<tr>
<td></td>
<td>The applicable threat feed will be triggered to refresh between 0 minutes and the configured value. When the refresh is triggered, if another task is being processed by the schedule worker, the refresh task will be added to the queue.</td>
</tr>
<tr>
<td>Comments</td>
<td>Optionally, enter a description of the connector.</td>
</tr>
<tr>
<td>Status</td>
<td>Enable/disable the connector.</td>
</tr>
</tbody>
</table>

5. Click OK.
To create a threat feed in the CLI:

```
config system external-resource
 edit <name>
 set status {enable | disable}
 set type {category | address | domain | malware}
 set category <integer>
 set username <string>
 set password <string>
 set comments <string>
 *set resource <resource-uri>
 set user-agent <string>
 *set refresh-rate <integer>
 set source-ip <ip address>
 set interface-select-method {auto | sdwan | specify}
next
end
```

Parameters marked with an asterisk (*) are mandatory and must be filled in. Other parameters either have default values or are optional.

When multi VDOM mode is enabled, threat feed external connectors can be defined in the global VDOM or within a VDOM. See Threat feed connectors per VDOM on page 2517 for example configurations.

Update history

To review the update history of a threat feed, go to Security Fabric > External Connectors, select a feed, and click Edit. The Last Update field shows the date and time that the feed was last updated.

Click View Entries to view the current entries in the list.

EMS threat feed

A FortiGate can pull malware threat feeds from FortiClient EMS, which in turn receives malware hashes detected by FortiClients. The malware hash can be used in an antivirus profile when AV scanning is enabled with block or monitor actions. See Malware threat feed from EMS on page 1103 for an example.
External blocklist policy

You can use the external blocklist (threat feed) for web filtering, DNS, and in firewall policies.

Sample configuration

In this example, an IP address blocklist connector is created so that it can be used in a firewall policy.

To configure an external block list connector in the GUI:

1. Go to Security Fabric > External Connectors and click Create New.
2. In the Threat Feeds section, click IP Address.
3. Set Name to AWS_IP_Blocklist.
5. Configure the remaining settings as required, then click OK.
6. Edit the connector, then click View Entries to view the IP addresses in the feed.

The blocklist can now be used in web filter and DNS profiles, and in firewall policies.

To configure an external block list connector in the CLI:

```
config system external-resource
 edit "AWS_IP_Blocklist"
 set status enable
 set type address
 set username ''
 set password ********
```
set comments ''
set resource "https://s3.us-east-2.amazonaws.com/ip-blocklist/ip.txt"
set refresh-rate 15
next
end

To apply an external block list to a firewall policy in the CLI:

config firewall policy
def 1
    set name "policyid-1"
    set srcintf "wan2"
    set dstintf "wan1"
    set srcaddr "all"
    set dstaddr "AWS_IP_Blocklist"
    set action accept
    set schedule "always"
    set service "ALL"
    set logtraffic all
    set auto-asic-offload disable
    set nat enable
next
def

External blocklist authentication

Thread feed external connectors support username and password authentication.

To enable username and password authentication in a thread feed connector:

1. Go to Security Fabric > External Connectors.
2. Edit an existing Threat Feed or create a new one by selecting Create New.
3. Enable HTTP basic authentication
4. Enter the Username and Password.

5. Click OK.
External blocklist file hashes

The malware hash threat feed connector supports a list of file hashes that can be used as part of virus outbreak prevention.

This example retrieves a malware hash from an Amazon S3 bucket, and then enables malware block lists in an antivirus profile.

To configure a malware hash connector in the GUI:

1. Go to Security Fabric > External Connectors and click Create New.
2. In the Threat Feeds section, click Malware Hash.
3. Set Name to AWS_Malware_Hash.
5. Click OK.
6. Edit the connector, then click View Entries to view the hash list.
7. Go to Security Profiles > AntiVirus and create a new profile, or edit an existing one.
8. Enable Use external malware block list.
9. Click the + and select AWS_Malware_Hash from the list.
10. Click OK.

To configure a malware hash connector in the CLI:

```
config system external-resource
 edit "AWS_Malware_Hash"
```
set type malware
set resource "https://s3.us-west-2.amazonaws.com/malware-hash-feeds/fortinet-malware-hash-list"
next
end

config antivirus profile
edit "av-profile"
    set external-blocklist-enable all disable
    set external-blocklist "AWS_Malware_Hash"
end
next
end

Logs

The `filehash` and `filehashsrc` are included in outbreak prevention detection event logs.

This example shows the log generated when a file is detected by external malware hash list outbreak prevention:

```
1: date=2018-07-30 time=13:59:41 logid="0207008212" type="utm" subtype="virus"
eventtype="malware-list" level="warning" vd="root" eventtime=1532984381 msg="Blocked by local malware list." action="blocked" service="HTTP" sessionid=174963 srcip=192.168.101.20 dstip=172.16.67.148 srcport=37045 dstport=80 srcintf="lan" srcintfrole="lan" dstintf="wan1" dstintfrole="wan" policyid=1 proto=6 direction="incoming" checksum="90f0cb57" quarskip="No-skip" virus="mhash_block.com" filehash="93bdd30bd381b018b9d1b89e8e6d8753" filehashsrc="test_list" url="http://172.16.67.148/mhash_block.com" profile="mhash_test" agent="Firefox/43.0" analyticssubmit="false"
```

External resources for DNS filter

External resources provides the ability to dynamically import an external block list into an HTTP server. This feature enables the FortiGate to retrieve a dynamic URL, domain name, IP address, or malware hash list from an external HTTP server periodically. The FortiGate uses these external resources as the web filter's remote categories, DNS filter's remote categories, policy address objects, or antivirus profile's malware definitions. If external resources are updated, FortiGate objects are also updated dynamically.

External resource is divided into four types:

- URL list (type = category)
- Domain name list (type = domain)
- IP address list (type = address)
- Malware hash list (type = malware)

Remote categories and external IP block list

The DNS filter profile can use two types of external resources: `domain type` (domain name list) and `address type` (IP address list).

When a `domain type` external resource is configured, it is treated as a remote category in the DNS filter profile. If the domain name in DNS query matches the entry in this external resource file, it is treated as the remote category and follows the action configured for this category in DNS filter profile.
When an address type external resource is configured, it can be enabled as external-ip-blocklist in DNS filter profile. If a DNS resolved IP address in DNS response matches the entry in the external-ip-blocklist, this DNS query is blocked by the DNS filter.

For external resources file format and limits, see External resources file format on page 2507.

Configuring external resources in the CLI

In the CLI, you can configure external resources files in an external HTTP server. Under global, configure the external resources file location and specify the resource type.

To configure external resources:

```
config system external-resource
 edit "Ext-Resource-Type-as-Domain-1"
 set type domain
 set category 194
 set resource "http://172.16.200.66/external-resources/Ext-Resource-Type-as-Domain-1.txt"
 set refresh-rate 1
next
edit "Ext-Resource-Type-as-Address-1"
 set status enable
 set type address
 set username ''
 set password ********
 set comments ''
 set resource "http://172.16.200.66/external-resources/Ext-Resource-Type-as-Address-1.txt"
 set refresh-rate 1
next
end
```

In each VDOM, the domain type external resource can be used in the DNS filter as remote category. In this example, the domain name list in the Ext-Resource-Type-as-Domain-1.txt file is treated as a remote category (category ID 194). The IP address list in the Ext-Resource-Type-as-Address-1.txt file can be applied in the DNS filter as an external-ip-blocklist. If the DNS resolved IP address matches any entry in the list in that file, the DNS query is blocked.

To configure the external IP block list and apply it to a policy:

```
config dnsfilter profile
 edit "default"
 set comment "Default dns filtering."
 config ftgd-dns
 config filters
 edit 1
 set category 194
 set action block
 next
 edit 2
 set category 12
 next
 edit 3
 next
```

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
end
end
set block-botnet enable
    set external-ip-blocklist "Ext-Resource-Type-as-Address-1"
next
end

config firewall policy
    edit 1
        set name "DNSFilter"
        set srcintf "port10"
        set dstintf "port9"
        set srcaddr "all"
        set dstaddr "all"
        set action accept
        set schedule "always"
        set service "ALL"
        set utm-status enable
        set logtraffic all
        set dnsfilter-profile "default"
        set profile-protocol-options "protocol"
        set ssl-ssh-profile "protocols"
        set nat enable
next
end

Configuring external resources in the GUI

To configure, edit, or view the entries for external resources in the GUI:

1. Go to Global > Security Fabric > External Connectors.
2. Click Create New.
3. In the Threat Feeds section, select Domain Name or IP Address.
4. Enter the Resource Name, URL, location of the resource file, resource authentication credentials, and Refresh Rate.
5. Click OK.
6. Double-click the Threat Feeds Object you just configured to open the Edit page.
7. Click View Entries to view the entry list in the external resources file.

8. Go to VDOM > Security Profiles > DNS Filter and open a DNS filter profile. The configured external resources displays, and you can apply it in each DNS filter profile (remote category or external IP block lists).

Log sample

Remote categories

Go to VDOM > Log & Report > Security Events and select the DNS Query card. Some domains that match the remote category list are rated as remote category, overriding their original domain rating.
Log example:

1: date=2019-01-18 time=13:49:12 logid="1501054802" type="utm" subtype="dns" eventtype="dns-response" level="notice" vd="vdom1" eventtime=1547848151 policyid=1 sessionid=82998 srcip=10.1.100.18 srcintf="port10" srcintfrole="undefined" dstip=172.16.95.16 dstport=53 dstintf="port9" dstintfrole="undefined" proto=17 profile="default" xid=38234 qname="www.example.com" qtype="A" qtypeval=1 qclass="IN" ipaddr="93.184.216.34" msg="Domain is monitored" action="pass" cat=196 catdesc="Ext-Resource-Type-as-Domain-3"

2: date=2019-01-18 time=13:49:12 logid="1500054000" type="utm" subtype="dns" eventtype="dns-query" level="information" vd="vdom1" eventtime=1547848151 policyid=1 sessionid=82998 srcip=10.1.100.18 srcintf="port10" srcintfrole="undefined" dstip=172.16.95.16 dstport=53 dstintf="port9" dstintfrole="undefined" proto=17 profile="default" xid=38234 qname="www.example.com" qtype="A" qtypeval=1 qclass="IN"

External IP block lists

Go to VDOM > Log & Report > Security Events and select the DNS Query card. If the DNS query resolved IP address matches the entry in the external-ip-blocklist, the DNS query is blocked.

Log example:

1: date=2019-01-18 time=13:50:53 logid="1501054400" type="utm" subtype="dns" eventtype="dns-response" level="warning" vd="vdom1" eventtime=1547848253 policyid=1 sessionid=8206 srcip=10.1.100.18 srcport=47281 srcintf="port10" srcintfrole="undefined" dstip=172.16.95.16 dstport=53 dstintf="port9" dstintfrole="undefined" proto=17 profile="default" xid=7501 qname="www.example.com" qtype="A" qtypeval=1 qclass="IN" msg="Domain was blocked because it is in the domain-filter list" action="redirect" domainfilteridx=0 domainfilterlist="Ext-Resource-Type-as-Address-1"

2: date=2019-01-18 time=13:50:53 logid="1500054000" type="utm" subtype="dns" eventtype="dns-query" level="information" vd="vdom1" eventtime=1547848253 policyid=1 sessionid=8206 srcip=10.1.100.18 srcport=47281 srcintf="port10" srcintfrole="undefined" dstip=172.16.95.16 dstport=53 dstintf="port9" dstintfrole="undefined" proto=17 profile="default" xid=7501 qname="www.example.com" qtype="A" qtypeval=1 qclass="IN"

Threat feed connectors per VDOM

When multi-VDOM mode is enabled, a threat feed external connector can be defined in global or within a VDOM. Global threat feeds can be used in any VDOM, but cannot be edited within the VDOM. FortiGuard category and domain name-based external feeds have an added category number field to identify the threat feed. The threat feed name in global must start with g-. Threat feed names in VDOMs cannot start with g-.
FortiGuard category and domain name-based external feed entries must have a number assigned to them that ranges from 192 to 221. This number can be assigned to both external feed types. However, when a category number is used under a global entry, such as 192 with the name `g-cat-192`, this category number cannot be used in any other global or VDOM entries. If a category is used under a VDOM entry, such as 192 under `VDOM1` with the name `cat-192`, the category 192 can be used in another VDOM or root with the name `cat-192`.

A thread feed connector can only be used in profiles in the VDOM that it was created in. Global connectors can be used in all VDOMs.

Each VDOM can have a maximum of 256 thread feed entries. But in total, a FortiGate can only have 511 thread feed entries.

To configure an external threat feed connector under global in the GUI:

1. Go to Security Fabric > External Connectors and click Create New.
2. In the Threat Feeds section, click FortiGuard Category.
3. Enter a name that begins with `g-`.
4. Configure the other settings as needed.
5. Click OK.

To configure an external threat feed connector under global in the CLI:

```
config global
 config system external-resource
 edit "g-category"
 set status enable
 set type category
 set category 192
 set comments ''
 set refresh-rate 5
 end
 end
end
```

To configure an external threat feed connector under a VDOM in the GUI:

1. Go to Security Fabric > External Connectors and click Create New.
2. In the Threat Feeds section, click Domain Name.
3. Enter a name that does not begin with `g-`.
4. Configure the other settings as needed.
5. Click OK. The threat feed connector created under global also appears, but it is not editable.
To configure an external threat feed connector under a VDOM in the CLI:

```plaintext
config vdom
 edit vd1
 config system external-resource
 edit "vd1-domain"
 set status enable
 set type domain
 set category 193
 set comments ''
 set refresh-rate 5
 next
 end
 next
end
```

To use an IP address threat feed in a policy in the GUI:

1. Configure an IP address connector in global:
   a. Go to Security Fabric > External Connectors and click Create New.
   b. In the Threat Feeds section, click IP Address.
   c. Enter a name that begins with g-.
   d. Configure the other settings as needed.
   e. Click OK.

2. Configure an IP address connector in the VDOM (vd1):
   a. Go to Security Fabric > External Connectors and click Create New.
   b. In the Threat Feeds section, click IP Address.
   c. Enter a name that does not begin with g-.
   d. Configure the other settings as needed.
   e. Click OK. The threat feed connectors created under global also appear, but they are not editable.

   ![Threat Feeds](image)

3. Configure the firewall policy in the VDOM (vd1):
   a. Go to Policy & Objects > Firewall Policy and click Create New.
   b. For Destination, select vd1-address. Since this policy is configured under vd1, g-address can also be set as the destination.

   ![Firewall Policy](image)
c. Configure the other settings as needed.
d. Click OK.

To use an IP address threat feed in a policy in the CLI:

1. Configure the IP address connectors:

```
config global
 config system external-resource
 edit "g-address"
 set status enable
 set type address
 set username ''
 set comments ''
 set refresh-rate 5
 next
 end
end

config vdom
 edit vdl
 config system external-resource
 edit "vdl-address"
 set status enable
 set type address
 set comments ''
 set user-agent "curl/7.58.0"
 set refresh-rate 5
 next
 end
 next
end
```
2. In the VDOM, configure a firewall policy with the external address as the destination address:

```fortios
config vdom
 edit vdl
 config firewall policy
 edit 1
 set name "test"
 set srcintf "port10"
 set dstintf "port9"
 set srcaddr "all"
 set dstaddr "vd1-address"
 set action accept
 set schedule "always"
 set service "ALL"
 set profile-protocol-options "protocol"
 set nat enable
 next
 end
 end
```

Since this firewall policy is configured under `vd1`, `g-address` can also be set as the `dstaddr`.

### STIX format for external threat feeds

The FortiGate's external threat feeds support feeds that are in the STIX/TAXII format. Use the `stix://` prefix in the URI to denote the protocol.

All external threat feeds support the STIX format. In this example, a FortiGuard Category threat feed in the STIX format is configured.

**To configure a FortiGuard Category threat feed in the STIX format in the GUI:**

1. Go to `Security Fabric > External Connectors` and click `Create New`.
2. Select `FortiGuard Category` from the `Threat Feeds` section.
3. Configure the connector:
   - **Name**: `category-taxii`
   - **URI of external resource**: `stix://limo.anomali.com/api/v1/taxii2/feeds/collections/200/objects/`
   - **HTTP basic authentication**: Enable and enter the username and password, such as `guest` and `guest`. 
4. Click OK.
5. Edit the connector, and click View Entries in the right side bar to view the retrieved entries.

To configure a FortiGuard Category threat feed in the STIX format in the CLI:

```bash
config system external-resource
 edit "category-taxii"
 set category 194
 set username "guest"
 set password guest
 set resource "stix://limo.anomali.com/api/v1/taxii2/feeds/collections/200/objects/"
next
end
```

If the connector is used in webfilter that blocks category 194, the traffic that matches the retrieved URLs, such as `rsiuk.co.uk`, is blocked:

```plaintext
1: date=2021-10-06 time=18:07:46 eventtime=1633568867163763708 tz="-0700" logid="0316013056" type="utm" subtype="webfilter" eventtype="ftgd_blk" level="warning" vd="vd1" policyid=1 sessionid=174974 srcip=10.1.100.12 srcport=48284 srcintf="port2" srcintfrole="undefined" srcu=0x1f5d srcu=0x1f5d dstip=78.129.255.151 dstport=443 dstintf="port1" dstintfrole="undefined" dstu=0x1f5d dstu=0x1f5d proto=6 service="HTTPS" hostname="rsiuk.co.uk" profile="test" action="blocked" reqtype="direct" url="https://rsiuk.co.uk/" sentbyte=75 rcvbyte=0 direction="outgoing"
```
Monitoring the Security Fabric using FortiExplorer for Apple TV

FortiExplorer for Apple TV allows you to use a TV screen to monitor your entire Security Fabric.

FortiExplorer for Apple TV is an analysis tool that provides easy to use NOC and SOC monitoring capabilities. The app features real-time data traffic, visual alerts, as well as a general overview of hardware devices, operating systems, and interfaces. The monitor also provides a wireless health summary of your entire network across multiple buildings. If an access point goes offline, you will be notified about the network’s health. After the issues are resolved, you will immediately see the health update on your screen.

Getting started with FortiExplorer for Apple TV

Download FortiExplorer for Apple TV from the app store on Apple TV. After the app is installed, add devices using the Apple TV remote or by sharing a login profile with FortiExplorer. Once the devices are added, you can use FortiExplorer for Apple TV to view real-time data in the Network Operations Center, Security Operations Center, and Software-Defined Branch.

To get started with FortiExplorer for Apple TV:

1. Download the app and add devices to FortiExplorer for Apple TV.
   You can add devices by sharing a login profile with FortiExplorer or logging into the device directly on FortiExplorer for Apple TV.
2. View the physical topology of the Fabric to identify risks
3. View the Fabric components as seen on the root FortiGate.
4. View an executive summary of the three largest areas of security focus in the Security Fabric.
5. View data collected by FortiAnalyzer on the endpoints on your network.
6. View vulnerability data collected by FortiClient EMS.
7. Use the Software-Defined Branch module to monitor interface SD-WAN usage and associated service level agreements.

NOC and SOC example

In this example, you have configured your FortiGates, FortiAnalyzer and other devices in your Security Fabric. Now you want to use FortiExplorer for Apple TV to display the status of the devices on a TV in your Network Operation Center or Security Operation Center.

Topology

This topology has a Headquarter and two Branches. Within the Headquarter is the Enterprise Core and two FortiGates acting as ISFWs. In addition, an on-premise FortiAnalyzer collects all logging information from the fabric devices. The FortiClient EMS manages all the endpoints within the topology.

The two branches are configured with SD-WAN with VPN overlays to the Enterprise Core. Traffic is steered towards the overlays and underlays based on SD-WAN Rules.

Using FortiExplorer for Apple TV, you will be able to monitor the different components in this topology.

To take advantage of the views in the FortiExplorer for Apple TV, you should configure:

- Security Fabric on all FortiGates. See Configuring the root FortiGate and downstream FortiGates on page 2210.
- FortiAnalyzer Logging. See Configuring FortiAnalyzer on page 2217.
- FortiClient EMS. See Configuring FortiClient EMS on page 2236
Adding the root FortiGate to FortiExplorer for Apple TV

By adding the root FortiGate, you can view the entire topology and navigate to branch FortiGates in the SD-WAN view. If you are already using FortiExplorer on a mobile device, you can connect the same FortiGate device to Apple TV by sharing the login credentials on both devices. Alternatively, you can manually connect to your root FortiGate directly from the app.

To share login credentials between FortiExplorer and FortiExplorer for Apple TV:

1. Connect the FortiExplorer and FortiExplorer for Apple TV devices to the same network.
2. On FortiExplorer for Apple TV, click New FortiGate.
3. In FortiExplorer, go to My Fabric.
4. Swipe right on the device you want to share, and tap Share Login Profile.
5. Tap *Share to Apple TV.*

6. On Apple TV, click *Accept.* FortiExplorer for Apple TV confirms the request and proceeds to the device main menu.
To add devices to FortiExplorer for Apple TV:

1. In the Devices menu, click New FortiGate. The Login to FortiGate dialog box is displayed.
2. In the IP Address/Host Name field, take one of the following actions:
   - Enter the device IP address and port, if not using the default admin port 443
   - Enter the full host name including the domain. Enter port if not using the default admin port 443.

3. Enter the Username and Password for the FortiGate device.
4. Click Remember to save time entering the login credentials later.
5. Click Login. The device is added to FortiExplorer for Apple TV.

If the IP or hostname is not defined in the CN or SAN field of your certificate, you will receive a prompt that "Your connection is not private". You may choose to continue with your connection.
Viewing the Fabric Topology monitor

Use the Fabric Topology monitor to view the physical topology of the Fabric to identify risks. FortiGate devices with version 6.4. and above can drilldown further to see additional information for devices such as FortiGates, FortiAPs, and FortiSwitches.

To view the Fabric Topology monitor, go to Network Operations Center > Fabric Topology. This monitor displays the same information as the Physical Topology on the FortiGate

Use your remote to navigate through the devices in the Fabric topology. Click a device to view the drilldown information. To return to the default view, click the Menu button.

Viewing the Fabric Overview monitor

Use the Fabric Overview monitor to view the Fabric components as seen on the Dashboard of the Fabric Root FortiGate in the example topology. Each device must be authorized and be part of the Fabric.

For information about configuring the Security Fabric, see Fortinet Security Fabric on page 2206

To view the Fabric Overview monitor, go to Network Operations Center > Fabric Overview.
The Security Fabric monitor has multiple panes. To see data populated on the panes, ensure that proper configurations are applied on the Fabric devices:

<table>
<thead>
<tr>
<th>Pane</th>
<th>Description</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric Connectors</td>
<td>Displays external SDN connectors that are enabled.</td>
<td>Configure Security Fabric &gt; External Connectors.</td>
</tr>
<tr>
<td>Attack Surface</td>
<td>Displays devices detected by the FortiGate with a server tag.</td>
<td>Ensure Device Detection is configured on the interfaces(s). Go to Network &gt; Interfaces.</td>
</tr>
<tr>
<td>Device Inventory</td>
<td>Displays devices based on Hardware Vendor and detected OS</td>
<td>Ensure Device Detection is configured on the interface(s). Go to Network &gt; Interfaces.</td>
</tr>
<tr>
<td>Endpoint Coverage</td>
<td>Displays the number of online devices and the percentage of Unscanned, Vulnerable, and Secured devices.</td>
<td>Ensure Device Detection is configured on the interface(s). Vulnerability scan results come from FortiClient EMS. Go to Network &gt; Interfaces.</td>
</tr>
</tbody>
</table>

Device related information only corresponds to devices local to the FortiGate. Device information from downstream FortiGates do not propagate to the Upstream FortiGate.
**Viewing the Security Rating monitor**

The Security Rating monitor is separated into three major scorecards: **Security Posture**, **Fabric Coverage**, and **Optimization**, which provide an executive summary of the three largest areas of security focus in the Security Fabric.

To see the Security Rating summary, the root FortiGate and all FortiGates within the Fabric should have the proper FortiGuard Security Rating license. Security rating is performed on the root FortiGate. Its reports are generated periodically.

To view the Security Rating monitor, go to *Network Operations Center > Security Rating*.

The scorecards show an overall score of the performance and sub-categories. The point score represents the net score for all passed and failed items in that area.

For more information about the Security Rating score, see *Security Fabric score on page 2343*.

**Viewing the Compromised Hosts monitor**

The Compromised Hosts monitor leverages the data collected by FortiAnalyzer on the endpoints on your network. To see compromised hosts, the FortiAnalyzer must have a FortiGuard Indicators of Compromise license. The IOC service helps identify compromised hosts based on infected websites that it may have visited.

This monitor captures the same information as seen on the *Compromised Hosts monitor* on the FortiGate.
To view the Compromised Hosts monitor:

2. In the left-hand pane, scroll through the user list. The monitor displays three panes:
   - The User Information pane displays the user's contact information and IP address.
   - The Topology View pane displays the user's location in the topology.
   - The Verdict View pane displays the Malware, Detected Method, and Security Action.

Viewing the Vulnerability Monitor

The Vulnerability Monitor obtains data from FortiClient EMS. It displays vulnerabilities detected by the FortiClient endpoint, categorized into Critical, High, Medium and Low risk. In this example, an on-premise FortiClient EMS is connected on the root FortiGate's Fabric Connector.

This monitor captures the same information as seen on the Top Vulnerable Endpoint Devices monitor on the FortiGate.
To view the Vulnerability Monitor:

1. Go to Security Operations Center > Vulnerability Monitor. The monitor displays a user list and their vulnerabilities.
2. Use your remote to scroll through the user list. The vulnerability details are displayed on the right side of the monitor.

   - The User Information pane displays the user's contact details and IP address.
   - The Vulnerability Summary pane displays the number of vulnerabilities categorized into Critical, High, Medium and Low risk.
   - The Topology View pane displays the user's location in the topology.
   - The Top Vulnerabilities pane displays the top vulnerabilities by severity.

Using the SD-WAN monitor

In the example topology, the branches are configured to use SD-WAN. You can use the top-right navigation menu in the SD-WAN monitor to navigate to the Branch FortiGate to display information about the SD-WAN.

To view the SD-WAN monitor, go to Software-Defined Branch > SD-WAN Monitor.

The SD-WAN monitor summarizes the SD-WAN members, Zones, SD-WAN Rules and health checks deployed on the FortiGate. It shows the interface member's SD-WAN usage and its associated service level agreements. The monitor contains a chart that shows if the ports are meeting the SLA target for bandwidth, jitter and latency per the health check in use in each SD-WAN Rule.
Some of the SD-WAN statistics are only available in FOS 6.4.1 and higher.

To view SD-WAN usage charts:

1. In the SD-WAN Overview area, Use your remote to select the SD-WAN Usage pane.
2. Scroll left and right to view Bandwidth, Volume and Sessions charts for the VIRTUAL-WAN-LINK and Underlay interfaces in the SD-WAN Zones pane.

To view SLA targets:

1. In the SD-WAN Rules area, use your remote to scroll the rules pane at the left-side of the monitor.
   - The Destinations pane displays the destination details.
   - The Performance SLA pane displays the SLA targets for the rule.
   - The SD-WAN Active Interface pane displays a checkmark next to the active interface.
2. Use your remote to navigate between the *Latency*, *Jitter*, and *Packet Loss* charts.

![Screen shot of Fortinet Security Fabric interface]

To view a branch in the topology:

1. Use your remote to swipe to the top navigation in the monitor. Wait for the topology to load.
2. At the top-right of the monitor, select the current device.

![Screen shot of Fortinet Security Fabric interface showing branch Office Office_01]

3. Select the device you want to view.

**Troubleshooting**

The following topics provide troubleshooting information for the Fortinet Security Fabric:
Viewing a summary of all connected FortiGates in a Security Fabric

In downstream FortiGates, the `diagnose sys csf global` command shows a summary of all of the connected FortiGates in the Security Fabric.

To view a Security Fabric summary on a downstream FortiGate:

```plaintext
diagnose sys csf global
Current vision:
[
 {
 "path":"FGVM01TM19000001",
 "mgmt_ip_str":"104.196.102.183",
 "mgmt_port":10403,
 "sync_mode":1,
 "saml_role":"identity-provider",
 "admin_port":443,
 "serial":"FGVM01TM19000001",
 "host_name":"admin-root",
 "firmware_version_major":6,
 "firmware_version_minor":2,
 "firmware_version_patch":0,
 "firmware_version_build":1010,
 "subtree_members":[
 {
 "serial":"FGVM01TM19000002"
 },
 {
 "serial":"FGVM01TM19000003"
 },
 {
 "serial":"FGVM01TM19000004"
 },
 {
 "serial":"FGVM01TM19000005"
 }
]
 },
 {
 "path":"FGVM01TM19000001:FGVM01TM19000002",
 "mgmt_ip_str":"104.196.102.183",
 "mgmt_port":10423,
 "sync_mode":1,
 "saml_role":"service-provider",
 "admin_port":443,
 "serial":"FGVM01TM19000002",
 "host_name":"Branch_Office_01",
 "firmware_version_major":6,
 "firmware_version_minor":2,
 "firmware_version_patch":0,
 "firmware_version_build":1010,
```
"upstream_intf":"Branch-HQ-A",
"upstream_serial":"FGVM01TM19000001",
"parent_serial":"FGVM01TM19000001",
"parent_hostname":"admin-root",
"upstream_status":"Authorized",
"upstream_ip":22569994,
"upstream_ip_str":"10.100.88.1",
"subtree_members":[]
},
"is_discovered":true,
"ip_str":"10.10.0.102",
"downstream_intf":"To-HQ-A",
"idx":1
}
{
"path":"FGVM01TM19000001:FGVM01TM19000003",
"mgmt_ip_str":"104.196.102.183",
"mgmt_port":10407,
"sync_mode":1,
"saml_role":"service-provider",
"admin_port":443,
"serial":"FGVM01TM19000003",
"host_name":"Enterprise_Second_Floor",
"firmware_version_major":6,
"firmware_version_minor":2,
"firmware_version_patch":0,
"firmware_version_build":1010,
"upstream_intf":"port3",
"upstream_serial":"FGVM01TM19000001",
"parent_serial":"FGVM01TM19000001",
"parent_hostname":"admin-root",
"upstream_status":"Authorized",
"upstream_ip":22569994,
"upstream_ip_str":"10.100.88.1",
"subtree_members":[]
},
"is_discovered":true,
"ip_str":"10.100.88.102",
"downstream_intf":"port1",
"idx":2
}
{
"path":"FGVM01TM19000001:FGVM01TM19000004",
"mgmt_ip_str":"104.196.102.183",
"mgmt_port":10424,
"sync_mode":1,
"saml_role":"service-provider",
"admin_port":443,
"serial":"FGVM01TM19000004",
"host_name":"Branch_Office_02",
"firmware_version_major":6,
"firmware_version_minor":2,
"firmware_version_patch":0,
"firmware_version_build":1010,
"upstream_intf":"HQ-MPLS",
"upstream_serial":"FGVM01TM19000001"
"parent_serial":"FGVM01TM19000001",
"parent_hostname":"admin-root",
"upstream_status":"Authorized",
"upstream_ip":22569994,
"upstream_ip_str":"10.100.88.1",
"subtree_members":[]
,"is_discovered":true,
"ip_str":"10.0.12.3",
"downstream_intf":"To-HQ-MPLS",
"idx":3
},
{
"path":"FGVM01TM19000001:FGVM01TM19000005",
"mgmt_ip_str":"104.196.102.183",
"mgmt_port":10404,
"sync_mode":1,
"saml_role":"service-provider",
"admin_port":443,
"serial":"FGVM01TM19000005",
"host_name":"Enterprise_First_Floor",
"firmware_version_major":6,
"firmware_version_minor":2,
"firmware_version_patch":0,
"firmware_version_build":1010,
"upstream_intf":"port3",
"upstream_serial":"FGVM01TM19000001",
"parent_serial":"FGVM01TM19000001",
"parent_hostname":"admin-root",
"upstream_status":"Authorized",
"upstream_ip":22569994,
"upstream_ip_str":"10.100.88.1",
"subtree_members":[]
,"is_discovered":true,
"ip_str":"10.100.88.101",
"downstream_intf":"port1",
"idx":4
}

Diagnosing automation stitches

Diagnose commands are available to:

- Test an automation stitch
- Enable or disable log dumping for automation stitches
- Display the settings of every automation stitch
- Display statistics on every automation stitch

To test an automation stitch:

diagnose automation test <automation-stitch-name>

Example:
To toggle log dumping:

diagnose test application autod 1

Examples:

# diagnose test application autod 1
autod log dumping is enabled

# diagnose test application autod 1
autod log dumping is disabled

autod logs dumping summary:
autod dumped total:7 logs, num of logids:4

To display the settings for all of the automation stitches:

diagnose test application autod 2

Example:

# diagnose test application autod 2
csf: enabled root:yes
total stitches activated: 3

stitch: Compromised-IP-Banned
destinations: all
trigger: Compromised-IP-Banned

local hit: 0 relayed to: 0 relayed from: 0
actions:
Compromised-IP-Banned_ban-ip type:ban-ip interval:0

stitch: HA-failover
destinations: HA-failover_ha-cluster_25;
trigger: HA-failover

local hit: 0 relayed to: 0 relayed from: 0
actions:
HA-failover_email type:email interval:0
subject: HA_Failover
mailto:admin@example.com;

stitch: reboot
destinations: all
trigger: reboot

local hit: 0 relayed to: 0 relayed from: 0
actions:
action1 type:alicloud-function interval:0
delay:1 required:yes
Account ID: id
Region: region
Function domain: fc.aliyuncs.com
Version: versoin
Service name: serv
Function name: fancy
headers:

To display statistic on all of the automation stitches:

diagnose test application autod 3

Example:

stitch: Compromised-IP-Banned
  local hit: 0 relayed to: 0 relayed from: 0
  last trigger:Wed Dec 31 20:00:00 1969
  last relay:Wed Dec 31 20:00:00 1969
  actions:
    Compromised-IP-Banned_ban-ip:
      done: 1 relayed to: 0 relayed from: 0
      last trigger:Wed Dec 31 20:00:00 1969
      last relay:

stitch: HA-failover
  local hit: 0 relayed to: 0 relayed from: 0
  last trigger:Thu May 24 11:35:22 2018
  last relay:Thu May 24 11:35:22 2018
  actions:
    HA-failover_email:
      done: 1 relayed to: 1 relayed from: 1
      last trigger:Thu May 24 11:35:22 2018
      last relay:Thu May 24 11:35:22 2018

stitch: rebooot
  local hit: 2 relayed to: 1 relayed from: 1
  last trigger:Fri May  3 13:30:56 2019
  last relay:Fri May  3 13:30:23 2019
  actions:
    action1
      done: 1 relayed to: 0 relayed from: 0
      last trigger:Fri May  3 13:30:56 2019
      last relay:

logid2stitch mapping:
id:20103  local hit: 0 relayed to: 0 relayed from: 0
  License Expiry
  lambada

id:32138  local hit: 2 relayed to: 1 relayed from: 1
  Compromised-IP-Banned
  HA-failover
  rebooot

action run cfg&stats:
total:2 cur:0 done:1 drop:1
  email:
    flags:10
  stats: total:1 cur:0 done:1 drop:0
  fortirexplorer-notification:
    flags:1
stats: total:0 cur:0 done:0 drop:0
alert:
  flags:0
disable-ssid:
  flags:7
  stats: total:0 cur:0 done:0 drop:0
quarantine:
  flags:7
  stats: total:0 cur:0 done:0 drop:0
quarantine-forticlient:
  flags:4
quarantine-nsx:
  flags:4
  stats: total:0 cur:0 done:0 drop:0
ban-ip:
  flags:7
  stats: total:0 cur:0 done:0 drop:0
aws-lambda:
  flags:11
webhook:
  flags:11
  stats: total:0 cur:0 done:0 drop:0
cli-script:
  flags:10
azure-function:
  flags:11
  stats: total:1 cur:0 done:0 drop:1
google-cloud-function:
  flags:11
  stats: total:0 cur:0 done:0 drop:0
alicloud-function:
  flags:11
  stats: total:0 cur:0 done:0 drop:0
Log and Report

Logging and reporting are useful components to help you understand what is happening on your network, and to inform you about certain network activities, such as the detection of a virus, a visit to an invalid website, an intrusion, a failed log in attempt, and myriad others.

Logging records the traffic that passes through, starts from, or ends on the FortiGate, and records the actions the FortiGate took during the traffic scanning process. After this information is recorded in a log message, it is stored in a log file that is stored on a log device (a central storage location for log messages). FortiGate supports sending all log types to several log devices, including FortiAnalyzer, FortiAnalyzer Cloud, FortiGate Cloud, and syslog servers. Approximately 5% of memory is used for buffering logs sent to FortiAnalyzer. The FortiGate system memory and local disk can also be configured to store logs, so it is also considered a log device. See Log settings and targets on page 2549 for more information.

Reports show the recorded activity in a more readable format. A report gathers all the log information that it needs, then presents it in a graphical format with a customizable design and automatically generated charts showing what is happening on the network. Reports can be generated on FortiGate devices with disk logging and on FortiAnalyzer devices.

FortiView is a more comprehensive network reporting and monitoring tool. It integrates real-time and historical data into a single view in FortiOS. For more information, see FortiView monitors and widgets on page 107.

Performance statistics are not logged to disk. Performance statistics can be received by a syslog server or by FortiAnalyzer.

The following topics provide information about logging and reporting:

- Viewing event logs on page 2541
- System Events log page on page 2543
- Security Events log page on page 2546
- Log settings and targets on page 2549
- Threat weight on page 2554
- Logging to FortiAnalyzer on page 2555
- Advanced and specialized logging on page 2566
- Sample logs by log type on page 2583
- Troubleshooting on page 2604

Viewing event logs

Event log subtypes are available on the Log & Report > System Events page. Not all of the event log subtypes are available by default. See System Events log page on page 2543 for more information.
When viewing event logs in the Details tab, use the event log subtype dropdown list on the to navigate between event log types.

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Events</td>
<td>Always available.</td>
</tr>
<tr>
<td>Router Events</td>
<td>Always available.</td>
</tr>
<tr>
<td>VPN Events</td>
<td>Available when VPN is enabled in System &gt; Feature Visibility.</td>
</tr>
<tr>
<td>SD-WAN Events</td>
<td>Always available.</td>
</tr>
<tr>
<td>User Events</td>
<td>Always available.</td>
</tr>
<tr>
<td>Endpoint Events</td>
<td>Available when Endpoint Control is enabled in System &gt; Feature Visibility.</td>
</tr>
<tr>
<td>HA Events</td>
<td>Always available.</td>
</tr>
<tr>
<td>Event Type</td>
<td>Availability</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Security Rating Events</td>
<td>Always available, but logs are only generated when a Security Rating License is registered.</td>
</tr>
<tr>
<td>WAN Opt. &amp; Cache Events</td>
<td>Available on devices with two hard disks by default. On devices with one hard disk, the disk usage must be set to <code>wanopt</code> and then <code>WAN Opt. &amp; Cache</code> must be enabled in <code>System &gt; Feature Visibility</code>.</td>
</tr>
<tr>
<td>WiFi Events</td>
<td>Available on hardware devices when <code>WiFi Controller</code> is enabled in <code>System &gt; Feature Visibility</code>.</td>
</tr>
<tr>
<td>FortiExtender Events</td>
<td>Available when <code>FortiExtender</code> is enabled in <code>System &gt; Feature Visibility</code>.</td>
</tr>
<tr>
<td>SDN Connector Events</td>
<td>Always available.</td>
</tr>
<tr>
<td>FortiSwitch Events</td>
<td>Always available.</td>
</tr>
<tr>
<td>CIFS Events</td>
<td>Always available.</td>
</tr>
<tr>
<td>REST API Events</td>
<td>Always available.</td>
</tr>
</tbody>
</table>

### System Events log page

The `Log & Report > Events` page is now renamed `System Events`. The `System Events` page includes:

- A `Summary` tab that displays the top five most frequent events in each type of event log and a line chart to show aggregated events by each severity level. Clicking on a peak in the line chart will display the specific event count for the selected severity level.
- A `Details` tab that displays individual, detailed log views for event type.

Clicking on an event in the `Summary` tab will automatically bring users to the `Details` tab with the appropriate filters applied.

---

Disk logging and historical FortiView must be enabled for the `Summary` tab to display valid data. See Log settings and targets on page 2549 for more information.

---

### To review system events in the GUI:

2. On the right-side of the screen, select the time range from the dropdown list.
   The line chart will display all of the system events, and the non-empty event cards will list up to five `Top Event` entries within the time range set.

---

Data is retrieved from FortiView with the 5 minutes range updated first. When selecting either the 1 hour or 24 hours time range, there may be a delay to update `Top Event` entries.
3. Review the details of system events:
   - Click the event card name.
   
   The Details tab displays all event entries for the selected type of event log. The type of event log can be changed in the top-right, dropdown list.
Click a *Top Event* entry in an event card.

The *Details* tab displays system events with filters for the selected event entry and time range. The type of event log can be changed in the top-right, dropdown list.

Up to 100 *Top Event* entries can be listed in the CLI using the `diagnose fortiview result event-log` command.

To list system events in the CLI:

```bash
diagnose fortiview result event-log

data(1646760000-1646846401):
 0). subtype-ha | eventname-HA device interface failed | level-warning | count-1 |
 1). subtype-system | eventname-DHCP statistics | level-information | count-40 |
 2). subtype-system | eventname-Super admin left VDOM | level-information | count-13 |
 3). subtype-system | eventname-Admin performed an action from GUI | level-warning | count-5 |
 4). subtype-system | eventname-Super admin entered VDOM | level-information | count-4 |
 5). subtype-system | eventname-Global setting changed | level-notice | count-3 |
 6). subtype-system | eventname-Attribute configured | level-information | count-2 |
 7). subtype-system | eventname-Clear active sessions | level-warning | count-2 |
 8). subtype-system | eventname-Disk log rolled | level-notice | count-2 |
 9). subtype-system | eventname-Log rotation requested by FortiCron | level-notice | count-1 |
 10). subtype-system | eventname-Report generated successfully | level-notice | count-1 |
 11). subtype-system | eventname-Test | level-warning | count-1 |
 12). subtype-system | eventname-VDOM added | level-notice | count-1 |
 13). subtype-user | eventname-VDOM added | level-notice | count-1 |
 14). subtype-user | eventname-Authentication lockout | level-warning | count-1 |
 15). subtype-user | eventname-FortiGuard override failed | level-warning | count-1 |
```
Log and Report

The data is collected from FortiView for the last 24 hours by default. To specify a specific time range, customize the time filter using the **diagnose fortiview time** command.

**To filter the time range of system events in the CLI:**

```bash
diagnose fortiview time <arg1> <arg2>
```

Where `<arg1>` is the start time in `YYYY-MM-DD HH:MM:SS` and `<arg2>` is the end time in `YYYY-MM-DD HH:MM:SS`.

### Security Events log page

The Log & Report UTM log subtypes have been combined into the Security Events log page. The Security Events log page includes:

- A **Summary** tab that displays the five most frequent events for all of the enabled UTM security events.
- A **Details** tab that displays individual, detailed logs for each UTM type.

Clicking on an event in the **Summary** tab will bring users to the **Details** tab with the appropriate filters automatically applied.

---

**Tip**

Disk logging and historical FortiView must be enabled for the **Summary** tab to display valid data. See Log settings and targets on page 2549 for more information.

---

**To review security events in the GUI:**

   
   The **Summary** tab displays up to five top events for each enabled, non-empty security event cards.

2. On the right-side of the screen, select the time range from the dropdown list.
   
   The non-empty security event cards will list up to five top entries within the time range set.

---

**Tip**

Data is retrieved from FortiView with the 5 minutes range updated first. When selecting either the 1 hour or 24 hours time range, there may be a delay to update top security event entries.
3. Review the details of security events:
   - Click the security event card name.
     The Details tab displays all event entries for the selected type of security event. The security event type can be changed in the top-right dropdown list.

   - Click a top event entry in a security event card.
     The Details tab displays security events with filters for the selected event entry and time filter. The security event type can be changed in the top-right dropdown list.

Up to 100 top security event entries can be listed in the CLI using the `diagnose fortiview result security-log` command.

**To list security events in the CLI:**
```bash
diagnose fortiview result security-log [<filters>]
```

**To list security events in the CLI with no filters applied:**
```bash
diagnose fortiview result security-log

data(1646862300-1646948701):
 0). logcat-2 | logcatname-virus | logid-0211008192 | eventname-EICAR_TEST_FILE | eventname_field-virus | action-blocked | count-1 |
 1). logcat-2 | logcatname-virus | logid-0211008192 | eventname-virus_test3 | eventname_field-virus | action-passthrough | count-1 |
```
### Log and Report

2). logcat-2 | logcatname-virus | logid-0212008448 | eventname-filename | eventname-field-virus | action-passsthrough | count-1 |
3). logcat-3 | logcatname-webfilter | logid-0318012800 | eventname- | eventname-field-webfilter | action-blocked | count-2 |
4). logcat-3 | logcatname-webfilter | logid-0316013056 | eventname-Information Technology | eventname_field-catdesc | action-blocked | count-1 |
5). logcat-3 | logcatname-webfilter | logid-0316013056 | eventname-Malicious Websites | eventname_field-catdesc | action-blocked | count-1 |
7). logcat-4 | logcatname-ips | logid-0422016400 | eventname_field-attack | action-detected | count-1 |
8). logcat-7 | logcatname-anomaly | logid-0720018432 | eventname-tcp_syn_flood | eventname_field-attack | action-clear_session | count-1 |
10). logcat-10 | logcatname-app-ctrl | logid-1059028704 | eventname-Video/Audio | eventname_field-appcat | action-pass | count-3 |
11). logcat-10 | logcatname-app-ctrl | logid-1059028672 | eventname-im | eventname_field-appcat | action-pass | count-1 |
12). logcat-10 | logcatname-app-ctrl | logid-1059028704 | eventname-P2P | eventname_field-appcat | action-pass | count-1 |
13). logcat-15 | logcatname-dns | logid-1501054400 | eventname-Domain blocked because it is in the domain-filter list | eventname_field-logid | action-block | count-1 |
14). logcat-17 | logcatname-ssl | logid-1700062300 | eventname-SSL connection is blocked due to the server certificate is blocklisted | eventname_field-logid | action-blocked | count-1 |
15). logcat-16 | logcatname-ssh | logid-1600061002 | eventname-SSH shell command is detected | eventname_field-logid | action-passsthrough | count-1 |
16). logcat-16 | logcatname-ssh | logid-1601061010 | eventname-SSH channel is blocked | eventname_field-logid | action-blocked | count-1 |
17). logcat-12 | logcatname-waf | logid-1200030248 | eventname-Web application firewall blocked application by signature | eventname_field-logid | action-blocked | count-1 |
18). logcat-8 | logcatname-voip | logid-0814044032 | eventname-Logid_44032 | eventname_field-logid | action-permit | count-1 |
19). logcat-5 | logcatname-emailfilter | logid-0513020480 | eventname-SPAM notification | eventname_field-logid | action-blocked | count-1 |

### To list blocked security events in the CLI:

```
diagnose fortiview result security-log action=blocked

data(1646862600-1646949001):
0). logcat-2 | logcatname-virus | logid-0211008192 | eventname=EICAR_TEST_FILE | eventname_field-virus | action-blocked | count-1 |
1). logcat-3 | logcatname-webfilter | logid-0318012800 | eventname- | eventname_field-webfilter | action-blocked | count-2 |
2). logcat-3 | logcatname-webfilter | logid-0316013056 | eventname-Information Technology | eventname_field-catdesc | action-blocked | count-1 |
3). logcat-3 | logcatname-webfilter | logid-0316013056 | eventname-Malicious Websites | eventname_field-catdesc | action-blocked | count-1 |
4). logcat-17 | logcatname-ssl | logid-1700062300 | eventname-SSL connection is blocked due to the server certificate is blocklisted | eventname_field-logid | action-blocked | count-1 |
5). logcat-16 | logcatname-ssh | logid-1601061010 | eventname-SSH channel is blocked | eventname_field-logid | action-blocked | count-1 |
```

FortiOS 7.2.0 Administration Guide
Fortinet Inc. 2548
Log settings and targets

Log settings determine what information is recorded in logs, where the logs are stored, and how often storage occurs. Log settings can be configured in the GUI and CLI. In the GUI, Log & Report > Log Settings provides the settings for local and remote logging.

<table>
<thead>
<tr>
<th>Local Log</th>
<th>Define local log storage on the FortiGate:</th>
<th>Define local log storage on the FortiGate:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk</td>
<td>• Enable: Logs will be stored on a local disk. Local disk logging is not available in the GUI if the Security Fabric is enabled. When the Security Fabric is enabled, disk logging can still be configured on the root FortiGate in the CLI but is not available for downstream FortiGates.</td>
<td>• Enable: Logs will be stored on a local disk. Local disk logging is not available in the GUI if the Security Fabric is enabled. When the Security Fabric is enabled, disk logging can still be configured on the root FortiGate in the CLI but is not available for downstream FortiGates.</td>
</tr>
<tr>
<td></td>
<td>• Disable: Logs will be stored remotely to FortiAnalyzer/FortiManager or to a Cloud logging device.</td>
<td>• Disable: Logs will be stored remotely to FortiAnalyzer/FortiManager or to a Cloud logging device.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Enable Local Reports</th>
<th>Define log reporting on the FortiGate:</th>
<th>Define log reporting on the FortiGate:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Enable: Local reports will be available on the FortiGate. Reports can be reviewed in Log &amp; Report &gt; Local Reports. If the Security Fabric is enabled, Local Reports can be enabled in System &gt; Feature Visibility.</td>
<td>• Enable: Local reports will be available on the FortiGate. Reports can be reviewed in Log &amp; Report &gt; Local Reports. If the Security Fabric is enabled, Local Reports can be enabled in System &gt; Feature Visibility.</td>
</tr>
<tr>
<td></td>
<td>• Disable: Local reports will not be available on the FortiGate.</td>
<td>• Disable: Local reports will not be available on the FortiGate.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Enable Historical FortiView</th>
<th>Define the presentation of log information on FortiView:</th>
<th>Define the presentation of log information on FortiView:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Enable: Historical log data will be available on a FortiView monitor. By default, logs older than seven days are deleted. Disk logging must be enabled.</td>
<td>• Enable: Historical log data will be available on a FortiView monitor. By default, logs older than seven days are deleted. Disk logging must be enabled.</td>
</tr>
<tr>
<td></td>
<td>• Disable: Historical log data will not be available on FortiView.</td>
<td>• Disable: Historical log data will not be available on FortiView.</td>
</tr>
</tbody>
</table>

Remote Logging and Archiving

<table>
<thead>
<tr>
<th>Send logs to FortiAnalyzer/FortiManager</th>
<th>Define the status of remote logging to FortiAnalyzer and FortiManager:</th>
<th>Define the status of remote logging to FortiAnalyzer and FortiManager:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Enable: Logs are sent to FortiAnalyzer or FortiManager for remote logging. HTTP transaction logs are also sent to a FortiAnalyzer unit to generate additional details in reports.</td>
<td>• Enable: Logs are sent to FortiAnalyzer or FortiManager for remote logging. HTTP transaction logs are also sent to a FortiAnalyzer unit to generate additional details in reports.</td>
</tr>
<tr>
<td></td>
<td>• Disable: Logs are stored to system memory, a local disk, or a Cloud logging device.</td>
<td>• Disable: Logs are stored to system memory, a local disk, or a Cloud logging device.</td>
</tr>
</tbody>
</table>

| Server | Set the server IP address for the FortiAnalyzer or FortiManager. Use Test Connectivity to test the connection status to the server. | Set the server IP address for the FortiAnalyzer or FortiManager. Use Test Connectivity to test the connection status to the server. |

<table>
<thead>
<tr>
<th>Connection status</th>
<th>Displays authorization status on FortiAnalyzer:</th>
<th>Displays authorization status on FortiAnalyzer:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Successful: The FortiGate is connected to the FortiAnalyzer. Remote logging to the FortiAnalyzer can be configured.</td>
<td>• Successful: The FortiGate is connected to the FortiAnalyzer. Remote logging to the FortiAnalyzer can be configured.</td>
</tr>
</tbody>
</table>
Log and Report

- **Unauthorized:** The FortiGate is not connected to the FortiAnalyzer. Click Authorize to review the approval status on FortiAnalyzer or see Configuring FortiAnalyzer on page 2217 for more information.

<table>
<thead>
<tr>
<th>Storage usage</th>
<th>Presents the storage used and the total storage available on the remote logging device.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytics usage</td>
<td>Presents the analytics space used and the total analytics space available on the remote logging device.</td>
</tr>
<tr>
<td>Archives usage</td>
<td>Presents the archive space used and the total archive space available on the remote logging device.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Upload option</th>
<th>Select the frequency of log uploads to the remote device:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Time</td>
<td>Logs are sent to the remote device in real time.</td>
</tr>
<tr>
<td>Every Minute</td>
<td>Logs are sent to the remote device once every minute. This option is unavailable if the Security Fabric Connections is enabled.</td>
</tr>
<tr>
<td>Every 5 Minutes</td>
<td>Logs are sent to the remote device once every five minutes. This is the default option. This option is unavailable if the Security Fabric Connection is enabled.</td>
</tr>
<tr>
<td>Store and Upload</td>
<td>Store logs to a local disk before uploading to FortiAnalyzer or FortiManager at a scheduled time. This option is only available for CLI configuration.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allow access to FortiGate REST API</th>
<th>Define access to FortiGate REST API:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable</td>
<td>The REST API accesses the FortiGate topology and shares data and results.</td>
</tr>
<tr>
<td>Disable</td>
<td>The REST API does not share data and results.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verify FortiAnalyzer certificate</th>
<th>Define the FortiAnalyzer certificate verification process:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable</td>
<td>The FortiGate will verify the FortiAnalyzer serial number against the FortiAnalyzer certificate. When verified, the serial number is stored in the FortiGate configuration.</td>
</tr>
<tr>
<td>Disable</td>
<td>The FortiGate will not verify the FortiAnalyzer certificate against the serial number.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cloud Logging Settings</th>
<th>Specify remote logging to the FortiGate Cloud or FortiAnalyzer Cloud device. If multiple devices are enabled, the default preference is FortiAnalyzer Cloud.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Displays the current connection status to the selected Type. Use Test Connectivity to test the connection status to the Cloud logging device.</td>
</tr>
<tr>
<td>Connection status</td>
<td>Select the frequency of log uploads to the Cloud device:</td>
</tr>
<tr>
<td>Upload option</td>
<td>Real Time: Logs are sent to the Cloud device in real time.</td>
</tr>
<tr>
<td>Every Minute</td>
<td>Logs are sent to the Cloud device once every minute. This option is unavailable if the Security Fabric Connection is enabled.</td>
</tr>
</tbody>
</table>
Every 5 Minutes: Logs are sent to the Cloud device once every five minutes. This is the default option. This option is unavailable if the Security Fabric Connection is enabled.

Allow access to FortiGate REST API
Define access to FortiGate REST API:
- **Enable**: The REST API accesses the FortiGate topology and shares data and results.
- **Disable**: The REST API does not share data and results.

Verify FortiAnalyzer Cloud certificate
Define the FortiAnalyzer Cloud certificate verification process:
- **Enable**: The FortiGate will verify the FortiAnalyzer serial number against the FortiAnalyzer certificate. When verified, the serial number is stored in the FortiGate configuration.
- **Disable**: The FortiGate will not verify the FortiAnalyzer certificate against the serial number.

UUIDs in Traffic Log

**Policy**
Define the use of policy UUIDs in traffic logs:
- **Enable**: Policy UUIDs are stored in traffic logs. UUIDs can be matched for each source and destination that match a policy in the traffic log. See Source and destination UUID logging on page 2571 for more information.
- **Disable**: Policy UUIDs are excluded from the traffic logs.

**Address**
Define the use of address UUIDs in traffic logs:
- **Enable**: Address UUIDs are stored in traffic logs. When viewing Forward Traffic logs, a filter is automatically set based on UUID.
- **Disable**: Address UUIDs are excluded from traffic logs.

Log Settings

**Event Logging**
Define the allowed set of event logs to be recorded:
- **All**: All event logs will be recorded.
- **Customize**: Select specific event log types to be recorded. Deselect all options to disable event logging.

**Local Traffic Log**
Define the allowed set of traffic logs to be recorded:
- **All**: All traffic logs to and from the FortiGate will be recorded.
- **Customize**: Select specific traffic logs to be recorded. Deselect all options to disable traffic logging. Local traffic logging is disabled by default due to the high volume of logs generated.

GUI Preferences

**Resolve Hostnames**
Define the translation of IP addresses to host names:
- **Enable**: IP addresses are translated to host names using reverse DNS lookup. If the DNS server is not available or is slow to reply, requests may time out.
- **Disable**: IP addresses are not translated to host names.
Resolve Unknown Applications

Define the resolution of unknown applications:

- **Enable**: Unknown applications are resolved using the Internet Service Database.
- **Disable**: Unknown applications are not resolved.

Configuring logs in the CLI

The FortiGate can store logs locally to its system memory or a local disk. Logs can also be stored externally on a storage device, such as FortiAnalyzer, FortiAnalyzer Cloud, FortiGate Cloud, or a syslog server. See Sending traffic logs to FortiAnalyzer Cloud on page 2560 for more information on Premium (AFAC) and Standard (FAZC) subscriptions.

Disk logging

Disk logging must be enabled for logs to be stored locally on the FortiGate. By default, logs older than seven days are deleted from the disk. Log age can be configured in the CLI. Approximately 75% of disk space is available for log storage. Log storage space can be determined using the `diagnose sys logdisk usage` command.

To configure local disk logging:

```
config log disk setting
 set status enable
 set maximum-log-age <integer>
 set max-log-file-size <integer>
end
```

Remote logging

The process to configure FortiGate to send logs to FortiAnalyzer or FortiManager is identical. Remote logging to FortiAnalyzer and FortiManager can be configured using both the GUI and CLI. When using the CLI, use the `config log fortianalyzer setting` command for both FortiAnalyzer and FortiManager.

If VDOMs are configured on the FortiGate, multiple FortiAnalyzers and syslog servers can be added globally. See Configuring multiple FortiAnalyzers (or syslog servers) per VDOM on page 2562 and Configuring multiple FortiAnalyzers on a FortiGate in multi-VDOM mode on page 2564 for more information.

To configure remote logging to FortiAnalyzer:

```
config log fortianalyzer setting
 set status enable
 set server <server_IP>
 set upload option {store-and-upload | realtime | 1-minute | 5-minute}
end
```

Remote logging can also be configured to FortiCloud, FortiSIEM, and syslog servers. Up to four syslog servers or FortiSIEM devices can be configured using the `config log syslogd` command and can send logs to syslog in CSV and CEF formats.
To configure remote logging to FortiCloud:

```
cfg log fortiguard setting
 set status enable
 set source-ip <source IP used to connect FortiCloud>
end
```

To configure remote logging to a syslog server:

```
cfg log syslogd setting
 set status enable
 set server <syslog_IP>
 set format {default | cev | cef}
end
```

**Log filters**

Log filter settings can be configured to determine which logs are recorded to the FortiAnalyzer, FortiManager, and syslog servers. This allows certain logging levels and types of logs to be directed to specific log devices.

To configure log filters for FortiAnalyzer:

```
cfg log fortianalyzer filter
 set severity <level>
 set forward-traffic {enable | disable}
 set local-traffic {enable | disable}
 set multicast-traffic {enable | disable}
 set sniffer-traffic {enable | disable}
end
```

To configure log filters for a syslog server:

```
cfg log syslogd filter
 set severity <level>
 set forward-traffic {enable | disable}
 set local-traffic {enable | disable}
 set multicast-traffic {enable | disable}
 set sniffer-traffic {enable | disable}
end
```

**Email alerts**

FortiGate events can be monitored at all times using email alerts. Email alerts send notifications to up to three recipients and can be triggered based on log event and severity level. Email alerts will be sent every five minutes by default but this can be configured in the CLI.

To configure email alerts:

```
cfg alertemail setting
 set username <name>
 set mailto1 <email>
 set filter-mode {category | threshold}
```
Threat weight

Threat weight helps aggregate and score threats based on user-defined severity levels. It adds several fields such as threat level (crlevel), threat score (crscore), and threat type (craction) to traffic logs. Threat weight logging is enabled by default and the settings can be customized. Threats can be viewed from the Top Threats FortiView dashboard.

To configure threat weight settings:

1. Go to Log & Report > Threat Weight.
2. Adjust the settings as needed, such as individual weights per threat type and risk level values.
3. Click Apply.

To add the Top Threats monitor to the dashboard:

1. In the tree menu, click Dashboard and in the FortiView section, click the + sign (Add Monitor).
2. In the Security section, enable Show More and click Top Threats.
3. Configure the settings as needed.
4. Click Add Monitor.
5. Go to Dashboard > Top Threats. The Top Threats monitor displays threats based on the scores in the traffic logs.

6. Double-click a threat to view the summary.
7. Click Sources, Destinations, Countries/Regions, or Sessions to view more information. Double-click an entry to
Log and Report

view the log details.

Logging to FortiAnalyzer

The following topics provide instructions on logging to FortiAnalyzer:

- FortiAnalyzer Reports page in the GUI on page 2555
- FortiAnalyzer log caching on page 2557
- Sending traffic logs to FortiAnalyzer Cloud on page 2560
- Configuring multiple FortiAnalyzers (or syslog servers) per VDOM on page 2562
- Configuring multiple FortiAnalyzers on a FortiGate in multi-VDOM mode on page 2564

FortiAnalyzer Reports page in the GUI

FortiAnalyzer reports can be viewed in the GUI on the Log & Report > FortiAnalyzer Reports page. Administrators can generate, delete, and edit report schedules, and view and download generated reports.

FortiAnalyzer must be configured in FortiOS. If the FortiGate is unauthorized on FortiAnalyzer, or the connection to FortiAnalyzer is down, the FortiAnalyzer Reports page loads with No results.

When the Security Fabric is enabled, only the root FortiGate can run, edit, and delete FortiAnalyzer reports. Downstream FortiGates can only view the generated reports.
To edit a report schedule:

1. Go to Log & Report > FortiAnalyzer Reports and select the Scheduled Reports tab.

2. Select a report and click Edit Schedule. The Edit Schedule pane opens. In this example, the schedule for the Bandwidth and Applications report is changed to run from every week to every two weeks.

3. In the Schedule section, set the values for Generate report every to 2 week(s).

4. Click OK.

The schedule is also updated automatically in FortiAnalyzer for the same report (go to Reports > Report Definitions > All Reports and edit the report to view the settings).

To view and download reports:

1. Go to Log & Report > FortiAnalyzer Reports and select the Generated Reports tab.

A pie chart displays the total count of FortiAnalyzer reports, categorized by report title. Generated reports are listed below and arranged by title, which includes reports from all VDOMs.
In this example, the Self-Harm and Risk Indicators reports are filtered, and the report for vdom1 is downloaded.

2. In the pie chart, click the green segment to filter the Self-Harm and Risk Indicators reports.

3. In the filtered results, select the report for vdom1. Right-click and select Download.

4. Select a file format. The report is saved to the default download location.

**FortiAnalyzer log caching**

Reliable logging to FortiAnalyzer prevents lost logs when the connection between FortiOS and FortiAnalyzer is disrupted. When reliable mode is enabled:

1. Logs are cached in a FortiOS memory queue.
2. FortiOS sends logs to FortiAnalyzer, and FortiAnalyzer uses seq_no to track received logs.
3. After FortiOS sends logs to FortiAnalyzer, logs are moved to a confirm queue in FortiOS.
4. FortiOS periodically queries FortiAnalyzer for the latest seq_no of the last log received, and clears logs from the confirm queue up to the seq_no.
5. If the connection between FortiOS and FortiAnalyzer is disrupted, FortiOS resends the logs in the confirm queue to FortiAnalyzer when the connection is reestablished.

FortiAnalyzer 7.2.0 and later is required.
To enable reliable mode:

```
config log fortianalyzer setting
 set reliable enable
end
```

To view the memory and confirm queues:

1. Verify that log synchronization is enabled for FortiAnalyzer:

```
diagnose test application fgtlogd 1
vdom-admin=0
mgmt=root

fortilog:
 faz: global, enabled
 server=172.16.200.251, realtime=1, ssl=1, state=connected
 server_log_status=Log is allowed,
 src=, mgmt_name=FGr_Log_root_172.16.200.251, reliable=1, sni_prefix_type=none,
 required_entitlement=none, region=ca-west-1,
 logsync_enabled=1, logsync_conn_id:65535, seq_no:790
```

2. When a network disruption disconnects FortiOS from FortiAnalyzer and FortiOS continues to generate logs, the logs are cached in the memory queue.

   • View the number of logs in the cache and queue:

```
diagnose test application fgtlogd 41

cache maximum: 189516595(180MB) objects: 40 used: 27051(0MB) allocated: 29568(0MB)

VDOM:root
Memory queue for: global-faz
 num:9 size:6976(0MB) total size:26068(0MB) max:189516595(180MB) logs:28

Confirm queue for: global-faz
 num:29 size:19092(0MB) total size:27051(0MB) max:189516595(180MB) logs:7

diagnose test application fgtlogd 30
VDOM:root
Memory queue for: global-faz
 num:9 size:6976(0MB) total size:26068(0MB) max:189516595(180MB)
 type:3, cat=1, log_count=1, seq_no=0, data len=359 size:435
 type:3, cat=1, log_count=1, seq_no=0, data len=307 size:383

 type:3, cat=0, log_count=4, seq_no=0, data len=1347 size:1423
 type:3, cat=4, log_count=1, seq_no=0, data len=653 size:729
 'total log count':28, 'total data len':6292

Confirm queue for: global-faz
 num:29 size:19092(0MB) total size:26068(0MB) max:189516595(180MB)
 type:3, cat=1, log_count=1, seq_no=1, data len=290 size:366
 type:3, cat=1, log_count=1, seq_no=2, data len=233 size:309

There are nine OFTP items cached to the memory queue, and 29 OFTP items to send from FortiOS to FortiAnalyzer that are waiting for confirmation from FortiAnalyzer.

- Go to Log & Report > Log Settings to view the queue in the GUI:

3. Re-establish the connection between FortiOS and FortiAnalyzer and confirm that the queue has cleared by checking the seq_no, which indicates the latest confirmation log from FortiAnalyzer:

```
# diagnose test application fgtlogd 30
VDOM: root
Memory queue for: global-faz
  queue:
    num:0 size:0(0MB) total size:0(0MB) max:189516595(180MB)
    'total log count':0, 'total data len':0

Confirm queue for: global-faz
  queue:
    num:0 size:0(0MB) total size:0(0MB) max:189516595(180MB)
    'total log count':0, 'total data len':0
```

The queue has been cleared, meaning that FortiOS received confirmation from FortiAnalyzer and cleared the confirm queue.

```
# diagnose test application fgtlogd 1
vdom-admin=0
mgmt=root

fortilog:
  faz: global , enabled
    server=172.16.200.251, realtime=1, ssl=1, state=connected
    server_log_status=Log is allowed.
    src=, mgmt_name=FGr_Log_root_172.16.200.251, reliable=1, sni_prefix_type=None,
    required_entitlement=None, region=ca-west-1,
```
Sending traffic logs to FortiAnalyzer Cloud

FortiGates with a FortiCloud Premium subscription (AFAC) for Cloud-based Central Logging & Analytics, can send traffic logs to FortiAnalyzer Cloud in addition to UTM logs and event logs. After the Premium subscription is registered through FortiCare, FortiGuard will verify the purchase and authorize the AFAC contract. Once the contract is verified, FortiGuard will deliver the contract to FortiGate.

FortiGates with a Standard FortiAnalyzer Cloud subscription (FAZC) can only send UTM and event logs. FortiGates with a Premium subscription will send the UTM and event logs even if the Standard subscription has expired.

FortiAnalyzer Cloud does not support DLP/IPS archives at this time.

Example

In the following example, you will configure a FortiGate with a valid Premium subscription (AFAC) and expired Standard subscription (FAZC) to send traffic logs to FortiAnalyzer Cloud.

1. Configure the log delivery.
   ```
   config log fortianalyzer-cloud setting
   set status enable
   set ips-archive disable
   set access-config enable
   set enc-algorithm high
   set ssl-min-proto-version default
   set conn-timeout 10
   set monitor-keepalive-period 5
   set monitor-failure-retry-period 5
   set certificate ''
   set source-ip ''
   set interface-select-method auto
   set upload-option realtime
   set priority default
   set max-log-rate 0
   end
   ```

2. Verify the status of the FortiCloud Premium subscription (AFAC) and standard FortiAnalyzer Cloud subscription (FAZC).
   ```
   The FAZC and AFAC fields display the subscription expiration date. The Support contract field displays the FortiCare account information. The User ID field displays the ID for FortiAnalyzer-Cloud instance.
   # diagnose test update info
   ...
   FAZC,Tue Sep 24 16:00:00 2030
   ```
Support contract: pending_registration=255 got_contract_info=1
account_id=[****@fortinet.com] company=[Fortinet] industry=[Technology]
User ID: 979090

The FAZC and AFAC subscriptions are valid (date of verification is November 29, 2020).

3. Check the status of FortiAnalyzer Cloud.

 # execute log fortianalyzer-cloud test-connectivity
 FortiAnalyzer Host Name: FAZVM64-VIO-CLOUD
 FortiAnalyzer Adom Name: root
 FortiGate Device ID: FG101FTK19000000
 Registration: registered
 Connection: allow
 Adom Disk Space (Used/Allocated): 50351453B/53687091200B
 Analytics Usage (Used/Allocated): 41368925B/37580963840B
 Analytics Usage (Data Policy Days Actual/Configured): 60/60 Days
 Archive Usage (Used/Allocated): 8982528B/16106127360B
 Archive Usage (Data Policy Days Actual/Configured): 235/365 Days
 Log: Tx & Rx (log not received)
 IPS Packet Log: Tx & Rx
 Content Archive: Tx & Rx
 Quarantine: Tx & Rx
 Certificate of Fortianalyzer valid and serial number is:FAZVCLTM20000000

4. When the FortiCloud Premium (AFAC) and standard FortiAnalyzer Cloud (FAZC) subscriptions are valid, the FortiGate sends the traffic, event, and UTM logs to the remote FortiAnalyzer Cloud.

Traffic:

 # execute log filter device fortianalyzer-cloud
 # execute log filter category traffic
 # execute log filter dump
 category: traffic
device: fortianalyzer-cloud
start-line: 1
view-lines: 10
max-checklines: 0
HA member:
Oftp search string:
 # execute log display
 6512 logs found.
10 logs returned.
 1: date=2020-11-29 time=13:57:33 id=6900668351836585985 itime="2020-11-29 13:57:34"
 euid=3 epid=1027 dsteuid=1 dstepid=101 logflag=1 logver=604041797 type="traffic"
 subtype="forward" level="notice" action="accept" policyid=1 sessionid=46536
 srcip=10.1.100.72 dstip=172.16.100.55 transip=172.16.200.7 srcport=40797 dstport=53
 transport=40797 trandisp="snat" duration=190 proto=17 sentbyte=268 rcvbyte=0
 sentptk=4 rcvptk=0 logid=00000000013 service="DNS" app="DNS" appcat="unscanned"
 srctinfole=undefined dstinfole=undefined srcserver=0 dstserver=0
 policytype="policy" eventtime=1606687054554969021 poluuid="c041939c-2930-51eb-1448-344a663331" srcmac=00:0c:29:eb:86:d6 mastersrcmac=00:0c:29:eb:86:d6
 dstmac=e8:1c:ba:c2:86:63 masterdstmac=e8:1c:ba:c2:86:63 srchwvendor="VMware"
 osname="Linux" srccountry="Reserved" dstcountry="Reserved" srcintf="dmz"
 dstintf="wan1" policymac="to_WAN" tz="-0800" devid="FG101FTK19000000" vd="root"
time="2020-11-29 13:57:33" itime_t=1606687054 devname="FortiGate-101F_F"

Event:
 # execute log filter device fortianalyzer-cloud
 # execute log filter category event
 # execute log filter dump
5. When the FortiGate has a valid Premium FortiCloud subscription (AFAC) and an expired Standard FortiCloud subscription (FAZC), the FortiGate still sends the logs to the remote FortiAnalyzer Cloud.

Configuring multiple FortiAnalyzers (or syslog servers) per VDOM

In a VDOM, multiple FortiAnalyzer and syslog servers can be configured as follows:

- Up to three override FortiAnalyzer servers
- Up to four override syslog servers

If the VDOM faz-override and/or syslog-override setting is enabled or disabled (default) before upgrading, the setting remains the same after upgrading.

If the override setting is disabled, the GUI displays the global FortiAnalyzer1 or syslog1 setting. If the override setting is enabled, the GUI displays the VDOM override FortiAnalyzer1 or syslog1 setting.
You can only use CLI to enable the override to support multiple log servers.

To enable FortiAnalyzer and syslog server override under VDOM:

```plaintext
config log setting
    set faz-override enable
    set syslog-override enable
end
```

When `faz-override` and/or `syslog-override` is enabled, the following CLI commands are available for configuring VDOM override:

To configure VDOM override for FortiAnalyzer:

1. **Configure the FortiAnalyzer override settings:**
   ```plaintext
   config log fortianalyzer/fortianalyzer2/fortianalyzer3 override-setting
       set status enable
       set server "123.12.123.123"
       set reliable enable
   end
   ```

2. **Configure the override filters:**
   ```plaintext
   config log fortianalyzer/fortianalyzer2/fortianalyzer3 override-filter
       set severity information
       set forward-traffic enable
       set local-traffic enable
       set multicast-traffic enable
       set sniffer-traffic enable
       set anomaly enable
       set voip enable
       set dlp-archive enable
       set dns enable
       set ssh enable
       set ssl enable
   end
   ```

To configure VDOM override for a syslog server:

1. **Configure the syslog override settings:**
   ```plaintext
   config log syslogd/syslogd2/syslogd3/syslogd4 override-setting
       set status enable
       set server "123.12.123.123"
       set facility local1
   end
   ```

2. **Configure the override filters:**
   ```plaintext
   config log syslogd/syslogd2/syslogd3/syslogd4 override-filter
       set severity information
       set forward-traffic enable
       set local-traffic enable
       set multicast-traffic enable
       set sniffer-traffic enable
       set anomaly enable
   ```
Configuring multiple FortiAnalyzers on a FortiGate in multi-VDOM mode

This topic shows a sample configuration of multiple FortiAnalyzers on a FortiGate in multi-VDOM mode.

In this example:

- The FortiGate has three VDOMs:
 - Root (management VDOM)
 - VDOM1
 - VDOM2
- There are four FortiAnalyzers.
 These IP addresses are used as examples in the instructions below.
 - FAZ1: 172.16.200.55
 - FAZ2: 172.18.60.25
 - FAZ3: 192.168.1.253
 - FAZ4: 192.168.1.254
- Set up FAZ1 and FAZ2 under global.
 - These two collect logs from the root VDOM and VDOM2.
 - FAZ1 and FAZ2 must be accessible from management VDOM root.
- Set up FAZ3 and FAZ4 under VDOM1.
 - These two collect logs from VDOM1.
 - FAZ3 and FAZ4 must be accessible from VDOM1.

To set up FAZ1 as global FortiAnalyzer 1 from the GUI:

Prerequisite: FAZ1 must be reachable from the management root VDOM.

2. Enable Send logs to FortiAnalyzer/FortiManager.
3. Enter the FortiAnalyzer IP.
 In this example: 172.16.200.55.
4. For Upload option, select Real Time.
5. Click Apply.

To set up FAZ2 as global FortiAnalyzer 2 from the CLI:

Prerequisite: FAZ2 must be reachable from the management root VDOM.

```
config log fortianalyzer2 setting
    set status enable
    set server "172.18.60.25"
    set upload-option realtime
end
```
To set up FAZ3 and FAZ4 as VDOM1 FortiAnalyzer 1 and FortiAnalyzer 2:

Prerequisite: FAZ3 and FAZ4 must be reachable from VDOM1.

```
config log setting
  set faz-override enable
end

config log fortianalyzer override-setting
  set status enable
  set server "192.168.1.253"
  set upload-option realtime
end

config log fortianalyzer2 override-setting
  set status enable
  set server "192.168.1.254"
  set upload-option realtime
end
```

Checking FortiAnalyzer connectivity

To use the diagnose command to check FortiAnalyzer connectivity:

1. Check the global FortiAnalyzer status:

   ```
   FGTA(global) # diagnose test application miglogd 1
   faz: global , enabled
       server=172.16.200.55, realtime=3, ssl=1, state=connected, src=, mgmt_name=FGh_
   Log_root_172.16.200.55, reliable=1
       status: ver=6, used_disk=0, total_disk=0, global=0, vfid=0 conn_
   verified=N
       SNs: last sn update:1369 seconds ago.
       Sn list:

       queue: qlen=0.
   filter: severity=6, sz_exclude_list=0
   voip dns ssh ssl
   subcategory:
       traffic: forward local multicast sniffer
       anomaly: anomaly

       server: global, id=0, fd=90, ready=1, ipv6=0, 172.16.200.55/514
       oftp-state=5
   faz2: global , enabled
       server=172.18.60.25, realtime=1, ssl=1, state=connected, src=, mgmt_name=FGh_
   Log_root_172.18.60.25, reliable=0
       status: ver=6, used_disk=0, total_disk=0, global=0, vfid=0 conn_
   verified=N
       SNs: last sn update:1369 seconds ago.
       Sn list:

       queue: qlen=0.
   filter: severity=6, sz_exclude_list=0
   voip dns ssh ssl
   subcategory:
```
Log and Report

traffic: forward local multicast sniffer
anomaly: anomaly
server: global, id=1, fd=95, ready=1, ipv6=0, 172.18.60.25/514
oftp-state=5

2. Check the VDOM1 override FortiAnalyzer status:

FGTA (global) # diagnose test application miglogd 3101
faz: vdom, enabled, override
server=192.168.1.253, realtime=1, ssl=1, state=connected, src=, mgmt_name=FGh_
Log_root_192.168.1.253, reliable=1
status: ver=6, used_disk=0, total_disk=0, global=0, vfid=0 conn_
verified=N
SNs: last sn update:1369 seconds ago.
Sn list:
(FA2-VM0000000001,age=17s)
queue: qlen=0.
filter: severity=6, sz_exclude_list=0
voip dns ssh ssl
subcategory:
traffic: forward local multicast sniffer
anomaly: anomaly
server: vdom, id=0, fd=72, ready=1, ipv6=0, 192.168.1.253/514
oftp-state=5
faz2: vdom, enabled, override
server=192.168.1.254, realtime=1, ssl=1, state=connected, src=, mgmt_name=FGh_
Log_root_192.168.1.254, reliable=0
status: ver=6, used_disk=0, total_disk=0, global=0, vfid=0 conn_
verified=N
SNs: last sn update:1369 seconds ago.
Sn list:
(FL-KET318000008,age=17s)
queue: qlen=0.
filter: severity=6, sz_exclude_list=0
voip dns ssh ssl
subcategory:
traffic: forward local multicast sniffer
anomaly: anomaly
server: vdom, id=1, fd=97, ready=1, ipv6=0, 192.168.1.254/514
oftp-state=5
faz3: vdom, disabled, override

Advanced and specialized logging

The following topics provide information on advanced and specialized logging:

- Logs for the execution of CLI commands on page 2567
- Log buffer on FortiGates with an SSD disk on page 2568
- Source and destination UUID logging on page 2571
- Configuring and debugging the free-style filter on page 2572
• Logging the signal-to-noise ratio and signal strength per client on page 2574
• RSSO information for authenticated destination users in logs on page 2576
• Destination user information in UTM logs on page 2579

Logs for the execution of CLI commands

The cli-audit-log option records the execution of CLI commands in system event logs (log ID 44548). In addition to execute and config commands, show, get, and diagnose commands are recorded in the system event logs.

The cli-audit-log data can be recorded on memory or disk, and can be uploaded to FortiAnalyzer, FortiGate Cloud, or a syslog server.

To enable the CLI audit log option:

```
config system global
set cli-audit-log enable
end
```

To view system event logs in the GUI:

1. Run the command in the CLI (# show log fortianalyzer setting).
2. Go to Log & Report > System Events.
3. Select General System Events.
4. Select the log entry and click Details.

To display the logs:

```
# execute log filter device disk
# execute log filter category event
# execute log filter field subtype system
```
Log and Report

execute log filter field logid 0100044548
execute log display

Sample log:

1: date=2020-11-16 time=10:43:00 eventtime=1605551799970875703 tz=-0800 logid=0100044548
type="event" subtype="system" level="information" vd="root" logdesc="Action performed"
user="admin" ui="jsconsole(2.0.225.112)" action="Show" msg="show log fortianalyzer setting"

2: date=2020-11-16 time=10:42:43 eventtime=1605551635020003054 tz=-0800 logid=0100044548
type="event" subtype="system" level="information" vd="root" logdesc="Action performed"
user="admin" ui="jsconsole(2.0.225.112)" action="Get" msg="get sys status"

3: date=2020-11-16 time=09:47:04 eventtime=1605548824762387718 tz=-0800 logid=0100044548
type="event" subtype="system" level="information" vd="root" logdesc="Action performed"
user="admin" ui="jsconsole(2.0.228.202)" action="Diagnose" msg="diagnose log test"

Log buffer on FortiGates with an SSD disk

FortiGates with an SSD disk have a configurable log buffer. When the connection to FortiAnalyzer is unreachable, the FortiGate is able to buffer logs on disk if the memory log buffer is full. The logs queued on the disk buffer can be sent successfully once the connection to FortiAnalyzer is restored.

The number of logs queued on the disk buffer is visible in the Log & Report > Log Settings page:

![Log Settings](image)

The queued logs are buffered to the memory first and then disk. Main miglogd handles the disk buffering job, while miglogd-children handles the memory buffering. Disk buffer statistics only appear under Main miglogd, and memory buffer statistics only appears under miglogd-children. If the total buffer is full, new logs will overwrite the old logs.

To configure the log buffer:

1. Allocate disk space (MB) to temporarily store logs to FortiAnalyzer:

   ```
   config system global
   set faz-disk-buffer-size 200
   end
   ```

2. Check the Main miglogd and miglogd-children statistics. The 200 MB disk buffer has been set, and there are currently no logs buffered in memory or on disk when FortiAnalyzer is reachable:
Log and Report

diagnose test application miglogd 41 0
cache maximum: 106100940(101MB) objects: 0 used: 0(0MB) allocated: 0(0MB)
VDOM:root
Queue for: global-faz

 memory queue:
 num:0 size:0(0MB) max:101906636(97MB) logs:0

 disk max queue size:200MB total:0MB
totol items:0
disk queue agents:
devid:-l-10-0-1
 buffer path:/var/log/qbuf/10.0/1
 saved size:0MB cached size:0
 save roll:0 restore roll:0
 restore id:0 space:0MB

diagnose test application miglogd 41 1
cache maximum: 106100940(101MB) objects: 0 used: 0(0MB) allocated: 0(0MB)
VDOM:root
Queue for: global-faz

 memory queue:
 num:0 size:0(0MB) max:101906636(97MB) logs:0

 disk queue client:
 devid:-l-10-0-1 status:buffering
 Total in cache:0 size:0 (0MB) max:4MB logs:0

3. Disable the connection between the FortiGate and FortiAnalyzer. For example, delete the FortiGate from the FortiAnalyzer authorized device list.
 Assuming a massive number of logs (~ 300000) are recorded during this downtime, the logs will be queued in the memory buffer first. If the memory buffer is full, then the remaining logs will be queued on the disk buffer.

4. Check the Main miglogd and miglogd-children statistics again. All 97 MB of the memory buffer is occupied, and 76 of the 200 MB has been taken from the disk buffer:

diagnose test application miglogd 41 0
cache maximum: 106100940(101MB) objects: 0 used: 0(0MB) allocated: 0(0MB)
VDOM:root
Queue for: global-faz

 memory queue:
 num:0 size:0(0MB) max:101906636(97MB) logs:0

 disk max queue size:200MB total:76MB
totol items:128917
disk queue agents:
devid:-l-10-0-1
 buffer path:/var/log/qbuf/10.0/1
 saved size:76MB cached size:3324984
 save roll:19 restore roll:0
 restore id:0 space:0MB
Log and Report

VDOM:root
Queue for: global-faz

memory queue:
 num:165718 size:101906500(97MB) max:101906636(97MB) logs:165718

disk queue client:
 devid:-1-10-0-1 status:restoring
 restore id:1267 space:0MB
 Total in cache:3 size:1858(0MB) max:4MB logs:3

The overall miglogd statistics shows the total cached logs is the sum of the logs buffered in memory and on disk:

diagnose test application miglogd 6
mem=0, disk=11, alert=0, alarm=0, sys=0, faz=300053, faz-cloud=0, webt=0, fds=0
interface-missed=44
Queues in all miglogds: cur:165718 total-so-far:165718
global log dev statistics:
 faz 0: sent=0, failed=0, cached=300053, dropped=0 , relayed=0
 Num of REST URLs: 0

5. Enable the connection between FortiAnalyzer and the FortiGate.
6. After a while, check the miglogd statistics to confirm that all buffered logs are being sent to FortiAnalyzer successfully:

diagnose test application miglogd 41
mem=0, disk=11, alert=0, alarm=0, sys=0, faz=300058, faz-cloud=0, webt=0, fds=0
interface-missed=44
Queues in all miglogds: cur:4294832957 total-so-far:165726
global log dev statistics:
 faz 0: sent=300058, failed=0, cached=0, dropped=0 , relayed=0
 Num of REST URLs: 15

diagnose test application miglogd 41 0
cache maximum: 106100940(101MB) objects: 0 used: 0(0MB) allocated: 0(0MB)
VDOM:root
Queue for: global-faz

memory queue:
 num:0 size:0(0MB) max:101906636(97MB) logs:0

disk max queue size:200MB total:0MB
 total items:0
disk queue agents:
 devid:-1-10-0-1
 buffer path:/var/log/qbuf/10.0/1
 saved size:0MB cached size:0
 save roll:20 restore roll:20
 restore id:1267 space:0MB

diagnose test application miglogd 41 1
cache maximum: 106100940(101MB) objects: 0 used: 0(0MB) allocated: 0(0MB)
VDOM:root
Queue for: global-faz

memory queue:
 num:0 size:0(0MB) max:101906636(97MB) logs:0
disk queue client:
 devid:-1-10-0-1 status:buffering
 Total in cache:0 size:0(0MB) max:4MB logs:0

Source and destination UUID logging

The log-uuid setting in system global is split into two settings: log-uuid-address and log-uuid policy.

The traffic log includes two internet-service name fields: Source Internet Service (srcinetsvc) and Destination Internet Service (dstinetsvc).

Log UUIDs

UUIDs can be matched for each source and destination that match a policy that is added to the traffic log. This allows the address objects to be referenced in log analysis and reporting.

As this may consume a significant amount of storage space, this feature is optional. By default, policy UUID insertion is enabled and address UUID insertion is disabled.

To enable address and policy UUID insertion in traffic logs using the GUI:

2. Under UUIDs in Traffic Log, enable Policy and/or Address.
3. Click Apply.

To enable address and policy UUID insertion in traffic logs using the CLI:

config system global
 set log-uuid-address enable
 set log-uuid-policy enable
end

Sample log

date=2019-01-25 time=11:32:55 logid="0000000013" type="traffic" subtype="forward"
level="notice" vd="vdom1" eventtime=1528223575 srcip=192.168.1.183 srcname="PC24"
srcport=33709 srcinetsvc="lan" srcinetsvcrole="lan" dstip=192.168.70.184 dstport=80 dstinetsvc="wan"
dstinetsvcrole="wan" srcuuid="27dd503e-883c-51e7-ade1-7e015d46494f" dstuuid="27dd503e-883c-51e7-ade1-7e015d46494f" poluuid="9e0fe24c-1808-51e8-1257-68ce4245572c" sessionid=5181
proto=6 action="client-rst" policyid=4 policytype="policy" service="HTTP" trandisp="snat"
transip=192.168.70.228 transport=33709 appid=38783 app="Wget" appcat="General.Interest"
Internet service name fields

Traffic logs for internet-service include two fields: Source Internet Service and Destination Internet Service.

To view the internet service fields using the GUI:

2. Double-click on an entry to view the Log Details. The Source Internet Service and Destination Internet Service fields are visible in the Log Details pane.

Sample log

date=2019-01-25 time=14:17:04 logid="00000000013" type="traffic" subtype="forward" level="notice" vd="vdom1" eventtime=1548454622 srcip=10.1.100.11 srcport=51112 srcintf="port3" srcintfrole="undefined" dstip=172.217.14.228 dstport=80 dstintf="port1" dstintfrole="undefined" poluuid="af519380-2094-51e9-391c-b78e8edbd9f1" srcinetsvc="isdb-875099" dstinetsvc="Google.Gmail" sessionid=6930 proto=6 action="close" policyid=2 policytype="policy" service="HTTP" dstcountry="United States" srccountry="Reserved" trandisp="snat" transip=172.16.200.2 transport=51112 duration=11 sentbyte=398 rcvbyte=756 sentpkt=6 rcvdpkt=4 appcat="unscanned" devtype="Router/NAT Device" devcategory="Fortinet Device" mastersrcmac="90:6c:ac:41:7a:24" srsrcmac="90:6c:ac:41:7a:24" srcserver=0 dstdevtype="Unknown" dstdevcategory="Fortinet Device" masterdstmac="08:5b:0e:1f:ed:ed" dstmac="08:5b:0e:1f:ed:ed" dstserver=0

Configuring and debugging the free-style filter

Free-style filters allow users to define a filter for logs that are captured to each individual logging device type. Filters can include log categories and specific log fields. The filters can be created as an inclusive list or exclusive list.

Free-style filters can also be used to filter logs that have been captured on logging devices already to narrow down the list of logs to view.
Log and Report

config log syslogd filter
 config free-style
 edit <id>
 set category <option>
 set filter <string>
 set filter-type {include | exclude}
 next
 end
 end

Set the log category. The following options are available: traffic, event, virus, webfilter, attack, spam, anomaly, voip, dip, app-ctrl, waf, dns, ssh, ssl, file-filter, icap, and ztna.

filter <string>
Enter the filter criteria. Multiple values can be added, for example:
set filter "logid <id> <id>"

filter-type {include | exclude}
Include/exclude logs that match the filter.

Use the following commands to view the results when multiple fields are used:

execute log filter free-style "logid <id> <id>"
execute log filter free-style "srcip <IP_address> <IP_address>"
execute log filter free-style "(logid <id>) or (srcip <IP_address> <IP_address>)"
execute log filter free-style "(srcip <IP_address>) and (dstip <IP_address>)"

In this example, the free-style filter is set to filter log IDs 0102043039 and 0102043040. The source IPs, 192.168.2.5 and 192.168.2.205, are also checked.

To configure the syslogd free-style filter with multiple values:

config log syslogd filter
 config free-style
 edit 1
 set category event
 set filter "logid 0102043039 0102043040"
 next
 end

To view the syslogd free-style filter results:

execute log filter free-style "logid 0102043039 0102043040"
execute log filter dump
category: event
device: disk
start-line: 1
view-lines: 10
max-checklines: 0
HA member:
log search mode: on-demand
pre-fetch-pages: 2
Filter: logid 0102043039 0102043040
Oftp search string: (and (or logid="0102043039" not-exact logid="0102043040" not-exact))

execute log filter free-style "(logid 0102043039) or (srcip 192.168.2.5 192.168.2.205)"
execute log filter dump
category: event
device: disk
start-line: 1
view-lines: 10
max-checklines: 0
HA member:
log search mode: on-demand
pre-fetch-pages: 2
Filter: (logid 0102043039) or (srcip 192.168.2.5 192.168.2.205)
Oftp search string: (or (or srcip==192.168.2.5) (or srcip==192.168.2.205)) (or logid="0102043039" not-exact))

Logging the signal-to-noise ratio and signal strength per client

The signal-to-noise ratio (snr) and signal strength (signal) are logged per client in the WiFi event and traffic logs. When a WiFi client connects to a tunnel or local-bridge mode SSID on an FortiAP that is managed by a FortiGate, signal-to-noise ratio and signal strength details are included in WiFi event logs for local-bridge traffic statistics and authentication, and in forward traffic logs for tunnel traffic. This allows you to store and view clients' historical signal strength and signal-to-noise ratio information.

To verify when a client is connecting to an SSID:

1. Go to Log & Report > System Events and select WiFi Events.
 The Signal and Signal/Noise columns show the signal strength and signal-to-noise ratio for each applicable client.
2. WiFi event log messages include the signal and snr values:

```
2020-05-27 11:26:28 logid="0104043579" type="event" subtype="wireless" level="notice" logdesc="Wireless client IP assigned" sn="FP231ETF20000455" ap="FP231ETF20000455" vap="stability3" ssid="FOS_QA_Starr_140E_Guest-11" radioid=1 user="N/A" group="N/A" stamac="1c:87:2c:b6:a8:49" srcip=11.10.80.2 channel=6 radioband="802.11n,g-only" signal=-45 snr=50 security="WPA2 Personal" encryption="AES" action="client-ip-detected" reason="Reserved 0" mpsk="N/A" msg="Client 1c:87:2c:b6:a8:49 had an IP address detected (by DHCP packets)."
```

```
2020-05-27 11:26:11 logid="0104043573" type="event" subtype="wireless" level="notice" logdesc="Wireless client authenticated" sn="FP231ETF20000455" ap="FP231ETF20000455" vap="stability3" ssid="FOS_QA_Starr_140E_Guest-11" radioid=1 user="N/A" group="N/A" stamac="1c:87:2c:b6:a8:49" srcip=0.0.0.0 channel=6 radioband="802.11n,g-only" signal=-45 snr=50 security="WPA2 Personal" encryption="AES" action="client-authentication" reason="Reserved 0" mpsk="N/A" msg="Client 1c:87:2c:b6:a8:49 authenticated.""
```

To verify tunnel traffic when a client is connecting to a tunnel mode SSID:

 The Signal and Signal/Noise columns show the signal strength and signal-to-noise ratio for each applicable client.
2. Forward traffic log messages include the signal and snr values:

date=2020-05-27 time=11:30:26 logid=00000000013 type="traffic" subtype="forward" level="notice" vd=vdom1 eventtime=1590604226533016978 tz=-0700 srcip=11.10.80.2 srcmac="802.11n,g-only" signal=31 snr=64 dstip=91.189.91.157 dstport=123

To verify local-bridge traffic statistics when a client is connecting to a local-bridge mode SSID:

1. Go to Log & Report > System Events and select WiFi Events.
 The Signal and Signal/Noise columns show the signal strength and signal-to-noise ratio for each applicable client.

2. WiFi event log messages include the signal and snr values:

RSSO information for authenticated destination users in logs

FortiGate can use RSSO accounting information from authenticated RSSO users to populate destination users and groups, along with source users and groups.

RSSO user login information can be forwarded by the RADIUS server to the FortiGate that is listening for incoming RADIUS accounting start messages on the RADIUS accounting port. Accounting start messages usually contain the IP address, user name, and user group information. FortiGate uses this information in traffic logs, which include dstuser and dstgroup fields for user and group destination information.

For instructions on configuring RSSO, see RADIUS single sign-on agent on page 2500.

The three following scenarios show traffic between pc1 and the internet, and pc1 and pc2.
Scenario 1

In this scenario, RSSO user test2 in group rsso-grp1 is authenticated on pc1. Traffic flows from pc1 to the internet.

Expected result:

In the logs, user test2 is shown as the source user in the rsso-grp1 group.

To verify the results:

1. In the GUI, go to Log & Report > Forward Traffic and view the details of an entry with test2 as the source.
2. In the Source section, User is test2 and Group is the rsso-grp1.
3. The log message shows the user and group:

 10: date=2020-05-25 time=15:34:43 logid="0000000013" type="traffic" subtype="forward" level="notice" vd="vd01" eventtime=1590446083718007055 tz="-0700" srcip=10.1.100.188 srcname="win7-2-A Fortinet-FSSO.COM" srcport=56982 srcintf="port10"
 srcintfrole="undefined" dstip=172.217.3.195 dstport=443 dstintf="port9"
 dstintfrole="undefined" srccountry="Reserved" dstcountry="United States"
 sessionid=120651 proto=17 action="accept" policyid=1 policytype="policy"
Log and Report

Scenario 2

In this scenario, RSSO user test2 is authenticated on pc1. Traffic is initialized on pc2 (172.16.200.185) going to pc1 (10.1.100.188).

Expected result:

In the logs, user test2 is shown as the destination user (dstuser). No destination group (dstgroup) is logged because no RSSO user is logged in on pc2, so the traffic from pc2 is unauthenticated.

To verify the results:

1. In the GUI, go to Log & Report > Forward Traffic and view the details of an entry with 172.16.200.185 (pc2) as the source.
2. In the Other section, Destination User is test2 and no destination group is shown.

3. The log message shows the destination user:

```
1: date=2020-05-22 time=07:38:06 logid="0000000020" type="traffic" subtype="forward" level="notice" vd="root" eventtime=1590158286585506922 tz="-0700" srcip=172.16.200.185 identifier=1 srcintf="port9" srcintfrole="undefined" dstip=10.1.100.188 dstintf="port10" dstintfrole="undefined" srccountry="Reserved" dstcountry="Reserved" sessionid=4395 proto=1 action="accept" policyid=3 policytype="policy" poluidd="d4f18e1e-9c36-51ea-6ec0-3a354d5910e8" policyname="pol2" dstusers="test2" dstauthserver="root" service="PING" trandisp="snat" transip=10.1.100.1 transport=0 duration=128 sentbyte=7620 rcvdbyte=5220 sentpkt=127 rcvdpkt=87 appcat="unscanned" sentdelta=7620 rcvddelta=5220
```
Scenario 3

In this scenario, RSSO user test2 in group rsso-grp1 is authenticated on pc1, and user test3 in group rsso-grp2 is authenticated on pc2. Traffic flows from pc2 to pc1.

Expected result:

In the logs, user test3 is shown as the source user in the rsso-grp1 group. User test2 is shown as destination user (dstuser) in the rsso-grp1 destination group (dstgroup). The destination group is logged because an RSSO user is logged in to pc2.

To verify the results:

1. In the GUI, go to Log & Report > Forward Traffic and view the details of an entry with 172.16.200.185 (pc2) as the source.
2. In the Source section, User is test3 and Group is the rsso-grp2. In the Other section, Destination User is test2 and Destination Group is rsso-grp1.

3. The log message shows both the source and the destination users and groups:

```
8: date=2020-05-25 time=14:23:07 logid="0000000013" type="traffic" subtype="forward" level="notice" vd="vdom1" eventtime=1590441786958007914 tz="-0700" srcip=172.16.200.185 srcport=64096 srcintf="port9" srcintfrole="undefined" dstip=10.1.100.188 dstport=80 dstintf="port10" dstintfrole="undefined" srccountry="Reserved" srccountry="Reserved" sessionid=112445 proto=6 action="close" policyid=3 policytype="policy" poluuid="5894c368-9eca-51ea-fb4c-ec5a6c1d5043" polycname="po12" user="test3" group="rsso-grp2" authserver="vdom1" dstuser="test2" dstgroup="rsso-grp1" dstauthserver="vdom1" service="HTTP" transdisp="snat" transip=10.1.100.1 transport=64096 duration=1 sentbyte=328 rcvbyte=563 sentpkt=6 rcvdpkt=5 appcat="unscanned" dsthwvendor="VMware" dstosname="Windows" dstswversion="7" masterdstmac="00:0c:29:44:be:b9" dstmac="00:0c:29:44:be:b9" dstserver=0
```

Destination user information in UTM logs

The dstuser field in UTM logs records the username of a destination device when that user has been authenticated on the FortiGate.
In the following example topology, the user, bob, is authenticated on a client computer. The user, guest, is authenticated on the server. Log are collected for AV and IPS in flow inspection mode. Logs are collected for application control and web filter in proxy mode.

To configure the RADIUS user and user groups:

1. Configure the RADIUS server:
   ```
   config user radius
   edit "Ubuntu_docker"
     set server "172.16.200.240"
     set secret ************
   next
   end
   ```

2. Configure the local user:
   ```
   config user local
   edit "guest"
     set type password
     set passwd ************
   next
   end
   ```

3. Configure the RADIUS user groups:
   ```
   config user group
   edit "RADIUS_User_Group"
     set member "Ubuntu_docker"
   next
   edit "Local_User"
     set member "guest"
   next
   end
   ```
Flow inspection mode

To verify AV and IPS logs in flow mode:

1. Configure the firewall policies:

   ```
   config firewall policy
   edit 1
   set name "WAN_out"
   set srcintf "dmz"
   set dstintf "wan1"
   set action accept
   set srcaddr "all"
   set dstaddr "all"
   set schedule "always"
   set service "ALL"
   set utm-status enable
   set ssl-ssh-profile "deep-inspection"
   set av-profile "g-default"
   set ips-sensor "sensor-11"
   set nat enable
   set groups "RADIUS_User_Group" "Local_User"
   next
   edit 3
   set name "WAN_in"
   set srcintf "wan1"
   set dstintf "dmz"
   set action accept
   set srcaddr "all"
   set dstaddr "all"
   set schedule "always"
   set service "ALL"
   set logtraffic all
   set nat enable
   set groups "RADIUS_User_Group" "Local_User"
   next
   end
   ```

2. Verify the AV log:

   ```
   date=2021-09-14 time=16:37:25 eventtime=1631662646131356720 tz="-0700"
   logid="0211008192" type="utm" subtype="virus" eventtype="infected" level="warning"
   vd="vdom1" policyid=1 msg="File is infected." action="blocked" service="HTTP"
   sessionid=4613 srcip=10.1.100.72 dstip=172.16.200.75 srcport=80 dstport=80
   srcintf="dmz" srcintfrole="undefined" dstintf="wan1" dstintfrole="undefined"
   srcuuid="877d43a4-c2f9-51eb-f78f-e0979492d8a" dstuuid="877d43a4-c2f9-51eb-f78f-
   e0979492d8a" proto=6 direction="incoming" filename="eicar.com" quarskip="Quarantine-
   disabled" virus="EICAR_TEST_FILE" viruscat="Virus" dtype="av-engine"
   ref="http://www.fortinet.com/ve?vn=EICAR_TEST_FILE" virusid=2172
   url="http://172.16.200.75/eicar.com" profile="g-default" user="bob" group="RADIUS_User_"
   Group" authserver="Ubuntu_docker" dstuser="guest" agent="Wget/1.17.1"
   analyticscksum="275a021bbf6489e54d471899f7db9d1663fc695ec2fe2a2c4538aaf651fd0f"
   analyticssubmit=false crscore=50 craction=2 crlevel="critical"
   ```
3. Verify the IPS log:

```
date=2021-09-14  time=16:56:06  eventtime=1631663765992499880  tz=-0700
logid="0419016384"  type="utm"  subtype="ips"  eventtype="signature"  level="alert"
vd="vdom1"  severity="info"  srcip=10.1.100.72  srccountry="Reserved"  dstip=172.16.200.75
srcintf="dmz"  srcintfrole="undefined"  dstintf="wan1"  dstintfrole="undefined"
sessionid=7881  action="dropped"  proto=6  service="HTTP"  policyid=1
attack="Eicar.Virus.Test.File"  srcport=60092  dstport=80  direction="incoming"
attackid=29844  profile="sensor-11"  ref="http://www.fortinet.com/ids/VID29844"  user="bob"
group="RADIUS_User_Group"  authserver="Ubuntu_docker"  dstuser="guest"
``` 

Proxy inspection mode

To verify application control and web filter logs in proxy mode:

1. Configure the firewall policies:

```fortigateconfig
config firewall policy
    edit 1
        set name "WAN_out"
        set srcintf "dmz"
        set dstintf "wan1"
        set action accept
        set srcaddr "all"
        set dstaddr "all"
        set schedule "always"
        set service "ALL"
        set utm-status enable
        set inspection-mode proxy
        set ssl-ssh-profile "deep-inspection"
        set av-profile "g-default"
        set application-list "g-default"
        set webfilter-profile "1"
        set nat enable
        set groups "RADIUS_User_Group" "Local_User"
    next

    edit 3
        set name "WAN_in"
        set srcintf "wan1"
        set dstintf "dmz"
        set action accept
        set srcaddr "all"
        set dstaddr "all"
        set schedule "always"
        set service "ALL"
        set inspection-mode proxy
        set logtraffic all
        set nat enable
        set groups "RADIUS_User_Group" "Local_User"
    next
end
```
2. Verify the application control log:

```plaintext
date=2021-09-14 time=17:05:45 eventtime=1631664345570951500 tz=-0700
logid="1059028704" type="utm" subtype="app-ctrl" eventtype="signature"
level="information" vd="vdom1" appid=38783 user="bob" group="RADIUS_User_Group"
authserver="Ubuntu_docker" dstuser="guest" srcip=10.1.100.72 dstip=172.16.200.75
srcport=60098 dstport=80 srcintf="dmz" srcintfrole="undefined" dstintf="wan1"
dstintfrole="undefined" proto=6 service="HTTP" direction="outgoing" policyid=1
sessionid=10871 applist="g-default" action="pass" appcat="General.Interest" app="Wget"
hostname="172.16.200.75" incidentserialno=17825796 url="/eicar.com"
msg="General.Interest: Wget," apprisk="low"
```

3. Verify the web filter log:

```plaintext
date=2021-09-14 time=17:14:46 eventtime=1631664886585770420 tz=-0700
logid="0315012546" type="utm" subtype="webfilter" eventtype="urlfilter"
level="information" vd="vdom1" urlfilteridx=1 urlfilterlist="Auto-webfilter-urlfilter_caexOoj15" policyid=1 sessionid=15251 user="bob" group="RADIUS_User_Group"
authserver="Ubuntu_docker" dstuser="guest" srcip=10.1.100.72 srcport=60106 srcintf="dmz"
srcintfrole="undefined" srcuuid="877d43a4-c2f9-51eb-f78f-e09794924d8a" dstip=172.16.200.75 dstport=80 dstintf="wan1" dstintfrole="undefined" dstuuid="877d43a4-c2f9-51eb-f78f-e09794924d8a" proto=6 service="HTTP"
hostname="172.16.200.75" profile="1" action="passthrough" reqtype="direct" url="http://172.16.200.75/eicar.com" sentbyte=149
crcdbyte=0 direction="outgoing" msg="URL was allowed because it is in the URL filter list"
```

Sample logs by log type

This topic provides a sample raw log for each subtype and the configuration requirements.

Traffic Logs > Forward Traffic

Log configuration requirements

```plaintext
config firewall requirements
  edit 1
    set srcintf "port12"
    set dstintf "port11"
    set srcaddr "all"
    set dstaddr "all"
    set action accept
    set schedule "always"
    set service "ALL"
    set utm-status enable
    set logtraffic all
    set application-list "g-default"
    set ssl-ssh-profile "certificate-inspection"
    set nat enable
next
end
```
Sample log

date=2019-05-10 time=11:37:47 logid=0000000013 type=traffic subtype=forward
level=notice vd=vdom1 eventtime=155751367369913239 srcip=10.1.100.11 srcport=58012
srcintf="port12" srcintfrole="undefined" dstip=23.59.154.35 dstport=80 dstintf="port11"
dstintfrole="undefined" srcuuid=ae28f494-5735-51e9-f247-d1d2ce663f4b dstuuid=ae28f494-5735-51e9-f247-d1d2ce663f4b
poluuid="ccbea0-e0-5735-51e9-a218-a97dd08b7eb" sessionid=105048 proto=6
action="close" policyid=1 policytype="policy" service="HTTP" dstcountry="Canada"
srccountry="Reserved" trandisp="snat" transip=172.16.200.2 transport=58012 appid=34050
app=HTTP.BROWSER_Firefox appcat="Web.Client" apprisk="elevated" applist="g-default"
duration=116 sentbyte=1188 rcvdbyte=1224 sentpkt=17 rcvdpkt=16 utmaction="allow" countapp=1
osname="Ubuntu" mastersrcmac="a2:e9:00:ec:40:01" srcmac="a2:e9:00:ec:40:01" srcserver=0
utmref=65500-742

Traffic Logs > Local Traffic

Log configuration requirements

config log setting
 set local-in-allow enable
 set local-in-deny-unicast enable
 set local-in-deny-broadcast enable
 set local-out enable
end

Sample log

date=2019-05-10 time=11:50:48 logid=0001000014 type=traffic subtype=local
level=notice vd=vdom1 eventtime=1557514248379911176 srcip=172.16.200.254 srcport=62024
srcintf="port11" srcintfrole="undefined" dstip=172.16.200.2 dstport=443 dstintf="vdom1"
dstintfrole="undefined" sessionid=107478 proto=6 action="server-rst" policyid=0
policytype="local-in-policy" service="HTTPS" dstcountry="Reserved" srccountry="Reserved"
trandisp="noop" app=Web Management(HTTPS) duration=5 sentbyte=1247 rcvdbyte=1719 sentpkt=5
rcvdpkt=6 appcat="unscanned"

Traffic Logs > Multicast Traffic

Log configuration requirements

config firewall multicast-policy
 edit 1
 set dstaddr 230-1-0-0
 set dstintf port3
 set srcaddr 172-16-200-0
 set srcintf port25
 set action accept
 set log enable
next
end

config system setting
 set multicast-forward enable
end
Sample log

date=2019-03-31 time=06:42:54 logid="0002000012" type="traffic" subtype="multicast"
level="notice" vd="vdom1" eventtime=1554039772 srcip=172.16.200.55 srcport=60660
srcintf="port25" srcintfrole="undefined" dstip=230.1.1.2 dstport=7878 dstintf="port3"
dstintfrole="undefined" sessionid=1162 proto=17 action="accept" policyid=1
policytype="multicast-policy" service="udp/7878" dstcountry="Reserved" srccountry="Reserved"
trandisp="noop" duration=22 sentbyte=5940 rcvdbyte=0 sentpkt=11 rcvpkt=0 appcat="unscanned"

Traffic Logs > Sniffer Traffic

Log configuration requirements

```fortios
config firewall sniffer
  edit 3
    set logtraffic all
    set interface "port1"
    set ips-sensor-status enable
    set ips-sensor "sniffer-profile"
  next
end

config system global
  set log-uuid-address enable
end
```

Sample log

date=2019-05-10 time=14:18:54 logid="0004000017" type="traffic" subtype="sniffer"
level="notice" vd="root" eventtime=1557523134021045897 srcip=208.91.114.4 srcport=50463
srcintf="port1" srcintfrole="undefined" dstip=104.80.88.154 dstport=443 dstintf="port1"
dstintfrole="undefined" sessionid=2193276 proto=6 action="accept" policyid=3
policytype="sniffer" service="HTTPS" dstcountry="United States" srccountry="Canada"
trandisp="snat" transip=0.0.0.0 transport=0 duration=10 sentbyte=0 rcvdbyte=0 sentpkt=0
rcvpkt=0 appcat="unscanned" utmaction="allow" countips=1 crscore=5 craction=32768
sentdelta=0 rcvddelta=0 utmref=65162-7772

```fortios
config system global
  set log-uuid-address enable
end
```

```fortios
config firewall sniffer
  edit 1
    set logtraffic all
    set ipv6 enable
    set interface "port3"
    set ip-threatfeed-status enable
    set ip-threatfeed "g-source"
  next
end
```

Sample log

```
1: date=2021-01-26 time=15:51:37 eventtime=1611705097880421908 tz="-0800" logid="0004000017"
type="traffic" subtype="sniffer" level="notice" vd="vd1" srcip=10.1.100.12 srcport=34604
srcintf="port3" srcintfrole="undefined" dstip=172.16.200.55 dstport=80 dstintf="port3"
dstintfrole="undefined" srcthreatfeed="g-source" srccountry="Reserved" dstcountry="Reserved"
sessionid=30384 proto=6 action="accept" policyid=1 policytype="sniffer" service="HTTP"
```
Event Logs > SD-WAN Events

Log configuration requirements

```plaintext
config log eventfilter
    set event enable
    set sdwan enable
end
```

Sample log

date=2020-03-29 time=16:41:30 logid="0113022923" type="event" subtype="sdwan" level="notice" vd="root" eventtime=15855290513555981 tz="-0700" logdesc="Virtual WAN Link status" eventtype="Health Check" healthcheck="ping1" slatargetid=1 oldvalue="1" newvalue="2" msg="Number of pass member changed."

date=2020-03-29 time=16:51:27 logid="0113022925" type="event" subtype="sdwan" level="notice" vd="root" eventtime=15855288177637570 tz="-0700" logdesc="Virtual WAN Link SLA information" eventtype="SLA" healthcheck="ping1" slatargetid=1 interface="R150" status="up" latency="0.013" jitter="0.001" packetloss="100.000%" inbandwidth="0kbps" outbandwidth="0kbps" bibandwidth="0kbps" slamap="0x0" metric="packetloss" msg="Health Check SLA status. SLA failed due to being over the performance metric threshold."
config router bgp
 set log-neighbour-changes enable
end

config router ospf
 set log-neighbour-changes enable
end

Sample log

date=2019-05-13 time=14:12:26 logid="0103020301" type="event" subtype="router"
level="warning" vd="root" eventtime=155778194667737955 logdesc="Routing log"
msg="OSPF: RECEV[Hello]: From 31.1.1.1 via port9:172.16.200.1: Invalid Area ID 0.0.0.0"

Event Logs > VPN Events

Log configuration requirements

cfg config log eventfilter
 set event enable
 set vpn enable
end

Sample log

date=2019-05-13 time=14:21:42 logid="0101037127" type="event" subtype="vpn"
level="notice" vd="root" eventtime=155778250272223189 logdesc="Progress IPsec phase 1"
msg="progress IPsec phase 1"
action="negotiate"
remip=50.1.1.101
locip=50.1.1.100
remport=500
locport=500
outintf="port14"
cookies="9091f4d4837ea71c/0000000000000000"
user="N/A"
group="N/A"
xauthuser="N/A"
xauthgroup="N/A"
assignip=N/A
vpntunnel="test"
status="success"
init="local"
mode="main"
dir="outbound"
stage=1
role="initiator"
result="OK"

Event Logs > User Events

Log configuration requirements

cfg config log eventfilter
 set event enable
 set user enable
end

Sample log

date=2019-05-13 time=15:55:56 logid="0102043008" type="event" subtype="user"
level="notice" vd="root" eventtime=1557788156913809277
logdesc="Authentication success"
srcip=10.1.100.11
dstip=172.16.200.55
policyid=1
interface="port10"
user="bob"
group="local-group1"
authproto="TELNET(10.1.100.11)"
action="authentication"
status="success"
reason="N/A"
msg="User bob succeeded in authentication"
Event Logs > Endpoint Events

Log configuration requirements

```
config log eventfilter
  set event enable
  set endpoint enable
end
```

Sample log

```
date=2019-05-14 time=08:32:13 logid="0107045057" type="event" subtype="endpoint"
level="information" vd="root" eventtime=155784793900764210 logdesc="FortiClient connection added" action="add" status="success" license_limit="unlimited" used_for_type=4 connection_type="sslvpn" count=1 user="skubas" ip=172.18.64.250 name="VAN-200957-PC"
  fctuid="52C66FE08F724FE0B116DAD5062C96CD" msg="Add a FortiClient Connection."

date=2019-05-14 time=08:19:38 logid="0107045058" type="event" subtype="endpoint"
level="information" vd="root" eventtime=15578471862881454 logdesc="FortiClient connection closed" action="close" status="success" license_limit="unlimited" used_for_type=5 connection_type="sslvpn" count=1 user="skubas" ip=172.18.64.250 name="VAN-200957-PC"
  fctuid="52C66FE08F724FE0B116DAD5062C96CD" msg="Close a FortiClient Connection."
```

Event Logs > HA Events

Log configuration requirements

```
config log eventfilter
  set event enable
  set ha enable
end
```

Sample log

```
date=2019-05-10 time=09:53:18 logid="0108037894" type="event" subtype="ha" level="critical"
level="information" vd="root" eventtime=1557507199208575235 logdesc="Virtual cluster member joined" msg="Virtual cluster detected member join" vcluster=1 ha_group=0 sn="FG2K5E3916900286"
```

Event Logs > Security Rating Events

Log configuration requirements

```
config log eventfilter
  set event enable
  set security-rating enable
end
```

Sample log

```
date=2019-05-13 time=14:40:59 logid="0110052000" type="event" subtype="security-rating"
level="notice" vd="root" eventtime=1557783659536252389 logdesc="Security Rating summary" auditid=1557783648 audittime=1557783659 auditscore=5.0 criticalcount=1 highcount=6 mediumcount=8 lowcount=0 passedcount=38
```
Event Logs > WAN Opt & Cache Events

Log configuration requirements

```fortigate
config log eventfilter
    set event enable
    set wan-opt enable
end
```

Sample log

date=2019-05-14 time=09:37:46 logid="0105048039" type="event" subtype="wad" level="error"
vd="root" eventtime=1557851867382676560 logdesc="SSL fatal alert sent" session_id=0
policyid=0 srcip=0.0.0.0 srcport=0 dstip=208.91.113.83 dstport=636 action="send" alert="2"
desc="certificate unknown" msg="SSL Alert sent"

date=2019-05-10 time=15:48:31 logid="0105048038" type="event" subtype="wad" level="error"
vd="root" eventtime=1557528511221374615 logdesc="SSL Fatal Alert received" session_id=5f88ddd1 policyid=0 srcip=172.18.70.15 srcport=59880 dstip=91.189.89.223 dstport=443 action="receive" alert="2" desc="unknown ca" msg="SSL Alert received"

Event Logs > Wireless

Log configuration requirements

```fortigate
config log eventfilter
    set event enable
    set wireless-activity enable
end
config wireless-controller log
    set status enable
end
```

Sample log

date=2019-05-13 time=11:30:08 logid="0104043568" type="event" subtype="wireless" level="warning"
vd="vdom1" eventtime=1557772208134721423 logdesc="Fake AP on air"
ssid="fortinet" bssid="90:6c:ac:89:e1:fa" aptype=0 rate=130 radioband="802.11n" channel=6
action="fake-ap-on-air" manuf="Fortinet, Inc." security="WPA2 Personal" encryption="AES"
signal=-93 noise=-95 live=353938 age=505 onwire="no" detectionmethod="N/A" stamac="N/A"
apscan="N/A" snidetected="N/A" radioiddetected=0 stacount=0 snclosest="FP320C3X17001909"
radioidclosest=0 apstatus=0 msg="Fake AP On-air fortinet 90:6c:ac:89:e1:fa chan 6 live 353938 age 505"

Event Logs > SDN Connector

Log configuration requirements

```fortigate
config log eventfilter
    set event enable
    set connector enable
end
```
Sample log

date=2019-05-13 time=16:09:43 logid="0112053200" type="event" subtype="connector" level="information" vd="root" eventtime=155788982 logdesc="IP address added" cdfobj="aws1" action="object-add" addr="54.210.36.196" cldobjid="i-0fe5a1ef56bb94796" netid="vpc-97e81cee" msg="connector object discovered in addr-obj aws1, 54.210.36.196"

date=2019-05-13 time=16:09:43 logid="0112053201" type="event" subtype="connector" level="information" vd="root" eventtime=155788982 logdesc="IP address removed" cdfobj="aws1" action="object-remove" addr="172.31.31.101" cldobjid="i-0fe5a1ef56bb94796" netid="vpc-97e81cee" msg="connector object removed in addr-obj aws1, 172.31.31.101"

Event Logs > FortiExtender Events

Log configuration requirements

config log eventfilter
 set event enable
 set fortiextender enable
end

Sample log

date=2019-02-20 time=09:57:22 logid="0111046400" type="event" subtype="fortiextender" level="notice" vd="root" eventtime=1550685442 logdesc="FortiExtender system activity" sn="FX04DN4N16002352" ip=11.11.11.2 action="FortiExtender Authorized" msg="ext SN:FX04DN4N16002352 authorized"

date=2019-02-20 time=09:51:42 logid="0111046401" type="event" subtype="fortiextender" level="notice" vd="root" eventtime=1550685102 logdesc="FortiExtender controller activity" sn="FX04DN4N16002352" ip=11.11.11.2 action="session-deauthed" msg="ext SN:FX04DN4N16002352 deauthorized"

date=2019-02-20 time=10:02:26 logid="0111046409" type="event" subtype="fortiextender" level="information" vd="root" eventtime=1550687636 logdesc="Remote FortiExtender info activity" sn="FX04DN4N16002352" ip=11.11.11.2 action="Cellular Connected" imei="359376060442770" iccid="89302720403038146410" phonenumber="+16045067526" carrier="Rogers" plan="Rogers-plan" service="LTE" msg="FX04DN4N16002352 STATE: sim with imsi:30272050231361 in slot:2 on carrier:Rogers connected"

date=2019-02-20 time=10:33:57 logid="0111046407" type="event" subtype="fortiextender" level="warning" vd="root" eventtime=1550687536 logdesc="Remote FortiExtender info activity" sn="FX04DN4N16002352" ip=11.11.11.2 action="Cellular Disconnected" imei="359376060442770" iccid="N/A" phonenumber="N/A"número="N/A" carrier="N/A" plan="N/A" service="LTE" msg="FX04DN4N16002352 STATE: sim with imsi:30272050231361 in slot:2 on carrier:Rogers disconnected"

date=2019-02-20 time=10:02:24 logid="0111046409" type="event" subtype="fortiextender" level="information" vd="root" eventtime=1550687636 logdesc="Remote FortiExtender info activity" sn="FX04DN4N16002352" ip=11.11.11.2 action="Cellular Connecting" imei="359376060442770" iccid="89302720403038146410" phonenumber="+16045067526" carrier="Rogers" plan="Rogers-plan" service="LTE" msg="FX04DN4N16002352 STATE: sim with imsi:30272050231361 in slot:2 on carrier:Rogers connecting"

date=2019-02-20 time=10:47:19 logid="0111046407" type="event" subtype="fortiextender" level="warning" vd="root" eventtime=1550688438 logdesc="Remote FortiExtender warning"
activity" sn="FX04DN4N16002352" ip=11.11.11.2 action="SIM Change" imei="N/A" slot=2
msg="FX04DN4N16002352 SIM: SIM2 is inserted"

date=2019-02-20 time=10:57:50 logid="0111046407" type="event" subtype="fortiextender"
level="warning" vd="root" eventtime=1550689069 logdesc="Remote FortiExtender warning activity" sn="FX04DN4N16002352" ip=11.11.11.2 action="SIM Change" imei="359376060442770" slot=2
msg="FX04DN4N16002352 SIM: SIM2 is plucked out"

date=2019-02-20 time=12:02:24 logid="0111046407" type="event" subtype="fortiextender"
level="warning" vd="root" eventtime=1550692942 logdesc="Remote FortiExtender warning activity" sn="FX04DN4N16002352" ip=11.11.11.2 action="SIM Switch" imei="359376060442770"
reason="sim-switch can't take effect due to unavailability of 2 sim cards"
msg="FX04DN4N16002352 SIM: sim-switch can't take effect due to unavailability of 2 sim cards"

date=2019-02-19 time=18:09:46 logid="0111046409" type="event" subtype="fortiextender"
level="information" vd="root" eventtime=1550628524 logdesc="Remote FortiExtender info activity" sn="FX04DN4N16002352" ip=11.11.11.2 action="Cellular Signal Statistics"
imei="359376060442770" iccid="89302720403038146410" phonenumber="+16045067526" carrier="Rogers" plan="Rogers-plan" service="LTE"
sinr="7.0 dB" rsrq="-16 dB" signalstrength="92 dBm" rssi="-54 dBm" temperature="40 C" apn="N/A"
msg="FX04DN4N16002352 INFO: LTE RSSI=-54dBm,RSRP=-89dBm,RSRQ=-16dB,SINR=7.0dB,BAND=B2,CELLID=061C700F,BW=15MHz,RXCH=1025,TXCH=19025,TAC=8AAC,TEMPERATURE=40 C"

date=2019-02-19 time=18:08:46 logid="0111046409" type="event" subtype="fortiextender"
level="information" vd="root" eventtime=1550628585 logdesc="Remote FortiExtender info activity" sn="FX04DN4N16002352" ip=11.11.11.2 action="Cellular Data Statistics"
imei="359376060442770" iccid="89302720403038146410" phonenumber="+16045067526" carrier="Rogers" plan="Rogers-plan" service="LTE"
rcvdbyte=7760 sentbyte=3315
msg="FX04DN4N16002352 INFO: SIM2 LTE, rx=7760, tx=3315, rx_diff=2538, tx_diff=567"

Event Logs > FortiSwitch Events

Log configuration requirements

config log eventfilter
 set event enable
 set switch-controller enable
end

Sample log

date=2020-09-28 time=15:37:02 eventtime=160133262257714795 tz="-0700" logid="0114032695"
type="event" subtype="switch-controller" level="notice" vd="vdom1" logdesc="FortiSwitch link user="Fortilink" sn="S248EPTF18001384" name="S248EPTF18001384" msg="port51 Module re-initialized to recover from ERROR state."

date=2020-09-28 time=15:37:02 eventtime=160133262255619520 tz="-0700" logid="0114032697"
type="event" subtype="switch-controller" level="warning" vd="vdom1" logdesc="FortiSwitch switch user="Fortilink" sn="S248EPTF18001384" name="S248EPTF18001384" msg="FortiLink: internal echo reply timed out"

date=2020-09-28 time=15:37:01 eventtime=1601332621664809633 tz="-0700" logid="0114032605"
type="event" subtype="switch-controller" level="information" vd="vdom1" logdesc="Switch-
Controller Tunnel Up" user="Switch-Controller" ui="cu_acd" sn="S248EPTF18001384" name="S248EPTF18001384" msg="CAPWAP Tunnel Up (169.254.1.3)"

date=2020-09-28 time=15:36:59 eventtime=1601332619501461995 tz="-0700" logid="0114022904" type="event" subtype="switch-controller" level="notice" vd="vdom1" logdesc="CAPUTP session status notification" user="Switch-Controller" ui="cu_acd" sn="S248EPTF18001384" name="S248EPTF18001384" msg="S248EPTF18001384 Connected via session join" action="session-join" srcip=169.254.1.3

date=2020-09-28 time=15:36:26 eventtime=1601332619501461995 tz="-0700" logid="0114022904" type="event" subtype="switch-controller" name="S248EPTF18001384" msg="S248EPTF18001384 Discovered"

Event Logs > REST API Events

Log configuration requirements

config log setting
 set rest-api-set enable
 set rest-api-get enable
end

Sample log

date=2022-02-02 time=15:52:09 eventtime=1643845930263415066 tz="-0800" logid="0116047301" type="event" subtype="rest-api" level="information" vd="root" logdesc="REST API request success" user="admin" ui="GUI(192.168.1.69)" method="GET" path="/api/v2/monitor/system/usb-log?vdom=root" status="200"

date=2022-02-02 time=15:52:06 eventtime=164384592774931021 tz="-0800" logid="0116047301" type="event" subtype="rest-api" level="information" vd="root" logdesc="REST API request success" user="admin" ui="GUI(192.168.1.69)" method="GET" path="/api/v2/monitor/license/status?vdom=root" status="200"

date=2022-02-02 time=15:52:06 eventtime=164384592764579729 tz="-0800" logid="0116047301" type="event" subtype="rest-api" level="information" vd="root" logdesc="REST API request success" user="admin" ui="GUI(192.168.1.69)" method="GET" path="/api/v2/cmdb/log.fortianalyzer/setting?vdom=root" status="200"

date=2022-02-02 time=15:52:06 eventtime=16438459273272766 tz="-0800" logid="0116047301" type="event" subtype="rest-api" level="information" vd="root" logdesc="REST API request success" user="admin" ui="GUI(192.168.1.69)" method="GET" path="/api/v2/monitor/system/sandbox/connection?vdom=root" action="connection" status="200"
Log and Report

success" user="admin" ui="GUI\(192.168.1.69)" method="GET" path="system.firmware" status="200" url="/api/v2/monitor/system/firmware?vdom=root"

Event Logs > IOC Detection

Log configuration requirements

config log setting
 set local-out enable
 set local-out-ioc-detection enable
end

Sample log
date=2021-12-20 time=16:43:54 eventtime=1640047434839814226 tz="-0800" logid="0100020214" type="event" subtype="system" level="warning" vd="root" logdesc="Locally generated traffic goes to IoC location" srcip=172.16.200.2 srcport=18047 dstip=223.205.1.54 dstport=514 session_id=23563 proto=6
Corresponding Traffic Log
date=2021-12-20 time=16:45:18 eventtime=1640047518959313316 tz="-0800" logid="0001000014" type="traffic" subtype="local" level="notice" vd="root" srcip=172.16.200.2 srcport=18047 srcintf="unknown-0" srcintfrole="undefined" dstip=223.205.1.54 dstport=514 dstintf="port2" dstintfrole="undefined" srccountry="Reserved" dstcountry="Thailand" sessionid=23632 proto=6 action="timeout" policyid=0 service="tcp/514" trandisp="noop" app="tcp/514" duration=17 sentbyte=240 rcvbyte=0 sentpkt=4 rcvdpkt=0 appcat="unscanned" dsthvendor="Fortinet" masterdstmac="e8:1c:ba:c2:86:63" dstmac="e8:1c:ba:c2:86:63" dstserver=0

Security Logs > Antivirus

Log configuration requirements

config antivirus profile
 edit "test-av"
 config http
 set av-scan block
 end
 set av-virus-log enable
 set av-block-log enable
 next
end

config firewall policy
 edit 1
 set srcintf "port12"
 set dstintf "port11"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set utm-status enable
 set av-profile "test-av"
 set logtraffic utm
set nat enable
next
end

Sample log

date=2019-05-13 time=11:45:03 logid="0211008192" type="utm" subtype="virus"
eventtype="infected" level="warning" vd="vdom1" eventtime=155773103767393505 msg="File is infected." action="blocked" service="HTTP" sessionid=10.1.100.11
dstip=172.16.200.55 srcport=60446 dstport=80 srcintf="port12" srcintfrole="undefined"
dstintf="port11" dstintfrole="undefined" policyid=4 proto=6 direction="incoming"
filename="eicar.com" quarskip="File was not quarantined." virus="EICAR_TEST_FILE"
dtype="Virus" ref="http://www.fortinet.com/ve?vn=EICAR_TEST_FILE" virusid=2172
url="http://172.16.200.55/virus/eicar.com"

Corresponding Traffic Log
date=2019-05-13 time=11:45:04 logid="0000000013" type="traffic" subtype="forward"
level="notice" vd="vdom1" eventtime=155773104815101919 srcip=10.1.100.11 srcport=60446
srcintf="port12" srcintfrole="undefined" dstip=172.16.200.55 dstport=80 dstintf="port11"
dstintfrole="undefined" srcuuid="48420c8a-5c88-51e9-0424-a37f9e74621e" dstuuid="187d6f46-5c86-51e9-70a0-fadcfc349c3e" poluuid="388b41a-5c88-51e9-cb32-1c32c666b4edf"
sessionid=359260 proto=6 action="close" policyid=4 policytype="policy" service="HTTP"
dstcountry="Reserved" trandisp="snat" transip=172.16.200.2 transport=60446 appid=15893
app="HTTP.BROWSER" appcat="Web.Client" apprisk="medium" aplist="g-default" duration=1
sentbyte=412 rcvdbyte=2286 sentpkt=6 rcvdpkt=6 wanin=313 wanout=92 lanin=92 lanout=92
utmaction="block" count=1 countapp=1 crscore=50 craction=2 osname="Ubuntu"
mastersrcmac="a2:e9:00:ec:40:01" srcmac="a2:e9:00:ec:40:01" srsrver=0 utmref=65497-770

Security Logs > Web Filter

Log configuration requirements

config webfilter profile
 edit "test-webfilter"
 set web-content-log enable
 set web-filter-activex-log enable
 set web-filter-command-block-log enable
 set web-filter-cookie-log enable
 set web-filter-applet-log enable
 set web-filter-jscript-log enable
 set web-filter-js-log enable
 set web-filter-vbs-log enable
 set web-filter-unknown-log enable
 set web-filter-referrer-log enable
 set web-filter-cookie-removal-log enable
 set web-url-log enable
 set web-invalid-domain-log enable
 set web-ftgd-err-log enable
 set web-ftgd-quota-usage enable
next
end

config firewall policy
 edit 1
set name "v4-out"
set srcintf "port12"
set dstintf "port11"
set srcaddr "all"
set dstaddr "all"
set action accept
set schedule "always"
set service "ALL"
set logtraffic utm
set utm-status enable
set webfilter-profile "test-webfilter"
set nat enable

Sample log

date=2019-05-13 time=16:29:45 logid="0316013056" type="utm" subtype="webfilter"

eventtype="ftgd_blk" level="warning" vd="vdom1" eventtime=1557790184975119738 policyid=1

Corresponding traffic log

date=2019-05-13 time=16:29:50 logid="0000000013" type="traffic" subtype="forward"

Security Logs > DNS Query

Log configuration requirements

cfgset dnsfilter profile
 edit "dnsfilter_fgd"
 config ftgd-dns
 set options error-allow
 end
 set log-all-domain enable
 set block-botnet enable
 next
end

cfgset firewall policy
 edit 1
 set srcintf "port12"
 set dstintf "port11"
set srcaddr "all"
set dstaddr "all"
set action accept
set schedule "always"
set service "ALL"
set utm-status enable
set dnsfilter-profile "dnsfilter_fgd"
set logtraffic utm
set nat enable
next
end

Sample log

date=2019-05-15 time=15:05:49 logid="1501054802" type="utm" subtype="dns" eventtype="dns-response" level="notice" vd="vdom1" eventtime=1557957949741155 policyid=1 sessionid=6887 srclp=10.1.100.22 srccport=50002 srcintf="port12" srcintfrole="undefined"
dstip=172.16.100.100 dstport=53 dstintf="port11" dstintfrole="undefined" proto=17
profile="dnsfilter_fgd" srcmac="a2:e9:00:ec:40:41" xid=57945 qname="changelogs.ubuntu.com" qtype="AAAA" qtypeval=28 qclass="IN" ipaddr="2001:67c:1560:8008::11" msg="Domain is monitored" action="pass" cat=52 catdesc="Information Technology"

date=2019-05-15 time=15:05:49 logid="1500054000" type="utm" subtype="dns" eventtype="dns-query" level="information" vd="vdom1" eventtime=1557957949653103 policyid=1 sessionid=6887 srclp=10.1.100.22 srccport=50002 srcintf="port12" srcintfrole="undefined"
dstip=172.16.100.100 dstport=53 dstintf="port11" dstintfrole="undefined" proto=17
profile="dnsfilter_fgd" srcmac="a2:e9:00:ec:40:41" xid=57945 qname="changelogs.ubuntu.com" qtype="AAAA" qtypeval=28 qclass="IN"

Corresponding traffic log
date=2019-05-15 time=15:08:49 logid="0000000013" type="traffic" subtype="forward"
level="notice" vd="vdom1" eventtime=1557958129950003 policyid=1 sessionid=6887 srclp=10.1.100.22 srcport=50002 srcintf="port12" srcintfrole="undefined"
dstip=172.16.100.100 dstport=53 dstintf="port11" dstintfrole="undefined" poluuid="ae28f494-5735-51e9-f247-d1d2ce663f4b" dstuuid="ae28f494-5735-51e9-f247-d1d2ce663f4b" eventtime=1557958129950003 duration=180
sentbyte=67 rcvdbyte=207 sentpkt=1 rcvdpkt=1 appcat="snat" transport=50002 duration=180
srcmac="a2:e9:00:ec:40:41" srcserver=0

Security Logs > Application Control

Log configuration requirements

log enabled by default in application profile entry

cfg config application list
cfg edit "block-social.media"
cfg set other-application-log enable
cfg config entries
cfg edit 1
cfg set category 2 5 6 23
cfg set log enable
cfg next
cfg end
config firewall policy
edit 1
 set name "to_Internet"
 set srcintf "port10"
 set dstintf "port9"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set utm-status enable
 set logtraffic utm
 set application-list "block-social.media"
 set ssl-ssh-profile "deep-inspection"
 set nat enable
next
end

Sample log

date=2019-05-15 time=18:03:36 logid="1059028704" type="utm" subtype="app-ctrl"
eventType="app-ctrl-all" level="information" vd="root" eventtime=1557968615 appid=40568
srcip=10.1.100.22 dstip=195.8.215.136 srcport=50798 dstport=443 srcintf="lan" dstintf="port9"
dstintfrole="wan" proto=6 service="HTTPS"
direction="outgoing" policyid=1 sessionid=4414 applist="block-social.media"
appcat="Web.Client" app="HTTPS.BROWSER" action="pass" hostname="www.dailymotion.com"
incidentserialno=1962906680 url="/" msg="Web.Client: HTTPS.BROWSER," apprisk="medium"
sertctname="*.dailymotion.com" scertissuer="DigiCert SHA2 High Assurance Server CA"

date=2019-05-15 time=18:03:35 logid="1059028705" type="utm" subtype="app-ctrl"
eventType="app-ctrl-all" level="warning" vd="root" eventtime=1557968615 appid=16072
srcip=10.1.100.22 dstip=195.8.215.136 srcport=50798 dstport=443 srcintf="lan" dstintf="port9"
dstintfrole="wan" proto=6 service="HTTPS"
direction="incoming" policyid=1 sessionid=4414 applist="block-social.media"
appcat="Video/Audio" app="Dailymotion" action="block" hostname="www.dailymotion.com"
incidentserialno=1962906682 url="/" msg="Video/Audio: Dailymotion," apprisk="elevated"

date=2019-05-15 time=18:03:35 logid="1059028705" type="utm" subtype="app-ctrl"
eventType="app-ctrl-all" level="warning" vd="root" eventtime=1557968615 appid=16072
srcip=10.1.100.22 dstip=195.8.215.136 srcport=50798 dstport=443 srcintf="lan" dstintf="port9"
dstintfrole="wan" proto=6 service="HTTPS"
direction="incoming" policyid=1 sessionid=4414 applist="block-social.media"
appcat="Video/Audio" app="Dailymotion" action="block" hostname="www.dailymotion.com"
incidentserialno=1962906681 url="/" msg="Video/Audio: Dailymotion," apprisk="elevated"

Corresponding Traffic Log

date=2019-05-15 time=18:03:41 logid="0000000013" type="traffic" subtype="forward" level="notice" vd="root" eventtime=1557968619
srcip=10.1.100.22 srcport=50798 srcintf="port10" srcintfrole="lan" dstip=195.8.215.136
dstport=443 dstintfrole="wan" poluuid="d8ce7a90-7763-51e9-e2be-741294c96f31"
sessionid=4414 protocol=6 action="client-rst" policyid=1 policytype="policy" service="HTTPS"
dstcountry="France" srccountry="Reserved" trandisp="snat" transip=172.16.200.10
transport=50798 appid=16072 app="Dailymotion" appcat="Video/Audio" apprisk="elevated"
applist="block-social.media" appact="drop-session" duration=5 sentbyte=1150 rcvdbyte=7039
sentpt=13 umactaction="block" countapp=3 devtype="Unknown" devcategory="None"
mastersrcmac="00:0c:29:51:38:5e" srcmac="00:0c:29:51:38:5e" srcserver=0 utmref=0-330
Security Logs > Intrusion Prevention

Log configuration requirements

log enabled by default in ips sensor

cfg ips sensor
 edit "block-critical-ips"
 config entries
 edit 1
 set severity critical
 set status enable
 set action block
 set log enable

 next
 next
end

cfg firewall policy
 edit 1
 set name "to_Internet"
 set srcintf "port10"
 set dstintf "port9"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set utm-status enable
 set logtraffic utm
 set ips-sensor "block-critical-ips"
 set nat enable

 next
end

Sample log

date=2019-05-15 time=17:56:41 logid="0419016384" type="utm" subtype="ips"
eventtype="signature" level="alert" vd="root" eventtime=1557968201 severity="critical"
srcip=10.1.100.22 srccountry="Reserved" dstip=172.16.200.55 srcintf="port10"
srcintfrole="lan" dstintf="port9" dstintfrole="wan" sessionid=4017 action="dropped" proto=6
service="HTTP" policyid=1 attack="Adobe.Flash.newfunction.Handling.Code.Execution"
srcport=46810 dstport=80 hostname="172.16.200.55" url="/ips/sig1.pdf" direction="incoming"
attackid=23305 profile="block-critical-ips" ref="http://www.fortinet.com/ids/VID23305"
incidentserialno=582633933 msg="applications3:
crelevel="critical"

Corresponding Traffic Log
date=2019-05-15 time=17:58:10 logid="0000000013" type="traffic" subtype="forward"
level="notice" vd="root" eventtime=1557968289 srcip=10.1.100.22 srcintfrole="lan"
dstintfrole="wan" dstport=80 dstintf="port9" dstintfrole="wan" poluuid=d8ce7a90-7763-51e9-e2be-741294c96f31
sessionid=4017 proto=6 action="close" policyid=1 policytype="policy" service="HTTP"
dstcountry="Reserved" srccountry="Reserved"trandisp="snat"\ntransip=172.16.200.10
transport=46810 duration=89 sentbyte=565 rcvdbyte=9112 sentpkt=9 rcvdpkt=8
Security Logs > Anomaly

Log configuration requirements

```plaintext
cfg firewall DoS-policy
   edit 1
      set interface "port12"
      set srcaddr "all"
      set dstaddr "all"
      set service "ALL"
      config anomaly
         edit "icmp_flood"
            set status enable
            set log enable
            set action block
            set threshold 50
      next
   next
end
```

Sample log

date=2019-05-13 time=17:05:59 logid=0720018433 type=utm subtype=anomaly
eventtype=anomaly level=alert vd=vdom1 eventtime=1557792359461869329
severity=critical srcip=10.1.100.11 srccountry=Reserved dstip=172.16.200.55
srcintf="port12" srcintfrole="undefined" sessionid=0 action="clear_session" proto=1
service="PING" count=1 attack="icmp_flood" icmpid="0x1474" icmptype="0x08" icmpcode="0x00"
attackid=16777316 policyid=1 policytype="DoS-policy"
ref="http://www.fortinet.com/ids/VID16777316" msg="anomaly: icmp_flood, 51 > threshold 50"
crscore=50 craction=4096 crlevel="critical"

Security Logs > Data Leak Prevention

Log configuration requirements

```plaintext
cfg dlp profile
   edit "dlp-file-type-test"
      set comment ''
      set replacemsg-group ''
      config filter
         edit 1
            set name ''
            set severity medium
            set type file
            set proto http-get http-post ftp
            set filter-by file-type
            set file-type 1
            set archive enable
            set action block
```

FortiOS 7.2.0 Administration Guide

Fortinet Inc.
Log and Report

```plaintext
next
end
set dlp-log enable
next
end

config firewall policy
edit 1
  set name "to_Internet"
  set srcintf "port10"
  set dstintf "port9"
  set srcaddr "all"
  set dstaddr "all"
  set action accept
  set schedule "always"
  set service "ALL"
  set utm-status enable
  set inspection-mode proxy
  set logtraffic utm
  set dlp-profile "dlp-file-type-test"
  set ssl-ssh-profile "deep-inspection"
  set nat enable
next
end

Sample log

date=2022-02-03 time=17:45:30 eventtime=1643938572487964255 tz=-0800 logid=0954024576
type="utm" subtype="dlp" eventtype="dlp" level="warning" vd="root" filteridx=1
dlpextra="dlp-file-size=11" filtertype="file-type" filtercat="file" severity="medium"
policyid=1 policytype="policy" sessionid=156237 epoch=300501327 eventid=0 srcip=10.1.100.22
dstport=50354 srccountry="Reserved" srcintf="port10" srcintfrole="lan" dstip=52.216.177.83
dstport=443 dstcountry="United States" dstintf="port9" dstintfrole="wan" proto=6
service="HTTPS" filetype="pdf" direction="incoming" action="block"
forwardedfor="192.168.0.99" agent="curl/7.56.0" httpmethod="GET"
referrerurl="https://example.com/referer.html" filename="fortiauto.pdf" filesize=285442
profile="dlp-file-type-test" rawdata="x-forwarded-for=192.168.0.99|Response-Content-Type=application/pdf"

# Corresponding Traffic Log #
date=2022-02-03 time=17:45:34 logid="00000000013" type="traffic" subtype="forward"
level="notice" vd="root" eventtime=1557967534 srcip=10.1.100.22 srcport=50354
dstintfrole="lan" dstip=52.216.177.83 dstport=443 dstintfrole="wan"
dstintfrole="port9" poluid="d8ce7a90-7763-85e9-e2be-74194c96f31" sessionid=3423 proto=6
action="server-rst" policyid=1 policytype="policy" service="HTTPS" dstcountry="United
States" srccountry="Reserved" transipport="snat" transip="172.16.200.10" transport=50354
duration=5 sentbyte=2314 rcvbyte=5266 sentpkt=33 rcvdpkt=12 appcat="unscanned" wanin=43936
wanout=710 lanin=753 lanout=753 utmaction="block" countdlp=1 crscore=5 craction=262144
cket="low" devtype="Unknown" devcategory="None" mastersrcmac="00:0c:29:51:38:5e"
srncat="00:0c:29:51:38:5e" srcserver=0 utmref=0-152
Log and Report

Security Logs > SSH and Security Logs > SSL

Log configuration requirements

```fortigateconfig
cfg ssh-filter profile
ed "ssh-deepscan"
 set block shell
 set log shell
 set default-command-log disable
next
end
cfg firewall policy
ed 1
 set srcintf "port21"
 set dstintf "port23"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set utm-status enable
 set inspection-mode proxy
 set ssh-filter-profile "ssh-deepscan"
 set profile-protocol-options "protocol"
 set ssl-ssh-profile "ssl"
 set nat enable
next
end
```

For SSL-Traffic-log, enable logtraffic all

```fortigateconfig
cfg firewall policy
ed 1
 set srcintf "dmz"
 set dstintf "wan1"
 set srcaddr "all"
 set dstaddr "all"
 set action accept
 set schedule "always"
 set service "ALL"
 set utm-status enable
 set inspection-mode proxy
 set logtraffic all
 set ssl-ssh-profile "deep-inspection"
 set nat enable
next
end
```

For SSL-UTM-log

```
#EVENTTYPE="SSL-ANOMALIES"

By default, ssl-anomaly-log is enabled.
```
config firewall ssl-ssh-profile
  edit "deep-inspection"
      set comment "Read-only deep inspection profile."
      set server-cert-mode re-sign
      set caname "Fortinet_CA_SSL"
      set untrusted-caname "Fortinet_CA_Untrusted"
      set ssl-anomaly-log enable
      set ssl-exemption-log disable
      set ssl-negotiation-log disable
      set rpc-over-https disable
      set mapi-over-https disable
      set use-ssl-server disable
  next
end
#
EVENTTYPE="SSL-EXEMPT"

Enable ssl-exemption-log to generate ssl-utm-exempt log.

config firewall ssl-ssh-profile
  edit "deep-inspection"
      set comment "Read-only deep inspection profile."
      set server-cert-mode re-sign
      set caname "Fortinet_CA_SSL"
      set untrusted-caname "Fortinet_CA_Untrusted"
      set ssl-anomaly-log enable
      set ssl-exemption-log enable
      set ssl-negotiation-log disable
      set rpc-over-https disable
      set mapi-over-https disable
      set use-ssl-server disable
  next
end
#
EVENTTYPE="SSL-negotiation"


config firewall ssl-ssh-profile
  edit "deep-inspection"
      set comment "Read-only deep inspection profile."
      set server-cert-mode re-sign
      set caname "Fortinet_CA_SSL"
      set untrusted-caname "Fortinet_CA_Untrusted"
      set ssl-anomaly-log enable
      set ssl-exemption-log enable
      set ssl-negotiation-log enable
      set rpc-over-https disable
      set mapi-over-https disable
      set use-ssl-server disable
      set ssl-server-cert-log enable
      set ssl-handshake-log enable
  next
end
Sample log for SSH

date=2019-05-15 time=16:18:17 logid="1601061010" type=utm subtype=ssh eventtype=ssh-channel level=warning vd=vdom1 eventtime=1557962296 policyid=1 sessionid=344 profile="ssh-deepscan" srcip=10.1.100.11 srcport=43580 dstport=172.16.200.44 dstport=22 srcintf="port2" srcintfrole=undefined dstintf="port23" dstintfrole=undefined proto=6 action=blocked direction=outgoing login=root channeltype=shell

# Corresponding Traffic Log #
date=2019-05-15 time=16:18:18 logid="0000000013" type=traffic subtype=forward level=notice vd=vdom1 eventtime=1557962298 srcip=10.1.100.11 srcport=43580 srcintf="port2" srcintfrole=undefined dstintf="port23" dstintfrole=undefined poluid="49871fae-7371-51e9-43c7ff119195" sessionid=344 proto=6 action=close policyid=1 policytype=policy service="SSH" dstcountry=Reserved srccountry=Reserved trandisp=snat transip=172.16.200.171 transport=43580 duration=8 sentbyte=3093 rcvbyte=2973 sentpkt=18 rcvdpkt=16 appcat=unscanned utmaction=block countssh=1 utmref=65535-0

Sample log for SSL

For SSL-Traffic-log

date=2019-05-16 time=10:08:26 logid="0000000013" type=traffic subtype=forward level=notice vd=vdom1 eventtime=1558026506 srcip=10.1.100.66 srcport=38572 srcintf="dmz" srcintfrole=dmz dstintf="wan" poluid="a17c0a38-75c6-51e9-4c0d-d547347b63e5" sessionid=100 proto=6 action=server-rst policyid=1 policytype=policy service=HTTPS dstcountry=United States srccountry=Reserved trandisp=snat transip=172.16.200.11 transport=38572 duration=5 sentbyte=930 rcvbyte=6832 sentpkt=11 rcvdpkt=19 appcat=unscanned wanin=1779 wanout=350 lanin=754 lanout=754 utmaction=block countssl=1 crrscore=5 craction=262144 crlevel=low utmref=65467-0

For SSL-UTM-log

#EVENTTYPE="SSL-ANOMALIES"
date=2019-03-28 time=10:44:53 logid="1700062002" type=utm subtype=ssl eventtype=ssl-_anomalies level=warning vd=vdom1 eventtime=1553795092 policyid=1 sessionid=10796 service=HTTPS srcip=10.1.100.66 srcport=43602 dstip=104.154.89.105 dstport=443 srcintf="port2" srcintfrole=undefined dstintf="port3" dstintfrole=undefined proto=6 action=blocked msg="Server certificate blocked" reason=block-cert-invalid

date=2019-03-28 time=10:51:17 logid="1700062002" type=utm subtype=ssl eventtype=ssl-_anomalies level=warning vd=vdom1 eventtime=1553795476 policyid=1 sessionid=11110 service=HTTPS srcip=10.1.100.66 srcport=49076 dstip=172.16.200.99 dstport=443 srcintf="port2" srcintfrole=undefined dstintf="port3" dstintfrole=undefined proto=6 action=blocked msg="Server certificate blocked" reason=block-cert-untrusted

date=2019-03-28 time=10:55:43 logid="1700062002" type=utm subtype=ssl eventtype=ssl-_anomalies level=warning vd=vdom1 eventtime=1553795742 policyid=1 sessionid=11334 service=HTTPS srcip=10.1.100.66 srcport=49082 dstip=172.16.200.99 dstport=443 srcintf="port2" srcintfrole=undefined dstintf="port3" dstintfrole=undefined proto=6 action=blocked msg="Server certificate blocked" reason=block-cert-req

date=2019-03-28 time=10:57:42 logid="1700062053" type=utm subtype=ssl eventtype=ssl-_anomalies level=warning vd=vdom1 eventtime=1553795861 policyid=1 sessionid=11424 service=SMTPS profile="block-unsupported-ssl" srcip=10.1.100.66 srcport=41296
Troubleshooting

The following topics provide information about troubleshooting logging and reporting:
Log-related diagnose commands

This topic shows commonly used examples of log-related diagnose commands.

Use the following diagnose commands to identify log issues:

- The following commands enable debugging log daemon (miglogd) at the proper debug level:
  
  diagnose debug application miglogd x
  diagnose debug enable

- The following commands display different status/statistics of miglogd at the proper level:
  
  diagnose test application miglogd x
  diagnose debug enable

To get the list of available levels, press Enter after diagnose test/debug application miglogd. The following are some examples of commonly use levels.

If the debug log display does not return correct entries when log filter is set:

diagnose debug application miglogd 0x1000

For example, use the following command to display all login system event logs:

execute log filter device disk
execute log filter category event
execute log filter field action login
execute log display

Files to be searched:
file_no=65523, start line=0, end line=237
file_no=65524, start line=0, end line=429
file_no=65525, start line=0, end line=411
file_no=65526, start line=0, end line=381
file_no=65527, start line=0, end line=395
file_no=65528, start line=0, end line=458
file_no=65529, start line=0, end line=604
file_no=65530, start line=0, end line=389
file_no=65531, start line=0, end line=384
session ID=1, total logs=3697
back ground search. process ID=26240, session_id=1
  start line=1  view line=10
  ( action "login"
    ID=1, total=3697, checked=238, found=5
    ID=1, total=3697, checked=668, found=13
    ID=1, total=3697, checked=1080, found=23
    ID=1, total=3697, checked=1462, found=23
    ID=1, total=3697, checked=1858, found=23
    ID=1, total=3697, checked=2317, found=54
    ID=1, total=3697, checked=2922, found=106
    ID=1, total=3697, checked=3312, found=111
    ID=1, total=3697, checked=3697, found=114
You can check and/or debug the FortiGate to FortiAnalyzer connection status.

To show connect status with detailed information:

diagnose test application migルド 1

faz: global , enabled
server=172.18.64.234, realtime=3, ssl=1, state=connected, src=, mgmt_name=FGeo_Log_vdom1_172.18.64.234, reliable=0, sni_prefix_type=none, required_entitlement=none
status: ver=6, used_disk=0, total_disk=0, global=0, vfid=0 conn_verified=Y
SNs: last sn update:107 seconds ago.
Sn list:
(FL-8HFT718900132,age=107s)
queue: qlen=0.
filter: severity=6, sz_exclude_list=0
voip dns ssh ssl cifs
subcategory:
traffic: forward local multicast sniffer
anomaly: anomaly
server: global, id=0, fd=132, ready=1, ipv6=0, 172.18.64.234/514
oftp-state=5

To collect debug information when FortiAnalyzer is enabled:

diagnose debug application migルドd 0x100

FGT-B-LOG (global) # <16208> miglog_start_rmt_conn()-1552: setting epoll_hd:0x7fc364e125e0 to _rmt_connect
<16209> miglog_start_rmt_conn()-1552: setting epoll_hd:0x7f72647715e0 to _rmt_connect
<16206> miglog_start_rmt_conn()-1552: setting epoll_hd:0x141f69e0 to _rmt_connect
<16209> _rmt_connect()-1433: oftp is ready.
<16209> _rmt_connect()-1435: xfer status changed from 2 to 2 for global-faz
<16209> _rmt_connect()-1439: setting epoll_hd:0x7f72647715e0 to _rmt_recv
<16209> _check_oftp_certificate()-248: checking sn:FL-8HFT718900132 vs cert sn:FL-8HFT718900132
<16209> _check_oftp_certificate()-252: Verified the certificate of peer (172.18.64.234) to match sn=FL-8HFT718900132
<16209> _faz_post_connection()-292: Certificate verification:enabled, Faz verified:1
<16209> _send_queue_item()-518: xfer status changed from 2 to 1 for global-faz
<16209> _send_queue_item()-523: type=0, cat=0, logcount=0, len=0
<16209> _oftp_send()-487: dev=global-faz type=17 pkt_len=34

<16209> _oftp_send()-487: opt=253, opt_len=10
<16209> _oftp_send()-487: opt=81, opt_len=12
<16209> _rmt_connect()-1433: oftp is ready.
<16209> _rmt_connect()-1435: xfer status changed from 2 to 2 for global-faz
<16209> _rmt_connect()-1439: setting epoll_hd:0x7fc364e125e0 to _rmt_recv
<16209> _check_oftp_certificate()-248: checking sn:FL-8HFT718900132 vs cert sn:FL-8HFT718900132
<16209> _check_oftp_certificate()-252: Verified the certificate of peer (172.18.64.234) to match sn=FL-8HFT718900132
<16209> _faz_post_connection()-292: Certificate verification:enabled, Faz verified:1
<16209> _send_queue_item()-518: xfer status changed from 2 to 1 for global-faz
<16209> _send_queue_item()-523: type=0, cat=0, logcount=0, len=0
<16209> _oftp_send()-487: dev=global-faz type=17 pkt_len=34
<16208> _oftp_send()-487: opt=253, opt_len=10
<16208> _oftp_recv()-1348: opt=252, opt_len=996
<16208> _oftp_send()-487: opt=81, opt_len=12
<16208> _process_response()-960: checking opt code=252
<16208> _faz_process_oftpResp()-488: ha nmember:1 nvcluster:0 mode:1
<16208> __is_sn_known()-356: MATCHED: idx:0 sn:FL-8HFT718900132
<16208> _faz_process_oftpResp()-494: Received SN:FL-8HFT718900132 should update:0

<16208> _oftp_recv()-1348: dev=global-faz type=252 pkt_len=1008
<16208> _oftp_recv()-1348: opt=252, opt_len=996
<16208> _process_response()-960: checking opt code=252
<16208> _faz_process_oftpResp()-488: ha nmember:1 nvcluster:0 mode:1
<16208> __is_sn_known()-356: MATCHED: idx:0 sn:FL-8HFT718900132
<16208> _faz_process_oftpResp()-494: Received SN:FL-8HFT718900132 should update:0

<16206> __rmt_connect()-1433: oftp is ready.
<16206> __rmt_connect()-1435: xfer_status changed from 2 to 2 for global-faz
<16206> __rmt_connect()-1439: setting epoll_hd:0x141f69e0 to __rmt_recv
<16206> _check_oftp_certificate()-248: checking sn:FL-8HFT718900132 vs cert sn:FL-8HFT718900132
<16206> _check_oftp_certificate()-252: Verified the certificate of peer (172.18.64.234) to match sn=FL-8HFT718900132
<16206> _faz_post_connection()-292: Certificate verification:enabled, Faz verified:1
<16206> _send_queue_item()-518: xfer_status changed from 2 to 1 for global-faz
<16206> _send_queue_item()-523: type=0, cat=0, logcount=0, len=0
<16206> _oftp_send()-487: dev=global-faz type=17 pkt_len=34

<16206> _oftp_send()-487: opt=253, opt_len=10
<16206> _oftp_send()-487: opt=81, opt_len=12
<16206> _oftp_recv()-1348: dev=global-faz type=252 pkt_len=1008

<16206> _oftp_recv()-1348: opt=252, opt_len=996
<16206> _process_response()-960: checking opt code=252
<16206> _faz_process_oftpResp()-488: ha nmember:1 nvcluster:0 mode:1
<16206> __is_sn_known()-356: MATCHED: idx:0 sn:FL-8HFT718900132
<16206> _faz_process_oftpResp()-494: Received SN:FL-8HFT718900132 should update:0

<16209> _oftp_recv()-1348: dev=global-faz type=1 pkt_len=985
<16209> _oftp_recv()-1348: opt=12, opt_len=16

......
<16209> _build_ack()-784: xfer_status changed from 1 to 2 for global-faz
<16209> _process_response()-960: checking opt code=81

......
<16209> _send_queue_item()-523: type=1, cat=0, logcount=0, len=0
<16209> _oftp_send()-487: dev=global-faz type=1 pkt_len=24

<16209> _oftp_send()-487: opt=1, opt_len=12
<16209> _send_queue_item()-523: type=7, cat=0, logcount=0, len=988
<16209> _oftp_send()-487: dev=global-faz type=252 pkt_len=1008

<16209> _oftp_send()-487: opt=252, opt_len=996
<16208> _oftp_recv()-1348: dev=global-faz type=1 pkt_len=58
<16208> _oftp_recv()-1348: opt=12, opt_len=16
<16208> _oftp_recv()-1348: opt=51, opt_len=9
<16208> _oftp_recv()-1348: opt=49, opt_len=12
<16208> _oftp_recv()-1348: opt=52, opt_len=9
<16208> _build_ack()-784: xfer_status changed from 1 to 2 for global-faz
<16208> _process_response()-960: checking opt code=52
<16208> _send_queue_item()-523: type=1, cat=0, logcount=0, len=0
<16208> _oftp_send()-487: dev=global-faz type=1 pkt_len=24

<16208> _oftp_send()-487: opt=1, opt_len=12
<16206> _oftp_recv()-1348: dev=global-faz type=1 pkt_len=985

......
<16208> _send_queue_item()-523: type=3, cat=1, logcount=1, len=301
<16206> _oftp_recv()-1348: opt=78, opt_len=55

......
<16208> _build_ack()-784: xfer_status changed from 1 to 2 for global-faz
<16208> _process_response()-960: checking opt code=81

......
<16206> _oftp_send()-487: dev=global-faz type=1 pkt_len=24
<16206> _oftp_send()-487: opt=1, opt_len=12
<16206> _send_queue_item()-523: type=1, cat=0, logcount=0, len=988
<16206> _oftp_send()-487: dev=global-faz type=252 pkt_len=1008

<16206> _oftp_send()-487: opt=252, opt_len=996
<16206> _add_change_notice_queue_item()-269: Change notice packet added to queue. len=145

......
<16206> _send_queue_item()-523: type=2, cat=0, logcount=0, len=300
<16206> _oftp_send()-487: dev=global-faz type=37 pkt_len=300

......
<16206> _oftp_send()-487: opt=152, opt_len=40
<16206> _oftp_send()-487: opt=74, opt_len=40
<16206> _oftp_send()-487: opt=82, opt_len=93
<16206> _oftp_recv()-1348: dev=global-faz type=1 pkt_len=24

<16206> _oftp_recv()-1348: opt=1, opt_len=12
<16206> _process_response()-960: checking opt code=1

To check the FortiGate to FortiGate Cloud log server connection status:

diagnose test application miglogd 20

FGT-B-LOG # diagnose test application miglogd 20
Home log server:
  Address: 172.16.95.92:514
Alternative log server:
  Address: 172.16.95.26:514
oftp status: established
Debug zone info:
  Server IP: 172.16.95.92
  Server port: 514
  Server status: up
Log and Report

Log quota: 102400MB
Log used: 673MB
Daily volume: 20480MB
FDS arch pause: 0
fams archive pause: 0

To check real-time log statistics by log type since the miglogd daemon start:

diagnose test application miglogd 4

FGT-B-LOG (global) # diagnose test application miglogd 4
info for vdom: root
disk
event: logs=1238 len=262534, Sun=246 Mon=247 Tue=197 Wed=0 Thu=55 Fri=246 Sat=247 compressed=163038
dns: logs=4 len=1734, Sun=0 Mon=0 Tue=0 Wed=0 Thu=4 Fri=0 Sat=0 compressed=453

report
event: logs=1244 len=225453, Sun=246 Mon=247 Tue=197 Wed=0 Thu=61 Fri=246 Sat=247
faz
event: logs=6 len=1548, Sun=0 Mon=0 Tue=6 Wed=0 Thu=0 Fri=0 Sat=0 compressed=5446

info for vdom: vdom1
memory
traffic: logs=462 len=389648, Sun=93 Mon=88 Tue=77 Wed=0 Thu=13 Fri=116 Sat=75
event: logs=3724 len=1170237, Sun=670 Mon=700 Tue=531 Wed=0 Thu=392 Fri=747 Sat=684
app-ctrl: logs=16 len=9613, Sun=3 Mon=3 Tue=3 Wed=0 Thu=0 Fri=5 Sat=2
dns: logs=71 len=29833, Sun=0 Mon=0 Tue=0 Wed=0 Thu=71 Fri=0 Sat=0

disk
traffic: logs=462 len=389648, Sun=93 Mon=88 Tue=77 Wed=0 Thu=13 Fri=116 Sat=75
compressed=134638
event: logs=2262 len=550957, Sun=382 Mon=412 Tue=307 Wed=0 Thu=306 Fri=459 Sat=396
compressed=244606
app-ctrl: logs=16 len=9613, Sun=3 Mon=3 Tue=3 Wed=0 Thu=0 Fri=5 Sat=2 compressed=3966
dns: logs=71 len=29833, Sun=0 Mon=0 Tue=0 Wed=0 Thu=71 Fri=0 Sat=0 compressed=1499

report
traffic: logs=462 len=375326, Sun=93 Mon=88 Tue=77 Wed=0 Thu=13 Fri=116 Sat=75
event: logs=3733 len=1057123, Sun=670 Mon=700 Tue=531 Wed=0 Thu=401 Fri=747 Sat=684
app-ctrl: logs=16 len=9117, Sun=3 Mon=3 Tue=3 Wed=0 Thu=0 Fri=5 Sat=2
faz
traffic: logs=462 len=411362, Sun=93 Mon=88 Tue=77 Wed=0 Thu=13 Fri=116 Sat=75
compressed=307610
event: logs=3733 len=1348297, Sun=670 Mon=700 Tue=531 Wed=0 Thu=401 Fri=747 Sat=684
compressed=816636
app-ctrl: logs=16 len=10365, Sun=3 Mon=3 Tue=3 Wed=0 Thu=0 Fri=5 Sat=2 compressed=8193
dns: logs=71 len=33170, Sun=0 Mon=0 Tue=0 Wed=0 Thu=71 Fri=0 Sat=0 compressed=0

To check log statistics to the local/remote log device since the miglogd daemon start:

diagnose test application miglogd 6 1  <<< 1 means the first child daemon

diagnose test application miglogd 6 2  <<< 2 means the second child daemon
To check the miglogd daemon number and increase/decrease miglogd daemon:

diagnose test application miglogd 15 <<< Show miglog ID

diagnose test application miglogd 13 <<< Increase one miglogd child

diagnose test application miglogd 14 <<< Decrease one miglogd child

To check the remote queue and see the maximum buffered memory size:

```
diagnose test application miglogd 41

cache maximum: 105405644(100MB) objects: 0 used: 0(0MB) allocated: 0(0MB)
```

```
VDOM:root
Queue for: global-faz

 memory queue:
 num:0 size:0(0MB) max:105405644(100MB) logs:0

Queue for: fds

 memory queue:
 num:0 size:0(0MB) max:97852620(93MB) logs:0
```

**Backing up log files or dumping log messages**

When a log issue is caused by a particular log message, it is very helpful to get logs from that FortiGate. This topic provides steps for using `execute log backup` or dumping log messages to a USB drive.
Backing up full logs using execute log backup

This command backs up all disk log files and is only available on FortiGates with an SSD disk.
Before running execute log backup, we recommend temporarily stopping miglogd and reportd.

To stop and kill miglogd and reportd:

diagnose sys process daemon-auto-restart disable miglogd
diagnose sys process daemon-auto-restart disable reportd

Or

1. Determine the process, or thread, ID (PID) of miglogd and reportd:
   
   # diagnose sys top 10 99

2. Kill each process:
   
   # diagnose sys kill 9 <PID>

To store the log file on a USB drive:

1. Plug in a USB drive into the FortiGate.
2. Run this command:
   
   execute log backup /usb/log.tar

To restart miglogd and reportd:

   diagnose sys process daemon-auto-restart enable miglogd
diagnose sys process daemon-auto-restart enable reportd

Dumping log messages

To dump log messages:

1. Enable log dumping for miglogd daemon:

   (global) # diagnose test application miglogd 26 1
   miglogd(1) log dumping is enabled

2. Display all miglogd dumping status:

   (global) # diagnose test application miglogd 26 0 255
   miglogd(0) log dumping is disabled
   miglogd(1) log dumping is enabled
   miglogd(2) log dumping is disabled

   (global) # diagnose test application miglogd 26 2
   miglogd(2) log dumping is enabled

   (global) # diagnose test application miglogd 26 0
   miglogd(0) log dumping is enabled

   (global) # diagnose test application miglogd 26 0 255
   miglogd(0) log dumping is enabled
3. Let the FortiGate run and collect log messages.
4. List the log dump files:
   (global)  # diagnose test application miglogd 33
   2019-04-17 15:50:02  20828  log-1-0.dat
   2019-04-17 15:48:31  4892  log-2-0.dat

5. Back up log dump files to the USB drive:
   (global)  # diagnose test application miglogd 34

   Dumping file miglog1_index0.dat copied to USB disk OK.
   Dumping file miglog2_index0.dat copied to USB disk OK.

6. Disable log dumping for miglogd daemon:
   (global)  # diagnose test application miglogd 26 0
   miglogd(0) log dumping is disabled
   (global)  # diagnose test application miglogd 26 1
   miglogd(1) log dumping is disabled
   (global)  # diagnose test application miglogd 26 2
   miglogd(2) log dumping is disabled
   (global)  # diagnose test application miglogd 26 0 255
   miglogd(0) log dumping is disabled
   miglogd(1) log dumping is disabled
   miglogd(2) log dumping is disabled

SNMP OID for logs that failed to send

When a syslog server encounters low-performance conditions and slows down to respond, the buffered syslog messages in the kernel might overflow after a certain number of retransmissions, causing the overflowed messages to be lost. OIDs track the lost messages or failed logs.

SNMP query OIDs include log statistics for global log devices:

- FORTINET-FORTIGATE-MIB:fortinet.fnFortiGateMib.fgLog.fgLogDeviceNumber 1.3.6.1.4.1.12356.101.21.1.1
- FORTINET-FORTIGATE-MIB:fortinet.fnFortiGateMib.fgLog.fgLogDevices.fgLogDeviceTable.fgLogDeviceEntry.fgLogDeviceEntryIndex 1.3.6.1.4.1.12356.101.21.1.1.1
- FORTINET-FORTIGATE-MIB:fortinet.fnFortiGateMib.fgLog.fgLogDevices.fgLogDeviceTable.fgLogDeviceEntry.fgLogDeviceEnabled 1.3.6.1.4.1.12356.101.21.2.1.1.2
- FORTINET-FORTIGATE-MIB:fortinet.fnFortiGateMib.fgLog.fgLogDevices.fgLogDeviceTable.fgLogDeviceEntry.fgLogDeviceName 1.3.6.1.4.1.12356.101.21.2.1.1.3
- FORTINET-FORTIGATE-MIB:fortinet.fnFortiGateMib.fgLog.fgLogDevices.fgLogDeviceTable.fgLogDeviceEntry.fgLogDeviceSentCount 1.3.6.1.4.1.12356.101.21.2.1.1.4
- FORTINET-FORTIGATE-MIB:fortinet.fnFortiGateMib.fgLog.fgLogDevices.fgLogDeviceTable.fgLogDeviceEntry.fgLogDeviceRelayedCount
  1.3.6.1.4.1.12356.101.21.2.1.1.5
- FORTINET-FORTIGATE-MIB:fortinet.fnFortiGateMib.fgLog.fgLogDevices.fgLogDeviceTable.fgLogDeviceEntry.fgLogDeviceCachedCount
  1.3.6.1.4.1.12356.101.21.2.1.1.6
- FORTINET-FORTIGATE-MIB:fortinet.fnFortiGateMib.fgLog.fgLogDevices.fgLogDeviceTable.fgLogDeviceEntry.fgLogDeviceFailedCount
  1.3.6.1.4.1.12356.101.21.2.1.1.7
- FORTINET-FORTIGATE-MIB:fortinet.fnFortiGateMib.fgLog.fgLogDevices.fgLogDeviceTable.fgLogDeviceEntry.fgLogDeviceDroppedCount
  1.3.6.1.4.1.12356.101.21.2.1.1.8

Where:
- fgLogDeviceNumber is the number of devices in the table.
- fgLogDeviceEnabled is either 1 or 0, indicating whether the device is enabled.
- fgLogDeviceName is the name of the device.

A FortiGate connected to a syslog server or FortiAnalyzer generates statistics that can be seen using the `diagnose test application miglogd` command:

```sh
(global) # diagnose test application miglogd 6
mem=404, disk=657, alert=0, alarm=0, sys=920, faz=555, webt=0, fds=0
interface-missed=460
Queues in all miglogds: cur:0 total-so-far:526
global log dev statistics:
syslog 0: sent=254, failed=139, relayed=0
syslog 1: sent=220, failed=139, relayed=0
syslog 2: sent=95, failed=73, relayed=0
faz 0: sent=282, failed=0, cached=0, dropped=0 , relayed=0
Num of REST URLs: 3
/api/v2/monitor/system/csf/ : 0 : 300
/api/v2/cmdb/system/interface/ : 394.0.673.15877729363538323653.1547149763 : 1200
/api/v2/monitor/system/ha-checksums/ : 0 : 1200
faz 1: sent=272, failed=0, cached=0, dropped=0 , relayed=0
Num of REST URLs: 2
/api/v2/monitor/system/csf/ : 0 : 300
/api/v2/cmdb/system/interface/ : 394.0.673.15877729363538323653.1547149763 : 1200
```

The same statistics are also available in `snmpwalk/snmpget` on the OID 1.3.6.1.4.1.12356.101.21.
To get the type of logging device that is attached to the FortiGate:

```
root@PC05:/home/tester/autolib/trunk# snmpwalk -v2c -c REGR-SYS 172.16.200.1.3.6.1.4.1.12356.101.21.2.1.1.3
FORTINET-FORTIGATE-MIB::fnFortiGateMib.21.2.1.1.3.0 = STRING: "syslog"
FORTINET-FORTIGATE-MIB::fnFortiGateMib.21.2.1.1.3.1 = STRING: "syslog2"
FORTINET-FORTIGATE-MIB::fnFortiGateMib.21.2.1.1.3.2 = STRING: "syslog3"
FORTINET-FORTIGATE-MIB::fnFortiGateMib.21.2.1.1.3.3 = STRING: "syslog4"
FORTINET-FORTIGATE-MIB::fnFortiGateMib.21.2.1.1.3.4 = STRING: "faz"
FORTINET-FORTIGATE-MIB::fnFortiGateMib.21.2.1.1.3.5 = STRING: "faz2"
FORTINET-FORTIGATE-MIB::fnFortiGateMib.21.2.1.1.3.6 = STRING: "faz3"
FORTINET-FORTIGATE-MIB::fnFortiGateMib.21.2.1.1.3.7 = STRING: "webtrends"
FORTINET-FORTIGATE-MIB::fnFortiGateMib.21.2.1.1.3.8 = STRING: "fds"
```

To get the present state of the logging device that is attached to the FortiGate:

```
root@PC05:/home/tester/autolib/trunk# snmpwalk -v2c -c REGR-SYS 172.16.200.1.3.6.1.4.1.12356.101.21.2.1.1.2
FORTINET-FORTIGATE-MIB::fnFortiGateMib.21.2.1.1.2.0 = INTEGER: 1
FORTINET-FORTIGATE-MIB::fnFortiGateMib.21.2.1.1.2.1 = INTEGER: 1
FORTINET-FORTIGATE-MIB::fnFortiGateMib.21.2.1.1.2.2 = INTEGER: 1
FORTINET-FORTIGATE-MIB::fnFortiGateMib.21.2.1.1.2.3 = INTEGER: 0
FORTINET-FORTIGATE-MIB::fnFortiGateMib.21.2.1.1.2.4 = INTEGER: 0
FORTINET-FORTIGATE-MIB::fnFortiGateMib.21.2.1.1.2.5 = INTEGER: 0
FORTINET-FORTIGATE-MIB::fnFortiGateMib.21.2.1.1.2.6 = INTEGER: 0
FORTINET-FORTIGATE-MIB::fnFortiGateMib.21.2.1.1.2.7 = INTEGER: 0
FORTINET-FORTIGATE-MIB::fnFortiGateMib.21.2.1.1.2.8 = INTEGER: 0
```

To get the failed log count value:

```
root@PC05:/home/tester/autolib/trunk# snmpwalk -v2c -c REGR-SYS 172.16.200.1.3.6.1.4.1.12356.101.21.2.1.1.7
FORTINET-FORTIGATE-MIB::fnFortiGateMib.21.2.1.1.7.0 = Counter32: 139
FORTINET-FORTIGATE-MIB::fnFortiGateMib.21.2.1.1.7.1 = Counter32: 139
FORTINET-FORTIGATE-MIB::fnFortiGateMib.21.2.1.1.7.2 = Counter32: 73
FORTINET-FORTIGATE-MIB::fnFortiGateMib.21.2.1.1.7.3 = Counter32: 0
FORTINET-FORTIGATE-MIB::fnFortiGateMib.21.2.1.1.7.4 = Counter32: 0
FORTINET-FORTIGATE-MIB::fnFortiGateMib.21.2.1.1.7.5 = Counter32: 0
FORTINET-FORTIGATE-MIB::fnFortiGateMib.21.2.1.1.7.6 = Counter32: 0
FORTINET-FORTIGATE-MIB::fnFortiGateMib.21.2.1.1.7.7 = Counter32: 0
FORTINET-FORTIGATE-MIB::fnFortiGateMib.21.2.1.1.7.8 = Counter32: 0
```
This section contains topics on deploying FortiGate-VM:

- Amazon Web Services on page 2616
- Microsoft Azure on page 2616
- Google Cloud Platform on page 2616
- Oracle OCI on page 2616
- AliCloud on page 2617
- Private cloud on page 2617
- VM license on page 2617
- Adding VDOMs with FortiGate v-series on page 2622
- Terraform: FortiOS as a provider on page 2624
- PF and VF SR-IOV driver and virtual SPU support on page 2629
- Using OCI IMDSv2 on page 2630
- FIPS cipher mode for AWS, Azure, OCI, and GCP FortiGate-VMs on page 2633

Amazon Web Services

See the FortiOS 7.2.0 AWS Administration Guide.

Microsoft Azure

See the FortiOS 7.2.0 Azure Administration Guide.

Google Cloud Platform

See the 7.2.0 FortiOS GCP Administration Guide.

Oracle OCI

See the 7.2.0 FortiOS OCI Administration Guide.
**AliCloud**

See the [7.2.0 FortiOS AliCloud Administration Guide](#).

**Private cloud**

See [FortiGate Private Cloud](#) in the document library.

**VM license**

You can access the *FortiGate VM License* page from the *Dashboard > Status* page in the *Virtual Machine* widget. Click the device license and select *FortiGate VM License*.

The *FortiGate VM License* page displays the following information:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>License status</td>
<td>Displays one of the following statuses:</td>
</tr>
<tr>
<td></td>
<td>- Valid: VM can connect and validate the license against a FortiManager or FortiGuard server. All features are available.</td>
</tr>
<tr>
<td></td>
<td>- Warning: VM cannot connect and validate against a FortiManager or FortiGuard server. A check is made against how many days the warning status is continuous. If the number is less than 30 days, the status does not change.</td>
</tr>
<tr>
<td></td>
<td>- Invalid: VM cannot connect and validate against a FortiManager or FortiGuard server. A check is made against how many days the warning status is continuous. If the number is 30 days or more, the status changes to invalid. GUI access is restricted until a valid license is uploaded. Firewall policies do not work. FortiGuard downloads are unavailable.</td>
</tr>
<tr>
<td></td>
<td>- Pending: temporary state where the VM attempts to validate its license.</td>
</tr>
<tr>
<td></td>
<td>Reasons for having a warning or invalid status include:</td>
</tr>
<tr>
<td></td>
<td>- The network environment does not allow FortiGate-VM to connect to the FortiGuard server.</td>
</tr>
<tr>
<td></td>
<td>- The license may be expired. Check the expiration date for evaluation or term-based licenses.</td>
</tr>
<tr>
<td></td>
<td>- Another VM has been already validated with FortiGuard using the same license. See <a href="#">VM license activation</a> for details about duplicated VM instances.</td>
</tr>
</tbody>
</table>

Allocated vCPUs Number of allocated and total allowable vCPUs

Allocated RAM Amount of allocated RAM. There are no RAM restrictions.

Expires on Expiry date (value depends on the type of license)

This information is visible in the CLI by running `get system status` (see [CLI troubleshooting](#)).
Uploading a license file

After you submit an order for a FortiGate-VM, Fortinet sends a license registration code to the email address that you entered in the order form. Use this code on the FortiCloud portal to register the FortiGate-VM.

Once the VM is registered, you can download the license file in .LIC format. On the FortiGate VM License page, click Upload. The system prompts you to reboot and validate the license with the FortiGuard server. Once validated, your FortiGate-VM is fully functional.

The VM license window may also appear immediately after logging in if you are running a VM with an evaluation license that has expired.

In cases where the GUI is not accessible, you can upload the license using secure copy (SCP).

---

For information about injecting FortiFlex license tokens, see Injecting tokens into FortiGate-VM in the Flex VM Deployment Guide.

---

To upload the license using SCP:

1. Enable SCP:
   ```
 config system global
 set admin-scp enable
 end
   ```

2. Enable SSH in the administrative access for the interface where the transfer will take place:
   ```
 config system interface
 edit <interface>
 append allowaccess ssh
 next
 end
   ```

3. On your computer, upload the VM license. This example is for Linux:
   ```
 scp <filename> <admin-user>@<FortiGate_IP>:vmlicense
   ```

Types of VM licenses

FortiGate-VM offers perpetual licensing (normal series and V-series) and annual subscription licensing (S-series). SKUs are based on the number of vCPUs (1, 2, 4, 8, 16, 32, or unlimited).

The FortiFlex program allows qualified enterprise and MSSP customers to create as many VM entitlements as required. Resource consumption is based upon predefined points that are calculated on a daily basis. For information, see the FortiFlex Program Guide in the Fortinet document library.
### Licensing and support

<table>
<thead>
<tr>
<th>Feature</th>
<th>Normal series</th>
<th>V-series</th>
<th>S-series</th>
<th>FortiFlex</th>
</tr>
</thead>
</table>
|                               | The VM base is perpetual. You must separately contract support services on an annual basis. See the price list for details. | Single annually contracted SKU that contains a VM base and a FortiCare service bundle. Four support service bundle types are available:  
- Only FortiCare  
- UTM  
- Enterprise  
- ATP | An annually contracted program to create multiple sets of a single entitlement per VM. Entitlements contain a VM base and FortiCare bundle. Four support service bundle types are available:  
- Only FortiCare  
- UTM  
- Enterprise  
- ATP | |

#### vCPU number upgrade during contracted term

- Normal series: Not supported.
- V-series: Supported. You can also upgrade the support service bundle. Contact a Fortinet sales representative to upgrade.
- S-series: Supported. You can apply different VM entitlement configurations in the FortiFlex portal. API is not supported at this time.

#### vCPU number downgrade during contracted term

- Normal series: Not supported.
- V-series: Not supported.
- S-series: By default, all CPU levels do not support adding VDOMs. S-series VM instances do not support the subscription VDOM license.

#### VDOM support

- Normal series: By default, each CPU level supports up to a certain number of VDOMs. Refer to the FortiGate-VM data sheet for default limits.
- V-series: By default, all CPU levels do not support adding VDOMs.
- S-series: By default, all CPU levels do not support adding VDOMs.

---

### Consuming a new vCPU

In a scenario where you have not allocated all the vCPUs allotted by your VM entitlement, you can add additional vCPUs to your FortiGate VM. The vCPU allocation can be verified in the GUI and CLI.

#### To confirm the vCPU allocation in the GUI:

1. Go to Dashboard > Status, and locate the Virtual Machine widget.
2. Verify the Allocate vCPUs field, which displays the number and percentage of allocated vCPUs.
To confirm the vCPU allocation in the CLI:

```
get system status | grep "VM Resources"
VM Resources: 1 CPU/4 allowed, 2006 MB RAM
```

You can increase the number of vCPUs on running FortiGate VM models that support hot-adding. Once the hot-adding is complete, perform one of the following for FortiOS to recognize the new CPUs:

- Enter `execute cpu add <number_of_new_vCPUs>.
- Reboot the FortiGate.

**CLI troubleshooting**

In some cases, you can view more information from the CLI to diagnose issues with VM licensing. This is also useful when the GUI is inaccessible due to an invalid contract.

Before you begin, ensure your FortiGate has the proper routes to connect to the internet. Run all following debug commands for a full picture of the issue.

To view the license status, expiration date, and VM resources:

```
get system status
Version: FortiGate-VM64-KVM v6.4.2,build1723,200730 (GA)
...
Serial-Number: FGVM08**********
....
License Status: Valid
License Expiration Date: 2020-12-10
VM Resources: 1 CPU/8 allowed, 2010 MB RAM
...
```

To display license details:

```
diagnose debug vm-print-license
SerialNumber: FGVM08**********
CreateDate: Tue Dec 10 00:57:32 2019
License expires: Thu Dec 10 00:00:00 2020
Expiry: 366
Key: yes
Cert: yes
Key2: yes
Cert2: yes
Model: 08 (11)
CPU: 8
MEM: 2147483647
```

To display license information from FortiGuard:

```
diagnose hardware sysinfo vm full
UUID: abbe*************************
valid: 1
status: 1
code: 200
warn: 0
```

FortiOS 7.2.0 Administration Guide
Fortinet Inc.
copy: 0  
received: 4604955037  
warning: 4600905081  
recv: 202009152207  
dup: 

<table>
<thead>
<tr>
<th>Field</th>
<th>Value and description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>0 – Invalid</td>
</tr>
<tr>
<td></td>
<td>1 – Valid</td>
</tr>
<tr>
<td>Status</td>
<td>0 – Startup</td>
</tr>
<tr>
<td></td>
<td>1 – Success</td>
</tr>
<tr>
<td></td>
<td>2 – Warning</td>
</tr>
<tr>
<td></td>
<td>3 – Error</td>
</tr>
<tr>
<td></td>
<td>4 – Invalid Copy</td>
</tr>
<tr>
<td></td>
<td>5 – Eval Expired</td>
</tr>
<tr>
<td></td>
<td>6 - Grace Period. For FortiFlex, there is a two-hour grace period to begin passing traffic upon retrieving the license from FortiCare.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2xx, 3xx</td>
<td>2xx, 3xx – Success</td>
</tr>
<tr>
<td>200</td>
<td>200 – Valid</td>
</tr>
<tr>
<td>202</td>
<td>202 – Accepted (treated as correct response code)</td>
</tr>
<tr>
<td>4xx</td>
<td>Error</td>
</tr>
<tr>
<td>400</td>
<td>Expired</td>
</tr>
<tr>
<td>401</td>
<td>Duplicate</td>
</tr>
<tr>
<td>5xx</td>
<td>Warning</td>
</tr>
<tr>
<td>500</td>
<td>Warning</td>
</tr>
<tr>
<td>502</td>
<td>Invalid. Cannot connect to FortiGuard Distribution Servers</td>
</tr>
<tr>
<td>6xx</td>
<td>Evaluation license expired</td>
</tr>
</tbody>
</table>

Other codes - Error

The following are examples of common combinations:

This combination indicates the license is valid and functioning normally:

```plaintext
valid: 1
status: 1
code: 200
```

This combination indicates the license itself is valid, but is running on a duplicate instance:

```plaintext
valid: 1
status: 4
code: 401
```

This combination indicates the system cannot connect to FortiGuard:

```plaintext
valid: 0
status: 2
code: 502
```

This combination indicates the license is expired and invalid:
valid: 0
status: 3
code: 400

This combination indicates the VM is unlicensed:
valid: 0
status: 3
code: 0

For FortiFlex licenses, the following command allows you to enter the license token and proxy information:

```
execute vm-license <token> https://<username>:<password>@<proxy IP address>:<proxy port>
```

FortiOS can receive the following error codes from the FortiCare server:
1 - Runtime error (server unhandled error on FortiCare sever)
57 - License Token is invalid
58 - License Token is already used and cannot be used again to retrieve license key

The FortiGate can generate the following error code:
60 - Failed to request forticare license. Failed to download VM license.

Contact Fortinet Support for assistance if your licensing issue persists.

## Adding VDOMs with FortiGate v-series

Each FortiGate-VM base license type allows a default number of virtual domains (VDOM). This topic provides sample procedures to add VDOMs beyond the default number using separately purchased VDOM licenses.

This topic consists of the following steps:

1. **Activate the FortiGate-VM with the base license.**
2. **Add more VDOMs to the FortiGate-VM.**

### To activate the FortiGate-VM with the base license:

1. Purchase and register the FortiGate-VM base license in FortiCare:
   a. Purchase the FortiGate-VM base license from Fortinet or a Fortinet reseller.
   b. You receive a license certification with a registration code. Open the certification.
   c. Log in to Fortinet Customer Service & Support.
   d. Go to Register Now and enter the provided registration code.
   e. Follow the registration process. The serial number generates and displays on the Registration Completion page.
   f. Go to Asset > Manage/View Products. Click the serial number to download the license file.
2. **Upload the FortiGate-VM base license file to FortiOS:**
   a. Log in to the FortiGate-VM GUI.
   b. In Dashboard > Status, in the Virtual Machine widget, click FortiGate VM License.
   c. Click the Upload button.
   d. Select the FortiGate-VM base license file, then click OK. The FortiGate-VM reboots after applying the base license.
3. Verify the FortiGate-VM base license status and VDOM information:
   a. Log in to the FortiGate-VM GUI.
   b. In Dashboard > Status, in the Virtual Machine widget, ensure that there is a checkmark in front of the FortiGate-VM base license name. The checkmark indicates that the base license is valid.
   c. You can check VDOM information using the CLI. The following output shows that the maximum number of VDOMs is currently one. This is correct since the FortiGate-VM base license only supports the default root VDOM that the system uses.

To add more VDOMs to the FortiGate-VM:

You can repeat this procedure multiple times to stack multiple VDOM licenses on the same FortiGate-VM.

1. Purchase and register the FortiGate-VM upgrade license in FortiCare. This example adds 15 VDOMs:
   a. Purchase the FortiGate-VM upgrade license from Fortinet or a Fortinet reseller.
   b. You receive a license certification with a registration code. Open the certification.
   c. Log in to Fortinet Customer Service & Support.
   d. Go to Asset > Register/Activate and enter the provided registration code.
   e. On the Specify License Confirmation Information screen, enter the FortiGate-VM serial number to apply the VDOM upgrade license to the FortiGate-VM. In this example, the FortiGate-VM serial number is FGVM4VTM19000476.
   f. Follow the registration process.
   g. Go to Asset > Manage/View Products > . Select the desired product, then click License & Key. The VDOM upgrade license displays under Registered License(s), and a key for adding 15 VDOMs (in this example M6JSD-8EE32-VHIJB-N) displays under Available Key(s).
2. Apply the FortiGate-VM upgrade license key to FortiOS:
   a. Log in to the FortiGate-VM CLI in the local console or using SSH.
   b. Apply the VDOM upgrade license key:
      `FGVM4VTM19000476 # execute upd-vd-license M6JSD-8EE32-VHIJB-N`
      update vdom license succeeded

3. Verify the FortiGate-VM VDOM information:
   a. Log in to the FortiGate-VM CLI in the local console or using SSH.
   b. Check VDOM information using the CLI. The following output shows that the maximum number of VDOMs is currently 15. When you add VDOMs for the first time on a FortiGate-VM v-series instance, FortiOS does not count the default VDOM, as the default VDOM is the so-called root VDOM that the system uses and FortiOS does not treat it as a countable VDOM in terms of VDOM addition. Therefore, as in this example, if your FortiGate-VM had the default VDOM configuration, then you add 15 VDOMs, FortiOS displays the maximum VDOM number as 15, not 16.

      # get system status
      Version: FortiGate-VM64-KVM v6.4.4,build1803,201209 (GA)
      Virus-DB: 82.00644(2020-12-18 12:20)
      Extended DB: 82.00644(2020-12-18 12:20)
      Extreme DB: 1.00000(2018-04-09 18:07)
      IPS-DB: 16.00982(2020-12-17 01:04)
      IPS-ETDB: 0.00000(2001-01-01 00:00)
      APP-DB: 16.00982(2020-12-17 01:04)
      INDUSTRIAL-DB: 6.00741(2015-12-01 02:30)
      Serial-Number: FGVM02TM20000000
      IPS Malicious URL Database: 2.00862(2020-12-18 06:12)
      License Status: Invalid Copy
      License Expiration Date: 2021-10-02
      VM Resources: 2 CPU/2 allowed, 2010 MB RAM
      Log hard disk: Available
      Hostname: FGDocs
      Private Encryption: Disable
      Operation Mode: NAT
      Current virtual domain: root
      Max number of virtual domains: 1
      Virtual domains status: 1 in NAT mode, 0 in TP mode
      Virtual domain configuration: disable
      FIPS-CC mode: disable
      Current HA mode: standalone
      Branch point: 1803
      Release Version Information: GA
      FortiOS x86-64: Yes
      System time: Fri Dec 25 13:24:20 2020

**Terraform: FortiOS as a provider**

Fortinet's Terraform support provides customers with more ways to efficiently deploy, manage, and automate security across physical FortiGate appliances and virtual environments. You can use Terraform to automate various IT infrastructure needs, thereby diminishing mistakes from repetitive manual configurations.

For example, if Fortinet is releasing a new FortiOS version, your organization may require you to test a new functionality to determine how it may impact the environment before globally deploying the new version. In this case, the ability to...
rapidly stand up environments and test these functions prior to production environment integration provides a resource-efficient and fault-tolerant approach.

The following example demonstrates how to use the Terraform FortiOS provider to perform simple configuration changes on a FortiGate unit. It requires the following:

- FortiOS 6.0 or later
- FortiOS Provider: This example uses terraform-provider-fortios 1.0.0.
- Terraform: This example uses Terraform 0.11.14.
- REST API administrator created on the FortiGate with the API key

For more information, see the Terraform FortiOS Provider at https://www.terraform.io/docs/providers/fortios/index.html.

**To create a REST API administrator:**

1. On the FortiGate, go to System > Administrators and click Create New > REST API Admin.
2. Enter the Username and, optionally, enter Comments.
3. Select an Administrator Profile.
4. We recommend that you create a new profile with minimal privileges for this terraform script:
   a. In the Administrator Profile drop down click Create New.
   b. Enter a name for the profile.
   c. Configure the Access Permissions:
      - *None*: The REST API is not permitted access to the resource.
      - *Read*: The REST API can send read requests (HTTP GET) to the resource.
      - *Read/Write*: The REST API can send read and write requests (HTTP GET/POST/PUT/DELETE) to the resource.
   d. Click OK.
5. Enter Trusted Hosts to specify the devices that are allowed to access this FortiGate.
6. Click OK.
   An API key is displayed. This key is only shown once, so you must copy and store it securely.

**To configure FortiGate with Terraform Provider module support:**

1. Download the terraform-provider-fortios file to a directory on the management computer.
2. Create a new file with the .tf extension for configuring your FortiGate:
   root@mail:/home/terraform# ls
terraform-provider-fortios_v1.0.0_x4 test.tf
3. Edit the test.tf Terraform configuration file:
   In this example, the FortiGate's IP address is 10.6.30.5, and the API user token is 17b**************63ck. Your provider information must also be changed.

   # Configure the FortiOS Provider
   provider "fortios" {
     hostname = "10.6.30.5"
     token = "17b**************63ck"
   }

4. Create the resources for configuring your DNS object and adding a static route:

   resource "fortios_system_setting_dns" "test1" {
     primary = "172.16.95.16"
     secondary = "8.8.8.8"
5. Save your Terraform configuration file.

6. In the terminal, enter `terraform init` to initialize the working directory.
   It reads the provider if the name follows the convention `terraform-provider-[name]`:
   ```
 root@mail:/home/terraform# terraform init
 Initializing the backend...
 Terraform has been successfully initialized!
 You may now begin working with Terraform. Try running "terraform plan" to see any changes that are required for your infrastructure. All Terraform commands should now work.
 If you ever set or change modules or backend configuration for Terraform, rerun this command to reinitialize your working directory. If you forget, other commands will detect it and remind you to do so if necessary.
   ```

7. Run `terraform -v` to verify the version of loaded provider module:
   ```
 root@mail:/home/terraform# terraform -v
 Terraform v0.11.14
 + provider.fortios v1.0.0
   ```

8. Enter `terraform plan` to parse the configuration file and read from the FortiGate configuration to see what Terraform changes:
   This example create a static route and updates the DNS address. You can see that Terraform reads the DNS addresses from the FortiGate and then lists them.
   ```
 root@mail:/home/terraform# terraform plan
 Refreshing Terraform state in-memory prior to plan...
 The refreshed state will be used to calculate this plan, but will not be persisted to local or remote state storage.
 fortios_networking_route_static.test1: Refreshing state... (ID: 2)
 fortios_system_setting_dns.test1: Refreshing state... (ID: 96.45.45.45)
 --
 An execution plan has been generated and is shown below.
 Resource actions are indicated with the following symbols:
 + create
 - update in-place
 Terraform will perform the following actions:
 + fortios_networking_route_static.test1
 id: <computed>
 blackhole: "disable"
 comment: "Terraform test"
 device: "port2"
 distance: "22"
 dst: "110.2.2.122/32"
 gateway: "2.2.2.2"
   ```
priority: "3"
weight: "3"

~ fortios_system_setting_dns.test1
primary: "96.45.45.45" => "172.16.95.16"
secondary: "208.91.112.22" => "8.8.8.8"

Plan: 1 to add, 1 to change, 0 to destroy.

Note: You didn't specify an "-out" parameter to save this plan, so Terraform can't guarantee that exactly these actions will be performed if "terraform apply" is subsequently run.

If you are running terraform-provider-fortios 1.1.0, you may see the following error:
   Error: Error getting CA Bundle, CA Bundle should be set when insecure is false.
   In this case, add the following line to the FortiOS provider configuration in the test.tf file:
       insecure = "true"

9. Enter `terraform apply` to continue the configuration:

```bash
root@mail:/home/terraform# terraform apply
fortios_system_setting_dns.test1: Refreshing state... (ID: 96.45.45.45)
fortios_networking_route_static.test1: Refreshing state... (ID: 2)
An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
+ create
~ update in-place
Terraform will perform the following actions:
+ fortios_networking_route_static.test1
 id: <computed>
 blackhole: "disable"
 comment: "Terraform test"
 device: "port2"
 distance: "22"
 dst: "110.2.2.122/32"
 gateway: "2.2.2.2"
 priority: "3"
 weight: "3"
~ fortios_system_setting_dns.test1
 primary: "96.45.45.45" => "172.16.95.16"
 secondary: "208.91.112.22" => "8.8.8.8"
Plan: 1 to add, 1 to change, 0 to destroy.
Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.
Enter a value: yes
fortios_networking_route_static.test1: Creating...
 blackhole: "" => "disable"
 comment: "" => "Terraform test"
 device: "" => "port2"
 distance: "" => "22"
 dst: "" => "110.2.2.122/32"
 gateway: "" => "2.2.2.2"
 priority: "" => "3"
 weight: "" => "3"
fortios_system_setting_dns.test1: Modifying... (ID: 96.45.45.45)
```
primary: "96.45.45.45" => "172.16.95.16"
secondary: "208.91.112.22" => "8.8.8.8"
fortios_networking_route_static.test1: Creation complete after 0s (ID: 2)
fortios_system_setting_dns.test1: Modifications complete after 0s (ID: 172.16.95.16)
Apply complete! Resources: 1 added, 1 changed, 0 destroyed.

The FortiGate is now configured according to the configuration file.

10. To change or delete something in the future, edit the configuration file and then apply it again. In supported cases, it deletes, adds, or updates new entries as configured. For instance, in this example you can remove the static route and revert the DNS address to its original configuration by changing the .tf file:

a. Edit the configuration file:

```terraform
Configure the FortiOS Provider
provider "fortios" {
 hostname = "10.6.30.5"
 token = "17b***************63ck"
}

resource "fortios_system_setting_dns" "test1" {
 primary = "96.45.45.45"
 secondary = "208.91.112.22"
}

#resource "fortios_networking_route_static" "test1" {
 # dst = "110.2.2.122/32"
 # gateway = "2.2.2.2"
 # blackhole = "disable"
 # distance = "22"
 # weight = "3"
 # priority = "3"
 # device = "port2"
 # comment = "Terraform test"
#}

b. Entering `terraform apply` deletes the static route that is commented out of the configuration file, and reverts the DNS address to the old address:

root@mail:/home/terraform# terraform apply
fortios_system_setting_dns.test1: Refreshing state... (ID: 172.16.95.16)
fortios_networking_route_static.test1: Refreshing state... (ID: 2)

An execution plan has been generated and is shown below.
Resource actions are indicated with the following symbols:
~ update in-place
- destroy
Terraform will perform the following actions:
- fortios_networking_route_static.test1
 ~ fortios_system_setting_dns.test1
 primary: "172.16.95.16" => "96.45.45.45"
 secondary: "8.8.8.8" => "208.91.112.22"
Plan: 0 to add, 1 to change, 1 to destroy.
Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.
Enter a value: yes
fortios_networking_route_static.test1: Destroying... (ID: 2)
fortios_system_setting_dns.test1: Modifying... (ID: 172.16.95.16)
primary: "172.16.95.16" => "96.45.45.45"
secondary: "8.8.8.8" => "208.91.112.22"
fortios_networking_route_static.test1: Destruction complete after 0s
fortios_system_setting_dns.test1: Modifications complete after 0s (ID: 96.45.45.45)
Apply complete! Resources: 0 added, 1 changed, 1 destroyed.

Troubleshooting

Use the HTTPS daemon debug to begin troubleshooting why a configuration was not accepted:

```bash
# diagnose debug enable
# diagnose debug application httpsd -l
```

The REST API 403 error means that your administrator profile does not have sufficient permissions.
The REST API 401 error means that you do not have the correct token or trusted host.

PF and VF SR-IOV driver and virtual SPU support

Physical Function (PF) and Virtual Function (VF) PCI Passthrough and SR-IOV drivers in FortiGate guest VM are supported.

PF provides the ability for PCI Passthrough, but requires an entire Network Interface Card (NIC) for a VM. It can usually achieve greater performance than a Virtual Function (VF) based SR-IOV. PF is also expensive. While VF allows one NIC to be shared among multiple guests VMs, PF is allocated to one port on a VM.

The supported driver versions are:

<table>
<thead>
<tr>
<th>Driver</th>
<th>Version</th>
<th>Hypervisor</th>
<th>PCI-Passthrough/SR-IOV</th>
<th>vSPU (In-guest DPDK)</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>ixgbe</td>
<td>5.6.5</td>
<td>ESXi, KVM</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Ixgbevf</td>
<td>4.6.3</td>
<td>ESXi, KVM</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i40e</td>
<td>2.10.19.82</td>
<td>ESXi, KVM</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>i40evf</td>
<td>3.6.15</td>
<td>ESXi, KVM</td>
<td>Yes</td>
<td>Yes</td>
<td>Available in FortiOS 6.4.0 and earlier versions.</td>
</tr>
<tr>
<td>Iavf</td>
<td>4.1.1</td>
<td>ESXi, KVM</td>
<td>Yes</td>
<td>Yes</td>
<td>Replaces i40evf in FortiOS 6.4.1 and later versions. Supports Intel E810-C 100G adapters.</td>
</tr>
<tr>
<td>Mlx5</td>
<td>4.6-1.0.1</td>
<td>ESXi, KVM</td>
<td>Yes</td>
<td>Yes</td>
<td>Supports Nvidia ConnectX-5 and ConnectX-6 100G adapters.</td>
</tr>
</tbody>
</table>
Other hypervisors, such as Xen or Microsoft Hyper-V, may work with vSPU, although they are unverified.

All tools and software utilities for UEFI 1.X have been removed from 6.2.0 and later releases. Update to UEFI 2.x to use the UEFI tools or software utilities.

You perform the configuration to use PF or VF on the hypervisor, and do not configure it on the FortiGate.

To check what driver is being used on the FortiGate:

```bash
# diagnose hardware deviceinfo nic port2
Name: port2
Driver: i40e
Version: 2.4.10
Bus: 0000:03:00.0
Hwaddr: 3c:fd:fe:1e:98:02
Permanent Hwaddr:3c:fd:fe:1e:98:02
State: up
Link: up
Mtut: 1500
Supported: auto 1000full 10000full
Advertised: auto 1000full 10000full
Auto: disabled
Rx packets: 0
Rx bytes: 0
Rx compressed: 0
...
```

Using OCI IMDSv2

OCI IMDSv2 offers increased security for accessing instance metadata compared to IMDSv1. IMDSv2 is used in OCI SDN connectors and on instance deployments with bootstrap metadata. When upgrading from previous FortiOS builds
with legacy IMDSv1 endpoints, the endpoints will be updated to IMDSv2, and the same calls can be made.

The following use cases illustrate IMDSv2 support on the FortiGate-VM.

To configure the Oracle OCI instance to use IMDSv2:

1. In OCI, deploy an instance using IMDSv2 with bootstrap metadata. There are two methods to enable IMDSv2:
 - Use the OCI command line to deploy an instance using user-data. This example uses a MIME file that contains the license and configuration, as well as a JSON file that specifies to disable V1 metadata.

   ```
   oci compute instance launch
   --availability-domain www1:US-ASHBURN-AD-1
   --compartment-id ocid1.tenancy.oc1..aaaaaaaaaaa3aaaaaaaaaaaaaaaaaaaa7xxxxxxxxx54aaaaaaa4xxxxxxxxx55xxxa
   --display-name fos-byol-v6.4.6-b2290-emulated
   --image-id ocid1.image.oc1.iad.aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa3xxxxxxxxxxxxxxxx
   --subnet-id ocid1.subnet.oc1.iad.aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa3xxxxxxxxxxxxxxxx
   --shape VM.Standard1.4
   --assign-public-ip true
   --user-data-file /home/oci/userdata/mime.txt
   --ssh-authorized-keys-file /home/oci/userdata/myfirstkeypair.pub
   --instance-options file:///home/oci/scripts/metadatav2.json
   root@mail:/home/oci/scripts# cat metadatav2.json
   {
   "areLegacyImdsEndpointsDisabled": true
   }
   ```
 - While the instance is running, edit the instance metadata service version in the GUI, and change the allowed IMDS version to VERSION 2 ONLY (see Getting Instance Metadata in the OCI documentation).

2. The FortiGate will use the metadata v2 endpoints to get the metadata bootstrap information. In FortiOS, verify this by running the following after bootup:

   ```
   # diagnose debug cloudinit show
   ```

 To configure an SDN connector with meta-IAM enabled and firewall addresses to obtain dynamic addresses:

2. In FortiOS, configure the OCI Fabric connector (see OCI SDN connector using certificates on page 2473 for detailed instructions):
 a. Create the SDN connector.
 b. Verify that the OCI connector comes up (Security Fabric > External Connectors page indicates the status is up).
 c. Configure a dynamic firewall address with a filter.
 d. Verify the dynamic firewall address is resolved by the SDN connector.

To manually update the external IP:

```
# execute update-eip
instance: fos-byol-v6.4.6-b2290-emulated
   vnic0: fos-byol-v6.4.6-b2290-emulated
      10.0.0.58 (129.213.138.192)
   port1: 10.0.0.58, eip: 129.213.138.192
EIP is updated successfully
```
To verify the OCI daemon debugs related to metadata:

```
# diagnose test application ocid 4
instance: fos-byol-v6.4.6-b2290-emulated
    vnic0: fos-byol-v6.4.6-b2290-emulated
    10.0.0.58
# diagnose test application ocid 5
Compartment
    Id:ocid1.tenancy.oc1..aaaaaaaaaaa3aaaaaaaaaaaaaaaaa7xxxxxxxx54aaaaaa4xxxxxxxx55xxa
    Instance ID:ocid1.instance.oc1.iad.axxxxxxxxxxxxxxxxxxx4aaaaa5aaaaaaaaa4xxxxxxx2aaaaaa
    Instance Name:fos-byol-v6.4.6-b2290-emulated
    OCI Region:us-ashburn-1
# diagnose test application ocid 6
Instance Principal Token has been refreshed
```

FIPS cipher mode for AWS, Azure, OCI, and GCP FortiGate-VMs

AWS, Azure, OCI, and GCP FortiGate-VMs support FIPS cipher mode. You must remove all VPN configurations before you can enable FIPS CC mode.

FIPS cipher mode only allows a restricted set of ciphers for features that require encryption, such as SSH, IPsec and SSL VPN, and HTTPS. You cannot use insecure protocols such as Telnet, TFTP, and HTTP to access the FortiGate-VM.

You must perform a factory reset to disable fips-ciphers mode.

To enable fips-ciphers mode:

```
config system fips-cc
    set status fips-ciphers
end
```

Warning: entering fips-ciphers mode. To exit this mode, factory reset is required.

Do you want to continue? (y/n) y

The following behavior occurs when you enable FIPS cipher mode:

- You can restore a license, image, configuration, and so on from an FTP server.
- The following options are available:

<table>
<thead>
<tr>
<th>SSH algorithms</th>
<th>IKE/IPsec phase1 proposals</th>
</tr>
</thead>
<tbody>
<tr>
<td>aes128-gcm@openssh.com</td>
<td>aes128-sha256</td>
</tr>
<tr>
<td>aes256-gcm@openssh.com</td>
<td>aes128-sha256</td>
</tr>
<tr>
<td>hmac-sha2-256</td>
<td>aes128-sha256</td>
</tr>
<tr>
<td>hmac-sha2-512</td>
<td>aes128-sha256</td>
</tr>
<tr>
<td>aes128-sha384</td>
<td>aes128-sha384</td>
</tr>
<tr>
<td>aes128-sha384</td>
<td>aes128-sha384</td>
</tr>
<tr>
<td>aes128-sha512</td>
<td>aes128-sha512</td>
</tr>
<tr>
<td>IKE/IPsec phase2 proposals</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>• aes128-sha256</td>
<td></td>
</tr>
<tr>
<td>• aes128-sha256</td>
<td></td>
</tr>
<tr>
<td>• aes128-sha384</td>
<td></td>
</tr>
<tr>
<td>• aes128-sha384</td>
<td></td>
</tr>
<tr>
<td>• aes128-sha512</td>
<td></td>
</tr>
<tr>
<td>• aes128-sha512</td>
<td></td>
</tr>
<tr>
<td>• aes128gcm</td>
<td></td>
</tr>
<tr>
<td>• aes128gcm</td>
<td></td>
</tr>
<tr>
<td>• aes128gcm-prfsha256</td>
<td></td>
</tr>
<tr>
<td>• aes128gcm-prfsha256</td>
<td></td>
</tr>
<tr>
<td>• aes128gcm-prfsha384</td>
<td></td>
</tr>
<tr>
<td>• aes128gcm-prfsha384</td>
<td></td>
</tr>
<tr>
<td>• aes128gcm-prfsha512</td>
<td></td>
</tr>
<tr>
<td>• aes128gcm-prfsha512</td>
<td></td>
</tr>
<tr>
<td>• aes256-sha256</td>
<td></td>
</tr>
<tr>
<td>• aes256-sha256</td>
<td></td>
</tr>
<tr>
<td>• aes256-sha384</td>
<td></td>
</tr>
<tr>
<td>• aes256-sha384</td>
<td></td>
</tr>
<tr>
<td>• aes256-sha512</td>
<td></td>
</tr>
<tr>
<td>• aes256-sha512</td>
<td></td>
</tr>
<tr>
<td>• aes256gcm-prfsha256</td>
<td></td>
</tr>
<tr>
<td>• aes256gcm-prfsha256</td>
<td></td>
</tr>
<tr>
<td>• aes256gcm-prfsha384</td>
<td></td>
</tr>
<tr>
<td>• aes256gcm-prfsha384</td>
<td></td>
</tr>
<tr>
<td>• aes256gcm-prfsha512</td>
<td></td>
</tr>
<tr>
<td>• aes256gcm-prfsha512</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IKE/IPsec DH groups</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Default = 19, or any three from 14 - 21, 27 - 32</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HTTPS for admin and SSL VPN (with RSA server certificate) TLS suites</th>
<th>PFS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• TLS_AES_256_GCM_SHA384</td>
<td></td>
</tr>
<tr>
<td>• ECDHE-RSA-AES256-GCM-SHA384</td>
<td></td>
</tr>
<tr>
<td>• DHE-RSA-AES256-GCM-SHA384</td>
<td></td>
</tr>
<tr>
<td>• TLS_AES_128_GCM_SHA256</td>
<td></td>
</tr>
<tr>
<td>• ECDHE-RSA-AES128-GCM-SHA256</td>
<td></td>
</tr>
<tr>
<td>• DHE-RSA-AES128-GCM-SHA256</td>
<td></td>
</tr>
</tbody>
</table>

Elliptic curves:
HTTPS for admin and SSL VPN (with ECC server certificate) TLS suites

<table>
<thead>
<tr>
<th>Elliptic curves</th>
<th>PFS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>prime256v1</td>
<td>TLS_AES_256_GCM_SHA384</td>
</tr>
<tr>
<td>secp384r1</td>
<td>ECDHE-ECDSA-AES256-GCM-SHA384</td>
</tr>
<tr>
<td>secp521r1</td>
<td>TLS_AES_128_GCM_SHA256</td>
</tr>
<tr>
<td></td>
<td>ECDHE-ECDSA-AES128-GCM-SHA256</td>
</tr>
</tbody>
</table>

- The FortiCare license is validated.
- FortiGuard databases and engines are updated.
- The DH-RSA-AES128-GCM-SHA256 and DH-RSA-AES256-GCM-SHA384 ciphers are not supported.
Troubleshooting

This section is intended for administrators with super_admin permissions who require assistance with basic and advanced troubleshooting. Administrators with other types of permissions may not be able to perform all of the tasks in this section.

This section contains the following troubleshooting topics:

- Troubleshooting methodologies on page 2637
- Troubleshooting scenarios on page 2640
 - Checking the system date and time on page 2641
 - Checking the hardware connections on page 2642
 - Checking FortiOS network settings on page 2643
 - Troubleshooting CPU and network resources on page 2646
 - FortiGuard server settings on page 2681
 - Troubleshooting high CPU usage on page 2647
 - Checking the modem status on page 2651
 - Running ping and traceroute on page 2652
 - Checking the logs on page 2655
 - Verifying routing table contents in NAT mode on page 2656
 - Verifying the correct route is being used on page 2657
 - Verifying the correct firewall policy is being used on page 2657
 - Checking the bridging information in transparent mode on page 2658
 - Checking wireless information on page 2659
 - Performing a sniffer trace or packet capture on page 2660
 - Debugging the packet flow on page 2661
 - Testing a proxy operation on page 2664
 - Displaying detail Hardware NIC information on page 2665
 - Performing a traffic trace on page 2667
 - Using a session table on page 2668
 - Finding object dependencies on page 2671
 - Diagnosing NPU-based interfaces on page 2672
 - Identifying the XAUI link used for a specific traffic stream on page 2673
 - Running the TAC report on page 2674
 - Using the process monitor on page 2675
 - Other commands on page 2677
 - FortiGuard troubleshooting on page 2680
 - View open and in use ports on page 2683
- Additional resources on page 2684
Troubleshooting methodologies

The sections in this topic provide an overview of how to prepare to troubleshoot problems in FortiGate. They include verifying your user permissions, establishing a baseline, defining the problem, and creating a plan.

Verify user permissions

Before you begin troubleshooting, verify the following:

- You have administrator privileges for the FortiGate.
- The FortiGate is integrated into your network.
- The operation mode is configured.
- The system time, DNS settings, administrator password, and network interfaces are configured.
- Firmware, FortiGuard AntiVirus, FortiGuard Application Control, and FortiGuard IPS are up to date.

If you are using a FortiGate that has virtual domains (VDOMs) enabled, you can often troubleshoot within your own VDOM. However, you should inform the super_admin for the FortiGate that you will be performing troubleshooting tasks.

You may also need access to other networking equipment, such as switches, routers, and servers to carry out tests. If you do not have access to this equipment, contact your network administrator for assistance.

Establish a baseline

FortiGate operates at all layers of the OSI model. For this reason, troubleshooting can be complex. Establishing baseline parameters for your system before a problem occurs helps to reduce the complexity when you need to troubleshoot.

A best practice is to establish and record the normal operating status. Regular operation data shows trends, and allows you to see where changes occur when problems arise. You can gather this data by using logs and SNMP tools to monitor the system performance or by regularly running information gathering commands and saving the output.

You should back up your FortiOS configuration on a regular basis even when you are not troubleshooting. You can restore the backed up configuration as needed to save time recreating it from the factory default settings.

Use the following CLI commands to obtain normal operating data for a FortiGate:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>get system status</td>
<td>Displays firmware versions and FortiGuard engine versions, and other system information.</td>
</tr>
<tr>
<td>get system performance status</td>
<td>Displays CPU and memory states, average network usage, average sessions and session setup rate, viruses caught, IPS attacks blocked, and uptime.</td>
</tr>
<tr>
<td>get hardware memory</td>
<td>Displays information about memory.</td>
</tr>
</tbody>
</table>

You can run any commands that apply to your system for information gathering. For example, if you have active VPN connections, use the `get vpn` series of commands to get more information about them.

Use `execute tac report` to get an extensive snapshot of your system. This command runs many diagnostic commands for specific configurations. It also records the current state of each feature regardless of the features deployed on your FortiGate. If you need to troubleshoot later, you can run the same command again and compare the differences to identify any suspicious output.

Define the problem

The following questions are intended to compare the current behavior of the FortiGate with normal operations to help you define the problem. Be specific with your answers. After you define the problem, search for a solution in the troubleshooting scenarios section, and then create a plan to resolve it.

<table>
<thead>
<tr>
<th>What is the problem?</th>
<th>The problem being observed may not be the actual problem. You should determine where the problem lies before starting to troubleshoot the FortiGate.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Was the device working before?</td>
<td>If the device never worked, it might be defective. For more information, see Troubleshooting your installation on page 74.</td>
</tr>
<tr>
<td>Can the problem be reproduced?</td>
<td>If the problem is intermittent, it may be dependent on system load. Intermittent problems are challenging to troubleshoot because they are difficult to reproduce.</td>
</tr>
<tr>
<td>What has changed?</td>
<td>Use the FortiGate event log to identify possible configuration changes. There may be changes in the operating environment. For example, there might be a gradual increase in load as more sites are forwarded through the firewall. If something has changed, roll back the change and assess the impact.</td>
</tr>
<tr>
<td>What is the scope of the problem?</td>
<td>After you isolate the problem, determine what applications, users, devices, and operating systems the problem affects. The following questions are intended to narrow the scope of the problem and identify what to check during troubleshooting. The more factors you can eliminate, the less you need to check. For this reason, be as specific and accurate as possible when gathering information.</td>
</tr>
<tr>
<td></td>
<td>• What is not working?</td>
</tr>
</tbody>
</table>
Troubleshooting

- Is more than one thing not working?
- Is it partly working? If so, what parts are working?
- Is it a connectivity issue for the entire device, or is there an application that isn’t reaching the Internet?
- Where did the problem occur?
- When did the problem occur and to which users or groups of users?
- What components are involved?
- What applications are affected?
- Can you use a packet sniffer to trace the problem?
- Can you use system debugging or look in the session table to trace the problem?
- Do any of the log files indicate a failure has occurred?

Create a troubleshooting plan

After you define the problem and its scope, develop a troubleshooting plan.

<table>
<thead>
<tr>
<th>Create checklist</th>
<th>Make a list all the possible causes of the problem and how you can test for each cause. Create a checklist to keep track of what has been tried and what is left to test. Checklists are useful when more than one person is performing troubleshooting tasks.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obtain the required equipment</td>
<td>Testing your solution may require additional networking equipment, computers, or other devices. Network administrators usually have additional networking equipment available to loan you, or a lab where you can bring the FortiGate unit to test. If you do not have access to equipment, check for shareware applications that can perform the same tasks. Often, there are software solutions you can use when hardware is too expensive.</td>
</tr>
<tr>
<td>Consult Fortinet troubleshooting resources</td>
<td>After the checklist is created, refer to the troubleshooting scenarios sections to assist with implementing your plan. See Troubleshooting scenarios on page 2640.</td>
</tr>
</tbody>
</table>
| Gather information for technical support | If you still require technical assistance after the plan is implemented, be prepared to provide Fortinet technical support with following information:
 - Firmware build version (use the `get system status` command)
 - Network topology diagram
 - Recent configuration file
 - Recent debug log (optional)
 - Summary of troubleshooting steps you have taken and the results. |

Do not provide the output from the `execute tac` report unless the support team requests it. The output from this command is very large and is not required in many cases.
Before contacting technical support, ensure you have login access (preferably with full read/write privileges) to all networking devices that could be relevant to troubleshooting.

If you are using VMs, be prepared to have someone who can log in to the virtual hosting platform in case it is necessary to check and possibly modify resource allocation.

For information about contacting technical support, go to FortiCare Support Service page.

Troubleshooting scenarios

The following table is intended to help you diagnose common problems and provides links to the corresponding troubleshooting topics:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable cause</th>
<th>Recommended action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware connections</td>
<td>• Are all of the cables and interfaces connected properly?</td>
<td>Checking the hardware connections on page 2642</td>
</tr>
<tr>
<td></td>
<td>• Is the LED for the interface green?</td>
<td></td>
</tr>
<tr>
<td>FortiOS network settings</td>
<td>• If you are having problems connecting to the management interface, is your</td>
<td>Checking FortiOS network settings on page 2643</td>
</tr>
<tr>
<td></td>
<td>protocol enabled on the interface for administrative access?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Does the interface have an IP address?</td>
<td></td>
</tr>
<tr>
<td>CPU and memory resources</td>
<td>• Is the CPU running at almost 100 percent usage?</td>
<td>Troubleshooting CPU and network resources on page 2646</td>
</tr>
<tr>
<td></td>
<td>• Is your FortiGate running low on memory?</td>
<td></td>
</tr>
<tr>
<td>Modem status</td>
<td>• Is the modem connected?</td>
<td>Checking the modem status on page 2651</td>
</tr>
<tr>
<td></td>
<td>• Are there PPP issues?</td>
<td></td>
</tr>
<tr>
<td>Ping and traceroute</td>
<td>Is the FortiGate experiencing complete packet loss?</td>
<td>Running ping and traceroute on page 2652</td>
</tr>
<tr>
<td>Logs</td>
<td>Do you need to identify a problem?</td>
<td>Checking the logs on page 2655</td>
</tr>
<tr>
<td>Contents of the routing table (in NAT mode)</td>
<td>• Are there routes in the routing table for default and static routes?</td>
<td>Verifying routing table contents in NAT mode on page 2656</td>
</tr>
<tr>
<td></td>
<td>• Do all connected subnets have a route in the routing table?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Does a route have a higher priority than it should?</td>
<td></td>
</tr>
<tr>
<td>Traffic routes</td>
<td>Is the traffic routed correctly?</td>
<td>Verifying the correct route is being used on page 2657</td>
</tr>
</tbody>
</table>
Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable cause</th>
<th>Recommended action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firewall policies</td>
<td>Is the correct firewall policy applied to the expected traffic?</td>
<td>Verifying the correct firewall policy is being used on page 2657</td>
</tr>
<tr>
<td>Bridging information in transparent mode</td>
<td>Are you having problems in transparent mode?</td>
<td>Checking the bridging information in transparent mode on page 2658</td>
</tr>
<tr>
<td>Firewall session list</td>
<td>• Are there active firewall sessions?</td>
<td>Using a session table on page 2668</td>
</tr>
<tr>
<td>Wireless Network</td>
<td>Is the wireless network working properly?</td>
<td>Checking wireless information on page 2659</td>
</tr>
<tr>
<td>FortiGuard connectivity</td>
<td>Is the FortiGate communicating properly with FortiGuard?</td>
<td>Verifying connectivity to FortiGuard on page 2680</td>
</tr>
<tr>
<td>Sniffer trace</td>
<td>• Is traffic entering the FortiGate? Does the traffic arrive on the expected interface?</td>
<td>Performing a sniffer trace or packet capture on page 2660</td>
</tr>
<tr>
<td></td>
<td>• Is the ARP resolution correct for the next-hop destination?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Is the traffic exiting the FortiGate to the destination as expected?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Is the FortiGate sending traffic back to the originator?</td>
<td></td>
</tr>
<tr>
<td>Packet flow</td>
<td>Is traffic entering or leaving the FortiGate as expected?</td>
<td>Debugging the packet flow on page 2661</td>
</tr>
</tbody>
</table>

Checking the system date and time

The system date and time are important for FortiGuard services, logging events, and sending alerts. The wrong time makes the log entries confusing and difficult to use.

When possible, use Network Time Protocol (NTP) to set the date and time. This is an automatic method that does not require manual intervention. However, you must ensure that the port is allowed through the firewalls on your network. FortiToken synchronization requires NTP in many situations.

For information about setting the system date and time, see Setting the system time on page 1978.

To view and configure the date and time in the GUI:

1. Go to Dashboard > Status. The date and time are displayed in the System Information widget, next to System Time.
2. Go to System > Settings.
3. In the System Time section, select NTP, and then configure the Time Zone, and Set Time settings as required.

To view the date and time in the CLI:

```bash
execute date
execute time
```
Troubleshooting

To configure the date and time in the CLI:

Use the `set timezone ?` command to display a list of timezones and the integers that represent them.

```
config system global
    set timezone <integer>
end
config system ntp
    set type custom
        config ntpserver
            edit 1
                set server “ntp1.fortinet.net”
            next
            edit 2
                set server “ntp2.fortinet.net”
            next
        end
    set ntpsync enable
    set syncinterval 60
end
```

Checking the hardware connections

If traffic is not flowing from the FortiGate, there may be a problem with the hardware connection.

To check hardware connections:

1. Ensure the network cables are plugged into the interfaces.
2. Verify the LED connection lights for the network cables indicate there is a connection. The lights are typically green when there is a connection.
3. Change the cable when:
 - The cable or its connector are damaged.
 - You are unsure of the type or quality of the cable, such as straight through or crossover.
 - You see exposed wires at the connector.
4. Connect the FortiGate to different hardware.
5. Go to Network > Interfaces to ensure the link status for the interface is set to Up. The link status is based on the physical connection and cannot be set in FortiOS.

To enable an interface in the GUI:

You should still perform basic software connectivity tests to ensure complete connectivity even if there was a problem with the hardware connection. The interface might also be disabled, or its Status might be set to Down. See Interfaces on page 135.

1. Go to Network > Interfaces.
2. Select an interface, such as Port1, and click Edit.
3. In the Miscellaneous area, next to Status, click Enabled.
4. Click OK.

To enable an interface in the CLI:

```
config system interface
```
Checking FortiOS network settings

Check the FortiOS network settings if you have problems connecting to the management interface. FortiOS network settings include, interface settings, DNS Settings, and DHCP settings.

Interface settings

If you can access the FortiGate with the management cable only, you can view the interface settings in the GUI.

To view the interface settings in the GUI:

1. Go to Network > Interfaces.
2. Select an interface and click Edit.
3. Check the following interfaces to ensure they are not blocking traffic.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link Status</td>
<td>The status is Up when a valid cable is plugged in. The status is Down when an invalid cable is plugged in. The Link Status is shown physically by the connection LED for the interface. If the LED is green, the connection is good. If Link Status is Down, the interface does not work. Link status also appears in the Network > Interfaces page by default.</td>
</tr>
<tr>
<td>Addressing mode</td>
<td>Do not use DHCP if you do not have a DHCP server. You will not be able to log into an interface in DHCP mode as it will not have an IP address.</td>
</tr>
<tr>
<td>IP/Network Mask</td>
<td>An interface requires an IP address to connect to other devices. Ensure there is a valid IP address in this field. The one exception is when DHCP is enabled for this interface to get its IP address from an external DHCP server.</td>
</tr>
<tr>
<td>IPv6 address</td>
<td>The same protocol must be used by both ends to complete the connection. Ensure this interface and the remote connection are both using IPv4 or both are using IPv6 addresses.</td>
</tr>
<tr>
<td>Administrative access</td>
<td>If no protocols are selected, you will have to use the local management cable to connect to the unit. If you are using IPv6, configure the IPv6 administrative access protocols.</td>
</tr>
<tr>
<td>Status</td>
<td>Ensure the status is set to Up or the interface will not work.</td>
</tr>
</tbody>
</table>

To display the internal interface settings in the CLI:

```plaintext
FGT# show system interface <interface_name>
```
To view the list of possible interface settings:

```bash
config system interface
  edit <interface_name>
    get
end
```

DNS settings

To view DNS settings in the GUI:

Go to `Network > DNS`.

You can trace many networking problems back to DNS issues. Check the following items:

1. Are there values for both the *Primary DNS server* and *Secondary DNS server* fields.
2. Is the *Local Domain Name* correct?
3. Are you using IPv6 addressing? If so, are the IPv6 DNS settings correct?
4. Are you using Dynamic DNS (DDNS)? If so, is it using the correct server, credentials, and interface?
5. Can you contact both DNS servers to verify the servers are operational?
6. If an interface addressing mode is set to DHCP and is set to override the internal DNS, is that interface receiving a valid DNS entry from the DHCP server? Is it a reasonable address and can it be contacted to verify it is operational?
7. Are there any DENY security policies that need to allow DNS?
8. Can any internal device perform a successful traceroute to a location using the FQDN?

DHCP server settings

DHCP servers are common on internal and wireless networks. The DHCP server will cause problems if it is not configured correctly.

To view DHCP server settings in the GUI:

1. Go to `Network > Interfaces`.
2. Select an interface, and click `Edit`.

Check the following items:

1. Is the DHCP server enabled?
2. Is the DHCP server entry set to *Relay*? If so, verify there is another DHCP server to which requests can be relayed. Otherwise, set it to *Server*.
3. Does the DHCP server use a valid IP address range? Are other devices using the addresses? If one or more devices are using IP addresses in this range, you can use the IP reservation feature to ensure the DHCP server does not use these addresses. See [DHCP server on page 287](#)
4. Is there a gateway entry? If not, add a gateway entry to ensure that the server's clients have a default route.
5. Is the system DNS setting being used? A best practice is to avoid confusion by using the system DNS whenever possible. However, you can specify up to three custom DNS servers, and you should use all three entries for redundancy.
Troubleshooting

There are some situations, such as a new wireless interface, or during the initial FortiGate configuration, where interfaces override the system DNS entries. When this happens, it often shows up as intermittent Internet connectivity. To fix the problem, go to Network > DNS, and enable Use FortiGuard Servers.

Checking CPU and memory resources

Check the CPU and memory resources when the FortiGate is not working, the network is slow, or there is a reduced firewall session setup rate. All processes share the system resources in FortiOS, including CPU and memory.

To view system resources in the GUI:

Go to Dashboard > Status.
The resource information is located in the CPU and Memory widgets. For information, see Dashboards and Monitors on page 76.

To view system resources in the CLI:

get system performance status

Sample output:

FGT# get system performance status
CPU states: 0% user 0% system 0% nice 100% idle 0% iowait 0% irq 0% softirq
CPU0 states: 0% user 0% system 0% nice 100% idle 0% iowait 0% irq 0% softirq
CPU1 states: 0% user 0% system 0% nice 100% idle 0% iowait 0% irq 0% softirq
CPU2 states: 0% user 0% system 0% nice 100% idle 0% iowait 0% irq 0% softirq
CPU3 states: 0% user 0% system 0% nice 100% idle 0% iowait 0% irq 0% softirq
Memory: 4050332k total, 527148k used (13%), 3381312k free (83%), 141872k freeable (3%)
Average network usage: 41 / 28 kbps in 1 minute, 54 / 44 kbps in 10 minutes, 42 / 34 kbps in 30 minutes
Average sessions: 33 sessions in 1 minute, 48 sessions in 10 minutes, 38 sessions in 30 minutes
Average session setup rate: 0 sessions per second in last 1 minute, 0 sessions per second in last 10 minutes, 0 sessions per second in last 30 minutes
Virus caught: 0 total in 1 minute
IPS attacks blocked: 0 total in 1 minute
Uptime: 0 days, 22 hours, 59 minutes

The first line of the output shows the CPU usage by category:

CPU states: 0% user 0% system 0% nice 100% idle 0% iowait 0% irq 0% softirq

The second line of the output shows the memory usage:

Memory: 4050332k total, 527148k used (13%), 3381312k free (83%), 141872k freeable (3%) Memory usage should not exceed 90%. Using too much memory prevents some processes from functioning properly. For example, if the system is running low on memory, antivirus scanning enters into failopen mode where it drops connections or bypasses the antivirus system.

Other lines of output, such as average network usage, average session setup rate, viruses caught, and IPS attacks blocked, help determine why system resource usage is high.

For example:
A high average network usage may indicate high traffic processing on the FortiGate,
A very low or zero, average session setup rate may indicate the proxy is overloaded and unable to do its job.

Troubleshooting CPU and network resources

FortiGate has stopped working

If the FortiGate has stopped working, the first line of the output will look similar to this:

```
CPU states: 0% user 0% system 0% nice 100% idle
```

Network is slow

If your network is running slow, the first line of the output will look similar to this:

```
CPU states: 1% user 98% system 0% nice 1% idle
```

This example shows that all of the CPU is being used by system processes, and the FortiGate is overloaded. When overloading occurs, it is possible a process such as scanunitid is using all the resources to scan traffic. In this case you need to reduce the amount of traffic being scanned by blocking unwanted protocols, configuring more security policies to limit scanning to certain protocols, or similar actions.

It is also possible a hacker has accessed your network and is overloading it with malicious activity, such as running a spam server or using zombie PCs to attack other networks on the Internet.

You can use the following command to investigate the problem with the CPU:

```
get system performance top
```

This command shows all of the top processes that are running on the FortiGate and their CPU usage. The process names are on the left. If a process is using most of the CPU cycles, investigate it to determine whether the activity is normal.

Reduced firewall session setup rate

A reduced firewall session setup rate can be caused by a lack of system resources on the FortiGate, or reaching the session count limit for a VDOM.

```
As a best practice, administrators should record the session setup rate during normal operation to establish a baseline to help define a problem when your are troubleshooting.
```

The session setup rate appears in the average sessions section of the output.

A reduced firewall session setup rate will look similar to this:

```
Average sessions: 80 sessions in 1 minute, 30 sessions in 10 minutes, 42 sessions in 30 minutes
Average session setup rate: 3 sessions per second in last 1 minute, 0 sessions per second in last 10 minutes, 0 sessions per second in last 30 minutes
```

In the example above, there were 80 sessions in 1 minute, or an average of 3 sessions per second.
The values for 10 minutes and 30 minutes allow you to take a longer average for a more reliable value if your FortiGate is working at maximum capacity. The smallest FortiGate can have 1,000 sessions established per second across the unit.

The session setup rate is a global command. If you have multiple VDOMs configured with many sessions in each VDOM, the session setup rate per VDOM will be slower than if there are no VDOMs configured.

High memory usage

As with any system, a FortiGate has limited hardware resources, such as memory, and all processes running on the FortiGate share the memory. Each process uses more or less memory, depending on its workload. For example, a process usually uses more memory in high traffic situations. If some processes use all of the available memory, other processes will not be able to run.

When high memory usage occurs, the services may freeze up, connections may be lost, or new connections may be refused.

If you see high memory usage in the Memory widget, the FortiGate may be handling high traffic volumes. Alternatively, the FortiGate may have problems with connection pool limits that are affecting a single proxy. If the FortiGate receives large volumes of traffic on a specific proxy, the unit may exceed the connection pool limit. If the number of free connections within a proxy connection pool reaches zero, issues may occur.

To view current memory usage information in the CLI:

```
diagnose hardware sysinfo memory
```

Sample output:

```
total: used: free: shared: buffers: cached: shm:
Mem: 2074185728 756936704 1317249024 0 20701184 194555904 161046528
Swap: 0 0 0
MemTotal: 2025572 kB
MemFree: 1286376 kB
MemShared: 0 kB
Buffers: 20216 kB
Cached: 189996 kB
SwapCached: 0 kB
Active: 56644 kB
Inactive: 153648 kB
HighTotal: 0 kB
HighFree: 0 kB
LowTotal: 2025572 kB
LowFree: 1286376 kB
SwapTotal: 0 kB
SwapFree: 0 kB
```

Troubleshooting high CPU usage

Connection-related problems may occur when FortiGate's CPU resources are over extended. This occurs when you deploy too many FortiOS features at the same time.
Examples of CPU intensive features:

- VPN high-level encryption
- Intensive scanning of all traffic
- Logging all traffic and packets
- Dashboard widgets that frequently perform data updates

For information on customizing the CPU use threshold, see Execute a CLI script based on CPU and memory thresholds on page 2412.

Determining the current level of CPU usage

You can view CPU usage levels in the GUI or CLI. For precise usage values for both overall usage and specific processes, use the CLI.

To view CPU usage in the GUI:

Go to *Dashboard > Status*. Real-time CPU usage information is located in the *CPU widget*.

To view CPU usage in the CLI:

- Show top processes information:
  ```bash
diagnose sys top
  ```
- Show top threads information:
  ```bash
diagnose sys top-all
  ```

Sample output:

Run Time: 86 days, 0 hours and 10 minutes
0U, 0N, 0S, 100I, 0WA, 0HI, 0SI, 0ST; 3040T, 2437F
 bcn.user 93 S < 3.1 0.4
 httpsd 18922 S 1.5 0.5
 httpsd 19150 S 0.3 0.5
 newcli 20195 R 0.1 0.1
 cmdbsvr 115 S 0.0 0.8
 pyfcqid 20107 S 0.0 0.6
 forticron 146 S 0.0 0.5
 httpsd 139 S 0.0 0.5
 cw_acd 166 S 0.0 0.5
 miglogd 136 S 0.0 0.5
 pyfcqid 20110 S 0.0 0.4
 pyfcqid 20111 S 0.0 0.4
 pyfcqid 20109 S 0.0 0.4
 httpsd 20192 S 0.0 0.4
 miglogd 174 S 0.0 0.4
 miglogd 175 S 0.0 0.4
 fgfmd 165 S 0.0 0.3
 newcli 20191 S 0.0 0.3
 initXXXXXXXXXX 1 S 0.0 0.3
 httpsd 184 s 0.0 0.3

The following table explains the codes in the second line of the output:
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>Percentage of user space applications that are currently using the CPU</td>
</tr>
<tr>
<td>N</td>
<td>Percentage of time that the CPU spent on low priority processes since the last shutdown</td>
</tr>
<tr>
<td>S</td>
<td>Percentage of system processes (or kernel processes) that are using the CPU</td>
</tr>
<tr>
<td>I</td>
<td>Percentage of idle CPU resources</td>
</tr>
<tr>
<td>WA</td>
<td>Percentage of time that the CPU spent waiting on IO peripherals since the last shutdown</td>
</tr>
<tr>
<td>HI</td>
<td>Percentage of time that the CPU spent handling hardware interrupt routines since the last shutdown</td>
</tr>
<tr>
<td>SI</td>
<td>Percentage of time that the CPU spent handling software interrupt routines since the last shutdown</td>
</tr>
<tr>
<td>ST</td>
<td>Steal time: Percentage of time a virtual CPU waits for the physical CPU when the hypervisor is servicing another virtual processor</td>
</tr>
<tr>
<td>T</td>
<td>Total FortiOS system memory in MB</td>
</tr>
<tr>
<td>F</td>
<td>Free memory in MB</td>
</tr>
</tbody>
</table>

Each additional line of the command output displays information specific to processes or threads that are running on the FortiGate unit. For example, the sixth line of the output is: newcli 20195 R 0.1 0.1

The following table describes the data in the sixth line of the output:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>newcli</td>
<td>The process (or thread) name. Duplicate process or thread names indicate that separate instances of that process or thread are running.</td>
</tr>
<tr>
<td>20195</td>
<td>The process or thread ID, which can be any number.</td>
</tr>
<tr>
<td>R</td>
<td>Current state of the process or thread. The process or thread state can be:</td>
</tr>
<tr>
<td></td>
<td>• R- running</td>
</tr>
<tr>
<td></td>
<td>• S- sleep</td>
</tr>
<tr>
<td></td>
<td>• Z- zombie</td>
</tr>
<tr>
<td></td>
<td>• D- disk sleep</td>
</tr>
<tr>
<td>0.1</td>
<td>The percentage of CPU capacity that the process or thread is using. CPU usage can range from 0.0 for a process or thread that is sleeping to higher values for a process or thread that’s taking a lot of CPU time.</td>
</tr>
<tr>
<td>0.1</td>
<td>The amount of memory that the process or thread is using. Memory usage can range from 0.1 to 5.5 and higher.</td>
</tr>
</tbody>
</table>

You can use the following single-key commands when running `diagnose sys top` or `diagnose sys top-all`:

- `q` to quit and return to the normal CLI prompt.
- `p` to sort the processes by the amount of CPU that the processes are using.
- `m` to sort the processes by the amount of memory that the processes are using.
The output only displays the top processes or threads that are running. For example, if 20 are listed, they are the top 20 currently running, sorted by either CPU or memory usage. You can configure the number of processes or threads displayed, using the following CLI commands:

diagnose sys top <integer_seconds> <integer_maximum_lines>
diagnose sys top-all <integer_seconds> <integer_maximum_lines>

Where:

- `<integer_seconds>` is the delay in seconds (default is 5)
- `<integer_maximum_lines>` is the maximum number of lines (or processes) to list (default is 20)

Determining which features are using the most CPU resources

You can use the CLI to view the top few processes that are currently running and using the most CPU resources.

To view processes using the most CPU resources:

```
get system performance top
```

The entries at the top are using the most CPU resources. The second column from the right shows CPU usage by percentage. Note which processes are using the most resources and try to reduce their CPU load.

Processes you will see include:

- `ipsengine`: the IPS engine that scans traffic for intrusions
- `scanunitd`: antivirus scanner
- `httpsd`: secure HTTP
- `iked`: internet key exchange (IKE) in use with IPsec VPN tunnels
- `newcli`: active whenever you're accessing the CLI
- `sshd`: there are active secure socket connections
- `cmdbserv`: the command database server application

Go to the features that are at the top of the list and look for evidence of CPU overuse. Generally, the monitor for a feature is a good place to start.

Checking for unnecessary CPU “wasters”

These are some best practices that will reduce your CPU usage, even if the FortiGate is not experiencing high CPU usage. Note that if the following information instructs you to turn off a feature that you require, disregard that part of the instructions.

- Use hardware acceleration wherever possible to offload tasks from the CPU. Offloading tasks, such as encryption, frees up the CPU for other tasks.
- Avoid the use of GUI widgets that require computing cycles, such as the *Top Sessions* widget. These widgets constantly poll the system for information, which uses CPU and other resources.
- Schedule antivirus, IPS, and firmware updates during off-peak hours. These updates do not usually consume CPU resources but they can disrupt normal operation.
- Check the log levels and which events are being logged. This is the severity of the messages that are recorded. Consider going up one level to reduce the amount of logging. Also, if there are events you do not need to monitor, remove them from the list.
Troubleshooting

- Log to FortiCloud instead of logging to memory or disk. Logging to memory quickly uses up resources and logging to local disk impacts overall performance and reduces the lifetime of the unit. Fortinet recommends logging to FortiCloud to avoid using too much CPU.
- If the disk is almost full, transfer the logs or data off the disk to free up space. When a disk is almost full it consumes a lot of resources to find free space and organize the files.
- If packet logging is enabled on the FortiGate, consider disabling it. When packet logging is enabled, it records every packet that comes through that policy.
- Halt all sniffers and traces.
- Ensure the FortiGate isn’t scanning traffic twice. Traffic does not need to be rescanned if it enters the FortiGate on one interface, goes out another, and then comes back in again. Doing so is a waste of resources. However, ensure that traffic truly is being scanned once.
- Reduce the session timers to close unused sessions faster. Enter the following CLI commands, which reduce the default values. Note that, by default, the system adds 10 seconds to tcp-timewait.

  ```
  config system global
  set tcp-halfclose-timer 30
  set tcp-halfopen-timer 30
  set tcp-timewait-timer 0
  set udp-idle-timer 60
  end
  ```
- Go to System > Feature Visibility, and enable only features that you need.

SNMP monitoring

When CPU usage is under control, use SNMP to monitor CPU usage. Alternatively, use logging to record CPU and memory usage every 5 minutes.

Once the system is back to normal, you should set up a warning system that sends alerts when CPU resources are used excessively. A common method to do this is using SNMP. SNMP monitors many values in FortiOS and allows you to set high water marks that generate events. You can run an application on your computer to watch for and record these events.

To enable SNMP:

1. Go to System > SNMP.
2. Configure an SNMP community.

See SNMP on page 2126.

You can use the System Resources widget to record CPU usage if SNMP is too complicated. However, the widget only records problems as they happen and will not send you alerts for problems.

Checking the modem status

You can use the CLI to troubleshoot a modem that is not working properly, or troubleshoot a FortiGate that does not detect the modem.

To diagnose modem issues in the CLI:

```
diagnose sys modem {cmd | com | detect | history | external-modem | query | reset}
```
Troubleshooting

You should always run the following command after you connect a USB modem to FortiGate:

diagnose sys modem detect

Use the following command to view the modem’s configuration, vendor and custom product identification number:

get system modem

Use the following commands to resolve connectivity issues:

- diagnose debug enable: Activates the debug on the console
- diagnose debug application modem: Dumps communication between the modem and the unit.
- diagnose debug application ppp: Dumps the PPP negotiating messages.
- execute modem dial: Displays modem debug output.

The modem diagnose output should not contain errors when initializing. You should also verify the number used to dial into your ISP.

Running ping and traceroute

Ping and traceroute are useful tools in network troubleshooting. Alone, either tool can determine network connectivity between two points. However, ping can be used to generate simple network traffic that you can view using diagnose commands in FortiGate. This combination can be very powerful when you are trying to locate network problems.

Ping and traceroute can also tell you if your computer or network device has access to a domain name server (DNS). Both tools can use IP addresses or device domain names to determine why particular services, such as email or web browsing, may not work properly.

If ping does not work, it may be disabled on at least one of the interface settings and security policies for that interface.

Both ping and traceroute require particular ports to be open on firewalls to function. Since you typically use these tools to troubleshoot, you can allow them in the security policies and on interfaces only when you need them. Otherwise, keep the ports disabled for added security.

Ping

The ping command sends a very small packet to a destination, and waits for a response. The response has a timer that expires when the destination is unreachable.

Ping is part of layer 3 on the OSI Networking Model. Ping sends Internet Control Message Protocol (ICMP) “echo request” packets to the destination, and listens for “echo response” packets in reply. However, many public networks block ICMP packets because ping can be used in a denial of service (DoS) attack (such as Ping of Death or a smurf attack), or by an attacker to find active locations on the network. By default, FortiGate units have ping enabled while broadcast-forward is disabled on the external interface.

What ping can tell you

Beyond the basic connectivity information, ping can tell you the amount of packet loss (if any), how long it takes the packet to make the round trip, and the variation in that time from packet to packet.

If packet loss is detected, you should investigate the following:
Troubleshooting

- Possible ECMP, split horizon, or network loops.
- Cabling, to ensure there are no loose connections.
- Verify which security policy was used. To do this:
 Go to Policy & Objects > Firewall Policy and view the packet count column.

If there is total packet loss, you should investigate the following:

1. Ensure cabling is correct, and all equipment between the two locations is accounted for.
2. Ensure all IP addresses and routing information along the route is configured as expected.
3. Ensure all firewalls, including FortiGate security policies allow PING to pass through.

How to use ping

Ping syntax is the same for nearly every type of system on a network.

To ping from a FortiGate unit:

1. Go to Dashboard, and connect to the CLI through either telnet or the CLI widget.
2. Enter execute ping 10.11.101.101 to send 5 ping packets to the destination IP address. There are no options for this command.

 Head_Office_620b # execute ping 10.11.101.101
 PING 10.11.101.101 (10.11.101.101): 56 data bytes
 64 bytes from 10.11.101.101: icmp_seq=0 ttl=255 time=0.3 ms
 64 bytes from 10.11.101.101: icmp_seq=1 ttl=255 time=0.2 ms
 64 bytes from 10.11.101.101: icmp_seq=2 ttl=255 time=0.2 ms
 64 bytes from 10.11.101.101: icmp_seq=3 ttl=255 time=0.2 ms
 64 bytes from 10.11.101.101: icmp_seq=4 ttl=255 time=0.2 ms

 --- 10.11.101.101 ping statistics ---
 5 packets transmitted, 5 packets received, 0% packet loss
 round-trip min/avg/max = 0.2/0.2/0.3 ms

To ping from a Microsoft Windows PC:

1. Open a command window.
2. Enter ping 10.11.101.100 to ping the default internal interface of the FortiGate with four packets.

 Other options include:
 - -t to send packets until you press Ctrl+C
 - -a to resolve addresses to domain names where possible
 - -n X to send X ping packets and stop

 C:\>ping 10.11.101.101

 Pinging 10.11.101.101 with 32 bytes of data:
 Reply from 10.11.101.101: bytes=32 time=10ms TTL=255
 Reply from 10.11.101.101: bytes=32 time=1ms TTL=255
 Reply from 10.11.101.101: bytes=32 time=1ms TTL=255
 Reply from 10.11.101.101: bytes=32 time=1ms TTL=255

 Ping statistics for 10.11.101.101:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
 Approximate round trip times in milli-seconds:
 Minimum = 0ms, Maximum = 10ms, Average = 3ms
To ping from a Linux PC:

1. Go to a shell prompt.
2. Enter “ping 10.11.101.101”.

Traceroute

Where ping will only tell you if it reached its destination and returned successfully, traceroute shows each step of the journey to its destination and how long each step takes. If ping finds an outage between two points, you can use traceroute to locate exactly where the problem is.

Traceroute works by sending ICMP packets to test each hop along the route. It sends three packets, and then increases the time to live (TTL) setting by one each time. This effectively allows the packets to go one hop farther along the route. This is why most traceroute commands display their maximum hop count before they start tracing the route, which is the maximum number of steps it takes before it declares the destination unreachable. Also, the TTL setting may result in steps along the route timing out due to slow responses. There are many possible reasons for this to occur.

By default, traceroute uses UDP datagrams with destination ports numbered from 33434 to 33534. The traceroute utility may also offer the option to select use of ICMP echo request (type 8) instead, which the Windows tracert utility uses. If you must, allow both protocols inbound through the FortiGate security policies (UDP with ports from 33434 to 33534 and ICMP type 8).

To track traceroute packets in the GUI:

Go to Policy & Objects > Firewall Policy and view the packet count column.
This allows you to verify the connection and confirm which security policy the traceroute packets are using.

What traceroute can tell you

Both ping and traceroute verify connectivity between two points. However, only traceroute shows you each step in the connection path. Also, ping and traceroute use different protocols and ports, so one may succeed where the other fails.

You can verify your DNS connection using traceroute. If you enter an FQDN instead of an IP address for the traceroute, DNS tries to resolve that domain name. If the name isn't resolved, you have DNS issues.

Using traceroute

The traceroute command varies slightly between operating systems. In Microsoft Windows, the command name is shortened to “tracert”. Also, your output lists different domain names and IP addresses along your route.

To use traceroute on a Microsoft Windows PC:

1. Open a command window.
2. Enter tracert fortinet.com to trace the route from the PC to the Fortinet web site.
 C:\>tracert fortinet.com
 Tracing route to fortinet.com [208.70.202.225]
 over a maximum of 30 hops:
 1 <1 ms <1 ms <1 ms 172.20.120.2
 2 66 ms 24 ms 31 ms 209-87-254-xxx.storm.ca [209.87.254.221]
 3 52 ms 22 ms 18 ms core-2-g0-0-1104.storm.ca [209.87.239.129]
 4 43 ms 36 ms 27 ms core-3-g0-0-1185.storm.ca [209.87.239.222]
 5 46 ms 21 ms 16 ms tel3-x.1156.mpd01.cogentco.com [38.104.158.69]
Checking the logs

A log message records the traffic passing through FortiGate to your network and the action FortiGate takes when it scans the traffic. You should log as much information as possible when you first configure FortiOS. If FortiGate logs are too large, you can turn off or scale back the logging for features that are not in use.
It is difficult to troubleshoot logs without a baseline. Before you can determine if the logs indicate a problem, you need to know what logs result from normal operation.

When troubleshooting with log files

- Compare current logs to a recorded baseline of normal operation.
- If you need to, increase the level of logging (such as from Warning to Information) to obtain more information. When increasing logging levels, ensure that you configure email alerts and select both disk usage and log quota. This ensures that you will be notified if the increase in logging causes problems.

To configure the log settings in the GUI:

Go to Log & Report > Log Settings.

Determine the activities that generate the most log entries:

- Check all logs to ensure important information is not overlooked.
- Filter or order log entries based on different fields, such as level, service, or IP address, to look for patterns that may indicate a specific problem, such as frequent blocked connections on a specific port for all IP addresses.

Logs can help identify and locate any problems, but they do not solve them. The purpose of logs is to speed up your problem solving and save you time and effort.

For more information about logging and log reports, see Log and Report on page 2541.

Verifying routing table contents in NAT mode

Verify the contents of the routing table when a FortiGate has limited or no connectivity.

The routing table stores the routes currently in use for both static and dynamic protocols. Storing a route in the routing table saves time and resources performing a lookup. To ensure the most recently used routes remain in the table, old routes are bumped to make room for new ones. You cannot perform this task when FortiGate is in transparent mode.

If FortiGate is running in NAT mode, verify that all desired routes are in the routing table, including local subnets, default routes, specific static routes, and dynamic routing protocols.

To view the routing table in the CLI:

get router info routing-table all

Sample output:

```plaintext
FGT# get router info routing-table all  
Codes:  
K - kernel, C - connected, S - static, R - RIP, B - BGP  
O - OSPF, IA - OSPF inter area  
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2  
E1 - OSPF external type 1, E2 - OSPF external type 2  
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area  
* - candidate default  
S* 0.0.0.0/0 [10/0] via 172.20.120.2, wan1  
C 10.31.101.0/24 is directly connected, internal  
C 172.20.120.0/24 is directly connected, wan1
```
Troubleshooting

Verifying the correct route is being used

Run a trace route from a machine in the local area network (LAN) to ensure traffic is flowing as expected through the correct route when there is more than one default route.

In the following example output:

- The first hop contains the IP address 10.10.1.99, which is the internal interface of the FortiGate.
- The second hop contains the IP address 172.20.120.2, to which the wan1 interface of the FortiGate is connected.

This means the route through the wan1 interface is being used for this traffic.

```
C:\>tracert www.fortinet.com
Tracing route to www.fortinet.com [66.171.121.34]
over a maximum of 30 hops:
1 <1 ms <1 ms <1 ms 10.10.1.99
2 1 ms <1 ms <1 ms 172.20.120.2
3 3 ms 3 ms 3 ms static-209-87-254-221.storm.ca [209.87.254.221]
4 3 ms 3 ms 3 ms core-2-g0-2.storm.ca [209.87.239.129]
5 13 ms 13 ms 13 ms core-3-bdi1739.storm.ca [209.87.239.199]
6 12 ms 19 ms 11 ms v502.core1.tor1.he.net [216.66.41.113]
7 22 ms 22 ms 21 ms 100ge1-2.core1.nyc4.he.net [184.105.80.9]
8 84 ms 84 ms 84 ms 203.78.181.2
9 82 ms 82 ms 82 ms 203.78.186.70
10 84 ms 84 ms 84 ms 203.78.186.70
11 82 ms 82 ms 82 ms 203.78.181.2
12 84 ms 84 ms 84 ms 203.78.186.70
13 84 ms * 85 ms 66.171.127.177
14 * * * fortinet.com [66.171.121.34]
15 * * * fortinet.com [66.171.121.34]
```

You can also see the route taken for each session by debugging the packet flow in the CLI. For more information, see Debugging the packet flow on page 2661.

Verifying the correct firewall policy is being used

If you have more than one firewall policy, you can check which policy is being used in the Policy & Objects module in the GUI.

To verify the firewall policy in the GUI:

1. Go to Policy & Objects > Firewall Policy.
2. Look in the Count column to see which policy is being used. The count must show traffic increasing.

Debugging the packet flow in the CLI shows the policy ID that's allowing the traffic. For information, see Debugging the packet flow on page 2661.
Troubleshooting

Checking the bridging information in transparent mode

Checking the bridging information is useful when you are experiencing connectivity problems. When FortiGate is set to transparent mode, it acts like a bridge and sends all incoming traffic out on the other interfaces. Each bridge is a link between interfaces.

When traffic is flowing between the interfaces, you can see the bridges listed in the CLI. If no bridges are listed, this is the likely cause of the connectivity issue. When investigating bridging information, check for the MAC address of the interface or device in question.

How to check the bridging information

To view the list of bridge instances in the CLI:

```bash
diagnose netlink brctl list
```

Sample output:

```bash
#diagnose netlink brctl list
list bridge information
1. root.b fdb: size=256 used=6 num=7 depth=2 simple=no
Total 1 bridges
```

How to display forwarding domain information

You can use forwarding domains, or collision domains, in routing to limit where packets are forwarded on the network. Layer 2 broadcasts are limited to the same group. By default, all interfaces are in group 0. For example, if the FortiGate has 12 interfaces, only two may be in the same forwarding domain, which limits packets that are broadcast to those two interfaces. This reduces traffic on the rest of the network.

Collision domains prevent the forwarding of ARP packets to all VLANs on an interface. Without collision domains, duplicate MAC addresses on VLANs may cause ARP packets to be duplicated. Duplicate ARP packets can cause some switches to reset. It's important to know what interfaces are part of which forwarding domains because this determines which interfaces can communicate with each other.

To manually configure forwarding domains in transparent mode in the CLI:

```bash
config system interface
  edit <interface_name>
    set forward-domain <integer>
  end
```

To display the forward domains information in the CLI:

```bash
diagnose netlink brctl domain <name> <id>
```

Where `<name>` is the name of the forwarding domain to display and `<id>` is the domain ID.

Sample output:

```bash
diagnose netlink brctl domain ione 101
show bridge root.b ione forward domain.
```
id=101 dev=trunk_1 6

To list the existing bridge MAC table in the CLI:

diagnose netlink brctl name host <name>

Sample output:

show bridge control interface root.b host.
fdb: size=256, used=6, num=7, depth=2, simple=no
Bridge root.b host table

<table>
<thead>
<tr>
<th>port no</th>
<th>device</th>
<th>devname</th>
<th>mac addr</th>
<th>ttl</th>
<th>attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7</td>
<td>wan2</td>
<td>02:09:0f:78:69:00</td>
<td>0</td>
<td>Local Static</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>vlan_1</td>
<td>02:09:0f:78:69:01</td>
<td>0</td>
<td>Local Static</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>dmz</td>
<td>02:09:0f:78:69:01</td>
<td>0</td>
<td>Local Static</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>internal</td>
<td>02:09:0f:78:69:02</td>
<td>0</td>
<td>Local Static</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>dmz</td>
<td>00:80:c8:39:87:5a</td>
<td>194</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>internal</td>
<td>02:09:0f:78:67:68</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>wan1</td>
<td>00:09:0f:78:69:fe</td>
<td>0</td>
<td>Local Static</td>
</tr>
</tbody>
</table>

To list the existing bridge port list in the CLI:

diagnose netlink brctl name port <name>

Sample output:

show bridge root.b data port.
trunk_1 peer_dev=0
internal peer_dev=0
dmz peer_dev=0
wan2 peer_dev=0
wan1 peer_dev=0

Checking wireless information

Check wireless connections, stations, and interfaces when the problem is not caused by a physical interface.

Troubleshooting station connection issues

To check if a station entry is created on access control in the CLI:

FG600B3909600253 # diagnose wireless-controller wlc -d sta
* vf=0 wtp=70 rId=2 wlan=open ip=0.0.0.0 mac=00:09:0f:db:c4:03 rssi=0 idle=148 bw=0 use=2
 vf=0 wtp=70 rId=2 wlan=open ip=172.30.32.122 mac=00:25:9c:e0:47:88 rssi=-40 idle=0 bw=9 use=2

Enabling diagnostics for a specific station

This example uses the station MAC address to find where it is failing:
Troubleshooting

Performing a sniffer trace or packet capture

When you troubleshoot networks and routing in particular, it helps to look inside the headers of packets to determine if they are traveling the route that you expect them to take. Packet sniffing is also known as network tap, packet capture, or logic analyzing.

For FortiGates with NP2, NP4, or NP6 interfaces that are offloading traffic, disable offloading on these interfaces before you perform a trace or it will change the sniffer trace.

Sniffing packets

To perform a sniffer trace in the CLI:

Before you start sniffing packets, you should prepare to capture the output to a file. A large amount of data may scroll by and you will not be able to see it without saving it first. One method is to use a terminal program like puTTY to connect to the FortiGate CLI. Once the packet sniffing count is reached, you can end the session and analyze the output in the file.

The general form of the internal FortiOS packet sniffer command is:

```bash
# diagnose sniffer packet <interface_name> <'filter'> <verbose> <count> <tsformat>
```

To stop the sniffer, type CTRL+C.

| `<interface_name>` | The name of the interface to sniff, such as port1 or internal. This can also be any to sniff all interfaces. |
| `<'filter'>` | What to look for in the information the sniffer reads. none indicates no filtering, and all packets are displayed as the other arguments indicate. The filter must be inside single quotes ('). |
| `<verbose>` | The level of verbosity as one of:
 - 1 - print header of packets
 - 2 - print header and data from IP of packets
 - 3 - print header and data from Ethernet of packets
 - 4 - print header of packets with interface name |
| `<count>` | The number of packets the sniffer reads before stopping. If you don't put a number here, the sniffer will run until you stop it with <CTRL+C>. |
Troubleshooting

The timestamp format.

- a: absolute UTC time, yyyy-mm-dd hh:mm:ss.ms
- l: absolute LOCAL time, yyyy-mm-dd hh:mm:ss.ms
- otherwise: relative to the start of sniffing, ss.ms

Simple sniffing example:

```bash
# diagnose sniffer packet port1 none 1 3
```

This displays the next three packets on the port1 interface using no filtering, and verbose level 1. At this verbosity level, you can see the source IP and port, the destination IP and port, action (such as ack), and sequence numbers.

In the output below, port 443 indicates these are HTTPS packets and that 172.20.120.17 is both sending and receiving traffic.

```
Head_Office_620b # diagnose sniffer packet port1 none 1 3
interfaces=[port1]
filters=[none]
0.545306 172.20.120.17.52989 -> 172.20.120.141.443: psh 3177924955 ack 1854307757
0.545963 172.20.120.141.443 -> 172.20.120.17.52989: psh 1854307757 ack 3177925808
0.562409 172.20.120.17.52988 -> 172.20.120.141.443: psh 4225311614 ack 3314279933
```

Using packet capture

To use packet capture, the FortiGate must have a disk. You can enable capture-packet in the firewall policy.

To enable packet capture in the CLI:

```bash
config firewall policy
edit <id>
    set capture-packet enable
next
end
```

For information about using the packet capture tool in the GUI, see Using the packet capture tool on page 475.

Debugging the packet flow

Debug the packet flow when network traffic is not entering and leaving the FortiGate as expected. When debugging the packet flow in the CLI, each command configures a part of the debug action. The final command starts the debug.

For information about using the debug flow tool in the GUI, see Using the debug flow tool on page 479.

To trace the packet flow in the CLI:

```bash
# diagnose debug flow trace start
```

To follow packet flow by setting a flow filter:

```bash
# diagnose debug flow [filter | filter6] <option>
```
Troubleshooting

- Enter `filter` if your network uses IPv4.
- Enter `filter6` if your network uses IPv6.

Replace `<option>` with one of the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>addr</td>
<td>IPv4 or IPv6 address</td>
</tr>
<tr>
<td>clear</td>
<td>clear filter</td>
</tr>
<tr>
<td>daddr</td>
<td>destination IPv4 or IPv6 address</td>
</tr>
<tr>
<td>dport</td>
<td>destination port</td>
</tr>
<tr>
<td>negate</td>
<td>inverse IPv4 or IPv6 filter</td>
</tr>
<tr>
<td>port</td>
<td>port</td>
</tr>
<tr>
<td>proto</td>
<td>protocol number</td>
</tr>
<tr>
<td>saddr</td>
<td>source address</td>
</tr>
<tr>
<td>sport</td>
<td>source port</td>
</tr>
<tr>
<td>vd</td>
<td>index of virtual domain; -1 matches all</td>
</tr>
</tbody>
</table>

If FortiGate is connected to FortiAnalyzer or FortiCloud, the `diagnose debug flow` output will be recorded as event log messages and then sent to the devices. Do not run this command longer than necessary, as it generates a significant amount of data.

FortiASIC NP4 or NP6 interface pairs that offload traffic will change the packet flow. Before debugging any NP4 or NP6 interfaces, disable offloading on those interfaces.

To do this, enter `diagnose npu <interface pair> fastpath disable, where interface pair is np4, np6, np4lite, or np6lite`.

To start flow monitoring with a specific number of packets:

```
# diagnose debug flow trace start <N>
```

To stop flow tracing at any time:

```
# diagnose debug flow trace stop
```

The following example shows the flow trace for a device with an IP address of 203.160.224.97:

```
# diagnose debug enable
# diagnose debug flow filter addr 203.160.224.97
# diagnose debug flow show function-name enable
# diagnose debug flow trace start 100
```

Sample output: HTTP

To observe the debug flow trace, connect to the website at the following address:

https://www.fortinet.com
Comment: SYN packet received:

```
id=20085 trace_id=209 func=resolve_ip_tuple_fast line=2700 msg="vd-root received a packet (proto=6, 192.168.3.221:1487->203.160.224.97:80) from port5."
```

SYN sent and a new session is allocated:

```
id=20085 trace_id=209 func=resolve_ip_tuple line=2799 msg="allocate a new session-00000e90"
```

Lookup for next-hop gateway address:

```
id=20085 trace_id=209 func=vf_ip4_route_input line=1543 msg="find a route: gw-192.168.11.254 via port6"
```

Source NAT, lookup next available port:

```
id=20085 trace_id=209 func=get_new_addr line=1219 msg="find SNAT: IP-192.168.11.59, port-31925"
direction"
```

Matched security policy. Check to see which policy this session matches:

```
id=20085 trace_id=209 func=fw_forward_handler line=317 msg="Allowed by Policy-3: SNAT"
```

Apply source NAT:

```
id=20085 trace_id=209 func=_ip_session_run_tuple line=1502 msg="SNAT 192.168.3.221->192.168.11.59:31925"
```

SYN ACK received:

```
id=20085 trace_id=210 func=resolve_ip_tuple_fast line=2700 msg="vd-root received a packet (proto=6, 192.168.11.59:31925->192.168.11.254) from port6."
```

Found existing session ID. Identified as the reply direction:

```
id=20085 trace_id=210 func=resolve_ip_tuple_fast line=2727 msg="Find an existing session, id-00000e90, reply direction"
```

Apply destination NAT to inverse source NAT action:

```
id=20085 trace_id=210 func=_ip_session_run_tuple line=1516 msg="DNAT 192.168.11.59:31925-192.168.3.221:1487"
```

Lookup for next-hop gateway address for reply traffic:

```
id=20085 trace_id=210 func=vf_ip4_route_input line=1543 msg="find a route: gw-192.168.3.221 via port5"
```

ACK received:

```
id=20085 trace_id=211 func=resolve_ip_tuple_fast line=2700 msg="vd-root received a packet (proto=6, 192.168.3.221:1487->203.160.224.97:80) from port5."
```

Match existing session in the original direction:

```
id=20085 trace_id=211 func=resolve_ip_tuple_fast line=2727 msg="Find an existing session, id-00000e90, original direction"
```

Apply source NAT:
Troubleshooting

id=20085 trace_id=211 func=__ip_session_run_tuple
line=1502 msg="SNAT 192.168.3.221->192.168.11.59:31925"

Receive data from client:

id=20085 trace_id=212 func=resolve_ip_tuple_fast
line=2700 msg="vd-root received a packet(proto=6, 192.168.3.221:1487->203.160.224.97:80) from port5."

Match existing session in the original direction:

id=20085 trace_id=212 func=resolve_ip_tuple_fast
line=2727 msg="Find an existing session, id-00000e90, original direction"

Apply source NAT:

id=20085 trace_id=212 func=__ip_session_run_tuple
line=1502 msg="SNAT 192.168.3.221->192.168.11.59:31925"

Receive data from server:

id=20085 trace_id=213 func=resolve_ip_tuple_fast
line=2700 msg="vd-root received a packet(proto=6, 203.160.224.97:80->192.168.11.59:31925) from port6."

Match existing session in reply direction:

id=20085 trace_id=213 func=resolve_ip_tuple_fast
line=2727 msg="Find an existing session, id-00000e90, reply direction"

Apply destination NAT to inverse source NAT action:

id=20085 trace_id=213 func=__ip_session_run_tuple
line=1516 msg="DNAT 192.168.11.59:31925->192.168.3.221:1487"

Sample output: IPsec (policy-based)

id=20085 trace_id=1 msg="vd-root received a packet(proto=1, 10.72.55.240:1->10.71.55.10:8) from internal."

id=20085 trace_id=1 msg="allocate a new session-00001cd3"

id=20085 trace_id=1 msg="find a route: gw-66.236.56.230 via wan1"

id=20085 trace_id=1 msg="Allowed by Policy-2: encrypt"

id=20085 trace_id=1 msg="enter IPsec tunnel-RemotePhase1"

id=20085 trace_id=1 msg="encrypted, and send to 15.215.225.22 with source 66.236.56.226"

id=20085 trace_id=1 msg="send to 66.236.56.230 via intf-wan1"

id=20085 trace_id=2 msg="vd-root received a packet (proto=1, 10.72.55.240:1-1071.55.10:8) from internal."

id=20085 trace_id=2 msg="Find an existing session, id-00001cd3, original direction"

id=20085 trace_id=2 msg="enter IPsec ="encrypted, and send to 15.215.225.22 with source 66.236.56.226" tunnel-RemotePhase1"

id=20085 trace_id=2 msgid=20085 trace_id=2 msg="send to 66.236.56.230 via intf-wan1"

Testing a proxy operation

To monitor proxy operations in the CLI:

diagnose test application <application> <option>
Troubleshooting

To display a list of available application values:

diagnose test application ?

To display a list of available option values:

diagnose test application <application> ?

The <option> value will depend on the application value used in the command.

For example, if the application is http, the CLI command that displays the <option> values is:

diagnose test application http ?

Displaying detail Hardware NIC information

Monitoring the hardware NIC is important because interface errors indicate data link or physical layer issues which may impact the performance of the FortiGate.

To monitor hardware network operations in the CLI:

diagnose hardware deviceinfo nic <interface>

Sample output:

The following is sample output when the <interface> is set to lan:

System_Device_Name lan
Current_HWaddr 00:09:0f:68:35:60
Permanent_HWaddr 00:09:0f:68:35:60
State up
Link up
Speed 100
Duplex full
[......]
Rx_Packets=5685708
Tx_Packets=4107073
Rx_Bytes=617908014
Tx_Bytes=1269751248
Rx_Errors=0
Tx_Errors=0
Rx_Dropped=0
Tx_Dropped=0
[......]

Error descriptions

The diagnose hardware deviceinfo nic command displays a list of error names and values that are related to hardware.

The following table describes possible hardware errors:
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rx_Errors = rx error count</td>
<td>Bad frame was marked as error by PHY</td>
</tr>
<tr>
<td>Rx_CRC_Errors + Rx_Length_Errors - Rx_Align_Errors</td>
<td>This error is only valid in 10/100M mode</td>
</tr>
<tr>
<td>Rx_Dropped or Rx_No_Buffer_Count</td>
<td>Running out of buffer space</td>
</tr>
<tr>
<td>Rx_Missed_Errors</td>
<td>Equals Rx_FIFO_Errors + CEXTERR (Carrier Extension Error Count); only valid in 1000M mode, which is marked by PHY</td>
</tr>
<tr>
<td>Tx_Errors = Tx_Aborted_Errors</td>
<td>ECOL (Excessive Collisions Count); only valid in half-duplex mode</td>
</tr>
<tr>
<td>Tx_Window_Errors</td>
<td>Late Collisions (LATECOL) Count</td>
</tr>
<tr>
<td></td>
<td>Late collisions are collisions that occur after 64-byte time into the transmission of the packet while working in 10 to 100 Mb/s data rate and 512-byte time into the transmission of the packet while working in the 1,000 Mb/s data rate. This register only increments if transmits are enabled and the device is in half-duplex mode.</td>
</tr>
<tr>
<td>Rx_Dropped</td>
<td>See Rx_Errors</td>
</tr>
<tr>
<td>Tx_Dropped</td>
<td>Not defined</td>
</tr>
<tr>
<td>Collisions</td>
<td>Total number of collisions experienced by the transmitter; valid half-duplex mode</td>
</tr>
<tr>
<td>Rx_Length_Errors</td>
<td>Transmission length error</td>
</tr>
<tr>
<td>Rx_Over_Errors</td>
<td>Not defined</td>
</tr>
<tr>
<td>Rx_CRC_Errors</td>
<td>Frame CRC error</td>
</tr>
<tr>
<td>Rx_Frame_Errors</td>
<td>Same as Rx_Align_Errors</td>
</tr>
<tr>
<td></td>
<td>This error is only valid in 10/100M mode.</td>
</tr>
<tr>
<td>Rx_FIFO_Errors</td>
<td>Same as Rx_Missed_Errors - a missed packet count</td>
</tr>
<tr>
<td>Tx_Aborted_Errors</td>
<td>See Tx_Errors</td>
</tr>
<tr>
<td>Tx_Carrier_Errors</td>
<td>The PHY should assert the internal carrier sense signal during every transmission. Failure to do so may indicate that the link has failed or the PHY has an incorrect link configuration. This register only increments if transmits are enabled. This register isn't valid in internal SerDes 1 mode (TBI mode for the 82544GC/EI) and is valid only when the Ethernet controller is operating at full duplex.</td>
</tr>
<tr>
<td>Tx_FIFO_Errors</td>
<td>Not defined</td>
</tr>
<tr>
<td>Tx_Heartbeat_Errors</td>
<td>Not defined</td>
</tr>
<tr>
<td>Tx_Window_Errors</td>
<td>See LATECOL</td>
</tr>
</tbody>
</table>
Troubleshooting

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tx_Single_Collision_Frames</td>
<td>Counts the number of times that a successfully transmitted packet encountered a single collision. The value increments only if transmits are enabled and the Ethernet controller is in half-duplex mode.</td>
</tr>
<tr>
<td>Tx_Multiple_Collision_Frames</td>
<td>A Multiple Collision Count which indicates the number of times that a transmit encountered more than one collision, but less than 16. The value increments only if transmits are enabled and the Ethernet controller is in half-duplex mode.</td>
</tr>
</tbody>
</table>
| Tx_Deferred | Counts defer events. A deferred event occurs when the transmitter cannot immediately send a packet due to:
 • The medium being busy because another device is transmitting
 • The IPG timer hasn't expired
 • Half-duplex deferral events are occurring
 • XOFF frames are being received
 • the link is not up.
 This register only increments if transmits are enabled. This counter does not increment for streaming transmits that are deferred due to TX IPG. |
| Rx_Frame_Too_LONGs | The Rx frame is oversized |
| Rx_Frame_Too_SHORTs | The Rx frame is too short |
| Rx_Axial_Errors | This error is only valid in 10/100M mode |
| Symbol Error Count | Counts the number of symbol errors between reads - SYMERRS.
 The count increases for every bad symbol that's received, whether or not a packet is currently being received and whether or not the link is up. This register increments only in internal SerDes mode. |

Performing a traffic trace

Traffic tracing allows you to follow a specific packet stream. This is useful when you want to confirm that packets are using the route you expect them to take on your network.

To view traffic sessions:

Use this command to view the characteristics of a traffic session though specific security policies.

```
diagnose sys session
```

To trace per-packet operations for flow tracing:

```
diagnose debug flow
```

To trace per-Ethernet frame:

```
diagnose sniffer packet
```
To trace a route from a FortiGate to a destination IP address:

```bash
# execute traceroute www.fortinet.com
traceroute to www.fortinet.com (66.171.121.34), 32 hops max, 84 byte packets
1  172.20.120.2  0.637 ms  0.653 ms  0.279 ms
2  209.87.254.221 <static-209-87-254-221.storm.ca>  2.448 ms  2.519 ms  2.458 ms
3  209.87.239.129 <core-2-g0-2.storm.ca>  2.917 ms  2.828 ms  9.324 ms
4  209.87.239.199 <core-3-bdi1739.storm.ca>  13.248 ms  12.401 ms  13.009 ms
5  216.66.41.113 <v502.core1.tor1.he.net>  17.181 ms  12.422 ms  12.268 ms
6  184.105.80.9 <100gel-2.core1.nyc4.he.net>  21.355 ms  21.518 ms  21.597 ms
7  198.32.118.41 <ny-paix-gni.twgate.net>  83.297 ms  84.416 ms  83.782 ms
8  203.160.228.217 <217-228-160-203.TWGATE-IP.twgate.net>  82.579 ms  82.187 ms  82.066 ms
9  203.160.228.229 <229-228-160-203.TWGATE-IP.twgate.net>  82.055 ms  82.455 ms  81.808 ms
10 203.78.181.2  82.262 ms  81.572 ms  82.015 ms
11 203.78.186.70  83.283 ms  83.243 ms  83.293 ms
12 66.171.127.177  84.030 ms  84.229 ms  83.550 ms
13 66.171.121.34 <www.fortinet.com>  84.023 ms  83.903 ms  84.032 ms
14 66.171.121.34 <www.fortinet.com>  83.874 ms  84.084 ms  83.810 ms
```

Using a session table

A session is a communication channel between two devices or applications across the network. Sessions allow FortiOS to inspect and act on a sequential group of packets in a session all at once instead of inspecting each packet individually. Each session has an entry in the session table that includes important information about the session.

You can view FortiGate session tables from the FortiGate GUI or CLI. The most useful troubleshooting data comes from the CLI. The session table in the GUI also provides useful summary information, particularly the current policy number that the session is using.

When to use a session table

Session tables are useful when verifying open connections. For example, if you have a web browser open to browse the Fortinet website, you would expect a session entry from your computer on port 80 to the IP address for the Fortinet website.

You can also use a session table to investigate why there are too many sessions for FortiOS to process.

GUI

To view session information in the GUI:

2. From the Metrics dropdown, select Sessions.

Finding the security policy for a specific connection

Every program and device on your network must have an open communication channel or session to pass information. FortiGate manages these sessions with features such as traffic shaping, antivirus scanning, and blocking known bad websites. Each session will have an entry in the session table.
If a secure web browser session is not working properly, you can check the session table to ensure the session is still active and going to the proper address. The session table can also tell you the security policy number it matches, so you can check what is happening in that policy.

1. Get the connection information.

You need to be able to identify the session you want. To do this, you will need:

- The source IP address (usually your computer)
- The destination IP address (if you have it)
- The port number which is determined by the program you are using. Common ports are:
 - Port 80 (HTTP for web browsing)
 - Port 443 (HTTPS for SSL encrypted web browsing)
 - Port 22 (SSH for Secure Shell)
 - Port 25 (SMTP for Mail Transfer)

2. Find the session and policy ID

Go to Security Fabric > Physical Topology. From the Metrics dropdown, select Sessions.

To find your session, search for your source IP address, destination IP address (if you have it), and port number. The policy ID is listed after the destination information.

3. Use filters to find a session

If there are multiple pages of sessions, you can use a filter to hide the sessions you do not need. To filter the sessions in the table, click Add Filter, and select an option from the list. You can filter the table by Destination IP, Source IP, or Source Port.

CLI

The session table output in the CLI is very large. The CLI command supports filters to show only the data you need.

To view session data in the CLI:

```
diagnose sys session list
```

An entry is placed in the session table for each traffic session passing through a security policy

To filter session data:

```
diagnose sys session filter <option>
```

The values for `<option>` include the following:

<table>
<thead>
<tr>
<th>Value</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear</td>
<td>Clear session filter</td>
</tr>
<tr>
<td>dintf</td>
<td>Destination interface</td>
</tr>
<tr>
<td>dport</td>
<td>Destination port</td>
</tr>
</tbody>
</table>
Value | Definition
---|---
dst | Destination IP address
duration | Duration of the session
expire | Expire
negate | Inverse filter
nport | NAT'd source port
nsrc | NAT'd source ip address
policy | Policy ID
proto | Protocol number
proto-state | Protocol state
session-state1 | Session state1
session-state2 | Session state2
sintf | Source interface
sport | Source port
src | Source IP address
vd | Index of virtual domain, -1 matches all

Even though UDP is a sessionless protocol, FortiGate keeps track of the following states:

- When UDP reply does not have a value of 0
- When UDP reply has a value of 1

The following table displays firewall session states from the session table:

### State	Description
log | Session is being logged
local | Session is originated from or destined for local stack
ext | Session is created by a firewall session helper
may_dirty | Session is created by a policy
 | For example, the session for \texttt{ftp control channel} will have this state but \texttt{ftp data channel} won't. This is also seen when NAT is enabled.
ndr | Session will be checked by IPS signature
nds | Session will be checked by IPS anomaly
br | Session is being bridged (TP) mode
Troubleshooting

Examining the firewall session list

The firewall session list displays all open sessions in FortiGate. Examine the list for strange patterns, such as no sessions apart from the internal network, or all sessions are only to one IP address.

When you examine the firewall session list in the CLI, you can use filters to reduce the output.

To examine the firewall session list in the CLI:

You can use a filter to limit the sessions displayed by source, destination address, port, or NAT'd address. To use more than one filter, enter a separate line for each value.

The following example filters the session list based on a source address of 10.11.101.112:

FGT# diagnose sys session filter src 10.11.101.112
FGT# diagnose sys session list

The following example filters the session list based on a destination address of 172.20.120.222.

FGT# diagnose sys session filter dst 172.20.120.222
FGT# diagnose sys session list

To clear all sessions corresponding to a filter:

FGT# diagnose sys session filter dst 172.20.120.222
FGT# diagnose sys session clear

Checking source NAT information

Checking source NAT is important when you are troubleshooting from the remote end of the connection outside the firewall.

To check the source NAT information in the CLI:

When you display the session list in the CLI, you can match the NAT'd source address (nsrc) and port (nport). This is useful when multiple internal IP addresses are NAT’d to a common external-facing source IP address.

FGT# diagnose sys session filter nsrc 172.20.120.122
FGT# diagnose sys session filter nport 8888
FGT# diagnose sys session list

Finding object dependencies

You may be prevented from deleting a configuration object when other configuration objects depend on it. You can use the GUI or CLI to identify objects which depend on, or make reference to the configuration you are trying to delete. Additionally, if you have a virtual interface with dependent objects, you will need to find and remove those dependencies before deleting the interface.

To remove interface object dependencies in the GUI:

1. Go to Network > Interfaces. The Ref. column displays the number of objects that reference this interface.
2. Select the number in the Ref. column for the interface. A window listing the dependencies appears.
3. Use these detailed entries to locate and remove object references to this interface. The trash can icon is enabled.
after all the object dependencies are removed.

4. Remove the interface by selecting the check box for the interface, and select **Delete**.

To find object dependencies in the CLI:

When running multiple VDOMs, use the following command in the global configuration only.

diagnose sys cmdb refcnt show <path.object.mkey>

The command searches for the named object in both the most recently used global and VDOM configurations.

Examples

To verify which objects a security policy with an ID of 1 refers to:

diagnose sys cmdb refcnt show firewall.policy.policyid 1

To check what is referred to by interface `port1`:

diagnose sys cmdb refcnt show system.interface.name port1

To show all dependencies for an interface:

diagnose sys cmdb refcnt show system.interface.name <interface name>

Sample output:

In this example, the interface has dependent objects, including four address objects, one VIP, and three security policies.

```plaintext
entry used by table firewall.address:name '10.98.23.23_host'
entry used by table firewall.address:name 'NAS'
entry used by table firewall.address:name 'all'
entry used by table firewall.address:name 'fortinet.com'
entry used by table firewall.vip:name 'TORRENT_10.0.0.70:6883'
entry used by table firewall.policy:policyid '21'
entry used by table firewall.policy:policyid '14'
entry used by table firewall.policy:policyid '19'
```

Diagnosing NPU-based interfaces

Some Fortinet products contain network processors, such as NP4, NP6Lite, or NP6. Offloading requirements will vary depending on the model.

To view the initial session setup for NPU-based interfaces:

diagnose debug flow

- If the session is programmed into the ASIC (fastpath) correctly, the command will not detect the packets that arrive at the CPU.
- If the NPU functionality is disabled, the CPU detects all the packets. However, you should only disable the NPU functionality for troubleshooting purposes.
To diagnose NPU-based interfaces:

1. Get the NPx or NPU ID and port numbers.

   ```bash
diagnose npu <processor> list
   ```

 The output will look like this:

<table>
<thead>
<tr>
<th>ID</th>
<th>Model</th>
<th>Slot</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>On-board</td>
<td>1</td>
<td>fabric1 fabric3 fabric5</td>
</tr>
<tr>
<td>1</td>
<td>On-board fabric2</td>
<td>2</td>
<td>base2 fabric4</td>
</tr>
</tbody>
</table>

2. Disable the NPU functionality.

   ```bash
diagnose npu <processor> fastpath disable <dev_id>
   ```

 The `dev_id` is the NPx ID number.

3. Analyze the packets.

   ```bash
diagnose npu <processor> fastpath-sniffer enable port1
   ```

 These commands only apply to NP4 and NP6 interfaces.

 The output will look similar to:

   ```
   NP4 Fast Path Sniffer on port1 enabled
   This causes traffic on port1 of the network processor to be sent to the CPU. This means you can perform a standard sniffer trace and use other diagnostic commands, if it is a standard CPU-driven port.
   ```

Identifying the XAUI link used for a specific traffic stream

The `diagnose npu np6 xauui-hash` command takes a 6-tuple input of the traffic stream to identify the NP6 XAUI link that the traffic passes through.

This command is only available on the 38xxD, 39xxD, 34xxE, 36xxE, and 5001E series devices.

Syntax

```bash
diagnose npu np6 xauui-hash <interface> <proto> <src_ip> <dst_ip> <src_port> <dst_port>
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><interface></td>
<td>The network interface that the packets are coming from.</td>
</tr>
<tr>
<td><proto></td>
<td>The proto number, 6 for TCP or 17 for UDP.</td>
</tr>
<tr>
<td><src_ip></td>
<td>The source IP address.</td>
</tr>
<tr>
<td><dst_ip></td>
<td>The destination IP address.</td>
</tr>
<tr>
<td><src_port></td>
<td>The source port.</td>
</tr>
<tr>
<td><dst_port></td>
<td>The destination port.</td>
</tr>
</tbody>
</table>

Examples

```bash
# diagnose npu np6 xauui-hash port1 6 1.1.1.1 2.2.2.1 4567 80
NP6_ID: 0, XAUI_LINK: 2
```
Troubleshooting

diagnose npu np6 xau-hash port1 6 1.1.1.1 2.2.2.1 4567 200
NP6_ID: 6, XAUI_LINK: 2
diagnose npu np6 xau-hash port1 6 1.1.1.1 2.2.2.1 4567 20
NP6_ID: 1, XAUI_LINK: 2
diagnose npu np6 xau-hash port1 6 1.1.1.1 2.2.2.1 4567 23
NP6_ID: 1, XAUI_LINK: 1

The NP6_ID is the NP index of the model that is being used. It can be found with the diagnose npu np6 port-list command.

Date and time settings

Fortinet support may ask you to check the date and time settings for log message timestamp synchronization and for certificates that have a time requirement to check for validity.

To check time settings:

execute time

To check date settings:

execute date

If all devices have the same time, it helps to correlate log entries from different devices.

execute time
current time is: 12:40:48
last ntp sync:Thu Mar 16 12:00:21 2006
execute date
current date is: 2006-03-16

To force synchronization with an NTP server:

config system ntp
 set ntpsync {enable | disable}
end

If all devices have the same time, it helps to correlate log entries from different devices.

Running the TAC report

The Technical Assistance Center (TAC) report runs an exhaustive series of diagnostic commands. Some of the commands are only needed if you are using features, such as HA, VPN tunnels, or a modem. Fortinet support may ask you to use the report output to provide information about the current state of your FortiGate.

Due the amount of output generated, the report may take a few minutes to run. If you are logging CLI output to a file, you can run this command to familiarize yourself with the diagnostic commands.

To run the TAC report in the CLI:

execute tac report
Using the process monitor

The Process Monitor displays running processes with their CPU and memory usage levels. Administrators can sort, filter, and terminate processes within the Process Monitor pane.

To access the process monitor:

1. Go to Dashboard > Status:
 - Left-click in the CPU or Memory widget and select Process Monitor.
 - Click the user name in the upper right-hand corner of the screen, then go to System > Process Monitor.

 The Process Monitor appears, which includes a line graph, donut chart, and process list.

2. Click the + beside the search bar to view which columns can be filtered.
To kill a process within the process monitor:

1. Select a process.
2. Click the Kill Process dropdown.
3. Select one of the following options:
 - **Kill**: the standard kill option that produces one line in the crash log (diagnose debug crashlog read).
 - **Force Kill**: the equivalent to `diagnose sys kill 9 <pid>`. This can be viewed in the crash log.
 - **Kill & Trace**: the equivalent to `diagnose sys kill 11 <pid>`. This generates a longer crash log and backtrace. A crash log is displayed afterwards.
Troubleshooting

Other commands

You may be asked to provide the following information when you contact Fortinet support.

- ARP table on page 2677
- IP address on page 2679

ARP table

The ARP table is used to determine the destination MAC addresses of the network nodes, as well as the VLANs and ports from where the nodes are reached.

To view the ARP table:

```
# get system arp
```

<table>
<thead>
<tr>
<th>Address</th>
<th>Age(min)</th>
<th>Hardware Addr</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.10.1.3</td>
<td>1</td>
<td>50:b7:c3:75:ea:dd</td>
<td>internal7</td>
</tr>
<tr>
<td>192.168.0.190</td>
<td>0</td>
<td>28:f1:0e:03:2a:97</td>
<td>wan1</td>
</tr>
<tr>
<td>192.168.0.97</td>
<td>0</td>
<td>f4:f2:6d:37:b0:99</td>
<td>wan1</td>
</tr>
</tbody>
</table>

To view the ARP cache in the system:

```
# diagnose ip arp list
```

<table>
<thead>
<tr>
<th>index=14 ifname=internal7 10.10.1.3 50:b7:c3:75:ea:dd state=00000004 use=2494 confirm=1995 update=374 ref=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>index=5 ifname=wan1 192.168.0.190 28:f1:0e:03:2a:97 state=00000002 use=88 confirm=86 update=977639 ref=2</td>
</tr>
<tr>
<td>index=22 ifname=internal 192.168.1.111 00:0c:29:c6:79:3d state=00000004 use=3724 confirm=9724 update=3724 ref=0</td>
</tr>
<tr>
<td>index=5 ifname=wan1 224.0.1.140 01:00:5e:00:01:8c state=00000040 use=924202 confirm=930202 update=924202 ref=1</td>
</tr>
<tr>
<td>index=5 ifname=wan1 192.168.0.97 f4:f2:6d:37:b0:99 state=00000002 use=78 confirm=486 update=614 ref=26</td>
</tr>
<tr>
<td>index=14 ifname=internal7 10.10.1.11 state=00000020 use=172 confirm=1037790 update=78 ref=2</td>
</tr>
</tbody>
</table>

ARP request and cache

The FortiGate must make an ARP request when it tries to reach a new destination. The base ARP reachable value determines how often an ARP request it sent; the default is 30 seconds. The actual ARP reachable time is a random number between half and three halves of the base reachable time, or 15 to 45 seconds. The random number is updated every five minutes.

ARP entries in the ARP cache are updated based on the state of the ARP entry and the objects that are using it, as highlighted in the following output sample:

```
index=5 ifname=wan1 224.0.1.140 01:00:5e:00:01:8c state=00000040 use=924202 confirm=930202 update=924202 ref=1
```

There are multiple possible states for an ARP entry, and the state-transition mechanism can be complex. Common states include the following:
<table>
<thead>
<tr>
<th>State</th>
<th>Meaning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000000002 or 0x02</td>
<td>REACHABLE</td>
<td>An ARP response was received</td>
</tr>
<tr>
<td>0000000004 or 0x04</td>
<td>STALE</td>
<td>No ARP response within the expected time</td>
</tr>
<tr>
<td>0000000008 or 0x08</td>
<td>DELAY</td>
<td>A transition state between STALE and REACHABLE before Probes are sent out</td>
</tr>
<tr>
<td>0000000020 or 0x20</td>
<td>FAILED</td>
<td>Did not manage to resolve within the maximum configured number of probes</td>
</tr>
<tr>
<td>0000000040 or 0x40</td>
<td>NOARP</td>
<td>Device does not support ARP, e.g. IPsec interface</td>
</tr>
<tr>
<td>0000000080 or 0x80</td>
<td>PERMANENT</td>
<td>A statically defined ARP entry</td>
</tr>
</tbody>
</table>

An entry that is in the STALE (0x04) or FAILED (0x20) states with no references to it (ref=0) can be deleted. Many factors affect the state-transmit mechanism and if an entry is used by other subsystems. For example, ARP creation, ARP request/reply, neighbor lookup, routing, and others can cause an ARP entry to be in use or referenced.

The garbage collection mechanism runs every 30 seconds, and checks and removes stale and unreferenced entries if they have been stale for longer than 60 seconds. Garbage collection will also be triggered when the number of ARP entries exceeds the configured threshold. If the threshold is exceeded, no entries can be added to the ARP table.

To set the maximum number of ARP entries threshold:

```
config system global
    set arp-max-entry <integer>
end

arp-max-entry <integer>  The maximum number of dynamically learned MAC addresses that can be added to the ARP table (131072 to 2147483647, default = 131072).
```

To set the ARP reachable time on an interface:

```
config system interface
    edit port1
        set reachable-time <integer>
        next
end

reachable-time <integer>  The reachable time (30000 to 3600000, default = 30000).
```

To clear all of the entries in the ARP table:

```
execute clear system arp table
```

To delete a single ARP entry from the ARP table:

```
diagnose ip arp delete <interface name> <IP address>
```
Troubleshooting

To add static ARP entries:

```config
config system arp-table
  edit 1
    set interface "internal"
    set ip 192.168.50.8
    set mac bc:14:01:e9:77:02
  next
end
```

To view a summary of the ARP table:

```
# diagnose sys device list root

list virtual firewall root info:
ip4 route_cache: table_size=65536 max_depth=2 used=31 total=34
  arp: table_size=16 max_depth=2 used=5 total=6
  proxy_arp: table_size=256 max_depth=0 used=0 total=0
  arp6: table_size=32 max_depth=1 used=3 total=3
  proxy_arp6: table_size=256 max_depth=0 used=0 total=0
local table version=00000000 main table version=0000002b
vf=root dev=root vrf=0
vf=root dev=ssl.root vrf=0
...vf=root dev=internal5 vrf=0
ses=0/0 ses6=0/0 rt=0/0 rt6=0/0
```

IP address

You may want to verify the IP addresses assigned to the FortiGate interfaces are what you expect them to be.

To verify IP addresses:

```
diagnose ip address list
```

The output lists the:
- IP address and mask (if available)
- index of the interface (a type of ID number)
- devname (the interface name)

While physical interface names are set, virtual interface names can vary. A good way to use this command is to list all of the virtual interface names. For vsys_ha and vsys_fqfm, the IP addresses are the local host, which are virtual interfaces that are used internally.

Sample output:

```
# diagnose ip address list
IP=10.31.101.100->10.31.101.100/255.255.255.0 index=3 devname=internal
IP=172.20.120.122->172.20.120.122/255.255.255.0 index=5 devname=wan1
IP=127.0.0.1->127.0.0.1/255.0.0.0 index=8 devname=internal
IP=127.0.0.1->127.0.0.1/255.0.0.0 index=11 devname=vsys_ha
IP=127.0.0.1->127.0.0.1/255.0.0.0 index=13 devname=vsys_fqfm
```
FortiGuard troubleshooting

The FortiGuard service provides updates to AntiVirus (AV), Antispam (AS), Intrusion Protection Services (IPS), Webfiltering (WF), and more. The FortiGuard Distribution System (FDS) consists of a number of servers across the world that provide updates to your FortiGate unit. Problems can occur with the connection to FDS and its configuration on your local FortiGate unit.

Some of the more common troubleshooting methods are listed here, including:

- Troubleshooting process for FortiGuard updates on page 2681
- FortiGuard server settings on page 2681
- FortiGuard server settings on page 2681

Verifying connectivity to FortiGuard

You can verify FortiGuard connectivity in the GUI and CLI.

To verify FortiGuard connectivity in the GUI:

1. Go to Dashboard > Status.
2. Check the Licenses widget. When FortiGate is connected to FortiGuard, a green check mark appears next to the available FortiGuard services.

To verify FortiGuard connectivity in the CLI:

execute ping service.fortiguard.net
execute ping update.fortiguard.net

Sample output:

FG100D# execute ping service.fortiguard.net
PING guard.fortinet.net (208.91.112.196): 56 data bytes
64 bytes from 208.91.112.196: icmp_seq=0 ttl=51 time=61.0 ms
64 bytes from 208.91.112.196: icmp_seq=1 ttl=51 time=60.0 ms
64 bytes from 208.91.112.196: icmp_seq=2 ttl=51 time=59.6 ms
64 bytes from 208.91.112.196: icmp_seq=3 ttl=51 time=58.9 ms
64 bytes from 208.91.112.196: icmp_seq=4 ttl=51 time=59.2 ms

--- guard.fortinet.net ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 58.9/61.0 ms

FG100D# execute ping update.fortiguard.net
PING fds1.fortinet.com (208.91.112.68): 56 data bytes
64 bytes from 208.91.112.68: icmp_seq=0 ttl=53 time=62.0 ms
64 bytes from 208.91.112.68: icmp_seq=1 ttl=53 time=61.8 ms
64 bytes from 208.91.112.68: icmp_seq=2 ttl=53 time=61.3 ms
64 bytes from 208.91.112.68: icmp_seq=3 ttl=53 time=61.9 ms
64 bytes from 208.91.112.68: icmp_seq=4 ttl=53 time=61.8 ms
Troubleshooting process for FortiGuard updates

The following process shows the logical steps you should take when troubleshooting problems with FortiGuard updates:

1. **Does the device have a valid license that includes these services?**
 Each device requires a valid FortiGuard license to access updates for some or all of these services. You can verify the status of the support contract for your devices at the Fortinet Support website.

2. **If the device is part of a high availability (HA) cluster, do all members of the cluster have the same level of support?**
 You can verify the status of the support contract for all of the devices in your HA cluster at the Fortinet Support website.

3. **Are services enabled on the device?**
 To see the FortiGuard information and status for a device in the GUI, go to System > FortiGuard.
 Use this page to verify the status of each component, and enable each service.

4. **Can the device communicate with FortiGuard servers?**
 Go to System > FortiGuard in the GUI, and try to update AntiVirus and IPS, or test the availability of Web Filtering and AS default and alternate ports.

5. **Is there proper routing to reach the FortiGuard servers?**
 Ensure there is a static or dynamic route that allows your FortiGate to reach the FortiGuard servers. Usually a generic default route to the internet is enough, but you may need to verify this if your network is complex.

6. **Are there issues with DNS?**
 An easy way to test this is to attempt a traceroute from behind the FortiGate to an external network using the Fully Qualified Domain Name (FQDN) for a location. If the traceroute FQDN name doesn't resolve, you have general DNS problems.

7. **Is there anything upstream that might be blocking FortiGuard traffic, either on the network or ISP side?**
 Many firewalls block all ports, by default, and ISPs often block ports that are low. There may be a firewall between the FortiGate and the FortiGuard servers that's blocking the traffic. By default, FortiGuard uses port 53. If that port is blocked you need to either open a hole for it or change the port it is using.

8. **Is there an issue with source ports?**
 It is possible that ports that FortiGate uses to contact FortiGuard are being changed before they reach FortiGuard or on the return trip before they reach FortiGate. A possible solution for this is to use a fixed-port at NAT’d firewalls to ensure the port remains the same. You can use packet sniffing to find more information about what’s happening with ports.

9. **Are there security policies that include antivirus?**
 If none of the security policies include antivirus, the antivirus database will not be updated. If antivirus is included, only the database type that’s used will be updated.

FortiGuard server settings

Your local FortiGate connects to remote FortiGuard servers to get updates to FortiGuard information, such as new viruses that may have been found or other new threats.

This section provides methods to display FortiGuard server information on your FortiGate, and how to use that information and update it to fix potential problems.
Displaying the server list

To get a list of FDS servers FortiGate uses to send web filtering requests:

get webfilter status

or
diagnose debug rating

Rating requests are only sent to the server at the top of the list in normal operation. Each server is probed for Round Trip Time (RTT) every two minutes. Rating may not be enabled on your FortiGate.

Optionally, you can add a refresh rate to the end of the command to determine how often the server list is refreshed.

Sample output:

Locale : english
License : Contract
Expiration : Thu Oct 9 02:00:00 2011

<table>
<thead>
<tr>
<th>IP</th>
<th>Weight</th>
<th>RTT</th>
<th>Flags</th>
<th>TZ</th>
<th>Packets</th>
<th>CurrLost</th>
<th>TotalLost</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.b.c.d</td>
<td>0</td>
<td>1</td>
<td>DI</td>
<td>2</td>
<td>1926879</td>
<td>0</td>
<td>11176</td>
</tr>
<tr>
<td>10.1.101.1</td>
<td>10</td>
<td>329</td>
<td>1</td>
<td></td>
<td>10263</td>
<td>0</td>
<td>633</td>
</tr>
<tr>
<td>10.2.102.2</td>
<td>20</td>
<td>169</td>
<td>0</td>
<td></td>
<td>16105</td>
<td>0</td>
<td>80</td>
</tr>
<tr>
<td>10.3.103.3</td>
<td>20</td>
<td>182</td>
<td>0</td>
<td></td>
<td>6741</td>
<td>0</td>
<td>776</td>
</tr>
<tr>
<td>10.4.104.4</td>
<td>20</td>
<td>184</td>
<td>0</td>
<td></td>
<td>5249</td>
<td>0</td>
<td>987</td>
</tr>
<tr>
<td>10.5.105.5</td>
<td>25</td>
<td>181</td>
<td>0</td>
<td></td>
<td>12072</td>
<td>0</td>
<td>178</td>
</tr>
</tbody>
</table>

Output details

The server list includes the IP addresses of alternate servers if the first entry cannot be reached. In this example, the IP addresses are not public addresses.

The following flags in get webfilter status indicate the server status:

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>The server was found through the DNS lookup of the hostname. If the hostname returns more than one IP address, all of them are flagged with D and are used first for INIT requests before falling back to the other servers.</td>
</tr>
<tr>
<td>I</td>
<td>The server to which the last INIT request was sent</td>
</tr>
<tr>
<td>F</td>
<td>The server hasn't responded to requests and is considered to have failed</td>
</tr>
<tr>
<td>T</td>
<td>The server is currently being timed</td>
</tr>
<tr>
<td>S</td>
<td>Rating requests can be sent to the server. The flag is set for a server only in two cases:</td>
</tr>
<tr>
<td></td>
<td>• The server exists in the servers list received from the FortiManager or any other INIT server.</td>
</tr>
<tr>
<td></td>
<td>• The server list received from the FortiManager is empty so the FortiManager is the only server that the FortiGate knows and it should be used as the rating server.</td>
</tr>
</tbody>
</table>
Troubleshooting

Sorting the server list

The server list is sorted first by weight. The server with the smallest RTT appears at the top of the list, regardless of weight. When a packet is lost (there has been no response in 2 seconds), it is re-sent to the next server in the list. Therefore, the top position in the list is selected based on RTT, while the other positions are based on weight.

Calculating weight

The weight for each server increases with failed packets and decreases with successful packets. To lower the possibility of using a remote server, the weight isn't allowed to dip below a base weight. The base weight is calculated as the difference in hours between the FortiGate and the server multiplied by 10. The farther away the server is, the higher its base weight is and the lower it appears in the list.

View open and in use ports

Traffic destined for the FortiGate itself, and not being passed through or dropped, is called local-in traffic. It can be from a variety of services, such as HTTPS for administrative access, or BGP for inter-router communication.

Local-in traffic is controlled by local-in policies. To enable viewing local-in policies in the GUI, go to System > Feature Visibility and enable Local In Policy.

The Policy & Objects > Local In Policy page shows a read-only list of the local policies, populated with default values, and values that are automatically enabled when the related service is enabled, for example, enabling BGP opens TCP port 179. For more information, see Local-in policy on page 789.

To view ports that are being listened on, and active connections and the services or processes using them:

```bash
# diagnose sys tcpsock | grep 0.0.0.0
0.0.0.0:0:10400->0.0.0.0:0->state=listen err=0 socktype=4 rma=0 wma=0 fma=0 tma=0 inode=10621
process=142/authd
...
0.0.0.0:53->0.0.0.0:0->state=listen err=0 socktype=1 rma=0 wma=0 fma=0 tma=0 inode=8067
process=177/dnsproxy
0.0.0.0:22->0.0.0.0:0->state=listen err=0 socktype=1 rma=0 wma=0 fma=0 tma=0 inode=13390
process=225/ssh
0.0.0.0:541->0.0.0.0:0->state=listen err=0 socktype=1 rma=0 wma=0 fma=0 tma=0 inode=13155
process=215/fgfm
...
0.0.0.0:9980->0.0.0.0:0->state=listen err=0 socktype=1 rma=0 wma=0 fma=0 tma=0 inode=5063
process=129/httpsd
0.0.0.0:179->0.0.0.0:0->state=listen err=0 socktype=1 rma=0 wma=0 fma=0 tma=0 inode=10583
process=148/bgp
...
```

For more information on incoming and outgoing ports, see the FortiOS Ports guide.
Additional resources

To learn more about FortiGate and FortiOS, as well information about technical issues, please refer to the following resources:

Technical documentation

Installation, Administration, and Quick Start Guides, as well as other technical documents, are available online at the Fortinet Document Library.

Fortinet video library

The Fortinet Video Library hosts a collection of video which provide valuable information about Fortinet products.

Release notes

Issues that arise after the technical documentation has been published will often be listed in the Release Notes. To find these, go to the Fortinet Document Library.

Fortinet Community

The Fortinet Community provides a place to collaborate, share insights and experiences, and get answers to questions. It incorporates the Fortinet Knowledge Base and technical discussion forums. You can access the community at: https://community.fortinet.com/.

Knowledge base

The Fortinet Knowledge Base provides access to a variety of articles, white papers, and other documentation that provides technical insight into a range of Fortinet products. The Knowledge Base is available online at: https://community.fortinet.com/t5/Knowledge-Base/ct-p/knowledgebase.

Fortinet technical discussion forums

An online technical forum allows administrators to contribute to discussions about issues that relate to their Fortinet products. Searching the forum can help an administrator identify if an issue has been experienced by another user. You can access the support forums at: https://forum.fortinet.com/

Fortinet training services online campus

The Fortinet Training Services Online Campus hosts a collection of tutorials and training materials which you can use to increase your knowledge of Fortinet products. https://www.fortinet.com/training.html
Troubleshooting

Fortinet Support

You defined your problem, researched a solution, put together a plan to find the solution, and executed that plan. At this point, if the problem hasn't been solved, it's time to contact Fortinet Support for assistance.