F:=RTINET

Script Reference Guide
FortiWeb7.2.1

5

FORTINET DOCUMENT LIBRARY
HTTPs://docs.fortinet.com

FORTINET VIDEO GUIDE
HTTPs://video.fortinet.com

FORTINET BLOG
HTTPs://blog.fortinet.com

CUSTOMER SERVICE & SUPPORT
HTTPs://support.fortinet.com

FORTINET COOKBOOK
HTTPs://cookbook.fortinet.com

FORTINET TRAINING & CERTIFICATION PROGRAM
HTTPs://www.fortinet.com/support-and-training/training.html

NSE INSTITUTE
HTTPs://training.fortinet.com

FORTIGUARD CENTER
HTTPs://fortiguard.com/

END USER LICENSE AGREEMENT
HTTPs://www.fortinet.com/doc/legal/EULA.pdf

FEEDBACK
Email: techdocs@fortinet.com

August 22, 2022
FortiWeb 7.2.1 Script Reference Guide
1st Edition

https://docs.fortinet.com/
https://video.fortinet.com/
https://blog.fortinet.com/
https://support.fortinet.com/
https://cookbook.fortinet.com/
https://www.fortinet.com/support-and-training/training.html
https://training.fortinet.com/
https://fortiguard.com/
https://www.fortinet.com/doc/legal/EULA.pdf
mailto:techdocs@fortinet.com

TABLE OF CONTENTS

Change Log ... 5
Introduction 6
Configuration overview 7
Predefined packages and classes 10
Global 10
AU, L) 10

IO 10
A 10
GO e 10
core.debug(level, fmt, ..) . 10
core.print(level, ...) 10
POl Y . 11
POlICY. NAME() 11
policy. http_POrS() ... 11
Policy. Nt PSS _POMS() ..o 11
POIICY . C S () oo 11
policy.servers() / policy.servers(“cr-name”) ... 11

P . 12
P addr(Ip-S NG) oo 12
ip.eq(ip_class_1, “ip-string”) / ip.eq(ip_class_1,ip_class_2) ... 12
ip.reputation(“ip-string”) / ip.reputation(ip_class) ..o 12
ip.geo(“ip-string”) /ip.geo(ip_class) 12
ip.geo_code(“ip-string”) / ip.geo_code(ip_class) 12

[P address ClasSeS ... 13
Predefined commands ... 14
P COMIMIANAS 14
TCP COMMANAS . 14
LB COMMaANAS 15
SO COMMaANAS 15
SO SN) 15
SSL:set SNi(SVI_NAME)o 15

SO L I P () e 16
SSLIVEISION() ... 16

SO Al o 16
SSLiclient_cert Verify() ... 17
SSL:cert _COUNt() ... 17
SSL: get_peer_cert_by_idx(index_value) 17
SSL:VEIITY _FESUIL() ... 18
SSLisession(t) [TOD O ... 18
HTTP Commands ... 18
Header fetCh ... 18
Headermanipulate ... 20
CUS oM P DIy 22
CON IOl 23

FortiWeb Script Reference Guide Fortinet Technologies Inc.

Protocol . . 23
Transaction private data 23
Data ColleCt ... 23
Body Rewrite ... 24

FortiWeb Script Reference Guide Fortinet Technologies Inc.

Change Log 5

Change Log

Date Change Description

2022-08-21 Initial release.

Fortiweb Script Reference Guide Fortinet Technologies Inc.

Introduction

Introduction

FortiWeb supports Lua scripts to perform actions that are not currently supported by the built-in feature set. You
can use Lua scripts to write simple, network aware pieces of code that will influence network traffic in a variety of
ways. By using the scripts, you can customize FortiWeb's features by granularly controlling the traffic flow or
even the contents of given sessions or packets.

In FortiWeb, the scripting language only supports HTTP and HTTPS policy.

FortiWeb Script Reference Guide Fortinet Technologies Inc.

Configuration overview 7

Configuration overview

You can type or paste the script content into the configuration page.
Before you begin:

« Create a script.
« You must have Read-Write permission for Server Policy settings.

After you have created a script configuration object, you can reference it in the virtual server configuration.
To configure a script:

1. Goto Application Delivery > Scripting.
2. Click Create New to display the configuration editor.
3. Complete the configuration as shown.

Settings Guidelines

Name Enter a unique name. No spaces or special characters.
After you initially save the configuration, you cannot edit the name.

Input Type or paste the script.

P>

Click OK to Save the configuration.
You can also click Import to import a script file. It should be a ".txt" file.

o a

When creating a server policy, in the Scripting section, enable Scripting, then select the scripts you want
to run for this server policy.

Script Events

There are predefined scripts which specify the following events. When the events occur, it will trigger the system
to take the actions defined in the script.

Type Event Description
RULE RULE_INIT When the server policy enables or reloads.
RULE_EXIT When the server policy disables or reloads.
HTTP HTTP_REQUEST When the server policy has received the
complete HTTP request header.
HTTP_RESPONSE When the server policy has received the
complete HTTP response header.
HTTP_DATA REQUEST When an HTTP: collect command finishes
processing, after collecting the requested
amount of data.
HTTP_DATA_RESPONSE When an HTTP: collect command finishes

processing on the server side of a connection.

FortiWeb Script Reference Guide Fortinet Technologies Inc.

Configuration overview

Type Event
TCP CLIENT_ACCEPTED

CLIENT_CLOSED
SERVER_CONNECTED
SERVER_CLOSED

SSL CLIENTSSL_HANDSHAKE
SERVERSSL_HANDSHAKE
SERVERSSL_CLIENTHELLO_

SEND

CLIENTSSL_SERVERHELLO_
SEND

Event priority

Description

When the server policy has accepted a client
connection.

When the server policy has closed a client
connection.

When the server policy has connected to a
server.

When the server policy has closed a server
connection.

When a client-side SSL handshake is
completed.

When a server-side SSL handshake is
completed.

When the system is about to send its SSL
ClientHello message.

When the system is about to send its SSL
ServerHello message on the clientside
connection.

FortiWeb supports multiple scripts in one server policy. When a server policy with scripts is enabled, the system
will load scripts one by one. If there are multiple same events defined in the scripts, the event running order is

same as the loading order.

If you want to run a certain event first regardless of the script order, you can define its priority to prioritize its
sequence. The default priority of events is 500. Lower value has higher priority.

For example:

when HTTP REQUEST priority 499 ({

}

Lua package compatibility

FortiWeb uses the lua version 5.4.

Package name Compatible details

global Supported, but:
* Disable dofile()
* Disable loadfile()

» Modify print() to FortiWeb version, printing to debug log with level 1. (diag
debug proxyd scripting-user <1-7>)

FortiWeb Script Reference Guide

Fortinet Technologies Inc.

Configuration overview 9

package Disabled
coroutine Disabled
table Supported
io Disabled
0s Disabled
string Supported
math Supported
utf8 Supported

Fortiweb Script Reference Guide Fortinet Technologies Inc.

Predefined packages and classes

Predefined packages and classes

+ Global
« Core
« Policy

Global

debug(fmt, ..)

The function is the same as

print(string.format (fmt, ..))

The string will be printed to debug log with level 1. For example:

debug (“This HTTP Request method is %s.\n”, HTTP:method())

_id

This is the id of the proxyd worker running the lua stack.

_name

This is the name of the policy running the lua stack.

Core

core.debug(level, fmt, ..)

Itis similar to debug () butit can set the debug log level.

core.print(level, ...)

Itis similartoprint () butit can set the debug log level.

FortiWeb Script Reference Guide

10

Fortinet Technologies Inc.

Predefined packages and classes

Policy

This package is used for fetching the policy configurations.

policy.name()

Return the string of the policy name.

policy.http_ports()

Return a lua array with all HTTP ports. Port value is integer.

{ 80, 8080 }

policy.https_ports()

Return a lua array with all HTTPS port. Port value is integer.

{ 443, 8443 }

policy.crs()

Return lua array with all content routing names.

{ “Crl”, “Crz”, “er3” }

policy.servers() / policy.servers(“cr-name”)

11

Return lua array with all servers. If the policy has content routing, the caller should pass the “cr-name” argument
to fetch the servers of the specific content routing.

{

AW

{ [M“type”] = “ip”,

AWy

{ [M“type”]

FortiWeb Script Reference Guide

1P~y

[“ip”]
[“ip”]

“172.30.154.2",

= “172.30.154.3",

[“port"]
[\\portn]

80 1,
80 1,

Fortinet Technologies Inc.

Predefined packages and classes 12

IP

This package contains IP related functions.

ip.addr(“ip-string”)

Generate an IP address class with an IP string.

ip.eq(ip_class_1, “ip-string”) / ip.eq(ip_class_1, ip_class_2)

Compare two IP addresses. The first one must be IP address class and the second one can be IP address class
or IP string.

ip.reputation(“ip-string”) / ip.reputation(ip_class)
Check the reputation of a specific IP. Return Lua array with reputation categories. The reputation categories
are:

"Botnet", "Anonymous Proxy", "Phishing", "Spam", "Others", "Tor"
If IP string is not a valid IP, return nil.
Return value example:

{ "Anonymous Proxy", "Phishing" }

ip.geo(“ip-string”) / ip.geo(ip_class)

Return GEO country name in string. If nothing is found or the IP string is not a valid IP, return nil.

ip.geo_code(“ip-string”) / ip.geo_code(ip_class)

Return GEO country code in string. If nothing is found or the IP string is not a valid IP, return nil.

FortiWeb Script Reference Guide Fortinet Technologies Inc.

Predefined packages and classes 13

IP address classes

_eq()

Support use “=="to compare two IP address classes.

__tostring()

Support use tostring(IP-class) to convert IP address class to IP string.

str()

Return IP string of this IP address class.

ver()

Return IP address version with integer 4 or 6.

v4()

Return a new IP address class in v4 version. If the IP address class is v4, copy the IP address class and return.
If the IP address class is v6, the system will try to convert it to v4. If it succeeds, return the v4 IP address class. If
it fails, return nil.

v6()

Return a new IP address class in v6 version. If the IP address class is v6, copy the IP address class and return.
If the IP address class is v4, the system will try to convert it to v6. If it succeeds, return the v6 IP address class. If
it fails, return nil.

eq(“IP-string”) / eq(IP_class)

Compare this IP address class with another one. It can compare IP address class or IP string.

FortiWeb Script Reference Guide Fortinet Technologies Inc.

Predefined commands 14

Predefined commands

All commands are Lua classes but they only can be used inside scripting events. Some commands can only be
used in specific events. For example, HTTP commands can only be used inside HTTP events (HTTP_
REQUEST and HTTP_RESPONSE).

IP commands

IP commands can be used in HTTP and TCP events.

IP:local_addr()

Return IP address class, which is the local address of the connection.

IP:remote_addr()

Return IP address class, which is the remote address of the connection.

IP:client_addr()

Return IP address class, which is the client IP address of the stream.

IP:server_addr()

Return IP address class, which is the server IP address of the stream. If server is not connected, return nil.
IP:version()

Return the IP version of the connection, either 4 or 6.

TCP commands

TCP commands can be used in HTTP and TCP events.

TCP:local_port()

Return local TCP port of the connection. The value is integer.

TCP:remote_port()

Return remote TCP port of the connection. The value is integer.

TCP:client_port()

Return client TCP port of the connection. The value is integer.

TCP:server_port()

Return server TCP port of the connection. The value is integer. If the server is not connected, return nil.

TCP:close()

FortiWeb Script Reference Guide Fortinet Technologies Inc.

Predefined commands 15

Close current TCP connection and disable its TCP events. This function can only be used in event SERVER _
CONNECTED.

LB commands

LB commands can be used in HTTP events.
LB:routing(“cr-name”)
Force current HTTP transaction to route to specific content routing.

Return value is Boolean. If the policy doesn’t have content routing or cannot find the specific content routing,
return false. If routing successes, return true.

LB:persist(“key”)
LB:persist(“key”, timeout)

Use the key string to do persistence. The type of the server pool’s persistence must be set to scripting,
otherwise the function has no effect.

If argument timeout doesn’t exist, use the default timeout in the persistence of the server pool.

If called in HTTP_REQUEST, the system will use the key to search the persistence table. If found, do
persistence; If no found, insert key to the persistence table.

If called in HTTP_RESPONSE, the system will insert the key string to the persistence table.

SSL commands

SSL:sni()

Returns the SNI or false (if no).
This function should be used in script events CLIENTSSL_HANDSHAKE and SERVERSSL_HANDSHAKE.

Example

when CLIENTSSL HANDSHAKE {
local svr name = SSL:sni ()
if svr name then
debug ("client handshake sni: %s\n", SVr name)
end

SSL: set_sni(svr_name)

Returns true if the server name indication extension has been set, otherwise false.
This function should be used in the script event SEVERSSL_CLIENTHELLO_SEND.

Example

FortiWeb Script Reference Guide Fortinet Technologies Inc.

Predefined commands 16

when SERVERSSL CLIENTHELLO_ SEND {
svr _name = "www.visa.com"
debug ("set Server Name Indication(SNI) in ClientHello = $s\n", svr_name)
SSL:set sni (svr name)
}
-- a function to print a table, i represents the number of \t for formatting purpose.
function print table(table, indent)
local space = string.rep('\t', indent)
for key, value in pairs(table) do
if (type(value)=="table') then
debug ("%$s sub-table[%$s]\n", space, key)
print table(value, indent+l)
else
debug ("$s %s: %$s\n", space, key, value)
end
end
end

SSL:cipher()

Returns the cipher in handshake (string type, in OPENSSL form). Please note that the name returned is in
standard RFC format.

This function should be used in script events CLIENTSSL_HANDSHAKE and SERVERSSL_HANDSHAKE.

Example

when CLIENTSSL_HANDSHAKE {
local cipher = SSL:cipher ()
if cipher then
debug ("cipher in client handshake =%s\n", cipher)
end

SSL:version()

Returns the SSL version in handshake (string type).
This function should be used in script events CLIENTSSL_HANDSHAKE and SERVERSSL_HANDSHAKE.

Example
when CLIENTSSL HANDSHAKE {
local ssl version = SSL:version()
debug ("client ssl version : %s\n", ssl version)
}
SSL:alpn()

Returns the ALPN protocol selected in handshake (string type). Returns false if not presented or supported.

This function should be used in script events CLIENTSSL_HANDSHAKE and SERVERSSL_HANDSHAKE.

Example

FortiWeb Script Reference Guide Fortinet Technologies Inc.

Predefined commands 17

when CLIENTSSL HANDSHAKE {
local alpn protocol = SSL:alpn()
if alpn protocol then
debug ("alpn protocol in client handshake = %s\n", alpn protocol)

end

SSL:client_cert_verify()

Returns the status of client-certificate-verify, whether or not it is enabled. True represents enabled, otherwise
False.

This function should be ONLY used in script event CLIENTSSL_HANDSHAKE.

SSL: cert_count()

Returns the total number of certificates that the peer has offered, including the peer certificate and client
certificate chains. (Integer)

This function should be ONLY used in script event CLIENTSSL_HANDSHAKE.

Example

when CLIENTSSL_HANDSHAKE {
if SSL:client cert verify() then
debug ("client cert verify enabled\n")
local cert cnt = SSL:cert count ()
debug ("cert cnt number %d\n", cert cnt)

end

SSL: get_peer_cert_by_idx(index_value)

Returns the issuer certificate of the index of the X509 SSL certificate in the peer certificate chain, where index is
a value greater than or equal to zero.

A value of zero denotes the first certificate in the chain (aka leaf peer certificate);
A value of one denotes the next, and so on. If the input value is out of range, return nil.
Return type: A table including the information of a client certificate.

This function should be ONLY used in script event CLIENTSSL_HANDSHAKE

Example

when CLIENTSSL HANDSHAKE {
if cert cnt >= 1 then
local cert table = SSL:get peer cert by idx(0)
print table(cert table, 0)
end
debug ("verify result: %d\n", SSL: verify result())

FortiWeb Script Reference Guide Fortinet Technologies Inc.

Predefined commands 18

SSL: verify_result()

Returns the result code from peer certificate verification. The returned code uses the same values as those of
OpenSSL’s X509 verify_result (X509_V_ERR) definitions.

Returns type: Integer. Returns -1 if the verification code can not be retrieved

This function should be ONLY used in script event CLIENTSSL_HANDSHAKE.

SSL:session(t) [TODO]

Allows you to get SSL session id / reused / remove from cache.
Input t is a table, with a key “operation”, and there will be three choices: “get_id” or “remove” or “reused”.
Return string for get operation, and boolean for remove or reused operation.

This function should be used in script events CLIENTSSL_HANDSHAKE and SERVERSSL_HANDSHAKE.

HTTP Commands

HTTP commands can be used in HTTP events.

Header fetch

HTTP:headers()

Fetch all HTTP request or response headers. When it is called in client side, it returns all HTTP request
headers; When it is called in server side, it returns all HTTP response headers.

Return: lua table of array.

for k, v in pairs (HTTP:headers()) do
for i = 1, #v do
debug ("HEADER: %$s[%d]: %$s\n", k, i, v[i])
end
end

HTTP:header(“header-name”)

Fetch specific HTTP request or response header.

Return: lua array

for i, v in ipairs (HTTP:header (“set-cookie”)) do
debug (“set-cookie[%d]: %s\n”, 1, V)
end

FortiWeb Script Reference Guide Fortinet Technologies Inc.

Predefined commands 19

HTTP:cookies()

Fetch all cookies. When it is called in client side, it fetches “Cookies”; When it is called in server side, it fetches
“Set-Cookie”.

Return: lua table containing only keys and values.

for k, v in pairs (HTTP:cookies()) do
debug ("Cookie: %s = %s\n", k, v)
end

HTTP:cookie(“cookie-name”)

Fetch the value of specific cookies.

Return: string.

persist = HTTP:cookie (“persist”)

HTTP:args()

Fetch all arguments of HTTP query.

Return: lua table containing key and value.

for k, v in pairs (HTTP:args()) do
debug ("ARG: %s = %s\n", k, v)
end

HTTP:arg(“arg-name”)

Fetch the value of specific arguments.

Return: string.

v = HTTP:arg (“ip”)

HTTP:host()

Return the string of HTTP request host.

HTTP:url()

Return the string of HTTP request URL. It is full URL including path and query.

FortiWeb Script Reference Guide Fortinet Technologies Inc.

Predefined commands 20

HTTP:path()

Return the string of HTTP request path.

HTTP:method()

Return the string of HTTP request method.

HTTP:version()

Return the string of HTTP request or response version.

HTTP:status()

Return two strings including HTTP response status code and reason.

code, reason = HTTP:status/()

Header manipulate

HTTP:set_path(“new-path”)

Change the path in HTTP request header.

Return true for success and false for failure.

HTTP:set path("/new path")

HTTP:set_query(“new-query”)
Change the query in HTTP request header.

Return true for success and false for failure.
HTTP:set query("test=1")
HTTP:set_url(“new-url”)

Change the whole URL, including the path and query.

Return true for success and false for failure.

HTTP:set_method(“new-method”)

FortiWeb Script Reference Guide Fortinet Technologies Inc.

Predefined commands 21

Change the method in HTTP request header.

Return true for success and false for failure.

HTTP:set url("/new path?test=1")

HTTP:set_status(status-code)
HTTP:set_status(status-code, “reason”)
Change the status code and reason in HTTP response header. If reason does not exist, use default reason.

Return true for success and false for failure.

HTTP:set status(200)
HTTP:set status (200, "Other Reason")

HTTP:add_header(“header-name”, “header-value”)
Add a header line to HTTP request or response header.
Return true for success and false for failure.

Example:

function rewrite request (HTTP, IP, args)

debug ("%s", IP:client addr())

client ip = IP:client addr()

-- add/del/set header

HTTP:add header ("X-COUNTRY-FMF", ip.geo(client ip) or "unknown") -- add a new

header line B

end
when HTTP REQUEST ({

local path = HTTP:path()

if path == "/rewrite request" then

rewrite_request(HTTP, IP, HTTP:args())
end

HTTP:del_header(“header-name”)
Remove the header with name “header-name” from HTTP request or response.

Return true for success and false for failure.

HTTP:set_header(“header-name”, header-value-array)

Remove the header with name “header-name” from HTTP request or response, and add this header with new
value header-value-array. The argument header-value-array is a Lua array which is the value got from
HTTP:header().

Return true for success and false for failure.

HTTP:set header("test", { "linel", "line2", "line3" })

HTTP:replace_header(“header-name”, “regex”, “replace”)

FortiWeb Script Reference Guide Fortinet Technologies Inc.

Predefined commands

Match the regular expression in all occurrences of header field “header-name” according to “regex”, and
replaces them with the “replace” argument. The replacement value can contain back references like 1,2, ...

Return true for success and false for failure.

-- add api to set-cookie path
HTTP:replace header ("set-cookie”, [[(.*) (Path=\/) (.*)11, [[\1\2api\3]1])

Custom reply

These functions only can be used in HTTP client side event (only HTTP_REQUEST now).

HTTP:redirect (“fmt”, ...)

Reply to client with redirect response.

HTTP:redirect (“https://%s”, HTTP:host())

HTTP:reply (response)

Reply to client with custom response.
Argument response is a lua array. It includes:

« status: Integer. Default is 200.

« reason: String. If not set, the system will use the default value of status code. For example, if the status
code is 200, the default value of reason is “OK”.

« headers: Lua table. Each value of the table is a lua array. It contains all headers except “content-length”.

“content-length” will be automatically set with the body size.
« Body: String.
HTTP:reply({
status = 400,

reason = “test reason”,
headers = {
["content-type"] = { "text/html" },
["cache-control”"] = { "no-cache", "no-store" 1},
}V
body = "<html><body><hl>invalid request<hl></body></html>",

22

FortiWeb Script Reference Guide Fortinet Technologies Inc.

Predefined commands 23

Control

HTTP:close()

Close the current HTTP transaction and disable its HTTP events. This function can only be used in event
HTTP_REQUEST.

Protocol

HTTP:is_https()

Return true if the current transaction is in HTTPS connection.

Transaction private data

In Lua, the local value can only be used in function and the global value is shared in whole Lua stack.

In FortiWeb, sometimes a private data is needed for HTTP transaction, and the value is shared in the same
HTTP transaction.

HTTP:setpriv(object)

Store a lua object as the HTTP transaction private data. You can store a lua objectin event HTTP_REQUEST
and fetch it by calling HTTP:priv() in event HTTP_RESPONSE.

HTTP:priv()

Fetch the transaction private data that stored by HTTP:setpriv(). If no result is found, it will return an empty lua
table.

Data Collect

HTTP:collect()

This function only exist in script events HTTP_REQUEST and HTTP_RESPONSE.

Example

when HTTP REQUEST ({

--HTTP:collect command can be used in both HTTP REQUEST and HTTP RESPONSE events

--size, if size is -1 it will collect up to the full length or when FortiWeb's max-
cahched length is reached

if HTTP:header (“content-type”) == text/css

HTTP::collect ()

}

FortiWeb Script Reference Guide Fortinet Technologies Inc.

Predefined commands 24

Body Rewrite

HTTP:body (offset, size)

Offset and size are optional.
If offset is missing, it will be set as zero.
If size is missing, it will be set as -1 which means the whole HTTP body.

Return string. The HTTP body will be returned.

HTTP:set_body("body_str", offset, size)

Offset and size are optional.

If offset is missing, it will be set as zero.

If size is missing, it will be set as -1 which means the whole http body.

The body_stris the HTTP body. Now only the string type body is supported.

Return boolean: true/false.

Example of HTTP replace body

when HTTP REQUEST ({
HTTP:collect ()
}

--This function will change "username:test" to "username:Test"
function username first char uppercase(str)

local strl = str:sub(l, 9)

local str2 = str:sub (10, 10)

str2 = str2:upper|()

local str3 = str:sub(11l, -1)

return strl..str2..str3

end

when HTTP DATA REQUEST {

local body str = HTTP:body (0, 16)

local body new = body str:gsub ("username: [A-Za-z][A-Za-z0-9]+", username first char
uppefEase) B B B B a

debug ("body old = %s, body new = $s\n", body str, body new)

HTTP:set body(body new, 0, 16)

}

FortiWeb Script Reference Guide Fortinet Technologies Inc.

FE:EHT"‘IEE www.fortinet.com

Copyright© 2023 Fortinet, Inc. All rights reserved. Fortinet®, FortiGate®, FortiCare® and FortiGuard®, and certain other marks are registered trademarks of Fortinet, Inc., and other Fortinet names herein
may also be registered and/or common law trademarks of Fortinet. All other product or company names may be trademarks of their respective owners. Performance and other metrics contained herein were
attained in internal lab tests under ideal conditions, and actual performance and other results may vary. Network variables, different network environments and other conditions may affect performance
results. Nothing herein represents any binding commitment by Fortinet, and Fortinet disclaims all warranties, whether express or implied, except to the extent Fortinet enters a binding written contract,
signed by Fortinet's General Counsel, with a purchaser that expressly warrants that the identified product will perform according to certain expressly-identified performance metrics and, in such event, only
the specific performance metrics expressly identified in such binding written contract shall be binding on Fortinet. For absolute clarity, any such warranty will be limited to performance in the same ideal
conditions as in Fortinet’s internal lab tests. Fortinet disclaims in full any covenants, representations, and guarantees pursuant hereto, whether express or implied. Fortinet reserves the right to change,
modify, transfer, or otherwise revise this publication without notice, and the most current version of the publication shall be applicable.

https://www.fortinet.com/

	Change Log
	Introduction
	Configuration overview
	Predefined packages and classes
	Global
	debug(fmt, ..)
	_id
	_name

	Core
	core.debug(level, fmt, ..)
	core.print(level, …)

	Policy
	policy.name()
	policy.http_ports()
	policy.https_ports()
	policy.crs()
	policy.servers() / policy.servers(“cr-name”)

	IP
	ip.addr(“ip-string”)
	ip.eq(ip_class_1, “ip-string”) / ip.eq(ip_class_1, ip_class_2)
	ip.reputation(“ip-string”) / ip.reputation(ip_class)
	ip.geo(“ip-string”) / ip.geo(ip_class)
	ip.geo_code(“ip-string”) / ip.geo_code(ip_class)
	IP address classes

	Predefined commands
	IP commands
	TCP commands
	LB commands
	SSL commands
	SSL:sni()
	SSL: set_sni(svr_name)
	SSL:cipher()
	SSL:version()
	SSL:alpn()
	SSL:client_cert_verify()
	SSL: cert_count()
	SSL: get_peer_cert_by_idx(index_value)
	SSL: verify_result()
	SSL:session(t) [TODO]

	HTTP Commands
	Header fetch
	Header manipulate
	Custom reply
	Control
	Protocol
	Transaction private data
	Data Collect
	Body Rewrite

