
FortiADC Kubernetes Controller 3.0.0

FORTINET DOCUMENT LIBRARY

https://docs.fortinet.com

FORTINET VIDEO LIBRARY

https://video.fortinet.com

FORTINET BLOG

https://blog.fortinet.com

CUSTOMER SERVICE & SUPPORT

https://support.fortinet.com

FORTINET TRAINING & CERTIFICATION PROGRAM

https://www.fortinet.com/training-certification

FORTINET TRAINING INSTITUTE

https://training.fortinet.com

FORTIGUARD LABS

https://www.fortiguard.com

END USER LICENSE AGREEMENT

https://www.fortinet.com/doc/legal/EULA.pdf

FEEDBACK

Email: techdoc@fortinet.com

November 3, 2025

FortiADC Kubernetes Controller 3.0.0

https://docs.fortinet.com/
https://video.fortinet.com/
https://blog.fortinet.com/
https://support.fortinet.com/
https://www.fortinet.com/training-certification
https://training.fortinet.com/
https://www.fortiguard.com/
https://www.fortinet.com/doc/legal/EULA.pdf
mailto:techdoc@fortinet.com

TABLE OF CONTENTS

Change Log 4
About FortiADC Kubernetes Controller 5
Architecture and Concepts 6
Architecture Overview 6

High-level workflow 6
Key Components 7
Resource Mapping 7

Ingress and VirtualServer Models 7
Prerequisite Knowledge 9
Deploying FortiADC Kubernetes Controller 10

FortiADC as an Ingress-Managed Load Balancer 10
Supported Environments 11
Supported Release and Version 11
Kubernetes API Version 12

Kubernetes Ingress 14
Ingress class 14
Ingress types 15

Kubernetes Custom Resource 22
VirtualServer Custom Resource Definition 22
VirtualServer Custom Resource Examples 25

Mapping Kubernetes Resources to FortiADC Objects 32
Naming rule 32

Kubernetes CNI Plugin 34
Installation 36
Configuration Parameters 42
Deployment 48

Installing Kubernetes Custom Resource 57
Debug 61
FAQ 62

FortiADC Kubernetes Controller 3.0.0 3

Fortinet Inc.

Change Log

Change Log

Date Change Description

November 3,
2025

Initial release

FortiADC FortiADC Kubernetes Controller 3.0.0 4

Fortinet Technologies Inc.

About FortiADC Kubernetes Controller

About FortiADC Kubernetes Controller

The FortiADC Kubernetes Controller integrates FortiADC’s application delivery and security features with Kubernetes
environments. It allows administrators to manage FortiADC virtual servers and real server pools directly from
Kubernetes by defining either standard Ingress resources or Fortinet’s VirtualServer custom resources.

Operating as an intermediary between the Kubernetes API and the FortiADC REST API, the controller continuously
monitors cluster resources and synchronizes corresponding configurations on FortiADC. When services or pods are
added, removed, or updated, the controller automatically reconciles these changes to maintain an accurate, up-to-date
application delivery configuration.

Key capabilities include:

l Automated configuration management — Dynamically maps Kubernetes resources to FortiADC objects,
eliminating manual updates.

l Advanced application delivery — Extends native Kubernetes load balancing with FortiADC features such as SSL
offloading, persistence, and Layer 7 content routing.

l Integrated application security — Applies FortiADC’s Web Application Firewall (WAF), antivirus, and DoS
protection to Kubernetes workloads.

l Operational visibility — Provides unified traffic monitoring and analytics through FortiView and traffic logs.

This document describes the concepts, configuration, and deployment procedures for the FortiADC Kubernetes
Controller. It includes information about supported Kubernetes resources, installation using Helm, configuration
parameters, and examples for integrating FortiADC with Kubernetes services through Ingress and VirtualServer
definitions.

FortiADC FortiADC Kubernetes Controller 3.0.0 5

Fortinet Technologies Inc.

Architecture and Concepts

Architecture and Concepts

The FortiADC Kubernetes Controller operates as a containerized application within a Kubernetes cluster. It observes
Kubernetes resources such as Ingress, Service, EndpointSlice, Node, and VirtualServer and translates them into
FortiADC configuration objects by using the FortiADC REST API.

This enables continuous synchronization between cluster state and FortiADC’s application delivery configuration.

Architecture Overview

The controller interacts with both the Kubernetes API Server and a FortiADC instance. It uses a Kubernetes service
account to authenticate to the cluster and relies on a Kubernetes Secret to store FortiADC credentials securely.

High-level workflow

1. Watch and detect — Monitors the Kubernetes API for Add, Update, and Delete events on supported resources.
2. Translate — Converts each resource specification into FortiADC objects such as virtual servers, content-routing

rules, and real-server pools.

FortiADC FortiADC Kubernetes Controller 3.0.0 6

Fortinet Technologies Inc.

Architecture and Concepts

3. Apply — Pushes the translated configuration to FortiADC through the REST API.
4. Reconcile — Continuously compares Kubernetes resource definitions with FortiADC’s active configuration and

updates FortiADC whenever differences are detected.

This architecture allows FortiADC to function as a dynamic, state-aware load balancer that automatically reflects
Kubernetes application topology changes.

Key Components

Component Description

Controller Pod Runs the FortiADC Kubernetes Controller inside the cluster and manages
communication with both the Kubernetes API Server and FortiADC.

FortiADC Instance The external FortiADC device that receives REST API calls from the controller
and enforces the resulting configuration.

Service Account and RBAC Provides the controller with permissions to read and watch Kubernetes objects
such as Ingress, Service, EndpointSlice, Node, and VirtualServer.

Secret Stores FortiADC login credentials securely within the cluster.

Helm Chart Simplifies installation, upgrade, and removal of the controller and its supporting
Kubernetes resources.

Custom Resource Definition
(CRD)

Extends Kubernetes with Fortinet’s VirtualServer resource type for defining
advanced traffic-management parameters.

Resource Mapping

The following table summarizes how Kubernetes resources correspond to FortiADC objects.

Kubernetes Object FortiADC Object

Ingress/ VirtualServer Virtual Server / Content Routing / Scripting

Service Real Server Pool / Real Server

Node Real Server

Endpoint / EndpointSlice Real Server/ Overlay Tunnel ARP/ Remote Host

Secret Local Certificate / Certificate Group / Client-SSL

Ingress and VirtualServer Models

The FortiADC Kubernetes Controller supports two configuration models:

FortiADC FortiADC Kubernetes Controller 3.0.0 7

Fortinet Technologies Inc.

Architecture and Concepts

l Ingress

Uses native Kubernetes Ingress resources to expose HTTP and HTTPS services. This model provides broad
compatibility and is ideal for standard application publishing workflows.

l VirtualServer (Custom Resource)

Uses the Fortinet-defined VirtualServer CRD to configure FortiADC-specific parameters directly within Kubernetes.
This model supports advanced Layer 7 capabilities such as WAF profiles, SSL settings, persistence, and GSLB
integration.

Administrators can use either model, or a combination of both, depending on application complexity and operational
requirements.

Before deploying the FortiADC Kubernetes Controller, review the Kubernetes and
Helm concepts described in Prerequisite Knowledge on page 9.

FortiADC FortiADC Kubernetes Controller 3.0.0 8

Fortinet Technologies Inc.

Prerequisite Knowledge

Prerequisite Knowledge

Kubernetes

Before you begin using FortiADC Kubernetes Controller, you will need to have prerequisite knowledge of the
Kubernetes cluster, and Kubernetes Ingress, Service, Pod and Node. The terms and concepts discussed in this
document is sourced directly from Kubernetes official documentation. For more information, please refer to the
documents listed below:

l Kubernetes Concepts: https://kubernetes.io/docs/concepts/
l Kubernetes Ingress: https://kubernetes.io/docs/concepts/services-networking/ingress/
l Kubernetes Service: https://kubernetes.io/docs/concepts/services-networking/service/

Helm Charts

As Helm Charts are used in FortiADC Kubernetes Controller installation, you will also need to have understanding of
how Helm Charts work. For more information, please refer to the documents listed below:

l Helm Charts values files: https://helm.sh/docs/chart_template_guide/values_files/
l Helm Charts Installation and upgrade from the Helm repository: https://helm.sh/docs/helm/helm_install/

Container Network Interface (CNI)

The resources below will help you understand where the Container Network Interface (CNI) fits into the Kubernetes
architecture.

l Kubernetes network model: https://kubernetes.io/docs/concepts/cluster-administration/networking/
l Flannel: https://github.com/flannel-io/flannel

FortiADC FortiADC Kubernetes Controller 3.0.0 9

Fortinet Technologies Inc.

https://kubernetes.io/docs/concepts/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/service/
https://helm.sh/docs/chart_template_guide/values_files/
https://helm.sh/docs/helm/helm_install/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://github.com/flannel-io/flannel

Deploying FortiADC Kubernetes Controller

Deploying FortiADC Kubernetes
Controller

The FortiADC Kubernetes Controller runs as a pod within a Kubernetes cluster and provides dynamic synchronization
between Kubernetes resources and FortiADC configuration objects. Once deployed, it continuously monitors the cluster
for changes to relevant resources and automatically updates FortiADC to reflect the current application state.

The controller supports both standard Kubernetes Ingress resources and Fortinet-defined VirtualServer custom
resources. This dual-resource model allows administrators to either use the familiar Kubernetes Ingress framework or
define FortiADC-specific configurations for advanced Layer 7 traffic management and security.

When the controller detects an event in Kubernetes—such as the creation, update, or deletion of an Ingress or
VirtualServer—it translates the corresponding specifications into FortiADC objects, including virtual servers, content
routing rules, and real server pools. This process ensures that load-balancing, SSL, and security policies remain
consistent between Kubernetes and FortiADC.

FortiADC as an Ingress-Managed Load Balancer

FortiADC serves as the Ingress-managed load balancer, providing not only Layer 4–7 traffic distribution but also
integrated security and visibility features, including:

l Web Application Firewall (WAF)
l Antivirus scanning
l Denial-of-Service (DoS) protection
l Health checks, traffic logging, and FortiView analytics

These capabilities extend Kubernetes’ native ingress functionality by delivering enterprise-grade application delivery
and protection directly within the cluster workflow.

FortiADC FortiADC Kubernetes Controller 3.0.0 10

Fortinet Technologies Inc.

Deploying FortiADC Kubernetes Controller

Supported Environments

The FortiADC Kubernetes Controller has been verified to run in the Kubernetes clusters across the following
environments:

Environment Tools for building

Private cloud kubeadm, minikube, microk8s

Public cloud AWS EKS, Oracle OKE

Supported Release and Version

Product Version

FortiADC Kubernetes
Controller

1.0.0 1.0.1 1.0.2 2.0.0 2.0.1 2.0.2 2.0.3 3.0.0

Kubernetes 1.19.8 -
1.23.x

1.19.8 -
1.24.x

1.19.8 -
1.27.x

1.19.8 -
1.27.x

1.19.8 -
1.28.x

1.19.8 -
1.30.x

1.19.8 -
1.32.x

1.19.8 -
1.33.x

FortiADC Version 5.4.5 - 8.x.x*

*Some features from FortiADC Kubernetes Controller version 2.0.0 or later require FortiADC version 7.4.0 or later to
support.

FortiADC FortiADC Kubernetes Controller 3.0.0 11

Fortinet Technologies Inc.

Deploying FortiADC Kubernetes Controller

When using FortiADC Kubernetes Controller 2.0.x, the Ingress related objects on
FortiADC (including virtual servers, content routing, real server pools, and real
servers) will be fully managed by the Kubernetes Controller. This means that any
virtual server, content routing, real server pool or real server object that is not
deployed by FortiADC Kubernetes Controller will be removed automatically.

Kubernetes API Version

The Kubernetes API allows you to query and manipulate the state of API objects in Kubernetes (for example: Pods,
Nodes, Ingress, and Services).

For the API object, such as the Ingress object you defined in the YAML file, there will be an apiVersion field for
Kubernetes to determine which API version to deploy the object. Different API versions may have different metadata and
specific definitions for that object.

For example, for the Ingress API object, the API versions extensions/v1beta1/Ingress and networking.k8s.io/v1/Ingress
would have different data structures for FortiADC Kubernetes Controller to parse. Before extensions/v1beta1/Ingress is
entirely deprecated by networking.k8s.io/v1/Ingress in Kubernetes v1.22, you may find both API versions are supported
by the Kubernetes API server in some cases, such as when upgrading Kubernetes from a lower version v1.16 to a
higher version v1.19.

To ensure you use an API version of Kubernetes objects that FortiADC Kubernetes Controller supports, you can use the
kubectl command to check the resource API version.

user@control-plane-node:~$ for kind in `kubectl api-resources | tail +2 | awk '{ print $1 }'`; do
kubectl explain $kind; done | grep -e "KIND:" -e "VERSION:"

The table below lists the API version of the required API object used for FortiADC Kubernetes Controller:

API Object API Version

Node v1

Pod v1

PodTemplate v1

ServiceAccount v1

Service v1

Deployment apps/v1

ReplicaSet apps/v1

Endpoint v1

EndpointSlice discovery.k8s.io/v1

Event v1

IngressClass networking.k8s.io/v1

Ingress networking.k8s.io/v1

FortiADC FortiADC Kubernetes Controller 3.0.0 12

Fortinet Technologies Inc.

Deploying FortiADC Kubernetes Controller

API Object API Version

ClusterRoleBinding rbac.authorization.k8s.io/v1

ClusterRole rbac.authorization.k8s.io/v1

RoleBinding rbac.authorization.k8s.io/v1

Role rbac.authorization.k8s.io/v1

*Starting with version 3.0.0, the FortiADC Kubernetes Controller uses the EndpointSlice resource
(discovery.k8s.io/v1) instead of the legacy Endpoint (v1) API, aligning with Kubernetes' updated service discovery
framework.

FortiADC FortiADC Kubernetes Controller 3.0.0 13

Fortinet Technologies Inc.

Kubernetes Ingress

Kubernetes Ingress exposes HTTP and HTTPS routes from outside the cluster to services within the cluster. Traffic
routing is controlled by rules defined on the Ingress resource.

An Ingress can be configured to give Kubernetes services externally reachable URLs, load balance traffic, terminate
SSL/TLS, and offer name-based virtual hosting.

FortiADC Kubernetes Controller is responsible for fulfilling the Ingress specified with the IngressClass "fadc-ingress-
controller" with FortiADC.

It is important to note that to satisfy an Ingress, you must have an Ingress controller, only creating an Ingress resource
would have no effect.

FortiADC Kubernetes Controller is responsible for fulfilling the Ingress specified with the IngressClass "fadc-ingress-
controller" with FortiADC.

Here is a simple example where an Ingress forwards traffic based on the routing rule to a Service:

In the above example, the Kubernetes service is an abstract method to expose an application running on a set of Pods
as a network service. There are multiple types of Kubernetes services, among them, service with NodePort type
exposes the service on each Kubernetes cluster Node's IP at a static port (the NodePort). You will be able to contact the
Service from outside the cluster by requesting <NodeIP>:<NodePort>.

Services with the ClusterIP type only allows the Service to be reachable from within the cluster. In this case, you can use
the Ingress to expose the service to the public internet.

Ingress class

Ingresses can be implemented by different controllers, often with different configurations. Each Ingress should specify
an IngressClass name, which is a reference to an IngressClass resource that contains additional configuration including

FortiADC FortiADC Kubernetes Controller 3.0.0 14

Fortinet Technologies Inc.

the name of the controller that should implement the class.

For an Ingress that would be implemented by FortiADC Kubernetes Controller, please specify the ingressClassName to
fadc-ingress-controller in the ingress specification. Upon installation, FortiADC Kubernetes Controller is set as the
default Ingress controller in the Helm chart value.yaml.

controller:
ingressClassResource:

name: "fadc-ingress-controller"
enabled: true
default: true
controllerValue: "fortinet.com/fadc-ingress-controller"

Ingress types

FortiADC supports all 5 types of Ingress:

1. Default backend
2. Minimal-Ingress
3. Name-based virtual hosting
4. Hostname wildcards
5. TLS

For details on each Ingress type, see https://kubernetes.io/docs/concepts/services-networking/ingress/.

For an example Ingress file, see https://github.com/fortinet/fortiadc-kubernetes-controller/tree/main/ingress_examples.

Ensure the service used in the Ingress is already deployed with NodePort type.
Kubernetes does not verify whether the service defined in the Ingress exists or not
when deploying an Ingress. So, if you remove the service used in the deployed
Ingress, you will not be warned or blocked from this action.

Default backend

An Ingress with no rules sends all traffic to a single default backend. If none of the hosts or paths match the HTTP
request in the Ingress objects, the traffic is routed to your default backend. Therefore, if Rules are not specified,
defaultBackendmust be specified in the Ingress.

Note: FortiADC Kubernetes Controller only supports Service backend. A Resource backend is not supported.

Due to PDF formatting limitations, the code example below would not retain
indentations if copy and pasted directly into a YAML file. Without the proper
indentations, the YAML will be invalid.

To copy the Default backend Ingress YAML example, follow this link:

https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/ingress_
examples/default_backend.yaml

FortiADC FortiADC Kubernetes Controller 3.0.0 15

Fortinet Technologies Inc.

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://github.com/fortinet/fortiadc-kubernetes-controller/tree/main/ingress_examples
https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/ingress_examples/default_backend.yaml
https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/ingress_examples/default_backend.yaml

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:

name: default-backend
annotations: {

"fortiadc-ip" : "10.0.100.133",
"fortiadc-login" : "fad-login",
"fortiadc-ctrl-log" : "enable",
"fortiadc-vdom" : "root",
"virtual-server-ip" : "172.23.133.125",
"virtual-server-interface" : "port1",
"virtual-server-port" : "443",
"virtual-server-addr-type" : "ipv4",
"virtual-server-waf-profile" : "High-Level-Security",
"virtual-server-av-profile" : "Antivirus-Profile",
"virtual-server-dos-profile" : "",
"virtual-server-captcha-profile" : "LB_CAPTCHA_PROFILE_DEFAULT",
"virtual-server-nat-src-pool" : "",
"virtual-server-traffic-group" : "default",
"virtual-server-fortiview" : "enable",
"virtual-server-traffic-log" : "enable",
"virtual-server-wccp" : "enable",
"load-balance-method" : "LB_METHOD_LEAST_CONNECTION",
"load-balance-profile" : "LB_PROF_HTTPS"

}
spec:

ingressClassName: fadc-ingress-controller
defaultBackend:

service:
name: default-http-backend
port:

number: 80

You can add defaultBackend in any particular Ingress. You can check the example here:

https://raw.githubusercontent.com/fortinet/fortiadc-kubernetes-controller/main/ingress_examples/ingress-with-default-
backend.yaml

Minimal-Ingress

A minimal-Ingress has at least one rule defined in the Ingress with no specified default backend. The following is an
example of a minimal-Ingress.

Due to PDF formatting limitations, the code example below would not retain
indentations if copy and pasted directly into a YAML file. Without the proper
indentations, the YAML will be invalid.

To copy the Minimal Ingress YAML example, follow this link:

https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/ingress_
examples/minimal-ingress.yaml

FortiADC FortiADC Kubernetes Controller 3.0.0 16

Fortinet Technologies Inc.

https://raw.githubusercontent.com/fortinet/fortiadc-kubernetes-controller/main/ingress_examples/ingress-with-default-backend.yaml
https://raw.githubusercontent.com/fortinet/fortiadc-kubernetes-controller/main/ingress_examples/ingress-with-default-backend.yaml
https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/ingress_examples/minimal-ingress.yaml
https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/ingress_examples/minimal-ingress.yaml

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:

name: minimal-ingress
annotations: {

"fortiadc-ip" : "10.0.100.133",
"fortiadc-login" : "fad-login",
"fortiadc-ctrl-log" : "enable",
"fortiadc-vdom" : "root",
"virtual-server-ip" : "172.23.133.8",
"virtual-server-interface" : "port1",
"virtual-server-port" : "443",
"virtual-server-addr-type" : "ipv4",
"virtual-server-waf-profile" : "High-Level-Security",
"virtual-server-av-profile" : "Antivirus-Profile",
"virtual-server-dos-profile" : "",
"virtual-server-captcha-profile" : "LB_CAPTCHA_PROFILE_DEFAULT",
"virtual-server-nat-src-pool" : "",
"virtual-server-traffic-group" : "default",
"virtual-server-fortiview" : "enable",
"virtual-server-traffic-log" : "enable",
"virtual-server-wccp" : "enable",
"load-balance-method" : "LB_METHOD_LEAST_CONNECTION",
"load-balance-profile" : "LB_PROF_HTTPS",
"virtual-server-fortigslb-publicip-type" : "ipv4",
"virtual-server-fortigslb-publicip" : "192.0.2.1",
"virtual-server-fortigslb-1clickgslb" : "enable",
"virtual-server-fortigslb-hostname" : "www",
"virtual-server-fortigslb-domainname" : "example.com."

}
spec:

ingressClassName: fadc-ingress-controller
rules:
- http:

paths:
- path: /info

pathType: Prefix
backend:

service:
name: service1
port:

number: 1241

Name-based virtual hosting

Name-based virtual hosts support the routing of HTTP/HTTPS traffic to multiple host names at the same IP address.

FortiADC FortiADC Kubernetes Controller 3.0.0 17

Fortinet Technologies Inc.

Due to PDF formatting limitations, the code example below would not retain
indentations if copy and pasted directly into a YAML file. Without the proper
indentations, the YAML will be invalid.

To copy the Name-based virtual hosting Ingress YAML example, follow this link:

https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/ingress_
examples/name-virtual-host-ingress.yaml

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:

name: name-virtual-host-ingress
annotations: {

"fortiadc-ip" : "10.0.100.133",
"fortiadc-login" : "fad-login",
"fortiadc-vdom" : "root",
"virtual-server-ip" : "2001:db8::68",
"virtual-server-interface" : "port1",
"virtual-server-addr-type" : "ipv6"

}
spec:

ingressClassName: fadc-ingress-controller
rules:
- host: foo.bar.com

http:
paths:
- pathType: Prefix

path: "/"
backend:

service:
name: service3
port:

number: 1245
- host: bar.foo.com

http:
paths:
- pathType: Prefix

path: "/"
backend:

service:
name: service2
port:

number: 1242

Hostname wildcards

The hostname can be a precise match or a wildcard. Precise matches require the HTTP host header to match the host
field (e.g., foo.bar.com). Wildcard matches require the HTTP host header to be equal to the suffix of the wildcard rule
(e.g., *.foo.com).

FortiADC FortiADC Kubernetes Controller 3.0.0 18

Fortinet Technologies Inc.

https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/ingress_examples/name-virtual-host-ingress.yaml
https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/ingress_examples/name-virtual-host-ingress.yaml

Refer to the examples below to determine whether an HTTP host header is a wildcard match or not.

Host Host header Does it match?

*.foo.com bar.foo.com Yes, it matches based on shared suffix.

*.foo.com baz.bar.foo.com No, it does not match. Wildcard only covers a single DNS
label.

*.foo.com foo.com No, it does not match. Wildcard only covers a single DNS
label.

Due to PDF formatting limitations, the code example below would not retain
indentations if copy and pasted directly into a YAML file. Without the proper
indentations, the YAML will be invalid.

To copy the Hostname wildcards Ingress YAML example, follow this link:

https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/ingress_
examples/ingress-wildcard-host.yaml

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:

name: ingress-wildcard-host
annotations: {

"virtual-server-ip" : "172.23.133.10",
"virtual-server-interface" : "port1",
"fortiadc-ip" : "10.0.100.133",
"fortiadc-login" : "fad-login",
"fortiadc-vdom" : "root"

}

spec:
ingressClassName: fadc-ingress-controller
rules:
- host: "foo.bar.com"

http:
paths:
- pathType: Prefix

path: "/info"
backend:

service:
name: service1
port:

number: 1241
- host: "*.foo.com"

http:
paths:
- pathType: Prefix

path: "/hello"
backend:

service:
name: service2

FortiADC FortiADC Kubernetes Controller 3.0.0 19

Fortinet Technologies Inc.

https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/ingress_examples/ingress-wildcard-host.yaml
https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/ingress_examples/ingress-wildcard-host.yaml

port:
number: 80

TLS

You can secure an Ingress by specifying a Secret that contains a TLS private key and certificate. The Ingress resource
only supports a single TLS port, 443, and assumes TLS termination at the Ingress point (traffic to the Service and its
Pods is in plain text). If the TLS configuration section in an Ingress specifies different hosts, they are multiplexed on the
same port according to the hostname specified through the SNI TLS extension (provided the Ingress controller supports
SNI). The TLS secret must contain keys named tls.crt and tls.key that contain the certificate and private key to use
for TLS.

Due to PDF formatting limitations, the code example below would not retain
indentations if copy and pasted directly into a YAML file. Without the proper
indentations, the YAML will be invalid.

To copy the TLS key YAML example, follow this link:

https://kubernetes.io/docs/concepts/services-networking/ingress/#tls

For example:

apiVersion: v1
kind: Secret
metadata:

name: testsecret-tls
namespace: default

data:
tls.crt: base64 encoded cert
tls.key: base64 encoded key

type: kubernetes.io/tls

You can create the TLS secret by using the kubectl command, for example:

kubectl create secret tls testsecret-tls --cert=/etc/ssl/tls.crt --key=/etc/ssl/tls.key

Referencing this secret in an Ingress tells the Ingress controller to secure the channel from the client to the load balancer
using TLS. You need to ensure the TLS secret you created came from a certificate that contains a Common Name (CN),
also known as a Fully Qualified Domain Name (FQDN) for https-example.foo.com.

Due to PDF formatting limitations, the code example below would not retain
indentations if copy and pasted directly into a YAML file. Without the proper
indentations, the YAML will be invalid.

To copy the TLS Ingress YAML example, follow this link:

https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/ingress_
examples/tls-example-ingress.yaml

FortiADC FortiADC Kubernetes Controller 3.0.0 20

Fortinet Technologies Inc.

https://kubernetes.io/docs/concepts/services-networking/ingress/#tls
https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/ingress_examples/tls-example-ingress.yaml
https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/ingress_examples/tls-example-ingress.yaml

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:

name: tls-example-ingress
annotations: {

"virtual-server-ip" : "172.23.133.11",
"virtual-server-interface" : "port1",
"fortiadc-ip" : "10.0.100.133",
"fortiadc-login" : "fad-login",
"fortiadc-vdom" : "root"

}

spec:
ingressClassName: fadc-ingress-controller
tls:
- hosts:

- https-example.foo.com
secretName: testsecret-tls

rules:
- host: https-example.foo.com

http:
paths:
- path: /

pathType: Prefix
backend:

service:
name: service2
port:

number: 80

FortiADC FortiADC Kubernetes Controller 3.0.0 21

Fortinet Technologies Inc.

Kubernetes Custom Resource

Kubernetes Custom Resources extend the Kubernetes API by enabling users to define new resource types. To fully
leverage FortiADC virtual server capabilities in Kubernetes and improve usability, a VirtualServer Custom Resource
Definition (CRD) was developed. The VirtualServer resource functions similarly to Ingress; however, it allows most
virtual server parameters to be specified directly in the resource spec, with only a few FortiADC login-related settings
maintained in annotations.

As a result, all Ingress features discussed previously, such as hostname wildcards and TLS, can also be configured
within the VirtualServer resource.

VirtualServer Custom Resource Definition

The spec section in the VirtualServer custom resource defines the desired state of the virtual server, including listener
settings, backend services, SSL configuration, and routing rules. It provides a more granular and FortiADC-aligned
configuration than the traditional Ingress resource.

virtualServer Field Details

Field Type Description Default

addressType string Specifies the IP version for the virtual server
(ipv4 or ipv6).

ipv4

address string The VirtualServer IP on FortiADC where client
traffic is received.

This parameter is required.

port int The listening port of the virtual server, typically
443 for HTTPS.

443

interface string The FortiADC network interface for the client to
access the virtual server (e.g., port1).

port1

loadBalanceProfile string The load balancing profile to be used (e.g., LB_
PROF_HTTPS).

LB_PROF_HTTPS

loadBalanceMethod string Load balancing method, such as LB_METHOD_
ROUND_ROBIN.

LB_METHOD_ROUND_
ROBIN

persistence string The persistence rule, such as LB_PERSIS_
HASH_SRC_ADDR.

wafProfile string The name of the Web Application Firewall
(WAF) profile to apply.

captchaProfile string CAPTCHA profile to enable human verification

FortiADC FortiADC Kubernetes Controller 3.0.0 22

Fortinet Technologies Inc.

Field Type Description Default

security features.

avProfile string Antivirus profile to scan traffic for threats.

dosProfile string The dosProfile defines the configuration used to
detect and mitigate denial-of-service (DoS)
attacks.

trafficGroup string The traffic group that this virtual server belongs
to for traffic forwarding.

default

fortiview string Enables/disables FortiView, FortiADC's traffic
visualization and analytics (enable or disable).

disable

trafficLog string Enables/disables logging of traffic handled by
this virtual server (enable or disable).

disable

wccp string Enables/disables WCCP (Web Cache
Communication Protocol) (enable or disable).

disable

fortigslbPublicIpType string Type of public IP used for FortiGSLB (usually
ipv4).

ipv4

fortigslbPublicAddress string The public IP address used for global server
load balancing (GSLB).

fortigslbOneClick string Enables/disables FortiADC’s one-click GSLB
configuration feature (enable or disable).

disable

fortigslbHostName string Hostname registered for GSLB.

Note: In YAML, always enclose @ and * in
quotes (for example, fortigslbHostName:
"@"). If not quoted, these characters may be
interpreted as special YAML tokens and lead to
parsing errors.

fortigslbDomainName string Domain name associated with the GSLB
hostname.

contentRoutings list Defines Layer 7 routing rules. Each rule can
route traffic based on host and path, and
includes:
l name: routing rule name
l host: FQDN for this route
l path: URL path
l pathType: match type (Prefix or Exact)
l realServerPool: backend service, port,
and namespace

natSourcePoolList list List of SNAT (source NAT) pools.

FortiADC FortiADC Kubernetes Controller 3.0.0 23

Fortinet Technologies Inc.

Field Type Description Default

Each SNAT pool must already exist on
FortiADC before creating the VirtualServer. If
the specified pool does not exist, the
VirtualServer creation will fail.

tls list List of TLS certificate configurations. Each entry
includes:
l hosts: list of hostnames this certificate
applies to

l secretName: name of the Kubernetes TLS
secret

vdom string Specifies the VDOM (Virtual Domain) on
FortiADC where the virtual server is deployed.

contentRoutings Field Details

This field defines Layer 7 (HTTP/S) routing rules, allowing traffic to be forwarded based on hostname and URL path to
specific Kubernetes services.

Field Type Description

name string A unique name for the routing rule.

host string The hostname (FQDN) to match for this rule (e.g.,
example.com, *.foo.com).

path string The URL path to match (e.g., /, /info, /hello).

pathType string The type of path matching:
l Prefix – matches based on URL prefix
l Exact – matches the exact path

realServerPool.service string The name of the Kubernetes Service to route traffic to.

realServerPool.servicePort int The target port of the Kubernetes Service.

realServerPool.serviceNamespace string The Kubernetes namespace where the service resides.

tls Field Details

The tls field specifies the TLS termination configuration for the VirtualServer. It enables the association of multiple TLS
certificates stored as Kubernetes secrets with specific hostnames through Server Name Indication (SNI). This allows
secure management of multiple domains.

Field Type Description

hosts list of
strings

A list of hostnames that this TLS certificate applies to (e.g., a.foo.com,
*.example.com).
The host must be defined in contentRoutings.

FortiADC FortiADC Kubernetes Controller 3.0.0 24

Fortinet Technologies Inc.

Field Type Description

secretName string The name of the Kubernetes TLS secret that contains the certificate and
private key. This secret must be present in the same namespace as the
VirtualServer Custom Resource.

For more details on configuration parameters with virtual-server and load-balance prefixes, see the FortiADC
Administration Guide on Configuring Virtual Servers.

VirtualServer Custom Resource Examples

The following examples demonstrate typical VirtualServer configurations:

l defaultbackend-virtualserver
l simple-fanout-virtualserver
l wildcard-host-virtualserver
l tls-san-virtualserver

defaultbackend-virtualserver

The defaultbackend virtual server defines an HTTPS entry point at 192.168.1.103:443, which uses FortiADC to
perform Layer 7 load balancing and route traffic to the default-http-backend service inside the Kubernetes cluster.

Due to PDF formatting limitations, the code example below would not retain
indentations if copy and pasted directly into a YAML file. Without the proper
indentations, the YAML will be invalid.

To copy the defaultbackend-virtualserver YAML example, follow this link:

https://github.com/fortinet/fortiadc-kubernetes-
controller/blob/main/customResource/virtualserver_defaultbackend.yaml

apiVersion: fadk8sctrl.fortinet.com/v1alpha1
kind: VirtualServer
metadata:

name: defaultbackend-virtualserver
annotations: {

"fortiadc-ip" : "172.23.133.110",
"fortiadc-login" : "fad-login",
"fortiadc-ctrl-log" : "enable",
"fortiadc-admin-port": "443"

}
spec:

addressType: ipv4
address: 192.168.1.103
port: 443
interface: port1
loadBalanceProfile: LB_PROF_HTTPS
loadBalanceMethod: LB_METHOD_ROUND_ROBIN

FortiADC FortiADC Kubernetes Controller 3.0.0 25

Fortinet Technologies Inc.

https://docs.fortinet.com/document/fortiadc/latest/administration-guide/970956/configuring-virtual-servers
https://docs.fortinet.com/document/fortiadc/latest/administration-guide/970956/configuring-virtual-servers
https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/customResource/virtualserver_defaultbackend.yaml
https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/customResource/virtualserver_defaultbackend.yaml

contentRoutings:
- name: default_route

realServerPool:
service: default-http-backend
servicePort: 80
serviceNamespace: default

vdom: root

simple-fanout-virtualserver

Simple-fanout virtualserver defines an advanced VirtualServer resource for FortiADC on Kubernetes. It listens on
192.168.1.101:443 via interface port3 and includes multiple routing rules based on URL paths under the same
hostname (app.example.com), routing to two different backend services (service1 and service2).

In addition to basic load balancing, it enables several FortiADC security and traffic management features:

l WAF, CAPTCHA, and Antivirus profiles for enhanced security
l FortiGSLB integration with one-click configuration, public IP mapping, and domain binding
l Traffic logging and FortiView visibility enabled
l A NAT source pool for outbound traffic handling
l All configurations are applied under the root VDOM

This setup demonstrates how the VirtualServer CRD can unify advanced FortiADC features with Kubernetes-native
routing logic.

Due to PDF formatting limitations, the code example below would not retain
indentations if copy and pasted directly into a YAML file. Without the proper
indentations, the YAML will be invalid.

To copy the simple-fanout-virtualserver YAML example, follow this link:

https://github.com/fortinet/fortiadc-kubernetes-
controller/blob/main/customResource/virtualserver_simple_fanout.yaml

apiVersion: fadk8sctrl.fortinet.com/v1alpha1
kind: VirtualServer
metadata:

name: simple-fanout-virtualserver
annotations: {

"fortiadc-ip" : "172.23.133.110",
"fortiadc-login" : "fad-login",
"fortiadc-ctrl-log" : "enable",
"fortiadc-admin-port": "443"

}
labels:

fadcr: "true"
spec:

addressType: ipv4
address: 192.168.1.101
port: 443
interface: port3

FortiADC FortiADC Kubernetes Controller 3.0.0 26

Fortinet Technologies Inc.

https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/customResource/virtualserver_simple_fanout.yaml
https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/customResource/virtualserver_simple_fanout.yaml

loadBalanceProfile: LB_PROF_HTTPS
loadBalanceMethod: LB_METHOD_ROUND_ROBIN
wafProfile: High-Level-Security
captchaProfile: LB_CAPTCHA_PROFILE_DEFAULT
avProfile: Antivirus-Profile
trafficGroup: default
fortiview: enable
trafficLog: enable
wccp: disable
fortigslbPublicIpType: ipv4
fortigslbPublicAddress: 203.0.113.1
fortigslbOneClick: enable
fortigslbHostName: samplehost
fortigslbDomainName: example.com.
contentRoutings:

- name: route1
host: app.example.com
path: /info
pathType: Prefix
realServerPool:

service: service1
servicePort: 1241
serviceNamespace: default

- name: route2
host: app.example.com
path: /hello
pathType: Prefix
realServerPool:

service: service2
servicePort: 1242
serviceNamespace: default

natSourcePoolList:
- name: nat-pool-1

vdom: root

wildcard-host-virtualserver

Wildcard-host-virtualserver defines a VirtualServer on FortiADC using a wildcard hostname setup. The server listens on
192.168.1.102:443 via port1, and supports routing based on specific hostnames, including both a fully qualified
domain (foo.bar.com) and a wildcard domain (*.foo.com).

It demonstrates the content routing with general host and wildcard-host in FortiADC features:

Content Routing:

l /info for foo.bar.com→ routes to service1
l /hello for any subdomain of foo.com→ routes to service2

This example highlights how wildcard hostnames can be seamlessly applied in FortiADC virtual servers managed
through Kubernetes CRDs.

FortiADC FortiADC Kubernetes Controller 3.0.0 27

Fortinet Technologies Inc.

Due to PDF formatting limitations, the code example below would not retain
indentations if copy and pasted directly into a YAML file. Without the proper
indentations, the YAML will be invalid.

To copy the wildcard-host-virtualserver YAML example, follow this link:

https://github.com/fortinet/fortiadc-kubernetes-
controller/blob/main/customResource/virtualserver_wildcard_host.yaml

apiVersion: fadk8sctrl.fortinet.com/v1alpha1
kind: VirtualServer
metadata:

name: wildcard-host-virtualserver
annotations: {

"fortiadc-ip" : "172.23.133.110",
"fortiadc-login" : "fad-login",
"fortiadc-ctrl-log" : "enable",
"fortiadc-admin-port": "443"

}
labels:

fadcr: "true"
spec:

addressType: ipv4
address: 192.168.1.102
port: 443
interface: port1
loadBalanceProfile: LB_PROF_HTTPS
loadBalanceMethod: LB_METHOD_ROUND_ROBIN
wafProfile: High-Level-Security
captchaProfile: LB_CAPTCHA_PROFILE_DEFAULT
avProfile: Antivirus-Profile
trafficGroup: default
fortiview: enable
trafficLog: enable
wccp: disable
fortigslbPublicIpType: ipv4
fortigslbPublicAddress: 203.0.113.1
fortigslbOneClick: enable
fortigslbHostName: samplehost
fortigslbDomainName: example.com.
contentRoutings:

- name: route1
host: "foo.bar.com"
path: /info
pathType: Prefix
realServerPool:

service: service1
servicePort: 1241
serviceNamespace: default

- name: route2
host: "*.foo.com"
path: /hello
pathType: Prefix

FortiADC FortiADC Kubernetes Controller 3.0.0 28

Fortinet Technologies Inc.

https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/customResource/virtualserver_wildcard_host.yaml
https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/customResource/virtualserver_wildcard_host.yaml

realServerPool:
service: service2
servicePort: 1242
serviceNamespace: default

vdom: root

tls-san-virtualserver

Tls-san-virtualserver defines a VirtualServer that implements advanced TLS termination with multiple hostnames and
TLS secrets, leveraging SNI/SAN functionality. The virtual server listens on 192.168.1.100:443 via port1, and
applies different TLS certificates based on the requested hostname.

TLS Configuration:

l TLS is enabled with SNI-based certificate selection.
l Two TLS secrets:

l tls-foo for a.foo.com, b.foo.com, and c.foo.com
l testsecret-tls for https-example.foo.com

Routing Rules:

l Traffic is routed based on host + path combinations:
l / on a.foo.com→ default-http-backend
l /env on b.foo.com→ service1
l /info on c.foo.com→ service1
l /hello on https-example.foo.com→ service2

This setup is ideal for scenarios where a single VirtualServer handles multiple domains securely, each with its own
certificate and routing logic. It demonstrates how the CRD supports enterprise-grade TLS configurations in a
Kubernetes-native way.

Due to PDF formatting limitations, the code example below would not retain
indentations if copy and pasted directly into a YAML file. Without the proper
indentations, the YAML will be invalid.

To copy the tls-san-virtualserver YAML example, follow this link:

https://github.com/fortinet/fortiadc-kubernetes-
controller/blob/main/customResource/virtualserver_tls_san.yaml

apiVersion: fadk8sctrl.fortinet.com/v1alpha1
kind: VirtualServer
metadata:

name: tls-san-virtualserver
annotations: {

"fortiadc-ip" : "172.23.133.110",
"fortiadc-login" : "fad-login",
"fortiadc-ctrl-log" : "enable",
"fortiadc-admin-port": "443"

}
spec:

FortiADC FortiADC Kubernetes Controller 3.0.0 29

Fortinet Technologies Inc.

https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/customResource/virtualserver_tls_san.yaml
https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/customResource/virtualserver_tls_san.yaml

addressType: ipv4
address: 192.168.1.100
port: 443
interface: port1
loadBalanceProfile: LB_PROF_HTTPS
loadBalanceMethod: LB_METHOD_ROUND_ROBIN
wafProfile: High-Level-Security
captchaProfile: LB_CAPTCHA_PROFILE_DEFAULT
avProfile: Antivirus-Profile
trafficGroup: default
fortiview: enable
trafficLog: enable
wccp: disable
fortigslbPublicIpType: ipv4
fortigslbPublicAddress: 203.0.113.1
fortigslbOneClick: enable
fortigslbHostName: samplehost
fortigslbDomainName: example.com.
contentRoutings:

- name: default-route
host: a.foo.com
path: /
pathType: Prefix
realServerPool:

service: default-http-backend
servicePort: 80
serviceNamespace: default

- name: route1
host: b.foo.com
path: /env
pathType: Exact
realServerPool:

service: service1
servicePort: 1241
serviceNamespace: default

- name: route2
host: c.foo.com
path: /info
pathType: Prefix
realServerPool:

service: service1
servicePort: 1241
serviceNamespace: default

- name: route3
host: https-example.foo.com
path: /hello
pathType: Prefix
realServerPool:

service: service2
servicePort: 1242
serviceNamespace: default

natSourcePoolList:

FortiADC FortiADC Kubernetes Controller 3.0.0 30

Fortinet Technologies Inc.

- name: nat-pool-1
tls:

- hosts:
- a.foo.com
- b.foo.com
- c.foo.com

secretName: tls-foo
- hosts:

- https-example.foo.com
secretName: testsecret-tls

vdom: root

FortiADC FortiADC Kubernetes Controller 3.0.0 31

Fortinet Technologies Inc.

Mapping Kubernetes Resources to FortiADC Objects

The FortiADC Kubernetes Controller automatically translates Kubernetes and OpenShift resources into corresponding
FortiADC configuration objects.

This mapping ensures that any changes to Kubernetes resources such as Ingress, VirtualServer, or Service are
synchronized with FortiADC in real time.

The following tables show how each Kubernetes resource corresponds to a FortiADC object and describe the naming
rules applied when the controller creates these objects.

Kubernetes Objects FortiADC Objects

Ingress/ VirtualServer Virtual server

Content Routing

Scripting

Service Real Server Pool

Real Server

Node Real Server

Endpoint/ EndpointSlice Real Server

Overlay Tunnel ARP

Remote Host

Secret Local Certificate

Local Certificate Group

Client-SSL

Naming rule

For FortiADC objects created by FortiADC Kubernetes Controller, the name of the object is composed of the
namespace and the name of the Kubernetes objects. The naming rule is shown below:

FortiADC Objects Naming Rule

Virtual server

Real Server Pool

Scripting

Local Certificate

Local Certificate Group

Client-SSL

[namespace of Kubernetes objects]_[name of Kubernetes objects]

Content Routing [namespace of Kubernetes objects]_[name of Kubernetes ingress]_[name of

FortiADC FortiADC Kubernetes Controller 3.0.0 32

Fortinet Technologies Inc.

FortiADC Objects Naming Rule

Kubernetes service]

Real Server Name of the Kubernetes node

FortiADC FortiADC Kubernetes Controller 3.0.0 33

Fortinet Technologies Inc.

Kubernetes CNI Plugin

The Kubernetes cluster network model is implemented by the container runtime on each node. The most common
container runtimes use Container Network Interface (CNI) plugins to manage their network and security capabilities.
Many different CNI plugins exist from many different vendors. FortiADC version 7.4.0 supports the most widely used CNI
plugin, flannel with VXLAN backend. By setting up the VXLAN tunnel, as shown in the figure below, FortiADC can
communicate with Kubernetes EndpointSlices, which is a collection of endpoints that implement the actual service
(usually these endpoints are Pods).

FortiADC Kubernetes Controller 2.0 or later supports ingress to expose services with the ClusterIP type. Since the
ClusterIP type Service can only be accessed within the cluster, an overlay-tunnel is required to connect the FortiADC to
the Kubernetes cluster network.

FortiADC FortiADC Kubernetes Controller 3.0.0 34

Fortinet Technologies Inc.

FortiADC Ingress Controller version 1.0 only supports services of type NodePort.

FortiADC Ingress Controller version 2.0 or later supports services of type NodePort
and ClusterIP.

FortiADC FortiADC Kubernetes Controller 3.0.0 35

Fortinet Technologies Inc.

Installation

Install FortiADC Kubernetes Controller using Helm Charts.

Currently, only Helm 3 (version 3.6.3 or later) is supported.

Helm Charts ease the installation of FortiADC Kubernetes Controller in the Kubernetes cluster. By using the Helm 3
installation tool, most of the Kubernetes objects required for FortiADC Kubernetes Controller can be deployed in one
simple command.

The Kubernetes objects required for FortiADC Kubernetes Controller are listed below:

Kubernetes object Description

Deployment By configuring the replica and pod template in the Kubernetes deployment, the
deployment ensures FortiADC Kubernetes Controller provides a non-terminated
service.

Service Account The service account is used in FortiADC Kubernetes Controller.

Cluster Role A cluster role defines the permission on the Kubernetes cluster-scoped Ingress-
related objects.

Cluster Role Binding The cluster role is bound to the service account used for FortiADC Kubernetes
Controller, allowing FortiADC Kubernetes Controller to access and operate the
Kubernetes cluster-scoped Ingress-related and FortiADC custom resources
related objects.

Ingress Class The IngressClass "fadc-ingress-controller" is created for FortiADC Kubernetes
Controller to identify the Ingress resource. If the Ingress is defined with the
IngressClass "fadc-ingress-controller", FortiADC Kubernetes Controller will
manage this Ingress resource.

CustomResourceDefinition The CustomResourceDefinition “VirtualServer” defines advanced HTTP routing
in Kubernetes.

It enhances the standard Ingress by supporting:
l Multiple upstreams
l Precise path routing and delegation
l Traffic splitting and advanced actions
l Native integration with FortiADC virtualserver features (WAF, Fortiview, etc.)

The Helm Chart is composed of a collection of files that describe the related set of Kubernetes files required by FortiADC
Kubernetes Controller; one of which is the values.yaml file that provides the default configuration for deploying the
Kubernetes objects listed above.

Below lists parts of the values in the values.yaml file.

FortiADC FortiADC Kubernetes Controller 3.0.0 36

Fortinet Technologies Inc.

Default values for fadc-k8s-ctrl.
This is a YAML-formatted file.
Declare variables to be passed into your templates.
FortiADC Kubernetes Controller image from Dockerhub.com
image:

repository: fortinet/fortiadc-ingress
pullPolicy: IfNotPresent
tag: "3.0.0"

nameOverride: ""
fullnameOverride: ""

serviceAccount:
create: true
annotations: {}
name: "fortiadc-ingress"

podAnnotations: {}

podSecurityContext: {}

securityContext: {}

nodeSelector: {}

tolerations:
- effect: "NoExecute"

key: "node.kubernetes.io/not-ready"
operator: "Exists"
tolerationSeconds: 30

- effect: "NoExecute"
key: "node.kubernetes.io/unreachable"
operator: "Exists"
tolerationSeconds: 30

affinity: {}

Define Ingress Class for FortiADC Kubernetes Controller
controller:

ingressClassResource:
name: "fadc-ingress-controller"
enabled: true
default: true
controllerValue: "fortinet.com/fadc-ingress-controller"

You can decide parameters defined in annotation of Ingress to be optional or mandatory.
FortiADC Kubernetes Controller will check the parameter if it marks mandatory.
parameters:

virtualServerNatSrcPool : "optional"
virtualServerWafProfile : "optional"
virtualServerAvProfile : "optional"
virtualServerDosProfile : "optional"
virtualServerCaptchaProfile : "optional"

FortiADC FortiADC Kubernetes Controller 3.0.0 37

Fortinet Technologies Inc.

virtualServerPersistence : "optional"
virtualServerFortiGSLB : "optional"
openshiftRouteSupport: "no"
enableStaticRouteSupport: "no"

In some scenarios, you may want to override some of the values included in the
values.yaml, such as for the toleration seconds or parameter properties. As the
values.yaml file is packed in the Helm Chart package, you can override the values
when installing or upgrading the Helm Chart (see Install the Helm Chart on page 38
and Upgrade the Helm Chart on page 39). For more details on the parameters, see
Configuration Parameters on page 42.

To get the verbose output, add --debug option for all the Helm commands.

Get Repo Information

To get the repository information:

helm repo add fortiadc-kubernetes-controller \
https://fortinet.github.io/fortiadc-kubernetes-controller/
helm repo update

Install the Helm Chart

You can specify a particular Kubernetes namespace in which FortiADC Kubernetes Controller will be deployed.

By default, if no Kubernetes namespace is specified, the default namespace would be "default". The RELEASE_NAME is
the name you give to this chart installation:

helm install [RELEASE_NAME] --namespace [Kubernetes NameSpace] \
fortiadc-kubernetes-controller/fadc-k8s-ctrl

In the example below, the Helm chart is installed with the release name "first-release" in the Kubernetes namespace
"fortiadc-ingress":

user@control-plane-node ~> helm install first-release --namespace fortiadc-ingress \
fortiadc-kubernetes-controller/fadc-k8s-ctrl

If you want to override values in the Helm Chart, you can use --set flags in the command. In the example below, you
can set the virtualServerWafProfile parameter as mandatory:

user@control-plane-node ~> helm install --debug first-release \
--set parameters.virtualServerWafProfile="mandatory" \
--namespace fortiadc-ingress fortiadc-kubernetes-controller/fadc-k8s-ctrl

FortiADC FortiADC Kubernetes Controller 3.0.0 38

Fortinet Technologies Inc.

Moreover, you can create a new namespace and deploy FortiADC Kubernetes Controller within the namespace at the
same time:

helm install first-release --namespace fortiadc-ingress \
--create-namespace --wait fortiadc-kubernetes-controller/fadc-k8s-ctrl

Upgrade the Helm Chart

Use the following commands:

helm repo remove fortiadc-ingress
helm repo add fortiadc-kubernetes-controller \
https://fortinet.github.io/fortiadc-kubernetes-controller/
helm repo update

Starting with version 3.0.0, the Helm chart repository was renamed to fortiadc-
kubernetes-controller. When upgrading from version 2.x to 3.0.0 or later, ensure you
remove the old Helm repository and add the new repository before continuing with
the upgrade.

You can specify the namespace with the --namespace option. Use --install option to install the release with
RELEASE_NAME if it does not exist.

Note: The --reset-values option will remove all the user-supplied values. For example, if you had specified the
virtualServerWafProfile parameter to be mandatory in a previous upgrade or install, the value will be reset to optional.
The --reset-values option ensures all the values are directly from the updated repository.

helm repo update
helm upgrade --reset-values --debug -n [Kubernetes NameSpace] [RELEASE_NAME] \
fortiadc-kubernetes-controller/fadc-k8s-ctrl --install

You can also change the field of values.yaml with the --set command.

To see which values you can change, please refer to https://github.com/fortinet/fortiadc-kubernetes-
controller/blob/main/charts/fadc-k8s-ctrl-3.0.0/values.yaml.

In the example below, you can override the value for the virtualServerWafProfile parameter to make it mandatory:

helm upgrade --debug -n [Kubernetes NameSpace] \
--set parameters.virtualServerWafProfile="mandatory" \
[RELEASE_NAME] fortiadc-kubernetes-controller/fadc-k8s-ctrl

Using the --debug option, you can check the Helm debug information “USER-SUPPLIED VALUES” to check if you have
all the value set as you need.

Release "first-release" has been upgraded. Happy Helming!
NAME: first-release
LAST DEPLOYED: Mon Apr 18 09:07:46 2022
NAMESPACE: fortiadc-ingress

FortiADC FortiADC Kubernetes Controller 3.0.0 39

Fortinet Technologies Inc.

https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/charts/fadc-k8s-ctrl-3.0.0/values.yaml
https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/charts/fadc-k8s-ctrl-3.0.0/values.yaml

STATUS: deployed
REVISION: 2
TEST SUITE: None
USER-SUPPLIED VALUES:
parameters:

virtualServerWafProfile: mandatory

Check the Installation

Check to see if the FortiADC Kubernetes Controller is installed correctly:

helm history -n [Kubernetes NameSpace] [RELEASE_NAME]

The helm history command shows the installation information:

user@control-plane-node ~> helm history -n fortiadc-ingress first-release
REVISION UPDATED STATUS CHART APP
VERSION DESCRIPTION
1 Tue Feb 8 05:37:33 2022 superseded fadc-k8s-ctrl-0.1.0 1.0.0

Install complete

You can also use the kubectl command to check the installation:

kubectl get -n [namespace] deployments

kubectl get -n [namespace] pods

You will get the FortiADC Kubernetes Controller deployment and pod status like the following:

user@control-plane-node ~> kubectl get -n fortiadc-ingress deployments
NAME READY UP-TO-DATE AVAILABLE AGE
first-release-fadc-k8s-ctrl 1/1 1 1 8s

user@control-plane-node ~> kubectl get -n fortiadc-ingress pods
NAME READY STATUS RESTARTS AGE
first-release-fadc-k8s-ctrl-6447856856-h5skx 1/1 Running 0 8s

Check the FortiADC Kubernetes Controller log:

kubectl logs -n [namespace] -f [pod name]

You can get the FortiADC Kubernetes Controller logs like the following:

user@control-plane-node ~> kubectl logs -n fortiadc-ingress -f \
first-release-fadc-k8s-ctrl-6447856856-h5skx

Starting fortiadc ingress controller
time=="2021-10-13T06:27:56Z"level=info msg="Starting FortiADC Kubernetes Controller"

FortiADC FortiADC Kubernetes Controller 3.0.0 40

Fortinet Technologies Inc.

Uninstall the Helm Chart

To uninstall the Helm Chart:

helm uninstall [RELEASE_NAME]

To uninstall the FortiADC Kubernetes Controller in the specified Kubernetes namespace:

helm uninstall [RELEASE_NAME] --namespace [Kubernetes NameSpace]

FortiADC FortiADC Kubernetes Controller 3.0.0 41

Fortinet Technologies Inc.

Configuration Parameters

Figure 1 FortiADC Kubernetes Controller

FortiADC Authentication Secret

As shown in Figure 1, the FortiADC Kubernetes Controller satisfies an Ingress or custom resource through REST API
calls to FortiADC. To enable this communication, the controller must have valid authentication credentials to access the
FortiADC instance.

To store these credentials securely within the Kubernetes cluster, create a Kubernetes Secret that contains the
FortiADC username and password.

For example:

kubectl create secret generic fad-login -n [namespace] \
--from-literal=username=admin --from-literal=password=[admin password]

In this example, the secret is named fad-login. must be specified in the Ingress or custom resource annotation
fortiadc-login, which allows the FortiADC Kubernetes Controller to authenticate to FortiADC using the provided
credentials.

FortiADC FortiADC Kubernetes Controller 3.0.0 42

Fortinet Technologies Inc.

The namespace of the authentication secret must be the same as the Ingress or
custom resource that references this authentication secret.

Annotation in Ingress

Configuration parameters are required to be specified in the Ingress annotation to enable FortiADC Kubernetes
Controller to determine how to deploy the Ingress resource.

Parameter Description Default

fortiadc-ip The Ingress will be deployed on FortiADC with the given
IP address or domain name.

Note: This parameter is required.

fortiadc-admin-port FortiADC HTTPS service port. 443

fortiadc-login The Kubernetes secret name preserves the FortiADC
authentication information.

Note: This parameter is required.

fortiadc-vdom Specify which VDOM to deploy the Ingress resource if
VDOM is enabled on FortiADC.

root

fortiadc-ctrl-log Enable/disable theFortiADC Kubernetes Controller log.
Once enabled, FortiADC Kubernetes Controller will print
the verbose log the next time the Ingress is updated.

enable

virtual-server-ip The virtual server IP of the virtual server to be configured
on FortiADC. This IP will be used as the address of the
Ingress.

Note: This parameter is required.

virtual-server-interface The FortiADC network interface for the client to access
the virtual server.

Note: This parameter is required.

virtual-server-port Default is 80.

If TLS is specified in the Ingress, then the default is 443.

Note:

If the fortiadc-ip is the same as the virtual-server-ip, you
should specify virtual-server-port to be other than 80/443
or change the system default reserved HTTP/HTTPS port
on FortiADC.

For more details, see the FortiADC Administration Guide
on Management service ports.

80 for HTTP service.

443 for HTTPS service.

load-balance-method Specify the predefined or user-defined method
configuration name.

LB_METHOD_ROUND_
ROBIN

FortiADC FortiADC Kubernetes Controller 3.0.0 43

Fortinet Technologies Inc.

https://docs.fortinet.com/document/fortiadc/latest/administration-guide/654503/configuring-basic-system-settings
https://docs.fortinet.com/document/fortiadc/latest/administration-guide/654503/configuring-basic-system-settings

Parameter Description Default

For more details, see the FortiADC Administration Guide
on load balancing methods.

load-balance-profile Default is LB_PROF_HTTP.

If TLS is specified in the Ingress, then the default is LB_
PROF_HTTPS.

LB_PROF_HTTP

LB_PROF_HTTPS

virtual-server-addr-type IPv4 or IPv6. ipv4

virtual-server-traffic-group Specify the traffic group for the virtual server.

For more details, see the FortiADC Administration Guide
on traffic groups.

default

virtual-server-nat-src-pool Specify the NAT source pool.

For more details, see the FortiADC Administration Guide
on NAT source pools.

virtual-server-waf-profile Specify the WAF profile name.

For more details, see the FortiADC Administration Guide
on WAF profiles.

virtual-server-av-profile Specify the AV profile name.

For more details, see the FortiADC Administration Guide
on AV profiles.

virtual-server-dos-profile Specify the DoS profile name.

For more details, see the FortiADC Administration Guide
on DoS profiles.

virtual-server-captcha-
profile

Specify the Captcha profile name.

For more details, see the FortiADC Administration Guide
on Captcha profiles.

Note: This field is available if WAF profile or DoS profile
is specified.

virtual-server-fortiview Enable/disable FortiView. disable

virtual-server-traffic-log Enable/disable the traffic log. disable

virtual-server-wccp Enable/disable WCCP.

For more details, see the FortiADC Administration Guide
on WCCP.

disable

virtual-server-persistence Specify a predefined or user-defined persistence
configuration name.

For more details, see the FortiADC Administration Guide
on persistence rules.

virtual-server-fortigslb-
publicip-type

Specify the public IP type for the virtual server as either
IPv4 or IPv6.

ipv4

FortiADC FortiADC Kubernetes Controller 3.0.0 44

Fortinet Technologies Inc.

https://docs.fortinet.com/document/fortiadc/latest/administration-guide/201314/configuring-load-balancing-lb-methods
https://docs.fortinet.com/document/fortiadc/latest/administration-guide/201314/configuring-load-balancing-lb-methods
https://docs.fortinet.com/document/fortiadc/latest/administration-guide/79417/create-a-traffic-group
https://docs.fortinet.com/document/fortiadc/latest/administration-guide/79417/create-a-traffic-group
https://docs.fortinet.com/document/fortiadc/latest/administration-guide/630669/using-source-pools
https://docs.fortinet.com/document/fortiadc/latest/administration-guide/630669/using-source-pools
https://docs.fortinet.com/document/fortiadc/latest/administration-guide/909/configuring-a-waf-profile
https://docs.fortinet.com/document/fortiadc/latest/administration-guide/909/configuring-a-waf-profile
https://docs.fortinet.com/document/fortiadc/latest/administration-guide/643317/creating-an-av-profile
https://docs.fortinet.com/document/fortiadc/latest/administration-guide/643317/creating-an-av-profile
https://docs.fortinet.com/document/fortiadc/latest/administration-guide/088737/configuring-dos-protection-profile
https://docs.fortinet.com/document/fortiadc/latest/administration-guide/088737/configuring-dos-protection-profile
https://docs.fortinet.com/document/fortiadc/latest/administration-guide/552980/configuring-captcha
https://docs.fortinet.com/document/fortiadc/latest/administration-guide/552980/configuring-captcha
https://docs.fortinet.com/document/fortiadc/latest/administration-guide/271794/configuring-wccp
https://docs.fortinet.com/document/fortiadc/latest/administration-guide/271794/configuring-wccp
https://docs.fortinet.com/document/fortiadc/latest/administration-guide/932874/configuring-persistence-rules
https://docs.fortinet.com/document/fortiadc/latest/administration-guide/932874/configuring-persistence-rules

Parameter Description Default

virtual-server-fortigslb-
publicip

Specify the virtual server public IP address.

virtual-server-fortigslb-
1clickgslb

Enable/disable the FortiGSLB One-click GSLB server. disable

virtual-server-fortigslb-
hostname

The Host Name option is available if One-click GSLB
Server is enabled.

Enter the hostname part of the FQDN. For example: www.
Note: You can use @ to denote the zone root. The value
substitute for @ is the preceding $ORIGIN directive.

virtual-server-fortigslb-
domainname

The Domain Name option is available if One-click GSLB
Server is enabled.

The domain name must end with a period. For example:
example.com.

For more details on configuring parameters with virtual-server prefix and load-balance prefix, please reference FortiADC
Administration Guide on Configuring virtual servers.

Annotation in Service

You can define the health check profile and SSL profile in the Kubernetes service annotation.

The health check profile and SSL profile will be automatically configured in the corresponding real server pool on
FortiADC.

Parameter Description Default

health-check-ctrl Enable/disable the health checking for the real server
pool.

disable

health-check-relation l AND — All of the selected health checks must pass
for the server to be considered available.

l OR — One of the selected health checks must pass
for the server to be considered available.

health-check-list One or more health check configuration names.
Concatenate the health check names with a space
between each name.

For example: "LB_HLTHCK_ICMP LB_HLTHCK_HTTP".

For more details, see the FortiADC Administration Guide
on health checks.

real-server-ssl-profile Specify the real server SSL profile name. Real server
profiles determine settings for communication between
FortiADC and the backend real servers.

The default is NONE, which is applicable for non-SSL
traffic.

NONE

FortiADC FortiADC Kubernetes Controller 3.0.0 45

Fortinet Technologies Inc.

https://docs.fortinet.com/document/fortiadc/latest/administration-guide/970956/configuring-virtual-servers
https://docs.fortinet.com/document/fortiadc/latest/administration-guide/970956/configuring-virtual-servers
https://docs.fortinet.com/document/fortiadc/latest/administration-guide/38121/configuring-health-checks
https://docs.fortinet.com/document/fortiadc/latest/administration-guide/38121/configuring-health-checks

Parameter Description Default

For more details, see the FortiADC Administration Guide
on SSL profiles.

overlay_tunnel Specify the overlay tunnel name. This is used for services
with the ClusterIP type.

Due to PDF formatting limitations, the code example below would not retain
indentations if copy and pasted directly into a YAML file. Without the proper
indentations, the YAML will be invalid.

To copy the service YAML example, follow this link:

https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/service_
examples/default-http-backend.yaml

Here is an example service.yaml with health check parameters:

kind: Service
apiVersion: v1
metadata:

labels:
name: default-http-backend
namespace: default
annotations: {

"health-check-ctrl" : "enable",
"health-check-relation" : "OR",
"health-check-list" : "LB_HLTHCK_ICMP",
"real-server-ssl-profile" : "NONE"

}
spec:

type: NodePort
ports:
- port: 80

protocol: TCP
targetPort: 80

selector:
app: nginx

sessionAffinity: None

Annotation in VirtualServer

Configuration parameters must be specified in the VirtualServer annotations to allow the FortiADC Kubernetes
Controller to identify the target FortiADC instance for deploying the VirtualServer resource.

Parameter Description Default

fortiadc-ip The VirtualServer will be deployed on FortiADC with the
given IP address or domain name.

This parameter is required.

FortiADC FortiADC Kubernetes Controller 3.0.0 46

Fortinet Technologies Inc.

https://docs.fortinet.com/document/fortiadc/latest/administration-guide/230886/ssl-profile-configurations
https://docs.fortinet.com/document/fortiadc/latest/administration-guide/230886/ssl-profile-configurations
https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/service_examples/default-http-backend.yaml
https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/service_examples/default-http-backend.yaml

Parameter Description Default

fortiadc-admin-port FortiADC HTTPS service port. 443

fortiadc-login The Kubernetes secret name preserves the FortiADC
authentication information.

This parameter is required.

fortiadc-ctrl-log Enable/disable theFortiADC Kubernetes Controller log.
Once enabled, FortiADC Kubernetes Controller will print
the verbose log the next time the VirtualServer is
updated.

enable

FortiADC FortiADC Kubernetes Controller 3.0.0 47

Fortinet Technologies Inc.

Deployment

The FortiADC Kubernetes Controller supports two deployment models for exposing applications in a Kubernetes cluster:

l Ingress-based deployment — Uses the standard Kubernetes Ingress resource to define external access rules for
HTTP/HTTPS traffic.

l Custom Resource–based deployment — Uses the Fortinet-defined VirtualServer Custom Resource Definition
(CRD) to configure advanced FortiADC-specific parameters directly within Kubernetes.

The following example demonstrates a simple-fanout deployment using both resource types.

In this scenario, the client can access service1 with the URL https://test.com/info and access service2 with the
URL https://test.com/hello.

Service1 defines a logical set of Pods with the label run=sise. Sise is a simple HTTP web server.

Service2 defines a logical set of Pods with the label run=nginx-demo. Nginx is also a simple HTTP web server.
Services are deployed under the namespace default.

In this simple-fanout example, the Pods are exposed using the NodePort service type. You can also use the ClusterIP
service type, or a combination of both, by defining Service2 as ClusterIP. For more information, see Exposing
Kubernetes ClusterIP type services on page 52.

For a detailed walkthrough of deploying the same application using the VirtualServer CRD—including validation and
monitoring steps—see Deploying the VirtualServer with Custom Resource Definition (CRD) on page 57.

Deploy the Pods and expose the Services

Service1:
kubectl apply -f https://raw.githubusercontent.com/fortinet/fortiadc-kubernetes-
controller/main/service_examples/service1.yaml

FortiADC FortiADC Kubernetes Controller 3.0.0 48

Fortinet Technologies Inc.

Service2:
kubectl apply -f https://raw.githubusercontent.com/fortinet/fortiadc-kubernetes-
controller/main/service_examples/service2.yaml

Check the service1 and service2 you have deployed.

kubectl get service

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service1 NodePort 10.111.143.250 <none> 1241:31320/TCP 10m

service2 NodePort 10.109.117.79 <none> 1242:32075/TCP 2m59s

Deploy the Ingress

Define the Simple-fanout Ingress resource.

Due to PDF formatting limitations, the code example below would not retain
indentations if copy and pasted directly into a YAML file. Without the proper
indentations, the YAML will be invalid.

To copy the Simple-fanout Ingress YAML example, follow this link:

https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/ingress_
examples/simple-fanout-example.yaml

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:

name: simple-fanout-example
annotations: {

"fortiadc-ip" : "10.0.100.133",
"fortiadc-login" : "fad-login",
"fortiadc-vdom" : "root",
"fortiadc-ctrl-log" : "enable",
"virtual-server-ip" : "172.23.133.6",
"virtual-server-interface" : "port1",
"virtual-server-port" : "443",
"load-balance-method" : "LB_METHOD_LEAST_CONNECTION",
"load-balance-profile" : "LB_PROF_HTTPS"

}
spec:

ingressClassName: fadc-ingress-controller
rules:
- host: test.com

http:
paths:
- path: /info

pathType: Prefix
backend:

FortiADC FortiADC Kubernetes Controller 3.0.0 49

Fortinet Technologies Inc.

https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/ingress_examples/simple-fanout-example.yaml
https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/ingress_examples/simple-fanout-example.yaml

service:
name: service1
port:

number: 1241
- path: /hello

pathType: Prefix
backend:

service:
name: service2
port:

number: 1242

Deploy it with the kubectl command:

kubectl apply -f simple-fanout.yaml
ingress.networking.k8s.io/simple-fanout-example created

Get the information of the simple-fanout-example Ingress by using the kubectl describe command:

user@control-plane-node ~> kubectl describe ingress simple-fanout-example

Name: simple-fanout-example

Namespace: default

Address: 172.23.133.6

Default backend: default-http-backend:80

Rules:
Host Path Backends

---- ---- --------
test.com

/info service1:1241 (10.244.1.16:9876)
/hello service2:1242 (10.244.12.26:80)

Annotations: fortiadc-admin: admin
fortiadc-ctrl-log: enable
fortiadc-ip: 10.0.100.133
fortiadc-vdom: root
load-balance-method: LB_METHOD_LEAST_CONNECTION
load-balance-profile: LB_PROF_HTTPS
virtual-server-interface: port1
virtual-server-ip: 172.23.133.6
virtual-server-port: 443

Events: <none>

FortiADC FortiADC Kubernetes Controller 3.0.0 50

Fortinet Technologies Inc.

FortiView

Check the deployed Ingress with FortiView.

Try to access https://test.com/info.

Try to access https://test.com/hello.

FortiADC FortiADC Kubernetes Controller 3.0.0 51

Fortinet Technologies Inc.

Update or delete the Ingress

To update an Ingress resource:

You can edit the ingress.yaml. and use kubectl apply or use the kubectl edit command.

kubectl edit ingress simple-fanout-example

To delete the Ingress resource:

kubectl delete ingress/simple-fanout-example

Add, update or delete Service and Node

Service

FortiADC Kubernetes Controller only monitors the service type and annotations defined in services used in the
deployed Ingress resource.

FortiADC Kubernetes Controller does not support services with multiple ports exposed.

If you delete a service that is used in the deployed Ingress resource, Kubernetes
would not give you any warning, and FortiADC Kubernetes Controller would not
handle any delete events on the service.

Node

If you add or delete a worker node, FortiADC Kubernetes Controller will check the deployed Ingress resources and
handle the add/delete event. For updating a node, FortiADC Kubernetes Controller only monitors the node’s IP and
node condition type NotReady status.

Exposing Kubernetes ClusterIP type services

FortiADC Kubernetes Controller 2.0 supports ingress to expose services with the ClusterIP type. Since the ClusterIP
type Service can only be accessed within the cluster, an overlay-tunnel is required to connect the FortiADC to the
Kubernetes cluster network.

Follow the basic steps below to expose ClusterIP type services:

1. Deploy FortiADC as a fake node in the Kubernetes cluster
2. Deploy the Pods and expose the ClusterIP type Service

Deploy FortiADC as a fake node in the Kubernetes cluster

1. Use the kubectl command to check the flannel VXLAN public IP and the VNI of the control plane node.
When using VXLAN backend, flannel uses UDP port 8472 for sending encapsulated packets.

FortiADC FortiADC Kubernetes Controller 3.0.0 52

Fortinet Technologies Inc.

kubectl describe node [NODE NAME] | grep flannel

2. To integrate the FortiADC overlay tunnel with the flannel VXLAN, an overlay tunnel with the VXLAN type must be
created FortiADC.
a. In FortiADC, go to Network > Interface and click the Overlay Tunnel tab.
b. Create a new Overlay Tunnel configuration using the flannel VXLAN public IP obtained from the previous step

as the Destination IP.
Select VXLAN as the Mode and Flannel VXLAN as the VXLAN Type.

3. After the overlay tunnel is configured, you need to configure its interface to connect with your Kubernetes cluster.
a. Go to Network > Interface. In the Interface page, locate the Interface configuration that share the same name

as the overlay tunnel you just created.
b. In the Interface configuration, specify the network interface IP and the netmask as the one used in your

Kubernetes cluster CIDR netmask size.
You can set the interface IP in any subset of the pod network if and only if the network subset is not used by
another node. For example, we claim the subset 10.244.30.0/24 for FortiADC and set 10.244.30.12/16 as the

FortiADC FortiADC Kubernetes Controller 3.0.0 53

Fortinet Technologies Inc.

interface IP/netmask. Allow ping/http/https traffic to go through the interface.

4. Go to the FortiADC CLI and use the get system interface command to get the VXLAN interface MAC address
(mac-addr).

FortiADC-VM # get system interface k8s
type : vxlan
mode : static
vdom : root
redundant-master :
ip : 10.244.30.12/16
allowaccess : https ping http
mtu : 1450
speed : auto
status : up
retrieve_physical_hwaddr : disable
mac-addr : e4:74:eb:7c:c7:xx
flow-sniffer : disable
wccp : disable
trust-ip : disable
floating : disable

FortiADC FortiADC Kubernetes Controller 3.0.0 54

Fortinet Technologies Inc.

recv-seg-offload-override : disable
send-seg-offload-override : disable
vxlan-type : flannel_vxlan

5. Deploy FortiADC as the fake node installed with the flannel CNI plugin in your Kubernetes cluster.

Due to PDF formatting limitations, the code example below would not retain
indentations if copy and pasted directly into a YAML file. Without the proper
indentations, the YAML will be invalid.

Please follow this link to copy and modify the FAD Node YAML example:

https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/node_
examples/fad.yaml

apiVersion: v1
kind: Node
metadata:

name: fad
labels:

topology.kubernetes.io/zone: "fake-node"
annotations:
#Replace public-ip with outgoing interface IP of overlay tunnel
flannel.alpha.coreos.com/public-ip: "10.0.100.133"
#Replace VtepMAC with your VXLAN interface MAC
flannel.alpha.coreos.com/backend-data: '{"VNI":1,"VtepMAC":"e4:74:eb:7c:c7:xx"}'
flannel.alpha.coreos.com/backend-type: "vxlan"
flannel.alpha.coreos.com/kube-subnet-manager: "true"

spec:
podCIDR: "10.244.30.0/24"

Note: Using the label topology.kubernetes.io/zone allows the fake node FortiADC to be distinguished from the
zone where the control plane nodes and other worker nodes are located.

Deploy the Pods and expose the ClusterIP type Service

1. Use the Kubernetes deployment to deploy the NGINX server in the pods. The NGINX server serves the simple web
HTTP and HTTPS application.
Note: You have to generate the corresponding Kubernetes Secret and Configmap for HTTPS applications.

2. Expose the web application running on these pods to a service with default type ClusterIP. You must specify the
overlay tunnel in the service annotations.

Due to PDF formatting limitations, the code example below would not retain
indentations if copy and pasted directly into a YAML file. Without the proper
indentations, the YAML will be invalid.

Please follow this link to copy and modify the my-web service YAML example:

https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/service_
examples/my-web.yaml

FortiADC FortiADC Kubernetes Controller 3.0.0 55

Fortinet Technologies Inc.

https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/node_examples/fad.yaml
https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/node_examples/fad.yaml
https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/service_examples/my-web.yaml
https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/service_examples/my-web.yaml

apiVersion: v1
kind: Service
metadata:

name: my-web
labels:

run: my-web
annotations: {

"health-check-ctrl" : "enable",
"health-check-relation" : "OR",
"health-check-list" : "LB_HLTHCK_HTTPS",
"real-server-ssl-profile" : "LB_RS_SSL_PROF_HIGH",
"overlay_tunnel" : "k8s",

}
spec:

ports:
- port: 443

protocol: TCP
name: https
targetPort: https

selector:
app: my-web

apiVersion: apps/v1
kind: Deployment
metadata:

name: my-web
spec:

selector:
matchLabels:

app: my-web
replicas: 2
template:

metadata:
labels:

app: my-web
spec:

volumes:
- name: secret-volume

secret:
secretName: nginxsecret

- name: configmap-volume
configMap:

name: nginxconfigmap
containers:
- name: nginxhttps

image: nginx
ports:
- containerPort: 443

name: https
- containerPort: 80

name: http

FortiADC FortiADC Kubernetes Controller 3.0.0 56

Fortinet Technologies Inc.

volumeMounts:
- mountPath: /etc/nginx/ssl

name: secret-volume
- mountPath: /etc/nginx/conf.d

name: configmap-volume

Installing Kubernetes Custom Resource

As part of deploying the FortiADC Kubernetes Controller via Helm, the VirtualServer Custom Resource Definition
(CRD) is automatically installed.

This CRD extends the Kubernetes API to support advanced FortiADC virtual server configurations beyond the
capabilities of standard Ingress resources.

You can use the following command to check whether VirtualServer Custom Resource Definition is applied.

kubectl get crds
NAME CREATED AT
virtualservers.fadk8sctrl.fortinet.com 2025-08-01T03:23:33Z

Deploying the VirtualServer with Custom Resource Definition (CRD)

After confirming the CRD installation, you can deploy a VirtualServer resource to test controller functionality.

The following example demonstrates the simple-fanout scenario, which defines multiple routing paths under a single
hostname.

Due to PDF formatting limitations, the code example below would not retain
indentations if copy and pasted directly into a YAML file. Without the proper
indentations, the YAML will be invalid.

Please follow this link to copy and modify the VirtualServer YAML example:

https://github.com/fortinet/fortiadc-kubernetes-
controller/blob/main/customResource/virtualserver_simple_fanout.yaml

apiVersion: fadk8sctrl.fortinet.com/v1alpha1
kind: VirtualServer
metadata:

name: simple-fanout-virtualserver
annotations: {

"fortiadc-ip" : "172.31.5.197",
"fortiadc-login" : "fad-login",
"fortiadc-ctrl-log" : "enable",
"fortiadc-admin-port": "443"

}
labels:

fadcr: "true"
spec:

addressType: ipv4

FortiADC FortiADC Kubernetes Controller 3.0.0 57

Fortinet Technologies Inc.

https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/customResource/virtualserver_simple_fanout.yaml
https://github.com/fortinet/fortiadc-kubernetes-controller/blob/main/customResource/virtualserver_simple_fanout.yaml

address: 172.31.12.174
port: 8443
interface: port2
loadBalanceProfile: LB_PROF_HTTPS
loadBalanceMethod: LB_METHOD_ROUND_ROBIN
wafProfile: High-Level-Security
captchaProfile: LB_CAPTCHA_PROFILE_DEFAULT
avProfile: Antivirus-Profile
trafficGroup: default
fortiview: enable
trafficLog: enable
wccp: disable
fortigslbPublicIpType: ipv4
fortigslbPublicAddress: 203.0.113.1
fortigslbOneClick: enable
fortigslbHostName: samplehost
fortigslbDomainName: example.com.
contentRoutings:

- name: route1
host: test.com
path: /info
pathType: Prefix
realServerPool:

service: service1
servicePort: 1241
serviceNamespace: default

- name: route2
host: test.com
path: /hello
pathType: Prefix
realServerPool:

service: service2
servicePort: 1242
serviceNamespace: default

natSourcePoolList:
- name: nat-pool-1

vdom: root

Deploy it with the kubectl command:

kubectl apply -f virtualserver_simple_fanout.yaml
virtualserver.fadk8sctrl.fortinet.com/simple-fanout-virtualserver created

Get the information of the simple-fanout-virtualserver by using the kubectl describe command:

kubectl describe virtualserver simple-fanout-virtualserver
Name: simple-fanout-virtualserver
Namespace: default
Labels: fadcr=true
Annotations: fortiadc-admin-port: 443

fortiadc-ctrl-log: enable
fortiadc-ip: 172.31.5.197

FortiADC FortiADC Kubernetes Controller 3.0.0 58

Fortinet Technologies Inc.

fortiadc-login: fad-login
API Version: fadk8sctrl.fortinet.com/v1alpha1
Kind: VirtualServer
Metadata:

Creation Timestamp: 2025-09-11T19:06:24Z
Generation: 1
Resource Version: 30096049
UID: 687306af-c22e-4c9a-badf-06590f2927d5

Spec:
Address: 172.31.12.174
Address Type: ipv4
Av Profile: Antivirus-Profile
Captcha Profile: LB_CAPTCHA_PROFILE_DEFAULT
Content Routings:

Host: test.com
Name: route1
Path: /info
Path Type: Prefix
Real Server Pool:

Service: service1
Service Namespace: default
Service Port: 1241

Host: test.com
Name: route2
Path: /hello
Path Type: Prefix
Real Server Pool:

Service: service2
Service Namespace: default
Service Port: 1242

Fortigslb Domain Name: example.com.
Fortigslb Host Name: samplehost
Fortigslb One Click: enable
Fortigslb Public Address: 203.0.113.1
Fortigslb Public Ip Type: ipv4
Fortiview: enable
Interface: port1
Load Balance Method: LB_METHOD_ROUND_ROBIN
Load Balance Profile: LB_PROF_HTTPS
Port: 443
Traffic Group: default
Traffic Log: enable
Vdom: root
Waf Profile: High-Level-Securityaaa
Wccp: disable

Events: <none>

FortiView

Check the deployed VirtualServer with FortiView.

FortiADC FortiADC Kubernetes Controller 3.0.0 59

Fortinet Technologies Inc.

Try to access https://test.com/info.

{"host": "test.com", "version": "0.5.0", "from": "172.31.15.231"}

Try to access https://test.com/hello.

Update or delete the VirtualServer

To update a virtualserver resource:

You can edit the virtualserver_simple_fanout.yaml. and use kubectl apply or use the kubectl edit
command.

kubectl edit virtualserver simple-fanout-virtualserver

To delete the virtualserver resource:

kubectl delete virtualserver/simple-fanout-virtualserver

FortiADC FortiADC Kubernetes Controller 3.0.0 60

Fortinet Technologies Inc.

Debug

By default, the FortiADC Kubernetes Controller records the process of the Ingress implementation in verbose mode. The
debug log shows the check of annotation parameters and the process of calling the REST API to FortiADC when
deploying, updating, or deleting the Ingress resources.

The verbose log can be enabled or disabled for any particular Ingress. This is determined by the status of the fortiadc-
ctrl-log configuration parameter. For more information, see Configuration Parameters on page 42.

To see the log, you can use the kubectl logs command:

kubectl logs -n [namespace] -f [FortiADC Kubernetes Controller pod name]

The log shows which problem you encounter. For example, the below log shows that you do not have the correct
FortiADC Authentication Secret in the Kubernetes cluster.

Based on the error message, you can correct it and use the kubectl apply command to reconfigure the Ingress.

Some troubleshooting steps may require restarting the FortiADC Kubernetes Controller. For example, the FortiADC
Kubernetes Controller may not connect to FortiADC after changing the network firewall rule. To fix this type of
environment issue, you can restart the FortiADC Kubernetes Controller by using the following command:

kubectl -n [namespace] rollout restart deployment/[FortiADC Kubernetes Controller deployment
name]

FortiADC FortiADC Kubernetes Controller 3.0.0 61

Fortinet Technologies Inc.

FAQ

1) What should I do if I find a Kubernetes API object is supported by multiple API groups?

You may encounter this scenario when upgrading your Kubernetes cluster and the higher Kubernetes version has
deprecated some of the API groups.

For example, extensions/v1beta1/Ingress is entirely deprecated by networking.k8s.io/v1/Ingress in Kubernetes v1.22.
You may find extensions/v1beta1/Ingress and networking.k8s.io/v1/Ingress both exist in your system when upgrading
the Kubernetes cluster from v1.16 to v1.20.

In this case, you have to disable the API group extensions/v1beta1 to ensure the system use the API group
networking.k8s.io/v1 that is supported by FortiADC Kubernetes Controller. After disabling the API group, the Kubernetes
API server needs to be restarted to apply the changes.

Follow the steps below:

1. Edit /etc/kubernetes/manifests/kube-apiserver.yaml
2. Under spec.containers.command, add --runtime-config=extensions/v1beta1=false
3. Restart the Kubernetes API Server using systemctl restart kubelet.service

For more information on enabling/disabling deprecated API groups, see https://kubernetes.io/docs/reference/using-
api/#enabling-or-disabling.

2) Why does FortiADC Kubernetes Controller not spin up when failover occurs?

First, check if the NotReady Node is marked with taints, node.kubernetes.io/unreachable:NoExecute or
node.kubernetes.io/not-ready:NoExecute.

If both taints are missing, check the following:

1. If the Kubernetes version is earlier than 1.19.9, upgrade the Kubernetes version to avoid this issue.
For more information, see https://github.com/kubernetes/kubernetes/issues/97100.

2. If the percentage of NotReady nodes in the same zone is greater than the value of unhealthyZoneThreshold
(default is 55%), then taints with the NoExecute effect may not apply to the NotReady nodes.
For details, see https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/.

FortiADC FortiADC Kubernetes Controller 3.0.0 62

Fortinet Technologies Inc.

https://kubernetes.io/docs/reference/using-api/#enabling-or-disabling
https://kubernetes.io/docs/reference/using-api/#enabling-or-disabling
https://github.com/kubernetes/kubernetes/issues/97100
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/

www.fortinet.com

Copyright© 2025 Fortinet, Inc. All rights reserved. Fortinet®, FortiGate®, FortiCare® and FortiGuard®, and certain other marks are registered trademarks of Fortinet, Inc., and other Fortinet names herein
may also be registered and/or common law trademarks of Fortinet. All other product or company names may be trademarks of their respective owners. Performance and other metrics contained herein
were attained in internal lab tests under ideal conditions, and actual performance and other results may vary. Network variables, different network environments and other conditions may affect performance
results. Nothing herein represents any binding commitment by Fortinet, and Fortinet disclaims all warranties, whether express or implied, except to the extent Fortinet enters a binding written contract,
signed by Fortinet’s General Counsel, with a purchaser that expressly warrants that the identified product will perform according to certain expressly-identified performance metrics and, in such event, only
the specific performance metrics expressly identified in such binding written contract shall be binding on Fortinet. For absolute clarity, any such warranty will be limited to performance in the same ideal
conditions as in Fortinet’s internal lab tests. Fortinet disclaims in full any covenants, representations, and guarantees pursuant hereto, whether express or implied. Fortinet reserves the right to change,
modify, transfer, or otherwise revise this publication without notice, and the most current version of the publication shall be applicable.

https://www.fortinet.com/

	Change Log
	About FortiADC Kubernetes Controller
	Architecture and Concepts
	Architecture Overview
	High-level workflow
	Key Components
	Resource Mapping

	Ingress and VirtualServer Models

	Prerequisite Knowledge
	Deploying FortiADC Kubernetes Controller
	FortiADC as an Ingress-Managed Load Balancer
	Supported Environments
	Supported Release and Version
	Kubernetes API Version
	Kubernetes Ingress
	Ingress class
	Ingress types

	Kubernetes Custom Resource
	VirtualServer Custom Resource Definition
	VirtualServer Custom Resource Examples

	Mapping Kubernetes Resources to FortiADC Objects
	Naming rule

	Kubernetes CNI Plugin
	Installation
	Configuration Parameters
	Deployment
	Installing Kubernetes Custom Resource

	Debug
	FAQ

