Generic and Static Detection of Mobile Malware Using Machine Learning

Minh Tran

https://www.linkedin.com/in/minhtq/
Agenda

• Introduction
• Background
• Architecture
• Results
• Conclusions
Introduction

- Sr. Security Researcher @ Fortinet (FortiGuard)
 - Sr. Malware Research Engineer @ Palo Alto Networks
- 13+ years of experience
- PhD Candidate @ North Carolina State University
 - Master of Science - 2011
- #56 of Microsoft's Top 100 Security Researchers

Opinions are my own
Motivating Example

- Marcher!
- Social engineering attacks
- Corrupted
Why Signature-based and Behavior-based Malware Detection Are Still not Sufficient?

- Not resilient against variations.
- Malware samples can be corrupted
- Rooms for improvement!
Key Insights

- *Legit*: `com.symantec.mobilesecurity`
- vs
- *Marcher*: `etcqlnzwauf.hflivryhdnjb`
- Key Insight 1: obfuscation.
 - Use your enemy’s strength against them!
• Social engineering attacks
• A benign app should NOT do both at the same time!
 • Popular apps
Machine Learning To The Rescue

- Rules → Programming → Answers
- Data → Programming → Answers
- Answers → Machine Learning → Rules
- Data → Machine Learning → Rules

Diagram: Neural Network with Input, Hidden, and Output layers.
Machine Learning To The Rescue

- Classify package names:
 - N-gram

- Classify images:
 - Neural Networks
• **PoC: Inception-v4:**
 • 43 layers (deep learning!)
 • Lower computational cost (vs e.g. VGGNet)

Credit belongs to the respective owners
Workflow to Train the DNN

- Building corpus of icons
- Training of the neural network
 - Produce model files
- Evaluation using the test corpus
Building Corpus of Icons

• Crawling for icons of legitimate apps (e.g. WhatsApp) using Google Images search
• Labeling & grouping into classes. One class corresponds to one app.
Training of the Neural Network Model

- Converting icons to internal format
- Training the neural network for n steps (e.g. n = 3000)
- Producing the final model (i.e. model files with the optimal weights & biases for neurons)
- Evaluation based on testing corpus
Training of the Language Model

- Building corpus of words/domain names/package names (e.g. Alexa, Majestic Million)
- Training (N-gram with n is a customizable length parameter e.g. n = 2)
- Labeling (malicious, benign) based on ground truths (from existing malware collections)
- Producing the final model
- Evaluation based on testing corpus
Workflow to Classify Samples

- Parsing packages
- Extracting package name and feed into the Language Model
- Extracting icons and feed into the Neural Network Model
Results

- Test set: 306847 samples
- 2gram total detection: right 271133 vs wrong 35714 = 11.64%
 FN 88.13% FP 11.87%
- 3gram total detection: right 277024 vs wrong 29823 = 9.72%
 FN 78.88% FP 21.12%
- 4gram total detection: right 274412 vs wrong 32435 = 10.57%
 FN 84.69% FP 15.31%
Results

- Our system classifies all Android malware, but especially effective against social engineering malware who masquerade as legitimate apps.
- Our system has better coverage: many samples can be corrupted and our system still works because fundamentally speaking it is static analysis whereas solutions based on dynamic analysis fail.
- Our system has better performance: it is faster than dynamic analysis because no execution in sandbox is required.
- Effectively speaking, detection rate is 99.928%.
Conclusions

- ML is valuable to malware detection
- Future research
 - Increasing the quality and the quantity of the data set: different languages etc
 - Improving training performance: distributed training etc
Questions